IPM12C0A0R06FA [DELTA]

Delphi Series IPM, Non-Isolated, Integrated Point-of-Load Power Modules: 3V~5.5V input, 0.8~3.3V and 6A Output Current; 德尔福系列IPM ,非隔离式负载点的集成功率模块: 3V 〜 5.5V的输入电压, 0.8 〜 3.3V和6A的输出电流
IPM12C0A0R06FA
型号: IPM12C0A0R06FA
厂家: DELTA ELECTRONICS, INC.    DELTA ELECTRONICS, INC.
描述:

Delphi Series IPM, Non-Isolated, Integrated Point-of-Load Power Modules: 3V~5.5V input, 0.8~3.3V and 6A Output Current
德尔福系列IPM ,非隔离式负载点的集成功率模块: 3V 〜 5.5V的输入电压, 0.8 〜 3.3V和6A的输出电流

文件: 总15页 (文件大小:812K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FEATURES  
High efficiency: 93% @ 5.0Vin, 3.3V/6A out  
Small size and low profile:  
17.8 x 15.0 x 7.8mm (0.70” x 0.59” x 0.31”)  
Output voltage adjustment: 0.9V~3.3V  
Monotonic startup into normal and  
pre-biased loads  
Input UVLO, output OCP  
Remote ON/OFF  
Output short circuit protection  
Fixed frequency operation  
Copper pad to provide excellent thermal  
performance  
ISO 9001, TL 9000, ISO 14001, QS9000,  
OHSAS18001 certified manufacturing  
UL/cUL 60950 (US & Canada) Recognized,  
and TUV (EN60950) Certified  
CE mark meets 73/23/EEC and 93/68/EEC  
directives  
Delphi Series IPM, Non-Isolated, Integrated  
Point-of-Load Power Modules: 3V~5.5V input,  
0.8~3.3V and 6A Output Current  
The Delphi Series IPM04C non-isolated, fully integrated  
Point-of-Load (POL) power modules, are the latest offerings from a  
world leader in power supply technology and manufacturing Delta  
Electronics, Inc. This product family provides up to 6A of output  
current or 19.8W of output power in an industry standard, compact,  
IC-like, molded package. It is highly integrated and does not require  
external components to provide the point-of-load function. A copper  
pad on the back of the module, in close contact with the internal heat  
dissipation components, provides excellent thermal performance.  
The assembly process of the modules is fully automated with no  
manual assembly involved. These converters possess outstanding  
electrical and thermal performance, as well as extremely high  
reliability under highly stressful operating conditions. IPM04C  
operate from a 3V~5.5V source and provide a programmable output  
voltage of 0.8V~3.3V. The IPM product family is available in both a  
SMD or SIP package. IPM family is also available for input 8V~14V,  
please refer to IPM12C datasheet for details.  
OPTION  
SMD or SIP package  
APPLICATIONS  
Telecom/DataCom  
Wireless Networks  
Optical Network Equipment  
Server and Data Storage  
Industrial/Test Equipment  
DATASHEET  
IPM04C0A0R/S06_08242006  
Delta Electronics, Inc.  
TECHNICAL SPECIFICATIONS  
TA = 25°C, airflow rate = 300 LFM, Vin = 5.0Vdc, nominal Vout unless otherwise noted.  
PARAMETER  
NOTES and CONDITIONS  
IPM04C0A0R/S06FA  
Min.  
Typ.  
Max.  
