DCT12S0A0S03NFA [DELTA]

Non-Isolated Point of Load DC/DC Power Modules: 4.5~14Vin, 0.69V-5V/20Aout; 负荷DC / DC电源模块非隔离点: 4.5 〜 14Vin , 0.69V - 5V / 20Aout
DCT12S0A0S03NFA
型号: DCT12S0A0S03NFA
厂家: DELTA ELECTRONICS, INC.    DELTA ELECTRONICS, INC.
描述:

Non-Isolated Point of Load DC/DC Power Modules: 4.5~14Vin, 0.69V-5V/20Aout
负荷DC / DC电源模块非隔离点: 4.5 〜 14Vin , 0.69V - 5V / 20Aout

电源电路
文件: 总19页 (文件大小:915K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DCL12S0A0S20NFA  
FEATURES  
High efficiency:  
93% @ 12Vin, 5V/20A out  
92% @ 12Vin, 3.3V/20A out  
90% @ 12Vin, 2.5V/20A out  
89% @ 12Vin, 1.8V/20A out  
83% @ 12Vin, 1.2V/20A out  
79% @ 10Vin, 0.69V/20A out  
Small size and low profile:  
33.02x 13.46x 8.5mm (1.3”x 0.53”x 0.33”)  
Surface mount packaging  
Standard footprint  
Voltage and resistor-based trim  
Pre-bias startup  
Output voltage tracking  
No minimum load required  
Output voltage programmable from  
0.69Vdc to 5 Vdc via external resistor  
Fixed frequency operation and ablity to  
Synchronize with external clock  
Input UVLO, output OCP  
Remote on/off  
ISO 9001, TL 9000, ISO 14001, QS9000,  
OHSAS18001 certified manufacturing facility  
UL/cUL 60950-1 (US & Canada)  
CE mark meets 73/23/EEC and 93/68/EEC  
directives  
Delphi DCL, Non-Isolated Point of Load  
DC/DC Power Modules: 4.5~14Vin,  
0.69V-5V/20Aout  
OPTIONS  
Negative/Positive on/off logic  
Vo Tracking feature  
The Delphi Series DCL, 4.5-14V input, single output,  
non-isolated Point of Load DC/DC converters are the latest  
offering from a world leader in power systems technology and  
manufacturing -- Delta Electronics, Inc. The DCL series provides  
a programmable output voltage from 0.69 V to 5 V using an  
external resistor and has flexible and programmable tracking  
features to enable a variety of startup voltages as well as tracking  
between power modules. This product family is available in  
surface mount and provides up to 20A of output current in an  
industry standard footprint. With creative design technology and  
optimization of component placement, these converters possess  
outstanding electrical and thermal performance, as well as  
extremely high reliability under highly stressful operating  
conditions.  
APPLICATIONS  
Telecom / DataCom  
Distributed power architectures  
Servers and workstations  
LAN / WAN applications  
Data processing applications  
DS_DCL12S0A0S20NFA_11152012  
E-mail: DCDC@delta.com.tw  
http://www.deltaww.com/dcdc  
P1  
TECHNICAL SPECIFICATIONS  
PARAMETER  
NOTES and CONDITIONS  
DCL12S0A0S20NFA  
Min.  
Typ.  
Max.  
