AT25QF128A-SHB-T [DIALOG]

128 Mbit Serial NOR Flash Memory with Dual and Quad I/O Support;
AT25QF128A-SHB-T
型号: AT25QF128A-SHB-T
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

128 Mbit Serial NOR Flash Memory with Dual and Quad I/O Support

文件: 总55页 (文件大小:1610K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Following the acquision of Adesto Technologies, Dialog Semiconductor offers memory products as part of its  
product porolio. The exis�ng content from datasheets, including part numbers and codes should be used. Terms of  
Purchase are provided on the Dialog website  
https://www.dialog-semiconductor.com/general-terms-and-conditions-purchase  
View our Dialog memory products porolio:  
www.dialog-semiconductor.com/products/memory  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Hong Kong  
Dialog Semiconductor Hong Kong  
Phone: +852 2607 4271  
China (Shenzhen)  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Korea  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5769 5100  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
The Netherlands  
Taiwan  
#
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
DATASHEET  
AT25QF128A  
128 Mbit Serial NOR Flash Memory  
with Dual and Quad I/O Support  
Features  
Single voltage operation with range of 2.7V to 3.6V  
Default Operating Mode is SPI Quad I/O  
Serial Peripheral Interface (SPI) compatible support  
-
-
-
Supports SPI modes 0 and 3  
Supports Dual Output and Quad Output read  
Supports Dual I/O and Quad I/O read  
Maximum Operating Frequency  
-
-
133 MHz maximum operating frequency at 85 oC  
120 MHz maximum operating frequency at 105 oC  
Read Operations  
-
-
-
-
-
-
-
70 MHz SPI normal read  
120 MHz SPI fast read  
133 MHz Quad Output fast read at 85 oC  
Dual I/O data transfer rate up to 240 Mbps  
Quad I/O data transfer rate up to 480 Mbps  
Quad Output data transfer rate up to 532 Mbps  
Continuous read with 8/16/32/64-byte wrap  
Flexible programming  
-
-
Byte/Page program (1 to 256 Bytes)  
Program suspend and resume  
Fast program and erase times  
-
-
-
-
-
0.6 ms typical page (256 byte) program time  
70 ms typical 4-Kbyte block erase time  
150 ms typical 32-Kbyte block erase time  
250 ms typical 64-Kbyte block erase time  
Full chip erase: 60 s typical  
Hardware and software Write Protection  
-
-
-
Hardware-controlled locking of protected sector via WP pin  
Three 256-byte OTP-capable security registers  
Write protect all or part of memory via software with top/bottom block selection  
Serial Flash Discoverable Parameter (SFDP) register  
Low power dissipation  
-
-
-
-
13 µA standby current at 85 oC  
20 µA standby current at 105 oC  
2 µA deep power down current at 85 oC  
5 µA deep power down current at 105 oC  
Endurance:  
-
-
100K program/erase cycles at 85 oC  
10K program/erase cycles at 105 oC  
Data Retention:  
-
-
20 years at 85 oC  
10 years at 105 oC  
Temperature Range:  
-
-
Industrial: -40 oC to 85 oC  
Extended Temperature Range: -40 oC to 105 oC  
Industry standard green (Pb/Halide-free/RoHS compliant) package options  
-
-
8-lead 0.208” Wide SOIC  
8-pad (5 x 6 x 0.6 mm) UDFN  
DS-AT25QF128A–176D–06-2020  
Table of Contents  
1. Product Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
2. Package Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
3. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
3.1 Pin Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.2 Chip Select (CS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.3 Serial Clock (SCK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.4 Serial Input (Sl or I/O0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.5 Serial Data Output (SO or I/O1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.6 Write Protect (WP or I/O2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.7 Hold (HOLD or I/O3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.8 VCC Power Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.9 GND Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4. Block/Sector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
5. SPI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
5.1 Standard SPI Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
5.2 Dual SPI Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
5.3 Quad SPI Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
6. Operating Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
6.1 Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
6.1.1 Operating Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
6.1.2 Power-up Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
6.1.3 Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
6.1.4 Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
6.2 Active Power and Standby Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6.3 Hold Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6.4 Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
6.4.1 Status Register Bit Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
6.4.2 Status Register Protect Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
6.4.3 Write Protect Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
6.4.4 Status Register Memory Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
7. Device Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
8. Instruction Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
8.1 Configuration and Status Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
8.1.1 Write Enable (06h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
8.1.2 Write Disable (04h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
8.1.3 Read Status Register (05h or 35h or 15h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
8.1.4 Write Status Register (01h or 31h or 11h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
8.1.5 Write Enable for Volatile Status Register (50h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
8.2 Read Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
8.2.1 Read Data (03h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
8.2.2 Fast Read (0Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
8.2.3 Dual Output Fast Read (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
3
Table of Contents  
8.2.4 Quad Output Fast Read (6Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
8.2.5 Dual I/O Fast Read (BBh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
8.2.6 Quad I/O Fast Read (EBh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
8.2.7 Quad I/O Word Fast Read (E7h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
8.2.8 Set Burst with Wrap (77h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
8.3 ID and Security Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.3.1 Read Manufacture ID/ Device ID (90h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
8.3.2 Dual I/O Read Manufacture ID/ Device ID (92h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
8.3.3 Quad I/O Read Manufacture ID/ Device ID (94h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
8.3.4 Read JEDEC ID (9Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
8.3.5 Read Unique ID Number (4Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
8.3.6 Deep Power-Down (B9h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
8.3.7 Release from Deep Power-Down/Read Device ID (ABh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
8.3.8 Read Security Registers (48h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
8.3.9 Erase Security Registers (44h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
8.3.10 Program Security Registers (42h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
8.3.11 Enable Reset (66h) and Reset Device (99h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
8.4 Program and Erase Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
8.4.1 Page Program (02h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
8.4.2 SCKQuad Page Program (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
8.4.3 Fast Page Program (F2h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
8.4.4 Sector Erase (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
8.4.5 32KB Block Erase (52h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
8.4.6 64KB Block Erase (D8h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
8.4.7 Chip Erase (60/C7h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
8.4.8 Erase / Program Suspend (75h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
8.4.9 Erase / Program Resume (7Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
8.4.10 Read Serial Flash Discoverable Parameter (5Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
9. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
9.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
9.2 Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
9.3 Data Retention and Endurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
9.4 Latch Up Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9.5 Power-up Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9.6 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
9.7 AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
9.8 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
11. Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
11.1 Package 8-Pin SOP 208-mil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
11.2 Package 8 UDFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
12. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
4
1.  
Product Overview  
The Adesto® AT25QF128A is a 128-Mbit Serial Peripheral Interface (SPI) Flash memory device designed for use  
in a wide variety of high-volume consumer based applications in which program code is shadowed from Flash  
memory into embedded or external RAM for execution. The flexible erase architecture of the AT25QF128A is ideal  
for data storage as well, eliminating the need for additional data storage devices.  
The SPI clock supports a maximum frequency of 133 MHz, enabling data transfers up to 532 Mbits/s for Quad  
Output operations.  
The AT25QF128A array is organized into 65,536 programmable pages of 256-bytes each. Up to 256 bytes can be  
programmed at a time using the Page Program instructions. Pages can be erased in 4 KB, 32 KB, or 64 KB blocks,  
or the entire chip.  
The devices operate on a single 2.7V to 3.6V power supply with current consumption as low as 2 μA for Deep  
Power Down at 85 oC. All devices offered in space-saving packages. The device supports JEDEC standard  
manufacturer and device identification with three 256-byte secure OTP registers.  
2.  
Package Pinouts  
Figure 2-1 show the package pinouts for the following devices.  
1
2
3
4
8
7
6
5
VCC  
CS  
HOLD (I/O )  
SO (I/O1)  
3
8-lead 8S1 SOIC Package (208-mil)  
WP (I/O2)  
GND  
SCK  
SI (I/O0)  
1
8
7
6
5
VCC  
CS  
SO (I/O1)  
WP (I/O2)  
GND  
2
3
4
HOLD (I/O3)  
8-pad UDFN Package  
SCK  
SI (I/O0)  
Figure 2-1. Adesto AT25QF128A Flash Memory Package Types  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
5
3.  
Pin Descriptions  
During all operations, VCC must be held stable and within the specified valid range: VCC (min) to VCC (max).  
All of the input and output signals must be held high or low (according to voltages of VIH, VOH, VIL or VOL, see  
Section 9.6, DC Electrical Characteristics). These pins are described below.  
3.1  
Pin Summary  
Table 3-1. AT25QF128A Pin Names  
Pin Name  
CS  
I/O  
I
Description  
Chip select.  
SO (IO1)  
I/O  
Serial Output for single bit data Instructions. IO1 for dual or quad Instructions.  
Write Protect in single bit or dual data Instructions. IO2 in quad mode. The signal  
has an internal pull-up resistor and may be left unconnected in the host system if  
not used for quad Instructions.  
WP (IO2)  
I/O  
GND  
SI (IO0)  
SCK  
Ground.  
I/O  
I
Serial input for single bit data Instructions. IO0 for dual or quad Instructions.  
Serial clock.  
Hold (pause) serial transfer in single bit or dual data Instructions. IO3 in Quad-I/O  
mode. The signal has an internal pull-up resistor and may be left unconnected in  
the host system if not used for Quad Instructions.  
HOLD (IO3)  
VCC  
I/O  
Core and I/O power supply.  
3.2  
Chip Select (CS)  
The chip select signal indicates when a instruction for the device is in process and the other signals are relevant for  
the memory device. When the CS signal is at the logic high state, the device is not selected and all input signals  
are ignored and all output signals are high impedance. Unless an internal Program, Erase or Write Status  
Registers embedded operation is in progress, the device remains in the Standby Power mode. Driving the CS input  
to logic low state enables the device, placing it in the Active Power mode. After Power Up, a falling edge on CS is  
required prior to the start of any instruction.  
3.3  
3.4  
Serial Clock (SCK)  
This input signal provides the synchronization reference for the SPI interface. Instructions, addresses, or data input  
are latched on the rising edge of the SCK signal. Data output changes after the falling edge of SCK.  
Serial Input (Sl or I/O0)  
This input signal is used to transfer data serially into the device. It receives instructions, addresses, and data to be  
programmed. Values are latched on the rising edge of serial SCK clock signal.  
SI becomes I/O0 an input and output during Dual and Quad Instructions for receiving instructions, addresses, and  
data to be programmed (values latched on rising edge of serial SCK clock signal) as well as shifting out data (on  
the falling edge of SCK).  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
6
3.5  
3.6  
Serial Data Output (SO or I/O1)  
This output signal is used to transfer data serially out of the device. Data is shifted out on the falling edge of the  
serial SCK clock signal.  
The SO pin becomes an I/O pin (I/O1) during Dual and Quad Instructions for receiving instructions, addresses, and  
data to be programmed (values latched on rising edge of serial SCK clock signal) as well as shifting out data (on  
the falling edge of SCK).  
Write Protect (WP or I/O2)  
When WP is driven low, while the Status Register Protect bits (SRP1 and SRP0) of the Status Registers are set to  
0 and 1 respectively, it is not possible to write to the Status Registers. This prevents any alteration of the Status  
Registers. As a consequence, all the data bytes in the memory area that are protected by the Block Protect, TB,  
SEC, and CMP bits in the status registers, are also hardware protected against data modification while WP  
remains low. The WP function is not available when the Quad mode is enabled. In the AT25QF128A, the QE bit in  
Status Register 2 is set to 1 after power-on.  
The WP function is replaced by I/O2 for input and output during Quad mode for receiving addresses, and data to be  
programmed (values are latched on rising edge of the SCK signal) as well as shifting out data (on the falling edge  
of SCK). WP has an internal pull-up resistance; when unconnected; WP is at VIH and may be left unconnected in  
the host system if not used for Quad mode.  
3.7  
Hold (HOLD or I/O3)  
The HOLD function is only available when the Quad Enable (QE) bit in Status Register 2 = O. If QE = 1, The HOLD  
function is disabled and the pin acts as dedicated data I/O pin. Note that the AT25QF128A device ships with the  
QE bit set at the factory, causing the device to power up in Quad mode.  
The HOLD signal goes low to stop any serial communication with the device, but doesn't stop the operation of write  
status register, programming, or erasing in progress.  
3.8  
3.9  
VCC Power Supply  
VCC is the supply voltage. It is the single voltage used for all device functions including read, program, and erase.  
GND Ground  
GND is the ground reference for the VCC supply voltage.  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
7
4.  
Block/Sector Addresses  
Table 4-1. Block/Sector Addresses of AT25QF128A  
Block  
(64k byte)  
Block  
(32k byte)  
Memory  
Density  
Sector Size  
(KB)  
Sector No.  
Address Range  
Sector 0  
4
:
000000h - 000FFFh  
Half block  
0
:
:
Sector 7  
4
4
007000h - 007FFFh  
Block 0  
Sector 8  
008000h - 008FFFh  
Half block  
1
:
:
Sector 15  
4
4
:
00F000h - 00FFFFh  
Sector 16  
010000h - 010FFFh  
Half block  
2
:
:
Sector 23  
4
4
:
017000h - 017FFFh  
Block 1  
Sector 24  
018000h - 018FFFh  
Half block  
3
:
:
Sector 31  
4
:
01F000h - 01FFFFh  
128 Mbit  
:
:
:
:
Sector 4064  
:
4
:
FE0000h - FE0FFFh  
Half block  
508  
:
Sector 4071  
Sector 4072  
:
4
4
:
FE7000h - FE7FFFh  
FE8000h - FE8FFFh  
:
Block 254  
Half block  
509  
Sector 4079  
Sector 4080  
:
4
4
:
FEF000h - FEFFFFh  
FF0000h - FF0FFFh  
:
Half block  
510  
Sector 4087  
Sector 4088  
:
4
4
:
FF7000h - FF7FFFh  
FF8000h - FF8FFFh  
:
Block 255  
Half block  
511  
Sector 4095  
4
FFF000h - FFFFFFh  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
8
5.  
SPI Operation  
5.1  
Standard SPI Instructions  
The AT25QF128A features a 4-pin serial peripheral interface on 4 signals bus: Serial Clock (SCK), Chip Select  
(CS), Serial Data Input (SI) and Serial Data Output (SO). SPI bus modes 0 and 3 are supported. Input data is  
latched on the rising edge of SCK and data shifts out on the falling edge of SCK.  
5.2  
5.3  
Dual SPI Instructions  
The AT25QF128A supports Dual SPI operation when using the Dual Output Fast Read (3BH), Dual I/O Fast Read  
(BBH) and Read Manufacture ID/Device ID Dual I/O (92H) instructions. These instructions allow data to be  
transferred to or from the device at two times the rate of the standard SPI. When using the Dual SPI instruction the  
SI and SO pins become bidirectional I/O pins: I/O0 and I/O1 respectively.  
Quad SPI Instructions  
The AT25QF28A device ships with the Quad Enable (QE) bit set in the Status Register. This causes the device to  
power-up in SPI Quad I/O mode.  
The AT25QF128A supports Quad SPI operation when using the Quad Output Fast Read (6BH), Quad I/O Fast  
Read (EBH), Quad I/O Word Fast Read (E7h), Read Manufacture ID/Device ID Quad I/O (94H) and Quad Page  
Program (32H) instructions. These instructions allow data to be transferred to or from the device at four times the  
rate of the standard SPI. When using the Quad SPI instruction the SI and SO pins become bidirectional I/O pins:  
I/O0 and I/O1, and /WP and HOLD pins become I/O2 and I/O3. Quad SPI instructions require the non-volatile Quad  
Enable bit (QE) in Status Register to be set.  
6.  
Operating Features  
6.1  
Supply Voltage  
6.1.1 Operating Supply Voltage  
Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage within the specified VCC  
(min) / VCC (max) range must be applied. In order to secure a stable DC supply voltage, it is recommended to  
decouple the VCC line with a 1 μF low-ESR ceramic decoupling capacitor, placed as close as possible to the  
VCC/GND package pins. This voltage must remain stable and valid until the end of the transmission of the  
instruction and, for a Write instruction, until the completion of the internal write cycle (tW).  
6.1.2 Power-up Conditions  
When the power supply is turned on, VCC rises continuously from GND to VCC. During this time, the Chip Select  
(CS) line is not allowed to float but should follow the VCC voltage, it is therefore recommended to connect the CS  
line to VCC via a pull-up resistor.  
In addition, the CS input is both edge sensitive and level sensitive. After power-up, the device does not become  
selected until a falling edge is first detected on CS. This ensures that CS must have been High, prior to going Low  
to start the first operation.  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
9
6.1.3 Device Reset  
In order to prevent inadvertent Write operations during power-up (continuous rise of VCC), a power on reset (POR)  
circuit is included. At Power-up, the device does not respond to any instruction until VCC has reached the power  
on reset threshold voltage (this threshold is lower than the minimum VCC operating voltage defined by the DC  
operating ranges).  
When VCC has passed the POR threshold, the device is reset.  
6.1.4 Power-down  
At Power-down (continuous decrease in VCC), as soon as VCC drops from the normal operating voltage to below  
the power on reset threshold voltage, the device stops responding to any instruction sent to it. During Power-down,  
the device must be deselected (Chip Select, CS, must be allowed to follow the voltage applied on VCC) and in  
Standby Power mode (no internal Write cycle in progress).  
6.2  
6.3  
Active Power and Standby Power Modes  
When Chip Select (CS) is low, the device is selected and in the Active Power mode and consuming current (ICC).  
When Chip Select (CS) is high, the device is deselected. If a Write cycle is not currently in progress, the device  
enters the Standby Power mode, and the current consumption drops to ICC1.  
Hold Condition  
The HOLD signal pauses any serial communications with the device without resetting the clocking sequence.  
During a Hold, the Serial Data Output (SO) is high impedance, and Serial Data Input (SI) and Serial Clock (SCK)  
are don't care. Note that the HOLD function can only be used with the QE bit of the Status Register = 0.  
To enter the Hold condition, the device must be selected, with Chip Select (CS) low. Normally, the device remains  
selected for the duration of the Hold condition. Deselecting the device while it is in the Hold condition, has the effect  
of resetting the state of the device, and this mechanism can be used if it is required to reset any processes that had  
been in progress.  
The Hold condition starts when the Hold (HOLD) signal is driven Low at the same time as Serial Clock (SCK)  
already being Low (as shown in Figure 6-1).  
The Hold condition ends when the Hold (HOLD) signal is driven High at the same time as Serial Clock (C) already  
being Low. Figure 6-1 also shows what happens if the rising and falling edges are not timed to coincide with Serial  
Clock (SCK) being Low.  
CS  
SCK  
HOLD  
HOLD  
HOLD  
Figure 6-1. Hold Condition Activation  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
10  
6.4  
Status Register  
The AT25QF128A contains three Status registers. Each byte is written or read using specific instructions. For a  
read operation, the 05h, 35h, and 15h instructions are used to access the S7 - S0, S15 - S8, and S23 - S16 bytes  
respectively. For a write operation, the 01h, 31h, and 11h instructions are used as shown in Table 8-1.  
The following diagram shows the layout of the Status Register bits.  
Table 6-1. Status Register 3  
S23  
S22  
S21  
S20  
S19  
S18  
S17  
S16  
Reserved  
DRV1  
DRV0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Table 6-2. Status Register 2  
S15  
S14  
S13  
S12  
S11  
S10  
S9  
S8  
SUS1  
CMP  
LB3  
LB2  
LB1  
SUS2  
QE  
SRP1  
Table 6-3. Status Register 1  
S7  
S6  
S5  
S4  
S3  
S2  
S1  
S0  
SRP0  
BP4  
BP3  
BP2  
BP1  
BP0  
WEL  
WIP  
6.4.1 Status Register Bit Definitions  
6.4.1.1 WIP bit (S0)  
The Write in Progress (WIP) bit indicates whether the memory is busy in program/erase/write status register  
progress. When WIP bit sets to 1, means the device is busy in program/erase/write status register progress, when  
WIP bit sets 0, means the device is not in program/erase/write status register progress.  
6.4.1.2 WEL bit (S1)  
The Write Enable Latch bit indicates the status of the internal Write Enable Latch. When set to 1 the internal Write  
Enable Latch is set, when set to 0 the internal Write Enable Latch is reset and no Write Status Register, Program  
or Erase instruction is accepted.  
6.4.1.3 BP4, BP3, BP2, BP1, BP0 Bits (S6 - S2)  
The Block Protect (BP4, BP3, BP2, BP1, BP0) bits are non-volatile. They define the size of the area to be software  
protected against Program and Erase instructions. These bits are written with the Write Status Register instruction.  
• When the Block Protect (BP4, BP3, BP2, BP1, BP0) bits are set to 1, the relevant memory becomes protected  
against Page Program, Sector Erase and Block Erase instructions.  
• The Block Protect (BP4, BP3, BP2, BP1, BP0) bits can be written provided that the Hardware Protected mode  
has not been set.  
• The Chip Erase (CE) instruction is executed if the Block Protect (BP2, BP1, BP0) bits are 0 and CMP = 0 or the  
Block Protect (BP2, BP1, BP0) bits are 1 and CMP = 1.  
6.4.1.4 SRP1, SRP0 Bits (S8 - S7)  
The Status Register Protect (SRP1 and SRP0) bits are non-volatile Read/Write bits in the status register. The SRP  
bits control the method of write protection: software protection, hardware protection, or power supply lock-down.  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
11  
6.4.1.5 QE Bit (S9)  
The Quad Enable (QE) bit is a non-volatile Read/Write bit in the Status Register that allows Quad operation. When  
the QE bit is cleared to 0 (default), the WP and HOLD pins are enabled. When the QE pin is set to 1, the Quad I/O2  
and I/O3 pins are enabled. Note that the QE bit should never be set to 1 during standard SPI or Dual SPI operation  
if the WP or HOLD pins are connected directly to the power supply or ground. Note that if these pins are connected  
to power or ground, software must first clear the QE bit.  
6.4.1.6 SUS1/SUS2 Bits (S15, S10)  
The SUS1 and SUS2 bits are read only bits in the status register2 (S15 and S10) that are set to 1 after executing  
an Erase/Program Suspend (75h) instruction (The Erase Suspend sets SUS1 to 1, and the Program Suspend sets  
SUS2 to 1). The SUS1 and SUS2 bits are cleared to 0 by Erase/Program Resume (7Ah) instruction as well as a  
power-down, power-up cycle.  
6.4.1.7 LB3/LB2/LB1 bit (S13 - S11)  
The LB bits are non-volatile One Time Program (OTP) bits in Status Register (S13 - S11) that provide the write  
protect control and status to the Security Registers. The default state of LBx is 0, the security registers are  
unlocked. The LBx bits can be set to 1 individually using the Write Register instruction. The LBx bits are One Time  
Programmable. Once they are set to 1, the Security Registers become read-only permanently.  
6.4.1.8 CMP Bit (S14)  
The CMP bit is a non-volatile Read/Write bit in the Status Register (S14). It is used in conjunction the SEC and  
BP0 bits to provide more flexibility for the array protection. Please see the Status registers Memory Protection table  
for details. The default setting is CMP = 0.  
6.4.1.9 DRV1/DRV0 Bits (S22, S21)  
The DRV1 and DRV0 bits are used to determine the output driver strength for the Read instruction. m  
Table 6-4. DRV1 / DRV0 Bit Encoding  
DRV1, DRV0  
Driver Strength  
100% (default)  
75%  
00  
01  
10  
11  
50%  
25%  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
12  
6.4.2 Status Register Protect Table  
The Status Register Protect (SRP1 and SRP0) bit are non-volatile Read/Write bits in the Status Register. The SRP  
bits control the method of write protection: software protection, hardware protection, power supply lock-down or  
one time programmable protection.  
Table 6-5. Status Register Protect Table  
SRP1  
SRP0  
WP  
Status Register  
Description  
The Status Register can be written to after a Write  
Enable instruction, WEL = 1 (Factory Default).  
0
0
X
Software Protected  
WP = 0, the Status Register locked and cannot be  
written.  
0
0
1
1
0
1
Hardware Protected  
WP = 1, the Status Register is unlocked and can be  
written to after a Write Enable instruction, WEL = 1.  
Hardware Unprotected  
Power Supply Lock-Down 1  
Status Register is protected and cannot be written to  
again until the next Power-Down, Power-Up cycle.  
1
1
0
1
X
X
Not allowed.  
1. When SRP1, SRP0 = (1, 0), a Power-Down, Power-Up cycle will change SRP1, SRP0 to (0, 0) state.  
6.4.3 Write Protect Features  
1. Software Protection: The Block Protect (BP4, BP3, BP2, BP1, BP0) bits define the section of the memory array  
that can be read but not change.  
2. Hardware Protection: WP going low to protected the writable bits of Status Register.  
3. Deep Power-Down: In Deep Power-Down mode, all instructions are ignored except the Release from Deep  
Power-Down Mode instruction.  
4. Write Enable: The Write Enable instruction is set the Write Enable Latch (WEL) bit. The WEL bit is reset under  
any of the following conditions:  
• Power -up  
• Write Disable  
• Write Status Register  
• Page Program  
• Sector Erase/Block Erase/Chip Erase  
• Software Reset  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
13  
6.4.4 Status Register Memory Protection  
6.4.4.1 Protect Table  
Table 6-6. AT25QF128A Status Register Memory Protection (CMP = 0)  
Status Register Content  
Memory Content  
Addresses  
BP4  
X
0
BP3  
X
0
BP2  
0
0
0
0
1
1
1
0
0
0
1
1
1
1
0
0
0
1
1
0
0
0
1
1
BP1  
0
BP0  
0
Blocks  
NONE  
252 to 255  
248 to 255  
240 to 255  
224 to 255  
192 to 255  
128 to 255  
0 to 3  
0 to 7  
0 to 15  
0 to 31  
0 to 63  
0 to 127  
0 to 255  
255  
Density  
NONE  
256 kB  
512 kB  
1 MB  
2 MB  
4 MB  
8 MB  
256 kB  
512 kB  
1 MB  
2 MB  
4 MB  
8 MB  
16 MB  
4 kB  
Portion  
NONE  
NONE  
0
1
FC0000h - FFFFFFh  
F80000h - FFFFFFh  
F00000h - FFFFFFh  
E00000h - FFFFFFh  
C00000h - FFFFFFh  
800000h - FFFFFFh  
000000h - 03FFFFh  
000000h - 07FFFFh  
000000h - 0FFFFFh  
000000h - 1FFFFFh  
000000h - 3FFFFFh  
000000h - 7FFFFFh  
000000h - FFFFFFh  
FFF000h - FFFFFFh  
FFE000h - FFFFFFh  
FFC000h - FFFFFFh  
FF8000h - FFFFFFh  
FF8000h - FFFFFFh  
000000h - 000FFFh  
000000h - 001FFFh  
000000h - 003FFFh  
000000h - 007FFFh  
000000h - 007FFFh  
Upper 1/64  
Upper 1/32  
Upper 1/16  
Upper 1/8  
Upper 1/4  
Upper 1/2  
Upper 1/64  
Upper 1/32  
Upper 1/16  
Upper 1/8  
Upper 1/4  
Upper 1/2  
ALL  
0
0
1
0
0
0
1
1
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
1
0
1
1
0
0
1
1
1
0
1
0
0
0
1
0
1
0
1
1
0
X
1
X
0
1
1
0
1
Top Block  
Top Block  
Top Block  
Top Block  
Top Block  
Bottom Block  
Bottom Block  
Bottom Block  
Bottom Block  
Bottom Block  
1
0
1
0
255  
8 kB  
1
0
1
1
255  
16 kB  
32 kB  
32 kB  
4 kB  
1
0
0
X
0
255  
1
0
1
255  
1
1
0
1
0
1
1
1
0
0
8 kB  
1
1
1
1
0
16 kB  
32 kB  
32 kB  
1
1
0
X
0
0
1
1
1
0
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
14  
Table 6-7. AT25QF128A Status Register Memory Protection (CMP = 1)  
Status Register Content  
Memory Content  
BP4  
X
0
BP3  
X
0
BP2  
0
0
0
0
1
1
1
0
0
0
1
1
1
1
0
0
0
1
1
0
0
0
1
1
BP1  
0
0
1
1
0
0
1
0
1
1
0
0
1
1
0
1
1
0
1
0
1
1
0
1
BP0  
0
Blocks  
0 to 255  
0 to 251  
0 to 247  
0 to 239  
0 to 223  
0 to 191  
0 to 127  
4 to 255  
8 to 255  
16 to 255  
32 to 255  
64 to 255  
128 to 255  
NONE  
Addresses  
Density  
ALL  
Portion  
ALL  
000000h - FFFFFFh  
000000h - FBFFFFh  
000000h - F7FFFFh  
000000h - EFFFFFh  
000000h - DFFFFFh  
000000h - BFFFFFh  
000000h - 7FFFFFh  
040000h - FFFFFFh  
080000h - FFFFFFh  
100000h - FFFFFFh  
200000h - FFFFFFh  
400000h - FFFFFFh  
800000h - FFFFFFh  
NONE  
1
16128 kB  
15872 kB  
15 KB  
Lower 63/64  
Lower 31/32  
Lower 15/16  
Lower 7/8  
0
0
0
0
0
1
0
0
0
14 MB  
0
0
1
12 MB  
Lower 3/4  
0
0
0
8 MB  
Lower 1/2  
0
1
1
16,128 kB  
15,872 kB  
15 kB  
Upper 63/64  
Upper 31/32  
Upper 15/16  
Upper 7/8  
0
1
0
0
1
1
0
1
0
14 MB  
0
1
1
12 MB  
Upper 3/4  
0
1
0
8 MB  
Upper 1/2  
X
1
X
0
1
NONE  
NONE  
1
0 to 255  
0 to 255  
0 to 255  
0 to 255  
0 to 255  
0 to 255  
0 to 255  
0 to 255  
0 to 255  
0 to 255  
000000h - FFEFFFh  
000000h - FFDFFFh  
000000h - FFBFFFh  
000000h - FF7FFFh  
000000h - FF7FFFh  
001000h - FFFFFFh  
002000h - FFFFFFh  
004000h - FFFFFFh  
008000h - FFFFFFh  
008000h - FFFFFFh  
16380 kB  
16376 kB  
16368 kB  
16352 kB  
16352 kB  
16380 kB  
16376 kB  
16368 kB  
16352 kB  
16352 kB  
L-4095/4096  
L-2047/2048  
L-1023/1024  
L-511/512  
L-511/512  
U-4095/4096  
U-2047/2048  
U-1023/1024  
U-511/512  
U-511/512  
1
0
0
1
0
1
1
0
X
0
1
0
1
1
1
1
1
0
1
1
1
1
1
X
0
1
1
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
15  
7.  
Device Identification  
Three legacy Instructions are supported to access device identification that can indicate the manufacturer, device  
type, and capacity (density). The returned data bytes provide the information as shown in the below table.  
Table 7-1. AT25QF128A ID Definition table  
Operating Code  
9Fh  
M7-M0  
1Fh  
ID15-ID8  
ID7-ID0  
01h  
89h  
90h/92h/94h  
ABh  
1Fh  
17h  
17h  
8.  
Instruction Descriptions  
All instructions, addresses and data are shifted in and out of the device, beginning with the most significant bit on  
the first rising edge of SCK after CS is driven low. Then, the one byte instruction code must be shifted in to the  
device, most significant bit first on SI, each bit being latched on the rising edges of SCK.  
See Table 8-1, every instruction sequence starts with a one-byte instruction code. Depending on the instruction,  
this might be followed by address bytes, data bytes, both, or none. The CS pin must be driven high after the last bit  
of the instruction sequence has been shifted in.  
For the Read, Fast Read, Read Status Register, Release from Deep Power Down, and Read Device ID  
instructions, the shifted-in instruction sequence is followed by a data out sequence. The CS pin can be driven high  
after any bit of the data-out sequence is being shifted out.  
For the instruction of Page Program, Sector Erase, Block Erase, Chip Erase, Write Status Register, Write Enable,  
Write Disable or Deep Power-Down instruction, CS must be driven high exactly at a byte boundary, otherwise the  
instruction is rejected, and is not executed. That is CS must driven high when the number of clock pulses after CS  
being driven low is an exact multiple of eight. For Page Program, if at any time the input byte is not a full byte,  
nothing will happen and WEL will not be reset.  
Table 8-1.Instruction Set  
Instruction Name  
Write Enable  
Byte 1  
06h  
Byte 2  
Byte 3  
Byte 4  
Byte 5  
Byte 6  
N-Bytes  
Write Disable  
04h  
Read Status Register-1  
Read Status Register-2  
Read Status Register-3  
05h  
(S7 - S0)  
(S15 - S8)  
(S23 - S16)  
continuous  
continuous  
continuous  
35h  
15h  
Write Enable for Volatile  
Status Register  
50h  
Write Status Register-1  
Write Status Register-2  
Write Status Register-3  
Read Data  
01h  
31h  
11h  
03h  
0Bh  
(S7 - S0)  
(S15 - S8)  
(S23 - S16)  
A23 - A16  
A23 - A16  
A15 - A8  
A15 - A8  
A7 - A0  
A7 - A0  
(D7 - D0)  
dummy  
Next byte  
(D7 - D0)  
continuous  
continuous  
Fast Read  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
16  
Table 8-1.Instruction Set (continued)  
Instruction Name  
Byte 1  
Byte 2  
Byte 3  
Byte 4  
Byte 5  
Byte 6  
N-Bytes  
Dual Output Fast Read  
3Bh  
A23 - A16  
A15 - A8  
A7 - A0  
dummy  
(D7 - D0)(1)  
continuous  
A7 - A0  
Dual I/O Fast Read  
Quad Output Fast Read  
Quad I/O Fast Read  
BBh  
6Bh  
EBh  
A23 - A8(2)  
A23 - A16  
(D7 - D0)(1)  
A7 - A0  
Next byte  
dummy  
Next byte  
(D7 - D0)(3)  
Next byte  
continuous  
continuous  
continuous  
M7 - M0(2)  
A15 - A8  
dummy(5)  
A23 - A0  
(D7 - D0)(3)  
Next byte  
M7 - M0(4)  
Quad I/O Word Fast  
Read(7)  
A23 - A0  
E7h  
dummy(6)  
(D7 - D0)(3)  
Next byte  
Next byte  
continuous  
M7 - M0 (4)  
Page Program  
Quad Page Program  
Fast Page Program  
Sector Erase  
02h  
32h  
A23 - A16  
A23 - A16  
A23 - A16  
A23 - A16  
A23 - A16  
A23 - A16  
A15 - A8  
A15 - A8  
A15 - A8  
A15 - A8  
A15 - A8  
A15 - A8  
A7 - A0  
A7 - A0  
A7 - A0  
A7 - A0  
A7 - A0  
A7 - A0  
(D7 - D0)  
(D7 - D0)(3)  
(D7 - D0)  
Next byte  
Next byte  
Next byte  
continuous  
continuous  
continuous  
F2h  
20h  
Block Erase(32K)  
Block Erase (64K)  
Chip Erase  
52h  
D8h  
C7/60h  
66h  
Enable Reset  
Reset  
99h  
dummy(6)  
W7 - W0  
Set Burst with Wrap  
77h  
Program/Erase Suspend  
Program/Erase Resume  
Deep Power-Down  
75h  
7Ah  
B9h  
Release From Deep  
Power-Down, And Read  
Device ID  
ABh  
dummy  
dummy  
dummy  
dummy  
00H  
(ID7 - ID0)  
continuous  
Release From Deep  
Power-Down  
ABh  
90h  
Manufacturer/ Device ID  
dummy  
(MID7 - MID0)  
(ID7 - ID0)  
continuous  
continuous  
A7 - A0,  
dummy  
Manufacturer/ Device ID  
by Dual I/O  
(MID7 - MID0),  
(DID7 -DID0)  
92h  
A23 - A8  
dummy(10)  
A23 - A0,  
dummy  
Manufacturer/ Device ID  
by Quad I/O  
(MID7 -  
MID0)  
94h  
9Fh  
continuous  
continuous  
(DID7 - DID0)  
MID7 -  
MID0  
JEDEC ID  
ID15 - ID8  
ID7-ID0  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
17  
Table 8-1.Instruction Set (continued)  
Instruction Name  
Byte 1  
Byte 2  
Byte 3  
Byte 4  
Byte 5  
Byte 6  
N-Bytes  
Read Serial Flash  
Discoverable Parameter  
5Ah  
A23 - A16  
A15 - A8  
A7-A0  
Dummy  
D7 - D0  
continuous  
Erase Security  
Registers(8)  
44h  
42h  
48h  
A23 - A16  
A23 - A16  
A23 - A16  
A15 - A8  
A15 - A8  
A15 - A8  
A7-A0  
A7-A0  
A7-A0  
Program Security  
Registers(8)  
(D7 - D0)  
dummy  
(D7 - D0)  
(D7 - D0)  
continuous  
continuous  
Read Security  
Registers(8)  
Notes:  
1. Dual Output data  
IO0 = (D6, D4, D2, D0)  
IO1 = (D7, D5, D3, D1)  
2. Dual Input Address  
IO0 = A22, A20, A18, A16, A14, A12, A10, A8, A6, A4, A2, A0, M6, M4, M2, M0  
IO1 = A23, A21, A19, A17, A15, A13, A11, A9, A7, A5, A3, A1, M7, M5, M3,M1  
3. Quad Output Data  
IO0 = (D4, D0,…..)  
IO1 = (D5, D1,…..)  
IO2 = (D6, D2,…..)  
IO3 = (D7, D3,…..)  
4. Quad Input Address  
IO0 = A20, A16, A12, A8, A4, A0, M4, M0  
IO1 = A21, A17, A13, A9, A5, A1, M5, M1  
IO2 = A22, A18, A14, A10, A6, A2, M6, M2  
IO3 = A23, A19, A15, A11, A7, A3, M7, M3  
5. Fast Read Quad I/O Data  
IO0 = (x, x, x, x, D4, D0,…)  
IO1 = (x, x, x, x, D5, D1,…)  
IO2 = (x, x, x, x, D6, D2,…)  
IO3 = (x, x, x, x, D7, D3,…)  
6. Fast Word Read Quad I/O Data  
IO0 = (x, x, D4, D0,…)  
IO1 = (x, x , D5, D1,…)  
IO2 = (x, x, D6, D2,…)  
IO3 = (x, x, D7, D3,…)  
7. Fast Word Read Quad I/O Data:the lowest address bit must be 0.  
8. Security Registers Address:  
Security Register 1: A23 - A16 = 00h, A15 - A8 = 00010000b, A7 - A0 = Byte Address;  
Security Register 2: A23 - A16 = 00h, A15 - A8 = 00100000b, A7 - A0 = Byte Address;  
Security Register 3: A23 - A16 = 00h, A15 - A8 = 00110000b, A7 - A0 = Byte Address;  
9. Dummy bits and Wraps Bits  
IO0 = (x, x, x, x, x, x, w4, x)  
IO1 = (x, x, x, x, x, x, w5, x)  
IO2 = (x, x, x, x, x, x, w6, x)  
IO3 = (x, x, x, x, x, x, x, x)  
10. Address, continuous Read Mode bits, Dummy bits, Manufacture ID and Device ID  
IO0 = (A20, A16, A12, A8, A4, A0, M4, M0, x, x, x, x, MID4, MID0, DID4, DID0)  
IO1 = (A21, A17, A13, A9, A5, A1, M5, M1, x, x, x, x, MID5, MID1, DID5, DID1)  
IO2 = (A22, A18, A14, A10, A6, A2, M6, M2, x, x, x, x, MID6, MID2, DID6, DID2)  
IO3 = (A23, A19, A15, A11, A7, A3, M7, M3, x, x, x, x, MID7, MID3, DID7, DID3)  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
18  
8.1  
Configuration and Status Instructions  
8.1.1 Write Enable (06h)  
The Write Enable instruction is for setting the Write Enable Latch (WEL) bit. The WEL bit must be set prior to every  
Page Program, Sector Erase, Block Erase, Chip Erase, Write Status Register, and Erase/Program Security  
Registers instruction.  
The Write Enable instruction sequence: CS goes low sending the Write Enable instruction CS goes high.  
CS  
0
1
2
3
4
5
6
7
SCK  
SI  
OPCODE  
0
MSB  
0
0
0
0
1
1
0
HIGH-IMPEDANCE  
SO  
Figure 8-1. Write Enable Sequence Diagram  
8.1.2 Write Disable (04h)  
The Write Disable instruction is for resetting the Write Enable Latch bit. The Write Disable instruction sequence:  
CS goes low sending the Write Disable instruction CS goes high. The WEL bit is reset by following condition:  
Power-up and upon completion of the Write Status Register, Page Program, Sector Erase, Block Erase, Chip  
Erase, Erase/Program Security Registers, and Reset instructions.  
CS  
0
1
2
3
4
5
6
7
SCK  
SI  
OPCODE  
0
MSB  
0
0
0
0
1
0
0
HIGH-IMPEDANCE  
SO  
Figure 8-2. Write Disable Sequence Diagram  
8.1.3 Read Status Register (05h or 35h or 15h)  
The Read Status Register (RDSR) instruction is for reading the Status Register. The Status Register may be read  
at any time, even while a Program, Erase or Write Status Register cycle is in progress. When one of these cycles  
is in progress, it is recommended to check the Write in Progress (WIP) bit before sending a new instruction to the  
device. It is also possible to read the Status Register continuously. For instruction code 05h, the SO outputs Status  
Register bits S7 - S0. For instruction code 35h, the SO outputs Status Register bits S15 - S8. For instruction code  
15h, the SO outputs Status Register bits S23 - 16.  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
19  
Figure 8-3 shows a Read Status Register operation for Status Register 1 (05h). The Read Status Register 2 and 3  
operations would be the same, but with a different opcode in the first eight clocks.  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
SCK  
SI  
OPCODE  
0
MSB  
0
0
0
0
1
0
1
STATUS REGISTER  
DATA  
STATUS REGISTER  
DATA  
STATUS REGISTER  
DATA  
HIGH-IMPEDANCE  
D
MSB  
D
D
D
D
D
D
D
D
MSB  
D
D
D
D
D
D
D
D
MSB  
D
D
D
D
D
D
D
SO  
Figure 8-3. Read Status Register Sequence Diagram  
8.1.4 Write Status Register (01h or 31h or 11h)  
The Write Status Register instruction allows new values to be written to the Status Register. Before it can be  
accepted, a Write Enable instruction must previously have been executed. After the Write Enable instruction has  
been decoded and executed, the device sets the Write Enable Latch (WEL).  
The Write Status Register instruction has no effect on S23, S20, S19, S18, S17, S16, S15, S1 and S0 of the Status  
Register. CS must be driven high after the eighth bit of the data byte has been latched in. If not, the Write Status  
Register instruction is not executed. As soon as CS is driven high, the self-timed Write Status Register cycle  
(whose duration is tW) is initiated. While the Write Status Register cycle is in progress, the Status Register may still  
be read to check the value of the Write in Progress (WIP) bit. This bit is 1 during the self-timed Write Status  
Register cycle, and is 0 when it is completed. When the cycle is completed, the WEL bit is reset.  
The Write Status Register instruction allows the user to change the values of the Block Protect (BP4, BP3, BP2,  
BP1, BP0) bits, to define the size of the area that is to be treated as read-only. The Write Status Register  
instruction also allows the user to set or reset the Status Register Protect (SRP1 and SRP0) bits in accordance  
with the Write Protect (WP) signal. The Status Register Protect (SRP1 and SRP0) bits and Write Protect (WP)  
signal allow the device to be put in the Hardware Protected Mode. The Write Status Register instruction is not  
executed once the Hardware Protected Mode is entered.  
Figure 8-4 shows a Write Status Register operation for Status Register 1 (01h). The Write Status Register 2 and 3  
operations would be the same, but with a different opcode in the first eight clocks.  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
SCK  
SI  
OPCODE  
STATUS REGISTER IN  
0
MSB  
0
0
0
0
0
0
1
D
X
X
X
X
D
X
X
MSB  
HIGH-IMPEDANCE  
SO  
Figure 8-4. Write Status Register Sequence Diagram  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
20  
8.1.5 Write Enable for Volatile Status Register (50h)  
The non-volatile Status Register bits can also be written to as volatile bits. This gives more flexibility to change the  
system configuration and memory protection schemes quickly without waiting for the typical non-volatile bit write  
cycles or affecting the endurance of the Status Register non-volatile bits. The Write Enable for Volatile Status  
Register instruction does not set the Write Enable Latch bit, it is only valid for the Write Status Registers instruction  
to change the volatile Status Register bit values.  
CS  
0
1
2
3
4
5
6
7
Mode 3  
Mode 0  
Mode 3  
Mode 0  
SCK  
Instruction  
50h  
S1 (IO0)  
S0 (IO1)  
HIGH-IMPEDANCE  
Figure 8-5. Write Enable for Volatile Status Register  
8.2  
Read Instructions  
8.2.1 Read Data (03h)  
The Read Data instruction is followed by a 3-byte address (A23 - A0), each bit being latched-in during the rising  
edge of SCK. Then the memory content, at that address, is shifted out on SO, each bit being shifted out, at a Max  
frequency fC2, during the falling edge of SCK. The address automatically increments to the next higher address  
after each byte of data is shifted out allowing for a continuous stream of data. This means that the entire memory  
can be accessed with a single command as long as the clock continues. The command is completed by driving CS  
high. The whole memory can be read with a single Read Data Bytes (READ) instruction. Any Read Data instruction  
attempting to execute while an Erase, Program or Write cycle is in progress, is rejected without having any effects  
on the cycle that is in progress.  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12  
29 30 31 32 33 34 35 36 37 38 39 40  
SCK  
SI  
OPCODE  
ADDRESS BITS A23-A0  
0
MSB  
0
0
0
0
0
1
1
A
MSB  
A
A
A
A
A
A
A
A
DATA BYTE 1  
HIGH-IMPEDANCE  
D
MSB  
D
D
D
D
D
D
D
D
MSB  
D
SO  
Figure 8-6. Read Data Bytes Sequence Diagram  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
21  
8.2.2 Fast Read (0Bh)  
The Read Data at Higher Speed (Fast Read) instruction is for quickly reading data out. It is followed by a three-byte  
address (A23 - A0) and a dummy byte, each bit being latched-in during the rising edge of SCK. Then the memory  
content, at that address, is shifted out on SO, each bit being shifted out, at a Max frequency of fc4 during the falling  
edge of SCK. The first byte addressed can be at any location. The address automatically increments to the next  
higher address after each byte of data is shifted out.  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12  
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48  
SCK  
SI  
OPCODE  
ADDRESS BITS A23-A0  
DON'T CARE  
0
MSB  
0
0
0
1
0
1
1
A
MSB  
A
A
A
A
A
A
A
A
X
MSB  
X
X
X
X
X
X
X
DATA BYTE 1  
HIGH-IMPEDANCE  
D
MSB  
D
D
D
D
D
D
D
D
MSB  
D
SO  
Figure 8-7. Fast Read Sequence Diagram  
8.2.3 Dual Output Fast Read (3Bh)  
The Dual Output Fast Read instruction is followed by 3-byte address (A23 - A0) and a dummy byte, each bit being  
latched in during the rising edge of SCK, then the memory contents are shifted out 2-bit per clock cycle from SI and  
SO. The first byte addressed can be at any location. The address automatically increments to the next higher  
address after each byte of data is shifted out.  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12  
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48  
SCK  
OUTPUT  
DATA BYTE1  
OUTPUT  
DATA BYTE2  
OPCODE  
ADDRESS BITS A23-A0  
DON'T CARE  
A
MSB  
A
A
A
A
A
A
A
D
X
D
D
D
D
D
D
D
0
2
X
D
D
4
6
X
X
SI (SIO)  
SO  
X
X
X
X
4
0
4
6
2
6
MSB  
HIGH-IMPEDANCE  
D
D
D
D
D
D
D
D
D
D
5
7
5
1
5
1
7
3
7
3
Figure 8-8. Dual Output Fast Read Sequence Diagram  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
22  
8.2.4 Quad Output Fast Read (6Bh)  
The Quad Output Fast Read instruction is followed by 3-byte address (A23 - A0) and a dummy byte, each bit being  
latched in during the rising edge of SCK, then the memory contents are shifted out 4-bit per clock cycle from IO3,  
IO2, IO1 and IO0. The first byte addressed can be at any location. The address automatically increments to the next  
higher address after each byte of data is shifted out.  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12  
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48  
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5  
SCK  
OUT  
OUT  
OUT  
OUT  
OUT  
Opcode  
Address Bits A23-A0  
Don't Care  
C
C
C
C
C
C
C
A
MSB  
A
A
A
A
A
A
A
A
X
MSB  
X
X
X
X
X
X
X
D4 D0 D4 D0 D4 D0 D4 D0 D4 D0  
D5 D1 D5 D1 D5 D1 D5 D1 D5 D1  
D6 D2 D6 D2 D6 D2 D6 D2 D6 D2  
C
MSB  
I/O0  
(SI)  
High-impedance  
High-impedance  
High-impedance  
I/O1  
(SO)  
I/O2  
(WP)  
D7 D3 D7 D3 D7 D3 D7 D3 D7 D3  
I/O3  
(HOLD)  
MSB  
MSB  
MSB  
MSB  
MSB  
Figure 8-9. Quad Output Fast Read Sequence Diagram  
8.2.5 Dual I/O Fast Read (BBh)  
The Dual I/O Fast Read instruction is similar to the Dual Output Fast Read instruction but with the capability to  
input the 3-byte address (A23 - 0) and a Continuous Read Mode byte 2-bits per clock by SI and SO, each bit being  
latched in during the rising edge of SCK, then the memory contents are shifted out two bits per clock cycle on the  
SI and SO pins. The first byte addressed can be at any location. The address automatically increments to the next  
higher address after each byte of data is shifted out.  
Dual I/O Fast Read with Continuous Read Mode  
The Dual I/O Fast Read instruction can further reduce instruction overhead through setting the Continuous Read  
Mode bits (M7 - 4) after the inputs 3-byte address A23 - A0).  
If the Continuous Read Mode bits (M5:M4) do not equal (1,0), the next instruction requires the first BBh instruction  
code, thus returning to normal operation. A Continuous Read Mode Reset instruction can be used to reset (M5:M4)  
before issuing normal instruction. The instruction sequence is shown in the following Figure 8-10.  
If the Continuous Read Mode bits (M5:M4) = (1, 0), then the next Dual I/O fast Read instruction (after CS is raised  
and then lowered) does not require the BBh instruction code. The instruction sequence is shown in the following  
Figure 8-11.  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
23  
CS  
0
1
1
0
2
1
3
4
5
6
7
8
9
10 11 12  
19 20 21 22 23 24 25 26 27  
SCK  
Address Bits  
A23-A16  
Address Bits  
A15-A8 A7-A0  
Opcode  
M7-M0  
M2 M0  
Byte 1  
D2 D0  
Byte 2  
I/O0  
(SI)  
1
1
0
1
1
A
22  
A
20  
A18  
A
16  
A14  
A
A
0
M
6
M4  
D
6
D
4
D
6
MSB  
MSB  
I/O1  
(SO)  
M3 M1  
D3 D1  
D
A
23  
A
21  
A19  
A
17  
A15  
A
A1  
M7  
M5  
D
7
D
5
7
MSB  
Figure 8-10. Dual I/O Fast Read Sequence Diagram (Initial command or previous (M5:4) (1,0))  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
SCK  
Address Bits  
A23-A16  
Address Bits  
A7-A0  
M7-M0  
Byte 1  
Byte 2  
A15-A8  
A
M2 M0  
D2 D0  
A
22  
A
20  
A
18  
A
16  
A
14  
A
A
0
1
M
M
6
7
M
4
5
D
D
6
7
D
4
5
D
6
I/O0  
(SI)  
MSB  
M3 M1  
D3 D1  
A
23  
A
21  
A19  
A
17  
A
15  
A
M
D
D
7
I/O1  
(SO)  
MSB  
Figure 8-11. Dual I/O Fast Read Sequence Diagram (Previous command set (M5:4) = (1,0))  
8.2.6 Quad I/O Fast Read (EBh)  
The Quad I/O Fast Read instruction is similar to the Dual I/O Fast Read instruction but with the capability to input  
the 3-byte address (A23-0) and a Continuous Read Mode byte and four dummy clocks, each bit being latched in  
during the rising edge of SCK, then the memory contents are shifted out 4-bit per clock cycle from IO0, IO1, IO2,  
IO3. The first byte addressed can be at any location. The address automatically increments to the next higher  
address after each byte of data is shifted out. The Quad Enable bit (QE) of Status Register must be set to enable  
for the Quad I/O Fast read instruction.  
Quad I/O Fast Read with Continuous Read Mode  
The Quad I/O Fast Read instruction can further reduce instruction overhead through setting the Continuous Read  
Mode bits (M7-0) after the input Address bits (A23-0).  
If the Continuous Read Mode bits M5-4 do not equal to (1,0), the next instruction requires the first EBh instruction  
code, thus returning to normal operation. A Continuous Read Mode Reset command can also be used to reset  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
24  
(M5-4) before issuing normal command. The instruction sequence is shown in the followed Figure 8-12.  
If the Continuous Read Mode bits (M5-4) = (1,0), then the next Fast Read Quad I/O instruction (after CS is raised  
and then lowered) does not require the EBh instruction code. The instruction sequence is shown in the followed  
Figure 8-13.  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
SCK  
Opcode  
A23-A16 A15-A8  
A7-A0  
M7-M0  
Dummy  
Byte 1  
Byte 2  
D0 D4  
I/O  
0
D
4
D
0
1
1
1
0
1
0
1
1
A
20  
A
16  
A
12  
A8  
A
4
A0 M4 M0  
(SI)  
MSB  
D1 D5  
D2 D6  
D3 D7  
I/O1  
A
21  
A
17  
A
13  
A
9
D
5
D
1
A
5
A1 M5 M1  
(SO)  
I/O2  
(WP)  
D
6
D2  
A
22  
A
18  
A
14  
A10  
A
6
A2 M6 M2  
I/O3  
D
7
D3  
A23  
A19  
A15  
A
11  
A
7
A3 M7 M3  
(HOLD)  
Figure 8-12. Quad I/O Fast Read Sequence Diagram (Initial command or previous (M5-4) (1,0))  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
SCK  
A23-A16 A15-A8  
A7-A0  
M7-M0  
Dummy  
Byte 1  
Byte 2  
I/O  
0
D0 D4  
4
A
20  
A
16  
A
12  
A
8
A
4
A
0
M
4
M
0
D
D
0
(SI)  
D1 D5  
D2 D6  
D3 D7  
I/O1  
A
21  
A
17  
A
13  
A
9
A
5
A
1
M
5
M
1
D
5
D
1
(SO)  
I/O2  
A
22  
A
18  
A
14  
A
10  
A
6
A
2
M
6
M
2
D
6
D2  
(WP)  
I/O3  
A
23  
A
19  
A
15  
A
11  
A
7
A
3
M
7
M
3
D
7
D3  
(HOLD)  
Figure 8-13. Quad I/O Fast Read Sequence Diagram (Previous command set (M5-4) = (1,0))  
Quad I/O Fast Read with 8/16/32/64-Byte Wrap Around  
The Quad I/O Fast Read instruction can also be used to access a specific portion within a page by issuing a Set  
Burst with Wrap (77h) instruction prior to EBh. The Set Burst with Wrap (77h) instruction can either enable or  
disable the Wrap Around feature for the following EBh instructions.  
When Wrap Around is enabled, the data being accessed can be limited to either an 8, 16, 32 or 64-byte section of  
a 256-byte page. The output data starts at the initial address specified in the instruction, once it reaches the ending  
boundary of the 8/16/32/64-byte section, the output wraps around to the beginning boundary automatically until CS  
is pulled high to terminate the instruction.  
The Burst with Wrap feature allows applications that use cache to quickly fetch a critical address and then fill the  
cache afterwards within a fixed length (8/16/32/64-byte) of data without issuing multiple read instructions.  
The Set Burst with Wrap instruction allows three Wrap Bits, W6-4 to be set. The W4 bit is used to enable or disable  
the Wrap Around operation while W6-5 are used to specify the length of the wrap around section within a page.  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
25  
8.2.7 Quad I/O Word Fast Read (E7h)  
The Quad I/O Word Fast Read instruction is similar to the Quad Fast Read instruction, except that the lowest  
address bit (A0) must be 0 and there are two dummy clocks. The address automatically increments to the next  
higher address after each byte of data is shifted out. The Quad Enable bit (QE) of Status Register (S9) must be set  
to enable for the Quad I/O Word Fast Read instruction.  
Quad I/O Word Fast Read with Continuous Read Mode  
The Quad I/O Word Fast Read instruction can further reduce instruction overhead through setting the Continuous  
Read Mode bits (M7-0) after the input three-byte Address bits (A23-0).  
If the Continuous Read Mode bits M5-4 do not equal to (1,0), the next instruction requires the first E7h instruction  
code, thus returning to normal operation. A Continuous Read Mode Reset command can also be used to reset  
(M5-4) before issuing normal command. The instruction sequence is shown in the followed Figure 8-14.  
If the Continuous Read Mode bits (M5-4) = (1, 0), then the next Quad I/O Fast Read instruction (after CS is raised  
and then lowered) does not require the E7h instruction code, the instruction sequence is shown in the followed  
Figure 8-15.  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
SCK  
Opcode  
A23-A16 A15-A8  
A7-A0  
M7-M0 Dummy  
Byte 3  
Byte 1  
Byte 2  
D0 D4  
D4  
D
I/O0  
1
1
1
0
0
1
1
1
A
20  
A
16  
A
12  
A8  
A
4
A
0
M
4
M0  
D
4
D
0
0
(SI)  
MSB  
D1 D5  
D2 D6  
D3 D7  
D5  
D6  
D7  
I/O1  
A
21  
A
17  
A
13  
A
9
A
5
A
1
M
5
M
1
D
5
D
1
D1  
(SO)  
I/O2  
D
6
D2  
D
2
A
22  
A
18  
A
14  
A10  
A
6
A
2
M
6
M
2
(WP)  
I/O3  
D
7
D3  
D
3
A23  
A19  
A15  
A
11  
A
7
A
3
M
7
M
3
(HOLD)  
Figure 8-14. Quad I/O Word Fast Read Sequence Diagram (Initial command or previous (M5-4) (1,0))  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
SCK  
A23-A16 A15-A8  
A7-A0  
M7-M0 Dummy  
Byte 3  
Byte 1  
Byte 2  
D4  
0
I/O0  
D0 D4  
D
0
A20  
A
16  
A
12  
A
8
A4  
A
0
M
4
M
0
D
4
D
(SI)  
D5  
D6  
D7  
D1 D5  
D2 D6  
D3 D7  
I/O1  
A
21  
A
17  
A
13  
A
9
A
5
A
1
M
5
M
1
D
5
D
1
D1  
(SO)  
I/O2  
D
2
A
22  
A18  
A
14  
A
10  
A
6
A
2
M
6
M
2
D
6
D2  
(WP)  
I/O3  
D
3
A
23  
A
19  
A
15  
A
11  
A
7
A
3
M
7
M
3
D
7
D3  
(HOLD)  
Figure 8-15. Quad I/O Word Fast Read Sequence Diagram (Previous command set (M5-4) = (1,0))  
Quad I/O Word Fast Read with 8/16/32/64-Byte Wrap Around in Standard SPI Mode  
The Quad I/O Fast Read instruction can also be used to access a specific portion within a page by issuing a Set  
Burst with Wrap (77h) instruction prior to E7h. The Set Burst with Wrap (77h) instruction can either enable or  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
26  
disable the Wrap Around feature for the following E7h instructions. When Wrap Around is enabled, the data being  
accessed can be limited to either an 8, 16, 32 or 64-byte section of a 256-byte page. The output data starts at the  
initial address specified in the instruction, once it reaches the ending boundary of the 8/16/32/64-byte section, the  
output will wrap around to the beginning boundary automatically until CS is pulled high to terminate the instruction.  
The Burst with Wrap feature allows applications that use cache to quickly fetch a critical address and then fill the  
cache afterwards within a fixed length (8/16/32/64-byte) of data without issuing multiple read instructions. The Set  
Burst with Wrap instruction allows three Wrap Bits, W6-4 to be set. The W4 bit is used to enable or disable the  
Wrap Around operation while W6-5 are used to specify the length of the wrap around section within a page.  
8.2.8 Set Burst with Wrap (77h)  
The Set Burst with Wrap instruction is used in conjunction with Quad I/O Fast Read and Quad I/O Word Fast Read  
instruction to access a fixed length of 8/16/32/64-byte section within a 256-byte page in standard SPI mode. The  
Set Burst with Wrap instruction sequence is as follows: CS goes low Send Set Burst with Wrap instruction →  
Send 24 Dummy bits Send 8 Wrap bits CS goes high.  
If W6-4 is set by a Set Burst with Wrap instruction, all the following Fast Read Quad I/O and Word Read Quad I/O  
instructions will use the W6-4 setting to access the 8/16/32/64-byte section within any page. To exit the Wrap  
Around function and return to normal read operation, another Set Burst with Wrap instruction should be issued to  
set W4 = 1. The default value of W4 upon power on is 1.  
Table 8-2. Set Burst with Wrap  
W4 = 0  
W4 = 1 (Default)  
W6, W5  
Wrap Around  
Wrap Length  
8-byte  
Wrap Around  
Wrap Length  
0
0
1
1
0
1
0
1
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
N/A  
N/A  
N/A  
N/A  
16-byte  
32-byte  
64-byte  
CS  
0
0
1
1
2
1
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SCK  
Opcode  
Byte 1  
Byte 2  
Byte 3  
Byte 4  
HIGH-IMPEDANCE  
HIGH-IMPEDANCE  
HIGH-IMPEDANCE  
HIGH-IMPEDANCE  
I/O0  
1
0
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
W
4
X
X
X
X
(SI)  
MSB  
HIGH-IMPEDANCE  
HIGH-IMPEDANCE  
HIGH-IMPEDANCE  
I/O1  
X
X
X
W5  
(SO)  
I/O2  
W
6
(WP)  
I/O3  
X
(HOLD)  
Figure 8-16. Set Burst with Wrap Sequence Diagram  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
27  
8.3  
ID and Security Instructions  
8.3.1 Read Manufacture ID/ Device ID (90h)  
The Read Manufacturer/Device ID instruction is an alternative to the Release from Power-Down/Device ID  
instruction that provides both the JEDEC assigned Manufacturer ID and the specific Device ID.  
The instruction is initiated by driving the CS pin low and shifting the instruction code 90h followed by a 24-bit  
address (A23-A0) of 000000h. If the 24-bit address is initially set to 000001h, the Device ID will be read first.  
CS  
0
1
2
3
4
5
6
7
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
SCK  
SI  
ADDRESS BYTES  
(000000000h)  
OPCODE  
1
MSB  
0
0
1
0
0
0
0
A
A
A
A
A
MANUFACTURER ID  
DEVICE ID  
HIGH-IMPEDANCE  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
SO  
MSB  
MSB  
Figure 8-17. Read Manufacture ID/ Device ID Sequence Diagram  
8.3.2 Dual I/O Read Manufacture ID/ Device ID (92h)  
The Dual I/O Read Manufacturer/Device ID instruction is an alternative to the Release from Power-Down/Device  
ID instruction that provides both the JEDEC assigned Manufacturer ID and the specific Device ID by Dual I/O.  
The instruction is initiated by driving the CS pin low and shifting the instruction code 92h followed by a 24-bit  
address (A23 - A0) of 000000h. If the 24-bit address is initially set to 000001h, the Device ID is read first.  
CS  
0
2
4
5
6
7
12  
15  
21  
1
3
8
9
10 11  
13 14  
16 17 18 19 20  
22 23  
SCK  
Instruction  
92H  
SI  
4
2
0
6
4
2
3
0
1
6
0
6
2
2
0
4
4
5
6
(IO0)  
HIGH-IMPEDANCE  
SO  
(IO1)  
7
5
7
3
1
7
5
3
1
7
5
1
3
A23-16  
A15-8  
A7-0  
Dummy  
CS  
23 24 25 26  
28 29 30 31 32  
39  
42 43 44 45 46 47  
27  
40 41  
SCK  
SI  
HIGH-IMPEDANCE  
HIGH-IMPEDANCE  
6
7
2
6
7
0
4
5
2
4
5
6
7
4
5
0
6
7
2
3
4
5
0
1
(IO0)  
2
0
1
MFR and Device ID  
(repeat)  
SO  
( IO1)  
1
3
3
3
1
MFR ID (repeat)  
Device ID (repeat)  
MFR ID  
Device ID  
Figure 8-18. Dual I/O Read Manufacture ID/ Device ID Sequence Diagram  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
28  
8.3.3 Quad I/O Read Manufacture ID/ Device ID (94h)  
The Quad I/O Read Manufacturer/Device ID instruction is an alternative to the Release from Power-Down/Device  
ID instruction that provides both the JEDEC assigned Manufacturer ID and the specific Device ID by quad I/O.  
The instruction is initiated by driving the CS pin low and shifting the instruction code 94h followed by a 24-bit  
address (A23 - A0) of 000000h and four dummy clocks. If the 24-bit address is initially set to 000001h, the Device  
ID is read out first.  
CS  
0
2
4
5
6
7
12  
15  
21  
0
1
3
9
11  
13  
16  
20  
8
10  
4
14  
17 18 19  
22 23  
SCLK  
Instruction  
94H  
SI  
( IO0)  
4
5
0
1
4
4
0
0
4
0
4
0
HIGH-IMPEDANCE  
HIGH-IMPEDANCE  
SO  
( IO1)  
1
2
5
6
5
6
1
2
1
2
5
6
1
2
5
6
1
2
5
WP  
( IO2)  
6
2
6
HOLD  
( IO3)  
HIGH-IMPEDANCE  
3
7
3
7
3
7
3
7
3
7
3
7
Device ID  
MFR ID  
dummy  
A7-0  
A23-16  
dummy  
A15-8  
CS  
23 24 25 26  
28 29 30 31  
27  
SCLK  
SI  
( IO0)  
4
0
4
0
4
0
4
0
SO  
5
6
1
2
5
6
1
2
5
6
1
2
5
6
1
2
( IO1)  
WP  
( IO2)  
7
3
7
3
7
3
7
3
HOLD  
( IO3)  
Device ID MFR ID Device ID  
MFR ID  
( repeat) ( repeat) ( repeat) ( repeat)  
Figure 8-19. Quad I/O Read Manufacture ID / Device ID Sequence Diagram  
8.3.4 Read JEDEC ID (9Fh)  
The JEDEC ID instruction allows the 8-bit manufacturer identification to be read, followed by two bytes of device  
identification. The device identification indicates the memory type in the first byte, and the memory capacity of the  
device in the second byte. JEDEC ID instruction while an Erase or Program cycle is in progress, is not decoded,  
and has no effect on the cycle that is in progress. The JEDEC ID instruction should not be issued while the device  
is in Deep Power-Down Mode.  
The device is first selected by driving CS to low. Then, the 8-bit instruction code for the instruction is shifted in. This  
is followed by the 24-bit device identification, stored in the memory, being shifted out on Serial Data Output, each  
bit being shifted out during the falling edge of Serial Clock. The JEDEC ID instruction is terminated by driving CS to  
high at any time during data output. When CS is driven high, the device is put in the Standby Mode. Once in the  
Standby Mode, the device waits to be selected, so that it can receive, decode and execute instructions.  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
29  
CS  
SCK  
SI  
0
6
7
8
14 15 16  
22 23 24  
30 31 32  
OPCODE  
9Fh  
HIGH-IMPEDANCE  
1Fh  
89h  
01h  
SO  
MANUFACTURER ID  
DEVICE ID  
BYTE1  
DEVICE ID  
BYTE2  
Note: Each transition  
shown for SI and SO represents one byte (8 bits)  
Figure 8-20. JEDEC ID Sequence Diagram  
8.3.5 Read Unique ID Number (4Bh)  
The Read Unique ID Number instruction accesses a factory-set read-only 64-bit number that is unique to each  
AT25QF128A device. The ID number can be used in conjunction with user software methods to help prevent  
copying or cloning of a system. The Read Unique ID instruction is initiated by driving the CS pin low and shifting  
the instruction code 4Bh followed by a four bytes of dummy clocks. After which, the 64-bit ID is shifted out on the  
falling edge of SCK as shown in Figure 8-21.  
CS  
19  
Mode  
Mode  
13 14 15  
20 21 22  
0
1
2
3
4
5
6
7
8
9
10 11  
16 17 18  
23  
3
0
12  
SCK  
SI  
Dummy Byte  
Instruction  
4BH  
1
Dummy Byte  
2
HIGH-IMPEDANCE  
SO  
CS  
_
26  
Dummy Byte 3  
23  
25  
27 28  
103  
102  
29 30  
33  
40  
24  
34  
36 37 38 39  
100 101  
Mode3  
Mode0  
31 32  
35  
41  
SCK  
Dummy Byte  
4
SI  
HIGH-IMPEDANCE  
_
SO  
1
2
63 62  
MSB  
0
bit Unique  
Serial Number  
64-  
Figure 8-21. Read Unique ID Sequence Diagram  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
30  
8.3.6 Deep Power-Down (B9h)  
Although the standby current during normal operation is relatively low, standby current can be further reduced with  
the Deep Power-down instruction. The lower power consumption makes the Deep Power-down (DPD) instruction  
especially useful for battery powered applications (see ICC1 and ICC2). The instruction is initiated by driving the  
CS pin low and shifting the instruction code B9h, as shown in Figure 8-22.  
The CS pin must be driven high after the eighth bit has been latched. If this is not done the Deep Power down  
instruction is not executed. After CS is driven high, the power-down state is entered within the time tDP. While in the  
power-down state only the Release from Deep Power-down / Device ID instruction, which restores the device to  
normal operation, will be recognized. All other Instructions are ignored. This includes the Read Status Register  
instruction, which is always available during normal operation. Ignoring all but one instruction also makes the  
Power Down state a useful condition for securing maximum write protection. The device always powers-up in the  
normal operation with the standby current of ICC1.  
CS  
tPD  
0
1
2
3
4
5
6
7
SCK  
SI  
OPCODE  
1
MSB  
0
1
1
1
0
0
1
HIGH-IMPEDANCE  
Active Current  
SO  
ICC  
Standby Mode Current  
Deep Power-Down Mode Current  
Figure 8-22. Deep Power-Down Sequence Diagram  
8.3.7 Release from Deep Power-Down/Read Device ID (ABh)  
The Release from Power-Down or Device ID instruction is a multi-purpose instruction. It can be used to release the  
device from the Power-Down state or obtain the devices electronic identification (ID) number.  
To release the device from the Power-Down state, the instruction is issued by driving the CS pin low, shifting the  
instruction code ABh and driving CS high Release from Power-Down takes time tRES1 (see Section 9.8, AC  
Electrical Characteristics) before the device resumes normal operation and other instruction are accepted. The CS  
pin must remain high during tRES1  
.
When used only to obtain the Device ID while not in the Power-Down state, the instruction is initiated by driving the  
CS pin low and shifting the instruction code ABh followed by three dummy bytes. The Device ID bits are then  
shifted out on the falling edge of SCK with most significant bit (MSB) first, as shown in Figure 8-23. The Device ID  
value for the AT25QF128A is listed in Manufacturer and Device Identification table. The Device ID can be read  
continuously. The instruction is completed by driving CS high.  
When used to release the device from the Power-Down state and obtain the Device ID, the instruction is the same  
as previously described, and shown in Figure 8-23, except that after CS is driven high it must remain high for a  
time of tRES2 (see Section 9.8, AC Electrical Characteristics), as shown in Figure 8-24. After this time, the device  
resumes normal operation and other instructions are accepted. If the Release from Power-Down/Device ID  
instruction is issued while an Erase, Program or Write cycle is in process (when WIP equal 1) the instruction is  
ignored and does not effect the current cycle.  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
31  
CS  
SCK  
SI  
tRES1  
0
1
2
3
4
5
6
7
OPCODE  
1
MSB  
0
1
0
1
0
1
1
HIGH-IMPEDANCE  
SO  
Stand-By  
Mode  
Deep Power-Down Mode  
Figure 8-23. Release Power-Down Sequence Diagram  
CS  
SCK  
SI  
0
1
2
3
4
5
6
7
8
9
29 30 31 32 33 34 35 36 37 38 39  
Instruction  
3 Dummy Bytes  
tRES2  
1
MSB  
0
1
0
1
0
1
1
23 22  
2
1
0
MSB  
Device ID  
High_Z  
#
#
#
#
#
#
#
#
SO  
MSB  
Deep Power-down Mode  
Stand-by Mode  
Figure 8-24. Release Power-Down and Read Device ID Sequence Diagram  
8.3.8 Read Security Registers (48h)  
The Read Security Registers instruction is similar to Fast Read instruction. The instruction is followed by a 3-byte  
address (A23 - A0) and a dummy byte, each bit being latched-in during the rising edge of SCK. Then the memory  
content, at that address, is shifted out on SO, each bit being shifted out, at a Max frequency fC, during the falling  
edge of SCK. The first byte addressed can be at any location. The address automatically increments to the next  
higher address after each byte of data is shifted out. Once the A7 - A0 address reaches the last byte of the register  
(Byte FFh), it resets to 000h, the instruction is completed by driving CS high.  
Table 8-3. Read Security Registers  
Address  
A23-A16  
00h  
A15-A12  
0001  
A11-A8  
0000  
A7-A0  
Security Registers 1  
Security Registers 2  
Security Registers 3  
Byte Address  
Byte Address  
Byte Address  
00h  
0010  
0000  
00h  
0011  
0000  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
32  
ꢁꢀ  
ꢀꢁꢂ  
ꢀꢃ  
ꢉꢊ ꢉꢉ ꢉꢇ  
ꢇꢏ ꢈꢊ ꢈꢉ ꢈꢇ ꢈꢈ ꢈꢎ ꢈꢍ ꢈꢋ ꢈꢌ ꢈꢐ ꢈꢏ  
ꢄꢑꢁꢄꢒꢓ  
ꢔꢒꢒꢖꢓꢀꢀꢗꢆꢃꢘꢀꢗꢔꢇꢈꢙꢔꢊ  
ꢒꢚꢅꢅꢛꢗꢆꢛꢘꢓ  
ꢅꢀꢆ  
ꢅꢀꢆ  
ꢅꢀꢆ  
ꢒꢔꢘꢔꢗꢆꢛꢘꢓꢗꢉ  
ꢜꢃꢝꢜꢙꢃꢅꢑꢓꢒꢔ ꢁꢓ  
ꢀꢄ  
ꢅꢀꢆ  
ꢅꢀꢆ  
Figure 8-25. Read Security Registers Instruction Sequence Diagram  
8.3.9 Erase Security Registers (44h)  
The AT25QF128A provides three 256-byte Security Registers which can be erased and programmed individually.  
These registers may be used by the system manufacturers to store security and other important information  
separately from the main memory array.  
The Erase Security Registers instruction is similar to Sector/Block Erase instruction. A Write Enable instruction  
must previously have been executed to set the Write Enable Latch bit.  
The Erase Security Registers instruction sequence: CS goes low sending Erase Security Registers instruction  
CS goes high. CS must be driven high after the eighth bit of the instruction code has been latched in otherwise  
the Erase Security Registers instruction is not executed. As soon as CS is driven high, the self-timed Erase  
Security Registers cycle (whose duration is tSE) is initiated. While the Erase Security Registers cycle is in progress,  
the Status Register may be read to check the value of the Write In Progress (WIP) bit. The Write In Progress (WIP)  
bit is 1 during the self-timed Erase Security Registers cycle, and is 0 when it is completed. At some unspecified  
time before the cycle is completed, the Write Enable Latch bit is reset. The Security Registers Lock Bit (LB) in the  
Status Register can be used to OTP protect the security registers. Once the LB bit is set to 1, the Security  
Registers are permanently locked; the Erase Security Registers instruction is ignored.  
Table 8-4. Erase Security Registers  
Address  
A23 - A16  
00h  
A15 - A12  
0001  
A11 - A8  
0000  
A7 - A0  
Security Registers 1  
Security Registers 2  
Security Registers 3  
Byte Address  
Byte Address  
Byte Address  
00h  
0010  
0000  
00h  
0011  
0000  
CS  
0
1
2
3
4
5
6
7
8
9
29 30 31  
SCK  
SI  
OPCODE  
24-BIT ADDRESS  
0
MSB  
1
0
0
0
1
0
0
A
A
A
A
A
Figure 8-26. Erase Security Registers Instruction Sequence Diagram  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
33  
8.3.10 Program Security Registers (42h)  
The Program Security Registers instruction is similar to the Page Program instruction. It allows from 1 to 256 bytes  
Security Registers data to be programmed. A Write Enable instruction must previously have been executed to set  
the Write Enable Latch (WEL) bit before sending the Program Security Registers instruction.  
The Program Security Registers instruction is entered by driving CS low, followed by the instruction code (42h), a  
3-byte address and at least one data byte on the SI pin. As soon as CS is driven high, the self-timed Program  
Security Registers cycle (whose duration is tPP) is initiated. While the Program Security Registers cycle is in  
progress, the Status Register may be read to check the value of the Write In Progress (WIP) bit. The Write In  
Progress (WIP) bit is 1 during the self-timed Program Security Registers cycle, and is 0 when it is completed. At  
some unspecified time before the cycle is completed, the WEL bit is reset.  
If the Security Registers Lock Bit (LB3/LB2/LB1) bits are set to 1, the Security Registers are permanently locked.  
The Program Security Registers instruction is ignored.  
Table 8-5. Program Security Registers  
Address  
A23 - A16  
00h  
A15 - A12  
0001  
A11 - A8  
0000  
A7 - A0  
Security Registers 1  
Security Registers 2  
Security Registers 3  
Byte Address  
Byte Address  
Byte Address  
00h  
0010  
0000  
00h  
0011  
0000  
CS  
SCK  
SI  
0
1
2
3
4
5
6
7
8
9
29 30 31 32 33 34 35 36 37 38 39  
OPCODE  
ADDRESS BITS A23-A0  
DATA IN BYTE 1  
DATA IN BYTE n  
0
MSB  
1
0
0
0
0
1
0
A
MSB  
A
A
A
A
A
D
D
D
D
D
D
D
D
D
MSB  
D
D
D
D
D
D
D
MSB  
HIGH-IMPEDANCE  
SO  
Figure 8-27. Program Security Registers Instruction Sequence Diagram  
8.3.11 Enable Reset (66h) and Reset Device (99h)  
Because of the small package and the limitation on the number of pins, the AT25QF128A provides a software  
Reset instruction instead of a dedicated RESET pin. Once the software Reset instruction is accepted, any on-going  
internal operations are terminated and the device returns to its default power-on state and loses all of the current  
volatile settings, such as Volatile Status Register bits, Write Enable Latch (WEL) status, Program/Erase Suspend  
status, Continuous Read Mode bit setting (M7-M0) and Wrap Bit setting (W6-W4).  
To avoid accidental reset, both Enable Reset (66h) and Reset (99h) instructions must be issued in sequence. Any  
other commands other than Reset (99h) after the Enable Reset (66h) command will disable the Reset Enable  
state. A new sequence of Enable Reset (66h) and Reset (99h) is needed to reset the device. Once the Reset  
command is accepted by the device, the device takes approximately 30 μs to reset. During this period, no  
commands are accepted.  
The Enable Reset (66h) and Reset (99h) instruction sequence is shown in Figure 8-28.  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
34  
Data corruption may happen if there is an on-going or suspended internal Erase or Program operation when Reset  
command sequence is accepted by the device. It is recommended to check the BUSY bit and the SUS bit in Status  
Register before issuing the Reset command sequence.  
CS  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
SCK  
SI  
OPCODE  
OPCODE  
1
0
1
1
0
0
1
0
0
1
1
0
0
1
1
0
Figure 8-28. Enable Reset (66h) and Reset (99h) Command Sequence  
8.4  
Program and Erase Instructions  
8.4.1 Page Program (02h)  
The Page Program instruction is for programming the memory. A Write Enable instruction must previously have  
been executed to set the Write Enable Latch bit before sending the Page Program instruction.  
The Page Program instruction is entered by driving CS Low, followed by the instruction code, 3-byte address and  
at least one data byte on SI. If the 8 least significant address bits (A7 - A0) are not all zero, all transmitted data that  
goes beyond the end of the current page are programmed from the start address of the same page (from the  
address whose 8 least significant bits (A7 - A0) are all zero). CS must be driven low for the entire duration of the  
sequence. The Page Program instruction sequence: CS goes low sending Page Program instruction 3-byte  
address on SI at least 1 byte of data on SI CS goes high.  
If more than 256 bytes are sent to the device, previously latched data are discarded and the last 256 data bytes are  
guaranteed to be programmed correctly within the same page. If less than 256 data bytes are sent to device, they  
are correctly programmed at the requested addresses without having any effects on the other bytes of the same  
page. CS must be driven high after the eighth bit of the last data byte has been latched in; otherwise the Page  
Program instruction is not executed.  
As soon as CS is driven high, the self-timed Page Program cycle (whose duration is tPP) is initiated. While the Page  
Program cycle is in progress, the Status Register may be read to check the value of the Write in Progress (WIP)  
bit. The Write in Progress (WIP) bit is 1 during the self-timed Page Program cycle, and is 0 when it is completed. At  
some unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit is reset.  
A Page Program instruction applied to a page which is protected by the Block Protect (BP4, BP3, BP2, BP1, BP0)  
bits is not executed.  
CS  
0
1
2
3
4
5
6
7
8
9
29 30 31 32 33 34 35 36 37 38 39  
SCK  
SI  
OPCODE  
ADDRESS BITS A23-A0  
DATA IN BYTE 1  
DATA IN BYTE n  
0
MSB  
0
0
0
0
0
1
0
A
A
A
A
A
A
D
MSB  
D
D
D
D
D
D
D
D
MSB  
D
D
D
D
D
D
D
MSB  
HIGH-IMPEDANCE  
SO  
Figure 8-29. Page Program Sequence Diagram  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
35  
8.4.2 SCKQuad Page Program (32h)  
The Quad Page Program instruction is for programming the memory using for pins: IO0, IO1, IO2 and IO3. To use  
Quad Page Program the Quad Enable (QE) bit in the Status register must be set (QE = 1). A Write Enable  
instruction must previously have been executed to set the Write Enable Latch bit before sending the Page Program  
instruction. The Quad Page Program instruction is entered by driving CS low, followed by the command code  
(32h), three address bytes and at least one data byte on IO pins.  
The instruction sequence is shown in Figure 8-30. If more than 256 bytes are sent to the device, previously latched  
data are discarded and the last 256 data bytes are guaranteed to be programmed correctly within the same page.  
If less than 256 data bytes are sent to device, they are correctly programmed at the requested addresses without  
having any effects on the other bytes of the same page. CS must be driven high after the eighth bit of the last data  
byte has been latched in; otherwise the Quad Page Program instruction is not executed.  
As soon as CS is driven high, the self-timed Quad Page Program cycle (whose duration is tPP) is initiated. While  
the Quad Page Program cycle is in progress, the Status Register may be read to check the value of the Write in  
Progress (WIP) bit. The Write In Progress (WIP) bit is 1 during the self-timed Quad Page Program cycle, and is 0  
when it is completed. At some unspecified time before the cycle is completed, the Write Enable Latch bit is reset.A  
Quad Page Program instruction applied to a page which is protected by the Block Protect (BP4, BP3, BP2, BP1,  
BP0) bits is not executed.  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12  
29 30 31 32 33 34 35 36 37 38 39 40 41  
DATA DATA DATA DATA DATA  
SCK  
IN 1  
IN 2  
IN 3  
IN 4  
IN 5  
COMMAND  
Address Bits A23-A0  
0
1
1
0
D4 D0 D4 D0 D4 D0 D4 D0 D4 D0  
D5 D1 D5 D1 D5 D1 D5 D1 D5 D1  
D6 D2 D6 D2 D6 D2 D6 D2 D6 D2  
0
MSB  
0
0
1
A
MSB  
A
A
A
A
A
A
A
A
I/O0  
(SI)  
HIGH-IMPEDANCE  
HIGH-IMPEDANCE  
HIGH-IMPEDANCE  
I/O1  
(SO)  
I/O2  
(WP)  
D7 D3 D7 D3 D7 D3 D7 D3 D7 D3  
I/O3  
(HOLD)  
MSB  
MSB  
MSB  
MSB  
MSB  
Figure 8-30. Quad Page Program Sequence Diagram  
8.4.3 Fast Page Program (F2h)  
The Fast Page Program instruction is used to program the memory. A Write Enable instruction must previously  
have been executed to set the WEL bit before sending the Page Program instruction.  
The Fast Page Program instruction is entered by driving CS Low, followed by the instruction code, 3-byte address  
and at least one data byte on SI. If the 8 least significant address bits (A7-A0) are not all zero, all transmitted data  
that goes beyond the end of the current page are programmed from the start address of the same page (from the  
address whose 8 least significant bits (A7-A0) are all zero). CS must be driven low for the entire duration of the  
sequence.  
The Fast Page Program instruction sequence: CS goes low sending Page Program instruction 3-byte  
address on SI at least 1 byte data on SI CS goes high.  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
36  
The command sequence is shown in Figure 8-31. If more than 256 bytes are sent to the device, previously latched  
data are discarded and the last 256 data bytes are guaranteed to be programmed correctly within the same page.  
If less than 256 data bytes are sent to device, they are correctly programmed at the requested addresses without  
having any effects on the other bytes of the same page. CS must be driven high after the eighth bit of the last data  
byte has been latched in; otherwise the Fast Page Program instruction is not executed.  
As soon as CS is driven high, the self-timed Page Program cycle (whose duration is tPP) is initiated. While the Page  
Program cycle is in progress, the Status Register may be read to check the value of the Write-in-Progress (WIP)  
bit. The WIP bit is 1 during the self-timed Page Program cycle, and is 0 when it is completed. At some unspecified  
time before the cycle is completed, the WEL bit is reset.  
A Fast Page Program instruction applied to a page which is protected by the Block Protect (BP4, BP3, BP2, BP1,  
BP0) bits is not executed.  
ꢁꢀ  
ꢇꢏ ꢈꢊ ꢈꢉ ꢈꢇ ꢈꢈ ꢈꢎ ꢈꢍ ꢈꢋ ꢈꢌ ꢈꢐ ꢈꢏ  
ꢀꢁꢂ  
ꢀꢃ  
ꢄꢑꢁꢄꢒꢓ  
ꢔꢒꢒꢖꢓꢀꢀꢗꢆꢃꢘꢀꢗꢔꢇꢈꢙꢔꢊ  
ꢒꢔꢘꢔꢗꢃ ꢗꢆꢛꢘꢓꢗꢉ  
ꢒꢔꢘꢔꢗꢃ ꢗꢆꢛꢘꢓꢗ!  
ꢅꢀꢆ  
ꢅꢀꢆ  
ꢅꢀꢆ  
ꢅꢀꢆ  
ꢜꢃꢝꢜꢙꢃꢅꢑꢓꢒꢔ ꢁꢓ  
ꢀꢄ  
Figure 8-31. Fast Page Program Sequence Diagram  
8.4.4 Sector Erase (20h)  
The Sector Erase instruction is for erasing the all data of the chosen sector. A Write Enable instruction must  
previously have been executed to set the Write Enable Latch bit. The Sector Erase instruction is entered by driving  
CS low, followed by the instruction code, and 3-address byte on SI. Any address inside the sector is a valid  
address for the Sector Erase instruction. CS must be driven low for the entire duration of the sequence.  
The Sector Erase instruction sequence: CS goes low sending Sector Erase instruction 3-byte address on SI  
CS goes high. CS must be driven high after the eighth bit of the last address byte has been latched in; otherwise  
the Sector Erase instruction is not executed. As soon as CS is driven high, the self-timed Sector Erase cycle  
(whose duration is tSE) is initiated. While the Sector Erase cycle is in progress, the Status Register may be read to  
check the value of the Write-in-Progress (WIP) bit. The WIP bit is 1 during the self-timed Sector Erase cycle, and is  
0 when it is completed. At some unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit  
is reset. A Sector Erase instruction applied to a sector which is protected by the Block Protect (BP4, BP3, BP2,  
BP1, BP0) bits is not executed.  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12  
26 27 28 29 30 31  
SCK  
SI  
OPCODE  
ADDRESS BITS A23-A0  
A
A
A
A
A
MSB  
A
A
A
A A  
A
A
C
MSB  
C
C
C
C
C
C
C
HIGH-IMPEDANCE  
SO  
Figure 8-32. Sector Erase Sequence Diagram  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
37  
8.4.5 32KB Block Erase (52h)  
The 32 KB Block Erase instruction is for erasing all data of a chosen block. A Write Enable instruction must have  
been previously executed to set the WEL bit. The 32 kB Block Erase instruction is entered by driving CS low,  
followed by the instruction code, and 3-byte address on SI. Any address inside the block is a valid address for the  
32 KB Block Erase instruction. CS must be driven low for the entire duration of the sequence.  
The 32 KB Block Erase instruction sequence: CS goes low sending 32 kB Block Erase instruction 3-byte  
address on SI CS goes high. CS must be driven high after the eighth bit of the last address byte has been  
latched in; otherwise the 32 kB Block Erase instruction is not executed.  
As soon as CS is driven high, the self-timed Block Erase cycle (whose duration is tBE) is initiated. While the Block  
Erase cycle is in progress, the Status Register may be read to check the value of the Write-in-Progress (WIP) bit.  
The WIP bit is 1 during the self-timed Block Erase cycle, and is 0 when it is completed. At some unspecified time  
before the cycle is completed, the Write Enable Latch (WEL) bit is reset. A 32 kB Block Erase instruction applied to  
a block which is protected by the Block Protect (BP4, BP3, BP2, BP1, BP0) bits is not executed.  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12  
26 27 28 29 30 31  
SCK  
SI  
OPCODE  
ADDRESS BITS A23-A0  
A
A
A
A
A
MSB  
A
A
A
A A  
A
A
C
MSB  
C
C
C
C
C
C
C
HIGH-IMPEDANCE  
SO  
Figure 8-33. 32 kB Block Erase Sequence Diagram  
8.4.6 64KB Block Erase (D8h)  
The 64 KB Block Erase instruction is for erasing the all data of the chosen block. A Write Enable instruction must  
previously have been executed to set the WEL bit. The 64 KB Block Erase instruction is entered by driving CS low,  
followed by the instruction code, and 3-byte address on SI. Any address inside the block is a valid address for the  
64 KB Block Erase instruction. CS must be driven low for the entire duration of the sequence.  
The 64 KB Block Erase instruction sequence: CS goes low sending 64 KB Block Erase instruction 3-byte address  
on SI CS goes high. CS must be driven high after the eighth bit of the last address byte has been latched in;  
otherwise the 64 KB Block Erase instruction is not executed. As soon as CS is driven high, the self-timed Block  
Erase cycle (whose duration is tBE) is initiated.  
While the Block Erase cycle is in progress, the Status Register may be read to check the value of the Write-in-  
Progress (WIP) bit. The WIP bit is 1 during the self-timed Block Erase cycle, and is 0 when it is completed. At some  
unspecified time before the cycle is completed, the WEL bit is reset. A 64 KB Block Erase instruction applied to a  
block which is protected by the Block Protect (BP4, BP3, BP2, BP1, BP0) bits is not executed.  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
38  
CS  
SCK  
SI  
0
1
2
3
4
5
6
7
8
9
10 11 12  
26 27 28 29 30 31  
OPCODE  
ADDRESS BITS A23-A0  
A
A
A
A
A
A
A
A
MSB  
A A  
A
A
C
MSB  
C
C
C
C
C
C
C
HIGH-IMPEDANCE  
SO  
Figure 8-34. 64 kB Block Erase Sequence Diagram  
8.4.7 Chip Erase (60/C7h)  
The Chip Erase instruction sets all memory within the device to the erased state of all 1s (FFh). A Write Enable  
instruction must be executed before the device accepts the Chip Erase Instruction (Status Register bit WEL must  
equal 1). The instruction is initiated by driving the CS pin low and shifting the instruction code C7h or 60h. The Chip  
Erase instruction sequence is shown in Figure 8-35.  
The CS pin must be driven high after the eighth bit has been latched. If this is not done the Chip Erase instruction  
is not executed. After CS is driven high, the self-timed Chip Erase instruction commences for a time of tCE. While  
the Chip Erase cycle is in progress, the Read Status Register instruction may still be accessed to check the status  
of the WIP bit.  
The WIP bit is a 1 during the Chip Erase cycle and becomes a 0 when finished and the device is ready to accept  
other Instructions again. After the Chip Erase cycle has finished the WEL bit in the Status Register is cleared to 0.  
The Chip Erase instruction is executed only if all Block Protect (BP2, BP1, and BP0) bits are 0. The Chip Erase  
instruction is ignored if one or more sectors are protected.  
CS  
0
1
2
3
4
5
6
7
SCK  
SI  
OPCODE  
C
MSB  
C
C
C
C
C
C
C
HIGH-IMPEDANCE  
SO  
Figure 8-35. Chip Erase Sequence Diagram  
8.4.8 Erase / Program Suspend (75h)  
The Erase/Program Suspend instruction allows the system to interrupt a Sector or Block Erase operation, then  
read from or program data to any other sector. The Erase/Program Suspend instruction also allows the system to  
interrupt a Page Program operation and then read from any other page or erase any other sector or block. The  
Erase/Program Suspend instruction sequence is shown in Figure 8-36.  
The Write Status Registers instruction (01h) and Erase instructions (20h, D8h, C7h, 60h, 44h) are not allowed  
during Erase Suspend. Erase Suspend is valid only during the Sector or Block erase operation. If written during the  
Chip Erase operation, the Erase Suspend instruction is ignored. The Write Status Registers instruction (01h), and  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
39  
SCKProgram instructions (02h, 42h) are not allowed during Program Suspend. Program Suspend is valid only  
during the Page Program operation.  
CS  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
SCK  
SI  
OPCODE  
tSUS  
0
1
1
1
0
1
0
1
Instruction During Supend  
MSB  
HIGH-IMPEDANCE  
SO  
Figure 8-36. Erase/Program Suspend Command Sequence  
Note: Repeated suspend/resume sequences might significantly impact progress of the erase or program  
operation. In order to ensure timely completion of the erase or program operation, it is recommended to limit the  
number of suspend/resume sequences during the same erase or program operation or, alternatively, provide  
sufficient time (up to 60 ms) after a resume operation to allow the erase or program operation to complete.  
8.4.9 Erase / Program Resume (7Ah)  
The Erase/Program Resume instruction 7Ah must be written to resume the Sector or Block Erase operation or the  
Page Program operation after an Erase/Program Suspend. The Resume instruction 7Ah is accepted by the device  
only if the SUS bit in the Status Register equals to 1 and the WIP bit equals to 0.  
After the Resume instruction is issued the SUS bit is cleared from 1 to 0 immediately, the WIP bit is set from 0 to 1  
within 200 ns and the Sector or Block completes the erase operation or the page completes the program operation.  
If the SUS bit equals to 0 or the WIP bit equals to 1, the Resume instruction 7Ah is ignored by the device. The  
Erase/Program Resume instruction sequence is shown in Figure 8-37.  
ꢁꢀ  
ꢀꢁꢂ  
ꢀꢃ  
ꢄꢑꢁꢄꢒꢓ  
0
ꢅꢀꢆ  
1
1
0
1
0
ꢜꢃꢝꢜꢙꢃꢅꢑꢓꢒꢔ ꢁꢓ  
ꢀꢄ  
Figure 8-37. Erase/Program Resume Command Sequence  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
40  
8.4.10 Read Serial Flash Discoverable Parameter (5Ah)  
The Serial Flash Discoverable Parameter (SFDP) standard provides a consistent method of describing the  
functional and feature capabilities of serial Flash devices in a standard set of internal parameter tables. These  
parameter tables can be interrogated by host system software to enable adjustments needed to accommodate  
divergent features from multiple vendors. For more detail on the SFDP parameters, please contact Adesto.  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12  
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  
SCK  
DS  
SI  
Opcode  
Address Bits A23-A0  
8 Dummy Cycles  
0
MSB  
1
0
1
1
0
1
0
A
MSB  
A
A
A
A
A
A
A
X
X
X
X
X
X
X
X
Output Data Byte 1  
D
MSB  
D
D
D
D
D
D
D
LSB  
SO  
Figure 8-38. Read Serial Flash Discoverable Parameter Command Sequence Diagram  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
41  
9.  
Electrical Characteristics  
9.1  
Absolute Maximum Ratings  
Table 9-1. Absolute Maximum Ratings  
Parameter  
Symbol  
VCC  
Conditions  
Range  
-0.5 to 4  
-0.5 to 4  
Units  
Supply Voltage  
V
V
Voltage Applied to Any Pin  
VIO  
Relative to Ground  
<20nS Transient Relative to  
Ground  
Transient Voltage on any Pin  
VIOT  
-2.0 to VCC + 2.0  
V
Storage Temperature  
TSTG  
VESD  
-65 to +150  
oC  
V
Electrostatic Discharge Voltage  
Human Body Model(1)  
-2000 to +2000  
Notes:  
1. JEDEC Std JESD22-A114 (C1 = 100 pF, R1 = 1500Ω, R2 = 500Ω)  
9.2  
Operating Ranges  
Table 9-2. Operating Range  
Parameter  
Symbol  
Conditions  
Min  
2.7  
-40  
-40  
Max  
3.6  
Unit  
Supply Voltage  
VCC  
V
Industrial  
Extended  
+85  
+105  
oC  
oC  
Operating Temperature  
TA  
9.3  
Data Retention and Endurance  
Table 9-3. Data Retention and Endurance  
Parameter  
Condition  
Max Temperature  
85 oC  
Min  
Max  
Units  
Cycles  
Cycles  
Years  
Years  
100,000  
10,000  
20  
4 KB sector, 32/64  
KB block, or full chip  
Erase/Program Cycles  
105 oC  
85 oC  
Full temperature  
range  
Data Retention  
105 oC  
10  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
42  
9.4  
Latch Up Characteristics  
Table 9-4. Latch-up Characteristics  
Parameter  
Min  
-1.0V  
Max  
Input Voltage Respect To GND on I/O Pins  
VCC Current  
VCC + 1.0V  
100 mA  
-100 mA  
9.5  
Power-up Timing  
Table 9-5. Power-up Timing  
Symbol  
Parameter  
VCC (min) To CS low  
Min  
Max  
Unit  
us  
tVSL  
300  
VCC-MAX  
Chip Selection is not allowed  
VCC-MIN  
tVSL  
Device is fully  
accessible  
TIME  
Figure 9-1. Power-up Timing and Voltage Levels  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
43  
9.6  
DC Electrical Characteristics  
Table 9-6 shows the DC electrical characteristics at 85 oC,  
Table 9-6. DC Electrical Characteristics — 85 oC  
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Units  
ILI  
Input Leakage Current  
±2  
μA  
Output Leakage  
Current  
ILO  
±2  
25  
5
μA  
μA  
μA  
ICC1  
ICC2  
Standby Current  
CS = VCC, VIN = VCC or GND  
CS = VCC, VIN = VCC or GND  
13  
2
Deep Power-Down  
Current  
SCK = 0.1VCC/0.9VCC, at 120 MHz,  
Q = Open (*1,*,2*4 I/O)  
12  
10  
15  
18  
16  
20  
5
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Operating Current:  
(Read)  
ICC3  
SCK = 0.1VCC/0.9VCC, at 80MHz,Q  
= Open (*1,*,2*4 I/O)  
Operating Current  
(Page Program)  
ICC4  
ICC5  
ICC6  
ICC7  
ICC8  
CS = VCC  
CS = VCC  
CS = VCC  
CS = VCC  
CS = VCC  
Operating Current  
(WRSR)  
Operating Current  
(Sector Erase)  
9
9
9
20  
20  
20  
Operating Current  
(Block Erase)  
Operating Current  
(Chip Erase)  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
-0.5  
0.2VCC  
VCC+0.4  
0.4  
V
V
V
V
0.8 VCC  
VOL  
VOH  
IOL = 100 μA  
IOH = -100 μA  
VCC-0.2  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
44  
Table 9-7 shows the DC electrical characteristics at 105 oC.  
Table 9-7. DC Electrical Characteristics — 105 oC  
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Units  
ILI  
Input Leakage Current  
±2  
μA  
Output Leakage  
Current  
ILO  
±2  
30  
8
μA  
μA  
μA  
ICC1  
ICC2  
Standby Current  
CS = VCC, VIN = VCC or GND  
CS = VCC, VIN = VCC or GND  
20  
5
Deep Power-Down  
Current  
SCK = 0.1VCC/0.9VCC, at 120  
MHz,Q = Open (*1,*,2*4 I/O)  
12  
10  
15  
18  
16  
20  
5
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Operating Current:  
(Read)  
ICC3  
SCK = 0.1VCC/0.9VCC, at  
80MHz,Q = Open(*1,*,2*4 I/O)  
Operating Current  
(Page Program)  
ICC4  
ICC5  
ICC6  
ICC7  
ICC8  
CS = VCC  
CS = VCC  
CS = VCC  
CS = VCC  
CS = VCC  
Operating Current  
(WRSR)  
Operating Current  
(Sector Erase)  
9
9
9
20  
20  
20  
Operating Current  
(Block Erase)  
Operating Current  
(Chip Erase)  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
-0.5  
0.2VCC  
VCC+0.4  
0.4  
V
V
V
V
0.8VCC  
VOL  
VOH  
IOL = 100 μA  
IOH = -100 μA  
VCC-0.2  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
45  
9.7  
AC Measurement Conditions  
Table 9-8. AC Measurement Conditions  
Symbol  
CL  
Parameter  
Min  
Typ  
Max  
30  
5
Unit  
pF  
ns  
V
Conditions  
Load Capacitance  
tR, tF  
VIN  
Input Rise and Fall time  
Input Pause Voltage  
0.2VCC to 0.8VCC  
0.5VCC  
IN  
Input Timing Reference Voltage  
Output Timing Reference Voltage  
V
OUT  
0.5VCC  
V
Input Timing  
Input Levels Reference Levels  
Output Timing  
Reference Levels  
0.8 VCC  
0.2 VCC  
0.5 VCC  
0.5 VCC  
Figure 9-2. AC Measurement I/O Waveform  
9.8  
AC Electrical Characteristics  
Table 9-9 shows the AC electrical characteristics at 85 oC. .  
Table 9-9. AC Electrical Characteristics — 85 oC  
Symbol  
Fc1  
Parameter  
Min  
DC  
DC  
DC  
Typ  
Max  
133  
70  
Units  
Clock frequency for Quad Output Fast Read (6Bh) on 3.0V - 3.6V  
power supply.  
MHz  
MHz  
MHz  
Fc2  
Clock frequency for Read Data (03h) on 2.7V - 3.6V power supply.  
Clock frequency except for Quad Output Fast Read (6Bh) or Read  
Data (03h) on 3.0V - 3.6V power supply.  
Fc3  
120  
Clock frequency except for Read Data (03h) on 2.7V - 3.6V power  
supply.  
Fc4  
DC  
108  
MHz  
tCLH  
tCLL  
Serial Clock High Time  
3.75  
3.75  
0.1(1)  
0.1(1)  
5
ns  
ns  
Serial Clock Low Time  
tCLCH  
tCHCL  
tSLCH  
tCHSH  
tSHCH  
tCHSL  
tSHSL  
Serial Clock Rise Time (Slew Rate)  
Serial Clock Fall Time (Slew Rate)  
CS Active Setup Time  
V/ns  
V/ns  
ns  
CS Active Hold Time  
5
ns  
CS Not Active Setup Time  
CS Not Active Hold Time  
CS High Time (read/write)  
5
ns  
5
ns  
20  
ns  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
46  
Table 9-9. AC Electrical Characteristics — 85 oC (continued)  
Parameter  
Symbol  
tSHQZ  
tCLQX  
tDVCH  
tCHDX  
tHLCH  
tHHCH  
tCHHL  
tCHHH  
tHLQZ  
tHHQX  
tCLQV  
tWHSL  
tSHWL  
tDP  
Min  
Typ  
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
Output Disable Time  
Output Hold Time  
Data In Setup Time  
Data In Hold Time  
6
0
2
2
5
5
5
5
HOLD Low Setup Time (relative to Clock)  
HOLD High Setup Time (relative to Clock)  
HOLD High Hold Time (relative to Clock)  
HOLD Low Hold Time (relative to Clock)  
HOLD Low To High-Z Output  
6
6
7
HOLD Low To Low-Z Output  
Clock Low To Output Valid  
Write Protect Setup Time Before CS Low  
Write Protect Hold Time After CS High  
CS High To Deep Power-Down Mode  
CS High To Standby Mode Without Electronic Signature Read  
CS High To Standby Mode With Electronic Signature Read  
CS High To Next Instruction After Suspend  
CS High To Next Instruction After Reset (from read)  
CS High To Next Instruction After Reset (from program)  
CS High To Next Instruction After Reset (from erase)  
Write Status Register Cycle Time  
20  
100  
20  
20  
tRES1  
tRES2  
tSUS  
20  
20  
tRST_R  
tRST_P  
tRST_E  
tW  
20  
20  
12  
5
30  
ms  
µs  
tBP1  
Byte Program Time (First Byte)  
30  
2.5  
0.6  
70  
50(2)  
12(2)  
2.4  
300  
tBP2  
Additional Byte Program Time (After First Byte)  
Page Programming Time  
µs  
tPP  
ms  
ms  
tSE  
Sector Erase Time  
0.15/  
0.25  
tBE  
tCE  
Block Erase Time (32K Bytes/64K Bytes)  
Chip Erase Time  
1.6/2.0  
120  
sec  
sec  
30  
Notes:  
1. Tested with clock frequency lower than 50 MHz.  
2. For multiple bytes after first byte within a page, tBPn = tBP1 + tBP2 * N, where N is the number of bytes  
programmed.  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
47  
Table 9-10 shows the AC electrical characteristics at 105 oC.  
Table 9-10. AC Electrical Characteristics — 105 oC  
Symbol  
Fc1  
Parameter  
Min  
DC  
DC  
DC  
Typ  
Max  
120  
70  
Units  
MHz  
MHz  
Mhz  
Clock frequency for Quad Output Fast Read (6Bh) on 3.0V - 3.6V  
power supply.  
Fc2  
Clock frequency for Read Data (03h) on 2.7V - 3.6V power supply.  
Clock frequency except for Quad Output Fast Read (6Bh) or Read  
Data (03h) on 3.0V - 3.6V power supply.  
Fc3  
120  
Clock frequency except for Read Data (03h) on 2.7V - 3.6V power  
supply.  
Fc4  
DC  
108  
MHz  
tCLH  
tCLL  
Serial Clock High Time  
4
4
ns  
ns  
V/ns  
V/ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
Serial Clock Low Time  
tCLCH  
tCHCL  
tSLCH  
tCHSH  
tSHCH  
tCHSL  
tSHSL  
tSHQZ  
tCLQX  
tDVCH  
tCHDX  
tHLCH  
tHHCH  
tCHHL  
tCHHH  
tHLQZ  
tHHQX  
tCLQV  
tWHSL  
tSHWL  
tDP  
Serial Clock Rise Time (Slew Rate)  
Serial Clock Fall Time (Slew Rate)  
CS Active Setup Time  
0.1(1)  
0.1(1)  
5
CS Active Hold Time  
5
CS Not Active Setup Time  
5
CS Not Active Hold Time  
5
CS High Time (read/write)  
20  
Output Disable Time  
6
Output Hold Time  
0
2
2
5
5
5
5
Data In Setup Time  
Data In Hold Time  
HOLD Low Setup Time (relative to Clock)  
HOLD High Setup Time (relative to Clock)  
HOLD High Hold Time (relative to Clock)  
HOLD Low Hold Time (relative to Clock)  
HOLD Low To High-Z Output  
6
6
7
HOLD Low To Low-Z Output  
Clock Low To Output Valid  
Write Protect Setup Time Before CS Low  
Write Protect Hold Time After CS High  
CS High To Deep Power-Down Mode  
CS High To Standby Mode Without Electronic Signature Read  
CS High To Standby Mode With Electronic Signature Read  
CS High To Next Instruction After Suspend  
20  
100  
20  
20  
20  
20  
tRES1  
tRES2  
tSUS  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
48  
Table 9-10. AC Electrical Characteristics — 105 oC (continued)  
Symbol  
tRST_R  
tRST_P  
tRST_E  
tW  
Parameter  
CS High To Next Instruction After Reset (from read)  
CS High To Next Instruction After Reset (from program)  
CS High To Next Instruction After Reset (from erase)  
Write Status Register Cycle Time  
Min  
Typ  
Max  
20  
Units  
20  
12  
5
30  
ms  
µs  
tBP1  
Byte Program Time (First Byte)  
30  
2.5  
0.6  
70  
50(2)  
12(2)  
2.4  
300  
tBP2  
Additional Byte Program Time (After First Byte)  
Page Programming Time  
µs  
tPP  
ms  
ms  
tSE  
Sector Erase Time  
0.15/  
0.25  
tBE  
tCE  
Block Erase Time (32K Bytes/64K Bytes)  
Chip Erase Time  
1.6/2.0  
120  
sec  
sec  
60  
Notes:  
1. Tested with clock frequency lower than 50 MHz.  
2. For multiple bytes after first byte within a page, tBPn = tBP1 + tBP2 * N, where N is the number of bytes  
programmed.  
tSHSL  
CS  
tSHCH  
tCHSL  
tCHSH  
tSLCH  
SCK  
SI  
tCHCL  
tDVCH  
tCLCH  
tCHDX  
MSB  
LSB  
High_Z  
SO  
Figure 9-3. Serial Input Timing  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
49  
CS  
SCK  
SO  
tSHQZ  
tCH  
tCL  
tCLQV  
tCLQX  
tCLQV  
tQLQH  
tQHQL  
LSB  
tCLQX  
SI  
Figure 9-4. Output Timing  
CS  
SCK  
tHLCH  
tCHHL  
tHHCH  
tCHHH  
tHLQZ  
tHHQX  
SO  
HOLD  
Figure 9-5. HOLD Timing  
CS  
tSHWL  
tWHSL  
WP  
CLK  
IO  
Input  
Write Status Register is Allowed  
Write Status Register is not Allowed  
Figure 9-6. WP Timing  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
50  
10. Ordering Information  
AT 25QF 128 A - S H B HD - T  
Shipping Carrier  
T = Tape and Reel  
Designator  
Extended Temperature  
(not marked on the package)  
HD = -40 oC to 105 oC  
Product Family  
Operating Voltage  
B = 2.7V - 3.6V  
Device Density  
128 = 128 Mbit  
Device Grade  
H = Green NiPdAu lead frame  
Generation  
U = Green, matte Sn or Sn alloy  
Package Options  
S = 8-lead, SOP 208 mil  
M = 8-pad 5 x 6 UDFN  
Operating  
Voltage  
Maximum  
Ordering Code  
AT25QF128A-SHB-T  
AT25QF128A-MHB-T  
AT25QF128A-SHBHD-T  
Package Type  
8S2  
Lead Finish  
Frequency  
133 MHz (1)  
108 MHz  
Operating Range  
-40 oC to 85 oC  
-40 oC to 105 oC  
8MA1  
NiPdAu  
2.7 - 3.6V  
8S2  
1. Only for Quad Output Fast Read (6Bh) command with 3.0V - 3.6V power supply.  
Package Type  
8-lead, 0.208" Wide, Plastic Gull Wing Small Outline Package (EIAJ SOIC)  
8S2  
8MA1  
8-pad (5 x 6 x 0.6 mm body), Thermally Enhanced Plastic Ultra-Thin Dual Flat No-lead (UDFN)  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
51  
11. Package Information  
11.1 Package 8-Pin SOP 208-mil  
C
1
E
E1  
L
N
T
TOP VIEW  
END VIEW  
e
b
COMMON DIMENSIONS  
(Unit of Measure = mm)  
A
MIN  
1.70  
0.05  
0.35  
0.15  
5.13  
5.18  
7.70  
0.51  
0°  
MAX  
2.16  
0.25  
0.48  
0.35  
5.35  
5.40  
8.26  
0.85  
8°  
NOM  
NOTE  
SYMBOL  
A1  
A
A1  
b
4
4
C
D
E1  
E
D
2
L
SIDE VIEW  
T
e
1.27 BSC  
3
Notes: 1. This drawing is for general information only; refer to EIAJ Drawing EDR-7320 for additional information.  
2. Mismatch of the upper and lower dies and resin burrs aren't included.  
3. Determines the true geometric position.  
4. Values b,C apply to plated terminal. The standard thickness of the plating layer shall measure between 0.007 to .021 mm.  
4/15/08  
DRAWING NO.  
REV.  
GPC  
TITLE  
8S2, 8-lead, 0.208” Body, Plastic Small  
Outline Package (EIAJ)  
Package Drawing Contact:  
contact@adestotech.com  
STN  
8S2  
F
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
52  
11.2 Package 8 UDFN  
E
C
Pin 1 ID  
SIDE VIEW  
D
y
TOP VIEW  
E2  
A1  
A
K
8
Option A  
0.45  
Pin #1  
1
2
3
Pin #1 Notch  
(0.20 R)  
(Option B)  
Chamfer  
(C 0.35)  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
NOM  
NOTE  
SYMBOL  
7
D2  
6
A
0.45  
0.55  
0.60  
e
A1  
b
0.00  
0.35  
0.02  
0.40  
0.152 REF  
5.00  
4.00  
6.00  
3.40  
1.27  
0.60  
0.05  
0.48  
C
D
D2  
E
4.90  
3.80  
5.90  
3.20  
5.10  
4.20  
6.10  
3.60  
5
4
b
BOTTOM VIEW  
L
E2  
e
L
0.50  
0.00  
0.20  
0.75  
0.08  
y
K
4/15/08  
REV.  
GPC  
YFG  
DRAWING NO.  
8MA1  
TITLE  
Package Drawing Contact:  
contact@adestotech.com  
8MA1, 8-pad (5 x 6 x 0.6 mm Body), Thermally  
Enhanced Plastic Ultra Thin Dual Flat No Lead  
Package (UDFN)  
D
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
53  
12. Revision History  
Table 12-1. Document Revision History  
Revision  
Date  
Change Description  
A
03/2019  
Initial release.  
Removed SFDP tables and updated Section 8.4.10, Read SFDP (5Ah).  
Updated text in Section 8.4.10, Read SFDP.  
Updated document to new Adesto template.  
Updated Section 3.7, HOLD.  
Updated definition of SRP[1:0] bits in Section 6.4.2.4.  
Reformatted tables in Section 6.4.1, Status registers.  
Updated Table 6-2, Status register protections.  
Added note to end of Section 8.4.8, Erase/Program Suspend (75h)  
Changed ICC6, ICC7, and ICC8 maximum values in Tables 9-6 and 9-7  
from 15 mA to 20 mA.  
B
11/2019  
Clarified use of decoupling capacitors in Section 6.1.1.  
C
D
02/2020  
06/2020  
Changed status from PRELIMINARY DATASHEET to DATASHEET.  
Exchanged 35 figures with new ones to conform to Adesto standard (no  
change in content): 6-1, 8-1, 8-5, 8-11 through 8-38, 9-2 through 9-6.  
Added reference to figure 8-24 in preceding text. Replaced instances of  
Status Register Byte with Status Register. Replaced 8S4 reference and  
drawing with 8S2.  
AT25QF128A  
DS-AT25QF128A–176D–06-2020  
54  
Corporate Office  
California | USA  
Adesto Headquarters  
3600 Peterson Way  
Santa Clara, CA 95054  
Phone: (+1) 408.400.0578  
Email: contact@adestotech.com  
Copyright © 2020 Adesto Technologies Corporation. All rights reserved. DS-AT25QF128A–176D–06-2020  
Adesto, the Adesto logo, CBRAM and DataFlash are trademarks or registered trademarks of Adesto Technologies Corporation in the United States and other countries. Other company, product, and service  
names may be trademarks or service marks of others. Adesto products are covered by one or more patents listed at http://www.adestotech.com/patents.  
Disclaimer: Adesto Technologies Corporation (“Adesto”) makes no warranties of any kind, other than those expressly set forth in Adesto’s Terms and Conditions of Sale at  
http://www.adestotech.com/terms-conditions. Adesto assumes no responsibility or obligations for any errors which may appear in this document, reserves the right to change devices or specifications  
herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Adesto are granted by Adesto  
herewith or in connection with the sale of Adesto products, expressly or by implication. Adesto’s products are not authorized for use in medical applications (including, but not limited to, life support systems  
and other medical equipment), weapons, military use, avionics, satellites, nuclear applications, or other high risk applications (e.g., applications that, if they fail, can be reasonably expected to result in  
personal injury or death) or automotive applications, without the express prior written consent of Adesto.  

相关型号:

AT25QF128A-SHBHD-T

128 Mbit Serial NOR Flash Memory with Dual and Quad I/O Support
DIALOG

AT25QF641

64-Mbit, 2.7V Minimum SPI Serial Flash Memory with Dual I/O, Quad I/O and QPI Support
DIALOG

AT25QF641-DWF

64-Mbit, 2.7V Minimum SPI Serial Flash Memory with Dual I/O, Quad I/O and QPI Support
DIALOG

AT25QF641-SUB-T

64-Mbit, 2.7V Minimum SPI Serial Flash Memory with Dual I/O, Quad I/O and QPI Support
DIALOG

AT25QL321

32-Mbit, 1.7V Minimum SPI Serial Flash Memory with Dual I/O, Quad I/O and QPI Support
DIALOG

AT25QL321-CCUE-T

32-Mbit, 1.7V Minimum SPI Serial Flash Memory with Dual I/O, Quad I/O and QPI Support
DIALOG

AT25QL321-DWF

32-Mbit, 1.7V Minimum SPI Serial Flash Memory with Dual I/O, Quad I/O and QPI Support
DIALOG

AT25QL321-MBUE-T

32-Mbit, 1.7V Minimum SPI Serial Flash Memory with Dual I/O, Quad I/O and QPI Support
DIALOG

AT25QL321-MHE-T

32-Mbit, 1.7V Minimum SPI Serial Flash Memory with Dual I/O, Quad I/O and QPI Support
DIALOG

AT25QL321-SUE-T

32-Mbit, 1.7V Minimum SPI Serial Flash Memory with Dual I/O, Quad I/O and QPI Support
DIALOG

AT25QL321-UAUE-T

32-Mbit, 1.7V Minimum SPI Serial Flash Memory with Dual I/O, Quad I/O and QPI Support
DIALOG

AT25QL321-UUE-T

32-Mbit, 1.7V Minimum SPI Serial Flash Memory with Dual I/O, Quad I/O and QPI Support
DIALOG