DNL10S0A0S20PFD [DELTA]

Non-Isolated Point of Load DC/DC Power Modules: 8.3-14Vin, 0.75-5.0V/20A out; 负载的非隔离点DC / DC电源模块: 8.3-14Vin , 0.75-5.0V / 20A出
DNL10S0A0S20PFD
型号: DNL10S0A0S20PFD
厂家: DELTA ELECTRONICS, INC.    DELTA ELECTRONICS, INC.
描述:

Non-Isolated Point of Load DC/DC Power Modules: 8.3-14Vin, 0.75-5.0V/20A out
负载的非隔离点DC / DC电源模块: 8.3-14Vin , 0.75-5.0V / 20A出

电源电路
文件: 总16页 (文件大小:764K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FEATURES  
Š
High efficiency: 92% @ 12Vin, 3.3V/20A out  
Š
Small size and low profile: (SMD)  
33.0x 13.5x 8.8mm (1.30” x 0.53” x 0.35”)  
Standard footprint  
Š
Š
Š
Š
Š
Š
Voltage and resistor-based trim  
Pre-bias startup  
Output voltage tracking  
No minimum load required  
Output voltage programmable from  
0.75Vdc to 5.0Vdc via external resistor  
Fixed frequency operation (300KHz)  
Input UVLO, output OTP, OCP  
Remote ON/OFF  
Š
Š
Š
Š
Š
Remote sense  
ISO 9001, TL 9000, ISO 14001, QS 9000,  
OHSAS 18001 certified manufacturing  
facility  
Š
UL/cUL 60950-1 (US & Canada), and TUV  
(EN60950-1) - pending  
Delphi DNL10, Non-Isolated Point of Load  
DC/DC Power Modules: 8.3-14Vin, 0.75-5.0V/20A out  
OPTIONS  
The Delphi series DNL10, 8.3~14V input, single output, 20A non-isolated  
point of load DC/DC converter in surface mounted package is the latest  
offering from a world leader in power systems technology and  
manufacturing Delta Electronics, Inc. The DNL10 series provides a  
programmable output voltage from 0.75V to 5.0V through an external  
trimming resistor. The DNL10 converters have flexible and programmable  
tracking and sequencing features to enable a variety of sequencing and  
tracking between several point of load power modules. This product  
family is available in a surface mount or SIP package and provides up to  
20A of output current in an industry standard footprint and pinout. With  
creative design technology and optimization of component placement,  
these converters possess outstanding electrical and thermal performance  
and extremely high reliability under highly stressful operating conditions.  
APPLICATIONS  
Š
Š
Š
Š
Š
Telecom / DataCom  
Distributed power architectures  
Servers and workstations  
LAN / WAN applications  
Data processing applications  
PRELIMINARY DATASHEET  
DS_DNL10SMD20_07182012  
TECHNICAL SPECIFICATIONS  
TA = 25°C, airflow rate = 300 LFM, Vin = 8.3Vdc and 14Vdc, nominal Vout unless otherwise noted.  
PARAMETER  
NOTES and CONDITIONS  
DNL10S0A0S20 (Standard)  
Min.  
Typ.  
Max.  
Units  
ABSOLUTE MAXIMUM RATINGS  
Input Voltage (Continuous)  
Tracking Voltage  
0
15  
Vin,max  
85  
Vdc  
Vdc  
°C  
0
Operating Temperature  
Storage Temperature  
-40  
-55  
+125  
°C  
INPUT CHARACTERISTICS  
Operating Input Voltage  
Vo,set3.63Vdc  
8.3  
8.3  
12  
12  
14  
V
V
Vo,set3.63Vdc  
13.2  
Input Under-Voltage Lockout  
Turn-On Voltage Threshold  
Turn-Off Voltage Threshold  
Maximum Input Current  
7.9  
7.8  
V
V
Vin=Vin,min to Vin,max, Io=Io,max  
Vin= Vin,min to Vin,max, Io=Io,min to Io,max  
Vin=12V, Io=Io,max  
14  
A
No-Load Input Current  
100  
2
mA  
mA  
A2S  
A
Off Converter Input Current  
Inrush Transient  
0.4  
15  
Recommended Input Fuse  
OUTPUT CHARACTERISTICS  
Output Voltage Set Point  
Output Voltage Adjustable Range  
Output Voltage Regulation  
Over Line  
-2.0  
0.7525  
Vo,set  
+2.0  
5
% Vo,set  
V
Vin=Vin,min to Vin,max  
0.3  
0.4  
0.4  
% Vo,set  
% Vo,set  
% Vo,set  
% Vo,set  
Over Load  
Io=Io,min to Io,max  
Over Temperature  
Ta= -40to 85℃  
Total Output Voltage Range  
Output Voltage Ripple and Noise  
Peak-to-Peak  
Over sample load, line and temperature  
5Hz to 20MHz bandwidth  
-2.5  
0
+3.5  
Vin=min to max, Io=min to max.1µF ceramic, 100uF ceramic.  
Vin=min to max, Io=min to max.1µF ceramic, 100uF ceramic.  
35  
10  
75  
20  
20  
1
mV  
RMS  
mV  
Output Current Range  
A
Output Voltage Over-shoot at Start-up  
Output DC Current-Limit Inception  
Output Short-Circuit Current (Hiccup mode)  
DYNAMIC CHARACTERISTICS  
Dynamic Load Response  
Positive Step Change in Output Current  
Negative Step Change in Output Current  
Settling Time to 10% of Peak Deviation  
Turn-On Transient  
Vout=3.3V  
Io,s/c  
% Vo,set  
% Io  
Adc  
150  
3
470uF poscap  
& 100µF+1uF ceramic load cap, 5A/µs,  
50% Io, max to 100% Io, max  
100% Io, max to 50% Io, max  
150  
150  
60  
mVpk  
mVpk  
µs  
Io=Io.max  
Start-Up Time, From On/Off Control  
Start-Up Time, From Input  
Output Voltage Rise Time  
Output Capacitive Load  
Von/off, Vo=10% of Vo,set  
5
5
4
ms  
ms  
ms  
µF  
µF  
µF  
Vin=Vin,min, Vo=10% of Vo,set  
Time for Vo to rise from 10% to 90% of Vo,set  
Full load; ESR 1m  
6
1000  
3500  
5000  
Full load; ESR 10m, Vin<9.0V  
Full load; ESR 10m, Vin9.0V  
EFFICIENCY  
Vo=0.75V  
Vin=12V, Io=Io,max  
Vin=12V, Io=Io,max  
Vin=12V, Io=Io,max  
Vin=12V, Io=Io,max  
Vin=12V, Io=Io,max  
Vin=12V, Io=Io,max  
Vin=12V, Io=Io,max  
Vin=12V, Io=Io,max  
Vin=12V, Io=Io,max  
78  
82  
84  
86  
88  
89  
90  
92  
94  
%
Vo=1.0V  
Vo=1.2V  
%
%
%
Vo=1.5V  
Vo=1.8V  
Vo=2.0V  
Vo=2.5V  
%
%
%
Vo=3.3V  
Vo=5.0V  
FEATURE CHARACTERISTICS  
Switching Frequency  
ON/OFF Control, (Negative logic)  
Logic Low Voltage  
Logic High Voltage  
Logic Low Current  
Logic High Current  
ON/OFF Control, (Positive Logic)  
Logic High Voltage  
Logic Low Voltage  
Logic High Current  
Logic Low Current  
Tracking Slew Rate Capability  
Tracking Delay Time  
Tracking Accuracy  
300  
0.2  
0.2  
kHz  
Module On, Von/off  
Module Off, Von/off  
Module On, Ion/off  
Module Off, Ion/off  
-0.2  
2.5  
0.3  
Vin,max  
10  
V
V
uA  
mA  
1
Module On, Von/off  
Module Off, Von/off  
Module On, Ion/off  
Module Off, Ion/off  
Vin,max  
V
V
-0.2  
0.3  
10  
1
uA  
mA  
V/ms  
ms  
mV  
mV  
V
0.1  
10  
2
Delay from Vin.min to application of tracking voltage  
Power-up, subject to 2V/mS  
Power-down, subject to 1V/mS  
100  
200  
200  
400  
0.1  
Remote Sense Range  
GENERAL SPECIFICATIONS  
MTBF  
Io=80%Io, max, Ta=25℃  
TBD  
9
M hours  
grams  
°C  
Weight  
Over-Temperature Shutdown  
Refer to Figure 39 for the measuring point  
130  
DS_DNL10SMD_07182012  
2
ELECTRICAL CHARACTERISTICS CURVES  
90  
85  
80  
75  
95  
90  
85  
80  
75  
70  
65  
Vin=8.3V  
Vin=12V  
Vin=14V  
Vin=8.3V  
Vin=12V  
Vin=14V  
70  
65  
60  
2
4
6
8
10  
12  
14  
16  
18  
20  
2
4
6
8
10  
12  
14  
16  
18  
20  
LOAD (A)  
LOAD (A)  
Figure 1: Converter efficiency vs. output current  
Figure 2: Converter efficiency vs. output current  
(1.2V output voltage)  
(0.75V output voltage)  
100  
95  
90  
85  
80  
75  
70  
65  
95  
90  
85  
80  
75  
Vin=8.3V  
Vin=12V  
Vin=14V  
Vin=8.3V  
Vin=12V  
Vin=14V  
2
4
6
8
10  
12  
14  
16  
18  
20  
2
4
6
8
10  
12  
14  
16  
18  
20  
LOAD (A)  
LOAD (A)  
Figure 3: Converter efficiency vs. output current  
Figure 4: Converter efficiency vs. output current  
(1.8V output voltage)  
(2.5V output voltage)  
100  
95  
90  
85  
80  
75  
100  
95  
90  
85  
80  
Vin=8.3V  
Vin=12V  
Vin=14V  
Vin=8.3V  
Vin=12V  
Vin=14V  
2
4
6
8
10  
12  
14  
16  
18  
20  
2
4
6
8
10  
12  
14  
16  
18  
20  
LOAD (A)  
LOAD (A)  
Figure 5: Converter efficiency vs. output current  
Figure 6: Converter efficiency vs. output current  
(3.3V output voltage)  
(5.0V output voltage)  
DS_DNL10SMD_07182012  
3
ELECTRICAL CHARACTERISTICS CURVES  
Figure 7: Output ripple & noise at 12Vin,  
Figure 8: Output ripple & noise at 12Vin,  
0.7525V/20A out  
1.2V/20A out  
Figure 9: Output ripple & noise at 12Vin,  
Figure 10: Output ripple & noise at 12Vin,  
2.5V/20A out  
5.0V/20A out  
Remote On/Off  
Vin  
Vo  
Vo  
Figure 11: Turn on delay from 12vin, 5.0V/20A out  
Figure 12: Turn on delay by Remote On/Off,  
5.0V/20A out  
DS_DNL10SMD_07182012  
4
Vin  
Vo  
Remote On/Off  
Vo  
Figure 13: Turn on at 12Vin, with external capacitors  
Figure 14: Turn on Using Remote On/Off with external  
(Co= 5000 µF), 5.0V/20A out  
capacitors (Co= 5000 µF), 5.0V/16A out  
Figure 15: Typical transient response to step load  
change at 5A/µS from 50% to 100% of Io,  
max at 12Vin, 0.75V out (Cout = 1uF+  
100uF ceramic, 470uF poscap).  
Figure 16: Typical transient response to step load  
change at 5A/µS from 100% to 50% of Io,  
max at 12Vin, 0.75V out (Cout = 1uF+  
100uF ceramic, 470uF poscap).  
Figure 17: Typical transient response to step load  
change at 5A/µS from 50% to 100% of Io,  
max at 12Vin, 1.2V out (Cout = 1uF+ 100uF  
ceramic, 470uF poscap).  
Figure 18: Typical transient response to step load  
change at 5A/µS from 100% to 50% of Io,  
max at 12Vin, 1.2V out (Cout = 1uF+  
100uF ceramic, 470uF poscap).  
DS_DNL10SMD_07182012  
5
Figure 19: Typical transient response to step load  
change at 5A/µS from 50% to 100% of Io,  
max at 12Vin, 2.5V out (Cout = 1uF+ 100uF  
ceramic, 470uF poscap).  
Figure 20: Typical transient response to step load  
change at 5A/µS from 100% to 50% of Io,  
max at 12Vin, 2.5V out (Cout = 1uF+ 100uF  
ceramic, 470uF poscap).  
Figure 21: Typical transient response to step load change  
at 5A/µS from 50% to 100% of Io, max at 12Vin, 5.0V out  
(Cout = 1uF+ 100uF ceramic, 470uF poscap).  
Figure 22: Typical transient response to step load  
change at 5A/µS from 100% to 50% of Io,  
max at 12Vin, 5.0V out (Cout = 1uF+ 100uF  
ceramic, 470uF poscap).  
Remote On/Off  
Vo  
Figure 23: Output short circuit current 12Vin, 0.75Vout  
Figure 24: Turn on with Prebias 12Vin, 5V/0A out,  
(10A/div)  
Vbias =3.3Vdc  
DS_DNL10SMD_07182012  
6
DESIGN CONSIDERATIONS  
TEST CONFIGURATIONS  
Input Source Impedance  
TO OSCILLOSCOPE  
L
To maintain low-noise and ripple at the input voltage, it is  
critical to use low ESR capacitors at the input to the  
module. The models using 4x47 uF very low ESR  
VI(+)  
VI(-)  
4×47uF  
BATTERY  
ceramic  
ceramic  
capacitors  
(MURATA  
P/N:  
GRM32ER61C476ME15L, 47uF/16V or equivalent) for  
example.  
The input capacitance should be able to handle an AC  
ripple current of at least:  
Note: Input reflected-ripple current is measured with a  
simulated source inductance. Current is  
measured at the input of the module.  
Vout  
Vin  
Vout  
Vin  
Irms = Iout  
1 −  
Arms  
Figure 25: Input reflected-ripple test setup  
450  
400  
350  
300  
250  
200  
150  
100  
50  
COPPER STRIP  
Vo  
Resistive  
Load  
1uF  
100uF  
ceramic ceramic  
SCOPE  
GND  
Ceramic  
0
0
1
2
3
4
5
6
Output Voltage (Vdc)  
Note: Use a 100µF and 1µF ceramic capacitor. Scope  
measurement should be made using a BNC  
connector.  
Figure 28: Input ripple voltage vs. output models, Io = 20A  
(Cin = 4x22uF ceramic capacitors at the input)  
Figure 26: Peak-peak output noise and startup transient  
measurement test setup  
CONTACT AND  
DISTRIBUTION LOSSES  
VI  
Vo  
I
Io  
LOAD  
SUPPLY  
GND  
CONTACT RESISTANCE  
Figure 27: Output voltage and efficiency measurement test  
setup  
Note: All measurements are taken at the module  
terminals. When the module is not soldered (via  
socket), place Kelvin connections at module  
terminals to avoid measurement errors due to  
contact resistance.  
Vo× Io  
η = (  
)×100 %  
Vi × Ii  
DS_DNL10SMD_07182012  
7
FEATURES DESCRIPTIONS  
DESIGN CONSIDERATIONS (CON.)  
Remote On/Off  
The power module should be connected to a low  
ac-impedance input source. Highly inductive source  
impedances can affect the stability of the module. An  
input capacitance must be placed close to the modules  
input pins to filter ripple current and ensure module  
stability in the presence of inductive traces that supply  
the input voltage to the module.  
The DNL series power modules have an On/Off pin for  
remote On/Off operation. Both positive and negative  
On/Off logic options are available in the DNL series  
power modules.  
For positive logic module, connect an open collector  
(NPN) transistor or open drain (N channel) MOSFET  
between the On/Off pin and the GND pin (see figure 32).  
Positive logic On/Off signal turns the module ON during  
the logic high and turns the module OFF during the logic  
low. When the positive On/Off function is not used, leave  
the pin floating or tie to Vin (module will be On).  
Safety Considerations  
For safety-agency approval the power module must be  
installed in compliance with the spacing and separation  
requirements of the end-use safety agency standards.  
For the converter output to be considered meeting the  
requirements of safety extra-low voltage (SELV), the  
input must meet SELV requirements. The power module  
has extra-low voltage (ELV) outputs when all inputs are  
ELV.  
For negative logic module, the On/Off pin is pulled high  
with an external pull-up resistor (see figure 33) Negative  
logic On/Off signal turns the module OFF during logic  
high and turns the module ON during logic low. If the  
negative On/Off function is not used, leave the pin  
floating or tie to GND. (module will be On)  
The input to these units is to be provided with a  
maximum 15A of glass type fast-acting fuse in the  
ungrounded lead.  
Vin  
Vo  
ION/OFF  
RL  
On/Off  
GND  
Figure 29: Positive remote On/Off implementation  
Vo  
Vin  
Rpull-up  
ION/OFF  
RL  
On/Off  
GND  
Figure 30: Negative remote On/Off implementation  
Over-Current Protection  
To provide protection in an output over load fault  
condition, the unit is equipped with internal over-current  
protection. When the over-current protection is  
triggered, the unit enters hiccup mode. The units  
operate normally once the fault condition is removed.  
DS_DNL10SMD_07182012  
8
FEATURES DESCRIPTIONS (CON.)  
For example, to program the output voltage of the DNL  
module to 3.3Vdc, Rtrim is calculated as follows:  
Over-Temperature Protection  
10500  
The over-temperature protection consists of circuitry  
that provides protection from thermal damage. If the  
temperature exceeds the over-temperature threshold  
the module will shut down. The module will try to restart  
after shutdown. If the over-temperature condition still  
exists during restart, the module will shut down again.  
This restart trial will continue until the temperature is  
within specification  
Rtrim :=  
1000 ⋅Ω  
2.5475  
Rtrim = 3.122 kΩ  
DNL can also be programmed by applying a voltage  
between the TRIM and GND pins (Figure 36). The  
following equation can be used to determine the value of  
Vtrim needed for a desired output voltage Vo:  
Remote Sense  
(
)
Vtrim := 0.7 Vo 0.7525 0.0667  
  
  
The DNL provide Vo remote sensing to achieve proper  
regulation at the load points and reduce effects of  
distribution losses on output line. In the event of an  
open remote sense line, the module shall maintain local  
sense regulation through an internal resistor. The  
module shall correct for a total of 0.1V of loss. The  
remote sense line impedance shall be < 10.  
Vtrim is the external voltage in V  
Vo is the desired output voltage  
For example, to program the output voltage of a DNL  
module to 3.3 Vdc, Vtrim is calculated as follows  
Distribution Losses  
Distribution Losses  
Vin  
Vo  
(
)
Vtrim := 0.7 2.54750.0667  
Vtrim = 0.530V  
Sense  
RL  
GND  
Distribution Losses  
Distribution Losses  
Figure 31: Effective circuit configuration for remote sense  
operation  
Output Voltage Programming  
Figure 32: Circuit configuration for programming output voltage  
using an external resistor  
The output voltage of the DNL can be programmed to  
any voltage between 0.75Vdc and 5.0Vdc by  
connecting one resistor (shown as Rtrim in Figure 35)  
between the TRIM and GND pins of the module.  
Without this external resistor, the output voltage of the  
module is 0.7525 Vdc. To calculate the value of the  
resistor Rtrim for a particular output voltage Vo, please  
use the following equation:  
10500  
Rtrim :=  
1000 ⋅Ω  
Vo 0.7525  
Figure 33: Circuit Configuration for programming output voltage  
using external voltage source  
Rtrim is the external resistor in Ω  
Vo is the desired output voltage  
DS_DNL10SMD_07182012  
9
FEATURE DESCRIPTIONS (CON.)  
The amount of power delivered by the module is the  
voltage at the output terminals multiplied by the output  
current. When using the trim feature, the output voltage  
of the module can be increased, which at the same  
output current would increase the power output of the  
module. Care should be taken to ensure that the  
maximum output power of the module must not exceed  
the maximum rated power (Vo.set x Io.max P max).  
Table 1 provides Rtrim values required for some common  
output voltages, while Table 2 provides values of external  
voltage source, Vtrim, for the same common output  
voltages. By using a 1% tolerance trim resistor, set point  
tolerance of ±2% can be achieved as specified in the  
electrical specification.  
Table 1  
Voltage Margining  
VO (V)  
0.7525  
1.0  
1.2  
1.5  
1.8  
2.0  
2.5  
3.3  
Rtrim (K)  
Open  
41.424  
22.464  
13.047  
9.024  
7.416  
5.009  
3.122  
1.472  
Output voltage margining can be implemented in the DNL  
modules by connecting a resistor, R margin-up, from the Trim  
pin to the ground pin for margining-up the output voltage  
and by connecting a resistor, Rmargin-down, from the Trim pin  
to the output pin for margining-down. Figure 37 shows  
the circuit configuration for output voltage margining. If  
unused, leave the trim pin unconnected. A calculation  
tool is available from the evaluation procedure, which  
computes the values of Rmargin-up and Rmargin-down for a  
specific output voltage and margin percentage.  
5.0  
Table 2  
VO (V)  
0.7525  
1.0  
Vtrim (V)  
Open  
0.6835  
0.670  
Vo  
Vin  
1.2  
Rmargin-down  
Q1  
1.5  
0.650  
1.8  
0.630  
2.0  
0.6168  
0.583  
Trim  
GND  
On/Off  
2.5  
Rmargin-up  
Q2  
3.3  
0.530  
Rtrim  
5.0  
0.4167  
Figure 34: Circuit configuration for output voltage margining  
Voltage Tracking  
The DNL family was designed for applications that have  
output voltage tracking requirements during power-up  
and power-down. The devices have a TRACK pin to  
implement three types of tracking method: sequential  
start-up, simultaneous and ratio-metric. TRACK simplifies  
the task of supply voltage tracking in a power system by  
enabling modules to track each other, or any external  
voltage, during power-up and power-down.  
By connecting multiple modules together, customers can  
get multiple modules to track their output voltages to the  
voltage applied on the TRACK pin.  
DS_DNL10SMD_07182012  
10  
FEATURE DESCRIPTIONS (CON.)  
The output voltage tracking feature (Figure 35 to Figure  
37) is achieved according to the different external  
connections. If the tracking feature is not used, the  
TRACK pin of the module can be left unconnected or tied  
to Vin.  
Sequential Start-up  
Sequential start-up (Figure 35) is implemented by placing  
an On/Off control circuit between VoPS1 and the On/Off pin  
of PS2.  
PS1  
PS2  
Vin  
Vin  
For proper voltage tracking, input voltage of the tracking  
power module must be applied in advance, and the  
remote on/off pin has to be in turn-on status. (Negative  
logic: Tied to GND or unconnected. Positive logic: Tied to  
Vin or unconnected)  
VoPS1  
VoPS2  
R3  
On/Off  
R1  
Q1  
C1  
On/Off  
R2  
PS1  
PS2  
PS1  
PS2  
Simultaneous  
Simultaneous tracking (Figure 36) is implemented by  
using the TRACK pin. The objective is to minimize the  
voltage difference between the power supply outputs  
during power up and down.  
Figure 35: Sequential start-up  
The simultaneous tracking can be accomplished by  
connecting VoPS1 to the TRACK pin of PS2. Please note  
the voltage apply to TRACK pin needs to always higher  
than the VoPS2 set point voltage.  
PS1  
PS1  
PS2  
PS2  
PS1  
PS2  
Vin  
Vin  
VoPS1  
VoPS2  
TRACK  
On/Off  
Figure 36: Simultaneous  
On/Off  
PS1  
PS1  
PS2  
+V  
PS2  
Figure 37: Ratio-metric  
DS_DNL10SMD_07182012  
11  
THERMAL CONSIDERATIONS  
FEATURE DESCRIPTIONS (CON.)  
Thermal management is an important part of the system  
design. To ensure proper, reliable operation, sufficient  
cooling of the power module is needed over the entire  
temperature range of the module. Convection cooling is  
usually the dominant mode of heat transfer.  
Ratio-Metric  
Ratio–metric (Figure 37) is implemented by placing the  
voltage divider on the TRACK pin that comprises R1 and  
R2, to create a proportional voltage with VoPS1 to the  
Track pin of PS2.  
Hence, the choice of equipment to characterize the  
thermal performance of the power module is a wind  
tunnel.  
For Ratio-Metric applications that need the outputs of  
PS1 and PS2 reach the regulation set point at the same  
time  
Thermal Testing Setup  
The following equation can be used to calculate the value  
of R1 and R2.  
Delta’s DC/DC power modules are characterized in  
heated vertical wind tunnels that simulate the thermal  
environments encountered in most electronics  
equipment. This type of equipment commonly uses  
vertically mounted circuit cards in cabinet racks in which  
the power modules are mounted.  
The suggested value of R2 is 10k.  
Vo,PS 2  
R2  
=
Vo,PS1 R + R2  
1
PS1  
PS2  
The following figure shows the wind tunnel  
characterization setup. The power module is mounted  
on a test PWB and is vertically positioned within the  
wind tunnel. The height of this fan duct is constantly kept  
at 25.4mm (1’’).  
Vin  
Vin  
VoPS1  
VoPS2  
R1  
TRACK  
On/Off  
R2  
On/Off  
Thermal Derating  
Heat can be removed by increasing airflow over the  
module. To enhance system reliability, the power  
module should always be operated below the maximum  
operating temperature. If the temperature exceeds the  
maximum module temperature, reliability of the unit may  
be affected.  
The high for positive logic  
The low for negative logic  
PW B  
FANCING PWB  
MODULE  
AIR VELOCITY  
AND AM BIENT  
TEMPERATURE  
SURED BELOW  
THE MODULE  
AIR FLOW  
Note: Wind Tunnel Test Setup Figure Dimensions are in millimeters and (Inches)  
Figure 38: Wind tunnel test setup  
DS_DNL10SMD_07182012  
12  
THERMAL CURVES  
DNL10S0A0S20 series Output Current vs. Ambient Temperature and Air Velocity  
@ Vin =12V, Vout =1.8V (Worse orientation)  
Output Current (A)  
25  
20  
15  
10  
5
Natural  
Convection  
100LFM  
200LFM  
300LFM  
400LFM  
0
25  
35  
45  
55  
65  
75  
85  
Ambient Temperature ()  
Figure 39: Temperature measurement location  
Figure 42: DNL10S0A0S20(Standard) Output current vs.  
ambient temperature and air velocity @ Vin=12V, Vo=1.8V(Either  
Orientation)  
* The allowed maximum hot spot temperature is defined at 125.  
DNL10S0A0S20 series Output Current vs. Ambient Temperature and Air Velocity  
@ Vin =12V, Vout =5V (Worse orientation)  
DNL10S0A0S20 series Output Current vs. Ambient Temperature and Air Velocity  
@ Vin =12V, Vout =0.75V (Worse orientation)  
Output Current (A)  
25  
Output Current (A)  
25  
20  
20  
Natural  
Convection  
15  
15  
Natural  
100LFM  
200LFM  
400LFM  
500LFM  
Convection  
200LFM  
300LFM  
10  
5
10  
5
100LFM  
300LFM  
600LFM  
0
25  
35  
45  
55  
65  
75  
85  
0
Ambient Temperature ()  
25  
35  
45  
55  
65  
75  
85  
Ambient Temperature ()  
Figure 40: DNL10S0A0S20 (Standard) Output current vs.  
ambient temperature and air velocity @ Vin=12V,  
Vo=5.0V(Either Orientation)  
Figure 43: DNL10S0A0S20 (Standard) Output current vs.  
ambient temperature and air velocity @ Vin=12V,  
Vo=0.75V(Either Orientation)  
DNL10S0A0S20 series Output Current vs. Ambient Temperature and Air Velocity  
@ Vin =12V, Vout =3.3V (Worse orientation)  
Output Current (A)  
25  
20  
15  
Natural  
Convection  
300LFM  
400LFM  
10  
5
100LFM  
200LFM  
500LFM  
0
25  
35  
45  
55  
65  
75  
85  
Ambient Temperature ()  
Figure 41: DNL10S0A0S20 (Standard)Output current vs.  
ambient temperature and air velocity @ Vin=12V, Vo=3.3V(Either  
Orientation)  
DS_DNL10SMD_07182012  
13  
PICK AND PLACE LOCATION  
SURFACE-MOUNT TAPE & REEL  
LEADED (Sn/Pb) PROCESS RECOMMEND TEMPERATURE PROFILE  
Peak temp.  
2nd Ramp-up temp.  
210~230°C 5sec.  
1.0~3.0°C /sec.  
250  
Pre-heat temp.  
140~180°C 60~120 sec.  
200  
Cooling down rate <3°C /sec.  
Ramp-up temp.  
0.5~3.0°C /sec.  
150  
100  
50  
Over 200°C  
40~50sec.  
0
60  
120  
Time ( sec. )  
180  
240  
300  
Note: All temperature refers to assembly application board, measured on the land of assembly application board.  
LEAD FREE (SAC) PROCESS RECOMMEND TEMPERATURE PROFILE  
.
Temp  
Peak Temp. 240 ~ 245  
220℃  
200℃  
Ramp down  
max. 4 /sec.  
Preheat time  
90~120 sec.  
150℃  
25℃  
Time Limited 75 sec.  
above 220  
Ramp up  
max. 3 /sec.  
Time  
Note: All temperature refers to assembly application board, measured on the land of assembly application board.  
DS_DNL10SMD_07182012  
14  
MECHANICAL DRAWING  
SMD PACKAGE  
SIP PACKAGE (OPTIONAL)  
DS_DNL10SMD_07182012  
15  
PART NUMBERING SYSTEM  
N
DNL  
10  
S
0A0  
S
20  
F
D
Product  
Series  
Numbers of  
Outputs  
Output  
Voltage  
0A0 -  
Package Output  
On/Off  
logic  
Input Voltage  
Option Code  
Type  
Current  
20 - 20A  
16 -16A  
10 -10A  
06 - 6A  
DNL - 16A  
DNM -10A  
DNS - 6A  
04 - 2.8~5.5V  
10 - 8.3~14V  
S - Single  
R - SIP  
N- Negative F- RoHS 6/6  
(Default)  
P- positive  
D - Standard Functions  
Programmable S - SMD  
(Lead Free)  
MODEL LIST  
Input  
Voltage  
Efficiency  
12Vin @ 100% load  
Model Name  
Packaging  
Output Voltage  
Output Current On/Off logic  
DNL10S0A0S20NFD  
SMD  
8.3 ~ 14Vdc  
0.75 V~ 5.0Vdc  
20A  
Negative  
92.0%  
CONTACT: www.delta.com.tw/dcdc  
USA:  
Telephone:  
Asia & the rest of world:  
Telephone: +886 3 4526107 ext 6220  
Fax: +886 3 4513485  
Europe:  
Phone: +41 31 998 53 11  
Fax: +41 31 998 53 53  
Email: DCDC@delta-es.com  
East Coast: 978-656-3993  
West Coast: 510-668-5100  
Fax: (978) 656 3964  
Email: DCDC@delta-corp.com  
Email: DCDC@delta.com.tw  
WARRANTY  
Delta offers a two (2) year limited warranty. Complete warranty information is listed on our web site or is available upon  
request from Delta.  
Information furnished by Delta is believed to be accurate and reliable. However, no responsibility is assumed by Delta  
for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license  
is granted by implication or otherwise under any patent or patent rights of Delta. Delta reserves the right to revise these  
specifications at any time, without notice.  
DS_DNL10SMD_07182012  
16  

相关型号:

DNL10SIP20

No minimum load required
DELTA

DNL12S0A0R10NFA

Delphi DNM, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/10A out
DELTA

DNL12S0A0R10NFB

Delphi DNM, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/10A out
DELTA

DNL12S0A0R10NFC

Delphi DNM, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/10A out
DELTA

DNL12S0A0R10PFA

Delphi DNM, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/10A out
DELTA

DNL12S0A0R10PFB

Delphi DNM, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/10A out
DELTA

DNL12S0A0R10PFC

Delphi DNM, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/10A out
DELTA

DNL12S0A0R16NFA

Delphi DNL, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/16A out
DELTA

DNL12S0A0R16NFB

Delphi DNL, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/16A out
DELTA

DNL12S0A0R16NFC

Delphi DNL, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/16A out
DELTA

DNL12S0A0R16PFA

Delphi DNL, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/16A out
DELTA

DNL12S0A0R16PFB

Delphi DNL, Non-Isolated Point of Load DC/DC Power Modules: 2.8-5.5Vin, 0.75-3.3V/16A out
DELTA