Units  
ABSOLUTE MAXIMUM RATINGS  
Input Voltage (Continuous)  
Sequencing Voltage  
-0.3  
-0.3  
15  
V
V
Vin max  
Operating Ambient Temperature  
Storage Temperature  
-40  
-55  
85  
125  
INPUT CHARACTERISTICS  
Operating Input Voltage  
Input Under-Voltage Lockout  
Turn-On Voltage Threshold  
Turn-Off Voltage Threshold  
Lockout Hysteresis Voltage  
Maximum Input Current  
No-Load Input Current (Io = 0, module  
enabled)  
Vo Vin 0.6  
4.5  
14  
20  
V
4.45  
4.2  
0.25  
V
V
V
A
mA  
Vin=4.5V to14V, Io=Io,max  
Vin= 10V, Vo,set = 0.69 Vdc  
Vin= 12V, Vo,set = 3.3 Vdc  
60  
74  
mA  
mA  
Off Converter Input Current (VIN = 12.0Vdc,  
module disabled)  
3
Inrush Transient  
1
A2S  
mAp-p  
dB  
(5Hz to 20MHz, 1μH source impedance; Vin =0 to 14V,  
Io=Iomax ;  
Input Reflected Ripple Current, peak-to-peak  
43  
45  
Input Ripple Rejection(120Hz)  
OUTPUT CHARACTERISTICS  
with 0.5% tolerance for external resistor used to set  
output voltage)  
(selected by an external resistor)  
Output Voltage Set Point  
-1.5  
Vo,set  
+1.5  
5.0  
%Vo,set  
V
Output Voltage Adjustable Range  
Output Voltage Regulation  
0.69  
For Vo>=2.5V  
For Vo<2.5V  
For Vo>=2.5V  
For Vo<2.5V  
0.4  
10  
10  
5
%Vo,set  
mV  
mV  
Line(VIN=VIN, min to VIN, max)  
Load(Io=Io, min to Io, max)  
mV  
For Vo>=2.5V  
For Vo<2.5V  
0.5  
5
%Vo,set  
mV  
Temperature(Tref=TA, min to TA, max)  
Total Output Voltage Range  
Output Voltage Ripple and Noise  
Over sample load, line and temperature  
5Hz to 20MHz bandwidth  
-2.5  
+2.5  
%Vo,set  
Vin= Vin nominal, Io=Io,min to Io,max, Co= 1µF+10uF  
ceramic,  
Peak-to-Peak  
80  
28  
mV  
mV  
Vin= Vin nominal, Io=Io,min to Io,max, Co= 1µF+10uF  
ceramic,  
RMS  
Output Current Range  
Output Voltage Over-shoot at Start-up  
Output DC Current-Limit Inception  
Output Short-Circuit Current (Hiccup Mode)  
DYNAMIC CHARACTERISTICS  
Dynamic Load Response  
Positive Step Change in Output Current  
Negative Step Change in Output Current  
Settling Time to 10% of Peak Deviation  
Turn-On Transient  
0
20  
5
A
% Vo,set  
% Io  
140  
2.6  
Io,s/c  
Adc  
10µF Tan & 1µF Ceramic load cap, 2.5A/µs  
50% Io, max to 100% Io, max  
100% Io, max to 50% Io, max  
380  
380  
30  
mV  
mV  
µs  
Io=Io.max  
Start-Up Time, From On/Off Control  
Start-Up Time, From Input  
Output Voltage Rise Time  
Output Capacitive Load  
EFFICIENCY  
Time for Von/off to Vo=10% of Vo,set  
Time for Vin=Vin,min to Vo=10% of Vo,set  
Time for Vo to rise from 10% to 90% of Vo,set  
Full load; ESR 0.15mΩ  
2
2
5
ms  
ms  
ms  
µF  
94  
1000  
Vo=5.0V  
Vo=3.3V  
Vo=2.5V  
Vo=1.8V  
Vo=1.2V  
Vo=0.69V  
Vin=12V, 100% Load  
Vin=12V, 100% Load  
Vin=12V, 100% Load  
Vin=12V, 100% Load  
Vin=12V, 100% Load  
Vin=10V, 100% Load  
93  
92  
90  
89  
83  
79  
%
%
%
%
%
%
FEATURE CHARACTERISTICS  
Switching Frequency  
Synchronization Frequency Range  
ON/OFF Control, (Negative logic)  
Logic Low Voltage  
Logic High Voltage  
Logic Low Current  
Logic High Current  
500  
kHz  
kHz  
520  
600  
Module On, Von/off  
Module Off, Von/off  
Module On, Ion/off  
Module Off, Ion/off  
0
2
1
Vin,max  
10  
V
V
µA  
1
mA  
ON/OFF Control, (Positive Logic)  
Logic High Voltage  
Logic Low Voltage  
Logic Low Current  
Logic High Current  
Tracking Slew Rate Capability  
Tracking Delay Time  
Module On, Von/off  
Module Off, Von/off  
Module On, Ion/off  
Module Off, Ion/off  
Vin-1  
10  
Vin,max  
3.5  
3
25  
0.5  
V
V
mA  
µA  
V/msec  
ms  
Delay from Vin.min to application of tracking voltage  
Tracking Accuracy  
Power-up  
Power-down 0.5V/mS  
0.5V/mS  
100  
150  
mV  
mV  
GENERAL SPECIFICATIONS  
MTBF  
Weight  
Io=80% of Io, max; Ta=25°C  
32.51  
5.5  
M hours  
grams  
(TA = 25°C, airflow rate = 300 LFM, Vin = 4.5Vdc and 14.0Vdc, nominal Vout unless otherwise noted.)  
DS_DCL12S0A0S20NFA_11152012  
E-mail: DCDC@delta.com.tw  
http://www.deltaww.com/dcdc  
P2  
ELECTRICAL CHARACTERISTICS CURVES  
Figure 1: Converter efficiency vs. output current (Vout= 0.69V)  
Figure 3: Converter efficiency vs. output current (1.8V out)  
Figure 2: Converter efficiency vs. output current (1.2V out)  
Figure 4: Converter efficiency vs. output current (2.5V out)  
Figure 6: Converter efficiency vs. output current (5.0V out)  
Figure 5: Converter efficiency vs. output current 3.3V out)  
DS_DCL12S0A0S20NFA_11152012  
E-mail: DCDC@delta.com.tw  
http://www.deltaww.com/dcdc  
P3  
ELECTRICAL CHARACTERISTICS CURVES (CON.)  
Figure 7: Output ripple & noise at 7Vin, 0.69V/20A out  
Figure 8: Output ripple & noise at 12Vin, 1.8V/20A out  
CH1:VOUT, 20mV/div, 1uS/div  
CH1:VOUT, 20mV/div, 1uS/div  
Figure 9: Output ripple & noise at 12Vin, 3.3V/20A out  
Figure 10: Output ripple & noise at 12Vin, 5.0V/20A out  
CH1:VOUT, 20mV/div, 1uS/div  
CH1:VOUT, 20mV/div, 1uS/div  
DS_DCL12S0A0S20NFA_11152012  
E-mail: DCDC@delta.com.tw  
http://www.deltaww.com/dcdc  
P4  
ELECTRICAL CHARACTERISTICS CURVES (CON.)  
Figure 11: Turn on delay time at 7Vin, 0.69V/20A out.  
Figure 12: Turn on delay time at 12Vin, 1.8V/20A out.  
(Green : VOUT, 0.5V/div, Yellow: VIN, 2V/div. 2mS/div)  
(Green : VOUT, 0.5V/div, Yellow: VIN, 5V/div. 2mS/div)  
Figure 13: Turn on delay time at 12Vin, 3.3V/20A out.  
Figure 14: Turn on delay time at 12Vin, 5.0V/20A out.  
(Green : VOUT, 1V/div, Yellow: VIN, 5V/div. 2mS/div)  
(Green : VOUT, 2V/div, Yellow: VIN, 5V/div. 2mS/div)  
DS_DCL12S0A0S20NFA_11152012  
E-mail: DCDC@delta.com.tw  
http://www.deltaww.com/dcdc  
P5  
ELECTRICAL CHARACTERISTICS CURVES (CON.)  
Figure 15: Turn on delay time at remote on 7Vin, 0.69V/20A out.  
Figure16: Turn on delay time at remote on 12Vin, 1.8V/20A out.  
(Yellow: VOUT, 0.5V/div, Green: ON/OFF, 2V/div, 2mS/div)  
(Yellow: VOUT, 0.5V/div, Green: ON/OFF, 2V/div, 2mS/div)  
Figure 17: Turn on delay time at remote on 12Vin, 3.3V/20A out.  
Figure 18: Turn on delay time at remote on 12Vin, 5.0V/20A out.  
(Yellow: VOUT, 1V/div, Green: ON/OFF, 2V/div, 2mS/div)  
(Yellow: VOUT, 2V/div, Green: ON/OFF, 2V/div, 2mS/div)  
DS_DCL12S0A0S20NFA_11152012  
E-mail: DCDC@delta.com.tw  
http://www.deltaww.com/dcdc  
P6  
ELECTRICAL CHARACTERISTICS CURVES  
Figure 19: Transient response to dynamic load change at  
2.5A/μS from 50%~ 100%~50% of Io, max at 7Vin, 0.69Vout  
(Cout = 1uF ceramic, 47uF*2 +10μFceramic)  
Figure 20: Transient response to dynamic load change at  
2.5A/μS from 50%~ 100%~50% of Io, max at 12Vin, 1.8Vout  
(Cout = 1uF ceramic, 47uF*2 +10μFceramic)  
Yellow : VOUT, 0.2V/div, 100uS/div  
Yellow : VOUT, 0.2V/div, 100uS/div  
Figure 21: Transient response to dynamic load change at  
2.5A/μS from 50%~ 100%~50% of Io, max at 12Vin, 3.3Vout  
(Cout = 1uF ceramic, 47uF*2 +10μFceramic)  
Figure 22: Transient response to dynamic load change at  
2.5A/μS from 50%~ 100%~50% of Io, max at 12Vin, 5Vout  
(Cout = 1uF ceramic, 47uF*2 +10μFceramic)  
Yellow : VOUT, 0.2V/div, 100uS/div  
Yellow : VOUT, 0.2V/div, 100uS/div  
DS_DCL12S0A0S20NFA_11152012  
E-mail: DCDC@delta.com.tw  
http://www.deltaww.com/dcdc  
P7  
ELECTRICAL CHARACTERISTICS CURVES (CON.)  
Figure 23: Tracking function, Vtracking=6V, Vout= 5.0V, full load  
Figure 24:Tracking function, Vtracking=6V, Vout= 5.0V, full load  
Yellow : VOUT, (1V/div), Green: Tracking, (1V/div), 10mS/div  
Yellow : VOUT, (1V/div), Green: Tracking, (1V/div), 500uS/div  
Figure 25: Tracking function, Vtracking=0.8V, Vout=0.69V, full load Figure 26:Tracking function, Vtracking=0.8V, Vout= 0.69V, full load  
Yellow: VOUT, 0.2V/div, Green : Tracking, 0.2V/div, 1mS/div  
Yellow: VOUT, 0.2V/div, Green : Tracking, 0.2V/div, 5mS/div  
DS_DCL12S0A0S20NFA_11152012  
E-mail: DCDC@delta.com.tw  
http://www.deltaww.com/dcdc  
P8  
TEST CONFIGURATIONS  
DESIGN CONSIDERATIONS  
Input Source Impedance  
To maintain low noise and ripple at the input voltage, it is  
critical to use low ESR capacitors at the input to the module. A  
highly inductive source can affect the stability of the module.  
An input capacitance must be placed close to the modules  
input pins to filter ripple current and ensure module stability in  
the presence of inductive traces that supply the input voltage to  
the module.  
Safety Considerations  
Figure 27: Input reflected-ripple current test setup  
For safety-agency approval the power module must be  
installed in compliance with the spacing and separation  
requirements of the end-use safety agency standards.  
For the converter output to be considered meeting the  
requirements of safety extra-low voltage (SELV), the input  
must meet SELV requirements. The power module has  
extra-low voltage (ELV) outputs when all inputs are ELV.  
The input to these units is to be provided with a fast acting fuse  
with a maximum rating of 30A in the positive input lead.  
Note: Use a 10μF and 1μF capacitor. Scope measurement  
should be made using a BNC connector.  
Figure 28: Peak-peak output noise and startup transient  
measurement test setup.  
VI  
Vo  
GND  
Figure 29: Output voltage and efficiency measurement test  
setup  
Note: All measurements are taken at the module terminals.  
When the module is not soldered (via socket), place  
Kelvin connections at module terminals to avoid  
measurement errors due to contact resistance.  
Vo Io  
Vi Ii  
(  
)100 %  
DS_DCL12S0A0S20NFA_11152012  
E-mail: DCDC@delta.com.tw  
http://www.deltaww.com/dcdc  
P9  
FEATURES DESCRIPTIONS  
Input Under voltage Lockout  
At input voltages below the input under voltage lockout limit, the  
module operation is disabled. The module will begin to operate at  
an input voltage above the under voltage lockout turn-on threshold.  
Remote On/Off  
The DCL series power modules have an On/Off pin for remote  
On/Off operation. Both positive and negative On/Off logic  
options are available in the DCL series power modules.  
Over-Current Protection  
To provide protection in an output over load fault condition, the unit  
is equipped with internal over-current protection. When the  
over-current protection is triggered, the unit enters hiccup mode.  
The units operate normally once the fault condition is removed.  
For positive logic module, connect an open collector (NPN)  
transistor or open drain (N channel) MOSFET between the  
On/Off pin and the GND pin (see figure 30). Positive logic On/Off  
signal turns the module ON during the logic high and turns the  
module OFF during the logic low. When the positive On/Off  
function is not used, leave the pin floating or tie to Vin (module  
will be On).  
Remote Sense  
The DCL provide Vo remote sensing to achieve proper regulation  
at the load points and reduce effects of distribution losses on  
output line. In the event of an open remote sense line, the module  
shall maintain local sense regulation through an internal resistor.  
The module shall correct for a total of 0.5V of loss. The remote  
sense line impedance shall be < 10.  
For negative logic module, the On/Off pin is pulled high with an  
external pull-up 5kΩ resistor (see figure 31). Negative logic  
On/Off signal turns the module OFF during logic high and turns  
the module ON during logic low. If the negative On/Off function  
is not used, leave the pin floating or tie to GND. (module will be  
on)  
Distribution Losses  
Distribution Losses  
Vo  
Vin  
Vo  
Vin  
Sense  
RL  
ION/OFF  
On/Off  
RL  
Q1  
GND  
GND  
Distribution  
Distribution  
Figure 32: Effective circuit configuration for remote sense  
operation  
Figure 30: Positive remote On/Off implementation  
Vo  
Vin  
Rpull-  
up  
ION/OFF  
On/Off  
RL  
Q1  
GND  
Figure 31: Negative remote On/Off implementation  
DS_DCL12S0A0S20NFA_11152012  
E-mail: DCDC@delta.com.tw  
http://www.deltaww.com/dcdc  
P10  
FEATURES DESCRIPTIONS (CON.)  
Table 1 provides Rtrim values required for some common  
output voltages. By using a ±0.5% tolerance trim resistor with a  
TC of  
Output Voltage Programming  
±100ppm, a set point tolerance of ±1.5% can be achieved as  
specified in the electrical specification.  
The output voltage of the DCL can be programmed to any  
voltage between 0.69Vdc and 5.5Vdc by connecting one resistor  
(shown as Rtrim in Figure 33) between the TRIM and GND pins  
of the module. Without this external resistor, the output voltage of  
the module is 0.69 Vdc. To calculate the value of the resistor  
Rtrim for a particular output voltage Vo, please use the following  
equation:  
6.9  
Rtrim   
K  
Vo 0.69  
Rtrim is the external resistor in kΩ  
Vo is the desired output voltage.  
Certain restrictions apply on the output voltage set point  
depending on the input voltage. These are shown in the Output  
Voltage vs. Input Voltage Set Point Area plot in Fig. 34.  
The Upper Limit curve shows that for output voltages of 0.9V  
and lower, the input voltage must be lower than the maximum  
of 14V.  
For example, to program the output voltage of the DCL module to  
5.0Vdc, Rtrim is calculated as follows:  
6.9  
Rtrim   
K1.601K  
5.0 0.69  
The Lower Limit curve shows that for output voltages of 3.3V  
and higher, the input voltage needs to be larger than the  
minimum of 4.5V  
Figure 33: Circuit configulation for programming output voltage  
using an external resister.  
Figure 34: Output voltage vs input voltage setpoint area plot  
showing limits were the output can be set for different.input  
voltage.  
DS_DCL12S0A0S20NFA_11152012  
E-mail: DCDC@delta.com.tw  
http://www.deltaww.com/dcdc  
P11  
FEATURE DESCRIPTIONS (CON.)  
When an analog voltage is applied to the SEQ pin, the output  
voltage tracks this voltage until the output reaches the  
set-point voltage. The final value of the SEQ voltage must be  
set higher than the set-point voltage of the module. The output  
voltage follows the voltage on the SEQ pin on a one-to-one  
basis. By connecting multiple modules together, multiple  
modules can track their output voltages to the voltage applied  
on the SEQ pin.  
Voltage Margining  
Output voltage margining can be implemented in the DCL  
modules by connecting a resistor, R margin-up, from the Trim pin  
to the ground pin for margining-up the output voltage and by  
connecting a resistor, Rmargin-down, from the Trim pin to the  
output pin for margining-down. Figure 35 shows the circuit  
configuration for output voltage margining. If unused, leave the  
trim pin unconnected. A calculation tool is available from the  
evaluation procedure which computes the values of Rmargin-up  
and Rmargin-down for a specific output voltage and margin  
percentage.  
For proper voltage sequencing, first, input voltage is applied to  
the module. The On/Off pin of the module is left unconnected  
(or tied to GND for negative logic modules or tied to VIN for  
positive logic modules) so that the module is ON by default.  
After applying input voltage to the module, a minimum 10msec  
delay is required before applying voltage on the SEQ pin. This  
delay gives the module enough time to complete its internal  
power-up soft-start cycle. During the delay time, the SEQ pin  
should be held close to ground (nominally 50mV ± 20 mV).  
This is required to keep the internal op-amp out of saturation  
thus preventing output overshoot during the start of the  
sequencing ramp. By selecting resistor R1 (see Figure. 37)  
according to the following equation  
24950  
R1   
Vin 0.05  
Figure 35: Circuit configuration for output voltage margining  
Output Voltage Sequencing  
The DCL 12V 20A modules include a sequencing feature,  
EZ-SEQUENCE that enables users to implement various types of  
output voltage sequencing in their applications. This is  
accomplished via an additional sequencing pin. When not using  
the sequencing feature, either tie the SEQ pin to VIN or leave it  
unconnected.  
Figure 36: Sequential Start-up  
The voltage at the sequencing pin will be 50mV when the  
sequencing signal is at zero.  
DS_DCL12S0A0S20NFA_11152012  
E-mail: DCDC@delta.com.tw  
http://www.deltaww.com/dcdc  
P12  
Power Good  
FEATURE DESCRIPTIONS (CON.)  
The DCL modules provide a Power Good (PGOOD) signal  
that is implemented with an open-drain output to indicate that  
the output voltage is within the regulation limits of the power  
module. The PGOOD signal will be de-asserted to a low state  
if any condition such as over temperature, over current or loss  
of regulation occurs that would result in the output voltage  
going ±10% outside the set point value. The PGOOD terminal  
should be connected through a pull up resistor (suggested  
value 100KΩ) to a source of 5VDC or lower.  
After the 10msec delay, an analog voltage is applied to the SEQ  
pin and the output voltage of the module will track this voltage on  
a one-to-one volt bases until the output reaches the set-point  
voltage. To initiate simultaneous shutdown of the modules, the  
SEQ pin voltage is lowered in a controlled manner. The output  
voltage of the modules tracks the voltages below their set-point  
voltages on a one-to-one basis. A valid input voltage must be  
maintained until the tracking and output voltages reach ground  
potential.  
When using the EZ-SEQUENCETM feature to control start-up  
of the module, pre-bias immunity during startup is disabled. The  
pre-bias immunity feature of the module relies on the module  
being in the diode-mode during start-up. When using the  
EZ-SEQUENCETM feature, modules goes through an internal  
set-up time of 10msec, and will be in synchronous rectification  
mode when the voltage at the SEQ pin is applied. This will result  
in the module sinking current if a pre-bias voltage is present at  
the output of the module.  
Monotonic Start-up and Shutdown  
The DCL 20A modules have monotonic start-up and shutdown  
behavior for any combination of rated input voltage, output  
current and operating temperature range.  
Synchronization  
The DCL 20A modules can be synchronized using an external  
signal. Details of the SYNC signal are provided in below table.  
If the synchronization function is not being used, leave the  
SYNC pin floating.  
Figure 37: Circuit showing connection of the sequencing signal  
to the SEQ pin.  
DS_DCL12S0A0S20NFA_11152012  
E-mail: DCDC@delta.com.tw  
http://www.deltaww.com/dcdc  
P13  
THERMAL CONSIDERATIONS  
THERMAL CURVES  
Thermal management is an important part of the system  
design. To ensure proper, reliable operation, sufficient cooling  
of the power module is needed over the entire temperature  
range of the module. Convection cooling is usually the  
dominant mode of heat transfer.  
AIRFLOW  
Hence, the choice of equipment to characterize the thermal  
performance of the power module is a wind tunnel.  
Figure 39: Temperature measurement location  
The allowed maximum hot spot temperature is defined at 117  
Thermal Testing Setup  
Delta’s DC/DC power modules are characterized in heated  
vertical wind tunnels that simulate the thermal environments  
encountered in most electronics equipment. This type of  
equipment commonly uses vertically mounted circuit cards in  
cabinet racks in which the power modules are mounted.  
DCL12S0A0S20NFAOutputCurrentvs.AmbientTemperatureand AirVelocity  
@Vin = 12V, Vo=5.0V (Airflow From Pin10 To Pin8)  
OutputCurrent(A)  
20  
16  
12  
8
Natural  
Convection  
100LFM  
200LFM  
The following figure shows the wind tunnel characterization  
setup. The power module is mounted on a test PWB and is  
vertically positioned within the wind tunnel.  
300LFM  
400LFM  
Thermal Derating  
4
Heat can be removed by increasing airflow over the module.  
To enhance system reliability, the power module should  
always be operated below the maximum operating  
0
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
AmbientTemperature ()  
Figure 40: Output current vs. ambient temperature and air  
velocity@Vin=12V, Vout=5.0V(Either Orientation)  
temperature. If the temperature exceeds the maximum module  
temperature, reliability of the unit may be affected.  
DCL12S0A0S20NFAOutputCurrentvs.AmbientTemperatureand AirVelocity  
@Vin = 12V, Vo=3.3V (Airflow From Pin10 To Pin8)  
OutputCurrent(A)  
PWB  
MODULE  
FANCING PWB  
20  
16  
12  
8
Natural  
Convection  
100LFM  
200LFM  
300LFM  
400LFM  
AIR VELOCITY  
AND AMBIENT  
TEMPERATURE  
SURED BELOW  
THE MODULE  
4
AIR FLOW  
0
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
AmbientTemperature ()  
Note: Wind Tunnel Test Setup Figure Dimensions are in millimeters and (Inches)  
Figure 41: Output current vs. ambient temperature and air  
velocity@Vin=12V, Vout=3.3V(Either Orientation)  
Figure 38: Wind tunnel test setup  
DS_DCL12S0A0S20NFA_11152012  
E-mail: DCDC@delta.com.tw  
http://www.deltaww.com/dcdc  
P14  
THERMAL CURVES  
THERMAL CURVES  
DCL12S0A0S20NFAOutputCurrentvs.AmbientTemperatureand AirVelocity  
DCL12S0A0S20NFAOutputCurrentvs.AmbientTemperatureand AirVelocity  
@Vin = 7V, Vo=0.69V (Airflow From Pin10 To Pin8)  
@Vin = 12V, Vo=2.5V (Airflow From Pin10 To Pin8)  
OutputCurrent(A)  
OutputCurrent(A)  
20  
16  
12  
8
20  
16  
12  
8
Natural  
Convection  
Natural  
Convection  
100LFM  
100LFM  
200LFM  
300LFM  
400LFM  
4
4
0
0
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
AmbientTemperature ()  
AmbientTemperature ()  
Figure 42: Output current vs. ambient temperature and air  
Figure 45: Output current vs. ambient temperature and air  
velocity@Vin=12V, Vout=2.5V(Either Orientation)  
velocity@Vin=7V, Vout=0.69V(Either Orientation)  
DCL12S0A0S20NFAOutputCurrentvs.AmbientTemperatureand AirVelocity  
@Vin = 12V, Vo=1.8V (Airflow From Pin10 To Pin8)  
OutputCurrent(A)  
20  
16  
12  
8
Natural  
Convection  
100LFM  
200LFM  
300LFM  
4
0
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
AmbientTemperature ()  
Figure 43: Output current vs. ambient temperature and air  
velocity@Vin=12V, Vout=1.8V(Either Orientation)  
DCL12S0A0S20NFAOutputCurrentvs.AmbientTemperatureand AirVelocity  
OutputCurrent(A)  
@Vin = 12V, Vo=1.2V (Airflow From Pin10 To Pin8)  
20  
16  
12  
8
Natural  
Convection  
100LFM  
200LFM  
4
0
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
AmbientTemperature ()  
Figure 44: Output current vs. ambient temperature and air  
velocity@Vin=12V, Vout=1.2V(Either Orientation)  
DS_DCL12S0A0S20NFA_11152012  
E-mail: DCDC@delta.com.tw  
http://www.deltaww.com/dcdc  
P15  
PICK AND PLACE LOCATION  
RECOMMENDED PAD LAYOUT  
SURFACE-MOUNT TAPE & REEL  
DS_DCL12S0A0S20NFA_11152012  
E-mail: DCDC@delta.com.tw  
http://www.deltaww.com/dcdc  
P16  
LEAD (Sn/Pb) PROCESS RECOMMEND TEMP. PROFILE  
Note: The temperature refers to the pin of DCL, measured on the pin Vout joint.  
LEAD FREE (SAC) PROCESS RECOMMEND TEMP. PROFILE  
Temp.  
Peak Temp. 240 ~ 245  
220  
200℃  
Ramp down  
max. 4/sec.  
Preheat time  
90~120 sec.  
150℃  
25℃  
Time Limited 75 sec.  
above 220℃  
Ramp up  
max. 3/sec.  
Time  
Note: The temperature refers to the pin of DCL, measured on the pin Vout joint..  
DS_DCL12S0A0S20NFA_11152012  
E-mail: DCDC@delta.com.tw  
http://www.deltaww.com/dcdc  
P17  
MECHANICAL DRAWING  
DS_DCL12S0A0S20NFA_11152012  
E-mail: DCDC@delta.com.tw  
http://www.deltaww.com/dcdc  
P18  
PART NUMBERING SYSTEM  
12  
S
0A0  
S
20  
N
F
A
DCL  
Product  
Series  
Input  
Voltage  
Numbers  
of Outputs  
Output  
Voltage  
Package Output  
On/Off  
logic  
Option Code  
Type  
Current  
DCT-3A  
04 - 2.4~5.5V  
S - Single  
0A0 -  
S - SMD  
03-3A  
N- negative F- RoHS 6/6  
P- positive (Lead Free)  
A - Standard Function  
DCS - 6A  
DCM - 12A  
DCL - 20A  
12 4.5~14V  
Programmable  
06 - 6A  
12 - 12A  
20 - 20A  
MODEL LIST  
Efficiency  
12Vin, 5Vdc @ 20A  
Model Name  
Packaging  
SMD  
Input Voltage  
Output Voltage  
Output Current  
20A  
DCL12S0A0S20NFA  
4.5V ~ 14Vdc  
0.69V~ 5.0Vdc  
93.0%  
CONTACT: www.deltaww.com/dcdc  
USA:  
Telephone:  
East Coast: 978-656-3993  
West Coast: 510-668-5100  
Fax: (978) 656 3964  
Email: DCDC@delta-corp.com  
Europe:  
Telephone: +31-20-655-0967  
Fax: +31-20-655-0999  
Asia & the rest of world:  
Telephone: +886 3 4526107 x6220~6224  
Fax: +886 3 4513485  
Email: DCDC@delta-es.com  
Email: DCDC@delta.com.tw  
WARRANTY  
Delta offers a two (2) year limited warranty. Complete warranty information is listed on our web site or is available  
upon request from Delta.  
Information furnished by Delta is believed to be accurate and reliable. However, no responsibility is assumed by  
Delta for its use, nor for any infringements of patents or other rights of third parties, which may result from its use.  
No license is granted by implication or otherwise under any patent or patent rights of Delta. Delta reserves the right  
to revise these specifications at any time, without notice.  
DS_DCL12S0A0S20NFA_11152012  
E-mail: DCDC@delta.com.tw  
http://www.deltaww.com/dcdc  
P19  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY