AT25SL321-MHE-T [DIALOG]

32-Mbit, 1.7 V Minimum SPI Serial Flash Memory with Dual I/O, Quad I/O and QPI Support;
AT25SL321-MHE-T
型号: AT25SL321-MHE-T
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

32-Mbit, 1.7 V Minimum SPI Serial Flash Memory with Dual I/O, Quad I/O and QPI Support

文件: 总82页 (文件大小:5837K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Following the acquision of Adesto Technologies, Dialog Semiconductor offers memory products as part of its  
product porolio. The exis�ng content from datasheets, including part numbers and codes should be used. Terms of  
Purchase are provided on the Dialog website  
https://www.dialog-semiconductor.com/general-terms-and-conditions-purchase  
View our Dialog memory products porolio:  
www.dialog-semiconductor.com/products/memory  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Hong Kong  
Dialog Semiconductor Hong Kong  
Phone: +852 2607 4271  
China (Shenzhen)  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Korea  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5769 5100  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
The Netherlands  
Taiwan  
#
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
DATASHEET  
AT25SL321  
32-Mbit, 1.7 V Minimum SPI Serial Flash Memory  
with Dual I/O, Quad I/O and QPI Support  
Features  
Single 1.7 V - 2.0 V Supply  
Serial Peripheral Interface (SPI) and Quad Peripheral Interface (QPI) Compatible  
-
-
-
-
-
-
Supports SPI Modes 0 and 3  
Supports Dual Output Read and Quad I/O Program and Read  
Supports QPI Program and Read  
104 MHz Maximum Operating Frequency  
Clock-to-Output (tV1) of 6 ns  
Up tp 65 Mbytes/s continuous data transfer rate  
Full Chip Erase  
Flexible, Optimized Erase Architecture for Code and Data Storage Applications  
-
-
-
-
0.6 ms Typical Page Program (256 bytes) Time  
60 ms Typical 4 kbyte Block Erase Time  
200 ms Typical 32 kbyte Block Erase Time  
300 ms Typical 64 kbyte Block Erase Time  
Hardware Controlled Locking of Protected Blocks via WP Pin  
4 kbit secured One-Time Programmable Security Register  
Hardware Write Protection  
Serial Flash Discoverable Parameters (SFDP) Register  
Flexible Programming  
-
-
-
Byte/Page Program (1 to 256 bytes)  
Dual or Quad Input Byte/Page Program (1 to 256 bytes)  
Accelerated programming mode via 9V ACC pin  
Erase/Program Suspend and Resume  
JEDEC Standard Manufacturer and Device ID Read Methodology  
Low Power Dissipation  
-
-
-
2 µA Deep Power-Down Current (Typical)  
10 µA Standby current (Typical)  
5 mA Active Read Current (Typical)  
Endurance: 100,000 program/erase cycles (4, 32, or 64 kbyte blocks)  
Data Retention: 20 Years  
Industrial Temperature Range: -40 °C to +85 °C  
Industry Standard Green (Pb/Halide-free/RoHS Compliant) Package Options  
-
-
-
-
-
8S4, 8-lead SOIC (208-mil)  
8MA1, 8-pad UDFN (6 x 5 x 0.6 mm)  
8MA2, 8-pad USON(3 x 4 x 0.55 mm)  
8S1, 8-lead SOIC (150 mil)  
8-ball WLCSP, die Ball Grid Array (dBGA)  
DS-25SL321–112H–10/2020  
Table of Contents  
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Pinouts and Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
3. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
4. Memory Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
5. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
5.1 Standard SPI Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
5.2 Dual SPI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
5.3 Quad SPI Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
5.4 QPI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6. Write Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
6.1 Write Protect Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
7. Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
7.1 Busy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
7.2 Write Enable Latch (WEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
7.3 Status Register Protect (SRP1, SRP0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
7.4 Quad Enable (QE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
7.5 Erase/Program Suspend Status (SUS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
8. Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
8.1 Instruction Set Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
8.2 Write Enable (06h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
8.3 Write Enable for Volatile Status Register (50h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
8.4 Write Disable (04h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
8.5 Read Status Register-1 (05h) and Read Status Register-2 (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
8.6 Write Status Register (01h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
8.7 Write Status Register-2 (31h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8.8 Read Data (03h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8.9 Fast Read (0Bh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8.10 Fast Read in QPI Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
8.11 Fast Read Dual Output (3Bh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
8.12 Fast Read Quad Output (6Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8.13 Fast Read Dual I/O (BBh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8.14 Fast Read Quad I/O (EBh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
8.15 Page Program (02h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
8.16 Quad Page Program (33h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
8.17 Block Erase (20h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
8.18 32 kB Block Erase (52h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
8.19 64 kB Block Erase (D8h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
8.20 Chip Erase (C7h / 60h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
8.21 Erase / Program Suspend (75h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
8.22 Erase / Program Resume (7Ah). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
8.23 Deep Power Down (B9h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
8.24 Release Deep Power Down / Device ID (ABh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
AT25SL321  
DS-AT25SL321–112H–10-2020  
2
Table of Contents  
8.25 Read Manufacturer / Device ID (90h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
8.26 Read Manufacturer / Device ID (92h) — Dual I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
8.27 Read Manufacturer / Device ID Quad I/O (94h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
8.28 JEDEC ID (9Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
8.29 Enable QPI (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
8.30 Disable QPI (FFh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
8.31 Word Read Quad I/O (E7h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
8.32 Set Burst with Wrap (77h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
8.33 Burst Read with Wrap (0Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
8.34 Set Read Parameters (C0h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
8.35 Enable Reset (66h) and Reset (99h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
8.36 Read Serial Flash Discovery Parameter (5Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
8.37 Enter Secured OTP (B1h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
8.38 Exit Secured OTP (C1h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
8.39 Read Security Register (2Bh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
8.40 Write Security Register (2Fh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
8.41 4 kbit Secured OTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
9. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
9.1 Absolute Maximum Ratings(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
9.2 Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
9.3 Endurance and Data Retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
9.4 Power-up Timing and Write Inhibit Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
9.5 Program Acceleration via ACC Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
9.6 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
9.7 AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
9.8 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
9.9 Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
9.10 Output Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
9.11 Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
10. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
10.1 Ordering Code Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
11. Packaging Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
11.1 8S4 – 8-lead, 208 mil EIAJ SOIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
11.2 8MA1 – UDFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
11.3 8MA2 – USON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
11.4 8-WLCSP — Die Ball Grid Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
11.5 8S1 - 8-Lead 150-mil JEDEC SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
12. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
AT25SL321  
DS-AT25SL321–112H–10-2020  
3
1.  
Introduction  
The Adesto® AT25SL321 is a serial interface Flash memory device designed for use in a wide variety of high-  
volume consumer based applications in which program code is shadowed from Flash memory into embedded or  
external RAM for execution. The flexible erase architecture of the AT25SL321 is ideal for data storage as well,  
eliminating the need for additional data storage devices.  
The erase block sizes of the AT25SL321 have been optimized to meet the needs of today's code and data storage  
applications. By optimizing the size of the erase blocks, the memory space can be used much more efficiently.  
Because certain code modules and data storage segments must reside by themselves in their own erase regions,  
the wasted and unused memory space that occurs with large block erase Flash memory devices can be greatly  
reduced. This increased memory space efficiency allows additional code routines and data storage segments to be  
added while still maintaining the same overall device density.  
SPI clock frequencies of up to 104 MHz* are supported, allowing equivalent clock rates of 266 MHz for Dual Output  
and 532 MHz for Quad Output when using the QPI and Fast Read Dual/Quad I/O instructions.The AT25SL321  
array is organized into 65,536 programmable pages of 256 bytes each. Up to 256 bytes can be programmed at a  
time using the Page Program instructions. Pages can be erased 4 kB Block, 32 kB Block, 64 kB Block or the entire  
chip.  
The devices operate on a single 1.7V to 1.95V power supply with current consumption as low as 5 mA active and  
2 µA for Deep Power Down. All devices offered in space-saving packages. The device supports JEDEC standard  
manufacturer and device identification with a 4-kbit Secured OTP.  
*Contact Adesto for availability of 133 MHz operating frequency.  
AT25SL321  
DS-25SL321–112H–2020-10  
4
2.  
Pinouts and Pin Descriptions  
The following figures show the available package types.  
Wide and Narrrow 8-SOIC (Top View)  
8-UDFN (Top View)  
CS  
SO (IO1)  
WP (IO2)  
GND  
1
2
3
4
8
7
6
5
VCC  
HOLD OR RESET  
SCK  
1
2
3
4
8
7
6
5
CS  
SO (IO1)  
WP (IO2, ACC)  
GND  
VCC  
HOLD (IO3)  
SCK  
SI (IO0)  
SI (IO0)  
8-WLCSP (Bottom View)  
8-pad USON (Bottom View)  
CS  
Vcc  
GND  
SI (IO0)  
I/O1(SO) I/O3(HOLD)  
WP (IO2)  
SO (IO1)  
CS  
SCK  
I/O2(WP)  
GND  
SCK  
HOLD (IO3)  
I/O0(SI)  
VCC  
*Final package outline drawing to be confirmed.  
Figure 2-1. Package Types  
During all operations, VCC must be held stable and within the specified valid range: VCC (min) to VCC (max).  
All of the input and output signals must be held high or low (according to voltages of VIH, VOH, VIL or VOL.  
AT25SL321  
DS-25SL321–112H–2020-10  
5
Table 2-1. Pin Descriptions  
Asserted  
State  
Symbol  
Name and Function  
CHIP SELECT  
Type  
When this input signal is high, the device is deselected and serial data output pins are at  
high impedance. Unless an internal program, erase or write status register cycle is in  
progress, the device needs to be in the standby power mode (this is not the deep power  
down mode). Driving Chip Select (CS) low enables the device, placing it in the active power  
mode. After power-up, a falling edge on Chip Select (CS) is required prior to the start of any  
instruction.  
CS  
Low  
Input  
SERIAL CLOCK  
This input signal provides the timing for the serial interface. Instructions, addresses, or data  
present at serial data input are latched on the rising edge of Serial Clock (SCK). Data are  
shifted out on the falling edge of the Serial Clock (SCK).  
SCK  
-
Input  
SERIAL INPUT  
The SI pin is used to shift data into the device. The SI pin is used for all data input including  
command and address sequences. Data on the SI pin is always latched in on the rising edge  
of SCK.  
With the Dual-Output and Quad-Output Read commands, the SI Pin becomes an output pin  
(I/O0) in conjunction with other pins to allow two or four bits of data on (I/O3-0) to be clocked  
in on every falling edge of SCK  
SI (I/O0)  
-
Input/Output  
To maintain consistency with the SPI nomenclature, the SI (I/O0) pin is referenced as the SI  
pin unless specifically addressing the Dual-I/O and Quad-I/O modes in which case it is  
referenced as I/O0.  
Data present on the SI pin is ignored whenever the device is deselected (CS is deasserted).  
SERIAL OUTPUT  
The SO pin is used to shift data out from the device. Data on the SO pin is always clocked  
out on the falling edge of SCK.  
With the Dual-Output Read commands, the SO Pin remains an output pin (I/O0) in  
conjunction with other pins to allow two bits of data on (I/O1-0) to be clocked in on every  
falling edge of SCK  
SO (I/O1)  
-
Input/Output  
To maintain consistency with the SPI nomenclature, the SO (I/O1) pin is referenced as the  
SO pin unless specifically addressing the Dual-I/O modes in which case it is referenced as  
I/O1. The SO pin is in a high-impedance state whenever the device is deselected (CS is  
deasserted).  
WRITE PROTECT  
The Write Protect (WP) pin can be used to protect the Status Register against data  
modification. The WP pin is active low. When the QE bit of Status Register-2 is set for Quad  
I/O, the WP pin (Hardware Write Protect) function is not available since this pin is used for  
IO2. See figures 1-1, 1-2, and 1-3 for the pin configuration of Quad I/O and QPI operation.  
WP  
(I/O2)  
-
Input/Output  
ACCELERATED PROGRAMMING  
The device offers accelerated program operations through the ACC function. This function is  
primarily intended to allow faster manufacturing throughput at the factory.  
If the system asserts VHH on this pin, the device uses the higher voltage on the pin to reduce  
the time required for program operations. Removing VHH from the ACC pin returns the  
device to normal operation.  
ACC  
Note that the ACC pin must not be at VHH for operations other than accelerated  
programming, or device damage result. In addition, the ACC pin must not be left floating or  
unconnected; inconsistent behavior of the device result. The ACC function is only available  
during standard SPI Mode.  
AT25SL321  
DS-25SL321–112H–2020-10  
6
Table 2-1. Pin Descriptions (continued)  
Asserted  
State  
Symbol  
Name and Function  
Type  
HOLD  
The HOLD pin is used to pause a serial sequence of the SPI flash memory without resetting  
the clocking sequence. To enable the HOLD mode, the CS must be in low state. The HOLD  
mode effects on with the falling edge of the HOLD signal with CLK being low. The HOLD  
mode ends on the rising edge of HOLD signal with SCK being low.  
HOLD  
(I/O3)  
In other words, HOLD mode can't be entered unless SCK is low at the falling edge of the  
HOLD signal. And HOLD mode can't be exited unless SCK is low at the rising edge of the  
HOLD signal.  
-
Input/Output  
If CS is driven high during a HOLD condition, it resets the internal logic of the device. As long  
as HOLD signal is low, the memory remains in the HOLD condition. To re-work  
communication with the device, HOLD must go high, and CS must go low. See Figure 9.11  
for HOLD timing.  
DEVICE POWER SUPPLY: VCC is the supply voltage. It is the single voltage used for all  
device functions including read, program, and erase. The VCC pin is used to supply the  
source voltage to the device. Operations at invalid VCC voltages produce spurious results; do  
not attempt them.  
VCC  
-
-
Power  
Power  
GROUND: VSS is the reference for the VCC supply voltage. The ground reference for the  
power supply. Connect GND to the system ground.  
GND  
AT25SL321  
DS-25SL321–112H–2020-10  
7
3.  
Block Diagram  
Figure 3-1 shows a block diagram of the AT25SL321 serial Flash.  
Control and  
Protection Logic  
I/O Buffers  
and Latches  
CS  
SRAM  
Data Buffer  
SCK  
Interface  
Control  
SI (I/O )  
0
And  
Logic  
Y-Decoder  
X-Decoder  
Y-Gating  
SO (I/O )  
1
Flash  
Memory  
Array  
WP (I/O )  
2
HOLD  
(I/O )  
3
Note: I/O  
3-0  
pin naming convention is used for Dual-I/O and Quad-I/O commands.  
Figure 3-1. AT25SL321 Block Diagram  
AT25SL321  
DS-25SL321–112H–2020-10  
8
4.  
Memory Array  
To provide the greatest flexibility, the memory array of the AT25SL321 can be erased in four levels of granularity  
including a full chip erase. The size of the erase blocks is optimized for both code and data storage applications,  
allowing both code and data segments to reside in their own erase regions. The Memory Architecture Diagram  
illustrates the breakdown of each erase level.  
Block Erase Detail  
Page Program Detail  
64KB  
32KB  
4KB  
1-256 Byte  
Block Address  
Range  
Page Address  
Range  
3FFFFFh – 3FF000h  
3FEFFFh – 3FE000h  
3FDFFFh – 3FD000h  
3FCFFFh – 3FC000h  
3FBFFFh – 3FB000h  
3FAFFFh – 3FA000h  
3F9FFFh – 3F9000h  
3F8FFFh – 3F8000h  
3F7FFFh – 3F7000h  
3F6FFFh – 3F6000h  
3F5FFFh – 3F5000h  
3F4FFFh – 3F4000h  
3F3FFFh – 3F3000h  
3F2FFFh – 3F2000h  
3F1FFFh – 3F1000h  
3F0FFFh – 3F0000h  
3EFFFFh – 3EF000h  
3EEFFFh – 3EE000h  
3EDFFFh – 3ED000h  
3ECFFFh – 3EC000h  
3EBFFFh – 3EB000h  
3EAFFFh – 3EA000h  
3E9FFFh – 3E9000h  
3E8FFFh – 3E8000h  
3E7FFFh – 3E7000h  
3E6FFFh – 3E6000h  
3E5FFFh – 3E5000h  
3E4FFFh – 3E4000h  
3E3FFFh – 3E3000h  
3E2FFFh – 3E2000h  
3E1FFFh – 3E1000h  
3E0FFFh – 3E0000h  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
3FFFFFh – 3FFF00h  
3FFEFFh – 3FFE00h  
3FFDFFh – 3FFD00h  
3FFCFFh – 3FFC00h  
3FFBFFh – 3FFB00h  
3FFAFFh – 3FFA00h  
3FF9FFh – 3FF900h  
3FF8FFh – 3FF800h  
3FF7FFh – 3FF700h  
3FF6FFh – 3FF600h  
3FF5FFh – 3FF500h  
3FF4FFh – 3FF400h  
3FF3FFh – 3FF300h  
3FF2FFh – 3FF200h  
3FF1FFh – 3FF100h  
3FF0FFh – 3FF000h  
3FEFFFh – 3FEF00h  
3FEEFFh – 3FEE00h  
3FEDFFh – 3FED00h  
3FECFFh – 3FEC00h  
3FEBFFh – 3FEB00h  
3FEAFFh – 3FEA00h  
3FE9FFh – 3FE900h  
3FE8FFh – 3FE800h  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
32KB  
32KB  
32KB  
32KB  
64KB  
Sector 63  
64KB  
Sector 62  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
256 Bytes  
0017FFh – 001700h  
0016FFh – 001600h  
0015FFh – 001500h  
0014FFh – 001400h  
0013FFh – 001300h  
0013FFh – 001300h  
0013FFh – 001300h  
0012FFh – 001200h  
0011FFh – 001100h  
0010FFh – 001000h  
000FFFh – 000F00h  
000CFFh – 000C00h  
000BFFh – 000B00h  
000AFFh – 000A00h  
0009FFh – 000900h  
0008FFh – 000800h  
0007FFh – 000700h  
0006FFh – 000600h  
0005FFh – 000500h  
0004FFh – 000400h  
0003FFh – 000300h  
0002FFh – 000200h  
0001FFh – 000100h  
0000FFh – 000000h  
00FFFFh–00F000h  
00EFFFh–00E000h  
00DFFFh–00D000h  
00CFFFh–00C000h  
00BFFFh–00B000h  
00AFFFh–00A000h  
009FFFh–009000h  
008FFFh–008000h  
007FFFh–007000h  
006FFFh–006000h  
005FFFh–005000h  
004FFFh–004000h  
003FFFh–003000h  
002FFFh–002000h  
001FFFh–001000h  
000FFFh–000000h  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
32KB  
32KB  
64KB  
Sector 0  
Figure 4-1. Memory Architecture Diagram  
AT25SL321  
DS-25SL321–112H–2020-10  
9
5.  
Device Operation  
5.1  
Standard SPI Operation  
The AT25SL321 features a serial peripheral interface on four signals: Serial Clock (SCK). Chip Select (CS),  
Serial Data Input (SI) and Serial Data Output (SO). Standard SPI instructions use the SI input pin to serially write  
instructions, addresses or data to the device on the rising edge of SCK. The SO output pin is used to read data or  
status from the device on the falling edge of SCK.  
SPI bus operation Modes 0 (0, 0) and 3 (1, 1) are supported. The primary difference between Mode 0 and  
Mode 3 concerns the normal state of the SCK signal when the SPI bus master is in standby and data is not  
being transferred to the Serial Flash. For Mode 0 the SCK signal is normally low on the falling and rising  
edges of CS. For Mode 3 the SCK signal is normally high on the falling and rising edges of CS.  
5.2  
5.3  
Dual SPI Operation  
The AT25SL321 supports Dual SPI operation. This instruction allows data to be transferred to or from the device  
at two times the rate of the standard SPI. The Dual Read instruction is ideal for quickly downloading code to RAM  
upon power-up (code-shadowing) or for executing non-speed- critical code directly from the SPI bus (XIP). When  
using Dual SPI instructions the SI and SO pins become bidirectional I/0 pins; IO0 and IO1.  
Quad SPI Operation  
The AT25SL321 supports Quad SPI operation. This instruction allows data to be transferred to or from the  
device at four times the rate of the standard SPI. The Quad Read instruction offers a significant improvement  
in continuous and random access transfer rates allowing fast code- shadowing to RAM or execution directly from  
the SPI bus (XIP). When using Quad SPI instruction the SI and SO pins become bidirectional IO0 and IO1, and the  
WP and HOLD pins become IO2 and IO3 respectively. Quad SPI instructions require the non-volatile Quad Enable  
bit (QE) in Status Register-2 to be set.  
5.4  
QPI Operation  
The AT25SL321 supports Quad Peripheral Interface (QPI) operation when the device is switched from  
Standard/Dual/ Quad SPI mode to QPI mode. To switch to QPI mode, the following two events must occur in  
order:  
1. Set the non-volatile Quad Enable bit (QE) in Status Register-2.  
2. Execute the Enable QPI (38h) instruction.  
When using QPI instructions, the SI and SO pins become bidirectional IO0 and IO1, and the WP and HOLD pins  
become IO2 and IO3 respectively.  
The typical SPI protocol requires that the byte-long instruction code being shifted into the device only via SI pin in  
eight serial clocks. The QPI mode utilizes all four IO pins to input the instruction code, thus only two serial clocks  
are required. This can significantly reduce the SPI instruction overhead and improve system performance in an  
XIP environment. Standard/ Dual/ Quad SPI mode and QPI mode are exclusive. Only one mode can be active at  
any given time, The Enable QPI (38h) and Disable QPI (FFh) instructions are used to switch between these two  
modes. Upon power-up or after software reset using the Reset (99h) instruction, the default state of the device is  
Standard/Dual/Quad SPI mode.  
AT25SL321  
DS-25SL321–112H–2020-10  
10  
6.  
Write Protection  
To protect inadvertent writes by the possible noise, several means of protection are applied to the Flash memory.  
6.1  
Write Protect Features  
• While Power-on reset, all operations are disabled and no instruction is recognized.  
• An internal time delay of tPUW can protect the data against inadvertent changes while the power supply is  
outside the operating specification. This includes the Write Enable, Page program, Block Erase, Chip Erase, Write  
Security Register and the Write Status Register instructions.  
• For data changes, Write Enable instruction must be issued to set the Write Enable Latch (WEL) bit to “0”.  
Power-up, Completion of Write Disable, Write Status Register, Page program, Block Erase and Chip Erase are  
subjected to this condition.  
• Write Protect (WP) pin can control to change the Status Register under hardware control.  
• The Deep Power Down mode provides extra protection from unexpected data changes as all instructions are  
ignored under this status except for Release Deep Power Down instruction.  
AT25SL321  
DS-25SL321–112H–2020-10  
11  
7.  
Status Register  
The Read Status Register instruction can be used to provide status on the availability of the Flash memory array, if  
the device is write enabled or disabled the state of write protection and the Quad SPI setting. The Write Status  
Register instruction can be used to configure the devices writes protection features and Quad SPI setting. Write  
access to the Status Register is controlled by in some cases of the WP pin.  
Table 7-1. Status Register-1  
S7  
S6  
S5  
S4  
S3  
S2  
S1  
S0  
SRP  
(R)  
(R)  
(R)  
(R)  
(R)0  
WEL  
BUSY  
Status Register  
Protect 0 (Non-  
Volatile)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Write  
Enable  
Latch  
Erase or  
Write in  
Progress  
Table 7-2. Status Register-2  
S15  
S14  
(R)  
S13  
S12  
S11  
(R)  
S10  
(R)  
S9  
S8  
SUS  
(R)  
(R)  
QE  
SRP1  
Status Register  
Protect 1 (Non-  
Volatile)  
Suspend  
Status  
Quad Enable  
(Non- Volatile)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
7.1  
Busy  
BUSY is a read-only bit in the Status register (S0) that hardware sets to 1 whenever the device is executing a Page  
Program, Erase, Write Status Register or Write Security Register instruction. During this time the device ignores  
further instructions, except for the Read Status Register and Erase / Program Suspend instruction (see tW, tPP, tSE,  
tBE1, tBE2, and tCE in AC Characteristics). When the Program, Erase, Write Status Register or Write Security  
Register instruction has completed, hardware clears the BUSY bit to 0, indicating the device is ready for further  
instructions.  
7.2  
7.3  
Write Enable Latch (WEL)  
The Write Enable Latch (WEL) is a read-only bit in the Status register (S1) that hardware sets to 1 after executing  
a Write Enable (06h) instruction. Hardware clears the WEL bit when the device is write disabled. A write disable  
state occurs upon power-up or after any of the following instructions: Write Disable, Page Program, Erase, and  
Write Status Register.  
Status Register Protect (SRP1, SRP0)  
The Status Register Protect bits (SRP1 and SRP0) are non-volatile read/write bits in the Status register (S8  
and S7). The SRP bits control the method of write protection. These include software protection, hardware  
protection, power supply lock-down or one time programmable (OTP) protection.  
AT25SL321  
DS-25SL321–112H–2020-10  
12  
Table 7-3. Encoding of the SRP[1:0] Bits in the Status Register  
SRP1  
SRP0  
WP  
Status Register  
Description  
Software  
Protected  
The register can be written to after a Write Enable instruction, WEL =  
1. [Factory Default]  
0
0
X
Hardware  
Protected  
When WP pin is low the Status Register locked and can not be written  
to.  
0
0
1
1
1
1
0
1
0
1
Hardware  
Unprotected  
When WP pin is high the Status register is unlocked and can be  
written to after a Write Enable instruction, WEL=1.  
Power Supply  
Lock-Down  
Status Register is protected and cannot be written to again until the  
next power down, power-up cycle(1)  
X
X
One-Time  
Program  
Status Register is permanently protected and cannot be written to.  
Note 1. When SRP1, SRP0 = (1,0), a power down, power-up cycle changes SRP1, SRP0 = (0,0).  
7.4  
7.5  
Quad Enable (QE)  
The Quad Enable (QE) bit is a non-volatile read/write bit in the status register (S9) that allows Quad  
operation. When the QE bit is set to a 0 state (factory default) the WP pin and HOLD are enabled. When the QE  
pin is set to a 1 the Quad IO2 and IO3 pins are enabled. WARNING: Never set The QE bit to a 1 during standard  
SPI or Dual SPI operation if the WP or HOLD pins are tied directly to the power supply or ground.  
Erase/Program Suspend Status (SUS)  
The Suspend Status bit (SUS) is a read only bit in the status register (S15) that is set to 1 after executing an  
Erase/Program Suspend (75h) instruction. The SUS status bit is cleared to 0 by Erase/Program Resume (7Ah)  
instruction as well as a power down, power-up cycle.  
AT25SL321  
DS-25SL321–112H–2020-10  
13  
8.  
Instructions  
The SPI instruction set of the AT25SL321 consists of thirty eight basic instructions and the QPI instruction set  
of the AT25SL321 consists of thirty-one basic instructions that are fully controlled through the SPI bus (see  
Instruction Set Table 8-1 and Table 8-2). Instructions are initiated with the falling edge of Chip Select (CS). The  
first byte of data clocked into the input pins (SI or IO [3:0]) provides the instruction code. Data on the SI input  
is sampled on the rising edge of clock with most significant bit (MSB) first.  
Instructions are completed with the rising edge of edge CS. Clock relative timing diagrams for each instruction  
are included in Figure 8-1 through Figure 8-63. All read instructions can be completed after any clocked bit.  
However, all instructions that Write, Program or Erase must complete on a byte (CS driven high after a full 8-bit  
have been clocked) otherwise the instruction needs to be terminated. This feature further protects the device from  
inadvertent writes. Additionally, while the memory is being programmed or erased, or when the Status Register is  
being written, all instructions except for Read Register are ignored until the program or erase cycle has completed.  
Table 8-1. Manufacturer and Device Identification  
ID code  
Instruction  
Manufacturer ID  
Device ID  
Adesto  
AT25SL321  
SPI / QPI  
32M  
1Fh  
15h  
42h  
16h  
90h, 92h, 94h, 9Fh  
90h, 92h, 94h, ABh  
Memory Type ID  
Capacity Type ID  
9Fh  
9Fh  
8.1  
Instruction Set Tables  
(1)  
Table 8-2. Instruction Set Table 1 (SPI instruction)  
Instruction Name  
(Clock Number)  
Write Enable  
Byte 0  
(0 – 7)  
Byte 1  
(8 - 15)  
Byte 2  
Byte 3  
Byte 4  
Byte 5  
(16 - 23)  
(24 - 31)  
(32 - 39)  
(40 - 47)  
06h  
Write Enable For  
Volatile Status Register  
50h  
Write Disable  
0
4h  
5h  
Read Status Register-1  
Read Status Register-2  
Write Status Register-1  
Write Status Register-2  
Read Data  
0
(SR7-SR0)(2)  
(SR15-SR8)(2)  
(SR7-SR0)  
(SR15-SR8)  
A23-A16  
35h  
1h  
31h  
3h  
Bh  
2h  
38h  
0
(SR15-SR8)  
0
A15-A8  
A15-A8  
A15-A8  
A7-A  
A7-A  
A7-A  
0
0
0
(D7-D0)  
dummy  
Fast Read Data  
0
A23-A16  
(D7-D0)  
Page Program  
0
A23-A16  
(D7-D0)(3)  
Enable QPI  
Block Erase (4 kB)  
Block Erase (32 kB)  
2
0
h
A23-A16  
A23-A16  
A15-A8  
A15-A8  
A7-A  
A7-A  
0
0
52h  
AT25SL321  
DS-25SL321–112H–2020-10  
14  
(1)  
(continued)  
Byte 2  
Table 8-2. Instruction Set Table 1 (SPI instruction)  
Instruction Name  
(Clock Number)  
Block Erase(64 kB)  
Chip Erase  
Byte 0  
(0 – 7)  
D8h  
Byte 1  
(8 - 15)  
A23-A16  
Byte 3  
Byte 4  
Byte 5  
(16 - 23)  
A15-A8  
(24 - 31)  
(32 - 39)  
(40 - 47)  
A7-A  
0
60h/C7h  
Erase/Program  
Suspend  
75h  
Erase/Program Resume  
Deep Power Down  
7Ah  
B9h  
Release Deep Power  
down/ Device ID(4)  
(ID7-  
ABh  
dummy  
dummy  
dummy  
ID0)(2)  
Read Manufacturer/  
Device ID(4)  
(MID7-  
MID0)  
90h  
00h  
00h  
00h or 01h  
(DID7-DID0)  
(MID7-MID0)  
Manufacturer  
(D7-D  
Memory Type  
0
)
(D7-D  
Capacity Type  
0)  
Read JEDEC ID  
9Fh  
Reset Enable  
66h  
99h  
B1h  
C1h  
2Bh  
2Fh  
Reset  
Enter Secured OTP  
Exit Secured OTP  
ReadSecurity Register  
WriteSecurity Register  
(10)  
(SC7-SC0)  
Read Serial Flash  
Discovery Parameter  
5Ah  
A23-A16  
A15-A8  
A7-A  
0
dummy  
(D7-D0)  
Table 8-3. Instruction Set Table 2 (Dual SPI Instruction)  
Instruction Name  
(Clock Number)  
Byte 0  
(0 – 7)  
3Bh  
Byte 1  
(8 - 15)  
A23-A16  
Byte 2  
(16 - 23)  
A15-A8  
Byte 3  
(24 - 31)  
A7-A0  
Byte 4  
(32 - 39)  
dummy  
Byte 5  
(40 - 47)  
(D7-D0)(6)  
Fast Read Dual Output  
A7-A  
0,  
Fast Read Dual I/O  
BBh  
92h  
A23-A8(5)  
(D7-D0, …)(6)  
M7-M0(3)  
(MID7-MID0)  
(DID7-DID0)(6)  
Read Dual Manufacturer/  
Device ID(4)  
(00h, xxxx) or  
(01h, xxxx)  
0000h  
AT25SL321  
DS-25SL321–112H–2020-10  
15  
Table 8-4. Instruction Set Table 3 (Quad SPI Instruction)  
Instruction Name  
(Clock Number)  
Byte 0  
(0 – 7)  
6Bh  
Byte 1  
(8 - 15)  
Byte 2  
(16 - 23)  
Byte 3  
Byte 4  
(32 - 39)  
dummy  
Byte 5  
(40 - 47)  
(D7-D0) (8)  
(24 - 31)  
Fast Read Quad Output  
Fast Read Quad I/O  
A23-A16  
A15-A8  
A7-A  
0
EBh  
A23-A0, M7-M0(7)  
(xxx, D7-D0,…)(9)  
(D7-D0, …)(8)  
A23-A  
0
Quad Page Program  
33h  
94h  
(D7-D0, …)(8)  
(xxxx,MID7-MID0)  
(xxxx,DID7-  
DID0)(9)  
Read Quad Manufacturer  
/Device ID(4)  
(00_0000h, xx) or  
(00_0001h, xx)  
Word Read Quad I/O  
Set Burst with Wrap  
E7h  
77h  
A23-A0, M7-M0(7)  
xxxxxx, W6-W4(7)  
(xx, D7-D0..)  
(D7-D0)(8)  
Table 8-5. Instruction Set Table 4 (QPI instruction)  
Instruction Name  
(Clock Number)  
Byte 0  
(0 – 1)  
06h  
Byte 1  
(2 - 3)  
Byte 2  
(4 - 5)  
Byte 3  
(6 - 7)  
Byte 4  
Byte 5  
Byte 6  
Byte 7  
Byte 8  
(8 - 9)  
(10 - 11)  
(12 - 13)  
(14 - 15)  
(16 - 17)  
Write Enable  
Write Enable for Volatile  
Status Register  
50h  
Write Disable  
04h  
05h  
(2)  
Read Status Register-1  
(SR7-SR0)  
(SR15-  
SR8)(2)  
Read Status Register-2  
35h  
(SR15-  
SR8)  
Write Status Register-1(5)  
Write Status Register-2  
01h  
31h  
0Bh  
(SR7-SR0)  
(SR15-SR8)  
A23-A16  
A23-A16  
A23-A16  
A23-A16  
A23-A16  
A23-A16  
>80 MHz  
A15-A8  
A15-A8  
A15-A8  
A15-A8  
A15-A8  
A15-A8  
A7-A0  
A7-A0  
A7-A0  
A7-A0  
A7-A0  
A7-A0  
dummy  
dummy  
dummy  
dummy  
(D7-D0)  
dummy  
Fast Read  
Data  
>104 MHz  
(D7-D0)  
Page Program  
02h  
20h  
(D7-D0 (3)  
)
Block Erase(4 kB)  
Block Erase(32 kB)  
Block Erase(64 kB)  
Chip Erase  
52h  
D8h  
60h/C7h  
75h  
Erase/Program Suspend  
Erase/Program Resume  
Deep Power Down  
Release Deep Power Down  
7Ah  
B9h  
ABh  
AT25SL321  
DS-25SL321–112H–2020-10  
16  
Table 8-5. Instruction Set Table 4 (QPI instruction) (continued)  
Instruction Name  
(Clock Number)  
Byte 0  
(0 – 1)  
Byte 1  
(2 - 3)  
Byte 2  
(4 - 5)  
Byte 3  
(6 - 7)  
00h or  
Byte 4  
(8 - 9)  
Byte 5  
Byte 6  
Byte 7  
Byte 8  
(10 - 11)  
(12 - 13)  
(14 - 15)  
(16 - 17)  
Read Manufacturer/Device  
ID(4)  
(MID7-  
MID0)  
(DID7-  
DID0)  
90h  
9Fh  
00h  
00  
h
0
1h  
(D7-D  
0
)
(D7-D0)  
(MID7-MID  
Manufacturer  
0)  
Read JEDEC ID(4)  
Memory  
Type  
Capacity  
Type  
Enter Security  
Exit Security  
B1h  
C1h  
(SC7-  
SC0)  
Read Security Register  
Write Security Register  
2Bh  
2Fh  
(10)  
>80 MHz  
A23-A16  
A23-A16  
A15-A8  
A15-A8  
A7-A0  
A7-A0  
(M7-M0)  
dummy  
dummy  
(D7-D0)  
dummy  
Fast Read  
Quad I/O  
EBh  
>104 MHz  
(M7-M0)  
(D7-D0)  
Reset Enable  
Reset  
66h  
99h  
FFh  
Disable QPI  
>80 MHz  
A23-A16  
A23-A16  
P7-P0  
A15-A8  
A15-A8  
A7-A0  
A7-A0  
dummy  
dummy  
dummy  
dummy  
(D7-D0)  
dummy  
Burst Read  
with Wrap  
0Ch  
>104 MHz  
(D7-D0)  
Set Read Parameter  
Quad Page Program  
Notes:  
C0h  
33h  
A23-A16  
A15-A8  
A7-A0  
(D7-D0)  
1. Data bytes are shifted with Most Significant Bit first. Byte fields with data in parenthesis “()” indicate data being read from the device on  
the IO pin.  
2. SR = status register, The Status Register contents and Device ID are repeated continuously until CS terminates the instruction.  
3. At least one byte of data input is required for Page Program, Quad Page Program and Program Security Register, up to 256 bytes  
of data input. If more than 256 bytes of data are sent to the device, the addressing wraps to the beginning of the page and  
overwrite previously sent data.  
4. See Manufacturer and Device Identification table for Device ID information.  
5. Dual Input Address  
IO0 = A22, A20, A18, A16, A14, A12, A10, A8, A6, A4, A2, A0, M6, M4, M2, M0  
IO1 = A23, A21, A19, A17, A15, A13, A11, A9, A7, A5, A3, A1, M7, M5, M3, M1  
6. Dual Output data  
IO0 = (D6, D4, D2, D0)  
IO1 = (D7, D5, D3, D1)  
7. Quad Input Address  
Set Burst with Wrap Input  
IO0 = A20, A16, A12, A8, A4, A0, M4, M0  
IO1 = A21, A17, A13, A9, A5, A1, M5, M1  
IO2 = A22, A18, A14, A10, A6, A2, M6, M2  
IO3 = A23, A19, A15, A11, A7, A3, M7, M3  
IO0 = x, x, x, x, x, x, W4,  
IO1 = x, x, x, x, x, x, W5,  
IO2 = x, x, x, x, x, x, W6,  
IO3 = x, x, x, x, x, x, x  
x
x
x
x
8. Quad Input/ Output Data  
IO0 = (D4, D0…)  
IO1 = (D5, D1…)  
IO2 = (D6, D2…)  
IO3 = (D7, D3…)  
9. Fast Read Quad I/O Data Output  
IO0 = (x, x, x, x, D4, D0…)  
IO1 = (x, x, x, x, D5, D1…)  
IO2 = (x, x, x, x, D6, D2…)  
IO3 = (x, x, x, x, D7, D3…)  
10. SC = security register  
AT25SL321  
DS-25SL321–112H–2020-10  
17  
8.2Write Enable (06h)  
Write Enable instruction is for setting the Write Enable Latch (WEL) bit in the Status Register. The WEL bit must  
be set prior to every Program, Erase and Write Status Register instruction. To enter the Write Enable instruction,  
drive CS low prior to driving the instruction 06h onto the SI pin on the rising edge of SCK, and then driving CS  
high to terminate the operation.  
Figure 8-1. Write Enable Instruction for SPI Mode (left) and QPI Mode (right)  
AT25SL321  
DS-25SL321–112H–2020-10  
18  
8.3  
Write Enable for Volatile Status Register (50h)  
This instruction provides additional flexibility to change the system configuration and memory protection schemes  
quickly without waiting for the typical non-volatile bit write cycles or affecting the endurance of the Status Register  
non-volatile bits. To write the volatile values into the Status Register bits, the Write Enable for Volatile Status  
Register (50h) instruction must be issued prior to a Write Status Register (01h) instruction. Execution of the Write  
Enable for Volatile Status Register instruction (Figure 8-2) does not set the Write Enable Latch (WEL) bit.  
Once the Write Enable for Volatile Status Register instruction is executed, a Write Enable instruction can not have  
been issued prior to setting Write Status Register instruction (01h or 31h). When the Write Enable for Volatile  
Status Register (50h) is set in QPI Mode, the SUS bit (S15) and Reserved bits (S13, S12, S11 and S10) of the  
Status Register-2 must be driven to high after a Write Status Register instruction (01h). Once a Read Status  
Register (05h or 31h) is issued, the read values of SUS bit (S15) and Reserved bits (S13, S12, S11 and S10) of the  
Status Register-2 are ignored.  
Figure 8-2. Write Enable for Volatile Status Register Instruction for SPI Mode (left) and QPI Mode (right)  
AT25SL321  
DS-25SL321–112H–2020-10  
19  
8.4  
Write Disable (04h)  
The Write Disable instruction is used to reset the Write Enable Latch (WEL) bit in the Status Register. To enter the  
Write Disable instruction, assert CS low prior to driving the instruction 04h onto the SI on the rising edge of SCK,  
and then driving CS high to terminate the operation. The WEL bit is automatically reset write- disable status of “0”  
after Power-up and upon completion of the every Program, Erase and Write Status Register instructions.  
Figure 8-3. Write Disable Instruction for SPI Mode (left) and QPI Mode (right)  
AT25SL321  
DS-25SL321–112H–2020-10  
20  
8.5  
Read Status Register-1 (05h) and Read Status Register-2 (35h)  
The Read Status Register instructions are to read the Status Registers. The Read Status Register can be  
executed at any time (even in program/erase/write Status Register and Write Security Register condition). It is  
recommended to check the BUSY bit before sending a new instruction when a Program, Erase, Write Status  
Register or Write Status Register operation is in progress.  
The instruction is entered by driving CS low and sending the instruction code 05h for Status Register-1 or 35h for  
Status Register-2 onto the SI pin on the rising edge of SCK. The Status register bits are then shifted out on the SO  
pin at the falling edge of SCK with the most significant bit (MSB) first as shown in (Figure 8-4 and Figure 8-5). The  
Status Register can be read continuously. The instruction is completed by driving CS high.  
Figure 8-4. Read Status Register Instruction (SPI Mode)  
Figure 8-5. Read Status Register Instruction (QPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
21  
8.6  
Write Status Register (01h)  
The Write Status Register instruction is to write the non-volatile Status Register-1 bit (SRP0) and Status  
Register-2 bits (QE and SRP1). All other Status Register bit locations are read-only and are not affected by the  
Write Status Register instruction.  
A Write Enable (06h) instruction must have been previously issued prior to setting Write Status Register  
Instruction (Status Register bit WEL = 1). Once the write is enabled, the instruction is entered by driving CS low,  
sending the instruction code, and then writing the status register data byte as illustrated in Figure 8-6 and Figure 8-  
7.  
The CS pin must be driven high after the eighth or sixteenth bit of data that is clocked in. If this is not done the  
Write Status Register instruction can not be executed. If CS is driven high after the eighth clock, hardware clears  
the CMP, QE and SRP1 bits to 0. After CS is driven high, the self- timed Write Status Register cycle commences  
for a time duration of tw (See AC Characteristics).  
While the Write Status Register cycle is in progress, the Read Status Register instruction can still be accessed to  
check the status of the BUSY bit. The BUSY bit is set during the Write Status Register cycle and cleared  
when the cycle is finished to indicate the device is ready to accept other instructions. When the BUSY bit is  
asserted, the Write Enable Latch (WEL) bit in Status Register is cleared to 0.  
Figure 8-6. Write Status Register Instruction (SPI Mode)  
Figure 8-7. Write Status Register Instruction (QPI Mode  
AT25SL321  
DS-25SL321–112H–2020-10  
22  
8.7  
Write Status Register-2 (31h)  
The Write Status Register-2 instruction is to write only non-volatile Status Register-2 bits (CMP, QE, and SRP1).  
A Write Enable instruction must have previously been issued prior to setting Write Status Register Instruction  
(Status Register bit WEL = 1). Once the write enable occurs, the Write Status Register 2 instruction is entered by  
driving CS low, sending the instruction code (31h), and then writing the Status Register 2 data byte as illustrated in  
Figure 8-8 and Figure 8-9.  
Using the Write Status Register-2 (31h) instruction, software can individually access each one-byte status  
registers via different instructions.  
Figure 8-8. Write Status Register-2 Instruction (SPI Mode)  
Figure 8-9. Write Status Register-2 Instruction (QPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
23  
8.8  
Read Data (03h)  
The Read Data instruction is used to read data out from the memory. The instruction is initiated by driving the CS  
pin low and then sending the instruction code 03h, followed by a 24-bit address (A23- A0), onto the SI pin. After  
the address is received, the data byte of the addressed memory location is shifted out on the SO pin at the falling  
edge of SCK with the most significant bit (MSB) first. The address is automatically incremented to the next higher  
address after byte of data is shifted out allowing for a continuous stream of data. This means that the entire  
memory can be accessed with a single instruction as long as the clock continues.  
The instruction is completed by driving CS high. The Read Data instruction sequence is shown in Figure 8-10. If a  
Read Data instruction is issued while an Erase, Program or Write Status Register cycle is in process (BUSY = 1)  
the instruction is ignored and does not have any effect on the current cycle. The Read Data instruction allows clock  
rates from D.C. to a maximum of fR (see AC Electrical Characteristics).  
Figure 8-10. Read Data Instruction  
8.9  
Fast Read (0Bh)  
The Fast Read instruction can operate at the highest possible frequency of FR. The OBh instruction is driven onto  
the SI pin, followed by the 24-bit address, and is latched on the rising edge of SCK. The address is then followed  
by 8 dummy clocks as shown in Figure 8-11. The dummy clocks allows the internal circuits time to set up the initial  
address. During the dummy clocks, the data value on the SO pin is a “don’t care”. Data of each bit shifts out on the  
falling edge of SCK.  
Figure 8-11. Fast Read Instruction (SPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
24  
8.10 Fast Read in QPI Mode  
When QPI mode is enabled, the number of dummy clock is configured by the Set Read Parameters (C0h)  
instruction to accommodate wide range applications with different needs for either maximum Fast Read frequency  
or minimum data access latency. Depending on the state of the Read Parameter bits P[4] and P[5], the number of  
dummy clocks can be configured as either 4, or 6 or 8. The default number of dummy clocks upon power up or  
after a Reset instruction is 4. See Figure 8-12 and Figure 8-13.  
Figure 8-12. Fast Read instruction (QPI Mode, 80 MHz)  
Figure 8-13. Fast Read instruction (QPI Mode, 104 MHz)  
AT25SL321  
DS-25SL321–112H–2020-10  
25  
8.11 Fast Read Dual Output (3Bh)  
By using two pins (IO0 and IO1, instead of just IO0), the Fast Read Dual Output instruction allows data to be  
transferred from the AT25SL321 at twice the rate of standard SPI devices. The Fast Read Dual Output instruction  
is ideal for quickly downloading code from Flash to RAM upon power-up or for application that cache code-  
segments to the RAM for execution.  
The Fast Read Dual Output instruction can operate at the highest possible frequency of FR (see AC Electrical  
Characteristics). After the 24-bit address, eight “dummy” clocks are inserted to allow the internal circuits time set up  
the initial address. During the dummy clocks, the data value on the SO pin is a “don’t care”. However, the IO0 pin is  
going to be high-impedance prior to the falling edge of the first data out clock. This is shown in Figure 8-14.  
Figure 8-14. Fast Read Dual Output Instruction (SPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
26  
8.12 Fast Read Quad Output (6Bh)  
By using four pins (IO0, IO1, IO2, and IO3), The Fast Read Quad Output instruction allows data to be transferred  
from the AT25SL321 at four times the rate of standard SPI devices. A Quad Enable bit of Status Register-2 must  
be set before the device accepts the Fast Read Quad Output instruction (Status Register bit QE must equal 1).  
The Fast Read Quad Output instruction can operate at the highest possible frequency of FR (see AC Electrical  
Characteristics). This is accomplished by adding eight “dummy” clocks after the 24- bit address as shown in Figure  
8-15. The dummy clocks allow the internal circuits additional time for setting up the initial address. During the  
dummy clocks, the data value on the SO pin is a “don’t care”. However, the IO0 pin is going to be high-impedance  
prior to the falling edge of the first data out clock.  
Figure 8-15. Fast Read Quad Output Instruction (SPI Mode)  
8.13 Fast Read Dual I/O (BBh)  
The Fast Read Dual I/O instruction reduces cycle overhead through double access using two IO pins: IO0 and IO1.  
Continuous Read Mode  
This instruction can further reduce cycle overhead by setting the Mode bits (M7-0) after the input address bits  
(A23-0). The upper nibble of the Mode field (M7-4) controls the length of the next Fast Read Dual I/O instruction  
through the inclusion or exclusion of the first byte instruction code. The lower nibble bits of the Mode field (M3-  
0) are don’t care (“X”); however, the I/O pins are high-impedance before the falling edge of the first data out  
clock.  
AT25SL321  
DS-25SL321–112H–2020-10  
27  
If the Mode bits (M7-0) equal “Ax” hex, then the next Fast Dual I/O instruction (after CS is raised and then lowered)  
does not require the instruction (BBh) code, as shown in Figure 8-16 and Figure 8-17. This reduces the instruction  
sequence by eight clocks and allows the address to be immediately entered after CS is asserted low.  
If Mode bits (M7-0) are any value other “Ax” hex, the next instruction (after CS is raised and then lowered) requires  
the first byte instruction code, thus returning to normal operation. A Mode Bit Reset can be used to reset Mode  
Bits (M7-0) before issuing normal instructions.  
Figure 8-16. Fast Read Dual I/O Instruction (initial instruction or previous M7-0 Axh)  
Figure 8-17. Fast Read Dual I/O Instruction (previous M7-0 = Axh)  
AT25SL321  
DS-25SL321–112H–2020-10  
28  
8.14 Fast Read Quad I/O (EBh)  
The Fast Read Quad I/O instruction reduces cycle overhead through quad access using four IO pins: IO0, IO1,  
IO2, and IO3. The Quad Enable bit (QE) of Status Register-2 must be set to enable the Fast read Quad I/O  
Instruction.  
Continuous Read Mode  
The Fast Read Quad I/O instruction can further reduce instruction overhead through setting the Mode bits (M7-  
0) with following the input Address bits (A23-0), as shown in Figure 8-18. The upper nibble of the Mode (M7-4)  
controls the length of the next Fast Read Quad I/O instruction through the inclusion or exclusion of the first byte  
instruction code. The lower nibble bits of the Mode (M3-0) are don’t care (“X”). However, the IO pins are going to  
be high-impedance prior to the falling edge of the first data out clock.  
If the Mode bits (M7-0) equal “Ax” hex, then the next Fast Read Quad I/O instruction (after CS is raised and then  
lowered) does not require the EBh instruction code, as shown in Figure 8-19. This reduces the instruction  
sequence by eight clocks and allows the address to be immediately entered after CS is asserted low. If the  
Mode bits (M7-0) are any value other than “Ax” hex, the next instruction (after CS is raised and then lowered)  
requires the first byte instruction code, thus retuning normal operation. A Mode Bit Reset can be used to reset  
Mode Bits (M7-0) before issuing normal instructions.  
Figure 8-18. Fast Read Quad I/O Instruction (Initial instruction or previous M7-0 Axh, SPI mode)  
Figure 8-19. Fast Read Quad I/O Instruction (previous M7-0 = Axh, SPI mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
29  
Wrap Around in SPI mode  
The Fast Read Quad I/O instruction can also be used to access specific portion within a page by issuing a Set  
Burst with Wrap (77h) instruction prior Fast Read Quad I/O (EBh) instruction. The Set Burst with Wrap (77h)  
instruction can either enable or disable the Wrap Around feature for the following Fast Read Quad I/O instruction.  
When Wrap Around is enabled, the data being accessed can be limited to an 8/16/32/64-byte section of a 256-  
byte page. The output data starts at the initial address specified in the instruction, once it reaches the ending  
boundary of the 8/16/32/64-byte section, the output wraps around to the beginning boundary automatically until  
CS is pulled high to terminate the instruction.  
The Burst with Wrap feature allows applications that use cache to quickly fetch a critical address and then fill  
the cache afterwards within a fixed length (8/16/32/64-byte) of data without issuing multiple read instructions.  
(See Section 8.32 Set Burst with Wrap).  
Fast Read Quad I/O in QPI mode  
When QPI mode in enabled, the number of dummy clocks is configured by the Set Read Parameters (C0h)  
instruction to accommodate a wide range applications with different needs for either maximum Fast Read  
frequency or minimum data access latency. Depending on the Read Parameter Bits P[4] and P[5] setting, the  
number of dummy clocks can be configured as either 4 or 6 or 8. The default number of dummy clocks upon  
power up or after a Reset (99h) instruction is 4.  
The Continuous Read Mode feature is also available in QPI mode for Fast Read Quad I/O instruction. In QPI  
mode, the Continuous Read Mode bits M7-0 are also considered as dummy clocks. In the default setting, the data  
output needs to follow the Continuous Read Mode bits immediately.  
The Wrap Around feature is not available in QPI mode for Fast Read Quad I/O instruction. To perform a read  
operation with fixed data length wrap around in QPI mode, a Burst Read with Wrap (0Ch) instruction must be  
used. For more information, see Section 8.33, Burst Read with Wrap.  
Figure 8-20. Fast Read Quad I/O Instruction (Initial instruction or previous M7-0 Axh, QPI mode, 80 MHz)  
AT25SL321  
DS-25SL321–112H–2020-10  
30  
Figure 8-21. Fast Read Quad I/O Instruction (Initial instruction or previous M7-0 Axh, QPI mode, 104 MHz)  
AT25SL321  
DS-25SL321–112H–2020-10  
31  
8.15 Page Program (02h)  
This instruction programs the memory to 0. A Write Enable instruction must be issued before the device accepts  
this instruction (Status Register bit WEL = 1). After the Write Enable (WREN) instruction has been decoded, the  
device sets the Write Enable Latch (WEL). The instruction is entered by driving the CS pin low, then sending the  
instruction code 02h with a 24-bits address (A23-A0) and at least one data byte, into the SI pin. The CS pin  
must be driven low for the entire time of the instruction while data is being sent to the device. (See Figure 8-22 and  
Figure 8-23).  
If an entire 256 byte page is to be programmed, the last address byte (the 8 least significant address bits) is set to  
0. If the last address byte is not zero, and the number of clocks exceeds the remaining page length, the  
addressing must wrap to the beginning of the page. In some cases, less than 256 bytes (a partial page) can be  
programmed without having any effect on other bytes within the same page. One condition to perform a partial  
page program is that the number of clocks cannot exceed the remaining page length. If more than 256 bytes are  
sent to the device, the addressing must wrap to the beginning of the page and overwrite previously sent data.  
The CS pin must be driven high after the eighth bit of the last byte has been latched. If this is not done, this  
instruction cannot be executed. After CS is driven high, the self-timed Page Program instruction commences for  
a time duration of tPP (see Section 9.8, AC Electrical Characteristics). While the Page Program cycle is in progress,  
the Read Status Register instruction can still be accessed for checking the status of the BUSY bit. The BUSY bit is  
a 1 during the Page Program cycle and becomes a 0 when the cycle is finished and the device is ready to accept  
other instructions. When the BUSY bit is asserted, the Write Enable Latch (WEL) bit in the Status Register is  
cleared to 0.  
Figure 8-22. Page Program Instruction (SPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
32  
Figure 8-23. Page Program Instruction (QPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
33  
8.16 Quad Page Program (33h)  
The Quad Page Program instruction is to program the memory as being ‘0’ at previously erased memory areas.  
The Quad Page Program takes four pins: IO0, IO1, IO2 and IO3 as address and data input, which can improve  
programmer performance and the effectiveness of application of lower clock less than 5 MHz. System using faster  
clock speed does not get more benefit for the Quad Page Program as the required internal page program time is  
far more than the time data clock-in.  
To use Quad Page Program, the Quad Enable bit must be set, A Write Enable instruction must be executed  
before the device accepts the Quad Page Program instruction (Status Register-1, WEL = 1). The instruction is  
initiated by driving the CS pin low then sending the instruction code 33h with following a 24-bit address (A23-A0)  
and at least one data, into the IO pins. The CS pin must be held low for the entire length of the instruction while  
data is being sent to the device. All other functions of Quad Page Program are perfectly same as standard  
Page Program. (See Figure 8-24 and Figure 8-25).  
Figure 8-24. Quad Page Program Instruction (SPI mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
34  
Figure 8-25. Quad Page Program Instruction (QPI mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
35  
8.17 Block Erase (20h)  
The Block Erase instruction is to erase the data of the selected sector as being ‘1’. The instruction is used for 4K-  
byte Block. Prior to the Block Erase Instruction, the Write Enable instruction must be issued. The instruction is  
initiated by driving the CS pin low and shifting the instruction code 20h followed a 24-bit Block address (A23-A0).  
See Figure 8-26 and Figure 8-27. The CS pin must go high after the eighth bit of the last byte has been latched in,  
otherwise, the Block Erase instruction can not be executed. After CS goes high, the self-timed Block Erase  
instruction commences for a time duration of tSE. See Section 9.8, AC Electrical Characteristics.  
While the Block Erase cycle is in progress, the Read Status Register instruction can still be accessed for checking  
the status of the BUSY bit. The BUSY bit is a 1 during the Block Erase cycle and becomes a 0 when the cycle is  
finished and the device is ready to accept other instructions again. When the BUSY bit is asserted, the Write  
Enable Latch (WEL) bit in the Status Register is cleared to 0.  
Figure 8-26. Block Erase Instruction (SPI Mode)  
Figure 8-27. Block Erase Instruction (QPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
36  
8.18 32 kB Block Erase (52h)  
The Block Erase instruction is to erase the data of the selected block as being ‘1’. The instruction is used for 32K-  
byte Block erase operation. Prior to the Block Erase Instruction, a Write Enable instruction must be issued. The  
instruction is initiated by driving the CS pin low and shifting the instruction code 52h followed a 24-bit block  
address (A23-A0). See Figure 8-28 and Figure 8-29.  
The CS pin must go high after the eighth bit of the last byte has been latched in, otherwise, the Block Erase  
instruction can not be executed. After CS is driven high, the self-timed Block Erase instruction commences for a  
time duration of tBE1. See Section 9.8, AC Electrical Characteristics.  
While the Block Erase cycle is in progress, the Read Status Register instruction can still be read the status of  
the BUSY bit. The BUSY bit is a 1 during the Block Erase cycle and becomes a 0 when the cycle is finished  
and the device is ready to accept other instructions again. When the BUSY bit is asserted, the Write Enable Latch  
(WEL) bit in the Status Register is cleared to 0.  
Figure 8-28. 32 kB Block Erase Instruction (SPI Mode)  
Figure 8-29. 32 kB Block Erase Instruction (QPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
37  
8.19 64 kB Block Erase (D8h)  
The Block Erase instruction is to erase the data of the selected block as being ‘1’. The instruction is used for 64K-  
byte Block erase operation. Prior to the Block Erase Instruction, a Write Enable instruction must be issued. The  
instruction is initiated by driving the CS pin low and shifting the instruction code D8h followed a 24-bit block  
address (A23-A0). (See Figure 8-30 and Figure 8-31). The CS pin must go high after the eighth bit of the last byte  
has been latched in, otherwise, the Block Erase instruction can not be executed. After CS is driven high, the self-  
timed Block Erase instruction commences for a time duration of tBE2. See Section 9.8, AC Electrical  
Characteristics.  
While the Block Erase cycle is in progress, the Read Status Register instruction can still be read the status of  
the BUSY bit. The BUSY bit is a 1 during the Block Erase cycle and becomes a 0 when the cycle is finished  
and the device is ready to accept other instructions again. When the BUSY bit is asserted, the Write Enable  
Latch (WEL) bit in the Status Register is cleared to 0.  
Figure 8-30. 64 kB Block Erase Instruction (SPI Mode)  
Figure 8-31. 64 kB Block Erase Instruction (QPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
38  
8.20 Chip Erase (C7h / 60h)  
The Chip Erase instruction clears all bits in the device to be FFh (all 1s). Prior to the Chip Erase Instruction, a Write  
Enable instruction must be issued. The instruction is initiated by driving the CS pin low and shifting the instruction  
code C7h or 60h. (See Figure 8-32). The CS pin must go high after the eighth bit of the last byte has been latched  
in, otherwise, the Chip Erase instruction can not be executed. After CS is driven high, the self-timed Chip Erase  
instruction commences for a duration of tCE. See Section 9.8, AC Electrical Characteristics.  
While the Chip Erase cycle is in progress, the Read Status Register instruction can still be accessed to check the  
status of the BUSY bit. The BUSY bit is a 1 during the Chip Erase cycle and becomes a 0 when the cycle is  
finished and the device is ready to accept other instructions again. When the BUSY bit is asserted, the Write  
Enable Latch (WEL) bit in the Status Register is cleared to 0.  
Figure 8-32. Chip Erase Instruction for SPI Mode (left) and QPI Mode (right)  
8.21 Erase / Program Suspend (75h)  
The Erase/Program Suspend instruction allows the system to interrupt a Block Erase operation or a Page  
Program, Quad Data Input Page Program, Quad Page Program operation.  
Erase Suspend is valid only during the Block erase operation. The Write Status Register-1 (01h), Write Status  
Register-2 (31h) instruction and Erase instructions (20h, 52h, D8h, C7h, 60h) are not allowed during Erase  
Suspend. During the Chip Erase operation, the Erase Suspend instruction is ignored.  
Program Suspend is valid only during the Page Program, Quad Data Input Page Program or Quad Page Program  
operation. The Write Status Register-1 (01h), Write Status Register-2 (31h) instruction, Program instructions (02h  
and 33h) and Erase Instructions (20h, 52h, D8h, C7h, 60h) are not allowed during Program Suspend.  
The Erase/Program Suspend instruction “75h” is accepted by the device only if the SUS bit in the Status Register  
equals to 0 and the BUSY bit equals to 1 while a Block Erase or a Page Program operation is on-going. If the  
SUS bit equals to 1 or the BUSY bit equals to 0, the Suspend instruction is ignored by the device. A maximum of  
time of tSUS (see Section 9.8) is required to suspend the erase or program operation. After Erase/Program  
Suspend, the SUS bit in the Status Register is set from 0 to 1 immediately and the BUSY bit in the Status  
Register is cleared from 1 to 0 within tSUS. For a previously resumed Erase/Program operation, it is also required  
that the Suspend instruction 75h is not issued earlier than a minimum of time of tSUS following the preceding  
Resume instruction 7Ah.  
Unexpected power off during the Erase/Program suspend state resets the device and releases the suspend  
state. SUS bit in the Status Register is also reset to 0. The data within the page or block that was being suspended  
might become corrupted. It is recommended for the user to implement system design techniques against the  
AT25SL321  
DS-25SL321–112H–2020-10  
39  
accidental power interruption and preserve data integrity during erase/program suspend state. See Figure 8-33  
and Figure 8-34.  
Figure 8-33. Erase Suspend Instruction (SPI Mode)  
Figure 8-34. Erase Suspend Instruction (QPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
40  
8.22 Erase / Program Resume (7Ah)  
The Erase/Program Resume instruction 7Ah is to restart the Block Erase operation or the Page Program operation  
upon an Erase/Program Suspend. The Resume instruction 7Ah is accepted by the device only if the SUS bit in  
the Status Register equals 1 and the BUSY bit equals 0. After issue, the SUS bit is cleared from 1 to 0  
immediately, the BUSY bit is set from 0 to 1 within 200 ns and the Block completes the erase operation or the page  
completes the program operation. If the SUS bit equals to 0 or the BUSY bit equals to 1, the Resume  
instruction 7Ah is ignored by the device.  
Resume instruction cannot be accepted if the previous Erase/Program Suspend operation was interrupted by  
unexpected power off. It is also required that a subsequent Erase/Program Suspend instruction not to be issued  
within a minimum of time of tSUS following a previous Resume instruction. See Figure 8-35 and Figure 8-36.  
Figure 8-35. Erase / Program Resume Instruction (SPI Mode)  
Figure 8-36. Erase / Program Resume Instruction (QPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
41  
8.23 Deep Power Down (B9h)  
Executing the Deep Power Down (DPD) instruction is the best way to put the device in the lowest power  
consumption. The Deep Power Down instruction reduces the standby current (from ICC1 to ICC2, as specified in  
Section 9.8, AC Electrical Characteristics). The instruction is entered by driving the CS pin low with following the  
instruction code B9h. See Figure 8-37 and Figure 8-38.  
The CS pin must go high exactly at the byte boundary (the latest eighth bit of instruction code been latched-  
in); otherwise, the Deep Power Down instruction is not executed. After CS goes high, it requires a delay of tDP  
before Deep Power Down mode is entered. While in DPD mode, only the Release Deep Power Down / Device ID  
instruction, which restores the device to normal operation, is recognized. All other instructions are ignored,  
including the Read Status Register instruction, which is always available during normal operation. Deep Power  
Down Mode automatically stops at power-down, and the device always power-ups in the standby mode.  
Figure 8-37. Deep Power Down Instruction (SPI Mode)  
Figure 8-38. Deep Power Down Instruction (QPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
42  
8.24 Release Deep Power Down / Device ID (ABh)  
The Release Deep Power Down / Device ID instruction is a multi-purpose instruction. It can be used to release  
the device from the Deep Power Down state or obtain the device identification (ID).  
The instruction is issued by driving the CS pin low, sending the instruction code ABh and driving CS high as  
shown in figure Figure 8-39 and Figure 8-40. The Release from Deep Power Down operation requires the time  
duration of tRES1. The CS pin must keep high during the tRES1 time duration.  
The Device ID can be read during SPI mode only. In other words, Device ID feature is not available in QPI mode  
for Release Deep Power Down/Device ID instruction. To obtain the Device ID in SPI mode, instruction is initiated  
by driving the CS pin low and sending the instruction code ABh with following 3-dummy bytes. The Device ID  
bits are then shifted on the falling edge of SCK with most significant bit (MSB) first, as shown in Figure 8-41.  
After CS is driven high it must keep high for a time duration of tRES2. See Section 9.8, AC Electrical  
Characteristics. The Device ID can be read continuously. The instruction is completed by driving CS high.  
If the Release from Deep Power Down /Device ID instruction is issued while an Erase, Program or Write cycle is in  
process (when BUSY equals 1) the instruction is ignored and does not have any effects on the current cycle.  
Figure 8-39. Release Power Down Instruction (SPI Mode)  
Figure 8-40. Release Power Down Instruction (QPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
43  
Figure 8-41. Release Power Down / Device ID Instruction (SPI Mode)  
8.25 Read Manufacturer / Device ID (90h)  
The Read Manufacturer/ Device ID instruction provides both the JEDEC assigned manufacturer ID and the  
specific device ID. This instruction can be issued in both SPI mode and QPI mode. In SPI mode, the 90h instruction  
is called a 1-1-1 transfer, where the instruction, address, and data are all driven on a single pin (SI for instruction  
and address, and SO for data). In QPI mode, the 90h instruction is called a 4-4-4 transfer, where the instruction,  
address, and data are driven on the IO0 - IO3 pins.  
Note that in QPI mode, the following events must occur in the order shown.  
1. Set the QE bit in Status Register-2.  
2. Execute the QPI Enable (38h) instruction.  
3. Execute the 90h instruction.  
In SPI mode, the operation is initiated by driving the CS pin low and then driving the instruction code 90h onto the  
SI pin, followed by a 24-bit address (A23-A0) of 000000h. The 90h instruction requires 8 clocks to transfer, and  
the 24-bit address requires 24 clocks to transfer. The Manufacturer ID for Adesto (1Fh) and the Device ID (17h)  
are shifted out on the SO pin on the falling edge of SCK with most significant bit (MSB) first. A minimum or 16  
clocks are required to transfer the manufacturer and device ID information. If the 24-bit address is  
initially set to 000001h the Device ID is read first and then followed by the Manufacturer ID. The Manufacturer  
and Device ID can be read continuously, alternating from one to the other. The instruction is completed by driving  
CS high.  
In QPI mode, the SI, SO, WP, and HOLD pins are configured as bidirectional pins IO0, IO1, IO2, and IO3  
respectively. The 90h operation the operation is initiated by driving the CS pin low and then driving the instruction  
code 90h onto the IO0 - IO3 pins, followed by a 24-bit address (A23-A0) of 000000h. The 90h instruction requires  
2 clocks to transfer, and the 24-bit address requires 6 clocks to transfer. The Manufacturer ID for Adesto (1Fh)  
and the Device ID (17h) are shifted out on the bidirectional IO0 - IO3 pins on the falling edge of SCK, with most  
significant bit (MSB) first. A minimum or 4 clocks are required to transfer the manufacturer and  
device ID information. If the 24-bit address is initially set to 000001h the Device ID is read first and then  
followed by the Manufacturer ID. The Manufacturer and Device ID can be read continuously, alternating from one  
to the other. The instruction is completed by driving CS high.  
Figure 8-42 shows the 90h command as executed in SPI mode. In this mode the instruction and address are driven  
on the SI pin. Figure 8-43 shows the 90h command as executed in QPI mode. In this mode the instruction and  
address are driven on all four I/O pins.  
AT25SL321  
DS-25SL321–112H–2020-10  
44  
Figure 8-42. Read Manufacturer/ Device ID Instruction (SPI Mode)  
Figure 8-43. Read Manufacturer/ Device ID Instruction (QPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
45  
8.26 Read Manufacturer / Device ID (92h) — Dual I/O  
The Read Manufacturer/ Device ID Dual I/O instruction provides both the JEDEC assigned manufacturer ID and  
the specific device ID. This command allows the address and manufacturer/device ID information to be driven on  
both the SI and SO pins. During the address transfer, the SI and SO pins are inputs, allowing the 24-bit address to  
be transferred in only 12 clocks. Device hardware then switches the SI and SO pins to outputs and drives the  
manufacturer/device ID information on these two pins, again requiring only half the number of clocks as required  
by the 90h instruction. The 92h instruction is called a 1-2-2 transfer, where the instruction is transferred on a single  
pin (SI), and the address and data are driven on two pins (SI and SO).  
The instruction is initiated by driving the CS pin low and shifting the instruction code 92h followed by a 24-bit  
address (A23-A0) of 000000h. After which, the Manufacturer ID for Adesto (1Fh) and the Device ID (17h) are  
shifted out on the falling edge of SCK with most significant bit (MSB) first as shown in Figure 8-44. A minimum  
of eight clock cycles are required to transfer the information.  
If the 24-bit address is initially set to 000001h the Device ID is read first and then followed by the Manufacturer  
ID. The Manufacturer and Device ID can be read continuously, alternating from one to the other. The instruction is  
completed by driving CS high.  
Figure 8-44. Read Dual Manufacturer/ Device ID Dual I/O Instruction (SPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
46  
8.27 Read Manufacturer / Device ID Quad I/O (94h)  
The Read Manufacturer/Device ID Quad I/O instruction provides both the JEDEC assigned manufacturer ID and  
the specific device ID. This command allows both address and manufacturer/device ID information to be driven on  
the SI (IO0), SO (IO1), WP (IO2), and HOLD (IO3) pins. During the address transfer, the IO0, IO1, IO2, and IO3 pins  
are inputs, allowing the 24-bit address to be transferred in only 6 clocks. Device hardware then switches these pins  
to outputs and drives the manufacturer/device ID information on these pins, transferring the information in one-  
fourth the number of clocks required by the 90h instruction. The 94h instruction is called a 1-4-4 transfer, where the  
instruction in transferred on a single pin (IO0), and the address and data are driven on four pins (IO0 - IO3).  
The instruction is initiated by driving the CS pin low and shifting the instruction code 94h followed by a 24-bit  
address (A23-A0) of 000000h. After which, the Manufacturer ID for Adesto (1Fh) and the Device ID (17h) are  
shifted out on the falling edge of SCK with most significant bit (MSB) first as shown in Figure 8-45. If the 24-bit  
address is initially set to 000001h the Device ID is read first and then followed by the Manufacturer ID. The  
Manufacturer and Device ID can be read continuously, alternating from one to the other. The instruction is  
completed by driving CS high.  
Figure 8-45. Read Quad Manufacturer/ Device ID Quad I/O instruction (SPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
47  
8.28 JEDEC ID (9Fh)  
For compatibility reasons, the AT25SL321 provides several instructions to electronically determine the identity of  
the device. The Read JEDEC ID instruction is congruous with the JEDEC standard for SPI compatible serial flash  
memories that was adopted in 2003. The instruction is entered by driving the CS pin low with following the  
instruction code 9Fh. JEDEC assigned Manufacturer ID byte for Adesto (1Fh) and two Device ID bytes, Memory  
Type (ID15-ID8) and Capacity (ID7-ID0) are then shifted out on the falling edge of SCK with most significant bit  
(MSB) first shown in Figure 8-46 and Figure 8-47. For memory type and capacity values, see Manufacturer and  
Device Identification Table 8-1. The JEDEC ID can be read continuously. The instruction is terminated by driving  
CS high.  
Figure 8-46. Read JEDEC ID Instruction (SPI Mode)  
Figure 8-47. Read JEDEC ID Instruction (QPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
48  
8.29 Enable QPI (38h)  
The AT25SL321 support both Standard/Dual/Quad Serial Peripheral interface (SPI) and Quad Peripheral  
Interface (QPI). However, SPI mode and QPI mode cannot be used at the same time. Enable QPI instruction is the  
only way to switch the device from SPI mode to QPI mode.  
In order to switch the device to QPI mode, the Quad Enable (QE) bit in Status Register 2 must be set to 1 first, and  
an Enable QPI instruction must be issued. If the Quad Enable (QE) bit is 0, the Enable QPI instruction is ignored  
and the device remains in SPI mode.  
After power-up, the default state of the device is SPI mode. See the Instruction Set Table 8-2 for all the commands  
supported in SPI mode and the Instruction Set Table 8-5 for all the instructions supported in QPI mode.  
When the device is switched from SPI mode to QPI mode, the existing Write Enable and Program/Erase Suspend  
status, and the Wrap Length setting remains unchanged.  
Figure 8-48. Enable QPI Instruction (SPI Mode only)  
8.30 Disable QPI (FFh)  
By issuing Disable QPI (FFh) instruction, the device switches back to SPI mode. When the device is switched from  
QPI mode to SPI mode, the existing Write Enable Latch (WEL) and Program/Erase Suspend status, and the Wrap  
Length setting remain unchanged.  
Figure 8-49. Disable QPI Instruction for QPI Mode  
AT25SL321  
DS-25SL321–112H–2020-10  
49  
8.31 Word Read Quad I/O (E7h)  
The Quad I/O dramatically reduces instruction overhead allowing faster random access for code execution (XIP)  
directly from the Quad SPI. The Quad Enable bit (QE) of Status Register-2 must be set to enable the Word  
Read Quad I/O instruction. The lowest Address bit (A0) must equal 0 and only two dummy clocks are required  
prior to the data output.  
Continuous Read Mode  
The Word Read Quad I/O instruction can further reduce instruction overhead through setting the Continuous Read  
Mode bits (M7-0) after the input Address bits (A23-0), as shown in Figure 8-50. The upper nibble of the (M7-4)  
controls the length of the next Word Read Quad I/O instruction through the inclusion or exclusion of the first  
byte instruction code. The lower nibble bits of the (M[3:0]) are don’t care (‘X’). However, the IO pins are going to  
be high-impedance prior to the falling edge of the first data out clock.  
If the Continuous Read Mode bits M[7-4] = Ah, then the next Fast Read Quad I/O instruction (after CS is raised  
and then lowered) does not require the E7h instruction code, as shown in Figure 8-51. This reduces the instruction  
sequence by eight clocks and allows the Read address to be immediately entered after CS is asserted low. If the  
Continuous Read Mode bits M[7:4] do not equal to Ah (1,0,1,0) the next instruction (after CS is raised and then  
lowered) requires the first byte instruction code, thus returning to normal operation.  
CS  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21  
SCK  
IOs switch from  
Input to Output  
A23-16 A15-8  
A7-0  
M7-0 Dummy  
Instruction (E7h)  
IO  
IO๛  
20 16 12  
21 17 13  
8
4
5
6
7
0
4
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
9
1
2
3
5
6
7
IO๜  
IO๝  
22 18 14 10  
23 19 15 11  
Byte 1  
Byte 2 Byte 3  
Figure 8-50. Word Read Quad I/O Instruction (Initial instruction or previous set M7-0 Axh, SPI Mode)  
Figure 8-51. Word Read Quad I/O instruction (Previous Instruction set M7-0= Axh, SPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
50  
Wrap Around in SPI mode  
The Word Read Quad I/O instruction can also be used to access a specific portion within a page by issuing a  
Set Burst with Wrap (77h) instruction prior to E7h. The Set Burst with Wrap (77h) instruction can either enable or  
disable the Wrap Around feature for the following E7h commands. When Wrap Around is enabled, the output data  
starts at the initial address specified in the instruction, once it reaches the ending boundary of the 8/16/32/64-  
byte section, the output wraps around to the beginning boundary automatically until CS is pulled high to  
terminate the instruction.  
The Burst with Wrap feature allows applications that use cache to quickly fetch a critical address and then fill the  
cache afterwards within a fixed length (8/16/32/64-byte) of data without issuing read instructions.  
The Set Burst with Wrap instruction allows three Wrap Bits, W6-4 to be set. The W4 bit is used to enable or  
disable the Wrap Around operation while W6-5 is used to specify the length of the wrap around section within a  
page. See  
8.32 Set Burst with Wrap (77h)  
The Set Burst with Wrap (77h) instruction is used in conjunction with Fast Read Quad I/O and Word Read  
Quad I/O instructions to access a fixed length of 8/16/32/64-byte section within a 256-byte page. Certain  
applications can benefit from this feature and improve the overall system code execution performance. Before the  
device accepts the Set Burst with Wrap instruction, a Quad enable of Status Register-2 must be set (Status  
Register bit QE must equal 1).  
The Set Burst with Wrap instruction is initiated by driving the CS pin low and then shifting the instruction code  
77h followed by 24 dummy bits and 8 Wrap Bits, W7-0. The instruction sequence is shown in Set Burst with Wrap  
Instruction Sequence. Wrap bit W7 and W3-0 are not used.  
Table 8-6. Set Burst with Wrap W6:W4 Encoding  
W6, W5  
W4 = 0  
W4 = 1 (Default)  
Wrap Around  
Wrap Length  
Wrap Around  
Wrap Length  
00  
01  
10  
11  
Ye s  
Ye s  
Ye s  
Ye s  
8-byte  
16-byte  
32-byte  
64-byte  
No  
No  
No  
No  
N/A  
N/A  
N/A  
N/A  
Once W6-4 is set by a Set Burst with Wrap instruction, all the following Fast Read Quad I/O and Word Read Quad  
I/O instructions use the W6-4 setting to access the 8/16/32/64-byte section within any page. To exit the Wrap  
Around function and return to normal read operation, issue to set W4=1, another Set Burst with Wrap instruction.  
The default value of W4 upon power on is 1. In the case of a system Reset while W4 = 0, it is recommended that  
the controller issues a Set Burst with Wrap instruction or Reset (99h) instruction to reset W4 = 1 prior to any  
normal Read instructions since AT25SL321 does not have a hardware Reset Pin.  
AT25SL321  
DS-25SL321–112H–2020-10  
51  
Figure 8-52. Set Burst with Wrap Instruction Sequence  
AT25SL321  
DS-25SL321–112H–2020-10  
52  
8.33 Burst Read with Wrap (0Ch)  
The Burst Read with Wrap (0Ch) instruction provides an alternative way to perform the read operation with Wrap  
Around in QPI mode. The instruction is similar to the Fast Read (0Bh) instruction in QPI mode, except the  
addressing of the read operation needs to Wrap Around to the beginning boundary of the “Wrap Length” once  
the ending boundary is reached.  
The Wrap Length and the number of dummy of clocks can be configured by the Set Read Parameters (C0h)  
instruction.  
Figure 8-53. Burst Read with Wrap instruction (QPI Mode, 80 MHz)  
Figure 8-54. Burst Read with Wrap instruction (QPI Mode, 104 MHz)  
AT25SL321  
DS-25SL321–112H–2020-10  
53  
8.34 Set Read Parameters (C0h)  
In QPI mode, to accommodate a wide range of applications with different needs for either maximum read  
frequency or minimum data access latency, the Set Read Parameters (C0h) instruction can be used to configure  
the number of dummy clocks for the Fast Read (0Bh), Fast Read Quad I/O (EBh), and Burst Read with Wrap  
(0Ch) instructions, and also configure the number of bytes of ‘Wrap Length’ for the Burst Read with Wrap (0Ch)  
instruction.  
In Standard SPI mode, the Set Read Parameters (C0h) instruction is not accepted. The dummy clocks for various  
Fast Read instructions in Standard/Dual/Quad SPI mode are fixed. See the corresponding instruction. The  
encoding for the number of dummy clocks and wrap length are shown in the following tables. The default ‘Wrap  
Length’ after a power up or a Reset instruction is 8 bytes, the default number of dummy clocks is 4.  
Table 8-7. Dummy Clock Encoding  
Dummy  
Clocks  
Maximum  
Read Frequency  
P5, P4  
00  
01  
10  
4
4
6
80 MHz  
80 MHz  
104 MHz  
Table 8-8. Wrap Length Encoding  
P1, P0  
Wrap Length  
8-bytes  
00  
01  
10  
11  
16-bytes  
32-bytes  
64-bytes  
Figure 8-55. Set Read Parameters instruction (QPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
54  
8.35 Enable Reset (66h) and Reset (99h)  
Because of the small package and the limitation on the number of pins, the AT25SL321 provides a software reset  
instruction instead of a dedicated RESET pin.  
Once the Reset instruction is accepted, any on-going internal operations are terminated and the device returns to  
its default power-on state and loses all the current volatile settings, such as Volatile Status Register bits, Write  
Enable Latch (WEL) status, Program/Erase Suspend status, Continuous Read Mode bit setting, Read parameter  
setting and Wrap bit setting.  
The Enable Reset (66h) and Reset (99h) instructions can be issued in either SPI mode or QPI mode. To avoid  
accidental reset, both instructions must be issued in sequence. Any instruction other than Reset (99h) after the  
Enable (66h) instruction disables the Reset Enable state. A new sequence of Enable Reset (66h) and Reset (99h)  
is needed to reset the device. Once the Reset instruction is accepted by the device takes approximately tRST  
=
30 μs to reset. During this period, no instructions are accepted.  
Data corruption can happen if there is an on-going or suspended internal Erase or Program operation when Reset  
instruction sequence is accepted by device. It is recommended to check the BUSY bit and the SUS bit in Status  
Register before issuing the Reset instruction sequence.  
Figure 8-56. Enable Reset and Reset Instruction (SPI Mode)  
Figure 8-57. Enable Reset and Reset Instruction (QPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
55  
8.36 Read Serial Flash Discovery Parameter (5Ah)  
The Read Serial Flash Discovery Parameter (SFDP) instruction allows reading the Serial Flash Discovery  
Parameter area (SFDP). This SFDP area is composed of 2048 read-only bytes containing operating  
characteristics and vendor specific information. The SFDP area is factory programmed. If the SFDP area is blank,  
the device is shipped with all the SFDP bytes at FFh. If only a portion of the SFDP area is written to, the portion  
not used is shipped with bytes in erased state (FFh).  
The instruction sequence for the read SFDP has the same structure as that of a Fast Read instruction. First, the  
device is selected by driving Chip Select (CS) low. Next, the 8-bit instruction code (5Ah) and the 24-bit address  
are shifted in, followed by 8 dummy clock cycles. The bytes of SFDP content are shifted out on the Serial Data  
Output (SO) starting from the specified address. Each bit is shifted out during the falling edge of Serial Clock  
(SCK). The instruction sequence is shown here. The Read SFDP instruction is terminated by driving Chip Select  
(CS) High at any time during data output.  
Figure 8-58. Read SFDP Register Instruction  
Table 8-9. SFDP Signature and Headers  
Address  
(h) Byte  
Address  
(Bit)  
Data (b)  
(Bit)  
Data (h)  
(Byte)  
Description  
Comment  
00h  
01h  
02h  
03h  
04h  
05h  
07:00  
15:08  
23:16  
31:24  
07:00  
15:08  
0101 0011  
0100 0110  
0100 0100  
0101 0110  
0000 0110  
0000 0001  
53h  
46h  
44h  
50h  
06h  
01h  
SFDP Signature  
Start from 00h  
Start from 01h  
SFDP Minor Revision  
SFDP Major Revision  
AT25SL321  
DS-25SL321–112H–2020-10  
56  
Table 8-9. SFDP Signature and Headers (continued)  
Address  
(h) Byte  
Address  
(Bit)  
Data (b)  
(Bit)  
Data (h)  
(Byte)  
Description  
Comment  
Start from 00h  
FFh  
Number of Parameters  
Headers  
06h  
07h  
08h  
23:16  
31:24  
07:00  
0000 0001  
1111 1111  
0000 0000  
01h  
FFh  
00h  
Reserved  
JEDEC Parameter ID  
(LSB) = 00h  
JEDEC Parameter ID (LSB)  
Parameter Table Minor  
Revision  
Start from 00h  
09h  
0Ah  
0Bh  
15:08  
23:16  
31:24  
0000 0110  
0000 0001  
0001 0000  
06h  
01h  
10h  
Parameter Table Major  
Revision  
Start from 01h  
Parameter Table Length  
(double words)  
How many DWORDs in  
the parameter table  
0Ch  
0Dh  
0Eh  
07:00  
15:08  
23:16  
0011 0000  
0000 0000  
0000 0000  
30h  
00h  
00h  
Address of Adesto  
Parameter Table  
Parameter Table Pointer  
JEDEC Parameter ID  
JEDEC Parameter ID (MSB)  
JEDEC Parameter ID (LSB)  
0Fh  
10h  
11h  
31:24  
07:00  
15:08  
1111 1111  
0001 1111  
0000 0000  
FFh  
1Fh  
00h  
(MSB)  
:FFh  
Adesto Manufacturer ID  
Start from 00h  
Parameter Table Minor  
Revision  
Parameter Table Major  
Revision  
Start from 01h  
12h  
13h  
23:16  
31:24  
0000 0001  
0000 0010  
01h  
02h  
Parameter Table Length  
(double words)  
How many DWORDs in  
the parameter table  
14h  
15h  
16h  
17h  
07:00  
15:08  
23:16  
31:24  
1000 0000  
0000 0000  
0000 0000  
0000 0001  
80h  
00h  
00h  
01h  
Parameter Table Pointer  
(PTP)  
Address of Adesto  
Parameter Table  
Reserved  
FFh  
AT25SL321  
DS-25SL321–112H–2020-10  
57  
Table 8-10. SFDP Parameters Table 1  
Address  
(h) Byte  
Address  
(Bit)  
Data (b)  
(Bit)  
Data (h)  
(Byte)  
Description  
Comment  
01:4 kB available  
Erase Granularity  
01:00  
02  
01  
1
11:4 kB not available  
Write Granularity  
0:1Byte, 1:64 bytes or larger  
0: Nonvolatile status bit  
1: Volatile status bit  
Volatile Status Register Block  
Protect Bits  
30h  
31h  
E5h  
20h  
03  
0
Volatile Status Register Write  
Enable Opcode  
0:50H Opcode to enable,  
if bit-3 = 1  
04  
0
Reserved  
07:05  
15:08  
111  
4 kB Erase Opccde  
Opcode or FFh  
0010 0000  
Fast Dual Read Output  
(1 -1 -2)  
0 = Not supported  
1 = Supported  
16  
1
00: 3 Byte only  
01: 3 or 4 Byte  
10: 4 Byte only  
11: Reserved  
Number of Address Bytes  
18:17  
00  
0 = Not supported  
1 = Supported  
Double Transfer Rate (DTR)  
Clocking  
19  
20  
21  
22  
0
1
1
1
32h  
F1h  
Fast Dual I/O Read  
(1-2- 2)  
0 = Not supported  
1 = Supported  
Fast Quad I/O Read  
(1-4-4)  
0 = Not supported  
1 = Supported  
Fast Quad Output Read  
(1-1-4)  
0 = Not supported  
1 = Supported  
Reserved  
Reserved  
FFh  
FFh  
23  
1
33h  
34h  
35h  
36h  
37h  
31:24  
07:00  
15:08  
23:16  
31:24  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
0000 0001  
FFh  
FFh  
FFh  
FFh  
01h  
Flash Memory Density  
Fast Quad I/O (1-4-4)  
Number of dummy clocks  
04:00  
07:05  
15:08  
00100  
010  
Number of dummy clocks  
Number of mode bits  
Opcode or FFh  
38h  
39h  
44h  
Fast Quad I/O (1-4-4)  
Number of mode bits  
Fast Quad I/O (1-4-4) Read  
Opcode  
1110 1011  
EBh  
AT25SL321  
DS-25SL321–112H–2020-10  
58  
Table 8-10. SFDP Parameters Table 1 (continued)  
Address  
(h) Byte  
Address  
(Bit)  
Data (b)  
(Bit)  
Data (h)  
(Byte)  
Description  
Comment  
Fast Quad Output (1-1-4)  
Number of dummy clocks  
20:16  
23:21  
31:24  
04:00  
07:05  
15:08  
20:16  
23:21  
31:24  
01000  
000  
Number of dummy clocks  
3Ah  
3Bh  
3Ch  
3Dh  
3Eh  
3Fh  
08h  
6Bh  
08h  
3Bh  
80h  
BBh  
Fast Quad Output (1-1-4)  
Number of mode bits  
Number of mode bits  
Opcode or FFh  
Fast Quad Output (1-1-4)  
Read Opcode  
0110 1011  
01000  
Fast Dual Output (1-1-2)  
Number of dummy clocks  
Number of dummy clocks  
Number of mode bits  
Opcode or FFh  
Fast Dual Output (1-1-2)  
Number of mode bits  
000  
Fast Dual Output (1-1-2)  
Read Opcode  
0011 1011  
00000  
Fast Dual I/O (1-2-2)  
Number of dummy clocks  
Number of dummy clocks  
Number of mode bits  
Opcode or FFh  
Fast Dual I/O (1-2-2)  
Number of mode bits  
100  
Fast Dual I/O (1-2-2) Read  
Opcode  
1011 1011  
0 = Not supported  
1 = Supported  
Fast Dual DPI (2-2-2)  
Reserved  
0
0
111  
1
FFh  
03:01  
04  
40h  
FEh  
0 = Not supported  
1 = Supported  
Fast Quad QPI (4-4-4)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
07:05  
15:08  
23:16  
31:24  
07:00  
15:08  
111  
41h  
42h  
43h  
44h  
45h  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
FFh  
FFh  
FFh  
FFh  
FFh  
Fast Dual DPI (2-2-2)  
Number of dummy clocks  
20:16  
23:21  
31:24  
0 0000  
000  
Number of dummy clocks  
Number of mode bits  
Opcode or FFh  
46h  
00h  
Fast Dual DPI (2-2-2)  
Number of mode bits  
Fast Dual DPI(2-2-2) Read  
Opcode  
47h  
1111 1111  
FFh  
Reserved  
Reserved  
FFh  
FFh  
48h  
49h  
07:00  
15:08  
1111 1111  
1111 1111  
FFh  
FFh  
AT25SL321  
DS-25SL321–112H–2020-10  
59  
Table 8-10. SFDP Parameters Table 1 (continued)  
Address  
(h) Byte  
Address  
(Bit)  
Data (b)  
(Bit)  
Data (h)  
(Byte)  
Description  
Comment  
Fast Quad QPI (4-4-4)  
Number of dummy clocks  
20:16  
23:21  
31:24  
00010  
010  
Number of dummy clocks  
4Ah  
4Bh  
42h  
Fast Quadl QPI (4-4-4)  
Number of mode bits  
Number of mode bits  
Opcode or FFh  
Fast Quad QPI (4-4-4) Read  
Opcode  
1110 1011  
EBh  
4 kB = 2^0Ch, 32 kB = 2^0Fh,  
64 kB = 2^10h; (2^Nbyte)  
Erase type-1 Size  
Erase type-1 Opcode  
Erase type-2 Size  
4Ch  
4Dh  
4Eh  
4Fh  
07:00  
15:08  
23:16  
0000 1100  
0010 0000  
0000 1111  
0101 0010  
0Ch  
20h  
0Fh  
52h  
Opcode or FFh  
4 kB = 2^0Ch, 32 kB = 2^0Fh,  
64 kB = 2^10h; (2^Nbyte)  
Opcode or FFh  
Erase type-2 Opcode  
31:24  
07:00  
4 kB = 2^0Ch, 32 kB = 2^0Fh,  
64 kB = 2^10h; (2^Nbyte)  
Erase Type-3 Size  
50h  
0001 0000  
10h  
Opcode or FFh  
Erase Type-3 Opcode  
Erase Type-4 Size  
51h  
52h  
53h  
15:08  
23:16  
31:24  
1101 1000  
0000 0000  
1111 1111  
D8h  
00h  
FFh  
4 kB = 2^0Ch, 32 kB = 2^0Fh,  
64 kB = 2^10h; (2^Nbyte)  
Opcode or FFh  
Erase Type-4 Opcode  
Erase Maximum/Typical  
Ratio  
Maximum = 2 * (COUNT + 1) *  
Typical  
03:00  
08:04  
0011  
Erase type-1 Typical time  
Erase type-1 Typical units  
Erase type-2 Typical time  
Erase type-2 Typical units  
Erase type-3 Typical time  
Erase type-3 Typical units  
Erase type-4 Typical time  
Erase type-4 Typical units  
Count or 00h  
0 0011  
00b: 1 ms  
01b: 16 ms  
10b: 128 ms  
11b: 1 s  
10:09  
15:11  
17:16  
22:18  
24:23  
29:25  
31:30  
01  
0110 0  
01  
Count or 00h  
00b: 1 ms  
01b: 16 ms  
10b: 128 ms  
11b: 1 s  
54h  
55h  
56h  
57h  
33h  
62h  
D5h  
00h  
Count or 00h  
101 01  
01  
00b: 1 ms  
01b: 16 ms  
10b: 128 ms  
11b: 1 s  
Count or 00h  
00 000  
00  
00b: 1 ms  
01b: 16 ms  
10b: 128 ms  
11b: 1 s  
AT25SL321  
DS-25SL321–112H–2020-10  
60  
Table 8-10. SFDP Parameters Table 1 (continued)  
Address  
(h) Byte  
Address  
(Bit)  
Data (b)  
(Bit)  
Data (h)  
(Byte)  
Description  
Comment  
Program Maximum/Typical  
Ratio  
Maximum = 2 * (COUNT + 1) *  
Typical  
03:00  
0100  
58h  
84h  
Page Size  
2^N bytes  
07:04  
12:08  
1000  
Program Page Typical time  
Count or 00h  
0 1001  
0: 8 μs,  
1: 64 μs  
Program Page Typical units  
13  
17:14  
18  
1
Program Byte Typical time,  
1st byte  
Count or 00h  
01 00  
0
Program Byte Typical units,  
1st byte  
0: 1 μs,  
1: 8 μs  
Program Additional Byte  
Typical time  
59h  
5Ah  
5Bh  
29h  
01h  
C4h  
Count or 00h  
22:19  
000 0  
Program Additional Byte  
Typical units  
0: 1 μs,  
1: 8 μs  
23  
0
Erase Chip Typical time  
Erase Chip Typical units  
Reserved  
Count or 00h  
28:24  
0 0100  
00b: 16 ms  
01b: 256 ms  
10b: 4 sec  
30:29  
10  
11b: 64 sec  
1h  
31  
1
Prohibited Op during  
Program Suspend  
See datasheet  
03:00  
11010  
5Ch  
ECh  
Prohibited Op during Erase  
Suspend  
See datasheet  
07:04  
1110  
AT25SL321  
DS-25SL321–112H–2020-10  
61  
Table 8-10. SFDP Parameters Table 1 (continued)  
Address  
(h) Byte  
Address  
(Bit)  
Data (b)  
(Bit)  
Data (h)  
(Byte)  
Description  
Comment  
Reserved  
1h  
08  
1
Program Resume to  
Suspend time  
Count of 64us  
Count or 00h  
12:09  
0 000  
Program Suspend Maximum  
time  
17:13  
19:18  
11 101  
01  
00b: 128 ns  
01b: 1 μs  
10b: 8 μs  
11b: 64 μs  
Program Suspend Maximum  
units  
5Dh  
5Eh  
5Fh  
A1h  
07h  
3Dh  
Erase Resume to Suspend  
time  
Count of 64 μs  
23:20  
28:24  
0000  
Erase Suspend Maximum  
time  
Count or 00h  
1 1101  
00b: 128 ns  
01b: 1 μs  
10b: 8 μs  
11b: 64 μs  
Erase Suspend Maximum  
units  
30:29  
31  
01  
0
0: Program and Erase suspend  
supported  
Suspend / Resume  
supported  
1: not supported  
Program Resume Opcode  
Program Suspend Opcode  
Resume Opcode  
Opcode or FFh  
Opcode or FFh  
Opcode or FFh  
Opcode or FFh  
11b  
60h  
61h  
62h  
63h  
7:0  
0111 1010  
0111 0101  
0111 1010  
0111 0101  
11  
7Ah  
75h  
7Ah  
75h  
15:8  
23:16  
31:24  
01:00  
Suspend Opcode  
Reserved  
xxxxx1b: Opcode = 05h,  
bit-0 = 1 Busy,  
64h  
F7h  
Status Register Busy Polling  
xxxx1xb: Opcode = 70h,  
bit-7 = 0 Busy,  
07:02  
1111 01  
others: reserved  
Count or 00h  
Exit Deep Powerdown time  
Exit Deep Powerdown units  
12:08  
14:13  
0 0010  
01  
00b: 128 ns  
01b: 1 μs  
10b: 8 μs  
11b: 64 μs  
65h  
66h  
67h  
A2h  
D5h  
5Ch  
Exit Deep Powerdown  
Opcode  
22:15  
30:23  
31  
101 0101 1  
101 1100 1  
0
Opcode or FFh  
Opcode or FFh  
Enter Deep Powerdown  
Opcode  
0: Deep Powerdown supported,  
1: not supported  
Deep Powerdown Supported  
AT25SL321  
DS-25SL321–112H–2020-10  
62  
Table 8-10. SFDP Parameters Table 1 (continued)  
Address  
(h) Byte  
Address  
(Bit)  
Data (b)  
(Bit)  
Data (h)  
(Byte)  
Description  
Comment  
Disable 4-4-4 Read Mode  
Enable 4-4-4 Read Mode  
03:00  
08:04  
1001  
0 0001  
Fast Quad I/O Continuous  
(0-4-4) supported  
0: not supported,  
1: Quad I/O 0-4-4 supported  
09  
1
Fast Quad I/O Continuous  
(0-4-4) Exit  
15:10  
19:16  
22:20  
1111 01  
1100  
001  
68h  
69h  
6Ah  
19h  
F6h  
1Ch  
Fast Quad I/O Continuous  
(0-4-4) Enter  
Quad Enable Requirements  
(QER)  
0: not supported,  
1: use Configuration Register  
bit-4  
HOLD or RESET Disable  
23  
0
Reserved  
FFh  
6Bh  
6Ch  
31;24  
06:00  
07  
1111 1111  
110 1000  
1
FFh  
E8h  
Status Register Opcode  
Reserved  
1h  
Soft Reset Opcodes  
4-Byte Address Exit  
4-Byte Address Enter  
6Dh  
6Eh  
6Fh  
13:08  
23:14  
31:24  
01 0000  
10h  
C0h  
1100 0000 00  
1000 0000  
80h  
AT25SL321  
DS-25SL321–112H–2020-10  
63  
Table 8-11. SFDP Parameters Table 2  
Description  
Address  
(h) Byte  
Address  
(Bit)  
Data (b)  
(Bit)  
Data (h)  
(Byte)  
Comment  
1650h: 1.65V,  
1700h: 1.70V,  
2300h: 2.30V,  
2500h: 2.50V,  
2700h: 2.70V  
80h  
81h  
0000 0000  
0001 0111  
00h  
17h  
VCC Minimum Voltage  
VCC Maximum Voltage  
15:0  
1950h: 1.95V,  
3600h: 3.60V,  
4000h: 4.00V,  
4400h: 4.40V  
82h  
83h  
0000 0000  
0010 0000  
00h  
20h  
31:16  
10b: use non-volatile  
status register  
Array Protection Method  
01:00  
02  
00  
0
0: power up unprotected,  
1: power up protected  
Power up Protection default  
011b: use status register  
011b: use status register  
011b: use status register  
Protection Disable Opcodes  
Protection Enable Opcodes  
Protection Read Opcodes  
05:03  
08:06  
11:09  
00 0  
0 00  
000  
84h  
85h  
00h  
00h  
00b: not supported,  
01b: Opcodes 3Dh, 2Ah,  
7Fh, CFh,  
Protection Register Erase  
Opcode  
13:12  
15:14  
00  
00  
00b: not supported,  
01b: Opcodes 3Dh, 2Ah,  
7Fh, FCh  
Protection Register Program  
Opcode  
FFh  
FFh  
FFh  
86h  
87h  
23:16  
31:24  
1111 1111  
1111 1111  
FFh  
FFh  
Reserved  
Reserved  
Reserved  
88h - FFh  
Reserved  
AT25SL321  
DS-25SL321–112H–2020-10  
64  
8.37 Enter Secured OTP (B1h)  
The Enter Secured OTP instruction is for entering the additional 4 kbit secured OTP mode. The additional 4 kbit  
secured OTP is independent from main array, which can be used to store unique serial number for system  
identifier. After entering the Secured OTP mode, and then follow standard read or program, procedure to read out  
the data or update data. The Secured OTP data cannot be updated again once it is lock-down  
Please note that Write Status Register-1, Write Status Register-2 and Write Security Register instructions are not  
acceptable during the access of secure OTP region. Once security OTP is lock down, only commands related with  
read are valid. The Enter Secured OTP instruction sequence is shown in Figure 8-59.  
Figure 8-59. Enter Secured OTP Instruction for SPI Mode (left) and QPI Mode (right)  
8.38 Exit Secured OTP (C1h)  
The Exit Secured OTP instruction is for exiting the additional 4 kbit secured OTP mode. See Figure 8-60.  
Figure 8-60. Exit Secured OTP instruction for SPI Mode (left) and QPI Mode (right)  
AT25SL321  
DS-25SL321–112H–2020-10  
65  
8.39 Read Security Register (2Bh)  
The Read Security Register can be read the value of Security Register bits at any time (even in  
program/erase/write status register-1 and write status register-2 condition) and continuously.  
Secured OTP Indicator bit. The Secured OTP indicator bit shows the chip is locked by factory before ex-factory  
or not. When it is ‘0’, it indicates non-factory lock, ‘1’ indicates factory-lock.  
Lock-down Secured OTP (LDSO) bit. By writing Write Security Register instruction, the LDSO bit can be set to  
“1” for customer lock-down purpose. However, once the bit it set to “1” (Lock-down), the LDSO bit and the 4 kbit  
Secured OTP area cannot be updated any more. While it is in 4 kbit Secured OTP mode, array access is not  
allowed to write.  
Table 8-12. Security Register Definition  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
LDSO  
(indicate if lock- down)  
Secured  
OTP indicator bit  
x
x
x
x
x
x
0 = not lock-down  
1 = lock down  
(cannot program/  
erase OTP)  
0 = non factory lock  
1 = factory lock  
Reserved Reserved Reserved Reserved Reserved Reserved  
Volatile  
bit  
Volatile  
bit  
Volatile  
bit  
Volatile  
bit  
Volatile  
bit  
Volatile  
bit  
Non- Volatile bit  
Non- Volatile bit  
Figure 8-61. Read Security Register instruction (SPI Mode)  
Figure 8-62. Read Security Register instruction (QPI Mode)  
AT25SL321  
DS-25SL321–112H–2020-10  
66  
8.40 Write Security Register (2Fh)  
The Write Security Register instruction is for changing the values of Security Register bits. Unlike the Write Status  
Register instruction, the Write Enable instruction is not required before writing Write Security Register instruction.  
The Write Security Register instruction can change the value of bit1 (LDSO bit) for customer to lock-down the 4  
kbit Secured OTP area. Once the LDSO bit is set to “1”, the Secured OTP area cannot be updated any more.  
The CS must go high exactly at the boundary; otherwise, the instruction are rejected and not executed.  
Figure 8-63. Write Security Register Instruction for SPI Mode (left) and QPI Mode (right)  
8.41 4 kbit Secured OTP  
It’s for unique identifier to provide 4 kbit one-time-program area for setting device unique serial number which  
can be set by factory or system customer. See Table 8-13, Secured OTP Address Space.  
Security register bit 0 indicates whether the chip is locked by the factory or not.  
To program the 4 kbit secured OTP by entering 4 kbit secured OTP mode (with ENSO command) and going  
through normal program procedure, and then exiting 4 kbit secured OTP mode by writing the EXSO  
command.  
Customer might lock-down bit 1 as ‘1’. See Table 8-13, Secured OTP Address Space.  
Note. Once lock-down whatever by factory or customer, it cannot be changed any more. While in 4 kbit secured  
OTP mode, write access to the array is not allowed.  
Table 8-13. Secured OTP Address Space  
Standard  
Address Range  
Size  
Customer Lock  
000000 ~ 00000F  
128-bit  
ESN  
Determined by customer  
(Electrical Serial Number)  
000010 ~ 0001FF  
3968-bit  
N/A  
AT25SL321  
DS-25SL321–112H–2020-10  
67  
9.  
ElectricalCharacteristics  
(1)  
9.1  
Absolute Maximum Ratings  
Parameter  
Supply Voltage  
Symbol  
VCC  
Conditions  
Range  
Units  
V
V
-0.6 to VCC+0.4  
Voltage Applied to Any Pin  
VIO  
Relative to Ground  
-0.6 to VCC +0.4  
<20 ns Transient  
Relative to Ground  
VIOT  
Transient Voltage on any Pin  
-1.0V to VCC +1.0V  
V
TSTG  
Storage Temperature  
Lead Temperature  
-65 to +150  
˚C  
˚C  
See Note(2)  
TLEAD  
Electrostatic Discharge  
Voltage  
Human Body Model(3)  
-2000 to +2000  
V
VESD  
Notes:  
1. Stresses beyond those listed under “Absolute Maximum Ratings” cause permanent damage to the device. The “Absolute Maximum Ratings”  
are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods affect device reliability.  
Voltage extremes referenced in the “Absolute Maximum Ratings” are intended to accommodate short duration undershoot/overshoot  
conditions and does not imply or guarantee functional device operation at these levels for any extended period of time.  
2. Compliant with JEDEC Standard J-STD-20C for small body Sn-Pb or Pb-free (Green) assembly and the European directive on restrictions  
on hazardous substances (RoHS) 2002/95/EU.  
3. JEDEC Std JESD22-A114A (C1=100pF, R1=1500 ohms, R2=500 ohms).  
9.2  
Operating Ranges  
Parameter  
Symbol  
Conditions  
Min  
Max  
Units  
FR = 104 MHz (Single/Dual/Quad SPI)  
fR = 50 MHz (Read Data 03h)  
1.7  
2.0  
V
Power Supply Voltage  
VCC  
Ambient Operating  
Temperature  
-40  
+85  
˚C  
TA  
Industrial  
9.3  
Endurance and Data Retention  
Parameter  
Symbol  
Conditions  
Min  
Erase/Program Cycles  
Data Retention  
100,000  
Cycles  
years  
4 kB Block, 32/64 kB block, or full chip.  
Full temperature range  
20  
AT25SL321  
DS-25SL321–112H–2020-10  
68  
9.4  
Power-up Timing and Write Inhibit Threshold  
Parameter  
VCC (min) to CS Low  
Symbol  
Min  
10  
1
Max  
Units  
µs  
(1)  
tVSL  
(1)  
Time Delay Before Write Instruction  
Write Inhibit Threshold Voltage  
tPUW  
10  
ms  
V
VWI(1)  
1.0  
1.4  
Note:  
1. These parameters are characterized at -10C & +85C only  
Figure 9-1. Power-up Timing and Voltage Levels  
9.5  
Program Acceleration via ACC Pin  
Parameter  
Symbol  
Min  
8.5  
2.2  
5
Max  
Units  
WP pin High Voltage  
HH(1)  
9.5  
V
V
(1)  
tVHH  
WP pin Voltage rise and fall time  
µs  
µs  
(1)  
WP at VHH and VIL or VIH to first instruction  
1. These parameters are characterized only.  
tWC  
Figure 9-2. ACC Program Acceleration Timing and Voltage Levels  
AT25SL321  
DS-25SL321–112H–2020-10  
69  
9.6  
DC Electrical Characteristics  
Parameter  
Symbol  
CIN(1)  
COUT(1)  
ILI  
Condition  
VIN = 0V(2)  
Min  
Typ  
Max  
6
Units  
pF  
Input Capacitance  
Output Capacitance  
Input Leakage  
I/O Leakage  
VOUT = 0V(2)  
8
pF  
±2  
±2  
µA  
ILO  
µA  
CS = VCC  
VIN = GND or VCC  
Standby Current  
ICC1  
ICC2  
ICC3  
ICC3  
ICC3  
ICC3  
ICC4  
ICC5  
ICC6  
10  
2
50  
20  
7
µA  
µA  
CS = VCC  
VIN = GND or VCC  
Power Down Current  
Current Read Data/  
Dual/Quad 1 MHz(2)  
C = 0.1 VCC / 0.9VCC  
IO = Open  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Current Read Data/  
Dual/Quad 50 MHz  
C = 0.1 VCC / 0.9VCC  
IO = Open  
15  
18  
20  
20  
25  
25  
(2)  
Current Read Data/  
Dual/Quad 80 MHz  
C = 0.1 VCC / 0.9VCC  
IO = Open  
(2)  
Current Read Data/  
Dual/Quad 104 MHz  
C = 0.1 VCC / 0.9VCC  
IO = Open  
2)  
Current Write  
Status Register  
CS = VCC  
CS = VCC  
10  
15  
Current Page  
Program  
Current Block  
Erase  
CS = VCC  
CS = VCC  
15  
15  
Current Chip Erase  
Input Low Voltages  
Input High Voltages  
Output Low Voltages  
ICC7  
VIL  
25  
mA  
V
-0.5  
VCC x0.2  
VCC +0.4  
0.2  
VIH  
VCC x0.8  
V
VOL  
IOL = 100µA  
IOH = -100µA  
V
Output High Voltages  
VOH  
VCC -0.2  
V
Notes:  
1. Tested on sample basis and specified through design and characterization data, TA = 25˚C, VCC = 1.8V.  
2. Checked Board Pattern.  
AT25SL321  
DS-25SL321–112H–2020-10  
70  
9.7  
AC Measurement Conditions  
Parameter  
Symbol  
CL  
Min  
Max  
30  
5
Units  
pF  
ns  
V
Load Capacitance  
TR, TF  
VIN  
Input Rise and Fall Times  
Input Pulse Voltages  
0.2 VCC to 0.8 VCC  
0.3 VCC to 0.7 VCC  
0.5 VCC to 0.5 VCC  
Input Timing Reference Voltages  
Output Timing Reference Voltages  
IN  
V
OUT  
V
Note:  
1.  
Output Hi-Z is defined as the point where data out is no longer driven  
Figure 9-3. AC Measurement I/O Waveform  
9.8  
AC Electrical Characteristics  
Parameter  
Symbol  
Alt  
Min  
Typ  
Max  
104  
50  
Units  
Clock frequency. For all instructions, except Read Data (03h)  
1.7V-1.95V VCC & Industrial Temperature  
FR  
fc  
DC  
MHz  
Clock freq. Read Data instruction (03h)  
Clock High, Low Time except Read Data (03h)  
Clock High, Low Time for Read Data (03h)instructions  
Clock Rise Time peak to peak  
fR  
DC  
4.5  
8
MHz  
ns  
1
tCLH, tCLL  
1
tCRLH, tCRLL  
ns  
2
tCLCH  
0.1  
0.1  
5
V/ns  
V/ns  
ns  
2
Clock Fall Time peak to peak  
tCHCL  
CS Active Setup Time relative to Clock  
CS Not Active Hold Time relative to Clock  
Data In Setup Time  
tSLCH  
tCHSL  
tDVCH  
tCHDX  
tCHSH  
tSHCH  
tCSS  
5
ns  
tDSU  
tDH  
2
ns  
Data In Hold Time  
5
ns  
CS Active Hold Time relative to Clock  
CS Not Active Setup Time relative to Clock  
5
ns  
5
ns  
CS Deselect Time (for Read instructions/ Write,  
Erase and Program instructions)  
tSHSL  
tCSH  
100  
ns  
AT25SL321  
DS-25SL321–112H–2020-10  
71  
9.8  
AC Electrical Characteristics (continued)  
Parameter  
Symbol  
Alt  
tDIS  
tV1  
Min  
Typ  
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
ms  
µs  
ms  
ms  
s
2
Output Disable Time  
tSHQZ  
7
7
8
Clock Low to Output Valid  
tCLQV  
tCLQV  
tCLQX  
tHLCH  
tCHHH  
tHHCH  
tCHHL  
(3)  
Clock Low to Output Valid ( Except Main Read )  
Output Hold Time  
tV2  
tHO  
1.5  
5
HOLD Active Setup Time relative to Clock  
HOLD Active Hold Time relative to Clock  
HOLD Not Active Setup Time relative to Clock  
HOLD Not Active Hold Time relative to Clock  
HOLD to Output Low-Z  
5
5
5
2
tHHQX  
tLZ  
7
2
HOLD to Output High-Z  
tHLQZ  
tHZ  
12  
4
Write Protect Setup Time Before CS Low  
Write Protect Setup Time After CS High  
CS High to Power Down Mode  
tWHSL  
20  
4
tSHWL  
100  
2
3
3
tDP  
2
CS High to Standby Mode without Electronic Signature Read  
CS High to Standby Mode with Electronic Signature Read  
CS High to next Instruction after Suspend  
CS High to next Instruction after Reset  
Write Status Register Time  
tRES1  
2
tRES2  
1.8  
30  
30  
15  
150  
5
2
tSUS  
2
tRST  
tw  
tBP  
tPP  
tEP  
tSE  
tBE1  
tBE2  
tCE  
10  
10  
Byte Program Time  
Page Program Time  
0.6  
Page Program Time (ACC = 9V)  
Block Erase Time (4 kB)  
0.3  
3
0.06  
0.20  
0.35  
20  
0.4  
1.5  
2
Block Erase Time (32 kB)  
s
Block Erase Time (64 kB)  
s
Chip Erase Time  
80  
s
Notes:  
1. Clock high + Clock low must be less than or equal to 1/fc.  
2. Value guaranteed by design and/or characterization, not 100% tested in production.  
3. Contains: Read Status Register-1,2/ Read Manufacturer/Device ID, Dual, Quad/ Read JEDEC ID/ Read Security Register/ Read Serial  
Flash Discovery Parameter.  
4. Only applicable as a constraint for a Write Status Register instruction when Sector Protect Bit is set to 1.  
AT25SL321  
DS-25SL321–112H–2020-10  
72  
9.9  
Input Timing  
9.10 Output Timing  
9.11 Hold Timing  
AT25SL321  
DS-25SL321–112H–2020-10  
73  
10. Ordering Information  
10.1 Ordering Code Detail  
A T 2 5 S L 3 2 1 – M H E – T  
Designator  
Shipping Carrier Option  
T = Tape and reel  
Product Family  
Device Density  
321 = 32-megabit  
Operating Voltage  
E = 1.7 V to 2.0 V  
Package Option  
Device Grade  
M
= 8-pad, 5 x 6 x 0.6 mm UDFN  
U = Green, Matte Sn or Sn alloy,  
Industrial temperature range  
(–40 °C to + 85 °C)  
MB = 8-pad, 3 x 4 x 0.55 mm USON  
S = 8-lead, 208-mil wide SOIC  
SS = 8-lead, 150-mil SOIC  
U = 8-ball 0.5 mm pitch dBGA  
H = NiPdAu lead-frame  
Industrial Temp range (-40 °C + 85 °C)  
Operating  
Voltage  
Max. Freq.  
(MHz)  
Ordering Code (1)  
Package  
Lead Finish  
Operation Range  
AT25SL321-MHE-T  
AT25SL321-SSHE-T  
AT25SL321-MBUE-T  
AT25SL321-SUE-T  
8MA1  
8S1  
NiPdAu  
-40 to 85 ℃  
8MA2  
8S4  
1.7 V - 2.0 V  
104 MHz (2)  
(Industrial  
Temperature Range)  
SnAgCu  
(3)  
AT25SL321-UUE-T  
8-WLCSP  
1. The shipping carrier option code is not marked on the devices.  
2. Contact Adesto for availability of 133 MHz operating frequency.  
3. Contact Adesto for mechanical drawing or sales information.  
Package Type  
8S4  
8-lead, 0.208" Wide, Plastic Gull Wing Small Outline Package (EIAJ SOIC)  
8-lead, 150-mil narrow body JEDEC SOIC  
8S1  
8MA1  
8MA2  
8-WLCSP  
8-pad (5 x 6 x 0.6 mm body), Thermally Enhanced Plastic Ultra-Thin Dual Flat No-lead (UDFN)  
8-pad (3 x 4 x 0.55 mm body), Thermally Enhanced Plastic Ultra-Thin Small Outline No-lead (USON)  
8-ball, 0.5mm pitch, die Ball Grid Array (dBGA)  
AT25SL321  
DS-25SL321–112H–2020-10  
74  
11. Packaging Information  
11.1 8S4 – 8-lead, 208 mil EIAJ SOIC  
SEATING PLANE  
A2  
A
CP  
A1  
b
E1  
E
1
L
D
C
MILLIMETERS  
INCHES  
NOM  
SYMBOL  
MAX  
0.085  
0.010  
0.075  
0.019  
0.010  
0.212  
MIN  
1.75  
0.05  
1.70  
0.35  
0.19  
5.18  
7.70  
5.18  
NOM  
1.95  
MIN  
MAX  
2.16  
0.25  
1.91  
0.48  
0.25  
5.38  
8.10  
5.38  
0.069  
0.002  
A
A1  
A2  
B
0.077  
0.006  
0.071  
0.017  
0.008  
0.208  
0.15  
1.80  
0.067  
0.014  
0.007  
0.204  
0.303  
0.204  
0.42  
0.20  
C
5.28  
D
7.90  
E
0.311  
0.208  
0.319  
0.212  
E1  
e
5.28  
1.27 BSC  
0.050 BSC  
0.020  
0o  
L
0.50  
0o  
0.026  
0.031  
0.65  
0.80  
8o  
8o  
0.10  
0.004  
Y
TITLE  
GPC  
DRAWING NO.  
REV.  
8S4, 8-lead, 0.208" Wide Body, Plastic Small  
Outline Package (EIAJ)  
STN  
8S4  
B
Package Drawing Contact:  
contact@adestotech.com  
AT25SL321  
DS-25SL321–112H–2020-10  
75  
11.2 8MA1 – UDFN  
E
C
Pin 1 ID  
SIDE VIEW  
D
y
TOP VIEW  
E2  
A1  
A
K
Option A  
0.45  
Pin #1  
8
1
2
3
Pin #1 Notch  
(0.20 R)  
(Option B)  
Chamfer  
(C 0.35)  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
NOM  
NOTE  
SYMBOL  
7
A
0.45  
0.55  
0.60  
e
D2  
A1  
b
0.00  
0.35  
0.02  
0.40  
0.152 REF  
5.00  
4.00  
6.00  
3.40  
1.27  
0.60  
0.05  
0.48  
6
C
D
D2  
E
4.90  
3.80  
5.90  
3.20  
5.10  
4.20  
6.10  
3.60  
5
4
b
BOTTOM VIEW  
L
E2  
e
L
0.50  
0.00  
0.20  
0.75  
0.08  
y
K
4/15/08  
REV.  
GPC  
YFG  
DRAWING NO.  
8MA1  
TITLE  
8MA1, 8-pad (5 x 6 x 0.6 mm Body), Thermally  
Enhanced Plastic Ultra Thin Dual Flat No Lead  
Package (UDFN)  
D
Package Drawing Contact:  
contact@adestotech.com  
AT25SL321  
DS-25SL321–112H–2020-10  
76  
11.3 8MA2 – USON  
Top View  
Bottom View  
Side View  
TITLE  
GPC  
DRAWING NO. REV.  
8MA2, 8-pad (3 x 4 x 0.55 mm Body), Thermally Enhanced  
Plastic Ultra Thin Small Outline No Lead Package (USON)  
YFG  
8MA2  
A
Package Drawing Contact:  
contact@adestotech.com  
AT25SL321  
DS-25SL321–112H–2020-10  
77  
11.4 8-WLCSP — Die Ball Grid Array  
1
2
2
1
A
B
C
D
A
B
C
D
5
ALL DIMENSIONS ARE IN MM  
Pin Assignment Matrix  
A
B
C
D
I/O3(HOLD)  
I/O1(SO)  
I/O0(SI)  
GND  
VCC  
CS  
SCK  
1
2
I/O2(WP)  
1/4/2017  
REV.  
TITLE  
GPC  
DRAWING NO.  
8WLCSP-A  
8WLCSP, 8-ball, die Ball Grid Array  
C
Package Drawing Contact:  
contact@adestotech.com  
AT25SL321  
DS-25SL321–112H–2020-10  
78  
11.5 8S1 - 8-Lead 150-mil JEDEC SOIC  
C
1
E
E1  
L
N
Ø
TOP VIEW  
END VIEW  
e
b
COMMON DIMENSIONS  
(Unit of Measure = mm)  
A
MIN  
1.35  
0.10  
MAX  
1.75  
0.25  
NOM  
NOTE  
SYMBOL  
A1  
A
A1  
b
C
0.31  
0.17  
4.80  
3.81  
5.79  
0.51  
0.25  
5.05  
3.99  
6.20  
D
D
E1  
E
SIDE VIEW  
Notes: This drawing is for general information only.  
Refer to JEDEC Drawing MS-012, Variation AA  
for proper dimensions, tolerances, datums, etc.  
e
1.27 BSC  
L
0.40  
0°  
1.27  
8°  
ꢀꢀØꢀ  
5/19/10  
TITLE  
GPC  
DRAWING NO.  
REV.  
8S1, 8-lead (150 mil Narrow Body), Plastic Gull  
Wing Small Outline (JEDEC SOIC)  
SWB  
8S1  
F
Package Drawing Contact:  
contact@adestotech.com  
AT25SL321  
DS-25SL321–112H–2020-10  
79  
12. Revision History  
Revision  
Date  
Change History  
Initial release of AT25SL321A datasheet.  
A
06/2016  
Updated 8-WLCSP package outline drawing. Added 10-WLCSP package.  
Updated voltage range. Removed Sector and Block Protect descriptions.  
Removed Status Register Memory Protection tables. Updated tCSH  
specification.  
B
08/2016  
Updated UDFN package drawing and dimensions. Added USON package  
drawing and dimensions. Updated command description for 50h. Updated SFDP  
tables.  
C
10/2016  
D
E
F
11/2016  
02/2017  
03/2017  
Updated SFDP tables (to version 1.6).  
Updated Note 1 on Table 8.1.  
Updated document status from Advanced to Complete.  
Corrected Figure 7-50, Word Read Quad I/O.  
Updated text in Sections 7.25, 7.26, and 7.27 for clarity (no technical changes).  
Updated legal page.  
G
H
6/2020  
Changed ordering code from AT25SL321-MBUE-T to AT25SL321-MBUEKE-T.  
Removed references to the following packages: 24CC BGA, 10-ball WLCSP.  
Removed references to Die Wafer Form.  
10/2020  
Added 8S1, 8-lead 150-mil SOIC references and package drawing.  
AT25SL321  
DS-25SL321–112H–2020-10  
80  
Corporate Office  
California | USA  
Adesto Headquarters  
3600 Peterson Way  
Santa Clara, CA 95054  
Phone: (+1) 408.400.0578  
Email: contact@adestotech.com  
Copyright © 2020 Adesto Technologies Corporation. All rights reserved. DS-25SL321–112H–2020-10  
Adesto, the Adesto logo, CBRAM and DataFlash are trademarks or registered trademarks of Adesto Technologies Corporation in the United States and other countries. Other company, product, and service  
names may be trademarks or service marks of others. Adesto products are covered by one or more patents listed at http://www.adestotech.com/patents.  
Disclaimer: Adesto Technologies Corporation (“Adesto”) makes no warranties of any kind, other than those expressly set forth in Adesto’s Terms and Conditions of Sale at  
http://www.adestotech.com/terms-conditions. Adesto assumes no responsibility or obligations for any errors which may appear in this document, reserves the right to change devices or specifications  
herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Adesto are granted by Adesto  
herewith or in connection with the sale of Adesto products, expressly or by implication. Adesto’s products are not authorized for use in medical applications (including, but not limited to, life support systems  
and other medical equipment), weapons, military use, avionics, satellites, nuclear applications, or other high risk applications (e.g., applications that, if they fail, can be reasonably expected to result in  
personal injury or death) or automotive applications, without the express prior written consent of Adesto.  

相关型号:

AT25SL321-SSHE-T

32-Mbit, 1.7 V Minimum SPI Serial Flash Memory with Dual I/O, Quad I/O and QPI Support
DIALOG

AT25SL321-SUE-T

32-Mbit, 1.7 V Minimum SPI Serial Flash Memory with Dual I/O, Quad I/O and QPI Support
DIALOG

AT25SL321-UUE-T

32-Mbit, 1.7 V Minimum SPI Serial Flash Memory with Dual I/O, Quad I/O and QPI Support
DIALOG

AT25XE011

1-Mbit, 1.65V Minimum SPI Serial Flash Memory with Dual-Read Support
DIALOG

AT25XE011-MAHN-T

1-Mbit, 1.65V Minimum SPI Serial Flash Memory with Dual-Read Support
DIALOG

AT25XE011-SSHN-B

1-Mbit, 1.65V Minimum SPI Serial Flash Memory with Dual-Read Support
DIALOG

AT25XE011-SSHN-T

1-Mbit, 1.65V Minimum SPI Serial Flash Memory with Dual-Read Support
DIALOG

AT25XE011-UUN-T

1-Mbit, 1.65V Minimum SPI Serial Flash Memory with Dual-Read Support
DIALOG

AT25XE011-XMHN-B

1-Mbit, 1.65V Minimum SPI Serial Flash Memory with Dual-Read Support
DIALOG

AT25XE011-XMHN-T

1-Mbit, 1.65V Minimum SPI Serial Flash Memory with Dual-Read Support
DIALOG

AT25XE021A

2-Mbit, 1.65V Minimum SPI Serial Flash Memory with Dual-I/O Support
DIALOG

AT25XE021A-MAHN-T

2-Mbit, 1.65V Minimum SPI Serial Flash Memory with Dual-I/O Support
DIALOG