Units  
ABSOLUTE MAXIMUM RATINGS  
Input Voltage (Continuous)  
Operating Temperature  
0
-40  
-55  
6
116  
125  
Vdc  
°C  
°C  
Refer to figure 33 for measuring point  
Storage Temperature  
INPUT CHARACTERISTICS  
Operating Input Voltage  
3.0  
3.3/5.0  
5.5  
V
Input Under-Voltage Lockout  
Turn-On Voltage Threshold  
Turn-Off Voltage Threshold  
Maximum Input Current  
2.4  
2.1  
2.7  
2.4  
7.0  
100  
10  
V
V
A
Vin=Vin,min to Vin,max, Io=Io,max  
No-Load Input Current  
mA  
mA  
mAp-p  
dB  
Off Converter Input Current  
Input Reflected-Ripple Current  
Input Voltage Ripple Rejection  
OUTPUT CHARACTERISTICS  
Output Voltage Set Point  
Output Voltage Adjustable Range  
Output Voltage Regulation  
Over Line  
3
100  
TBD  
P-P 1µH inductor, 5Hz to 20MHz  
120 Hz  
150  
Vin=5.0V, Io=Io,max,  
0.889  
0.8  
0.900  
0.911  
3.3  
% Vo,set  
V
Vin=Vin,min to Vin,max  
Io=Io,min to Io,max  
10  
10  
mV  
mV  
Over Load  
Over Temperature  
Ta=-40°C to 85°C  
Over sample load, line and temperature  
5Hz to 20MHz bandwidth  
Full Load, 1µF ceramic, 10µF tantalum  
Full Load, 1µF ceramic, 10µF tantalum  
15  
+3.0  
mV  
% Vo,set  
Total Output Voltage Range  
Output Voltage Ripple and Noise  
Peak-to-Peak  
-3.0  
0
50  
10  
100  
15  
6
mVp-p  
mV  
A
RMS  
Output Current Range  
Output Voltage Over-shoot at Start-up  
Output DC Current-Limit Inception  
DYNAMIC CHARACTERISTICS  
Dynamic Load Response  
Positive Step Change in Output Current  
Negative Step Change in Output Current  
Setting Time to 10% of Peak Devitation  
Turn-On Transient  
Vin=3.0V to 5.5V, Io=0A to 6A,  
0
200  
3
% Vo,set  
% Io  
10µF Tan & 1µF Ceramic load cap, 0.5A/µs  
50% Io, max to 100% Io, max  
100% Io, max to 50% Io, max  
150  
150  
25  
190  
190  
50  
mVpk  
mVpk  
µs  
Io=Io.max  
Start-Up Time, From On/Off Control  
Start-Up Time, From Input  
Output Voltage Rise Time  
Maximum Output Startup Capacitive Load  
5
5
5
12  
12  
20  
20  
10  
1000  
5000  
ms  
ms  
ms  
µF  
µF  
Time for Vo to rise from 10% to 90% of Vo,set,  
Full load; ESR 1m  
Full load; ESR 10mΩ  
EFFICIENCY  
Vo=0.9V  
Vo=1.2V  
Vo=1.5V  
Vo=1.8V  
Vo=2.5V  
Vo=3.3V  
Vin=5.0V, Io=Io,max,  
Vin=5.0V, Io=Io,max,  
Vin=5.0V, Io=Io,max,  
Vin=5.0V, Io=Io,max,  
Vin=5.0V, Io=Io,max,  
Vin=5.0V, Io=Io,max,  
80.0  
83.0  
86.0  
88.0  
91.0  
93.0  
%
%
%
%
%
%
FEATURE CHARACTERISTICS  
Switching Frequency  
ON/OFF Control, (Logic High-Module ON)  
Logic High  
300  
kHz  
Module On  
2.2  
Vin,max  
V
Logic Low  
Module Off  
Ion/off at Von/off=0  
Logic High, Von/off=5V  
-0.2  
0.8  
1
50  
V
mA  
µA  
ON/OFF Current  
Leakage Current  
GENERAL SPECIFICATIONS  
MTBF  
0.25  
Io=80% Io,max,  
30.3  
6
M hours  
grams  
Weight  
DS_IPM04C0A0R06_08242006  
2
ELECTRICAL CHARACTERISTICS CURVES  
95  
85  
85  
Vin=5.0V  
Vin=4.0V  
Vin=3.3V  
