DA9062-xxAM1-A [DIALOG]

PMIC for applications requiring up to 8.5 A;
DA9062-xxAM1-A
型号: DA9062-xxAM1-A
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

PMIC for applications requiring up to 8.5 A

集成电源管理电路
文件: 总96页 (文件大小:1593K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DA9062  
PMIC for applications requiring up to 8.5 A  
General Description  
DA9062 is a power management integrated circuit (PMIC) optimized for supplying systems with  
single- and dual-core processors, I/O, DDR memory, and peripherals. It targets mobile devices,  
medical equipment, IVI systems, and FPGA based applications.  
DA9062 features four buck converters providing a total current of 8.5 A. High efficiency is achieved  
over a wide load range by using automatic Pulse Frequency Modulation (PFM) mode. All power  
switches are integrated, therefore, external Schottky diodes are not required. Furthermore, low-  
profile inductors can be used with DA9062. Two of the buck converters can be used in a dual-phase  
configuration, and one can be used as a DDR VTT supply. The four LDO regulators with  
programmable output voltage provide up to 300 mA.  
Dynamic Voltage Control (DVC) allows dynamic control of DA9062 supply voltages according to the  
operating point of the system. It is controlled by writing directly to the registers using the I2C  
compatible 2-wire interface or the GPIOs.  
DA9062 features a programmable power sequencer that handles start-up and shutdown sequences.  
Power mode transitions can be triggered with software control, GPIOs, or with the on-key. Several  
types of on-key presses can be detected to trigger different power mode transitions.  
The Real-Time Clock (RTC), with an external 32 kHz crystal oscillator, provides time keeping and  
alarm functions. Additionally, the integrated watchdog timer monitors the system.  
Five GPIOs are able to perform system functions, including: keypad supervision, application wakeup,  
and timing-controlled external regulators/power switches or other ICs.  
DA9062 is also available as an automotive AEC-Q100 Grade 3 version.  
Key Features  
Input voltage 2.8 V to 5.5 V  
Programmable power mode sequencer  
Four buck converters with dynamic voltage  
control:  
System supply and junction temperature  
monitoring  
Buck1: 0.3 V to 1.57 V, 2.5 A  
Watchdog timer  
Buck2: 0.3 V to 1.57 V, 2.5 A  
(can be used in dual-phase configuration  
with Buck1)  
Five GPIOs  
Coin cell/super-capacitor charger  
Ultra-low power RTC with alarm  
32 kHz oscillator with external crystal  
-40 °C to +125 °C junction temperature range  
Buck3: 0.8 V to 3.34 V, 2 A  
Buck4: 0.53 V to 1.8 V, 1.5 A  
(can be used as DDR VTT supply)  
40-pin QFN 6 mm × 6 mm package, 0.5 mm  
pitch (exposed paddle)  
3 MHz switching frequency  
(enables low profile inductors)  
Automotive AEC-Q100 Grade 3 version  
available  
Four LDO regulators:  
LDO1: 0.9 V to 3.6 V, 100 mA  
LDO2, LDO3, LDO4: 0.9 V to 3.6 V,  
300 mA  
Applications  
Single core application processors  
Entry-level FPGAs  
e-Book readers  
Entry-level car infotainment  
Datasheet  
Revision 3.3  
24-Nov-2016  
1 of 96  
© 2016 Dialog Semiconductor  
 
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
Block Diagram  
CLDOCORE  
VDDIO  
VDDCORE  
VSYS  
VDD_BUCK1  
LBUCK1  
Buck1  
Buck2  
Buck3  
Buck4  
LDO1  
CLDO1  
CBUCK1  
CBUCK2  
CBUCK3  
VDD_LDO2  
LDO2  
CLDO2  
VDD_BUCK2  
LBUCK2  
VDD_LDO34  
LDO3  
CLDO3  
LDO4  
CLDO4  
DA9062  
VDD_BUCK3  
LBUCK3  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO  
VDD_BUCK4  
LBUCK4  
(VTT)  
nONKEY  
nRESETREQ  
nRESET  
Control  
and status  
registers  
Power  
sequencer  
CBUCK4  
WD  
RTC  
VBBAT  
Interrupt  
control  
2-Wire  
interface  
32 kHz  
oscillator  
nIRQ  
BBAT charger  
CVBBAT  
+
-
CVREF  
VREF  
IREF  
XTAL_IN  
XTAL_OUT  
RIREF  
SCL SDA  
TP  
Figure 1: DA9062 Block Diagram  
Datasheet  
Revision 3.3  
24-Nov-2016  
2 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
Contents  
General Description ............................................................................................................................ 1  
Key Features ........................................................................................................................................ 1  
Applications ......................................................................................................................................... 1  
Block Diagram ..................................................................................................................................... 2  
Contents ............................................................................................................................................... 3  
1
Package Information..................................................................................................................... 6  
1.1 Pin List................................................................................................................................... 6  
1.2 Package Outline Drawing...................................................................................................... 8  
2
3
4
Absolute Maximum Ratings ......................................................................................................... 9  
Recommended Operating Conditions......................................................................................... 9  
Electrical Characteristics ........................................................................................................... 10  
4.1 Digital I/O ............................................................................................................................ 10  
4.2 Watchdog............................................................................................................................ 11  
4.3 2-Wire Interface................................................................................................................... 11  
4.4 LDOs ................................................................................................................................... 13  
4.4.1  
4.4.2  
4.4.3  
LDO1.................................................................................................................... 13  
LDO2, LDO3, LDO4............................................................................................. 14  
LDOCORE ........................................................................................................... 15  
4.5 Buck Converters.................................................................................................................. 16  
4.5.1  
4.5.2  
4.5.3  
Buck1, Buck2....................................................................................................... 16  
Buck3................................................................................................................... 18  
Buck4................................................................................................................... 20  
4.6 Backup Battery Charger...................................................................................................... 23  
4.7 32 kHz Crystal Oscillator..................................................................................................... 23  
4.8 Internal Oscillator ................................................................................................................ 24  
4.9 System Supply Voltage Supervision................................................................................... 24  
4.10 Junction Temperature Supervision ..................................................................................... 25  
4.11 Current Consumption.......................................................................................................... 25  
5
6
Typical Characteristics............................................................................................................... 26  
System Block Diagram ............................................................................................................... 29  
6.1 DDR Power Management ................................................................................................... 30  
7
Functional Description ............................................................................................................... 31  
7.1 Control Signals.................................................................................................................... 31  
7.1.1  
7.1.2  
7.1.3  
7.1.4  
nONKEY .............................................................................................................. 31  
nRESETREQ....................................................................................................... 31  
nRESET............................................................................................................... 32  
nIRQ..................................................................................................................... 32  
7.2 2-Wire Interface................................................................................................................... 32  
7.2.1  
7.2.2  
Register Map Paging ........................................................................................... 33  
Details of the 2-Wire Protocol.............................................................................. 33  
7.3 GPIOs.................................................................................................................................. 35  
7.3.1  
7.3.2  
7.3.3  
GPI Functionality ................................................................................................. 36  
GPO Functionality................................................................................................ 37  
Alternate Functions.............................................................................................. 37  
Datasheet  
Revision 3.3  
24-Nov-2016  
3 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
7.3.4  
7.3.5  
GPIO Forwarding................................................................................................. 38  
Analog Functions................................................................................................. 38  
7.4 Dynamic Voltage Control .................................................................................................... 38  
7.5 Regulator Voltage A And B Selection ................................................................................. 38  
7.6 LDOs ................................................................................................................................... 39  
7.6.1  
7.6.2  
7.6.3  
Control ................................................................................................................. 39  
Current Limit ........................................................................................................ 39  
Output Pull-Down................................................................................................. 39  
7.7 Switching Regulators .......................................................................................................... 40  
7.7.1  
7.7.2  
7.7.3  
7.7.4  
7.7.5  
7.7.6  
7.7.7  
7.7.8  
7.7.9  
Control ................................................................................................................. 40  
Output Voltage Slewing ....................................................................................... 40  
Soft-Start.............................................................................................................. 40  
Active Discharge.................................................................................................. 40  
Peak Current Limit............................................................................................... 40  
Operating Mode................................................................................................... 41  
Half-Current Mode ............................................................................................... 41  
Buck1 and Buck2 in Dual-Phase Mode............................................................... 41  
Buck4 in DDR Memory Bus Termination Mode................................................... 41  
7.8 Power Modes ...................................................................................................................... 42  
7.8.1  
7.8.2  
7.8.3  
7.8.4  
7.8.5  
7.8.6  
NO-POWER Mode............................................................................................... 43  
RTC Mode ........................................................................................................... 43  
RESET Mode....................................................................................................... 43  
POWERDOWN Mode.......................................................................................... 44  
Power-Up, Power-Down, and Shutdown Sequences.......................................... 45  
ACTIVE Mode...................................................................................................... 45  
7.9 Power Supply Sequencer.................................................................................................... 46  
7.9.1  
7.9.2  
7.9.3  
7.9.4  
7.9.5  
7.9.6  
Sub-Sequences ................................................................................................... 47  
Regulator Control................................................................................................. 47  
GPO Control ........................................................................................................ 48  
Wait Step ............................................................................................................. 49  
32 kHz Clock Output............................................................................................ 49  
Power-Down Disable ........................................................................................... 49  
7.10 Junction Temperature Supervision ..................................................................................... 49  
7.11 System Supply Voltage Supervision................................................................................... 49  
7.12 Backup Battery Charger...................................................................................................... 50  
7.13 Real-Time Clock (RTC)....................................................................................................... 50  
7.13.1 32 kHz Crystal Oscillator ..................................................................................... 50  
7.14 Internal Oscillator ................................................................................................................ 51  
7.15 Watchdog............................................................................................................................ 51  
8
9
Register Map................................................................................................................................ 52  
8.1 Register Page Control......................................................................................................... 52  
8.2 Overview ............................................................................................................................. 52  
Application Information.............................................................................................................. 55  
9.1 Component Selection.......................................................................................................... 55  
9.1.1  
9.1.2  
9.1.3  
Resistors.............................................................................................................. 55  
Capacitors............................................................................................................ 55  
Inductors .............................................................................................................. 56  
Datasheet  
Revision 3.3  
24-Nov-2016  
4 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
9.1.4  
9.1.5  
Crystal.................................................................................................................. 56  
Backup Battery .................................................................................................... 57  
9.2 PCB Layout......................................................................................................................... 57  
9.2.1  
9.2.2  
9.2.3  
9.2.4  
General Recommendations................................................................................. 58  
LDOs and Switched Mode Supplies.................................................................... 58  
32 kHz Crystal Oscillator ..................................................................................... 58  
Optimising Thermal Performance........................................................................ 58  
10 Ordering Information .................................................................................................................. 59  
Appendix A Register Descriptions .................................................................................................. 60  
A.1 PAGE 0 ............................................................................................................................... 60  
A.1.1  
A.1.2  
A.1.3  
A.1.4  
A.1.5  
A.1.6  
A.1.7  
A.1.8  
Page Control........................................................................................................ 60  
Power Manager Control and Monitoring.............................................................. 60  
IRQ Events .......................................................................................................... 61  
IRQ Masks........................................................................................................... 62  
System Control .................................................................................................... 63  
GPIO Control ....................................................................................................... 66  
Power Supply Control.......................................................................................... 69  
RTC Calendar and Alarm .................................................................................... 74  
A.2 PAGE 1 ............................................................................................................................... 77  
A.2.1  
A.2.2  
A.2.3  
Power Supply Sequencer .................................................................................... 77  
Power Supply Control.......................................................................................... 82  
BBAT Charger Control......................................................................................... 86  
A.3 PAGE 2 ............................................................................................................................... 87  
A.3.1  
A.3.2  
Customer Trim and Configuration ....................................................................... 87  
Customer Device Specific.................................................................................... 90  
Revision History ................................................................................................................................ 93  
Datasheet  
Revision 3.3  
24-Nov-2016  
5 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
1
Package Information  
1.1 Pin List  
Table 1: DA9062 Pin Description  
Pin No.  
Pin Name  
Type  
Description  
Table 2  
Paddle  
1
GND  
GND  
AO  
AO  
PS  
AO  
AIO  
AI  
Power grounds of the bucks, digital ground  
LDO1 output voltage  
VLDO1  
2
VLDO2  
LDO2 output voltage  
3
VDD_LDO2  
IREF  
LDO2 supply  
4
Reference current  
5
VREF  
Reference voltage  
6
XTAL_IN  
VSS_ANA  
XTAL_OUT  
VLDO3  
Crystal connection  
7
GND  
AO  
AO  
PS  
AO  
AO  
DIO  
DI  
Analog ground  
8
Crystal connection  
9
LDO3 output voltage  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
VDD_LDO34  
VLDO4  
LDO3 and LDO4 supply  
LDO4 output voltage  
VBBAT  
Backup battery connection  
Data signal of the 2-wire interface  
Clock signal of the 2-wire interface  
Input for power-on key  
Reset request input  
SDA  
SCL  
nONKEY  
nRESETREQ  
VLX_BUCK4  
VDD_BUCK4  
VDD_BUCK3  
VLX_BUCK3  
GPIO0  
DI  
DI  
AO  
PS  
PS  
AO  
DIO  
DIO  
PS  
AI  
Switching node of Buck4  
Buck4 supply  
Buck3 supply  
Switching node of Buck3  
General purpose I/O, VDDQ reference, WDKICK  
General purpose I/O, VTTR  
IO supply  
GPIO1  
VDDIO  
VBUCK4  
VBUCK3  
VBUCK1  
VBUCK2  
GPIO2  
Voltage feedback of Buck4  
Voltage feedback of Buck3  
Voltage feedback of Buck1  
Voltage feedback of Buck2  
General purpose I/O, PWR_EN  
General purpose I/O  
AI  
AI  
AI  
DIO  
DIO  
DIO  
AO  
PS  
PS  
GPIO3  
GPIO4  
General purpose I/O, SYS_EN  
Switching node of Buck1  
Buck1 supply  
VLX_BUCK1  
VDD_BUCK1  
VDD_BUCK2  
Buck2 supply  
Datasheet  
Revision 3.3  
24-Nov-2016  
6 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Pin No.  
Pin Name  
Type  
Description  
Table 2  
34  
35  
36  
37  
38  
39  
40  
VLX_BUCK2_A  
VLX_BUCK2_B  
TP  
AO  
AO  
DIO  
DO  
DO  
AO  
PS  
Switching node of Buck2  
Switching node of Buck2  
Test pin  
nIRQ  
Interrupt signal to host processor  
Reset output  
nRESET  
VDDCORE  
VSYS  
Internal supply  
System supply, LDO1 supply  
Table 2: Pin Type Definition  
Pin Type  
DI  
Description  
Pin Type  
AI  
Description  
Digital Input  
Analog Input  
DO  
Digital Output  
Digital Input/Output  
Power Supply  
AO  
Analog Output  
DIO  
PS  
AIO  
Analog Input/Output  
Ground connection  
GND  
Datasheet  
Revision 3.3  
24-Nov-2016  
7 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
1.2 Package Outline Drawing  
Figure 2: DA9062 Package Outline Drawing  
Datasheet  
Revision 3.3  
24-Nov-2016  
8 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
2
Absolute Maximum Ratings  
Table 3 lists the absolute maximum ratings of the device. Exceeding these ratings may cause  
permanent damage to the device. Device functionality is only guaranteed under the conditions listed  
in Sections 3 and 4. Operating the device in conditions exceeding those listed in Sections 3 and 4,  
but compliant with the absolute maximum ratings listed in Table 3, for extended periods of time may  
affect device reliability.  
Table 3: Absolute Maximum Ratings  
Parameter  
Symbol  
Note  
Min  
-65  
-40  
Typ  
Max  
Unit  
°C  
Storage temperature  
Junction temperature  
+150  
TJ  
+150  
°C  
Note 1  
Supply voltage  
VSYS  
-0.3  
-0.3  
5.5  
V
V
All other  
pins  
VSYS + 0.3  
Note 2  
ESD protection HBM  
ESD protection CDM  
VESD_HBM  
VESD_CDM  
2000  
750  
V
V
Corner pins  
All other pins  
500  
Note 1 See Sections 4.10 and 7.10 for more details.  
Note 2 Voltage must not exceed 5.5 V.  
3
Recommended Operating Conditions  
Table 4: Recommended Operating Conditions  
Parameter  
Symbol  
Note  
Min  
Typ  
Max  
Unit  
Operating junction  
temperature  
TJ  
-40  
+125  
°C  
Supply voltage  
VSYS  
0
5.5  
3.6  
V
V
Supply voltage IO  
VDDIO  
IO supply voltage  
Note 1  
1.2  
Maximum power  
dissipation Note 2  
PDISS  
Derating factor above  
TA = 70 °C: 56 mW/°C  
3000  
mW  
Note 1 VDDIO must not exceed VSYS  
.
Note 2 Obtained from package thermal simulation, board dimension 76 mm x 114 mm x 1.6 mm (JEDEC), 6-  
layer board, 35 μm thick copper top/bottom layers, 17 μm thick copper inside layers, natural  
convection (still air).  
Datasheet  
Revision 3.3  
24-Nov-2016  
9 of 96  
© 2016 Dialog Semiconductor  
 
 
 
 
 
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
4
Electrical Characteristics  
4.1 Digital I/O  
Unless otherwise noted, the following is valid for TJ = -40 °C to +125 ºC, VSYS = 2.8 V to 5.5 V.  
Table 5: Digital I/O Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
VDDCORE mode  
VDDIO mode  
Min  
1.0  
Typ  
Max  
VSYS  
VSYS  
Unit  
Input high voltage  
(GPI0-GPI4,  
nRESETREQ)  
VIH  
V
0.7 * VDDIO  
Input low voltage  
(GPI0GPI4,  
nRESETREQ)  
VIL  
VIH  
VDDCORE mode  
VDDIO mode  
-0.3  
-0.3  
0.4  
V
V
0.3 * VDDIO  
Input high voltage  
(nONKEY)  
RTC mode  
1.0  
1.0  
VSYS  
VSYS  
VDDCORE mode  
VDDIO mode  
RTC mode  
0.7 * VDDIO  
-0.3  
Input low voltage  
(nONKEY)  
VIL  
0.4  
0.4  
V
VDDCORE mode  
VDDIO mode  
VDDCORE mode  
VDDIO mode  
VDDCORE mode  
VDDIO mode  
-0.3  
-0.3  
0.3 * VDDIO  
Input high voltage  
(SCL, SDA)  
VIH  
VIL  
1.0  
V
V
V
0.7 * VDDIO  
Input low voltage  
(SCL, SDA)  
0.4  
0.3 * VDDIO  
Output high voltage  
(GPO0GPO4,  
VOH  
ILOAD = 1 mA  
Push-pull mode  
0.7 * VDDIO  
nRESET, nIRQ)  
Output low voltage  
(GPO0GPO4,  
nRESET, nIRQ)  
VOL  
ILOAD = 1 mA  
0.3  
V
V
Output low voltage  
(SDA)  
VOL  
ILOAD = 20 mA  
ILOAD = 3 mA  
0.4  
0.24  
Source current capability  
(GPO0GPO4)  
IOH  
VOUT = 0.7 * VDDIO  
VDDIO 1.8 V  
-1  
1
mA  
mA  
pF  
Sink current capability  
(GPO0GPO4)  
IOL  
VOUT = 0.3 V  
Input capacitance  
(SCL, SDA)  
CIN  
RPD  
RPU  
10  
Pull-down resistance  
(GPI0GPI4)  
50  
100  
250  
kΩ  
k  
Pull-up resistance  
(GPO0GPO4)  
VDDIO = 1.5 V  
VDDIO = 1.8 V  
VDDIO = 3.3 V  
60  
45  
20  
180  
120  
40  
310  
190  
60  
Datasheet  
Revision 3.3  
24-Nov-2016  
10 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
4.2 Watchdog  
Unless otherwise noted, the following is valid for TJ = -40 °C to +125 ºC, VSYS = 2.8 V to 5.5 V.  
Table 6: Watchdog Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max Unit  
Minimum watchdog time  
tWDMIN  
External 32 kHz oscillator  
110  
200  
ms  
ms  
s
Internal 25 kHz oscillator  
External 32 kHz oscillator  
Internal 25 kHz oscillator  
Maximum watchdog time  
tWDMAX  
2
2.5  
s
Minimum assert time of  
WDKICK  
tWDKICKMIN  
150  
µs  
4.3 2-Wire Interface  
START  
ACK  
STOP  
tF  
tR  
VIH  
VIL  
SDA  
SCL  
tF  
tSU_D  
tH_D  
tHIGH  
tVD_D  
tVD_ACK  
tSU_STO  
VIH  
VIL  
tH_STA  
1/fSCL  
tLOW  
Figure 3: 2-Wire Interface Timing  
Datasheet  
Revision 3.3  
24-Nov-2016  
11 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Unless otherwise noted, the following is valid for TJ = -40 °C to +125 ºC, VSYS = 2.8 V to 5.5 V.  
Table 7: 2-Wire Interface Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Bus free time  
tBUF  
0.5  
µs  
STOP to START  
Bus line capacitive load  
Standard/Fast/Fast+ Mode  
SCL clock frequency  
CB  
150  
pF  
fSCL  
Note 1  
0
1000  
kHz  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
Start condition set-up time  
Start condition hold time  
SCL low time  
tSU_STA  
tH_STA  
tW_CL  
tW_CH  
0.26  
0.26  
0.5  
SCL high time  
0.26  
2-WIRE SCL and SDA rise time tR  
(input requirement)  
(input requirement)  
1000  
300  
2-WIRE SCL and SDA fall time  
Data set-up time  
tF  
tSU_D  
tH_D  
50  
0
Data hold-time  
Data valid time  
tVD_D  
tVD_ACK  
tSU_STO  
0.45  
0.45  
Data valid time acknowledge  
Stop condition set-up time  
0.26  
0
High Speed Mode  
SCL clock frequency  
fSCL  
Requires VDDIO ≥ 1.8 V  
3400  
kHz  
Note 1  
Start condition set-up time  
Start condition hold time  
SCL low time  
tSU_STA  
tH_STA  
tW_CL  
tW_CH  
tR  
160  
160  
160  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL high time  
2-wire SCL and SDA rise time  
2-wire SCL and SDA fall time  
Data set-up time  
(input requirement)  
(input requirement)  
160  
160  
tF  
tSU_D  
tH_D  
10  
0
Data hold-time  
Stop condition set-up time  
tSU_STO  
160  
Note 1 Minimum clock frequency is 10 kHz if 2WIRE_TO is enabled.  
Datasheet  
Revision 3.3  
24-Nov-2016  
12 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
4.4 LDOs  
4.4.1  
LDO1  
Unless otherwise noted, the following is valid for TJ = -40 °C to +125 ºC.  
Table 8: LDO1 Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Input voltage  
VDD  
VDD = VSYS  
2.8  
5.5  
V
(Internally connected)  
Maximum output current IOUT_MAX  
100  
0.9  
mA  
V
Output voltage  
VLDO  
Programmable in 50 mV steps  
3.6  
Output accuracy  
IOUT = IOUT_MAX  
-3%  
+3%  
including static line/load  
regulation  
Stabilisation capacitor  
Output capacitor ESR  
COUT  
Including voltage and  
temperature coefficient  
-55%  
0
1.0  
+35%  
300  
µF  
RCOUT_ESR f > 1 MHz  
including wiring parasitics  
mΩ  
Short circuit current  
Dropout voltage  
ISHORT  
200  
100  
mA  
mV  
VDROPOUT  
VLDO = 3.3 V  
IOUT = IOUT_MAX  
150  
20  
Static line regulation  
VS_LINE  
VDD = 3.0 V to 5.5 V  
IOUT = IOUT_MAX  
5
mV  
Static load regulation  
VS_LOAD  
VTR_LINE  
IOUT = 1 mA to IOUT_MAX  
5
5
20  
20  
mV  
mV  
Line transient response  
VDD = 3.0 V to 3.6 V  
IOUT = IOUT_MAX  
tr = tf = 10 µs  
Load transient response  
VTR_LOAD  
VDD = 3.6 V, VLDO = 3.3 V  
IOUT = 1 mA to IOUT_MAX  
tr = tf = 1 µs  
30  
50  
mV  
Power supply rejection  
ratio  
PSRR  
VDD = 3.6 V  
VDD - VLDO ≥ 0.6 V  
IOUT = IOUT_MAX/2  
f = fVDD_LDO  
f = 10 Hz to 10 kHz  
40  
60  
70  
dB  
Output noise  
N
VDD = 3.6 V, VLDO = 2.8 V  
IOUT = 5 mA to IOUT_MAX  
f = 10 Hz to 100 kHz  
μV  
rms  
TA = 25 ºC  
TA = 25 ºC  
Quiescent current in  
ON mode  
IQ_ON  
IQ_SLEEP  
IQ_OFF  
tON  
9 +  
0.9% IOUT  
μA  
μA  
μA  
μs  
Quiescent current in  
SLEEP mode  
TA = 25 ºC  
1.5 +  
1.6% IOUT  
Quiescent current in  
OFF mode  
VLDO < 0.5 V  
TA = 25 ºC  
1
Turn-on time  
10 % to 90 %  
SLEEP mode  
350  
450  
1
Turn-off time  
tOFF  
90 % to 10%  
ms  
Pull-down enabled  
Datasheet  
Revision 3.3  
24-Nov-2016  
13 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Pull-down resistance in  
OFF mode  
ROFF  
VLDO = 0.5 V  
Can be disabled via  
LDO1_PD_DIS  
100  
Ω
4.4.2  
LDO2, LDO3, LDO4  
Unless otherwise noted, the following is valid for TJ = -40 °C to +125 ºC.  
Table 9: LDO2, LDO3, LDO4 Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
2.8  
Typ  
Max  
Unit  
Input voltage  
VDD  
VDD = VSYS  
5.5  
V
Supplied from buck converter  
1.5  
Maximum output current IOUT_MAX  
VDD ≥ 1.8 V  
(IOUT = IOUT_MAX/3 VDD < 1.8 V)  
300  
mA  
V
Output voltage  
VLDO  
Programmable in 50 mV steps  
0.9  
3.6  
Output accuracy  
IOUT = IOUT_MAX  
-3%  
+3%  
including static line/load  
regulation  
Stabilisation capacitor  
Output capacitor ESR  
COUT  
Including voltage and  
temperature coefficient  
-55%  
0
2.2  
+35%  
300  
µF  
RCOUT_ESR f > 1 MHz  
including wiring parasitics  
mΩ  
Short circuit current  
Dropout voltage  
ISHORT  
600  
100  
mA  
mV  
VDROPOUT  
IOUT = IOUT_MAX  
(VDD < 1.8 V IOUT = IOUT_MAX/3)  
Note 1  
150  
20  
Static line regulation  
VS_LINE  
VDD = 3.0 V to 5.5 V  
IOUT = IOUT_MAX  
5
mV  
Static load regulation  
VS_LOAD  
VTR_LINE  
IOUT = 1 mA to IOUT_MAX  
5
5
20  
20  
mV  
mV  
Line transient response  
VDD = 3.0 V to 3.6 V  
IOUT = IOUT_MAX  
tR = tF = 10 µs  
Load transient response  
VTR_LOAD  
VDD = 3.6 V  
30  
50  
mV  
IOUT = 1 mA to IOUT_MAX  
tR = tF = 1 µs  
Power supply rejection  
ratio  
PSRR  
VDD = 3.6 V  
VDD - VLDO ≥ 0.6 V  
IOUT = IOUT_MAX/2  
f = fVDD_LDO  
f = 10 Hz to 1 kHz  
f = 1 kHz to 10 kHz  
f = 10 kHz to 100 kHz  
70  
60  
40  
80  
70  
50  
dB  
Output noise  
N
VDD = 3.6 V, VLDO = 2.8 V  
IOUT = 5 mA to IOUT_MAX  
f = 10 Hz to 100 kHz  
50  
μV  
rms  
Datasheet  
Revision 3.3  
24-Nov-2016  
14 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Quiescent current in  
ON mode  
IQ_ON  
TA = 25 ºC  
9 +  
0.34% IOUT  
μA  
Quiescent current in  
SLEEP mode  
IQ_SLEEP  
IQ_OFF  
TON  
TA = 25 ºC  
2 +  
0.7% IOUT  
μA  
μA  
µs  
Quiescent current in  
OFF mode  
VLDO < 0.5 V  
TA = 25 ºC  
1
Turn-on time  
10 % to 90 %  
SLEEP mode  
200  
300  
1
Turn-off time  
TOFF  
ROFF  
90 % to 10 %  
Pull-down enabled  
ms  
Pull-down resistance in  
OFF mode  
VLDO = 0.5 V  
Can be disabled via  
LDO<x>_PD_DIS  
100  
Ω
Note 1 At VDD = 1.8 V, the dropout voltage at IOUT_MAX increases by 70%.  
4.4.3  
LDOCORE  
Unless otherwise noted, the following is valid for TJ = -40 °C to +125 ºC, VSYS = 2.8 V to 5.5 V.  
Table 10: LDOCORE Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Note 1  
Min  
Typ  
Max  
Unit  
Output voltage  
VDDCORE  
2.45  
2.5  
2.55  
V
RESET mode  
2.2  
2.2  
V
Stabilisation capacitor  
Output capacitor ESR  
Dropout voltage  
COUT  
Including voltage and  
temperature coefficient  
-55%  
0
+35%  
300  
µF  
RCOUT_ESR f > 1 MHz  
including wiring parasitics  
mΩ  
VDROPOUT  
Note 2  
50  
100  
mV  
Note 1 Setting VDD_FAULT_LOWER 2.65 V avoids LDOCORE dropout, see Section 4.9.  
Note 2 The LDOCORE supply, VSYS, must be maintained above VDDCORE + VDROPOUT  
.
Note  
LDOCORE is only used to supply internal circuits.  
Datasheet  
Revision 3.3  
24-Nov-2016  
15 of 96  
© 2016 Dialog Semiconductor  
 
 
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
4.5 Buck Converters  
4.5.1  
Buck1, Buck2  
Unless otherwise noted, the following is valid for TJ = -40 °C to +125 ºC.  
Table 11: Buck1, Buck2 Electrical Characteristics  
Parameter  
Symbol  
VDD  
Test Conditions  
Min  
2.8  
Typ  
Max  
5.5  
Unit  
V
Input voltage  
Output capacitor  
VDD = VSYS  
COUT  
Half-current mode  
-50%  
2 * 22  
+30%  
µF  
including voltage and  
temperature coefficient  
Full-current mode  
including voltage and  
temperature coefficient  
-50%  
2 * 47  
15  
+30%  
50  
Output capacitor ESR  
RCOUT_ESR  
COUT = 2 * 22 µF  
f > 100 kHz  
m  
including wiring parasitics  
COUT = 2 * 47 µF  
f > 100 kHz  
7.5  
25  
including wiring parasitics  
Inductor value  
LBUCK  
Including current and  
temperature dependence  
0.7  
1.0  
55  
1.3  
µH  
Inductor resistance  
PWM mode  
RL_DCR  
100  
m  
Output voltage  
VBUCK  
Programmable in 10 mV steps  
Note 1  
0.3  
1.57  
+1%  
V
Output voltage accuracy  
VBUCK_ACC  
VDD = 4.2 V, VBUCK = 1.03 V  
excluding static line/load  
regulation and voltage ripple  
TA = 25 ºC  
-1%  
Including static line/load  
regulation and voltage ripple  
Note 2  
-3%  
+3%  
45  
Transient load regulation VTR_LOAD  
VDD = 3.6 V, VBUCK = 1.15 V  
IOUT = 200 mA to 1000 mA  
dI/dt = 3 A/µs  
30  
mV  
mV  
L = 1 µH  
Transient line regulation  
VTR_LINE  
VDD = 3.0 V to 3.6 V  
IOUT = 500 mA  
0.2  
3
tR = tF = 10 µs  
Output current  
Current limit  
IOUT  
Half-current mode  
Full-current mode  
1250  
2500  
2200  
mA  
mA  
ILIM  
Half-current mode  
controlled in BUCK<x>_ILIM  
in 100 mA steps  
700  
1400  
-20%  
Full-current mode  
controlled in BUCK<x>_ILIM  
in 200 mA steps  
4400  
Current limit accuracy  
ILIM_ACC  
IQ_OFF  
20%  
1
Quiescent current in  
OFF mode  
µA  
Datasheet  
Revision 3.3  
24-Nov-2016  
16 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Quiescent current in  
PWM mode  
IQ_ON  
Half-current mode  
VDD = 3.6 V  
9
mA  
IOUT = 0 mA  
TA = 25 ºC  
Full-current mode  
VDD = 3.6 V  
11  
IOUT = 0 mA  
TA = 25 ºC  
Switching frequency  
Note 3  
f
OSC_FRQ = 0000’  
2.85  
14%  
3
3.15  
MHz  
ms  
Switching duty cycle  
Turn-on time  
DC  
tON  
83%  
1.2  
VBUCK = 1.15 V  
0.37  
BUCK_SLOWSTART = disabled  
SLEW_RATE = 10 mV/1 µs  
BUCK<x>_ILIM = 1500 mA  
Output pull-down  
resistance  
RPD  
VBUCK = 0.5 V  
Disabled via BUCK<x>_PD_DIS  
100  
160  
200  
Ω
PMOS ON resistance  
NMOS ON resistance  
RPMOS  
Half-current mode  
Including pin and routing  
VDD = 3.6 V  
mΩ  
Full-current mode  
Including pin and routing  
VDD = 3.6 V  
80  
60  
30  
RNMOS  
Half-current mode  
Including pin and routing  
VDD = 3.6 V  
mΩ  
Full-current mode  
Including pin and routing  
VDD = 3.6 V  
PFM mode  
Output voltage  
VBUCK_PFM  
IAUTO_THR  
Programmable in 10 mV steps  
0.3  
1.57  
300  
V
Mode transition current  
threshold (PFM to PWM)  
in AUTO mode  
VDD = 3.6 V, VBUCK = 1.15 V  
RTRACK 45 mincluding  
bondwire, PCB, inductor ESR  
400  
mA  
Output current  
Current limit  
IOUT_PFM  
ILIM_PFM  
IQ_PFM  
Forced PFM mode  
mA  
mA  
µA  
1000  
27  
Quiescent current  
Forced PFM mode  
IOUT = 0 mA  
32  
42  
AUTO mode  
IOUT = 0 mA  
35  
Mode transition time  
tAUTO  
AUTO mode  
6
µs  
Note 1 If control BUCK<x>_MODE = ‘10’ (Synchronous) then the buck operates in PFM mode for  
VBUCK < 0.7 V. For complete control of the buck mode (PWM versus PFM) use  
BUCK<x>_MODE = ‘00’.  
Note 2 Minimum tolerance 35 mV.  
Note 3 Generated from internal 6 MHz oscillator and can be adjusted by ±10 % via control OSC_FRQ, see  
Section 7.14.  
Datasheet  
Revision 3.3  
24-Nov-2016  
17 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
4.5.2  
Buck3  
Unless otherwise noted, the following is valid for TJ = -40 °C to +125 ºC.  
Table 12: Buck3 Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Input voltage  
VDD  
VDD = VSYS  
2.8  
5.5  
V
IOUT 1.5 A  
VDD = VSYS  
IOUT > 1.5 A  
3.3  
5.5  
Output capacitor  
Output capacitor ESR  
Inductor value  
COUT  
IOUT 1.5 A  
Including voltage and  
temperature coefficient  
-50%  
2 * 22  
2 * 47  
15  
+30%  
µF  
IOUT > 1.5 A  
Including voltage and  
temperature coefficient  
-50%  
+30%  
50  
RCOUT_ESR  
COUT = 2 * 22 µF  
f > 100 kHz  
Including wiring parasitics  
m  
COUT = 2 * 47 µF  
f > 100 kHz  
Including wiring parasitics  
7.5  
25  
LBUCK  
Including current and  
temperature dependence  
0.7  
1.0  
55  
1.3  
µH  
Inductor resistance  
PWM Mode  
RL_DCR  
100  
m  
Output voltage  
VBUCK  
Programmable in 20 mV steps  
0.8  
3.34  
+3%  
V
Output voltage accuracy VBUCK_ACC  
Including static line and load  
regulation and voltage ripple  
Note 1  
-3%  
Transient load regulation VTR_LOAD  
VDD = 3.6 V, VBUCK = 1.8 V  
IOUT = 200 mA to 1000 mA  
dI/dt = 3 A/µs  
30  
60  
60  
0.2  
45  
90  
90  
3
mV  
L = 1 µH  
VDD = 3.6 V, VBUCK = 1.8 V  
IOUT = 200 to 2000 mA  
dI/dt = 3 A/µs  
L = 1 µH  
VDD = 5.0 V, VBUCK = 3.34 V  
IOUT = 200 mA to 2000 mA  
dI/dt = 3 A/µs  
L = 1 µH  
Transient line regulation  
Output current  
VTR_LINE  
VDD = 3.0 V to 3.6 V  
IOUT = 500 mA  
tr = tf = 10 µs  
mV  
mA  
IOUT  
VDD - VBUCK ≥ 1.25 V  
VDD - VBUCK ≥ 1.00 V  
VDD - VBUCK ≥ 0.75 V  
2000  
1250  
900  
Current limit  
ILIM  
Controlled in BUCK3_ILIM  
in 100 mA steps  
1700  
-20%  
3200  
mA  
Current limit accuracy  
ILIM_ACC  
20%  
Datasheet  
Revision 3.3  
24-Nov-2016  
18 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Quiescent current in  
OFF mode  
IQ_OFF  
1
µA  
Quiescent current in  
PWM mode  
IQ_ON  
f
IOUT = 0 mA  
TA = 25 ºC  
9
3
mA  
Switching frequency  
Note 2  
OSC_FRQ = 0000’  
2.85  
15%  
3.15  
MHz  
Switching duty cycle  
Turn-on time  
DC  
tON  
100%  
1.5  
VBUCK = 1.8 V  
0.44  
ms  
BUCK_SLOWSTART = disabled  
SLEW_RATE = 20 mV/2 µs  
BUCK3_ILIM = 2500 mA  
Output pull-down  
resistance  
RPD  
VBUCK = 0.5 V  
Disabled via BUCK3_PD_DIS  
100  
150  
60  
200  
Ω
PMOS ON resistance  
RPMOS  
RNMOS  
Including pin and routing  
VDD = 3.6 V  
mΩ  
mΩ  
NMOS ON resistance  
Including pin and routing  
VDD = 3.6 V  
PFM Mode  
Output voltage  
VBUCK_PFM  
IAUTO_THR  
Programmable in 20 mV steps  
0.8  
3.34  
300  
V
Mode transition current  
threshold (PFM to PWM)  
in AUTO mode  
VDD = 3.6 V, VBUCK = 1.8 V  
RTRACK 45 mincluding  
bondwire, PCB, inductor ESR  
400  
mA  
Output current  
Current limit  
IOUT_PFM  
ILIM_PFM  
IQ_PFM  
Forced PFM mode  
mA  
mA  
µA  
1000  
22  
Quiescent current  
Forced PFM mode  
IOUT = 0 mA  
25  
35  
AUTO mode  
IOUT = 0 mA  
30  
6
Mode transition time  
tAUTO  
AUTO mode  
µs  
Note 1 Minimum tolerance 35 mV.  
Note 2 Generated from internal 6 MHz oscillator and can be adjusted by ±10 % via control OSC_FRQ, see  
Section 7.14.  
Datasheet  
Revision 3.3  
24-Nov-2016  
19 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
4.5.3  
Buck4  
Unless otherwise noted, the following is valid for TJ = -40 °C to +125 ºC.  
Table 13: Buck4 Electrical Characteristics  
Parameter  
Symbol  
VDD  
Test Conditions  
Min  
2.8  
Typ  
Max  
5.5  
Unit  
V
Input voltage  
Output capacitor  
VDD = VSYS  
COUT  
Including voltage and  
temperature coefficient  
-50%  
2 * 22  
15  
+30%  
µF  
Output capacitor ESR  
Inductor value  
RCOUT_ESR  
LBUCK  
f > 100 kHz  
Including wiring parasitics  
50  
1.3  
100  
m  
µH  
Including current and  
temperature dependence  
0.7  
1.0  
Inductor resistance  
PWM Mode  
RL_DCR  
55  
m  
Output voltage  
VBUCK  
Programmable in 10 mV steps  
Note 1  
0.53  
-3%  
1.8  
V
Output voltage accuracy  
VBUCK_ACC  
Including static line/load  
regulation and voltage ripple  
Note 2  
+3%  
Transient load regulation VTR_LOAD  
VDD = 3.6 V, VBUCK = 1.35 V  
IOUT = 200 mA to 1000 mA  
dI/dt = 3 A/µs  
25  
40  
40  
60  
3
mV  
L = 1 µH  
VDD = 3.6 V, VBUCK = 1.35 V  
IOUT = 200 mA to 1500 mA  
dI/dt = 3 A/µs  
L = 1 µH  
Transient line regulation  
Output current  
VTR_LINE  
VDD = 3.0 V to 3.6 V  
IOUT = 500 mA  
tR = tF = 10 µs  
0.2  
mV  
IOUT  
VDD - VBUCK ≥ 1.25 V  
VDD - VBUCK ≥ 1.00 V  
1500  
1250  
2200  
mA  
mA  
Current limit  
ILIM  
Controlled in BUCK4_ILIM  
in 100 mA steps  
700  
Current limit accuracy  
ILIM_ACC  
ILIM = 700 mA to 1400 mA  
ILIM = 1400 mA to 2200 mA  
-15%  
-10%  
+25%  
+15%  
1
Quiescent current in  
OFF mode  
IQ_OFF  
IQ_ON  
f
µA  
mA  
Quiescent current in  
PWM mode  
IOUT = 0 mA  
TA = 25 ºC  
9
3
Switching frequency  
Note 3  
OSC_FRQ = 0000’  
2.85  
14%  
3.15  
MHz  
Switching duty cycle  
Turn-on time  
DC  
tON  
83%  
1.2  
VBUCK = 1.35 V  
0.39  
100  
ms  
BUCK_SLOWSTART = disabled  
SLEW_RATE = 10 mV/1 µs  
BUCK4_ILIM = 1500 mA  
Output pull-down  
resistance  
RPD  
VBUCK = 0.5 V  
Disabled via BUCK4_PD_DIS  
200  
Ω
Datasheet  
Revision 3.3  
24-Nov-2016  
20 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
PMOS ON resistance  
RPMOS  
Including pin and routing  
VDD = 3.6 V  
150  
mΩ  
NMOS ON resistance  
RNMOS  
Including pin and routing  
VDD = 3.6 V  
60  
mΩ  
PFM Mode  
Output voltage  
VBUCK_PFM  
IAUTO_THR  
Programmable in 10 mV steps.  
0.53  
1.8  
V
Mode transition current  
threshold (PFM to PWM)  
in AUTO mode  
VDD = 3.6 V, VBUCK = 1.35 V  
RTRACK 45 mincluding  
bondwire, PCB, inductor ESR  
400  
mA  
Output current  
Current limit  
IOUT_PFM  
ILIM_PFM  
IQ_PFM  
300  
mA  
mA  
µA  
1000  
22  
Quiescent current  
Forced PFM mode  
IOUT = 0 mA  
25  
35  
AUTO mode  
IOUT = 0 mA  
30  
6
Mode transition time  
VTT Mode  
tAUTO  
AUTO mode  
µs  
Input voltage  
VDD  
2.8  
5.5  
V
Output capacitor  
COUT  
Including voltage and  
temperature coefficient  
-50%  
2 * 47  
7.5  
+30%  
µF  
Output capacitor ESR  
RCOUT_ESR  
f > 100 kHz  
Including wiring parasitics  
25  
m  
Inductor value  
LBUCK  
0.25  
80  
µH  
m  
V
Inductor resistance  
Output voltage  
RL_DCR  
VBUCK  
120  
1.3  
VBUCK = VDDQ/2  
0.675  
-3%  
Output voltage accuracy  
VBUCK_ACC  
Relative to VTTR  
+4%  
Including static line/load  
regulation and voltage ripple.  
Output current  
IOUT  
VBUCK = 0.675 V  
VBUCK = 0.700 V  
VBUCK = 0.750 V  
±450  
±550  
±700  
25  
mA  
mV  
Transient load regulation VTR_LOAD  
VDD = 3.6 V, VBUCK = 0.675 V  
IOUT = +10 mA to +1.0 A  
IOUT = -450 mA to -10 mA  
dI/dt = 3 A/µs  
40  
50  
40  
L = 0.25 µH  
VDD = 3.6 V, VBUCK = 0.675 V  
IOUT = +1 A to +10 mA  
IOUT = -10 mA to -450 mA  
dI/dt = 3 A/µs  
35  
25  
L = 0.25 µH  
VDD = 3.6 V, VBUCK = 0.75 V  
IOUT = +10 mA to +1.0 A  
IOUT = -700 mA to -10 mA  
dI/dt = 3 A/µs  
L = 0.25 µH  
Datasheet  
Revision 3.3  
24-Nov-2016  
21 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VDD = 3.6 V  
35  
50  
VBUCK = 0.75 V  
IOUT = +1 A to +10 mA  
IOUT = -10 mA to -700 mA  
dI/dt = 3 A/µs  
L = 0.25 µH  
Turn-on time  
tON  
VBUCK = 0.75 V  
0.33  
1.2  
ms  
BUCK_SLOWSTART = disabled  
SLEW_RATE = 10 mV/1 µs  
BUCK4_ILIM = 1500 mA  
VTTR Buffer  
Feedback voltage  
VTTR output voltage  
VTTR voltage accuracy  
VTTR output capacitor  
VDDQ  
1.35  
0.675  
-49%  
-50%  
2.6  
1.3  
V
V
VTTR  
VTTR = VDDQ/2  
VTTR_ACC  
CVTTR  
Relative to VDDQ input voltage  
+51%  
+30%  
Including voltage and  
temperature coefficient  
0.1  
µF  
VTTR output current  
IVTTR  
Sink/source  
-10  
+10  
mA  
Note 1 If control BUCK4_MODE = ‘10’ (Synchronous) then the buck operates in PFM mode for VBUCK < 0.7 V.  
For complete control of the buck mode (PWM versus PFM) use BUCK4_MODE = 00.  
Note 2 Minimum tolerance 35 mV.  
Note 3 Generated from internal 6 MHz oscillator and can be adjusted by ±10 % via control OSC_FRQ, see  
Section 7.14.  
Datasheet  
Revision 3.3  
24-Nov-2016  
22 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
4.6 Backup Battery Charger  
Unless otherwise noted, the following is valid for TJ = -40 °C to +125 ºC, VSYS = 2.8 V to 5.5 V.  
Table 14: Backup Battery Charger Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Backup battery  
charging current  
ISET_BCHG  
VSYS = 3.6 V  
VBBAT = 2.5 V  
100  
Note 1  
6000  
µA  
Charger termination  
voltage  
VSET_BCHG  
ISHORT  
VSYS = 3.6 V  
1.1  
Note 2  
6.5  
3.1  
V
Backup battery short  
circuit current  
VBBAT = 0 V  
mA  
Stabilisation capacitor  
Output capacitor ESR  
Dropout voltage  
COUT  
-55%  
470  
+35%  
100  
nF  
m  
mV  
RCOUT_ESR  
VDROPOUT  
f > 1 MHz  
IOUT = 5 mA  
150  
200  
Note 1 Can be set in 100 µA steps from 100 µA to 1000 µA and 1 mA steps from 1 mA to 6 mA via  
BCHG_ISET in register BBAT_CONT.  
Note 2 Can be set in 100/200 mV steps via BCHG_VSET in register BBAT_CONT.  
4.7 32 kHz Crystal Oscillator  
Unless otherwise noted, the following is valid for TJ = -40 °C to +125 ºC, VSYS = 2.8 V to 5.5 V.  
Table 15: 32 kHz Crystal Oscillator Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Supply voltage  
VDDRTC  
Derived from VBBAT or  
VDDCORE  
1.5  
2.75  
V
Oscillator frequency  
Clock jitter  
fOSC  
32.768  
20  
kHz  
ns  
k  
pF  
s
Cycle to cycle 1000 cycles  
VDDRTC = 1.5 V to 2.75 V  
35  
Crystal ESR  
RXTAL  
CXTAL  
tSTART  
50  
100  
Crystal CAP  
2
Start-up time  
0.5  
2
Bypass Mode  
Input frequency  
Input duty cycle  
fIN  
-5%  
40%  
1.8  
32  
+5%  
60%  
VSYS  
kHz  
V
DC  
VIH  
XTAL_IN  
RTC_EN = 0  
Input high voltage  
RTC_EN = 1  
VBBAT < VSYS  
1.1  
RTC_EN = 1  
VBBAT > VSYS  
0.7 * VBBAT  
-0.3  
VBBAT  
XTAL_OUT  
VIL  
RTC_EN = 0  
0.6  
0.4  
V
Input low voltage  
RTC_EN = 1  
VBBAT < VSYS  
RTC_EN = 1  
VBBAT > VSYS  
0.2 * VBBAT  
Input slew rate  
SR  
2 pF input capacitance  
0.1  
V/ns  
Datasheet  
Revision 3.3  
24-Nov-2016  
23 of 96  
© 2016 Dialog Semiconductor  
 
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
4.8 Internal Oscillator  
Unless otherwise noted, the following is valid for TJ = -40 °C to +125 ºC, VSYS = 2.8 V to 5.5 V.  
Table 16: Internal Oscillator Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Oscillator frequency  
OSC_FRQ = 0000’  
5.7  
6
6.3  
MHz  
fOSC  
Note 1 Oscillator frequency can be further adjusted by about ±10 %, see Section 7.14.  
4.9 System Supply Voltage Supervision  
Unless otherwise noted, the following is valid for TJ = -40 °C to +125 ºC, VSYS = 2.8 V to 5.5 V.  
Table 17: System Supply Voltage Supervision Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Under-voltage  
lockout lower  
threshold  
VPOR_LOWER  
2.0  
V
Under-voltage  
lockout upper  
threshold  
VPOR_UPPER  
2.3  
2.8  
V
V
VSYS under-voltage  
lower threshold  
VDD_FAULT_LOWER  
Note 1  
2.5  
3.25  
+2%  
VSYS under-voltage  
lower threshold  
accuracy  
VSYS_LOWER  
-2%  
VSYS hysteresis  
100  
-2%  
-1%  
200  
450  
+2%  
+1%  
mV  
VDD_FAULT_HYS  
Note 2  
VSYS upper  
threshold  
VDD_FAULT_UPPER  
VDD_FAULT_LOWER  
VDD_FAULT_HYS  
+
Reference voltage  
VREF  
1.2  
2.2  
V
VREF decoupling  
capacitor  
CVREF  
µF  
Reference current  
resistor  
RIREF  
-1%  
200  
+1%  
k  
Note 1 Can be set in 50 mV steps via control VDD_FAULT_ADJ in register CONFIG_B,  
setting VDD_FAULT_LOWER 2.65 V avoids LDOCORE dropout, see Section 4.4.3.  
Note 2 Can be set in 50 mV steps via control VDD_HYST_ADJ in register CONFIG_B.  
Datasheet  
Revision 3.3  
24-Nov-2016  
24 of 96  
© 2016 Dialog Semiconductor  
 
 
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
4.10 Junction Temperature Supervision  
Unless otherwise noted, the following is valid for TJ = -40 °C to +125 ºC, VSYS = 2.8 V to 5.5 V.  
Table 18: Junction Temperature Supervision Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
POR temperature  
threshold Note 1  
TPOR  
Note 2  
135  
150  
165  
°C  
Critical temperature  
threshold Note 1  
TCRIT  
Note 2  
Note 2  
125  
110  
140  
125  
155  
140  
°C  
°C  
Warning temperature  
threshold Note 1  
TWARN  
Note 1 See Section 7.10.  
Note 2 Thermal thresholds are non-overlapping.  
4.11 Current Consumption  
Unless otherwise noted, the following is valid for TJ = -40 °C to +125 ºC, VSYS = 2.8 V to 5.5 V.  
Table 19: Current Consumption Electrical Characteristics  
Operating Mode  
Symbol  
Test Conditions  
VBBAT  
(Typ)  
VSYS  
(Typ)  
Unit  
RTC mode  
IDDRTC  
VSYS > 2.0 V  
VBBAT > VSYS  
1.5  
1.0  
µA  
Note 1  
VSYS > 2.0 V  
VBBAT < VSYS  
0.5  
7
µA  
µA  
Note 2  
POWERDOWN mode  
ACTIVE mode  
IDDPD  
VSYS > 3.0 V  
40  
LDOCORE enabled  
Bucks and LDOs disabled  
IDDACT  
Bucks and LDOs enabled  
400  
µA  
Note 1 Maximum current is 2.5 μA for TA 85 C and VBBAT 3.1 V.  
Note 2 Maximum current is 10 μA for TA 85 C and VSYS 5.0 V.  
Datasheet  
Revision 3.3  
24-Nov-2016  
25 of 96  
© 2016 Dialog Semiconductor  
 
 
 
 
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
5
Typical Characteristics  
Figure 4: Buck1 Efficiency in AUTO Mode  
Figure 5: Buck2 Efficiency in AUTO Mode  
Datasheet  
Revision 3.3  
24-Nov-2016  
26 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Figure 6: Buck3 Efficiency in AUTO Mode (VIN = 3.60 V, VOUT = 1.80 V)  
Figure 7: Buck3 Efficiency in AUTO Mode (VIN = 5.00 V, VOUT = 3.34 V)  
Datasheet  
Revision 3.3  
24-Nov-2016  
27 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Figure 8: Buck4 Efficiency in AUTO Mode  
Datasheet  
Revision 3.3  
24-Nov-2016  
28 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
6
System Block Diagram  
A block diagram for a typical application is illustrated in Figure 9.  
VDD_BUCK1  
VDD_BUCK4  
VDDQ 1.5 V (2.5 A)  
Buck1  
Buck4  
DDR3  
memory  
VDDQ(GPIO0)  
VTT 0.75 V (±700 mA)  
VDD_BUCK2  
VDD_BUCK3  
0.7 V to 1.57 V (2.5 A)  
0.8 V to 3.3 V (2 A)  
Buck2  
Buck3  
DA9062  
VSYS  
LDOCORE  
Application processor  
0.9 V to 3.6 V (100 mA)  
0.9 V to 3.6 V (300 mA)  
0.9 V to 3.6 V (300 mA)  
0.9 V to 3.6 V (300 mA)  
LDO1  
LDO2  
LDO3  
LDO4  
RTC  
VDD_LDO2  
VDD_LDO34  
BBAT  
charger  
Coin  
cell  
Figure 9: DA9062 Typical System Block Diagram  
Datasheet  
Revision 3.3  
24-Nov-2016  
29 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
6.1 DDR Power Management  
Using DA9062 for DDR power management is illustrated in Figure 10.  
5 V  
VDD_BUCK4  
Buck1/2  
VDD_BUCK1  
VDDQ (2.5 A)  
Buck  
control  
VLX_BUCK1  
VBUCK1  
DAC  
VBUCK1  
Buck4  
VTT (±700 mA)  
Buck  
control  
VLX_BUCK4  
VBUCK4  
VBUCK4  
DAC  
VDDQ  
VTTR (±10 mA)  
Figure 10: DA9062 DDR Power Management  
Datasheet  
Revision 3.3  
24-Nov-2016  
30 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
7
Functional Description  
7.1 Control Signals  
Each of the input signals described below feature a debounce filter. They share a common debounce  
time control (DEBOUNCING).  
7.1.1  
nONKEY  
nONKEY is an edge-sensitive signal that controls the power mode of DA9062. Both falling and rising  
edges are detected and the time between the edges is measured. This enables different lengths of  
key press detection. The detection circuitry is enabled in all power modes of the device.  
The status of the signal after debouncing can be read from NONKEY (reg. STATUS_A). The mask  
bit M_NONKEY prevents interrupt and wakeup events that would normally be caused by an nONKEY  
event.  
nONKEY has four modes of operation, see Table 20, which can be selected by NONKEY_PIN.  
NONKEY_LOCK controls the wakeup event generation of the nONKEY. If NONKEY_LOCK is  
asserted (depends on NONKEY_PIN), a short nONKEY press (shorter than KEY_DELAY) will not  
generate a wakeup.  
Table 20: nONKEY Functions  
NONKEY_PIN Function  
00  
An event (E_nONKEY) is generated when nONKEY is asserted. If not masked, the event  
causes an interrupt. A wakeup is triggered if the device is in POWERDOWN mode.  
01  
A timer is started when nONKEY is asserted. If the signal is de-asserted before the time  
programmed in KEY_DELAY, an event (E_nONKEY) is generated at the rising edge. If the  
signal stays asserted and the timer reaches the programmed value, an event is generated and  
nONKEY_LOCK is asserted.  
10  
11  
A timer is started when nONKEY is asserted. If the signal is de-asserted before the time  
programmed in KEY_DELAY, an event (E_nONKEY) is generated at the rising edge. If the  
signal stays asserted and the timer reaches the programmed value, an event is generated,  
nONKEY_LOCK is asserted, and a power-down sequence is triggered by automatically  
clearing SYSTEM_EN.  
A timer is started when nONKEY is asserted. If the signal is de-asserted before the time  
programmed in KEY_DELAY, an event (E_nONKEY) is generated at the rising edge,  
SYSTEM_EN is cleared, and STANDBY is asserted. If the signal stays asserted and the timer  
reaches the programmed value, an event is generated, nONKEY_LOCK is asserted, and  
SYSTEM_EN and STANDBY are cleared.  
Whenever nONKEY_LOCK is asserted, a long key press (longer than the time programmed in  
KEY_DELAY) is required to wakeup from POWERDOWN mode. If the wakeup is also desired after a  
short key press, nONKEY_LOCK has to be cleared before entering the POWERDOWN mode.  
7.1.2  
nRESETREQ  
nRESETREQ is an active-low reset request that causes DA9062 to enter RESET mode. The  
transition to the RESET mode is handled by the power sequencer and it can be sped up by setting  
the HOST_SD_MODE bit. Before entering the RESET mode, a fault log bit is set (nRESETREQ) and  
nRESET is asserted.  
nRESETREQ should be tied to an always-on rail that is supplied in all modes of the DA9062 such as  
VSYS. It is not recommended to tie nRESETREQ to any of the regulator outputs.  
Datasheet  
Revision 3.3  
24-Nov-2016  
31 of 96  
© 2016 Dialog Semiconductor  
 
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
7.1.3  
nRESET  
nRESET is an active-low reset output intended for resetting the host processor of the system. The  
signal can be configured as either push-pull or open drain output (PM_O_TYPE).  
nRESET is always asserted upon a cold boot from the no-power mode. It is always asserted at the  
beginning of a shutdown sequence to the RESET mode. nRESET may also be asserted at the  
beginning of the sequence to the POWERDOWN mode, if configured in control NRES_MODE.  
De-assertion of nRESET is controlled by a reset timer. After being asserted, nRESET remains low  
until the reset timer, which was started from the selected trigger signal, expires. The reset timer  
trigger can be selected via RESET_EVENT and set to one of the following: an external signal  
triggering the wakeup (EXT_WAKEUP), an internal signal indicating the end of the first power-up  
sub-sequence (SYS_UP), an internal signal indicating the end of the second power-up sub-sequence  
(PWR_UP), or the transition of DA9062 from reset to POWERDOWN mode. The expiry time can be  
configured via RESET_TIMER from 1 ms to 1 s. If RESET_TIMER is set to 0 ms, nRESET is de-  
asserted immediately after the trigger selected with RESET_EVENT.  
7.1.4  
nIRQ  
nIRQ is a level-sensitive interrupt signal. It can be configured either as a push-pull or an open drain  
output (selected via PM_O_TYPE). The polarity of nIRQ can be selected with IRQ_TYPE.  
nIRQ is asserted when an unmasked event has occurred. The nIRQ will not be released until all  
event registers have been cleared. New events that occur while reading an event register are saved  
until the event register is cleared, ensuring that the host processor captures them. The same will  
happen to all events occurring when the power sequencer is in transition.  
7.2 2-Wire Interface  
The 2-wire interface provides access to the control and status registers. The interface supports  
operations compatible to the standard, fast, fast-plus, and high-speed modes of the I2C bus  
specification Rev. 3. Communication on the 2-wire bus is always between two devices; one acting as  
the master and the other as the slave. The DA9062 only operates as a slave.  
SCL transmits 2-wire clock data and SDA transmits the bidirectional data. The 2-wire interface is  
open-drain supporting multiple devices on one line. The bus lines have to be pulled high by an  
external pull-up resistor (2 kto 20 kΩ). The attached devices drive the bus lines low by connecting  
them to ground. As a result, two devices can drive the bus simultaneously without conflict. In  
standard/fast mode the highest frequency of the bus is 400 kHz. The exact frequency can be  
determined by the application and it does not have any relation to the DA9062 internal clock signals.  
DA9062 stays within the described host clock speed limitations and does not initiate clock slow-  
down. An automatic interface reset is triggered when the clock signal ceases toggling for >35 ms  
(controlled in TWOWIRE_TO).  
When the SDA is stuck, the bus clears after receiving nine clock pulses. Operation in high-speed  
mode at 3.4 MHz requires a minimum interface supply voltage of 1.8 V and a mode change in order  
to enable slope-control. The high-speed mode can be enabled on a transfer-by-transfer basis by  
sending the master code (0000 1XXX) at the beginning of the transfer. The DA9062 does not make  
use of clock stretching and delivers read data without delay up to 3.4 MHz.  
Alternatively, the interface can be configured to use high-speed mode continuously via PM_IF_HSM,  
so that the master code is not required at the beginning of every transfer. This reduces  
communication overhead on the bus and limits the attachable bus slaves to compatible devices.  
Datasheet  
Revision 3.3  
24-Nov-2016  
32 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
7.2.1  
Register Map Paging  
The 2-wire interface has direct access to two pages of the DA9062 register map (up to 256  
addresses). The register at address zero on each page is used as a page control register (the LSB of  
control PAGE is ignored). Writing to the page control register changes the active page for all  
subsequent read/write operations unless an automatic return to page 0 is selected using control  
REVERT. Unless REVERT was asserted after modifying the active page, it is recommended to read  
back the page control register to ensure that future data exchange is accessing the intended  
registers.  
DA9062 also offers an alternative way to access register pages which avoids writing explicitly to  
PAGE. DA9062 responds to multiple consecutive slave addresses and updates PAGE automatically  
based on the slave address. For example, when IF_BASE_ADDR[7:4] = 0xB the slave address  
changes PAGE as follows:  
Slave address = 0xB0 PAGE = 0x00  
Slave address = 0xB2 PAGE = 0x02  
7.2.2  
Details of the 2-Wire Protocol  
All data is transmitted across the 2-wire bus in 8-bit groups. To send a bit, the SDA line is driven at  
the intended state while the SCL is low. Once the SDA has settled, the SCL line is brought high and  
then low. This pulse on SCL stores the SDA bit in the receiver’s shift register.  
A 2-byte serial protocol is used: one address byte and one data byte. Data and address transfer  
transmits the MSB first for both read and write operations. All transmissions begin with the START  
condition from the master during which the bus is in IDLE state (the bus is free). It is initiated by a  
high-to-low transition on the SDA line while the SCL is in high state. A STOP condition is indicated by  
a low-to-high transition on the SDA line while the SCL is in high state. The START and STOP  
conditions are illustrated in Figure 11.  
SDA  
SCL  
START  
Transaction  
STOP  
Figure 11: Timing of the START and STOP Conditions  
DA9062 monitors the 2-wire bus for a valid slave address whenever the interface is enabled. It  
responds immediately when it receives its own slave address. This is acknowledged by pulling the  
SDA line low during the following clock cycle (white blocks marked with ‘A’ in the following figures).  
The protocol for a register write from master to slave consists of a START condition, a slave address,  
a read/write-bit, 8-bit address, 8-bit data, and a STOP condition. DA9062 responds to all bytes with  
an ACK. A register write operation is illustrated in Figure 12.  
P
S
SLAVEadr  
7-bits  
W
A
REGadr  
8-bits  
A
DATA  
8-bits  
A
1-bit  
Master to Slave  
Slave to Master  
S = START condition  
P = STOP condition  
A = Acknowledge (low)  
W = Write (low)  
Figure 12: Byte Write Operation  
Datasheet  
Revision 3.3  
24-Nov-2016  
33 of 96  
© 2016 Dialog Semiconductor  
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
When the host reads register data the DA9062 first has to access the target register address with  
write access and then with read access and a repeated START, or alternatively a second START,  
condition. After receiving the data, the host sends NACK and terminates the transmission with a  
STOP condition, see Figure 13.  
A*  
P
S
SLAVEadr W A REGadr A Sr SLAVEadr  
R
A
DATA  
8-bits  
1-bit  
7-bits 1-bit  
8-bits  
7-bits  
S
SLAVEadr W A REGadr  
A
P
S
SLAVEadr  
R
A
DATA  
8-bits  
A*  
P
7-bits 1-bit  
8-bits  
7-bits 1-bit  
Master to Slave  
Slave to Master  
S = START condition  
Sr = Repeated START condition  
P = STOP condition  
A = Acknowledge (low)  
A* = No Acknowledge  
W = Write (low)  
R = Read (high)  
Figure 13: Examples of Byte Read Operations  
Consecutive (page) read-out mode is initiated from the master by sending an ACK instead of NACK  
after receiving a byte, see Figure 14. The 2-wire control block then increments the address pointer to  
the next register address and sends the data to the master. The data bytes are read continuously  
until the master sends a NACK followed by a subsequent STOP condition directly after receiving the  
data. If a non-existent 2-wire address is read out then the DA9062 will return code zero.  
A*  
P
S
SLAVEadr  
W
A
REGadr  
8-bits  
A
Sr SLAVEadr  
R
A
DATA  
8-bits  
A
DATA  
8-bits  
A
DATA  
8-bits  
7-bits  
1 bit  
7-bits 1-bit  
S
SLAVEadr  
W
A
REGadr  
A
P
S
SLAVEadr  
R
A
DATA  
8-bits  
A
DATA  
8-bits  
A*  
P
7-bits  
8-bits  
7-bits 1-bit  
1-bit  
Master to Slave  
Slave to Master  
A
S = START condition  
= Acknowledge (low)  
Sr = Repeat START condition  
P = STOP condition  
A* = No Acknowledge  
W = Write (low)  
R = Read (high)  
Figure 14: 2-Wire Page Read  
The slave address after the repeated START condition must be the same as the previous slave  
address.  
Consecutive (page) write mode is supported if the master sends several data bytes after sending the  
register address. The 2-wire control block then increments the address pointer to the next 2-wire  
address, stores the received data, and sends an ACK until the master sends a STOP condition. The  
page write mode is illustrated in Figure 15.  
S
SLAVEadr  
W
A
REGadr  
8-bits  
A
DATA  
A
DATA  
8-bits  
A
DATA  
8-bits  
A
……….  
Repeated writes  
A
P
7-bits 1 bit  
8-bits 1-bit  
Master to Slave  
Slave to Master  
A
S = START condition  
= Acknowledge (low)  
Sr = Repeat START condition  
P = STOP condition  
A* = No Acknowledge  
W = Write (low)  
R = Read (high)  
Figure 15: 2-Wire Page Write  
Datasheet  
Revision 3.3  
24-Nov-2016  
34 of 96  
© 2016 Dialog Semiconductor  
 
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
A repeated write mode can be enabled with WRITE_MODE control. In this mode, the master can  
execute back-to-back write operations to non-consecutive addresses by transmitting register  
addresses and data pairs. The data is stored in the address specified by the preceding byte. The  
repeated write mode is illustrated in Figure 16.  
S
SLAVEadr  
W
A
REGadr  
8-bits  
A
DATA  
A
REGadr  
8-bits  
A
DATA  
8-bits  
A
……….  
Repeated writes  
A
P
7-bits 1 bit  
8-bits 1-bit  
Master to Slave  
Slave to Master  
A
S = START condition  
= Acknowledge (low)  
Sr = Repeat START condition  
P = STOP condition  
A* = No Acknowledge  
W = Write (low)  
R = Read (high)  
Figure 16: 2-Wire Repeated Write  
If a new START or STOP condition occurs within a message, the bus returns to idle mode.  
7.3 GPIOs  
DA9062 features five general purpose IO pins. The basic structure of the GPIOs is depicted in  
Figure 17. As illustrated, there are several additional functions:  
analog function  
alternate function  
forwarding  
regulator control  
sequencer WAIT_STEP  
interrupt and wakeup generation  
The GPIOs are operational in POWERDOWN and ACTIVE modes. However, GPIs can be  
configured as disabled in POWERDOWN mode in register PD_DIS (control GPI_DIS). In other  
modes, the GPIO is disabled and all ports are configured as open drain outputs in high impedance  
state. The level transitions on inputs will no longer be detected, but I/O drivers will keep their  
configuration and programmed levels.  
Alternate  
function  
Forwarding  
output  
Sequencer (WAIT_STEP),  
regulator control  
Analog function  
Interrupt  
GPIOx_MODE  
GPIOx_PIN  
GPIOx_TYPE  
M_GPIOx  
GPIOx_WKUP_MODE  
Debounce  
GPI  
Edge  
detection  
GPIx  
E_GPIOx  
Mask  
Wakeup  
selection  
Wakeup  
enable  
Wakeup  
GPIOx_PUPD  
GPIOx_PIN  
VDDIO  
GPIOx_WEN  
GPIOx_OUT  
GPIOx_PUPD  
GPIOx_MODE  
GPO OD  
Forwarding input  
Sequencer  
0
1
Output  
function  
CLK_32K  
VDD_FAULT  
VDDIO  
GPO push-pull  
Figure 17: General GPIO Block Diagram  
The functionality of a GPIO is configured in GPIO<x>_PIN, as listed in Table 21.  
Datasheet  
Revision 3.3  
24-Nov-2016  
35 of 96  
© 2016 Dialog Semiconductor  
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 21: GPIO Functions  
GPIO<X>_  
PIN  
Function  
GPIO<X>_MOD  
E
GPIO<X>_TY GPIO<X>_WKUP_MO GPIO<X>_WEN  
PE  
DE  
0
Alternate  
function  
No effect  
No effect  
No effect  
No effect  
1
GPI  
0: Debounce off  
1: Debounce on  
0: Active low  
1: Active high wakeup  
0: Edge-sensitive  
0: Wakeup  
disabled  
1: Level-sensitive  
1: Wakeup enabled  
wakeup  
2
3
GPO  
0: Output low  
1: Output high  
No effect  
No effect  
No effect  
No effect  
Open drain  
GPO  
0: Output low  
1: Output high  
No effect  
No effect  
Push-pull  
7.3.1  
GPI Functionality  
In GPI mode, the polarity of the input can be selected with GPIO<x>_TYPE. A debouncing filter can  
be applied on the input signals with a configurable debouncing time (control DEBOUNCING). An  
event is generated at the active edge of the input. The active edge is determined by the signal  
polarity configured in GPIO<x>_TYPE. The event can be further configured to generate a wakeup via  
GPIO<x>_WKUP_MODE and GPIO<x>_WEN. An internal pull-down can be activated for the inputs  
in GPIO<x>_PUPD.  
A level sensitive wakeup event can also be configured for each GPI via GPIO<x>_WKUP_MODE  
and GPIO<x>_WEN. The functionality of the level-sensitive wakeup is described in Table 26.  
7.3.1.1  
Regulator Control  
GPIO1, GPIO2, and GPIO3 can be used for controlling DA9062 regulators. When configured as  
GPIs, they can be used to enable regulators or select between their two output voltage settings.  
As seen in Figure 17, the regulator control is branched after the GPIO<x>_TYPE control allowing  
active edge delegation for the regulator control. Finally, the functionality for the GPI is selected with  
the regulator controls BUCK<x>_GPI, LDO<x>_GPI, VBUCK<x>_GPI, and VLDO<x>_GPI.  
One GPI can be used to control the same function on multiple regulators simultaneously. When a  
regulator is controlled by a GPI, the same function (on/off or voltage selection) can no longer be  
controlled by the power supply sequencer. The regulator still responds normally to register writes to  
the control bit.  
Enable/Disable Control  
A GPI is used for enabling/disabling regulators when it is selected in one of the BUCK<x>_GPI or  
LDO<x>_GPI controls. A passive to active transition sets the regulator enable bit (BUCK<x>_EN,  
LDO<x>_EN), and an active to passive transition clears it.  
Output Voltage Control  
A GPI is used for the output voltage selection when it is selected in one of the VBUCK<x>_GPI or  
VLDO<x>_GPI controls. A passive to active transition sets the voltage selection bit  
(VBUCK<x>_SEL, VLDO<x>_SEL), and an active to passive edge clears it.  
7.3.1.2  
Sequencer WAIT_STEP  
GPIO3 can be used for the WAIT_STEP functionality. The power sequencer can be programmed to  
wait for either a rising or falling edge of the WAIT_STEP input, see Section 7.9.4. The active edge is  
selected from GPIO<x>_TYPE.  
Datasheet  
Revision 3.3  
24-Nov-2016  
36 of 96  
© 2016 Dialog Semiconductor  
 
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
7.3.2  
GPO Functionality  
The outputs can be configured as push-pull or open drain outputs, see Table 21. An internal pull-up  
can be enabled/disabled from GPIO<x>_PUPD (open drain mode). The GPIO<x>_MODE settings  
can control the output state.  
Instead of controlling the output with GPIO<x>_MODE, a selection of alternatives is available in the  
GPIO<x>_OUT controls. These include: the forwarding function, see Section 7.3.4, the power supply  
sequencer, see Section 7.9, the 32 kHz clock (OUT_32K), and the status of the supply voltage  
supervision (nVDD_FAULT). When the GPIO is configured as an output and GPIO<x>_OUT is set to  
0x0, the GPIO<x>_MODE determines the state of the ouput.  
7.3.2.1  
nVDD_FAULT  
nVDD_FAULT gives the status of the system supply monitoring, see Section 7.11. The assertion of  
nVDD_FAULT indicates that the main supply input voltage is low (VSYS < VDD_FAULT_UPPER) and  
therefore informs the host processor that the power will soon shut down. It can be configured to drive  
a GPO from the GPIO<x>_OUT controls. The driver type (push-pull, open drain) selection and pull-  
up resistor control function normally. The GPIO<x>_MODE can be used to invert the incoming  
nVDD_FAULT signal.  
7.3.2.2  
OUT_32K  
OUT_32K feeds a buffered 32 kHz clock signal that is derived from the internal oscillator. The signal  
output buffer can be controlled either with the power sequencer or manually via EN_32KOUT, and  
paused automatically during POWERDOWN mode with the OUT_32K_PAUSE bit.  
Glitch-free switching between a 32 kHz clock output and another GPIO configuration is not  
guaranteed. Therefore, configuring a GPIO for 32 kHz clock output should only be done in OTP.  
However, enabling and disabling the buffer is still dynamic as described above.  
7.3.3  
Alternate Functions  
GPIO0, GPIO2, and GPIO4 can be used for alternate functions. These are digital control signals that  
don’t employ the debouncing, event detection, or interrupt generation functions. Only the input buffer  
of the GPIO block is employed. The alternate functions of DA9062 are listed in Table 22 and  
described in the following subsections. A debouncing filter can be applied also on the alternate  
functions with a configurable debouncing time (control DEBOUNCING).  
Table 22: GPIO Alternate Input Functions  
Gpio  
Alternate Function  
Description  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
WDKICK  
Watchdog kick or disable  
-
PWR_EN  
-
Power mode control  
Power mode control  
SYS_EN  
7.3.3.1  
SYS_EN  
SYS_EN (pin GPIO4) controls the SYSTEM_EN bit and thereby the power mode of DA9062. It is  
part of the power supply sequencer functionality described in Section 7.9. SYS_EN is an edge-  
sensitive signal and its polarity can be chosen in the GPIO4_TYPE control.  
Asserting SYS_EN causes an interrupt (E_GPIx) and a wakeup event. De-asserting SYS_EN  
triggers a power-down sequence but no interrupt.  
Datasheet  
Revision 3.3  
24-Nov-2016  
37 of 96  
© 2016 Dialog Semiconductor  
 
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
7.3.3.2  
PWR_EN  
PWR_EN (pin GPIO2) controls the POWER_EN bit and thereby the power mode of DA9062. It is  
part of the power supply sequencer functionality described in Section 7.9. PWR_EN is an edge-  
sensitive signal and its polarity can be chosen in the GPIO2_TYPE control. A wakeup event can be  
generated after assertion of PWR_EN if so configured in GPIO2_WEN.  
7.3.3.3  
WDKICK  
A rising edge of the WDKICK signal resets the watchdog counter. The polarity of the signal can be  
chosen in the GPIO0_TYPE control. If the signal is kept asserted, the watchdog is disabled as the  
counter is not incremented (WDG_MODE), see Section 7.15.  
7.3.4  
GPIO Forwarding  
GPIO forwarding works between GPIOs 0, 1, 2, and 3. Any of these GPIs can be routed directly to  
GPO0, 1, and 3 after debouncing. Forwarding is one of the options for the GPIO<x>_OUT control.  
7.3.5  
Analog Functions  
GPIO0 and GPIO1 can be used as analog IOs. In this case, the normal GPIO functions are disabled.  
The analog functions and their corresponding control bits are listed in Table 23.  
Table 23: GPIO Analog Functions  
Gpio  
Analog Function  
Control  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
VDDQ  
BUCK4_VTT_EN  
BUCK4_VTTR_EN  
VTTR  
-
-
-
7.4 Dynamic Voltage Control  
All of DA9062’s buck converters can be controlled in several ways to achieve dynamic voltage  
control (DVC). The buck converters feature a voltage ramping feature that enables smooth transition  
from one voltage setting to another.  
All output voltages can be controlled with software via the 2-wire interface (VBUCK<x>_A). The 2-  
wire interface is operational when the device is in ACTIVE mode.  
7.5 Regulator Voltage A And B Selection  
In addition, all regulators feature A and B settings which can be programmed with different voltages  
(VBUCK<x>_A, VBUCK<x>_B), one of which is chosen according to the operating mode of the  
system (VBUCK<x>_SEL, VLDO<x>_SEL). In addition to the output voltage, the A and B settings  
include a bit to force the regulator into SLEEP mode which reduces the quiescent current.  
The selection between the A and B settings can be done either with software via the 2-wire interface  
or by the power sequencer, see Section 7.9. Furthermore, each regulator can be enabled with a GPI  
pin, see Section 7.3.1.1, and the selection between the A and B settings done with another GPI.  
Datasheet  
Revision 3.3  
24-Nov-2016  
38 of 96  
© 2016 Dialog Semiconductor  
 
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
7.6 LDOs  
All LDOs employ Dialog Semiconductor’s Smart Mirror™ dynamic biasing technology, see Figure 18,  
which maintains high performance over a wide range of operating conditions and a power saving  
mode (SLEEP mode) to minimize the quiescent current during very low output current. The circuit  
technique offers significantly higher gain bandwidth performance than conventional designs, enabling  
higher power supply rejection performance at higher frequencies. PSRR is maintained across the full  
operating current range however quiescent current consumption is scaled to demand improved  
efficiency when current demand is low.  
Vin  
Vref  
Vout  
Cout  
Smart Mirror TM LDO  
ESR  
Figure 18: Smart MirrorTM Voltage Regulator  
7.6.1  
Control  
The LDOs can be enabled by writing directly to a control bit (LDO<x>_EN), controlling it via a GPI,  
see Section 7.3.1.1, or assigning it to a power sequencer step, see Section 7.9.2. Each LDO features  
two voltage control registers (VLDO<x>_A/VLDO<x>_B) that allow two output voltage pre-  
configurations. The active setting can then be selected either with a control bit (VLDO<x>_SEL), via  
a GPI, see Section 7.3.1.1, or automatically based on the DA9062 power mode. The SLEEP mode of  
the LDOs can be linked to either the A or B setting (LDO<x>_SL_A/LDO<x>_SL_B). Therefore, the  
LDO will switch to SLEEP mode when the setting is active.  
LDO1 differs from the other LDOs because it can be configured as an always-on regulator. This  
means that it is also enabled in RESET mode, see Section 7.8.3.  
7.6.2  
Current Limit  
Each LDO provides over-current detection. The current limit is fixed for each LDO based on their  
current capability. If any of the LDOs’ current limit is exceeded for longer than 10 ms, an event,  
E_LDO_LIM, is triggered. The status of the limit comparator can be observed from LDO<x>_ILIM  
(reg. STATUS_D). If an LDO’s current limit is exceeded for longer than 200 ms, the LDO is  
automatically disabled. This shutdown feature can be disabled by clearing the LDO_SD control.  
Once disabled due to an over-current, the LDO must be re-enabled by one of the sources described  
in Section 7.6.1.  
7.6.3  
Output Pull-Down  
When over-voltage (1.06 * VLDO<x>) occurs, the voltage regulators enable an internal load to  
discharge the output back to its configured voltage. This feature can be disabled in  
LDO<x>_PD_DIS.  
Datasheet  
Revision 3.3  
24-Nov-2016  
39 of 96  
© 2016 Dialog Semiconductor  
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
7.7 Switching Regulators  
DA9062 includes four step-down switching regulators operating at 3 MHz. All switching regulators  
employ a synchronous topology with an internal NFET, thus eliminating the need for an external  
Schottky diode. The output voltage can be set in 10 mV steps (20 mV steps for Buck3) and the  
regulation accuracy is ±3 % over the whole operating temperature range. Static line and load  
regulation are also considered in this accuracy.  
The switching frequency (3 MHz) is high enough to warrant the use of a small 1.0 µH inductor. The  
programming of the converter current limit depends on the coil parameters, as illustrated in Table 24.  
Table 24: Buck Current Limit  
Min. ISAT (mA)  
Frequency (MHz)  
Buck current limit (mA)  
1750  
1460  
1180  
940  
3
3
3
3
1500  
1200  
950  
750  
7.7.1  
Control  
The buck can be enabled manually by writing directly to a control register, with an external signal  
connected to GPI, see Section 7.3.1.1, or by assigning it to a power sequencer step, see  
Section 7.9.2. Each buck converter features two voltage control registers  
(VBUCK<x>_A/VBUCK<x>_B) which can be programmed with two different voltages. The active  
setting can then be selected via a control bit (VBUCK<x>_SEL), via a GPI, see Section 7.3.1.1, or  
automatically based on the power mode of DA9062.  
7.7.2  
Output Voltage Slewing  
To limit in-rush current from the input supply, the buck converters can achieve a new output voltage  
with controlled ramping. Ramping is achieved by stepping through all the VBUCK values between the  
old and new settings, at a rate defined by SLEW_RATE. The actual output slew rate, in mV/µs, for a  
particular buck converter is then defined by the minimum voltage step of that buck and the common  
step time programmed in SLEW_RATE. During PFM mode, the negative slew rate is load dependent  
and might be lower than the one mentioned above. An event E_DVC_RDY is triggered when all buck  
converters have reached their target voltage.  
7.7.3  
Soft-Start  
The buck converter supports two options for starting up. The normal start-up option ramps up the  
power rail as fast as possible, typically within 1 ms. This implies a high in-rush current. The slow  
start-up is selected by setting BUCK_SLOWSTART, which increases the start-up time and limits the  
input current.  
7.7.4  
Active Discharge  
When switching off a buck converter the output rail can be actively discharged. This feature is  
enabled by setting BUCK_ACTV_DISCHRG. The discharge is implemented by ramping down the  
output voltage using DVC.  
7.7.5  
Peak Current Limit  
All buck converters feature a programmable current limit (BUCK<x>_ILIM). The current limit protects  
the inductor and the pass devices from excessive current. If the current limit is exceeded, the buck  
continues to run normally but the duty cycle is limited.  
Datasheet  
Revision 3.3  
24-Nov-2016  
40 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
7.7.6  
Operating Mode  
The operating mode of each converter can be set via the buck control (BUCK<x>_MODE) to  
synchronous (PWM), sleep (PFM), or auto. In auto mode the buck converter switches between PWM  
and PFM depending on the load current. This mode is recommended for applications that require fast  
transitions from synchronous to sleep operation. The current consumption during PWM operation is  
10 mA and drops to <1 µA in shutdown.  
In addition, the buck mode can be controlled with the A and B setting. If BUCK<x>_SL_B is set, the  
buck is forced to SLEEP mode when the B setting is active. Similarly, if BUCK<x>_SL_A is set, the  
buck is forced to SLEEP mode when the A setting is active.  
7.7.7  
Half-Current Mode  
Buck1 and Buck2 can operate in half-current mode where the quiescent current is reduced by  
disabling half of the pass devices. As the name implies, enabling this option halves the output  
current, and therefore, this feature is valuable in applications where quiescent current is critical and  
full current is not needed. This feature is controlled with BUCK1_FCM and BUCK2_FCM. If the bit is  
asserted (BUCK<x>_FCM = 1), the corresponding buck is in full-current mode and the full current is  
available. If the bit is de-asserted, the corresponding buck is in half-current mode. Operating the  
bucks in full-current mode requires twice as much output capacitance (2 x 47 µF) as the half-current  
mode (2 x 22 µF).  
7.7.8  
Buck1 and Buck2 in Dual-Phase Mode  
Buck1 and Buck2 can be merged as a dual-phase buck, with up to 5 A output current. If enabled in  
OTP via BUCK1_2_MERGE, the outputs from both inductors must be routed together. The controls  
for Buck2 are automatically disabled in this configuration, except for BUCK2_PD_DIS.  
7.7.9  
Buck4 in DDR Memory Bus Termination Mode  
Buck4 can be used to generate the DDR memory termination voltage, VTT. In this mode, Buck4  
tracks the divided VDDQ voltage and it is able to both sink and source current. As described in  
Section 7.3.5, GPIO0 can be configured to carry the VDDQ and GPIO1 can be configured to carry  
the VTTR signal. The VTTR output provides buffered version of the VDDQ/2 voltage with ±10 mA  
source/sink capability (requires 0.1 µF stabilisation capacitor), see Figure 19. When used for memory  
termination, Buck4 has to be forced in the synchronous (PWM) mode from the BUCK4_MODE  
control. If BUCK4_VTT_EN and BUCK4_VTTR_EN are asserted at the same time, the VTTR  
provides a buffered VTT reference, but otherwise Buck4 is running in a normal output voltage control  
mode.  
VDD_BUCK4  
Buck4  
BUCK4_VTT_EN  
VLX_BUCK4  
VTT (±700 mA)  
Buck  
control  
VBUCK4  
DAC  
VDDQ  
GPIO0  
VBUCK4  
+
-
VTTR (±10 mA)  
GPIO1  
Figure 19: Buck4 DDR Memory Bus Termination Mode  
Datasheet  
Revision 3.3  
24-Nov-2016  
41 of 96  
© 2016 Dialog Semiconductor  
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 25: Buck4 VTT Mode Control  
BUCK4_VTT_EN BUCK4_VTTR_EN  
Mode  
Normal  
Normal  
VTT  
Buck4 VREF  
VDAC  
GPIO0  
Digital I/O  
VDDQ  
GPIO1  
0
0
1
1
0
1
0
1
Digital I/O  
VTTR  
VDAC  
VDDQ/2 un-buffered  
VDDQ/2 buffered  
VDDQ  
Digital I/O  
VTTR  
VTT  
VDDQ  
7.8 Power Modes  
NO-POWER  
VDDCORE < VPOR_UPPER  
VDDCORE > VPOR_UPPER  
Active functions  
·
VDDCORE comparator  
RTC  
Any state  
Active functions  
·
·
·
·
VDDCORE comparator  
32 kHz oscillator  
RTC counter  
nONKEY  
( nONKEY press || RTC alarm) &&  
( ! Temp error && ! VSYS error )  
RESET  
RTC_MODE_SD  
Sequence done ||  
timeout  
Active functions  
·
·
·
·
·
·
VDDCORE comparator  
32 kHz oscillator  
RTC counter  
nONKEY  
Internal supplies  
LDO1  
Shutdown  
sequence  
VSYS error  
Any state  
·
nRESET asserted  
time > RESET_DURATION &&  
( ! Temp error && ! VSYS error )  
nRESETREQ ||  
nONKEY (long)  
Shutdown  
sequence  
POWERDOWN  
RTC_MODE_PD  
Temp error  
Any state  
Active functions  
·
·
·
·
·
·
·
VDDCORE comparator  
32 kHz oscillator  
RTC counter  
nONKEY  
Internal supplies  
LDO1  
Selected supplies  
Sequence done ||  
timeout  
Retry count != 0  
Power-down  
sequence  
Retry count == 0  
POWERDOWN  
nRESETREQ ||  
nONKEY (long)  
nONKEY press ||  
GPIO wake-up event  
Sequence done ||  
timeout  
(Freeze)  
Shutdown  
sequence  
Power-up  
sequence  
Sequence done ||  
timeout  
nONKEY (short) ||  
GPIO power-down event ||  
Watchdog timeout  
nRESETREQ ||  
nONKEY (long)  
ACTIVE  
Active functions  
·
·
·
·
·
·
·
VDDCORE comparator  
32 kHz oscillator  
RTC counter  
nONKEY  
Internal supplies  
All supplies  
Watchdog  
alive  
Watchdog  
Figure 20: DA9062 Power Modes (State Transition Conditions Follow C-Language Syntax)  
Datasheet  
Revision 3.3  
24-Nov-2016  
42 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
7.8.1  
NO-POWER Mode  
The NO-POWER mode is initial state when powering up the DA9062 for the first time. When the  
system supply rises above a threshold, DA9062 enters RESET mode.  
7.8.2  
RTC Mode  
The RTC mode is a low-power mode with only a minimum set of functions to maintain the system  
time. All supplies are disabled. RTC mode is entered either after a software request or when the  
backup battery is the only supply. If enabled in control RTC_MODE_PD, the power sequencer  
proceeds automatically from the POWERDOWN state to RTC mode. If the system supply is  
removed, DA9062 will also enter RTC mode. Supply recovery will trigger an exit from RTC mode  
automatically. DA9062 will exit RTC mode when nONKEY is asserted, or an RTC alarm is raised.  
GPIOs are not operational in RTC mode.  
7.8.3  
RESET Mode  
In RESET mode, the internal supplies, and LDO1 (if configured as an always-on supply) are enabled.  
All other DA9062 supplies are disabled.  
DA9062 is in RESET mode whenever a complete application shutdown is required. RESET mode  
can be triggered by the user, a host processor, or an internal event.  
RESET mode can be triggered by the user:  
from a long press of nONKEY (interruptible by host) defined by control SHUT_DELAY.  
by pressing a reset switch that is connected to port nRESETREQ (non-interruptible)  
RESET mode can be forced from the host processor (non-interruptible):  
by asserting nRESETREQ (falling edge)  
by writing to control SHUTDOWN  
DA9062 error conditions that force RESET mode (non-interruptible) are:  
no WATCHDOG write (WDKICK signal assertion) from the host inside the watchdog time window  
(if watchdog was enabled)  
an under-voltage detected on VSYS (VSYS < VDD_FAULT_LOWER  
)
an internal junction over-temperature  
With the INT_SD_MODE, HOST_SD_MODE and KEY_SD_MODE controls, the shutdown  
sequences from internal fault, host or user triggered, are individually configured to either implement  
the reverse timing of the power-up sequence or transfer immediately to the RESET mode by skipping  
any delay from sequencer or dummy slot timers. For the host to determine the reason for the reset a  
FAULT_LOG register stores the root cause (either KEY_RESET or NRESETREQ). The host  
processor resets this register by writing asserted bits with ‘1’.  
KEY_SD_MODE = 1 triggers a complete power on reset (POR) (instead of entering RESET mode)  
after the related keys are pressed extendedly.  
If an OTP read is aborted, DA9062 enters RESET mode without an asserted bit inside register  
FAULT_LOG.  
A shutdown sequence to RESET mode will start with the assertion of the nRESET port. After the  
sequencer completes the power-down sequence (sequencer position 0), DA9062 continues to  
RESET mode with only the following active circuits: LDOCORE (at reduced output voltage 2.2 V),  
control interfaces and GPIOs, BCD counter, band-gap and over-temperature/VSYS comparators. All  
regulators, except for LDO1 and the backup battery charger, are automatically disabled to avoid  
battery drainage. As described in Section 7.1.3, nRESET is always asserted at the beginning of a  
shutdown sequence to RESET mode, and remains asserted when DA9062 is in RESET mode.  
When entering RESET mode, all user and system events are cleared. The DA9062’s register  
configuration will be re-loaded from OTP when leaving the RESET mode (with the exception of  
control AUTO_BOOT in case of a VDD_START fault).  
Datasheet  
Revision 3.3  
24-Nov-2016  
43 of 96  
© 2016 Dialog Semiconductor  
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
FAULT_LOG, GP_ID_10 to GP_ID_19 and other non-OTP loaded registers, for example the RTC  
calendar and alarm, will not be changed when leaving the RESET mode.  
Some reset conditions such as writing a ‘1’ to control SHUTDOWN, a watchdog error, or a junction  
over-temperature will be automatically cleared. Other reset triggers, such as asserting nRESETREQ,  
need to be released to proceed from RESET to POWERDOWN mode. If the application requires  
regulators to discharge completely before a power-up sequence, a minimum duration of the RESET  
mode can be selected via RESET_DURATION.  
If the reset was initiated by a user’s long press of nONKEY, initially only KEY_RESET is set and the  
nIRQ port will be asserted. KEY_RESET signals the host that a shutdown sequence is started. If the  
host does not then clear KEY_RESET within 1 second by writing a ‘1’ to the related bit in register  
FAULT_LOG, the shutdown sequence will complete. When the reset condition has disappeared,  
DA9062 requires a supply (VSYS > VDD_FAULT_UPPER) that provides enough power to start-up from the  
POWERDOWN mode.  
RESET mode also allows automatic transition to RTC mode where all features of DA9062, except  
the RTC oscillator and calendar (including LDOCORE), are disabled. This mode is selected in control  
RTC_MODE_SD.  
7.8.4  
POWERDOWN Mode  
The POWERDOWN mode is a low-power state where most of the regulators are disabled. The  
transition from active to POWERDOWN mode (and vice versa) is handled by the programmable  
sequencer. Entry to POWERDOWN mode from ACTIVE mode is triggered by the de-assertion of  
SYSTEM_EN (either via SYS_EN or register access) or by a short press of nONKEY. The  
POWERDOWN mode is also passed during start-up and shutdown to RESET mode sequences.  
In POWERDOWN mode the internal supplies are enabled, and the control interface and GPIOs are  
operational.  
The power state machine features a retry counter that limits the number of transitions from  
POWERDOWN to ACTIVE under certain conditions. A watchdog timeout triggers POWERDOWN  
mode entry, but it does not necessarily clear the conditions that trigger a transition back to the  
ACTIVE mode. This could cause an endless loop between the ACTIVE and POWERDOWN modes.  
Therefore, after each watchdog timeout the retry counter is decremented, and after the retry counter  
reaches zero, DA9062 blocks all wakeup events and stays in POWERDOWN mode. This freeze  
function can be regarded as a substate of the POWERDOWN mode that is undetectable from  
outside the DA9062.  
Table 26 describes the state transitions with a level-sensitive wakeup and the freeze function.  
Table 26: State Transitions With a Level-Sensitive (LS) GPI  
Current State  
LS GPI  
SYS_EN  
PWR_EN  
Freeze  
Note 1  
Next State  
POWERDOWN  
POWERDOWN  
POWERDOWN  
POWERDOWN  
POWERDOWN  
POWERDOWN  
SYSTEM  
x
0
x
x
1
1
0
x
x
1
1
x
0
1
1
x
x
0
1
1
x
x
x
x
0
1
0
1
x
0
1
0
1
1
0
0
0
0
0
x
x
x
x
x
POWERDOWN  
POWERDOWN  
SYSTEM  
ACTIVE  
SYSTEM  
ACTIVE  
POWERDOWN  
SYSTEM  
SYSTEM  
SYSTEM  
ACTIVE  
SYSTEM  
SYSTEM  
SYSTEM  
ACTIVE  
Datasheet  
Revision 3.3  
24-Nov-2016  
44 of 96  
© 2016 Dialog Semiconductor  
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
Current State  
LS GPI  
SYS_EN  
PWR_EN  
Freeze  
Note 1  
Next State  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
0
x
x
1
1
0
1
1
x
x
x
0
1
0
1
x
x
x
x
x
POWERDOWN  
SYSTEM  
ACTIVE  
SYSTEM  
ACTIVE  
Note 1 In this table, “Freeze” represents the result of the comparison retry count = 0.  
The following events will reset the retry counter and release the state machine from the freeze state:  
De-assertion of all blocked level-sensitive wakeup conditions  
Entry to the RESET mode (over-temperature error, nRESETREQ or long press of nONKEY)  
Entry to the RTC mode (system supply error)  
The freeze operation is illustrated in Figure 21. Once the freeze state is cleared, DA9062 continues  
operating normally. The freeze function can be enabled in the FREEZE_EN register and the number  
of retries triggering the freeze can be configured in NFREEZE.  
Retry count  
Power mode  
TWD_ERROR  
GPI  
1
0
NFREEZE  
ACTIVE  
POWERDOWN  
ACTIVE  
The level sensitive  
wake-up condition  
is blocked  
The system  
operates normally  
upon the next  
The watchdog  
expires  
The level sensitive  
wake-up condition  
is de-asserted  
which resets the  
retry count  
wake-up event  
The retry count is  
decremented and  
reaches zero  
Figure 21: Freeze Function  
7.8.5  
Power-Up, Power-Down, and Shutdown Sequences  
The power-up, power-down, and shutdown sequences, see Figure 20, are handled by the power  
supply sequencer, see Section 7.9. All power-up sequences are identical, and the power-down  
sequences mirror the power-up sequences.  
The shutdown sequences are also identical to the power-down sequence, but after reaching  
POWERDOWN mode, the state machine automatically proceeds to RESET mode. The shutdown  
sequences caused by an internal error or nRESETREQ can be sped up from the INT_SD_MODE  
and HOST_SD_MODE controls: see Section 7.8.3.  
7.8.6  
ACTIVE Mode  
In the ACTIVE mode, all supplies and functions are active. The transition from POWERDOWN to  
ACTIVE mode is handled by the programmable sequencer. DA9062 enters ACTIVE mode after the  
sequence has completed and the watchdog is enabled (if configured to use watchdog).  
Status information can be read from the host processor via the 2-wire interface and DA9062 can flag  
interrupt requests to the host via a dedicated interrupt port (nIRQ).  
Datasheet  
Revision 3.3  
24-Nov-2016  
45 of 96  
© 2016 Dialog Semiconductor  
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
7.9 Power Supply Sequencer  
DA9062 features a programmable Power Supply Sequencer that handles the system power-up,  
power-down, and shutdown sequences. The sequencer has a step-up counter, a timer that controls  
the step period, and a set of comparators that trigger power-on/off events at specific steps of the  
counter. The structure of the sequencer is depicted in Figure 22.  
The sequencer is composed of 16 steps, and the step time can be programmed between 32 µs and  
8.192 ms. The sequencer will step until it reaches a programmable maximum value (MAX_COUNT),  
whereupon an interrupt is issued. At each step, the sequencer will enable all the functions that are  
pointing to that particular step.  
The power-up and -down sequences cannot be configured separately. When DA9062 is powering  
down, the sequencer will execute whatever was configured for the power-up sequence but in reverse  
order. Supplies can also be configured to stay on in POWERDOWN mode. In this case, the  
sequencer does not disable the regulator but switches to its B-configuration, see Section 7.5.  
If any pointer is programmed to a step higher than MAX_COUNT, the function is no longer controlled  
by the sequencer. Only the regulator control pointers (LDO<x>_STEP, BUCK<x>_STEP) are allowed  
to point to step 0. Setting any other pointer to step 0, effectively disables that function.  
POWERDOWN  
mode  
STANDBY  
mode  
ACTIVE  
mode  
Wake-up  
Watchdog alive  
System  
Power  
Power1  
OTP_RD2  
SYSTEM_EN  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Figure 22: Structure of the Power Supply Sequencer  
Note  
STANDBY mode can only be reached on power-down, not power-up.  
Datasheet  
Revision 3.3  
24-Nov-2016  
46 of 96  
© 2016 Dialog Semiconductor  
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
7.9.1  
Sub-Sequences  
As illustrated in Figure 22, the sequencer is partitioned into three sub-sequences. These three sub-  
sequences can be used to define three power modes for the target application and to move between  
them in a controlled sequence as a response to control signals or register writes.  
The first sub-sequence starts from step 0 and ends at a step defined by the SYSTEM_END pointer.  
After the power-up is triggered, DA9062 performs a partial OTP read (OTP_RD2) if OTPREAD_EN is  
set. It then waits for control SYSTEM_EN to trigger the first sub-sequence. If SYSTEM_EN is already  
set in the OTP the first sub-sequence starts automatically after the power-up trigger. Alternatively,  
SYSTEM_EN can be asserted through the SYS_EN input. When the sequencer reaches the  
SYSTEM_END step the first sub-sequence is completed and the sequencer starts waiting for control  
POWER_EN to trigger the second sub-sequence. If POWER_EN is already set in the OTP, the  
sequencer does not stop after the first sub-sequence. Alternatively, POWER_EN can be asserted  
through the PWR_EN input or via a register access.  
The second sub-sequence starts from the step following SYSTEM_END and stops at a step defined  
by the POWER_END pointer. When the sequencer reaches the POWER_END step (and the  
watchdog is active), DA9062 enters ACTIVE mode. The final sub-sequence is triggered by asserting  
POWER1_EN via a register write. The third sub-sequence starts from the step following  
POWER_END and stops at a step defined by the MAX_COUNT pointer. If MAX_COUNT points to an  
earlier step than SYSTEM_END or POWER_END the remaining steps of the sequencer are  
disabled.  
The power-down sequences are executed in reverse order to the power-up sequences. If the power-  
down sequence is triggered from the ACTIVE mode by de-asserting POWER_EN, the sequencer  
stops after reversing to the SYSTEM_END step. However, if the power-down sequence is triggered  
by de-asserting SYSTEM_EN, the sequencer does not stop and reverses back to step 0.  
Furthermore, if the power-down sequence is triggered by a watchdog timeout, the sequencer  
reverses to step 0 immediately.  
A partial power-down can be achieved by setting control STANDBY. This makes the sequencer stop  
at the step pointed to by the PART_DOWN pointer. The next power-up will then start from the  
PART_DOWN step, instead of step 0. The PART_DOWN pointer has to point to a step smaller than  
the SYSTEM_END pointer.  
7.9.2  
Regulator Control  
Each of DA9062’s buck converters and LDOs can be assigned to any of the sequencer steps. In  
general, when the sequencer reaches a step to which a regulator is assigned, that regulator is  
enabled by the sequencer. Likewise, when the sequencer reaches the same step on the way down,  
the regulator is disabled. Multiple supplies can point to the same counter step, however, enabling  
multiple regulators in the same slot can lead to increased in-rush currents.  
In the simplest scheme, the sequencer enables regulators during a power-up, and disables them  
during a power-down. This functionality is achieved by setting BUCK<x>_AUTO/LDO<x>_AUTO and  
clearing BUCK<x>_CONF/LDO<x>_CONF. Alternatively, the sequencer can be configured to keep  
the regulator enabled, but switch between the A and B settings in ACTIVE and POWERDOWN  
modes. The functionality of the BUCK<x>_AUTO/LDO<x>_AUTO and  
BUCK<x>_CONF/LDO<x>_CONF controls is summarized in Table 27.  
Datasheet  
Revision 3.3  
24-Nov-2016  
47 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 27: Regulator Control Functionality of the Power Supply Sequencer  
Power-Up (Sequencer Direction Up)  
POWERDOWN  
Mode (Before)  
ACTIVE Mode  
(After)  
Auto  
Conf  
En  
Sel  
En  
Sel  
Sequencer Functionality  
0
0
x
x
0
0
The regulator is disabled at the step pointed to by  
BUCK<x>_STEP/LDO<x>_STEP and the A-setting  
(VBUCK<x>_A/VLDO<x>_A) is activated.  
x
1
x
x
x
x
x
1
1
0
0
The regulator is enabled at the step pointed to by  
BUCK<x>_STEP/LDO<x>_STEP and the A-setting  
(VBUCK<x>_A/VLDO<x>_A) is activated.  
1
Power-Down (Sequencer Direction Down)  
ACTIVE Mode  
(Before)  
POWERDOWN  
Mode (After)  
Auto  
Conf  
En  
Sel  
En  
Sel  
x
0
x
x
0
0
The regulator is disabled at the step pointed to by  
BUCK<x>_STEP/LDO<x>_STEP and the A-setting  
(VBUCK<x>_A/VLDO<x>_A) is activated.  
x
1
x
x
1
1
The regulator stays enabled but it is switched to the  
B-setting (VBUCK<x>_B/VLDO<x>_B).  
Step 0 of the sequencer has a special meaning. If control DEF_SUPPLY is set, the sequencer treats  
all regulators pointing to step 0 as default supplies. This means that the regulators are enabled  
automatically when entering the POWERDOWN mode. Regulators assigned to other steps are only  
enabled after a wakeup condition occurs. Apart from this, step 0 acts the same as steps 1 to 15. If  
control DEF_SUPPLY is ‘0’, step 0 of the sequencer does not have any affect.  
As mentioned in Section 7.6.1, LDO1 can be programmed as an always-on supply. This is achieved  
by setting controls DEF_SUPPLY, LDO1_CONF, and LDO1_EN in the OTP. In normal operation,  
when the sequencer moves between ACTIVE and POWERDOWN modes, LDO1 behaves as  
presented in Table 27. However, if DA9062 moves to the RESET mode, this configuration keeps  
LDO1 enabled. This is not the case for any other regulator.  
7.9.3  
GPO Control  
Any GPO can be asserted or de-asserted in a sequencer step (GP_RISE<x>_STEP,  
GP_FALL<x>_STEP). The GPO control is summarized in Table 28. If a GPO is controlled by the  
sequencer, it is driven to its inactive state when DA9062 is in RESET mode. The GPIO control only  
works in sequencer steps greater than zero.  
Table 28: GPO Control Functionality of the Power Supply Sequencer  
GPIO<x>_MODE GPO State  
After Reset  
Sequencer  
Direction  
Previous  
GPO State  
GPO Transition At  
GP_RISE<x>  
GPO Transition At  
GP_FALL<x>  
0 (active low)  
1 (active high)  
High  
Low  
Up  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High to low  
-
-
Low to high  
Down  
Up  
-
High to low  
Low to high  
-
-
High to low  
Low to high  
High to low  
-
-
Down  
-
Low to high  
Datasheet  
Revision 3.3  
24-Nov-2016  
48 of 96  
© 2016 Dialog Semiconductor  
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
7.9.4  
Wait Step  
One of the sequencer steps (any step greater than zero) can be configured as a wait step, in which  
the sequencer stays until an event is detected in the GPI3 input, see Section 7.3.1.2.  
Note  
The E_GPI3 event has to be cleared after the power-up sequence completes. Otherwise, the wait step in the  
next power-up sequence will be ineffective.  
The wait step features an optional 500 ms timeout, which can be used when the wait event never  
occurs. If the timeout occurs, the steps following the wait step are not executed and a shutdown  
sequence to RESET mode is triggered. The shutdown reason is signalled with the WAIT_SHUT bit.  
Alternatively, the wait step can be used as a configurable delay in the sequence (WAIT_MODE,  
WAIT_TIME).  
7.9.5  
32 kHz Clock Output  
If a GPO is used as a 32 kHz clock output see Section 7.3.2.2, the clock buffer can be  
enabled/disabled in one of the sequencer steps (any step greater than zero). The clock buffer is  
enabled when, during power-up, the sequencer reaches the step EN32K_STEP. Likewise, the buffer  
is disabled when the sequencer reaches the step EN32K_STEP on the way down.  
7.9.6  
Power-Down Disable  
The PD_DIS_STEP pointer can be used to define a step in the power-up sequence above which a  
group of functions will be enabled. The functions concerned can be controlled in the PD_DIS register.  
Similarly, in the power-down sequence, the same groups of functions will be disabled when the  
sequencer proceeds below the PD_DIS_STEP.  
7.10 Junction Temperature Supervision  
To protect DA9062 from damage due to excessive power dissipation, the junction temperature is  
continuously monitored. The monitoring is split into three thresholds TWARN (125 °C), TCRIT (140 °C),  
and TPOR (150 °C).  
If the junction temperature rises above the first threshold (TWARN), the event E_TEMP is asserted. If  
the event is not masked, this will issue an interrupt. This first level of temperature supervision is  
intended for non-invasive temperature control, where the necessary measures for cooling the system  
down are left to the host software.  
If the junction temperature increases even further and crosses the second threshold (TCRIT), the  
temperature error flag TEMP_CRIT (in register FAULT_LOG) is issued and a shutdown sequence to  
RESET mode is triggered, see Section 7.8.3. The nRESET output is asserted at the beginning of the  
shutdown sequence. Therefore, the second level of the temperature supervision does not rely on the  
host software to take counter-measures. The fault flag can be evaluated by the application after the  
next power-up.  
There is also a third temperature threshold (TPOR) which causes DA9062 to enter RESET mode  
without any sequencing and stop all functions except the RTC. This prevents possible permanent  
damage due to fast temperature increases.  
7.11 System Supply Voltage Supervision  
Two comparators supervise the system supply VSYS. One is monitoring the under-voltage level  
(VDD_FAULT_LOWER) and the other is indicating a good system supply (VDD_FAULT_UPPER). The  
VDD_FAULT_LOWER threshold is OTP configurable and can be set via the VDD_FAULT_ADJ control from  
2.5 V to 3.25 V in 50 mV steps. The VDD_FAULT_UPPER threshold is also OTP configurable and can be  
set via the VDD_HYST_ADJ control from 100 mV to 450 mV higher than the VDD_FAULT_LOWER  
threshold.  
VSYS dropping below the VDD_FAULT_UPPER threshold asserts the event E_VDD_WARN. If the event is  
not masked, this will issue an interrupt, which can be used by the host processor as an indication to  
Datasheet  
Revision 3.3  
24-Nov-2016  
49 of 96  
© 2016 Dialog Semiconductor  
 
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
decrease its activity. The status can also be signalled with a dedicated nVDD_FAULT signal, see  
Section 7.3.2.1.  
If VSYS drops below VDD_FAULT_LOWER, the supply error flag VDD_FAULT (in register FAULT_LOG) is  
asserted and a shutdown sequence to RESET mode is triggered, see Section 7.8.3. The nRESET  
output is asserted at the beginning of the shutdown sequence.  
7.12 Backup Battery Charger  
The backup battery charger is designed to charge Lithium-Manganese coin cell batteries and super  
capacitors. The charger provides a constant charge current with a programmable target voltage. The  
charging current is programmable from 100 µA to 1000 µA in 100 µA steps and from 1 mA to 6 mA in  
1 mA steps. The end-of-charge termination voltage is programmable in 100/200 mV steps from 1.1 V  
to 3.1 V. When enabled, the charger will always keep the backup battery charged at its target  
voltage. The backup battery charger can be temporarily disabled in POWERDOWN mode via control  
BBAT_DIS.  
The backup battery charger includes a reverse current protection and can also be used as an  
always-on supply for low-power rails.  
The backup battery provides an internal supply voltage for the 32 kHz crystal oscillator and RTC.  
7.13 Real-Time Clock (RTC)  
The RTC provides a real-time clock and alarm function that can be supplied from the backup battery.  
RTC mode is described in Section 7.8.2.  
The RTC counter will count the number of 32 kHz clock periods, providing a seconds, minutes,  
hours, days, months, and years output. Year 0 corresponds to 2000. It is able to count up to 63  
years. The value of the RTC calendar is read- and writeable via the 2-wire interface. A read of  
COUNT_S (seconds) saves the current RTC calendar count into registers COUNT_S to COUNT_Y.  
Registers are only valid when the RTC_READ status bit is asserted (assertion may take several ms  
from leaving POR). After MONITOR has been set, host writing to CRYSTAL and RTC_EN is  
prohibited to ensure that the RTC registers SECOND_A to SECOND_D are never stopped.  
There is an alarm register containing min, hrs, day, month, and year. When the RTC counter register  
value corresponds to the value set in the alarm an interrupt and a wakeup event are generated. The  
trigger will also set a bit in an event register to notify that an alarm has occurred. The alarm can  
alternatively be asserted from a periodic tick signal that, depending on control TICK_TYPE, is either  
asserted every second or minute. After modifying TICK_TYPE or TICK_WAKE, a write to register  
ALARM_Y is required to activate the new settings.  
The power manager controls, ALARM_ON and TICK_ON, enable/disable the alarm/tick.  
The power manager register bit MONITOR is set to 0 each time the RTC is powered up. Software  
sets this bit to ‘1’ when setting the time and date, which allows detection of a subsequent loss of the  
clock. Values written to the RTC calendar and alarm registers have to comply with the allowed value  
range (see register description, for example, less than 60 for seconds or minutes).  
7.13.1 32 kHz Crystal Oscillator  
The oscillator is used to drive the real time clock (RTC) counter. It works with an external  
piezoelectric oscillator crystal at 32 kHz. The oscillator output can be fed to a GPIO and used as a  
clock source in the platform. The buffer can be enabled/disabled from a control register or with the  
power sequencer.  
In order to achieve the desired crystal frequency an external capacitor (10 pF to 20 pF, depending on  
the parasitic capacitance of the board) is connected to ground from each of the crystal pins. The  
start-up time of the oscillator is typically between 0.5 s and 1 s over the voltage range. When the  
crystal is not mounted, the XTAL pins should be grounded.  
The oscillator can be enabled from control CRYSTAL. A stabilisation timer can be used to blank the  
clock output during the start-up. The timer can be started simultaneously with the oscillator or it can  
be configured to wait until the clock’s duty cycle is within the range 30 % to 70 %. The start is  
Datasheet  
Revision 3.3  
24-Nov-2016  
50 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
configured from the DELAY_MODE control and the stabilisation time is programmed in the  
STABILISATION_TIME control. OUT_CLOCK controls whether the clock feed to the OUT_32K  
output (GPIO) is affected by the stabilisation timer. The RTC_CLOCK control provides a similar  
gating function for the clock feed to the internal RTC counter.  
The clock feed to the OUT_32K output can be controlled with the power sequencer, as described in  
Section 7.9.5. In addition, the clock output is one of the features that can be disabled in the  
POWERDOWN mode, as described in Section 7.9.6. When the OUT32K_PAUSE control is set, the  
clock output is disabled in POWERDOWN.  
7.14 Internal Oscillator  
An internal oscillator provides a nominal 6.0 MHz clock that is divided to 3.0 MHz for the buck  
converters. The frequency of the internal oscillator is adjusted during the initial start-up sequence of  
DA9062 to within 5 % of the nominal 6.0 MHz.  
Some applications require that the software is able to modify the oscillator frequency at runtime, for  
example to avoid interference effects caused by harmonics of the buck converter operating  
frequency. This can be achieved by writing a non-zero value to control OSC_FRQ. This control is a  
signed 4-bit value where each step changes the frequency by about 1.33 %, which gives a range  
from -10.65 % (-8) to +9.33 % (+7).  
The tolerance of this frequency will affect most absolute timer values and PWM repetition rates.  
7.15 Watchdog  
The watchdog provides system monitoring functionality. A watchdog timeout triggers shutdown to  
POWERDOWN mode, signalled in register FAULT_LOG. The watchdog can also be configured to  
control a secondary reset output in addition to nRESET. This requires that one of the GPIOs is  
configured as a GPO, controlled by the sequencer. The assertion/de-assertion is used as a reset,  
and the GPIO is configured as a sequencer controlled GPO. This way, after the watchdog triggers  
the power-down, the reset output is asserted by the sequencer during the power-down sequence.  
Once enabled, the watchdog cannot be stopped and it runs in ACTIVE mode (this feature can be  
bypassed with an OTP configuration). The source clock of the watchdog is automatically chosen  
between the 32 kHz clock generated from the crystal oscillator and an internally generated slow  
frequency clock.  
After a cold boot, the watchdog is activated when entering ACTIVE mode. This first watchdog kick is  
required for DA9062 to move to the ACTIVE mode after a cold boot, as illustrated in Figure 20. After  
the watchdog is activated, the host must kick the watchdog periodically within the watchdog period  
programmed with the TWDSCALE control. An interrupt can be generated to warn the host processor  
of the watchdog timeout. The time for the warning interrupt is half of the watchdog period.  
The kick can be done by a register write to control WATCHDOG (reg. CONTROL_F) or with the  
GPIO0 pin configured as a WDKICK input. With control WDG_MODE = 1, the behavior of the  
WDKICK input is modified so that either a pulse or a permanently asserted input prevents a  
watchdog timeout. In this mode the parameter tWDMIN is not applicable.  
If the host processor fails to feed the watchdog, DA9062 asserts a fault bit and enters  
POWERDOWN mode. The watchdog timeout can also be configured to assert a reset output. This  
requires that one of the GPIOs is configured as a reset output and assigned to a power sequencer  
step, see Section 7.9.  
After each watchdog timeout a retry counter is decremented. If the retry counter reaches zero,  
DA9062 will stay in POWERDOWN mode, as described in Section 7.8.4. The number of allowed  
retries can be programmed in the NFREEZE control.  
Datasheet  
Revision 3.3  
24-Nov-2016  
51 of 96  
© 2016 Dialog Semiconductor  
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
8
Register Map  
8.1 Register Page Control  
The device register map is larger than the address range directly addressable from the host  
interface. The page control register provides the higher address bits and control for using the paging  
mechanism. There are several copies of this register, one per host interface. These copies are  
mirrored to addresses 0x080, 0x100 and 0x180.  
8.2 Overview  
Table 29 provides a summary of the registers. A description of each register is provided in Appendix  
A.  
Table 29: Register Summary  
Address  
Page Control  
0x000  
Name  
7
6
5
4
3
2
1
0
PAGE_CON  
REVERT  
WRITE_MODE  
PAGE  
Reserved  
Power Manager Control and Monitoring  
0x001  
STATUS_A  
STATUS_B  
STATUS_D  
FAULT_LOG  
·
DVC_BUSY  
GPI2  
Reserved  
GPI1  
NONKEY  
GPI0  
0x002  
Reserved  
GPI4  
GPI3  
0x004  
Reserved  
LDO4_ILIM  
VDD_START  
LDO3_ILIM  
VDD_FAULT  
LDO2_ILIM  
POR  
LDO1_ILIM  
TWD_ERROR  
0x005  
WAIT_SHUT  
NRESETREQ  
KEY_RESET  
TEMP_CRIT  
IRQ Events  
0x006  
EVENT_A  
EVENT_B  
EVENT_C  
Reserved  
EVENTS_C  
EVENTS_B  
E_SEQ_RDY  
Reserved  
E_GPI4  
E_WDG_WARN  
E_LDO_LIM  
E_GPI3  
Reserved  
Reserved  
E_GPI2  
E_ALARM  
E_TEMP  
E_GPI1  
E_NONKEY  
Reserved  
E_GPI0  
0x007  
E_VDD_WARN  
Reserved  
Reserved  
E_DVC_RDY  
0x008  
IRQ Masks  
0x00A  
IRQ_MASK_A Reserved  
IRQ_MASK_B M_VDD_WARN  
IRQ_MASK_C Reserved  
M_SEQ_RDY  
Reserved  
M_GPI4  
M_WDG_WARN Reserved  
M_ALARM  
M_TEMP  
M_GPI1  
M_NONKEY  
Reserved  
M_GPI0  
0x00B  
Reserved  
M_DVC_RDY  
M_LDO_LIM  
M_GPI3  
Reserved  
0x00C  
M_GPI2  
System Control  
0x00E  
CONTROL_A  
Reserved  
M_POWER1_EN M_POWER_EN  
NFREEZE  
M_SYSTEM_EN STANDBY  
POWER1_EN  
FREEZE_EN  
POWER_EN  
SYSTEM_EN  
BUCK_SLOWST  
ART  
0x00F  
CONTROL_B  
nONKEY_LOCK NRES_MODE  
WATCHDOG_PD  
Reserved  
0x010  
CONTROL_C  
CONTROL_D  
CONTROL_E  
CONTROL_F  
PD_DIS  
DEF_SUPPLY  
Reserved  
SLEW_RATE  
OTPREAD_EN  
AUTO_BOOT  
DEBOUNCING  
TWDSCALE  
RTC_EN  
0x011  
0x012  
V_LOCK  
Reserved  
RTC_MODE_SD  
SHUTDOWN  
Reserved  
RTC_MODE_PD  
WATCHDOG  
GPI_DIS  
0x013  
Reserved  
WAKE_UP  
PMIF_DIS  
0x014  
PMCONT_DIS  
OUT32K_PAUSE BBAT_DIS  
CLDR_PAUSE  
Reserved  
GPIO Control  
0x015  
GPIO_0_1  
GPIO_2_3  
GPIO_4  
GPIO1_WEN  
GPIO3_WEN  
Reserved  
GPIO1_TYPE  
GPIO3_TYPE  
GPIO1_PIN  
GPIO3_PIN  
GPIO0_WEN  
GPIO2_WEN  
GPIO4_WEN  
GPIO0_TYPE  
GPIO2_TYPE  
GPIO4_TYPE  
GPIO0_PIN  
GPIO2_PIN  
GPIO4_PIN  
0x016  
0x017  
GPIO_WKUP_  
MODE  
GPIO4_WKUP_M GPIO3_WKUP_M GPIO2_WKUP_MO GPIO1_WKUP_MO GPIO0_WKUP_MOD  
0x01C  
0x01D  
Reserved  
Reserved  
ODE  
ODE  
DE  
DE  
E
GPIO_MODE0_  
4
GPIO4_MODE  
GPIO3_MODE  
GPIO2_MODE  
GPIO1_MODE  
GPIO0_MODE  
0x01E  
0x01F  
GPIO_OUT0_2 GPIO2_OUT  
GPIO1_OUT  
GPIO0_OUT  
GPIO3_OUT  
GPIO_OUT3_4 Reserved  
GPIO4_OUT  
Power Supply Control  
0x020  
0x021  
0x022  
0x024  
0x026  
0x027  
0x028  
0x029  
0x032  
BUCK2_CONT Reserved  
VBUCK2_GPI  
VBUCK1_GPI  
VBUCK4_GPI  
VBUCK3_GPI  
VLDO1_GPI  
VLDO2_GPI  
VLDO3_GPI  
VLDO4_GPI  
VLDO3_SEL  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
VLDO1_SEL  
BUCK2_CONF  
BUCK1_CONF  
BUCK4_CONF  
BUCK3_CONF  
LDO1_PD_DIS  
LDO2_PD_DIS  
LDO3_PD_DIS  
LDO4_PD_DIS  
VBUCK3_SEL  
BUCK2_GPI  
BUCK1_GPI  
BUCK4_GPI  
BUCK3_GPI  
LDO1_GPI  
LDO2_GPI  
LDO3_GPI  
LDO4_GPI  
VBUCK4_SEL  
BUCK2_EN  
BUCK1_EN  
BUCK4_EN  
BUCK3_EN  
LDO1_EN  
BUCK1_CONT Reserved  
BUCK4_CONT Reserved  
BUCK3_CONT Reserved  
LDO1_CONT  
LDO2_CONT  
LDO3_CONT  
LDO4_CONT  
DVC_1  
LDO1_CONF  
LDO2_CONF  
LDO3_CONF  
LDO4_CONF  
VLDO4_SEL  
LDO2_EN  
LDO3_EN  
LDO4_EN  
VLDO2_SEL  
VBUCK2_SEL  
VBUCK1_SEL  
Datasheet  
Revision 3.3  
24-Nov-2016  
52 of 96  
© 2016 Dialog Semiconductor  
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
Address  
Name  
7
6
5
4
3
2
1
0
RTC Calendar and Alarm  
0x040  
0x041  
0x042  
0x043  
0x044  
0x045  
0x046  
0x047  
0x048  
0x049  
0x04A  
0x04B  
0x04C  
0x04D  
0x04E  
0x04F  
COUNT_S  
COUNT_MI  
COUNT_H  
COUNT_D  
COUNT_MO  
COUNT_Y  
ALARM_S  
ALARM_MI  
ALARM_H  
ALARM_D  
ALARM_MO  
ALARM_Y  
SECOND_A  
SECOND_B  
SECOND_C  
SECOND_D  
RTC_READ  
Reserved  
Reserved  
COUNT_SEC  
COUNT_MIN  
Reserved  
COUNT_HOUR  
COUNT_DAY  
Reserved  
Reserved  
COUNT_MONTH  
Reserved  
MONITOR  
COUNT_YEAR  
ALARM_SEC  
ALARM_MIN  
ALARM_STATUS  
Reserved  
Reserved  
ALARM_HOUR  
ALARM_DAY  
TICK_TYPE  
Reserved  
Reserved  
TICK_WAKE  
ALARM_MONTH  
TICK_ON  
ALARM_ON  
ALARM_YEAR  
SECONDS_A  
SECONDS_B  
SECONDS_C  
SECONDS_D  
Power Sequencer  
0x081  
0x082  
0x083  
0x084  
0x088  
0x089  
0x08A  
0x08D  
0x08E  
0x08F  
0x090  
0x091  
0x092  
0x095  
0x096  
0x097  
0x098  
0x099  
SEQ  
Reserved  
SEQ_POINTER  
SEQ_TIME  
SEQ_TIMER  
ID_2_1  
SEQ_DUMMY  
LDO2_STEP  
LDO1_STEP  
ID_4_3  
LDO4_STEP  
LDO3_STEP  
ID_12_11  
ID_14_13  
ID_16_15  
ID_22_21  
ID_24_23  
ID_26_25  
ID_28_27  
ID_30_29  
ID_32_31  
SEQ_A  
PD_DIS_STEP  
BUCK2_STEP  
BUCK3_STEP  
GP_FALL1_STEP  
GP_FALL2_STEP  
GP_FALL3_STEP  
GP_FALL4_STEP  
GP_FALL5_STEP  
EN32K_STEP  
POWER_END  
PART_DOWN  
WAIT_DIR  
Reserved  
BUCK1_STEP  
BUCK4_STEP  
GP_RISE1_STEP  
GP_RISE2_STEP  
GP_RISE3_STEP  
GP_RISE4_STEP  
GP_RISE5_STEP  
WAIT_STEP  
SYSTEM_END  
MAX_COUNT  
WAIT_TIME  
SEQ_B  
WAIT  
TIME_OUT  
WAIT_MODE  
EN_32K  
RESET  
EN_32KOUT  
Reserved  
OUT_CLOCK  
RESET_TIMER  
DELAY_MODE  
CRYSTAL  
STABILISATION_TIME  
RESET_EVENT  
Power Supply Control  
0x09A  
0x09B  
0x09C  
0x09D  
0x09E  
BUCK_ILIM_A Reserved  
BUCK_ILIM_B Reserved  
BUCK_ILIM_C BUCK2_ILIM  
BUCK3_ILIM  
BUCK4_ILIM  
BUCK1_ILIM  
BUCK2_CFG  
BUCK1_CFG  
BUCK2_MODE  
BUCK1_MODE  
BUCK2_PD_DIS Reserved  
BUCK1_PD_DIS Reserved  
BUCK4_VTTR_E  
N
0x09F  
BUCK4_CFG  
BUCK4_MODE  
BUCK4_PD_DIS BUCK4_VTT_EN  
Reserved  
0x0A0  
0x0A3  
0x0A4  
0x0A5  
0x0A7  
0x0A9  
0x0AA  
0x0AB  
0x0AC  
0x0B4  
0x0B5  
0x0B6  
0x0B8  
0x0BA  
0x0BB  
0x0BC  
0x0BD  
BUCK3_CFG  
VBUCK2_A  
VBUCK1_A  
VBUCK4_A  
VBUCK3_A  
VLDO1_A  
VLDO2_A  
VLDO3_A  
VLDO4_A  
VBUCK2_B  
VBUCK1_B  
VBUCK4_B  
VBUCK3_B  
VLDO1_B  
VLDO2_B  
VLDO3_B  
VLDO4_B  
BUCK3_MODE  
BUCK2_SL_A  
BUCK1_SL_A  
BUCK4_SL_A  
BUCK3_SL_A  
LDO1_SL_A  
LDO2_SL_A  
LDO3_SL_A  
LDO4_SL_A  
BUCK2_SL_B  
BUCK1_SL_B  
BUCK4_SL_B  
BUCK3_SL_B  
LDO1_SL_B  
LDO2_SL_B  
LDO3_SL_B  
LDO4_SL_B  
BUCK3_PD_DIS Reserved  
VBUCK2_A  
VBUCK1_A  
VBUCK4_A  
VBUCK3_A  
Reserved  
VLDO1_A  
VLDO2_A  
VLDO3_A  
VLDO4_A  
Reserved  
Reserved  
Reserved  
VBUCK2_B  
VBUCK1_B  
VBUCK4_B  
VBUCK3_B  
Reserved  
VLDO1_B  
VLDO2_B  
VLDO3_B  
VLDO4_B  
Reserved  
Reserved  
Reserved  
BBAT Charger Control  
Datasheet  
Revision 3.3  
24-Nov-2016  
53 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Address  
Name  
7
6
5
4
3
2
1
0
0x0C5  
BBAT_CONT  
BCHG_ISET  
BCHG_VSET  
Customer Trim and Configuration  
0x105  
0x106  
0x107  
INTERFACE  
CONFIG_A  
CONFIG_B  
IF_BASE_ADDR  
Reserved  
Reserved  
PM_IF_HSM  
PM_IF_FMP  
PM_IF_V  
IRQ_TYPE  
PM_O_TYPE  
Reserved  
Reserved  
PM_I_V  
Reserved  
VDD_HYST_ADJ  
VDD_FAULT_ADJ  
BUCK_ACTV_DISC  
HRG  
0x108  
CONFIG_C  
Reserved  
BUCK3_CLK_INV Reserved  
BUCK4_CLK_INV BUCK1_CLK_INV  
0x109  
0x10A  
0x10C  
0x10D  
0x10E  
0x10F  
0x110  
0x112  
CONFIG_D  
CONFIG_E  
CONFIG_G  
CONFIG_H  
CONFIG_I  
CONFIG_J  
CONFIG_K  
CONFIG_M  
Reserved  
Reserved  
Reserved  
Reserved  
LDO_SD  
IF_RESET  
Reserved  
OSC_FRQ  
FORCE_RESET Reserved  
BUCK3_AUTO  
SYSTEM_EN_RD  
BUCK4_AUTO  
LDO3_AUTO  
Reserved  
NIRQ_MODE  
BUCK2_AUTO  
LDO2_AUTO  
GPI_V  
Reserved  
BUCK1_AUTO  
LDO1_AUTO  
LDO4_AUTO  
BUCK_MERGE  
BUCK1_FCM  
BUCK2_FCM  
Reserved  
INT_SD_MODE  
TWOWIRE_TO  
HOST_SD_MODE KEY_SD_MODE WATCHDOG_SD NONKEY_SD  
NONKEY_PIN  
KEY_DELAY  
GPIO1_PUPD  
Reserved  
RESET_DURATION  
SHUT_DELAY  
GPIO3_PUPD  
WDG_MODE  
GPIO4_PUPD  
GPIO2_PUPD  
GPIO0_PUPD  
Reserved  
Reserved  
Customer Device Specific  
0x121  
0x122  
0x123  
0x124  
0x125  
0x126  
0x127  
0x128  
0x129  
0x12A  
0x12B  
0x12C  
0x12D  
0x12E  
0x12F  
0x130  
0x131  
0x132  
0x133  
0x134  
0x181  
0x182  
GP_ID_0  
GP_ID_1  
GP_ID_2  
GP_ID_3  
GP_ID_4  
GP_ID_5  
GP_ID_6  
GP_ID_7  
GP_ID_8  
GP_ID_9  
GP_ID_10  
GP_ID_11  
GP_ID_12  
GP_ID_13  
GP_ID_14  
GP_ID_15  
GP_ID_16  
GP_ID_17  
GP_ID_18  
GP_ID_19  
DEVICE_ID  
VARIANT_ID  
CUSTOMER_I  
D
GP_0  
GP_1  
GP_2  
GP_3  
GP_4  
GP_5  
GP_6  
GP_7  
GP_8  
GP_9  
GP_10  
GP_11  
GP_12  
GP_13  
GP_14  
GP_15  
GP_16  
GP_17  
GP_18  
GP_19  
DEV_ID  
MRC  
VRC  
0x183  
0x184  
CUST_ID  
CONFIG_ID  
CONFIG_REV  
Datasheet  
Revision 3.3  
24-Nov-2016  
54 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
9
Application Information  
9.1 Component Selection  
The following recommended components are examples selected from requirements of a typical  
application. The final component selection will be dependent on the specific application. The  
electrical characteristics (for example, supported voltage/current range) have to be cross-checked  
and component types may need to be adapted from the individual needs of the target circuitry.  
9.1.1  
Resistors  
Table 30: Recommended Resistors  
Pin  
Value  
Tol.  
Size (mm)  
Rating (mW)  
Part  
IREF  
200 kΩ  
±1%  
1005  
100  
Panasonic ERJ2RKF2003x  
9.1.2  
Capacitors  
Ceramic capacitors are used as bypass capacitors at all VDD and output rails. When selecting a  
capacitor, especially ones with high capacitance and small size, the DC bias characteristic has to be  
taken into account.  
On the VSYS main supply rail, a minimum distributed capacitance of 40 μF (actual capacitance after  
voltage and temperature derating) is required.  
Buck input capacitors should be within 1.5 mm distance from the supply pin, and the output capacitor  
should be close to the inductor.  
Table 31: Recommended Capacitors  
Pin  
Value  
Tol.  
Size  
(mm)  
Height Temp.  
Rating Part  
(V)  
(mm)  
0.55  
0.55  
0.95  
0.5  
Char.  
X5R  
X5R  
X5R  
X5R  
X5R  
X5R  
X5R  
X5R  
X5R  
X5R  
X5R  
X5R  
VLDO1  
VLDOx  
1 µF  
±10%  
±20%  
±20%  
±20%  
±20%  
±20%  
±20%  
±20%  
±20%  
±20%  
±20%  
±20%  
1005  
1005  
2012  
1005  
2012  
1608  
1608  
1005  
2012  
1608  
1608  
1005  
10  
GRM155R61A105KE15  
2.2 µF  
2 x 22 µF  
10  
GRM155R60J225ME95#  
GRM219R60J226M***  
CL05A226MR5NZNC  
GRM219R60G476M***  
CL10A476MR8NZN  
VBUCK3  
6.3  
4.0  
4.0  
4.0  
6.3  
4.0  
4.0  
4.0  
6.3  
4.0  
IOUT 1.5 A  
VBUCK3  
2 x 47 µF  
2 x 22 µF  
2 x 47 µF  
2 x 22 µF  
0.95  
0.8  
IOUT > 1.5 A  
VBUCK4  
1
GRM188R60J226MEA0  
CL05A226MR5NZNC  
GRM219R60G476M***61  
CL10A476MR8NZN  
0.5  
VBUCK4  
0.95  
0.8  
(VTT mode)  
VBUCK1,  
VBUCK2  
(half-current  
mode)  
1
GRM188R60J226MEA0  
CL05A226MR5NZNC  
0.5  
VBUCK1,  
VBUCK2  
(full-current  
mode)  
2 x 47 µF  
±20%  
±20%  
2012  
1608  
0.95  
0.8  
X5R  
X5R  
4.0  
4.0  
GRM219R60G476M***61  
CL10A476MR8NZN  
VSYS  
1 x 1 µF  
±10%  
±20%  
±20%  
1005  
2012  
1005  
0.5  
X5R  
X5R  
X5R  
10  
10  
10  
GRM155R61A105KE15D  
LMK212BJ226MG-T  
VDD_BUCKx  
2 x 22 µF  
4 x 10 µF  
1.25  
0.5  
GRM155R61A106ME21  
Datasheet  
Revision 3.3  
24-Nov-2016  
55 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Pin  
Value  
Tol.  
Size  
(mm)  
Height Temp.  
Rating Part  
(V)  
(mm)  
Char.  
X5R  
X5R  
X5R  
X5R  
VDD_LDO2  
VDD_LDO34  
VBBAT  
1 x 1 µF  
1 x 1 µF  
470 nF  
2.2 µF  
±10%  
±10%  
±10%  
±20%  
1005  
1005  
1005  
1005  
0.5  
10  
10  
10  
6.3  
GRM155R61A105KE15D  
0.5  
GRM155R61A105KE15D  
GRM155R61A474KE15#  
GRM155R60J225ME95#  
0.55  
0.55  
VDDCORE,  
VREF  
XTAL_IN,  
12 pF  
±5%  
1005  
0.55  
U2J  
50  
GRM1557U1H120JZ01#  
XTAL_OUT  
9.1.3  
Inductors  
Inductors should be selected based upon the following parameters:  
ISAT specifies the current causing a reduction in the inductance by a specific amount, typically  
30 %  
IRMS specifies the current causing a temperature rise of a specific amount  
DC resistance (DCR) is critical for converter efficiency and should be therefore minimized.  
ESR at the buck switching frequency is critical to converter efficiency in PFM mode and should  
be therefore minimized.  
Inductance is given in Table 32.  
Table 32: Recommended Inductors  
Buck  
Value  
ISAT IRMS DCR  
Size  
Part  
(A)  
(A)  
(Typ.  
(W×L×H) mm  
m)  
Buck1 and Buck2  
(half-current mode),  
Buck3, Buck4  
1 µH  
2.7  
2.3  
55  
60  
2.0×1.6×1.0  
2.0×1.6×1.0  
Toko 1285AS-H-1R0M  
2.65  
2.45  
Tayo Yuden  
MAKK2016T1R0M  
2.9  
2.2  
2.3  
60  
43  
2.0×1.6×1.0  
1.6×0.8×1.0  
TDK TFM201610A-1R0M  
Buck4  
0.24 µH 1.65  
Taiyo Yuden  
MBKK1608TR24N  
(VTT mode)  
0.25 µH 9.7  
11.45 7.64  
4.0×4.0×1.2  
2.5×2.0×1.0  
2.5×2.0×1.2  
Coilcraft XFL4012-251ME  
Toko1269AS-H-1R0M  
Buck1, Buck2  
(full-current mode)  
1 µH  
3.4  
3.6  
3
60  
45  
3.1  
Tayo Yuden  
MAMK2520T1R0M  
3.8  
3.9  
3.5  
3.35  
5.4  
3.5  
3.1  
2.5  
2.5  
11  
45  
2.5×2.0×1.2  
3.2×2.5×1.0  
2.5×2.0×1.0  
3.0×3.0×1.2  
4.0×4.0×2.1  
Toko 1239AS-H-1R0M  
Toko1276AS-H-1R0M  
TDK TFM252010A-1R0M  
Cyntec PST031B-1R0MS  
Coilcraft XFL4020-102ME  
48  
54  
52  
10.8  
9.1.4  
Crystal  
The real-time clock module requires an external 32.768 kHz crystal. For correct component selection,  
the effective load capacitance must to be taken into account. This includes external capacitors on  
pins XTAL_IN and XTAL_OUT in series combination, plus the PCB and stray capacitances. For  
example, if two 12 pF external capacitors are used, resulting in a total capacitance of 6 pF, and  
assuming the stray capacitances are 3 pF, then a crystal that specifies a load capacitance of 9 pF  
Datasheet  
Revision 3.3  
24-Nov-2016  
56 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
should be chosen. Different stray capacitances may require different external capacitors and/or a  
different crystal type. Furthermore, the series resistance of the crystal must not exceed 100 k.  
Table 33: Recommended Crystal  
Type  
Size (W×L×H) mm  
Manufacturer  
CC7V-T1A 32.768 kHz 9.0 pF ±30 ppm  
3.2×1.5×0.9  
Micro Crystal  
9.1.5  
Backup Battery  
The backup battery charger supports lithium coin cells as well as Supercaps/Goldcaps.  
Table 34: Recommended Backup Battery  
Type  
Size (mm)  
Manufacturer  
Sanyo, Panasonic  
Korchip  
Lithium battery (rechargeable) ML414, 1.0 mAh, 3.1 V  
Starcap SC SM 2R8, 0.1 F, 2.8 V  
4.8 (ø), 1.4 (h)  
4.8 (ø), 1.4 (h)  
3.8 (ø), 1.5 (h)  
Electric double layer capacitor (Gold Capacitor)  
EECEP0E333A, 0.033 F, 2.6 V  
Panasonic  
9.2 PCB Layout  
1608  
LX2  
LX1  
VLDO1  
GPIO4  
GPIO3  
VLDO2  
Quiet ground  
VDD  
LDO2  
1005  
GPIO2  
IREF  
VBUCK2  
VBUCK1  
VBUCK3  
VBUCK4  
VDDIO  
1005  
1005  
GND  
VREF  
1005  
XIN  
VSS  
ANA  
Quiet ground  
XOUT  
VLDO3  
GPIO1  
1005  
VDD  
LDO34  
GPIO0  
1005  
VBUCK3  
2016  
1005  
VBUCK4  
1608  
Figure 23: PCB Layout for DA9062  
Datasheet  
Revision 3.3  
24-Nov-2016  
57 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
9.2.1  
General Recommendations  
Appropriate trace width and quantity of vias should be used for all power supply paths.  
Too high trace resistances can prevent the system from achieving the best performance, for  
example, the efficiency and the current ratings of switching converters might be degraded.  
Furthermore, the PCB may be exposed to thermal hot spots, which can lead to critical overheating  
due to the positive temperature coefficient of copper.  
Special care must be taken with the DA9062 pad connections. The traces connecting the pads  
should of the same width as the pads and they should become wider as soon as possible.  
It is recommended to create a separate quiet ground to which the VREF capacitor, IREF resistor, and  
the crystal capacitors are connected. The PCB layout should ensure these component grounds are  
kept quiet, that is, they should be separated from the main ground return path for the noisy power  
ground. The quiet ground can then be connected to the main ground at the paddle, as shown in  
Figure 23.  
All traces carrying high discontinuous currents should be kept as short as possible.  
Noise sensitive analog signals, such as feedback lines or crystal connections, should be kept away  
from traces carrying pulsed analog or digital signals. This can be achieved by separation or shielding  
with quiet signals or ground traces.  
9.2.2  
LDOs and Switched Mode Supplies  
The placement of the distributed capacitors on the VSYS rail must ensure that all VDD inputs and  
VSYS are connected to a bypass capacitor close to the pad. It is recommended placing at least two  
1 µF capacitors close to the VDD_LDOx pads and at least one 10 µF close to the VDD_BUCKx pads.  
Using a local power plane underneath the device for VSYS might be considered.  
Transient current loops in the area of the switching converters should be minimized.  
The common references (IREF, VREF) should be placed close to the device and cross-coupling to  
any noisy digital or analog trace must be avoided.  
Output capacitors of the LDOs can be placed close to the input pins of the supplied devices (remote  
from the DA9062).  
Care must be taken with trace routing to ensure that no current is carried on feedback lines of the  
buck output voltages (VBUCKx).  
The inductor placement is less critical since parasitic inductances have negligible effect.  
9.2.3  
32 kHz Crystal Oscillator  
The crystal and its load capacitors should be placed as close as possible to the IC with short and  
symmetrical traces.  
The traces must be isolated from noisy signals, especially from clocked digital ones. Ideally the lines  
should be buried between two ground layers, surrounded by additional ground traces.  
9.2.4  
Optimising Thermal Performance  
DA9062 features a ground paddle which should be connected with as many vias as possible to the  
PCB’s main ground plane in order to achieve good thermal performance.  
Solder mask openings for the ball landing pads must be arranged to prohibit solder balls flowing into  
vias.  
Datasheet  
Revision 3.3  
24-Nov-2016  
58 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
10 Ordering Information  
The ordering number consists of the part number followed by a suffix indicating the packing method.  
The “xx” represents a placeholder for the specific OTP variant. For details and availability, please  
consult Dialog Semiconductor’s customer portal or your local sales representative.  
Table 35: Ordering Information  
Part Number  
Package (mm)  
QFN40, 6 x 6  
QFN40, 6 x 6  
QFN40, 6 x 6  
QFN40, 6 x 6  
Package Description  
Tray, 490 pcs  
Comment  
DA9062-xxAM1  
DA9062-xxAM1-A  
DA9062-xxAM2  
DA9062-xxAM2-A  
Tray, 490 pcs  
Automotive AEC-Q100 Grade 3  
Automotive AEC-Q100 Grade 3  
T&R, 4000 pcs  
T&R, 4000 pcs  
Datasheet  
Revision 3.3  
24-Nov-2016  
59 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Appendix A Register Descriptions  
This appendix describes the registers summarized in Section 8.  
A.1 PAGE 0  
A.1.1  
Page Control  
Table 36: PAGE_CON (0x000)  
Field  
Bit  
Type  
Description  
REVERT  
7:7  
R/W  
0: PAGE switches the regmap page until rewritten.  
1: PAGE reverts to 0 after one access.  
WRITE_MODE  
PAGE  
6:6  
5:0  
R/W  
R/W  
2-WIRE sequential write style.  
0: Write data to consecutive addresses  
1: Write data to random addresses using address/data pairs  
The top 6 bits of the register address. For 2-WIRE, PAGE[0] is  
ignored.  
A.1.2  
Power Manager Control and Monitoring  
Table 37: STATUS_A (0x001)  
Field  
Bit  
7:3  
2:2  
1:1  
0:0  
Type  
R
Description  
Reserved  
DVC_BUSY  
Reserved  
NONKEY  
Reserved  
R
One or more DVC capable supplies are ramping  
R
Reserved  
R
nONKEY level  
Table 38: STATUS_B (0x002)  
Field  
Reserved  
GPI4  
Bit  
7:5  
4:4  
3:3  
2:2  
1:1  
0:0  
Type  
R
Description  
Reserved  
GPI4 level  
GPI3 level  
GPI2 level  
GPI1 level  
GPI0 level  
R
GPI3  
R
GPI2  
R
GPI1  
R
GPI0  
R
Table 39: STATUS_D (0x004)  
Field  
Bit  
7:4  
3:3  
2:2  
1:1  
0:0  
Type  
R
Description  
Reserved  
LDO4_ILIM  
LDO3_ILIM  
LDO2_ILIM  
LDO1_ILIM  
Reserved  
R
LDO4 over-current indicator  
LDO3 over-current indicator  
LDO2 over-current indicator  
LDO1 over-current indicator  
R
R
R
Datasheet  
Revision 3.3  
24-Nov-2016  
60 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 40: FAULT_LOG (0x005)  
Field  
Bit  
Type  
Description  
WAIT_SHUT  
7:7  
R
Power-down due to sequencer WAIT_STEP timeout.  
See section 7.9.4 for further information.  
Note 1  
NRESETREQ  
KEY_RESET  
TEMP_CRIT  
VDD_START  
VDD_FAULT  
POR  
6:6  
5:5  
4:4  
3:3  
2:2  
1:1  
0:0  
R
Power-down due to nRESETREQ pin or control SHUTDOWN.  
Note 1  
R
Power-down due to nONKEY  
Note 1  
R
Junction over-temperature  
Note 1  
R
Power-down due to VSYS under-voltage before or within  
16 seconds after release of nRESET.  
Note 1  
R
Power-down due to VSYS under-voltage.  
DA9062 starts up from NO-POWER or RTC / DELIVERY mode.  
Watchdog timeout  
Note 1  
R
Note 1  
TWD_ERROR  
R
Note 1  
Note 1 Cleared from the host by writing back the read value.  
A.1.3  
IRQ Events  
Table 41: EVENT_A (0x006)  
Field  
Bit  
7:7  
6:6  
5:5  
4:4  
Type  
R
Description  
Reserved  
EVENTS_C  
EVENTS_B  
E_SEQ_RDY  
Reserved  
R
Event in register EVENT_C is active.  
Event in register EVENT_B is active.  
Sequencer reached final position.  
R
R
Note 1  
E_WDG_WARN  
3:3  
R
Watchdog timeout warning  
Note 1  
E_TICK  
2:2  
1:1  
R
RTC tick  
E_ALARM  
R
RTC alarm  
Note 1  
E_NONKEY  
0:0  
R
nONKEY event  
Note 1  
Note 1 Cleared from the host by writing back the read value.  
Datasheet  
Revision 3.3  
24-Nov-2016  
61 of 96  
© 2016 Dialog Semiconductor  
 
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 42: EVENT_B (0x007)  
Field  
Bit  
Type  
Description  
E_VDD_WARN  
7:7  
R
VSYS under-voltage (VSYS < VDD_FAULT_UPPER)  
Note 1  
Reserved  
6:6  
5:5  
Reserved  
E_DVC_RDY  
R
All supplies have finished DVC ramping  
Note 1  
Reserved  
4:4  
3:3  
Reserved  
E_LDO_LIM  
R
LDO over-current  
Note 1  
Reserved  
2:2  
1:1  
Reserved  
E_TEMP  
R
Junction over-temperature (TJ > TWARN)  
Note 1  
Reserved  
0:0  
Reserved  
Note 1 Cleared from the host by writing back the read value.  
Table 43: EVENT_C (0x008)  
Field  
Bit  
7:5  
4:4  
Type  
Description  
Reserved  
Reserved  
E_GPI4  
R
R
GPI4 event  
Note 1  
E_GPI3  
E_GPI2  
E_GPI1  
E_GPI0  
3:3  
2:2  
1:1  
0:0  
R
GPI3 event  
GPI2 event  
GPI1 event  
GPI0 event  
Note 1  
R
Note 1  
R
Note 1  
R
Note 1  
Note 1 Cleared from the host by writing back the read value.  
A.1.4  
IRQ Masks  
Table 44: IRQ_MASK_A (0x00A)  
Field  
Bit  
7:5  
4:4  
3:3  
2:2  
1:1  
0:0  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Reserved  
Reserved  
M_SEQ_RDY  
M_WDG_WARN  
M_TICK  
IRQ mask for sequencer final position indication (E_SEQ_RDY)  
IRQ mask for watchdog timeout warning (E_WDG_WARN)  
IRQ mask for RTC tick event (E_TICK)  
M_ALARM  
M_NONKEY  
IRQ mask for RTC alarm (E_ALARM)  
IRQ mask for nONKEY event (E_NONKEY)  
Datasheet  
Revision 3.3  
24-Nov-2016  
62 of 96  
© 2016 Dialog Semiconductor  
 
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 45: IRQ_MASK_B (0x00B)  
Field  
Bit  
Type  
Description  
M_VDD_WARN  
7:7  
R/W  
IRQ mask for under-voltage event (E_VDD_WARN) VSYS  
VDD_FAULT_UPPER  
<
Reserved  
6:6  
Reserved  
M_DVC_RDY  
5:5  
4:4  
R/W  
R/W  
R/W  
All supplies have finished DVC ramping.  
Reserved  
Reserved  
M_LDO_LIM  
3:3  
2:2  
IRQ mask for LDO over-current event (E_LDO_LIM)  
Reserved  
Reserved  
M_TEMP  
1:1  
0:0  
IRQ mask for junction over-temperature event (E_TEMP)  
Reserved  
Reserved  
Table 46: IRQ_MASK_C (0x00C)  
Field  
Bit  
7:5  
4:4  
3:3  
2:2  
1:1  
0:0  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Reserved  
M_GPI4  
M_GPI3  
M_GPI2  
M_GPI1  
M_GPI0  
Reserved  
IRQ mask for GPI4 event (E_GPI4)  
IRQ mask for GPI3 event (E_GPI3)  
IRQ mask for GPI2 event (E_GPI2)  
IRQ mask for GPI1 event (E_GPI1)  
IRQ mask for GPI0 event (E_GPI0)  
A.1.5  
System Control  
Table 47: CONTROL_A (0x00E)  
Field  
Bit  
7:7  
6:6  
5:5  
4:4  
3:3  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Reserved  
Reserved  
M_POWER1_EN  
M_POWER_EN  
M_SYSTEM_EN  
STANDBY  
Write mask for POWER1_EN  
Write mask for POWER_EN  
Write mask for SYSTEM_EN  
Clearing control SYSTEM_EN or releasing SYS_EN (GPIO4  
alternate function) or a long press of nONKEYwill:  
0: Power-down to slot 0.  
1: Power-down as far as defined by the PART_DOWN pointer.  
POWER1_EN  
POWER_EN  
SYSTEM_EN  
2:2  
1:1  
0:0  
R/W  
R/W  
R/W  
Target status of power domain POWER1.  
Bus write masked with M_POWER1_EN.  
Target status of power domain POWER.  
Bus write masked with M_POWER_EN.  
Target status of power domain SYSTEM.  
Bus write masked with M_SYSTEM_EN.  
Datasheet  
Revision 3.3  
24-Nov-2016  
63 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 48: CONTROL_B (0x00F)  
Field  
Bit  
Type  
Description  
BUCK_SLOWSTART  
7:7  
R/W  
Enable buck slow start (reduced inrush current; increased start-up  
time).  
NFREEZE  
6:5  
4:4  
R/W  
R/W  
Block all wakeups after NFREEZE watchdog restart trials.  
nONKEY_LOCK  
0: normal POWERDOWN mode  
1: Power-down controlled by KEY_DELAY  
NRES_MODE  
3:3  
R/W  
If powering down / up:0: Keep nRESET not asserted  
1: Assert / clear nRESET when entering / leaving POWERDOWN  
FREEZE_EN  
WATCHDOG_PD  
Reserved  
2:2  
1:1  
0:0  
R/W  
R/W  
R/W  
Enable watchdog restart limit NFREEZE.  
Watchdog timer is on (1) / off (0) in POWERDOWN mode.  
Reserved  
Table 49: CONTROL_C (0x010)  
Field  
Bit  
Type  
Description  
DEF_SUPPLY  
7:7  
R/W  
1: OTP enables / disables all supplies (except LDOCORE) when  
sequencer enters slot 0.  
SLEW_RATE  
6:5  
R/W  
Buck DVC slew rate step width [10 mV/step (20 mV/step for  
Buck3)]  
00: 4 µs  
01: 2 µs  
10: 1 µs  
11: 0.5 µs  
OTPREAD_EN  
AUTO_BOOT  
4:4  
3:3  
R/W  
R/W  
When leaving POWERDOWN mode supplies are configured from  
OTP.  
After progressing from RESET mode, the sequencer:  
0: requires a wakeup event to start up.  
1: starts up automatically.  
DEBOUNCING  
2:0  
R/W  
GPI, nONKEY and nRESETREQ debounce time  
000: no debouncing  
001: 0.1 ms  
010: 1.0 ms  
011: 10.24 ms  
100: 51.2 ms  
101: 256 ms  
110: 512 ms  
111: 1024 ms  
Table 50: CONTROL_D (0x011)  
Field  
Bit  
7:3  
2:0  
Type  
R/W  
R/W  
Description  
Reserved  
TWDSCALE  
Reserved  
Watchdog timeout scaling:  
0: Watchdog disabled  
Other: Timeout = 2.5 * 2^(TWDSCALE-1) s  
Datasheet  
Revision 3.3  
24-Nov-2016  
64 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 51: CONTROL_E (0x012)  
Field  
Bit  
7:7  
6:3  
2:2  
1:1  
Type  
R/W  
R/W  
R/W  
R/W  
Description  
V_LOCK  
Prevent host from writing to registers 0x81 - 0x120 except 0x100.  
Reserved  
Reserved  
RTC_EN  
Enable Real Time Clock and alarm.  
RTC_MODE_SD  
Disable all supplies and blocks and LDOCORE if PSM enters  
RESET mode.  
RTC_MODE_PD  
0:0  
R/W  
Disable all supplies and blocks and LDOCORE if PSM enters  
POWERDOWN mode.  
Table 52: CONTROL_F (0x013)  
Field  
Bit  
7:3  
2:2  
1:1  
0:0  
Type  
R/W  
R/W  
R/W  
R/W  
Description  
Reserved  
WAKE_UP  
SHUTDOWN  
WATCHDOG  
Reserved  
Wakeup from POWERDOWN mode. Cleared automatically.  
Power-down to RESET mode. Cleared automatically.  
Reset watchdog timer. Cleared automatically.  
Table 53: PD_DIS (0x014)  
Field  
Bit  
Type  
Description  
PMCONT_DIS  
7:7  
R/W  
Disable SYS_EN, PWR_EN and PWR1_EN in POWERDOWN  
mode.  
OUT32K_PAUSE  
BBAT_DIS  
CLDR_PAUSE  
Reserved  
6:6  
5:5  
4:4  
3:3  
2:2  
1:1  
0:0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Disable OUT_32K in POWERDOWN mode.  
Disable backup battery charger in POWERDOWN mode.  
Disable calendar update in POWERDOWN mode.  
Reserved  
PMIF_DIS  
Disable 2-WIRE interface in POWERDOWN mode.  
Reserved  
Reserved  
GPI_DIS  
Disable E_GPI<x> events in POWERDOWN mode.  
Datasheet  
Revision 3.3  
24-Nov-2016  
65 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
A.1.6  
GPIO Control  
Table 54: GPIO_0_1 (0x015)  
Field  
Bit  
Type  
Description  
GPIO1_WEN  
7:7  
R/W  
0: Passive-to-active transition triggers wakeup.  
1: No wakeup  
GPIO1_TYPE  
GPIO1_PIN  
6:6  
5:4  
R/W  
R/W  
GPI: active high (1) / low (0)  
Function of GPIO1 pin (see GPIO1_OUT if output)  
00: Reserved  
01: Input (opt. regul. HW ctrl.)  
10: Output (open drain)  
11: Output (push-pull)  
GPIO0_WEN  
3:3  
R/W  
0: Passive-to-active transition triggers wakeup.  
1: No wakeup  
GPIO0_TYPE  
GPIO0_PIN  
2:2  
1:0  
R/W  
R/W  
GPI: active high (1) / low (0)  
Function of GPIO0 pin (see GPIO0_OUT if output)  
00: Watchdog trigger input  
01: Input  
10: Output (open drain)  
11: Output (push-pull)  
Table 55: GPIO_2_3 (0x016)  
Field  
Bit  
Type  
Description  
GPIO3_WEN  
7:7  
R/W  
0: Passive-to-active transition triggers wakeup.  
1: No wakeup  
GPIO3_TYPE  
GPIO3_PIN  
6:6  
5:4  
R/W  
R/W  
GPI: active high (1) / low (0)  
Function of GPIO3 pin (see GPIO3_OUT if output)  
00: Reserved  
01: Input (opt. regul. HW ctrl.)  
10: Output (open drain)  
11: Output (push-pull)  
GPIO2_WEN  
3:3  
R/W  
0: Passive-to-active transition triggers wakeup.  
1: No wakeup  
GPIO2_TYPE  
GPIO2_PIN  
2:2  
1:0  
R/W  
R/W  
GPI: active high (1) / low (0)  
Function of GPIO2 pin (see GPIO2_OUT if output)  
00: GPI as PWR_EN  
01: Input (opt. regul. HW ctrl.)  
10: Output (open drain)  
11: nVDD_FAULT  
Datasheet  
Revision 3.3  
24-Nov-2016  
66 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 56: GPIO_4 (0x017)  
Field  
Bit  
7:4  
3:3  
Type  
R/W  
R/W  
Description  
Reserved  
GPIO4_WEN  
Reserved  
0: Passive-to-active transition triggers wakeup.  
1: No wakeup  
GPIO4_TYPE  
GPIO4_PIN  
2:2  
1:0  
R/W  
R/W  
GPI: active high (1) / low (0)  
Function of GPIO pad (see GPIO4_OUT if output)  
00: GPI as SYS_EN  
01: Input  
10: Output (open drain)  
11: Output (push-pull)  
Table 57: GPIO_WKUP_MODE (0x01C)  
Field  
Bit  
7:5  
4:4  
3:3  
2:2  
1:1  
0:0  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Reserved  
Reserved  
GPIO4_WKUP_MODE  
GPIO3_WKUP_MODE  
GPIO2_WKUP_MODE  
GPIO1_WKUP_MODE  
GPIO0_WKUP_MODE  
GPI4 wakeup is edge (0) / level (1) sensitive.  
GPI3 wakeup is edge (0) / level (1) sensitive.  
GPI2 wakeup is edge (0) / level (1) sensitive.  
GPI1 wakeup is edge (0) / level (1) sensitive.  
GPI0 wakeup is edge (0) / level (1) sensitive.  
Table 58: GPIO_MODE0_4 (0x01D)  
Field  
Bit  
7:5  
4:4  
Type  
R/W  
R/W  
Description  
Reserved  
GPIO4_MODE  
Reserved  
Output, STATIC: the output value  
Output, other: active low (0) / high (1)  
Input:  
debouncing off (0) / on (1)  
GPIO3_MODE  
GPIO2_MODE  
GPIO1_MODE  
GPIO0_MODE  
3:3  
2:2  
1:1  
0:0  
R/W  
R/W  
R/W  
R/W  
Output, STATIC: the output value  
Output, other: active low (0) / high (1)  
Input:  
debouncing off (0) / on (1)  
Output, STATIC: the output value  
Output, other: active low (0) / high (1)  
Input:  
debouncing off (0) / on (1)  
Output, STATIC: the output value  
Output, other: active low (0) / high (1)  
Input:  
debouncing off (0) / on (1)  
Output, STATIC: the output value  
Output, other: active low (0) / high (1)  
Input:  
debouncing off (0) / on (1)  
Datasheet  
Revision 3.3  
24-Nov-2016  
67 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 59: GPIO_OUT0_2 (0x01E)  
Field  
Bit  
Type  
Description  
GPIO2_OUT  
7:6  
R/W  
GPIO output function  
00: Static value according GPIO2_MODE  
01: nVDD_FAULT  
10: 32 kHz crystal clock (OUT_32K)  
11: Sequencer controlled  
GPIO1_OUT  
5:3  
R/W  
GPIO output function  
000: Static value according GPIO1_MODE  
001: nVDD_FAULT  
010: 32 kHz crystal clock (OUT_32K)  
011: Sequencer controlled  
100: Forward GPI0  
101: Reserved  
110: Forward GPI2  
111: Forward GPI3  
GPIO0_OUT  
2:0  
R/W  
GPIO output function  
000: Static value according GPIO0_MODE  
001: nVDD_FAULT  
010: 32 kHz crystal clock (OUT_32K)  
011: Sequencer controlled  
100: Reserved  
101: Forward GPI1  
110: Forward GPI2  
111: Forward GPI3  
Table 60: GPIO_OUT3_4 (0x01F)  
Field  
Bit  
7:5  
4:3  
Type  
R/W  
R/W  
Description  
Reserved  
GPIO4_OUT  
Reserved  
GPIO output function  
00: Static value according GPIO4_MODE  
01: nVDD_FAULT  
10: 32 kHz crystal clock (OUT_32K)  
11: Sequencer controlled  
GPIO3_OUT  
2:0  
R/W  
GPIO output function  
000: Static value according GPIO3_MODE  
001: nVDD_FAULT  
010: 32 kHz crystal clock (OUT_32K)  
011: Sequencer controlled  
100: Forward GPI0  
101: Forward GPI1  
110: Forward GPI2  
111: Reserved  
Datasheet  
Revision 3.3  
24-Nov-2016  
68 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
A.1.7  
Power Supply Control  
Table 61: BUCK2_CONT (0x020)  
Field  
Bit  
7:7  
6:5  
Type  
R/W  
R/W  
Description  
Reserved  
VBUCK2_GPI  
Reserved  
Voltage controlling GPI  
(passive to active transition: VB*_B, act. to pas.: VB*_A)  
Reserved  
4:4  
3:3  
2:1  
R/W  
R/W  
R/W  
Reserved  
BUCK2_CONF  
BUCK2_GPI  
Default supply, or sequenced and on in POWERDOWN  
Enabling GPI  
(passive to active transition: enable, act. to pas.: disable)  
BUCK2_EN  
0:0  
R/W  
Disable (0) / enable (1) the buck (dependent on on/off priority  
order), except in BUCK1/2 dual-phase mode  
Table 62: BUCK1_CONT (0x021)  
Field  
Bit  
7:7  
6:5  
Type  
R/W  
R/W  
Description  
Reserved  
VBUCK1_GPI  
Reserved  
Voltage controlling GPI  
(passive to active transition: VB*_B, act. to pas.: VB*_A)  
00: Sequencer controlled  
01: Select GPI1  
10: Select GPI2  
11: Select GPI3  
Reserved  
4:4  
3:3  
2:1  
R/W  
R/W  
R/W  
Reserved  
BUCK1_CONF  
BUCK1_GPI  
Default supply, or sequenced and on in POWERDOWN  
Enabling GPI  
(passive to active transition: enable, act. to pas.: disable)  
00: Sequencer controlled  
01: Select GPI1  
10: Select GPI2  
11: Select GPI3  
BUCK1_EN  
0:0  
R/W  
Disable (0) / enable (1) the buck (dependent on on/off priority  
order)  
Datasheet  
Revision 3.3  
24-Nov-2016  
69 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 63: BUCK4_CONT (0x022)  
Field  
Bit  
7:7  
6:5  
Type  
R/W  
R/W  
Description  
Reserved  
VBUCK4_GPI  
Reserved  
Voltage controlling GPI  
(passive to active transition: VB*_B, act. to pas.: VB*_A)  
00: Sequencer controlled  
01: Select GPI1  
10: Select GPI2  
11: Select GPI3  
Reserved  
4:4  
3:3  
2:1  
R/W  
R/W  
R/W  
Reserved  
BUCK4_CONF  
BUCK4_GPI  
Default supply, or sequenced and on in POWERDOWN  
Enabling GPI  
(passive to active transition: enable, act. to pas.: disable)  
00: Sequencer controlled  
01: Select GPI1  
10: Select GPI2  
11: Select GPI3  
BUCK4_EN  
0:0  
R/W  
Disable (0) / enable (1) the buck (dependent on on/off priority  
order)  
Table 64: BUCK3_CONT (0x024)  
Field  
Bit  
7:7  
6:5  
Type  
R/W  
R/W  
Description  
Reserved  
VBUCK3_GPI  
Reserved  
Voltage controlling GPI  
(passive to active transition: VB*_B, act. to pas.: VB*_A)  
00: Sequencer controlled  
01: Select GPI1  
10: Select GPI2  
11: Select GPI3  
Reserved  
4:4  
3:3  
2:1  
R/W  
R/W  
R/W  
Reserved  
BUCK3_CONF  
BUCK3_GPI  
Default supply, or sequenced and on in POWERDOWN  
Enabling GPI  
(passive to active transition: enable, act. to pas.: disable)  
00: Sequencer controlled  
01: Select GPI1  
10: Select GPI2  
11: Select GPI3  
BUCK3_EN  
0:0  
R/W  
Disable (0) / enable (1) the buck (dependent on on/off priority  
order)  
Datasheet  
Revision 3.3  
24-Nov-2016  
70 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 65: LDO1_CONT (0x026)  
Field  
Bit  
7:7  
6:5  
Type  
R/W  
R/W  
Description  
LDO1_CONF  
VLDO1_GPI  
Default supply, or sequenced and on in POWERDOWN  
Voltage controlling GPI  
(passive to active transition: VLDO*_B, act. to pas.: VLDO*_A)  
00: Sequencer controlled  
01: Select GPI1  
10: Select GPI2  
11: Select GPI3  
Reserved  
4:4  
3:3  
2:1  
R/W  
R/W  
R/W  
Reserved  
LDO1_PD_DIS  
LDO1_GPI  
Disable pull-down resistor when disabled.  
Enabling GPI  
(passive to active transition: enable, act. to pas.: disable)  
00: Sequencer controlled  
01: Select GPI1  
10: Select GPI2  
11: Select GPI3  
LDO1_EN  
0:0  
R/W  
Disable (0) / enable (1) the LDO (dependent on on/off priority  
order)  
Table 66: LDO2_CONT (0x027)  
Field  
Bit  
7:7  
6:5  
Type  
R/W  
R/W  
Description  
LDO2_CONF  
VLDO2_GPI  
Default supply, or sequenced and on in POWERDOWN  
Voltage controlling GPI  
(passive to active transition: VLDO*_B, act. to pas.: VLDO*_A)  
00: Sequencer controlled  
01: Select GPI1  
10: Select GPI2  
11: Select GPI3  
Reserved  
4:4  
3:3  
2:1  
R/W  
R/W  
R/W  
Reserved  
LDO2_PD_DIS  
LDO2_GPI  
Disable pull-down resistor when disabled.  
Enabling GPI  
(passive to active transition: enable, act. to pas.: disable)  
00: Sequencer controlled  
01: Select GPI1  
10: Select GPI2  
11: Select GPI3  
LDO2_EN  
0:0  
R/W  
Disable (0) / enable (1) the LDO (dependent on on/off priority  
order)  
Datasheet  
Revision 3.3  
24-Nov-2016  
71 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 67: LDO3_CONT (0x028)  
Field  
Bit  
7:7  
6:5  
Type  
R/W  
R/W  
Description  
LDO3_CONF  
VLDO3_GPI  
Default supply, or sequenced and on in POWERDOWN  
Voltage controlling GPI  
(passive to active transition: VLDO*_B, act. to pas.: VLDO*_A)  
00: Sequencer controlled  
01: Select GPI1  
10: Select GPI2  
11: Select GPI3  
Reserved  
4:4  
3:3  
2:1  
R/W  
R/W  
R/W  
Reserved  
LDO3_PD_DIS  
LDO3_GPI  
Disable pull-down resistor when disabled.  
Enabling GPI  
(passive to active transition: enable, act. to pas.: disable)  
00: Sequencer controlled  
01: Select GPI1  
10: Select GPI2  
11: Select GPI3  
LDO3_EN  
0:0  
R/W  
Disable (0) / enable (1) the LDO (dependent on on/off priority  
order)  
Table 68: LDO4_CONT (0x029)  
Field  
Bit  
7:7  
6:5  
Type  
R/W  
R/W  
Description  
LDO4_CONF  
VLDO4_GPI  
Default supply, or sequenced and on in POWERDOWN  
Voltage controlling GPI  
(passive to active transition: VLDO*_B, act. to pas.: VLDO*_A)  
00: Sequencer controlled  
01: Select GPI1  
10: Select GPI2  
11: Select GPI3  
Reserved  
4:4  
3:3  
2:1  
R/W  
R/W  
R/W  
Reserved  
LDO4_PD_DIS  
LDO4_GPI  
Disable pull-down resistor when disabled.  
Enabling GPI  
(passive to active transition: enable, act. to pas.: disable)  
00: Sequencer controlled  
01: Select GPI1  
10: Select GPI2  
11: Select GPI3  
LDO4_EN  
0:0  
R/W  
Disable (0) / enable (1) the LDO (dependent on on/off priority  
order)  
Datasheet  
Revision 3.3  
24-Nov-2016  
72 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 69: DVC_1 (0x032)  
Field  
Bit  
7:7  
6:6  
5:5  
4:4  
3:3  
2:2  
1:1  
0:0  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
VLDO4_SEL  
VLDO3_SEL  
VLDO2_SEL  
VLDO1_SEL  
VBUCK3_SEL  
VBUCK4_SEL  
VBUCK2_SEL  
VBUCK1_SEL  
Select VLDO4_A (0) / VLDO4_B (1).  
Select VLDO3_A (0) / VLDO3_B (1).  
Select VLDO2_A (0) / VLDO2_B (1).  
Select VLDO1_A (0) / VLDO1_B (1).  
Select VBUCK3_A (0) / VBUCK3_B (1).  
Select VBUCK4_A (0) / VBUCK4_B (1).  
Select VBUCK2_A (0) / VBUCK2_B (1).  
Select VBUCK1_A (0) / VBUCK1_B (1).  
Datasheet  
Revision 3.3  
24-Nov-2016  
73 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
A.1.8  
RTC Calendar and Alarm  
Table 70: COUNT_S (0x040)  
Field  
Bit  
7:7  
6:6  
5:0  
Type  
Description  
RTC_READ  
Reserved  
COUNT_SEC  
R
Indicates that RTC calendar is ready to be read by the host.  
Reserved  
R/W  
Calendar seconds  
Bus write is snapshot and updated on a write to COUNT_YEAR.  
Bus read loads RTC calendar into 0x104-0x109.  
Table 71: COUNT_MI (0x041)  
Field  
Bit  
7:6  
5:0  
Type  
R
Description  
Reserved  
COUNT_MIN  
Reserved  
R/W  
Calendar minutes 0-59  
Bus write is snapshot and updated on a write to COUNT_YEAR.  
Bus read is snapshot and updated on a read from COUNT_SEC.  
Table 72: COUNT_H (0x042)  
Field  
Bit  
7:5  
4:0  
Type  
R
Description  
Reserved  
COUNT_HOUR  
Reserved  
R/W  
Calendar hours 0-23  
Bus write is snapshot and updated on a write to COUNT_YEAR.  
Bus read is snapshot and updated on a read from COUNT_SEC.  
Table 73: COUNT_D (0x043)  
Field  
Bit  
7:5  
4:0  
Type  
R
Description  
Reserved  
COUNT_DAY  
Reserved  
R/W  
Calendar days 1-31  
Bus write is snapshot and updated on a write to COUNT_YEAR.  
Bus read is snapshot and updated on a read from COUNT_SEC.  
Table 74: COUNT_MO (0x044)  
Field  
Bit  
7:4  
3:0  
Type  
R
Description  
Reserved  
Reserved  
COUNT_MONTH  
R/W  
Calendar months 1-12  
Bus write is snapshot and updated on a write to COUNT_YEAR.  
Bus read is snapshot and updated on a read from COUNT_SEC.  
Datasheet  
Revision 3.3  
24-Nov-2016  
74 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 75: COUNT_Y (0x045)  
Field  
Bit  
7:7  
6:6  
Type  
R
Description  
Reserved  
MONITOR  
Reserved  
R/W  
Read: RTC power has been lost (0) / RTC clock okay (1).  
Write: RTC_EN and CRYSTAL writing enabled (0) / disabled (1).  
Fetched from VDDRTC domain at VDDCORE POR.  
If set, host writes to this register are ignored; thus the host cannot  
clear it.  
COUNT_YEAR  
5:0  
R/W  
Calendar year 2000 - 2063  
Bus write turns on the RTC clock and sets RTC calendar.  
Bus read is snapshot and updated on a read from COUNT_SEC.  
Table 76: ALARM_S (0x046)  
Field  
Bit  
Type  
Description  
ALARM_STATUS  
7:6  
R
Alarm reason  
00: No alarm  
01: Tick  
10: Timer  
11: Tick + Timer  
ALARM_SEC  
5:0  
R/W  
Alarm seconds 0-59  
Bus write is snapshot and updated on a write to ALARM_YEAR.  
Table 77: ALARM_MI (0x047)  
Field  
Bit  
7:6  
5:0  
Type  
R
Description  
Reserved  
ALARM_MIN  
Reserved  
R/W  
Alarm minutes 0-59  
Bus write is snapshot and updated on a write to ALARM_YEAR.  
Table 78: ALARM_H (0x048)  
Field  
Bit  
7:5  
4:0  
Type  
R
Description  
Reserved  
ALARM_HOUR  
Reserved  
R/W  
Alarm hours 0-23  
Bus write is snapshot and updated on a write to ALARM_YEAR.  
Table 79: ALARM_D (0x049)  
Field  
Bit  
7:5  
4:0  
Type  
R
Description  
Reserved  
ALARM_DAY  
Reserved  
R/W  
Alarm days 1-31  
Bus write is snapshot and updated on a write to ALARM_YEAR.  
Datasheet  
Revision 3.3  
24-Nov-2016  
75 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 80: ALARM_MO (0x04A)  
Field  
Bit  
7:6  
5:5  
4:4  
Type  
R
Description  
Reserved  
TICK_WAKE  
TICK_TYPE  
Reserved  
R/W  
R/W  
Allows a tick to wake the chip from RTC mode  
Tick period  
0: every second  
1: every minute  
ALARM_MONTH  
3:0  
R/W  
Alarm months 1-12  
Bus write is snapshot and updated on a write to ALARM_YEAR.  
Table 81: ALARM_Y (0x04B)  
Field  
Bit  
7:7  
6:6  
Type  
R/W  
R/W  
Description  
TICK_ON  
ALARM_ON  
Enable the tick function.  
Enable the alarm function. Alarm time is set with the ALARM_*  
registers  
ALARM_YEAR  
5:0  
R/W  
Alarm years 2000 - 2063  
Table 82: SECOND_A (0x04C)  
Field  
Bit  
Type  
Description  
SECONDS_A  
7:0  
R
RTC seconds counter least significant byte  
Table 83: SECOND_B (0x04D)  
Field  
Bit  
Type  
Description  
SECONDS_B  
7:0  
R
RTC seconds counter byte  
Bus read is snapshot and updated on a read from SECONDS_A.  
Table 84: SECOND_C (0x04E)  
Field  
Bit  
Type  
Description  
SECONDS_C  
7:0  
R
RTC seconds counter byte  
Bus read is snapshot and updated on a read from SECONDS_A.  
Table 85: SECOND_D (0x04F)  
Field  
Bit  
Type  
Description  
SECONDS_D  
7:0  
R
RTC seconds counter most significant byte  
Bus read is snapshot and updated on a read from SECONDS_A.  
Datasheet  
Revision 3.3  
24-Nov-2016  
76 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
A.2 PAGE 1  
A.2.1  
Power Supply Sequencer  
Table 86: SEQ (0x081)  
Field  
Bit  
7:4  
3:0  
Type  
R/W  
R
Description  
Reserved  
Reserved  
SEQ_POINTER  
Actual power sequencer position  
Table 87: SEQ_TIMER (0x082)  
Field  
Bit  
Type  
Description  
SEQ_DUMMY  
7:4  
R/W  
Waiting time for power sequencer slots which do not have an  
associated power supply.  
0000: 32 µs  
0001: 64 µs  
0010: 96 µs  
0011: 128 µs  
0100: 160 µs  
0101: 192 µs  
0110: 224 µs  
0111: 256 µs  
1000: 288 µs  
1001: 384 µs  
1010: 448 µs  
1011: 512 µs  
1100: 1.024 ms  
1101: 2.048 ms  
1110: 4.096 ms  
1111: 8.192 ms  
SEQ_TIME  
3:0  
R/W  
Length of each sequencer time slot  
0000: 32 µs  
0001: 64 µs  
0010: 96 µs  
0011: 128 µs  
0100: 160 µs  
0101: 192 µs  
0110: 224 µs  
0111: 256 µs  
1000: 288 µs  
1001: 384 µs  
1010: 448 µs  
1011: 512 µs  
1100: 1.024 ms  
1101: 2.048 ms  
1110: 4.096 ms  
1111: 8.192 ms  
Datasheet  
Revision 3.3  
24-Nov-2016  
77 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 88: ID_2_1 (0x083)  
Field  
Bit  
7:4  
3:0  
Type  
R/W  
R/W  
Description  
LDO2_STEP  
LDO1_STEP  
Sequencer step for LDO2  
Sequencer step for LDO1  
Table 89: ID_4_3 (0x084)  
Field  
Bit  
Type  
R/W  
R/W  
Description  
LDO4_STEP  
LDO3_STEP  
7:4  
3:0  
Sequencer step for LDO4  
Sequencer step for LDO3  
Table 90: ID_12_11 (0x088)  
Field  
Bit  
7:4  
3:0  
Type  
R/W  
R/W  
Description  
PD_DIS_STEP  
Reserved  
Sequencer step for PD_DIS register functionality.  
Reserved  
Table 91: ID_14_13 (0x089)  
Field  
Bit  
7:4  
3:0  
Type  
R/W  
R/W  
Description  
BUCK2_STEP  
BUCK1_STEP  
Sequencer step for Buck2  
Sequencer step for Buck1  
Table 92: ID_16_15 (0x08A)  
Field  
Bit  
7:4  
3:0  
Type  
R/W  
R/W  
Description  
BUCK3_STEP  
BUCK4_STEP  
Sequencer step for Buck3  
Sequencer step for Buck4  
Table 93: ID_22_21 (0x08D)  
Field  
Bit  
7:4  
3:0  
Type  
R/W  
R/W  
Description  
GP_FALL1_STEP  
GP_RISE0_STEP  
Sequencer step to de-assert GPO0  
Sequencer step to assert GPO0  
Table 94: ID_24_23 (0x08E)  
Field  
Bit  
7:4  
3:0  
Type  
R/W  
R/W  
Description  
GP_FALL2_STEP  
GP_RISE1_STEP  
Sequencer step to de-assert GPO1  
Sequencer step to assert GPO1  
Table 95: ID_26_25 (0x08F)  
Field  
Bit  
7:4  
3:0  
Type  
R/W  
R/W  
Description  
GP_FALL3_STEP  
GP_RISE2_STEP  
Sequencer step to de-assert GPO2  
Sequencer step to assert GPO2  
Datasheet  
Revision 3.3  
24-Nov-2016  
78 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 96: ID_28_27 (0x090)  
Field  
Bit  
7:4  
3:0  
Type  
R/W  
R/W  
Description  
GP_FALL4_STEP  
GP_RISE3_STEP  
Sequencer step to de-assert GPO3  
Sequencer step to assert GPO3  
Table 97: ID_30_29 (0x091)  
Field  
Bit  
7:4  
3:0  
Type  
R/W  
R/W  
Description  
GP_FALL5_STEP  
GP_RISE4_STEP  
Sequencer step to de-assert GPO4  
Sequencer step to assert GPO4  
Table 98: ID_32_31 (0x092)  
Field  
Bit  
7:4  
3:0  
Type  
R/W  
R/W  
Description  
EN32K_STEP  
WAIT_STEP  
Sequencer step to enable GPO and RTC clock  
Sequencer step for WAIT register functionality  
Table 99: SEQ_A (0x095)  
Field  
Bit  
Type  
Description  
POWER_END  
7:4  
R/W  
End of POWER power domain in the sequencer  
SYSTEM_END <= POWER_END <= MAX_COUNT must be true.  
SYSTEM_END  
3:0  
R/W  
End of SYSTEM power domain in the sequencer  
PART_DOWN <= SYSTEM_END <= POWER_END must be true.  
Table 100: SEQ_B (0x096)  
Field  
Bit  
Type  
Description  
PART_DOWN  
7:4  
R/W  
Sequencer slot to stop at, when going down into STANDBY state.  
1 <= PART_DOWN <= SYSTEM_END must be true.  
MAX_COUNT  
3:0  
R/W  
End of POWER1 power domain in the sequencer  
POWER_END <= MAX_COUNT must be true.  
Datasheet  
Revision 3.3  
24-Nov-2016  
79 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 101: WAIT (0x097)  
Field  
Bit  
Type  
Description  
WAIT_DIR  
7:6  
R/W  
WAIT_STEP power sequence selection  
00: Do not wait during WAIT_STEP of power sequencer except for  
normal slot time.  
01: Wait during up sequence.  
10: Wait during down sequence.  
11: Wait during up and down sequence.  
TIME_OUT  
5:5  
R/W  
Timeout when WAIT_MODE = 0  
0: no timeout when waiting for external signal (GPIO3).  
1: 500 ms timeout when waiting for external signal (GPIO3).  
WAIT_MODE  
WAIT_TIME  
4:4  
3:0  
R/W  
R/W  
0: Wait for external signal (GPIO3) to be active.  
1: Start timer and wait for expiration.  
Wait timer during WAIT STEP of power sequencer (+/- 10%)  
0000: Do not wait during WAIT_STEP of power sequencer except  
for normal slot time.  
0001: 512 µs  
0010: 1.0 ms  
0011: 2.0 ms  
0100: 4.1 ms  
0101: 8.2 ms  
0110: 16.4 ms  
0111: 32.8 ms  
1000: 65.5 ms  
1001: 128 ms  
1010: 256 ms  
1011: 512 ms  
1100: 1.0 s  
1101: 2.0 s  
1110: 4.1 s  
1111: 8.2 s  
Datasheet  
Revision 3.3  
24-Nov-2016  
80 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 102: EN_32K (0x098)  
Field  
Bit  
Type  
Description  
EN_32KOUT  
7:7  
R/W  
Enable OUT_32K on the GPOs  
(may be delayed depending on OUT32K_PAUSE).  
RTC_CLOCK  
OUT_CLOCK  
6:6  
5:5  
R/W  
R/W  
Disable clock to RTC counter until stabilisation timer has expired.  
Disable clock to GPOs configured as OUT_32K until stabilization  
timer has expired.  
DELAY_MODE  
4:4  
R/W  
Start stabilization timer:  
0: when oscillator signal is available (third falling edge)  
1: when oscillator has been switched on (CRYSTAL risen)  
CRYSTAL  
3:3  
2:0  
R/W  
R/W  
External RTC crystal is present.  
Fetched from VDDRTC domain at VDDCORE POR.  
STABILISATION_TIME  
Time to allow crystal oscillator to stabilize.  
000: Delay off  
001: 0.52 s  
010: 1.0 s  
011: 1.5 s  
100: 2.1 s  
101: 2.6 s  
110: 3.1 s  
111: 3.6 s  
Table 103: RESET (0x099)  
Field  
Bit  
Type  
Description  
RESET_EVENT  
7:6  
R/W  
Reset timer started by:  
00: EXT_WAKEUP  
01: SYS_UP (register control or pin)  
10: PWR_UP (register control or pin)  
11: Leaving PMIC RESET mode  
RESET_TIMER  
5:0  
R/W  
0: Release nRESET immediately after the event selected by  
RESET_EVENT.  
1 - 31: 1.024 ms * RESET_TIMER  
32-63: 1.024 ms * 32 * (RESET_TIMER-31)  
Datasheet  
Revision 3.3  
24-Nov-2016  
81 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
A.2.2  
Power Supply Control  
Table 104: BUCK_ILIM_A (0x09A)  
Field  
Bit  
7:4  
3:0  
Type  
R/W  
R/W  
Description  
Reserved  
BUCK3_ILIM  
Reserved  
Buck3 current limit = (1700 + BUCK3_ILIM * 100) mA  
Table 105: BUCK_ILIM_B (0x09B)  
Field  
Bit  
7:4  
3:0  
Type  
R/W  
R/W  
Description  
Reserved  
BUCK4_ILIM  
Reserved  
Buck4 current limit = (700 + BUCK4_ILIM * 100) mA  
Table 106: BUCK_ILIM_C (0x09C)  
Field  
Bit  
Type  
Description  
BUCK2_ILIM  
7:4  
R/W  
Buck2 current limit = (700 + BUCK2_ILIM * 100) mA  
In full-current mode the limit is internally doubled.  
BUCK1_ILIM  
3:0  
R/W  
Buck1 current limit = (700 + BUCK1_ILIM * 100) mA  
In full-current mode the limit is internally doubled.  
Table 107: BUCK2_CFG (0x09D)  
Field  
Bit  
Type  
Description  
BUCK2_MODE  
7:6  
R/W  
Controls the mode of the buck:  
00: Controlled by BUCK2_SL_A and BUCK2_SL_B  
01: Sleep (PFM)  
10: Synchronous (PWM)  
11: Automatic  
BUCK2_PD_DIS  
5:5  
4:0  
R/W  
R/W  
Disable pull-down resistor when disabled.  
Reserved  
Reserved  
Table 108: BUCK1_CFG (0x09E)  
Field  
Bit  
Type  
Description  
BUCK1_MODE  
7:6  
R/W  
Controls the mode of the buck:  
00: Controlled by BUCK1_SL_A and BUCK1_SL_B  
01: Sleep (PFM)  
10: Synchronous (PWM)  
11: Automatic  
BUCK1_PD_DIS  
Reserved  
5:5  
4:1  
0:0  
R/W  
R/W  
R/W  
Disable pull-down resistor when disabled.  
Reserved  
Reserved  
Reserved  
Datasheet  
Revision 3.3  
24-Nov-2016  
82 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 109: BUCK4_CFG (0x09F)  
Field  
Bit  
Type  
Description  
BUCK4_MODE  
7:6  
R/W  
Controls the mode of the buck:  
00: Controlled by BUCK4_SL_A and BUCK4_SL_B  
01: Sleep (PFM)  
10: Synchronous (PWM)  
11: Automatic  
BUCK4_PD_DIS  
BUCK4_VTT_EN  
BUCK4_VTTR_EN  
Reserved  
5:5  
4:4  
3:3  
2:0  
R/W  
R/W  
R/W  
R/W  
Disable pull-down resistor when disabled.  
Enable Buck4 memory bus termination mode.  
Enable Buck4 memory bus termination reference voltage output.  
Reserved  
Table 110: BUCK3_CFG (0x0A0)  
Field  
Bit  
Type  
Description  
BUCK3_MODE  
7:6  
R/W  
Controls the mode of the buck:  
00: Controlled by BUCK3_SL_A and BUCK3_SL_B  
01: Sleep (PFM)  
10: Synchronous (PWM)  
11: Automatic  
BUCK3_PD_DIS  
5:5  
4:0  
R/W  
R/W  
Disable pull-down resistor when disabled.  
Reserved  
Reserved  
Table 111: VBUCK2_A (0x0A3)  
Field  
Bit  
Type  
Description  
BUCK2_SL_A  
7:7  
R/W  
This control is only effective when BUCK2_MODE = 0  
0: forced to synchronous mode (PWM) when 'A' setting is active.  
1: forced to sleep mode (PFM) when 'A' setting is active.  
VBUCK2_A  
6:0  
R/W  
From 0.3 V (0x00) to 1.57 V (0x7F) in steps of 10 mV  
Table 112: VBUCK1_A (0x0A4)  
Field  
Bit  
Type  
Description  
BUCK1_SL_A  
7:7  
R/W  
This control is only effective when BUCK1_MODE = 0  
0: forced to synchronous mode (PWM) when 'A' setting is active.  
1: forced to sleep mode (PFM) when 'A' setting is active.  
VBUCK1_A  
6:0  
R/W  
From 0.3 V (0x00) to 1.57 V (0x7F) in steps of 10 mV  
Table 113: VBUCK4_A (0x0A5)  
Field  
Bit  
Type  
Description  
BUCK4_SL_A  
7:7  
R/W  
This control is only effective when BUCK4_MODE = 0  
0: forced to synchronous mode (PWM) when 'A' setting is active.  
1: forced to sleep mode (PFM) when 'A' setting is active.  
VBUCK4_A  
6:0  
R/W  
From 0.53 V (0x00) to 1.8 V (0x7F) in steps of 10 mV  
Datasheet  
Revision 3.3  
24-Nov-2016  
83 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 114: VBUCK3_A (0x0A7)  
Field  
Bit  
Type  
Description  
BUCK3_SL_A  
7:7  
R/W  
This control is only effective when BUCK3_MODE = 0  
0: forced to synchronous mode (PWM) when 'A' setting is active.  
1: forced to sleep mode (PFM) when 'A' setting is active.  
VBUCK3_A  
6:0  
R/W  
From 0.80 V (0x00) to 3.34 V (0x7F) in steps of 20 mV  
Table 115: VLDO1_A (0x0A9)  
Field  
Bit  
7:7  
6:6  
5:0  
Type  
R/W  
R/W  
R/W  
Description  
LDO1_SL_A  
Reserved  
VLDO1_A  
Force LDO sleep mode if VLDO1_A is active.  
Reserved  
From 0.90 V (0x02) to 3.60 V (0x38) in steps of 50 mV  
Less than 0x02: 0.90 V; greater than 0x38: 3.60 V  
Table 116: VLDO2_A (0x0AA)  
Field  
Bit  
7:7  
6:6  
5:0  
Type  
R/W  
R/W  
R/W  
Description  
LDO2_SL_A  
Reserved  
VLDO2_A  
Force LDO sleep mode if VLDO2_A is selected.  
Reserved  
From 0.90 V (0x02) to 3.60 V (0x38) in steps of 50 mV  
Less than 0x02: 0.90 V; greater than 0x38: 3.60 V  
Table 117: VLDO3_A (0x0AB)  
Field  
Bit  
7:7  
6:6  
5:0  
Type  
R/W  
R/W  
R/W  
Description  
LDO3_SL_A  
Reserved  
VLDO3_A  
Force LDO sleep mode if VLDO3_A is selected.  
Reserved  
From 0.90 V (0x02) to 3.60 V (0x38) in steps of 50 mV  
Less than 0x02: 0.90 V; greater than 0x38: 3.60 V  
Table 118: VLDO4_A (0x0AC)  
Field  
Bit  
7:7  
6:6  
5:0  
Type  
R/W  
R/W  
R/W  
Description  
LDO4_SL_A  
Reserved  
VLDO4_A  
Force LDO sleep mode if VLDO4_A is selected.  
Reserved  
From 0.90 V (0x02) to 3.60 V (0x38) in steps of 50 mV  
Less than 0x02: 0.90 V; greater than 0x38: 3.60 V  
Table 119: VBUCK2_B (0x0B4)  
Field  
Bit  
Type  
Description  
BUCK2_SL_B  
7:7  
R/W  
This control is only effective when BUCK2_MODE = 0  
0: forced to synchronous mode (PWM) when 'B' setting is active.  
1: forced to sleep mode (PFM) when 'B' setting is active.  
VBUCK2_B  
6:0  
R/W  
From 0.3 V (0x00) to 1.57 V (0x7F) in steps of 10 mV  
Datasheet  
Revision 3.3  
24-Nov-2016  
84 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 120: VBUCK1_B (0x0B5)  
Field  
Bit  
Type  
Description  
BUCK1_SL_B  
7:7  
R/W  
This control is only effective when BUCK1_MODE = 0  
0: forced to synchronous mode (PWM) when 'B' setting is active.  
1: forced to sleep mode (PFM) when 'B' setting is active.  
VBUCK1_B  
6:0  
R/W  
From 0.3 V (0x00) to 1.57 V (0x7F) in steps of 10 mV  
Table 121: VBUCK4_B (0x0B6)  
Field  
Bit  
Type  
Description  
BUCK4_SL_B  
7:7  
R/W  
This control is only effective when BUCK4_MODE = 0  
0: forced to synchronous mode (PWM) when 'B' setting is active.  
1: forced to sleep mode (PFM) when 'B' setting is active.  
VBUCK4_B  
6:0  
R/W  
From 0.53 V (0x00) to 1.8 V (0x7F) in steps of 10 mV  
Table 122: VBUCK3_B (0x0B8)  
Field  
Bit  
Type  
Description  
BUCK3_SL_B  
7:7  
R/W  
This control is only effective when BUCK3_MODE = 0  
0: forced to synchronous mode (PWM) when 'B' setting is active.  
1: forced to sleep mode (PFM) when 'B' setting is active.  
VBUCK3_B  
6:0  
R/W  
From 0.80 V (0x00) to 3.34 V (0x7F) in steps of 20 mV  
Table 123: VLDO1_B (0x0BA)  
Field  
Bit  
7:7  
6:6  
5:0  
Type  
R/W  
R/W  
R/W  
Description  
LDO1_SL_B  
Reserved  
VLDO1_B  
Force LDO sleep mode when ‘B’ setting is active.  
Reserved  
From 0.90 V (0x02) to 3.60 V (0x38) in steps of 50 mV  
Less than 0x02: 0.90 V; greater than 0x38: 3.60 V  
Table 124: VLDO2_B (0x0BB)  
Field  
Bit  
7:7  
6:6  
5:0  
Type  
R/W  
R/W  
R/W  
Description  
LDO2_SL_B  
Reserved  
VLDO2_B  
Force LDO sleep mode if VLDO2_B is selected.  
Reserved  
From 0.90 V (0x02) to 3.60 V (0x38) in steps of 50 mV  
Less than 0x02: 0.90 V; greater than 0x38: 3.60 V  
Table 125: VLDO3_B (0x0BC)  
Field  
Bit  
7:7  
6:6  
5:0  
Type  
R/W  
R/W  
R/W  
Description  
LDO3_SL_B  
Reserved  
VLDO3_B  
Force LDO sleep mode if VLDO3_B is selected.  
Reserved  
From 0.90 V (0x02) to 3.60 V (0x38) in steps of 50 mV  
Less than 0x02: 0.90 V; greater than 0x38: 3.60 V  
Datasheet  
Revision 3.3  
24-Nov-2016  
85 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 126: VLDO4_B (0x0BD)  
Field  
Bit  
7:7  
6:6  
5:0  
Type  
R/W  
R/W  
R/W  
Description  
LDO4_SL_B  
Reserved  
VLDO4_B  
Force LDO sleep mode if VLDO4_B is selected.  
Reserved  
From 0.90 V (0x02) to 3.60 V (0x38) in steps of 50 mV  
Less than 0x02: 0.90 V; greater than 0x38: 3.60 V  
A.2.3  
BBAT Charger Control  
Table 127: BBAT_CONT (0x0C5)  
Field  
Bit  
Type  
Description  
BCHG_ISET  
7:4  
R/W  
Charging current setting:  
0000: Disabled  
0001: 100 µA  
0010: 200 µA  
0011: 300 µA  
0100: 400 µA  
0101: 500 µA  
0110: 600 µA  
0111: 700 µA  
1000: 800 µA  
1001: 900 µA  
1010: 1 mA  
1011: 2 mA  
1100: 3 mA  
1101: 4 mA  
1110: 5 mA  
1111: 6 mA  
BCHG_VSET  
3:0  
R/W  
Termination voltage setting:  
0000: Disabled  
0001: 1.1 V  
0010: 1.2 V  
0011: 1.4 V  
0100: 1.6 V  
0101: 1.8 V  
0110: 2.0 V  
0111: 2.2 V  
1000: 2.4 V  
1001: 2.5 V  
1010: 2.6 V  
1011: 2.7 V  
1100: 2.8 V  
1101: 2.9 V  
1110: 3.0 V  
1111: 3.1 V  
Datasheet  
Revision 3.3  
24-Nov-2016  
86 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
A.3 PAGE 2  
A.3.1  
Customer Trim and Configuration  
Table 128: INTERFACE (0x105)  
Field  
Bit  
Type  
Description  
IF_BASE_ADDR  
7:4  
R
2-WIRE slave address MSBs. The LSBs of the slave address are  
“000”. The complete slave address is then IF_BASE_ADDR * 23.  
However, the device also responds to IF_BASE_ADDR * 23+1.  
Note 1  
Reserved  
3:0  
Reserved  
Note 1 The interface configuration can be written/modified only for unmarked samples which do not have the  
control OTP_APPS_LOCK asserted/fused.  
Table 129: CONFIG_A (0x106)  
Field  
Bit  
7:7  
6:6  
5:5  
4:4  
3:3  
2:2  
1:1  
0:0  
Type  
R
Description  
Reserved  
PM_IF_HSM  
PM_IF_FMP  
PM_IF_V  
IRQ_TYPE  
PM_O_TYPE  
Reserved  
PM_I_V  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
2-WIRE interface permanently in high speed mode  
2-WIRE interface selects fast mode+ timings  
2-WIRE supplied from VDDCORE (0) / VDDIO (1).  
nIRQ is active low (0) / high (1).  
nRESET and nIRQ are push pull (0) / open drain (1).  
Reserved  
nRESETREQ, SYS_EN, PWR_EN and KEEPACT supplied from  
VDDCORE (0) / VDDIO (1).  
Table 130: CONFIG_B (0x107)  
Field  
Bit  
7:7  
6:4  
Type  
R/W  
R/W  
Description  
Reserved  
Reserved  
VDD_HYST_ADJ  
nVDD_FAULT comparator hysteresis from 100 mV (0x0) to 450  
mV (0x7) in 50 mV steps  
VDD_FAULT_ADJ  
3:0  
R/W  
nVDD_FAULT comparator level from 2.5 V (0x0) to 3.25 V (0xF) in  
50 mV steps  
Table 131: CONFIG_C (0x108)  
Field  
Bit  
7:7  
6:6  
5:5  
4:4  
3:3  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Reserved  
Reserved  
BUCK3_CLK_INV  
Reserved  
Invert Buck3 clock polarity.  
Reserved  
BUCK4_CLK_INV  
BUCK1_CLK_INV  
Invert Buck4 clock polarity.  
Invert Buck1 clock polarity with respect to Buck2.  
Enable active discharging of buck rails.  
Reserved  
BUCK_ACTV_DISCHRG 2:2  
Reserved  
1:0  
Datasheet  
Revision 3.3  
24-Nov-2016  
87 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 132: CONFIG_D (0x109)  
Field  
Bit  
7:6  
5:5  
4:3  
2:2  
1:1  
0:0  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Reserved  
Reserved  
FORCE_RESET  
Reserved  
Keep nRESET always asserted  
Reserved  
SYSTEM_EN_RD  
NIRQ_MODE  
GPI_V  
Suppress loading SYSTEM_EN during OTP_RD2  
nIRQ will be asserted from events during POWERDOWN  
GPIs, except power manager controls, supplied from VDDCORE  
(0) / VDDIO (1).  
Table 133: CONFIG_E (0x10A)  
Field  
Bit  
7:5  
4:4  
3:3  
2:2  
1:1  
0:0  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Reserved  
Reserved  
BUCK3_AUTO  
Reserved  
When powering up, enable and select VBUCK3_A.  
Reserved  
BUCK4_AUTO  
BUCK2_AUTO  
BUCK1_AUTO  
Enable and select VBUCK4_A when powering up.  
Enable and select VBUCK2_A when powering up.  
Enable and select VBUCK1_A when powering up.  
Table 134: CONFIG_G (0x10C)  
Field  
Bit  
7:4  
3:3  
2:2  
1:1  
0:0  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Reserved  
Reserved  
LDO4_AUTO  
LDO3_AUTO  
LDO2_AUTO  
LDO1_AUTO  
Enable and select VLDO4_A when powering up.  
Enable and select VLDO3_A when powering up.  
Enable and select VLDO2_A when powering up.  
Enable and select VLDO1_A when powering up.  
Table 135: CONFIG_H (0x10D)  
Field  
Bit  
7:7  
6:6  
5:5  
4:4  
3:3  
2:0  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Reserved  
Reserved  
BUCK1_FCM  
BUCK2_FCM  
Reserved  
Buck full-current mode (double pass device and current limit).  
Buck full-current mode (double pass device and current limit).  
Reserved  
BUCK_MERGE  
Reserved  
Buck1/2 dual-phase configuration.  
Reserved  
Datasheet  
Revision 3.3  
24-Nov-2016  
88 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 136: CONFIG_I (0x10E)  
Field  
Bit  
Type  
Description  
LDO_SD  
7:7  
R/W  
Enable switching off an LDO if an over-current is detected longer  
than 200 ms.  
INT_SD_MODE  
6:6  
5:5  
R/W  
R/W  
Skip sequencer and dummy slots on shutdown from internal fault.  
HOST_SD_MODE  
Skip sequencer and dummy slots on shutdown from control  
SHUTDOWN or nRESETREQ pin.  
KEY_SD_MODE  
WATCHDOG_SD  
NONKEY_SD  
4:4  
3:3  
2:2  
1:0  
R/W  
R/W  
R/W  
R/W  
Enable power-on reset on shutdown from nONKEY.  
Enable shutdown instead of power-down on watchdog timeout.  
Enable shutdown via long press of nONKEY.  
NONKEY_PIN  
nONKEY function  
See section 7.1.1 for further information.  
Table 137: CONFIG_J (0x10F)  
Field  
Bit  
7:7  
6:6  
5:4  
Type  
R/W  
R/W  
R/W  
Description  
IF_RESET  
Enable host interface reset via nRESETREQ pin  
Enable 35 ms timeout for 2-wire interfaces  
Minimum RESET mode duration:  
TWOWIRE_TO  
RESET_DURATION  
00: 22 ms  
01: 100 ms  
10: 500 ms  
11: 1 s  
SHUT_DELAY  
KEY_DELAY  
3:2  
1:0  
R/W  
R/W  
Shutdown delay (+ KEY_DELAY) for nONKEY  
nONKEY locking threshold  
Table 138: CONFIG_K (0x110)  
Field  
Bit  
7:5  
4:4  
Type  
R/W  
R/W  
Description  
Reserved  
GPIO4_PUPD  
Reserved  
GPI: pull-down enabled  
open drain GPO: pull-up enabled  
GPIO3_PUPD  
GPIO2_PUPD  
GPIO1_PUPD  
GPIO0_PUPD  
3:3  
2:2  
1:1  
0:0  
R/W  
R/W  
R/W  
R/W  
GPI: pull-down enabled  
open drain GPO: pull-up enabled  
GPI: pull-down enabled  
open drain GPO: pull-up enabled  
GPI: pull-down enabled  
open drain GPO: pull-up enabled  
GPI: pull-down enabled  
open drain GPO: pull-up enabled  
Datasheet  
Revision 3.3  
24-Nov-2016  
89 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 139: CONFIG_M (0x112)  
Field  
Bit  
Type  
Description  
OSC_FRQ  
7:4  
R/W  
Adjust internal oscillator frequency:  
1000: -10.67 %  
1111: -1.33 %  
0000: 0.00 %  
0001: +1.33 %  
0111: +9.33 %  
WDG_MODE  
Reserved  
Reserved  
Reserved  
3:3  
2:2  
1:1  
0:0  
R/W  
R/W  
R/W  
R/W  
Activate watchdog Halt operation mode.  
Reserved  
Reserved  
Reserved  
A.3.2  
Customer Device Specific  
Table 140: GP_ID_0 (0x121)  
Field  
Bit  
Type  
Description  
GP_0  
7:0  
R/W  
General purpose register Note 1  
Note 1 Initial value at start-up is the OTP ini file version number.  
Table 141: GP_ID_1 (0x122)  
Field  
Bit  
Type  
Description  
GP_1  
7:0  
R/W  
General purpose register  
Table 142: GP_ID_2 (0x123)  
Field  
Bit  
Type  
Description  
GP_2  
7:0  
R/W  
General purpose register  
Table 143: GP_ID_3 (0x124)  
Field  
Bit  
Type  
Description  
GP_3  
7:0  
R/W  
General purpose register  
Table 144: GP_ID_4 (0x125)  
Field  
Bit  
Type  
Description  
GP_4  
7:0  
R/W  
General purpose register  
Table 145: GP_ID_5 (0x126)  
Field  
Bit  
Type  
Description  
GP_5  
7:0  
R/W  
General purpose register  
Table 146: GP_ID_6 (0x127)  
Field  
Bit  
Type  
Description  
GP_6  
7:0  
R/W  
General purpose register  
Datasheet  
Revision 3.3  
24-Nov-2016  
90 of 96  
© 2016 Dialog Semiconductor  
 
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 147: GP_ID_7 (0x128)  
Field  
Bit  
Type  
Description  
GP_7  
7:0  
R/W  
General purpose register  
Table 148: GP_ID_8 (0x129)  
Field  
Bit  
Type  
Description  
GP_8  
7:0  
R/W  
General purpose register  
Table 149: GP_ID_9 (0x12A)  
Field  
Bit  
Type  
Description  
GP_9  
7:0  
R/W  
General purpose register  
Table 150: GP_ID_10 (0x12B)  
Field  
Bit  
Type  
Description  
GP_10  
7:0  
R/W  
General purpose register Note 1  
Note 1 The value is persistent through a warm reset such as triggered by the nRESETREQ pin or by the  
SHUTDOWN control in register CONTROL_F.  
Table 151: GP_ID_11 (0x12C)  
Field  
Bit  
Type  
Description  
GP_11  
7:0  
R/W  
General purpose register Note 1  
Note 1 The value is persistent through a warm reset such as triggered by the nRESETREQ pin or by the  
SHUTDOWN control in register CONTROL_F.  
Table 152: GP_ID_12 (0x12D)  
Field  
Bit  
Type  
Description  
GP_12  
7:0  
R/W  
General purpose register Note 1  
Note 1 The value is persistent through a warm reset such as triggered by the nRESETREQ pin or by the  
SHUTDOWN control in register CONTROL_F.  
Table 153: GP_ID_13 (0x12E)  
Field  
Bit  
Type  
Description  
GP_13  
7:0  
R/W  
General purpose register Note 1  
Note 1 The value is persistent through a warm reset such as triggered by the nRESETREQ pin or by the  
SHUTDOWN control in register CONTROL_F.  
Table 154: GP_ID_14 (0x12F)  
Field  
Bit  
Type  
Description  
GP_14  
7:0  
R/W  
General purpose register Note 1  
Note 1 The value is persistent through a warm reset such as triggered by the nRESETREQ pin or by the  
SHUTDOWN control in register CONTROL_F.  
Datasheet  
Revision 3.3  
24-Nov-2016  
91 of 96  
© 2016 Dialog Semiconductor  
 
 
 
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
Table 155: GP_ID_15 (0x130)  
Field  
Bit  
Type  
Description  
GP_15  
7:0  
R/W  
General purpose register Note 1  
Note 1 The value is persistent through a warm reset such as triggered by the nRESETREQ pin or by the  
SHUTDOWN control in register CONTROL_F.  
Table 156: GP_ID_16 (0x131)  
Field  
Bit  
Type  
Description  
GP_16  
7:0  
R/W  
General purpose register Note 1  
Note 1 The value is persistent through a warm reset such as triggered by the nRESETREQ pin or by the  
SHUTDOWN control in register CONTROL_F.  
Table 157: GP_ID_17 (0x132)  
Field  
Bit  
Type  
Description  
GP_17  
7:0  
R/W  
General purpose register Note 1  
Note 1 The value is persistent through a warm reset such as triggered by the nRESETREQ pin or by the  
SHUTDOWN control in register CONTROL_F.  
Table 158: GP_ID_18 (0x133)  
Field  
Bit  
Type  
Description  
GP_18  
7:0  
R/W  
General purpose register Note 1  
Note 1 The value is persistent through a warm reset such as triggered by the nRESETREQ pin or by the  
SHUTDOWN control in register CONTROL_F.  
Table 159: GP_ID_19 (0x134)  
Field  
Bit  
Type  
Description  
GP_19  
7:0  
R/W  
General purpose register Note 1  
Note 1 The value is persistent through a warm reset such as triggered by the nRESETREQ pin or by the  
SHUTDOWN control in register CONTROL_F.  
Table 160: DEVICE_ID (0x181)  
Field  
Bit  
Type  
Description  
DEV_ID  
7:0  
R
Device ID  
Table 161: VARIANT_ID (0x182)  
Field  
MRC  
VRC  
Bit  
7:4  
3:0  
Type  
R
Description  
Mask revision code  
Chip variant code  
R/W  
Table 162: CUSTOMER_ID (0x183)  
Field  
Bit  
Type  
Description  
CUST_ID  
7:0  
R
Customer ID  
Table 163: CONFIG_ID (0x184)  
Field  
Bit  
Type  
Description  
CONFIG_REV  
7:0  
R
OTP settings revision  
Datasheet  
Revision 3.3  
24-Nov-2016  
92 of 96  
© 2016 Dialog Semiconductor  
 
 
 
 
 
DA9062  
PMIC for applications requiring up to 8.5 A  
Revision History  
Table 164: Revision History  
Revision  
Date  
Changes  
3.3  
17-Nov-2016  
Table 4: Recommended Operating Conditions  
Replaced ambient temperature parameter (TA) with junction  
temperature (TJ)  
Section 4: Electrical Characteristics  
Replaced ambient temperature parameter (TA) with junction  
temperature (TJ)  
Table 8: LDO1 Electrical Characteristics  
Renamed parameter IOUT to IOUT_MAX  
Revised conditions:  
VDROPOUT: Removed IOUT for VDD = 1.5 V condition  
VTR_LOAD: Added VLDO = 3.3 V  
Added TA to N, IQ_ON, and IQ_SLEEP conditions  
Table 9: LDO2, LDO3, LDO4 Electrical Characteristics  
Renamed parameter IOUT to IOUT_MAX  
Revised conditions:  
VDD: Added VDD = VSYS  
IOUT_MAX and VDROPOUT: Added 1.8 V condition  
VTR_LOAD: Added VLDO = 3.3 V  
Added TA to IQ_ON and IQ_SLEEP conditions  
Added Note 1  
Table 11: Buck1, Buck2 Electrical Characteristics  
Revised conditions:  
IOUT: Removed inductor condition  
IQ_ON: Added VDD = 3.6 V and TA  
f: Added OSC_FRQ = ‘0000’  
RPMOS and RNMOS: VSYS to VDD  
IAUTO_THR: VIN to VDD, RTRACK 45 mΩ  
VBUCK: Min from 0.7 V to 0.3 V  
Revised conditions and limits:  
LBUCK: Removed half/full-current mode, Min = 0.7 µH  
RL_DCR: Removed half/full-current mode, Typ = 55 mΩ  
IOUT: Removed half-current mode L > 0.6 µH  
ILIM: Split into half/full-current modes: Min/Max  
700 mA/2200 mA and 1400 mA/4400 mA  
Added Note 1 and Note 3  
Table 12: Buck3 Electrical Characteristics  
Revised conditions:  
VDD: Added VDD = VSYS  
IOUT: Removed inductor condition  
IQ_ON: Added TA  
f: Added OSC_FRQ = ‘0000’  
RPMOS and RNMOS: VSYS to VDD  
Revised limits:  
LBUCK: Min from 0.6 µH to 0.7 µH  
RL_DCR: Min/Max from 80 mΩ/120 mΩ to 55 mΩ/100 mΩ  
Datasheet  
Revision 3.3  
24-Nov-2016  
93 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Revision  
Date  
Changes  
ILIM: Min/Max from 1500 mA/3000 mA to 1700 mA/3200 mA  
Added Note 2  
Table 13: Buck4 Electrical Characteristics  
Revised conditions:  
VDD: Added VDD = VSYS  
IOUT: Removed inductor from condition and L > 0.6 µH condition  
IQ_ON: Added TA  
f: Added OSC_FRQ = ‘0000’  
RPMOS and RNMOS: VSYS to VDD  
VBUCK_PFM: Removed output voltages below 0.7 V  
IAUTO_THR: VIN to VDD, RTRACK 45 mΩ  
Revised limits:  
ILIM: Min/Max from 500 mA/2000 mA to 700 mA/2200 mA  
ILIM_ACC: Split into 1400 mA/2200 mA, Min/Max: -15%/25% and  
-10%/15%  
Added Note 1 and Note 3  
Table 16: Added Note 1  
Table 18: Added Note 1  
Table 19: Current Consumption Electrical Characteristics  
IDDRTC:  
Revised condition from VSYS > 2.2 V to > 2.0 V and removed  
supplies and RTC condition  
Added Note 1 and Note 2  
Section 7.1.2: Removed internal pull-up from description  
Section 7.7.8: New  
Section 7.14: Added application oscillator information  
Section 7.15: Revised WDKICK description  
Section 8: Register Map  
Table 29: CONFIG_A control names corrected to PM_IF_HSM,  
PM_IF_FMP, and PM_IF_V, added Reserved to reserved registers  
Table 41: Added E_TICK  
Table 44: Added M_TICK  
Appendix A: Updated part numbers, revised register descriptions,  
added register Type column  
Other:  
Editorial changes  
Datasheet  
Revision 3.3  
24-Nov-2016  
94 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Revision  
Date  
Changes  
Table 3: Absolute Maximum Ratings  
3.2  
17-Feb-2016  
replaced TA parameter with TJ  
replaced Note 1  
ESD tolerance renamed to ESD protection HBM and moved the  
value to Min  
added ESD protection CDM parameters  
Table 4: Recommended Operating Conditions  
added Maximum power dissipation  
added Note 2  
Table 5: Digital I/O Electrical Characteristics  
RPU: values aligned with characterisation results:  
VDDIO = 1.5 V: Min value changed from 100 kto 60 kΩ  
VDDIO = 1.5 V: Max value changed from 340 kto 310 kΩ  
VDDIO = 1.8 V: Min value changed from 65 kto 45 kΩ  
VDDIO = 1.8 V: Max value changed from 175 kto 190 kΩ  
VDDIO = 3.3 V: Min value changed from 25 kto 20 kΩ  
Table 10: LDOCORE Electrical Characteristics  
removed VDD parameter  
added VDROPOUT parameter  
added Note 1 and Note 2  
added NOTE  
Table 11, Table 12, Table 13: Buck1 to Buck4 electrical characteristics  
VBUCK_ACC: added Note 1  
Table 13: Buck4 Electrical Characteristics  
VTTR: removed IOUT test condition  
COUT: renamed to CVTTR  
Table 14: Backup Battery Charger Electrical Characteristics  
ISET_BCHG: removed 1 mA to 6 mA test condition  
added COUT, RCOUT_ESR, VDROPOUT parameters  
added Note 1 and Note 2  
Table 17: System Supply Voltage Supervision Electrical Characteristics  
added Note 1 and Note 2  
VDD_FAULT_LOWER: removed test condition  
VHYS: renamed to VDD_FAULT_HYS and removed test condition  
added VREF, CVREF, RIREF parameters  
Table 18: Junction Temperature Supervision Electrical Characteristics  
added Note 1  
Figure 22: Structure of the Power Supply Sequencer  
added STANDBY mode  
added NOTE  
Register Map  
Table 29 CONFIG_A control names corrected to PM_IF_HSM,  
PM_IF_FMP, and PM_IF_V  
Table 49: SLEW_RATE: 20 mV/step for Buck3 added  
Table 105: BUCK_ILIM_B and BUCK4_ILIM: Note removed  
regarding full-current mode  
Other:  
REG_PAGE corrected to PAGE  
NSHUTDOWN corrected to NRESETREQ  
Editorial changes  
3.1  
30-Oct-2015  
First production datasheet release  
Datasheet  
Revision 3.3  
24-Nov-2016  
95 of 96  
© 2016 Dialog Semiconductor  
DA9062  
PMIC for applications requiring up to 8.5 A  
Status Definitions  
Revision  
Datasheet Status  
Product Status  
Definition  
1.<n>  
Target  
Development  
This datasheet contains the design specifications for product  
development. Specifications may be changed in any manner  
without notice.  
2.<n>  
3.<n>  
Preliminary  
Final  
Qualification  
Production  
This datasheet contains the specifications and preliminary  
characterization data for products in pre-production.  
Specifications may be changed at any time without notice in  
order to improve the design.  
This datasheet contains the final specifications for products in  
volume production. The specifications may be changed at any  
time in order to improve the design, manufacturing and supply.  
Major specification changes are communicated via Customer  
Product Notifications. Datasheet changes are communicated via  
www.dialog-semiconductor.com.  
4.<n>  
Obsolete  
Archived  
This datasheet contains the specifications for discontinued  
products. The information is provided for reference only.  
Disclaimer  
Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any  
representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog  
Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information  
source outside of Dialog Semiconductor.  
Dialog Semiconductor reserves the right to change without notice the information published in this document, including without  
limitation the specification and the design of the related semiconductor products, software and applications.  
Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog  
Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be  
suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or  
modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.  
Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor  
products, software and applications referred to in this document. Such license must be separately sought by customer with  
Dialog Semiconductor.  
All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog  
Semiconductor’s Standard Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com)  
unless otherwise stated.  
Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names  
are the property of their respective owners.  
© 2016 Dialog Semiconductor. All rights reserved.  
RoHS Compliance  
Dialog Semiconductor’s suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of  
the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment.  
RoHS certificates from our suppliers are available on request.  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Singapore  
China (Shenzhen)  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Dialog Semiconductor Singapore  
Phone: +65 64 8499 29  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Hong Kong  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5425 4567  
Dialog Semiconductor Hong Kong  
Phone: +852 3769 5200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
The Netherlands  
Taiwan  
Korea  
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
Datasheet  
Revision 3.3  
24-Nov-2016  
96 of 96  
© 2016 Dialog Semiconductor  

相关型号:

DA9062-xxAM2

PMIC for applications requiring up to 8.5 A
DIALOG

DA9062-xxAM2-A

PMIC for applications requiring up to 8.5 A
DIALOG

DA9062_16

PMIC for applications requiring up to 8.5 A
DIALOG

DA9063-xxHK1

System PMIC for Mobile Application Processors
DIALOG

DA9063-xxHK1-A

System PMIC for Mobile Application Processors
DIALOG

DA9063-xxHK2

System PMIC for Mobile Application Processors
DIALOG

DA9063-xxHK2-A

System PMIC for Mobile Application Processors
DIALOG

DA9063-xxHO1-A

System PMIC for Mobile Application Processors
DIALOG

DA9063-xxHO1-AT

System PMIC for Mobile Application Processors
DIALOG

DA9063-xxHO2-A

System PMIC for Mobile Application Processors
DIALOG

DA9063-xxHO2-AT

System PMIC for Mobile Application Processors
DIALOG

DA9063_17

System PMIC for Mobile Application Processors
DIALOG