Vin=5.0V  
Vin=4.0V  
Vin=3.3V  
75  
75  
1
2
3
4
5
6
1
2
3
4
5
6
LOAD (A)  
LOAD (A)  
Figure 1: Converter efficiency vs. output current  
Figure 2: Converter efficiency vs. output current  
(0.90V output voltage)  
(1.2V output voltage)  
95  
85  
95  
85  
75  
Vin=5.0V  
Vin=4.0V  
Vin=3.3V  
Vin=5.0V  
Vin=4.0V  
Vin=3.3V  
75  
1
2
3
4
5
6
1
2
3
4
5
6
LOAD (A)  
LOAD (A)  
Figure 3: Converter efficiency vs. output current  
Figure 4: Converter efficiency vs. output current  
(1.5V output voltage)  
(1.8V output voltage)  
95  
85  
75  
95  
Vin=5.5V  
Vin=5.0V  
Vin=4.0V  
Vin=5.0V  
Vin=4.0V  
Vin=3.3V  
85  
75  
1
2
3
4
5
6
1
2
3
4
5
6
LOAD (A)  
LOAD (A)  
Figure 5: Converter efficiency vs. output current  
Figure 6: Converter efficiency vs. output current  
(2.5V 0utput voltage)  
(3.3V output voltage)  
DS_IPM04C0A0R06_08242006  
3
ELECTRICAL CHARACTERISTICS CURVES  
Figure 7: Output ripple & noise at 5.0Vin, 0.9V/ 6A out  
Figure 8: Output ripple & noise at 5.0Vin, 1.2V/ 6A out  
Figure 10: Output ripple & noise at 5.0Vin, 1.8V/ 6A out  
Figure 12: Output ripple & noise at 5.0Vin, 3.3V /6A out  
Figure 9: Output ripple & noise at 5.0Vin, 1.5V/ 6A out  
Figure 11: Output ripple & noise at 5.0Vin, 2.5V/ 6A out  
DS_IPM04C0A0R06_08242006  
4
ELECTRICAL CHARACTERISTICS CURVES  
Figure 13: Power on waveform at 5.0vin, 0.9V/ 6A out  
Figure 14: Power on waveform at 5.0vin, 3.3V/ 6A out  
with application of Vin  
with application of Vin  
Figure 15: Power off waveform at 5.0vin, 0.9V/ 6A out  
Figure 16: Power off waveform 5.0vin, 3.3V/ 6A out  
with application of Vin  
with application of Vin  
Figure 17: Remote turn on delay time at 5.0vin,  
Figure 18: Remote turn on delay time at 5.0vin,  
0.9V/ 6A out  
3.3V/ 6A out  
DS_IPM04C0A0R06_08242006  
5
ELECTRICAL CHARACTERISTICS CURVES  
Figure 19: Turn on delay at 5.0vin, 0.9V/ 6A out  
Figure 20: Turn on delay at 5.0vin, 3.3V/ 6A out  
with application of Vin  
with application of Vin  
Figure 21: Typical transient response to step load change at  
0.5A/µS from 0% to 50% of Io, max at 5.0Vin,  
2.5V out (measurement with a 1uF ceramic  
and a 10µF tantalum  
Figure 22: Typical transient response to step load change at  
0.5A/µS from 50% to 0% of Io, max at 5.0Vin,  
2.5V out (measurement with a 1uF ceramic  
and a 10µF tantalu)  
DS_IPM04C0A0R06_08242006  
6
TEST CONFIGURATIONS  
DESIGN CONSIDERATIONS  
TO OSCILLOSCOPE  
Input Source Impedance  
L
To maintain low-noise and ripple at the input voltage, it is  
critical to use low ESR capacitors at the input to the  
module. Figure 26 shows the input ripple voltage  
(mVp-p) for various output models using 2x100 uF low  
ESR tantalum capacitors (KEMET P/N:T491D107M,  
100uF/16V or equivalent) or 2x22 uF very low ESR  
ceramic capacitors (TDK P/N:C3225X7S1C226MT,  
22uF/16V or equivalent).  
VI(+)  
100uF  
2
Tantalum  
BATTERY  
VI(-)  
Note: Input reflected-ripple current is measured with a  
simulated source inductance. Current is  
measured at the input of the module.  
The input capacitance should be able to handle an AC  
ripple current of at least:  
Figure 23: Input reflected-ripple current test setup  
Vout  
Vin  
Vout  
Vin  
Irms = Iout  
1 −  
Arms  
COPPER STRIP  
Vo  
300  
250  
200  
150  
100  
50  
Resistive  
Load  
1uF  
10uF  
tantalum ceramic  
SCOPE  
GND  
Note: Use a 10µF tantalum and 1µF capacitor. Scope  
measurement should be made using a BNC  
connector.  
Tantalum  
Ceramic  
0
0
Figure 24: Peak-peak output noise and startup transient  
1
2
3
4
measurement test setup  
Output Voltage (Vdc)  
CONTACT AND  
DISTRIBUTION LOSSES  
VI  
Vo  
I
I
Io  
Figure 26: Input ripple voltage for various output models,  
Io = 6A (Cin = 2x100uF tantalum capacitors or  
2x22uF ceramic capacitors at the input)  
LOAD  
SUPPLY  
GND  
The power module should be connected to a low  
ac-impedance input source. Highly inductive source  
impedances can affect the stability of the module. An  
input capacitance must be placed close to the modules  
input pins to filter ripple current and ensure module  
stability in the presence of inductive traces that supply  
the input voltage to the module.  
CONTACT RESISTANCE  
Figure 25: Output voltage and efficiency measurement test  
setup  
Note: All measurements are taken at the module  
terminals. When the module is not soldered (via  
socket), place Kelvin connections at module  
terminals to avoid measurement errors due to  
contact resistance.  
Vo× Io  
η = (  
)×100 %  
Vi × Ii  
DS_IPM04C0A0R06_08242006  
7
DESIGN CONSIDERATIONS  
FEATURES DESCRIPTIONS  
Safety Considerations  
Over-Current Protection  
For safety-agency approval the power module must be  
installed in compliance with the spacing and separation  
requirements of the end-use safety agency standards.  
To provide protection in an output over load fault  
condition, the unit is equipped with internal over-current  
protection. When the over-current protection is  
triggered, the unit enters hiccup mode. The units  
operate normally once the fault condition is removed.  
For the converter output to be considered meeting the  
requirements of safety extra-low voltage (SELV), the  
input must meet SELV requirements. The power module  
has extra-low voltage (ELV) outputs when all inputs are  
ELV.  
Pre-Bias Startup Capability  
The IPM would perform the monotonic startup into the  
pre-bias loads; so as to avoid a system voltage drop  
occur upon application. In complex digital systems an  
external voltage can sometimes be presented at the  
output of the module during power on. This voltage may  
be feedback through a multi-supply logic component,  
such as FPGA or ASIC. Another way might be via a  
clamp diode as part of a power up sequencing  
implementation.  
The input to these units is to be provided with a  
maximum 10A time-delay fuse in the ungrounded lead.  
Remote On/Off  
The IPM series power modules have an On/Off control  
pin for output voltage remote On/Off operation. The  
On/Off pin is an open collector/drain logic input signal  
that is referenced to ground. When On/Off control pin is  
not used, leave the pin unconnected.  
Output Voltage Programming  
The output voltage of IPM can be programmed to any  
voltage between 0.9Vdc and 3.3Vdc by connecting one  
resistor (shown as Rtrim in Figure 28, 29) between the  
TRIM and GND pins of the module to trim up (0.9V ~  
3.3V) and between the Trim and +Output to trim down  
(0.8V ~ 0.9V). Without this external resistor, the output  
voltage of the module is 0.9 Vdc. To calculate the value of  
the resistor Rtrim for a particular output voltage Vo,  
please use the following equation:  
The remote on/off pin is internally connected to +Vin  
through an internal pull-up resistor. Figure 27 shows the  
circuit configuration for applying the remote on/off pin.  
The module will execute a soft start ON when the  
transistor Q1 is in the off state.  
The typical rise for this remote on/off pin at the output  
voltage of 0.9V and 3.3V are shown in Figure 17 and 18.  
Trim up  
7.0  
Vadj. –0.9  
Rtrim =  
Trim Down  
Rtrim =  
- 0.187 (KΩ)  
- 10.187 (KΩ)  
Vo  
Vin  
IPM  
On/Off  
RL  
2.0  
0.9 – Vadj.  
Q1  
GND  
Rtrim is the external resistor in K  
Vout is the desired output voltage  
Figure 27: Remote on/off implementation  
DS_IPM04C0A0R06_08242006  
8
FEATURES DESCRIPTIONS (CON.)  
For example: to program the output voltage of the IPM  
module to 3.3Vdc, Rtrim is calculated as follows:  
7.0  
3.3 –0.9  
Rtrim =  
- 0.187 (KΩ)  
Rtrim = 2.729 KΩ  
Figure 28: Trim up Circuit configuration for programming  
output voltage using an external resistor  
IPM can also be programmed by applying a voltage  
between the TRIM and GND pins (Figure 30). The  
following equation can be used to determine the value of  
Vtrim needed for a desired output voltage Vo:  
Vout  
Rtrim  
Load  
Vtrim = 0.7168 – 0.0187Vo  
Trim  
GND  
Vtrim is the external voltage in V  
Vo is the desired output voltage  
For example, to program the output voltage of a IPM  
module to 3.3 Vdc, Vtrim is calculated as follows  
Figure 29: Trim down Circuit configuration for programming  
output voltage using an external resistor  
Vtrim = 0.7168 – 0.0187 x 3.3  
Vtrim = 0.6551V  
Figure 30: Circuit configuration for programming output voltage  
using external voltage source  
DS_IPM04C0A0R06_08242006  
9
FEATURE DESCRIPTIONS (CON.)  
Table 1 provides Rtrim values required for some common  
output voltages, while Table 2 provides value of external  
voltage source, Vtrim, for the same common output  
voltages. By using a 0.5% tolerance resistor, set point  
tolerance of ±2% can be achieved as specified in the  
electrical specification.  
The amount of power delivered by the module is the  
voltage at the output terminals multiplied by the output  
current. When using the trim feature, the output voltage  
of the module can be increased, which at the same  
output current would increase the power output of the  
module. Care should be taken to ensure that the  
maximum output power of the module must not exceed  
the maximum rated power (Vo.set x Io.max P max).  
Table 1  
Voltage Margining  
VO (V)  
0.9  
Rtrim ()  
Open  
Output voltage margining can be implemented in the IPM  
modules by connecting a resistor, Rmargin-up, from the Trim  
pin to the ground pin for margining-up the output voltage  
and by connecting a resistor, Rmargin-down, from the Trim pin  
to the output pin for margining-down. Figure 31 shows  
the circuit configuration for output voltage margining. If  
unused, leave the trim pin unconnected.  
1.2  
23.146K  
11.479K  
7.590K  
4.188K  
2.729K  
1.5  
1.8  
2.5  
3.3  
Table 2  
Vo  
Vin  
VO (V)  
0.9  
1.2  
1.5  
1.8  
Vtrim (V)  
0.7000  
0.6943  
0.6887  
0.6831  
0.6700  
0.6551  
Rmargin-down  
Q1  
IPM  
Trim  
On/Off  
Rmargin-up  
Q2  
2.5  
3.3  
Rtrim  
GND  
Figure 31: Circuit configuration for output voltage margining  
DS_IPM04C0A0R06_08242006  
10  
THERMAL CONSIDERATIONS  
Thermal management is an important part of the system  
design. To ensure proper, reliable operation, sufficient  
cooling of the power module is needed over the entire  
temperature range of the module. Convection cooling is  
usually the dominant mode of heat transfer.  
Hence, the choice of equipment to characterize the  
thermal performance of the power module is a wind  
tunnel.  
Thermal Testing Setup  
Delta’s DC/DC power modules are characterized in  
heated vertical wind tunnels that simulate the thermal  
environments encountered in most electronics  
equipment. This type of equipment commonly uses  
vertically mounted circuit cards in cabinet racks in which  
the power modules are mounted.  
Figure 33: Temperature measurement location  
* The allowed maximum hot spot temperature is defined at 116.  
The following figure shows the wind tunnel  
characterization setup. The power module is mounted on  
a test PWB and is vertically positioned within the wind  
tunnel. The height of this fan duct is constantly kept at  
25.4mm (1’’).  
Thermal Derating  
Heat can be removed by increasing airflow over the  
module. To enhance system reliability, the power  
module should always be operated below the maximum  
operating temperature. If the temperature exceeds the  
maximum module temperature, reliability of the unit may  
be affected.  
PWB  
FACING PWB  
MODULE  
AIR VELOCITY  
AND AMBIENT  
TEMPERATURE  
MEASURED BELOW  
THE MODULE  
50.8 (2.0”)  
AIR FLOW  
12.7 (0.5”)  
25.4 (1.0”)  
Figure 32: Wind tunnel test setup  
DS_IPM04C0A0R06_08242006  
11  
THERMAL CURVES (CON.)  
IPM04C(Standard) Output Current vs. Ambient Temperature and Air Velocity  
IPM04C(Standard) Output Current vs. Ambient Temperature and Air Velocity  
@ Vin=3.3V, Vout = 2.5V (Either Orientation)  
Output Current(A)  
@ Vin=5V, Vout = 3.3V (Either Orientation)  
Output Current(A)  
7
6
5
7
6
5
4
3
2
1
0
4
3
2
1
0
Natural  
Convection  
Natural  
Convection  
25  
35  
45  
55  
65  
75  
85  
25  
35  
45  
55  
65  
75  
85  
Ambient Temperature ()  
Ambient Temperature ()  
Figure 34: Output current vs. ambient temperature and air velocity  
Figure 37: Output current vs. ambient temperature and air velocity  
@ Vin=5V, Vout=3.3V(Eithere Orientation)  
@ Vin=3.3V, Vo=2.5V(Either Orientation  
IPM04C(Standard) Output Current vs. Ambient Temperature and Air Velocity  
IPM04C(Standard) Output Current vs. Ambient Temperature and Air Velocity  
Output Current(A)  
Output Current(A)  
@ Vin=5V, Vout = 1.8V (Either Orientation)  
@ Vin=3.3V, Vout =1.5V (Either Orientation)  
7
6
5
4
3
2
1
0
7
6
5
Natural  
Convection  
4
3
2
1
0
Natural  
Convection  
25  
35  
45  
55  
65  
75  
85  
25  
35  
45  
55  
65  
75  
85  
Ambient Temperature ()  
Ambient Temperature ()  
Figure 38: Output current vs. ambient temperature and air velocity  
Figure 35: Output current vs. ambient temperature and air velocity  
@ Vin=5V, Vout=1.8V(Either Orientation)  
@ Vin=3.3V, Vout=1.5V(Either Orientation)  
IPM04C(Standard) Output Current vs. Ambient Temperature and Air Velocity  
IPM04C(Standard) Output Current vs. Ambient Temperature and Air Velocity  
Output Current(A)  
@ Vin=3.3V, Vout =0.9V (Either Orientation)  
Output Current(A)  
@ Vin=3.3V, Vout = 2.5V (Either Orientation)  
7
6
5
7
6
5
4
3
2
1
0
Natural  
Convection  
4
3
2
1
0
Natural  
Convection  
25  
35  
45  
55  
65  
75  
85  
25  
35  
45  
55  
65  
75  
85  
Ambient Temperature ()  
Ambient Temperature ()  
Figure 39: Output current vs. ambient temperature and air velocity  
Figure 36: Output current vs. ambient temperature and air velocity  
@ Vin=3.3V, Vout=0.9V(Either Orientation)  
@ Vin=3.3V, Vout=2.5V(Eithere Orientation)  
DS_IPM04C0A0R06_08242006  
12  
PICK AND PLACE LOCATION  
SURFACE-MOUNT TAPE & REEL  
All dimensions are in millimeters (inches)  
All dimensions are in millimeters (inches)  
LEAD FREE PROCESS RECOMMEND TEMP. PROFILE  
.
Temp  
Peak Temp. ~ 220  
210℃  
200℃  
Ramp down  
max. 4 /sec  
150℃  
Preheat time  
90~150 sec  
Time Limited 60 sec  
above 210  
Ramp up  
max. 3 /sec  
25℃  
Time  
Note: All temperature refers to topside of the package, measured on the package body surface.  
LEADED (Sn/Pb) PROCESS RECOMMEND TEMP. PROFILE  
.
Temp  
Peak Temp. ~ 225  
Ramp down  
max. 4 /sec  
183℃  
150℃  
100℃  
Preheat time  
60~150 sec  
60 ~ 120 sec  
Ramp up  
max. 3 /sec  
25℃  
Time  
Note: All temperature refers to assembly application board, measured on the land of assembly application board.  
DS_IPM04C0A0R06_08242006  
13  
MECHANICAL DRAWING  
SMD PACKAGE  
SIP PACKAGE  
1
2 3 4 5  
RECOMMEND PWB HOLE LAYOUT  
RECOMMEND PWB PAD LAYOUT  
Note: The copper pad is recommended to connect to the ground  
7
6
1
2 3 4 5  
1
2 3 4 5  
Note: All dimension are in millimeters (inches) standard dimension tolerance is± 0.10(0.004”)  
DS_IPM04C0A0R06_08242006  
14  
PART NUMBERING SYSTEM  
IPM  
04  
C
0A0  
R
06  
F
A
Product  
Family  
Number of  
Outputs  
Output  
Current  
06 - 6A  
Input Voltage  
Output Voltage  
Package  
Option Code  
F- RoHS 6/6  
(Lead Free)  
Integrated POL 04 - 3V ~ 5.5V C - Low current  
Module 12 - 8V ~ 14V  
0A0 – programmable  
output  
R - SIP  
A - Standard Functions  
S - SMD  
MODEL LIST  
Efficiency (Typical @ full  
Model Name  
Packaging  
Input Voltage  
Output Voltage  
Output Current  
IPM12C0A0R04FA  
IPM12C0A0S04FA  
IPM04C0A0R06FA  
IPM04C0A0S06FA  
SIP  
SMD  
SIP  
8V ~14V  
8V ~14V  
3V ~ 5.5V  
3V ~ 5.5V  
0.8V ~ 5V  
0.8V ~ 5V  
4A  
4A  
6A  
6A  
91%  
91%  
93%  
93%  
0.8V ~ 3.3V  
0.8V ~ 3.3V  
SMD  
CONTACT: www.delta.com.tw/dcdc  
USA:  
Telephone:  
East Coast: (888) 335 8201  
West Coast: (888) 335 8208  
Fax: (978) 656 3964  
Email: DCDC@delta-corp.com  
Asia & the rest of world:  
Telephone: +886 3 4526107 ext 6220  
Fax: +886 3 4513485  
Europe:  
Phone: +41 31 998 53 11  
Fax: +41 31 998 53 53  
Email: DCDC@delta.com.tw  
Email: DCDC@delta-es.com  
WARRANTY  
Delta offers a two (2) year limited warranty. Complete warranty information is listed on our web site or is available upon  
request from Delta.  
Information furnished by Delta is believed to be accurate and reliable. However, no responsibility is assumed by Delta  
for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license  
is granted by implication or otherwise under any patent or patent rights of Delta. Delta reserves the right to revise these  
specifications at any time, without notice.  
DS_IPM04C0A0R06_08242006  
15  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY