DA9063-xxHO2-A [DIALOG]

System PMIC for Mobile Application Processors;
DA9063-xxHO2-A
型号: DA9063-xxHO2-A
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

System PMIC for Mobile Application Processors

集成电源管理电路
文件: 总219页 (文件大小:2882K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DA9063  
System PMIC for Mobile Application Processors  
General Description  
DA9063 is a high current system PMIC suitable for dual- and quad-core processors used in  
smartphones, tablets, ultra-books, and other handheld applications that require up to 5 A core  
processor supply.  
DA9063 contains six DC-DC buck converters designed for small external 1 µH inductors capable of  
supplying in total up to 12 A continuous output (0.3 V to 3.3 V). The buck converters do not require  
external Schottky diodes. They dynamically optimize their efficiency depending on the load current  
using an Automatic Sleep mode. The bucks incorporate pin and s/w controlled Dynamic Voltage  
Control (DVC) to support processor load adaptive adjustment of the supply voltage. One buck can  
also be used in a DDR memory termination mode.  
Eleven SmartMirrorTM programmable LDO regulators are incorporated, rated up to 300 mA. All  
support remote capacitor placement and can support operation from a low 1.5 V/1.8 V input voltage:  
this allows the linear regulators to be cascaded with a suitable buck supply to improve overall system  
efficiency.  
Processor core leakage can be minimized by using the integrated rail switch controller for ultra-fast  
power domain isolation/reconnection while current limited switches provide support for external  
peripherals such as external accessory or memory cards.  
There are five distinct operating modes consuming < 20 µA including a 1.5 µA RTC mode with alarm  
and wakeup. A system monitor watchdog can be enabled in ACTIVE mode.  
The DA9063 provides an OTP start-up sequencing engine that offers autonomous hardware system  
start-up or software controlled start-up and configurable power modes. The on key detects the button  
press time and offers configurable key lock and application shutdown functions. Up to 16 freely  
configurable GPIO pins can perform system functions, including: keypad supervision, application  
wakeup, and timing controlled external regulator, power switch, or other IC enable.  
An integrated 10-channel ADC includes advanced voltage monitoring, internal temperature  
supervision, three general-purpose channels with programmable high/low thresholds, an integrated  
current source for resistive measurements, and system voltage monitoring with a programmable low-  
voltage warning. The ADC has 8-bit resolution in AUTO mode and 10-bit resolution in manual  
conversion mode.  
Three RGB-LED driver pins are provided with PWM control.  
LDO8 can be configured as a 6-bit, PWM-controlled, vibration motor driver with automatic battery  
voltage correction.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
1 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
Key Features  
6 DC-DC buck converters with DVC  
RGB-LED driver with autonomous flashing  
PWM vibration motor driver  
2.5 A BuckCore1  
2.5 A BuckCore2  
2.5 A BuckPro  
1.5 A BuckPeri  
1.5 A BuckMem  
1.5 A BuckIO  
5 A in dual phase  
mode  
10-bit ADC with nine channels and  
configurable alarm thresholds  
Regulator supervision with automatic under-  
/over-voltage protection  
3 A in merged  
mode  
Coin cell/super-capacitor backup charger  
Ultra-low power, 1.5 µA RTC with alarm and  
oscillator circuitry with crystal frequency  
adjustment  
3 MHz switching frequency (± 10 %) (allows  
use of low profile [1 mm] 1 μH inductors)  
Buck with DDR memory termination option  
11 programmable LDO regulators:  
-40 °C to +125 °C junction temperature  
operation  
3 low noise, 4 with DVC, 5 with current  
limited switch mode  
Two package variants:  
100 VFBGA 8.0 mm x 8.0 mm x 1.0 mm  
(0.8 mm pitch), solder ball diameter  
0.30 mm  
Two rail switches  
Power Manager with programmable  
regulators, rail switch start-up, and  
configurable low power modes  
100 TFBGA 8.0 mm x 8.0 mm x 1.2 mm  
(0.8 mm pitch), solder ball diameter  
0.45 mm  
Multiple master application support via two  
independent control interfaces  
Automotive AEC-Q100 Grade 3 available  
System monitor with watchdog timer  
Up to 16 flexible GPIO pins for enhanced  
wakeup and peripheral control  
Applications  
Smartphones  
Navigation devices  
Ultrabooks  
Set-top boxes, TV, and media players  
Portable medical devices  
Industrial control  
Tablets, e-books  
Car infotainment and ADAS  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
2 of 219  
© 2017 Dialog Semiconductor  
 
 
DA9063  
System PMIC for Mobile Application Processors  
Contents  
General Description ............................................................................................................................ 1  
Key Features ........................................................................................................................................ 2  
Applications ......................................................................................................................................... 2  
Contents ............................................................................................................................................... 3  
1
2
3
4
References ..................................................................................................................................... 7  
Block Diagram ............................................................................................................................... 7  
Regulator Overview....................................................................................................................... 8  
Package Information................................................................................................................... 11  
4.1 Package Outlines................................................................................................................ 11  
4.2 Pinout .................................................................................................................................. 13  
5
Electrical Characteristics ........................................................................................................... 18  
5.1 Absolute Maximum Ratings ................................................................................................ 18  
5.2 Recommended Operating Conditions................................................................................. 18  
5.2.1  
Power Derating Curves........................................................................................ 19  
5.3 Typical Current Consumption ............................................................................................. 20  
5.4 Digital I/O Characteristics.................................................................................................... 21  
5.5 Watchdog............................................................................................................................ 23  
5.6 Power Manager and HS-2-Wire Control Bus...................................................................... 23  
5.7 4-Wire Control Bus.............................................................................................................. 24  
5.8 LDO Voltage Regulators ..................................................................................................... 26  
5.8.1  
5.8.2  
5.8.3  
5.8.4  
5.8.5  
5.8.6  
5.8.7  
5.8.8  
5.8.9  
LDO1.................................................................................................................... 26  
LDO2.................................................................................................................... 27  
LDO3.................................................................................................................... 28  
LDO4.................................................................................................................... 30  
LDO5.................................................................................................................... 31  
LDO6.................................................................................................................... 33  
LDO7.................................................................................................................... 34  
LDO8.................................................................................................................... 36  
LDO9.................................................................................................................... 38  
5.8.10 LDO10.................................................................................................................. 39  
5.8.11 LDO11.................................................................................................................. 41  
5.8.12 LDOCORE ........................................................................................................... 42  
5.9 DC/DC Buck Converters ..................................................................................................... 43  
5.9.1  
5.9.2  
5.9.3  
5.9.4  
5.9.5  
5.9.6  
BUCKCORE1 and BUCKCORE2........................................................................ 43  
BUCKPRO ........................................................................................................... 46  
BUCKMEM .......................................................................................................... 50  
BUCKIO ............................................................................................................... 52  
BUCKPERI .......................................................................................................... 53  
Typical Characteristics......................................................................................... 55  
5.10 Buck Rail Switches.............................................................................................................. 58  
5.11 Backup Battery Charger...................................................................................................... 58  
5.12 General Purpose ADC ........................................................................................................ 59  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
3 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
5.13 32K Oscillator...................................................................................................................... 60  
5.14 Internal Oscillator ................................................................................................................ 60  
5.15 POR, Reference Generation, and Voltage Supervision...................................................... 61  
5.16 Thermal Supervision ........................................................................................................... 61  
6
Functional Description ............................................................................................................... 62  
6.1 Power Manager IO Ports..................................................................................................... 63  
6.1.1  
6.1.2  
6.1.3  
On/Off Port (nONKEY)......................................................................................... 63  
Wakeup Port (CHG_WAKE)................................................................................ 64  
Hardware Reset (nOFF, nSHUTDOWN, nONKEY, GPIO14, GPIO15,  
WATCHDOG) ...................................................................................................... 64  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
6.1.8  
6.1.9  
Reset Output (nRESET) ...................................................................................... 64  
System Enable (SYS_EN)................................................................................... 65  
Power Enable (PWR_EN).................................................................................... 65  
Power1 Enable (PWR1_EN) ............................................................................... 65  
GP_FB1, General Purpose Signal 1 (EXT_WAKEUP/READY).......................... 65  
GP_FB2, General Purpose Signal 2 (PWR_OK/KEEP_ACT)............................. 66  
6.1.10 GP_FB3, General Purpose Signal 3 (OUT32K_2/nVIB_BRAKE)....................... 66  
6.1.11 Supply Rail Fault (nVDD_FAULT)....................................................................... 66  
6.1.12 Interrupt Request (nIRQ) ..................................................................................... 67  
6.1.13 Real Time Clock Output (OUT_32K)................................................................... 67  
6.1.14 IO Supply Voltage (VDD_IO1 and VDD_IO2) ..................................................... 67  
6.2 Operating Modes................................................................................................................. 68  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
6.2.5  
6.2.6  
6.2.7  
ACTIVE Mode...................................................................................................... 68  
POWERDOWN Mode.......................................................................................... 68  
RESET Mode....................................................................................................... 69  
RTC Mode ........................................................................................................... 70  
DELIVERY Mode................................................................................................. 70  
NO-POWER Mode............................................................................................... 71  
Power Commander Mode.................................................................................... 71  
6.3 Start-Up from NO-POWER Mode ....................................................................................... 72  
6.3.1 Power-On-Reset (nPOR)..................................................................................... 72  
6.4 Exiting Reset Mode and Application Wakeup..................................................................... 72  
6.5 Power Supply Sequencer.................................................................................................... 74  
6.5.1  
6.5.2  
6.5.3  
6.5.4  
6.5.5  
Powering Up ........................................................................................................ 74  
Power-Up Timing................................................................................................. 77  
Programmable Slot Delays.................................................................................. 77  
Powering Down.................................................................................................... 78  
User Programmable Delay .................................................................................. 78  
6.6 System Monitor (Watchdog) ............................................................................................... 80  
6.7 GPIO Extender.................................................................................................................... 80  
6.8 Control Interfaces................................................................................................................ 84  
6.8.1  
6.8.2  
Power Manager Interface (4- and 2-WIRE Control Bus)..................................... 84  
High Speed 2-WIRE Interface ............................................................................. 91  
6.9 Voltage Regulators.............................................................................................................. 91  
6.9.1  
6.9.2  
6.9.3  
Regulators Controlled by Software...................................................................... 92  
Regulators Controlled by Hardware .................................................................... 92  
Power Sequencer Control of LDOs ..................................................................... 93  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
4 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.9.4  
6.9.5  
6.9.6  
6.9.7  
6.9.8  
6.9.9  
Dynamic Voltage Control..................................................................................... 94  
Voltage Tracking Mode LDO1 ............................................................................. 94  
Pull-Down Resistor .............................................................................................. 94  
Bypass Mode and Current Limit .......................................................................... 95  
LDO Supply from Buck Converter ....................................................................... 95  
LDO Sleep Mode for Reduced Iout ....................................................................... 95  
6.9.10 Vibration Motor Driver.......................................................................................... 96  
6.9.11 Core Regulator LDOCORE.................................................................................. 96  
6.10 DC/DC Buck Converters ..................................................................................................... 97  
6.10.1 BUCKCORE1, BUCKCORE2, and BUCKPRO................................................... 99  
6.10.2 BUCKPRO in DDR Memory Bus Termination Mode......................................... 100  
6.10.3 BUCKMEM and BUCKIO in Merged Mode ....................................................... 100  
6.11 Buck Rail Switches............................................................................................................ 101  
6.12 Backup Battery Charger/RTC Supply Rail Generator....................................................... 102  
6.13 General Purpose ADC ...................................................................................................... 103  
6.13.1 ADC Overview ................................................................................................... 103  
6.13.2 ADC Input MUX ................................................................................................. 103  
6.13.3 Manual Conversion Mode.................................................................................. 104  
6.13.4 Automatic Measurements Scheduler................................................................. 104  
6.13.5 Fixed Threshold Comparator............................................................................. 108  
6.14 Real Time Clock................................................................................................................ 109  
6.14.1 32K Oscillator .................................................................................................... 109  
6.14.2 RTC Counter and Alarm .................................................................................... 111  
6.15 Adjustable Frequency Internal Oscillator .......................................................................... 112  
6.16 Reference Voltage Generation: VREF, VLNREF ............................................................. 112  
6.17 Thermal Supervision ......................................................................................................... 112  
6.18 Main System Rail Voltage Supervision............................................................................. 112  
7
8
Register Map.............................................................................................................................. 113  
Application Information............................................................................................................ 116  
8.1 Capacitor Selection........................................................................................................... 116  
8.2 Backup Device .................................................................................................................. 117  
8.3 Inductor Selection ............................................................................................................. 117  
8.4 Resistors ........................................................................................................................... 118  
8.5 External Pass Transistors ................................................................................................. 118  
8.6 Crystal ............................................................................................................................... 118  
8.7 Layout Guidelines ............................................................................................................. 119  
8.7.1  
8.7.2  
8.7.3  
8.7.4  
General Recommendations............................................................................... 119  
LDOs and Switched Mode Supplies.................................................................. 119  
Crystal Oscillator................................................................................................ 119  
Thermal Connection, Land Pad, and Stencil Design......................................... 119  
9
Definitions.................................................................................................................................. 120  
9.1 Power Dissipation and Thermal Design............................................................................ 120  
9.2 Regulator Parameter - Dropout Voltage ........................................................................... 121  
9.3 Regulator Parameter - Power Supply Rejection............................................................... 121  
9.4 Regulator Parameter - Line Regulation ............................................................................ 121  
9.5 Regulator Parameter - Load Regulation ........................................................................... 122  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
5 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
10 Ordering Information ................................................................................................................ 123  
Appendix A Register Descriptions ................................................................................................ 124  
A.1 Register Page Control....................................................................................................... 124  
A.2 Register Page 0 ................................................................................................................ 124  
A.2.1  
A.2.2  
A.2.3  
A.2.4  
A.2.5  
A.2.6  
Power Manager Control and Monitoring............................................................ 124  
GPIO Control ..................................................................................................... 133  
Regulator Control............................................................................................... 140  
GPADC .............................................................................................................. 150  
ADC Results ...................................................................................................... 151  
RTC Calendar and Alarm .................................................................................. 153  
A.3 Register Page 1 ................................................................................................................ 155  
A.3.1  
A.3.2  
A.3.3  
A.3.4  
A.3.5  
Power Sequencer .............................................................................................. 156  
Regulator Settings ............................................................................................. 161  
Backup Battery Charger .................................................................................... 196  
High Power GPO PWM ..................................................................................... 197  
GPADC Thresholds ........................................................................................... 199  
A.4 Register Page 2 ................................................................................................................ 201  
A.4.1  
A.4.2  
OTP.................................................................................................................... 201  
Customer Trim and Configuration ..................................................................... 202  
A.5 Register Page 3 ................................................................................................................ 216  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
6 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
1
References  
Dialog Semiconductor technical documentation is available on the support site:  
www.dialog-semiconductor.com/support.  
[1] AN-PM-068, Application Note, VBBAT Current in RTC or DELIVERY Modes, Dialog  
Semiconductor.  
[2] AN-PM-024, Application Note, DA9063 Voltage Monitoring, Dialog Semiconductor.  
[3] AN-PM-010, Application Note, PCB Layout Guidelines, Dialog Semiconductor.  
2
Block Diagram  
CORE_SWG/GPIO3  
BUCK RAIL  
SWITCH  
Controller  
CORE_SWS/GPIO4  
PERI_SWG/GPIO5  
PERI_SWS/GPIO6  
V_CP  
VSYS/VBUCKx/VDDREF  
VLDO1  
LDO1(DVC)  
0.6-1.86V  
CP  
1.0uF  
2.2uF  
2.2uF  
2.2uF  
1.0uF  
2.2uF  
DIG CTRL  
DIG CTRL  
DIG CTRL  
DIG CTRL  
DIG CTRL  
DIG CTRL  
47nF  
VSYS/VBUCKx  
VLDO2  
VSYS  
LDO2 (DVC)  
0.6-1.86V  
BUCK  
CORE1  
VBUCK_CORE1  
DIG CTRL  
DIG CTRL  
DIG CTRL  
1µH  
2x22/47µF  
Two-  
Phase  
DCDC  
VSYS/VBUCKx  
VLDO3  
DA9063  
LDO3 (DVC)  
0.9-3.44V  
VSYS  
ZT  
BUCK  
CORE2  
VSYS/VBUCKx  
VLDO4  
1µH  
2x22/47µF  
ZT  
VBUCK_CORE2  
LDO4 (DVC)  
0.9-3.44V  
VSYS/VBUCKx  
VLDO5  
VSYS  
BUCK  
PRO  
LDO5  
0.9-3.6V  
VBUCK_PRO  
1µH  
2x47µF  
VDDCORE  
VSYS/VBUCKx  
VLDO6  
VSYS  
LDO6 (LN)  
0.9-3.6V  
VOLTAGE  
TEMP  
BIASING  
CIRCUIT  
BUCK  
PERI  
SUPER-  
VISION  
DIG CTRL  
SENSOR  
VBUCK_PERI  
1µH  
2x22µF  
VSYS/VBUCKx  
VLDO7  
LDO7  
0.9-3.6V  
2.2uF  
DIG CTRL  
DIG CTRL  
VSYS  
BUCK  
MEM  
VLDO8  
LDO8 (VIB)  
0.93.6V  
DIG CTRL  
OTP  
MEMORY  
INTERNAL  
OSC  
RTC  
DIGITAL  
VBUCK_MEM  
1µH  
2x22/47µF  
2.2uF  
Double  
Current  
DCDC  
VSYS/VBUCKx  
VLDO9  
VSYS  
LDO9 (LN)  
0.953.6V  
2.2uF  
DIG CTRL  
DIG CTRL  
BUCK  
IO  
DIG CTRL  
WATCH  
DOG  
TIMER  
REF  
VOLTAGE/  
CURRENT  
VBUCK_IO  
1µH  
2x22µF  
RTC  
32kHz OSC  
VLDO10  
LDO10 (LN)  
0.93.6V  
2.2uF  
VDDCORE  
ADCIN1/GPIO0  
ADCIN2/GPIO1  
ADCIN3/GPIO2  
VSYS/VBUCKx  
VLDO11  
GENERAL PURPOSE  
10BIT ADC  
LDO11  
0.93.6V  
DIG CTRL  
VDDCORE  
DIG CTRL  
2.2uF  
DIG CTRL  
nONKEY  
SYS_EN/GPIO8  
PWR_EN/GPIO9  
VLNREF  
2.2uF  
POWER MANAGER  
LDOCORE  
2.5V  
VDDCORE  
2.2uF  
DIG CTRL  
DIG CTRL  
PWR1_EN/GPIO10  
nOFF  
ON/OFF CONTROL  
RESET GENERATION  
OTP-PROGRAMMABLE  
WAKE-UP AND  
BACKUP  
CHARGER  
VBBAT  
nSHUTDOWN  
nRESET  
470nF  
SHUTDOWN  
nIRQ  
SEQUENCING CONTROL  
SYSTEM MONITOR  
INTERRUPT HANDLER  
nVDD_FAULT/GPIO_12  
GP_FB1/GPIO13  
GP_FB2  
OUT_32K  
4-WIRE/2-WIRE  
INTERFACE  
HS 2-WIRE  
INTERFACE  
DIG CTRL  
Multiplexed GPIO EXTENDER  
GP_FB3  
Pins-  
Multiplexed  
with GP-ADC/  
CONTROL/  
HS I2C  
Figure 1: Block Diagram  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
7 of 219  
© 2017 Dialog Semiconductor  
 
 
 
DA9063  
System PMIC for Mobile Application Processors  
3
Regulator Overview  
Table 1: Regulators  
Regulator  
Supplied Pins  
Supplied Supplied  
External  
Notes  
Voltage  
(V)  
Max.  
Current  
(mA)  
Component  
BUCKCORE1 VBUCKCORE1  
0.3 to  
1.57  
1250/  
2500  
(full-current  
mode)  
1.0 µH/  
44 µF /  
88 µF  
GPIO and host interface-  
controlled DVC with  
variable slew rate (10 mV  
in [0.5, 1.0, 2.0, 4.0] µs)  
10 mV steps  
< 0.7 V PFM mode only  
2500 mA in full-current  
mode (double pass device  
and current limit)  
Provides dual-phase buck  
with up to 5 A if combined  
with BUCKCORE2  
BUCKCORE2 VBUCKCORE2  
0.3 to  
1.57  
1250/  
2500  
1.0 µH/  
44/88 µF  
GPIO and host interface-  
controlled DVC with  
(full-current  
mode)  
variable slew rate (10 mV  
in [0.5/1.0/2.0/4.0] µs)  
10 mV steps  
< 0.7 V PFM mode only  
2500 mA in full-current  
mode (double pass device  
and current limit)  
Provides dual-phase Buck  
if combined with  
BUCKCORE1  
BUCKPRO  
VBUCKPRO  
0.53 to  
1.80  
1250/  
2500  
1.0 µH/  
44/88 µF  
GPIO and host interface-  
controlled DVC with  
(full-current  
mode)  
variable slew rate, (10 mV  
in [0.5/1.0/2.0/4.0] µs)  
10 mV steps and VTT  
regulator mode  
< 0.7 V PFM mode only  
2500 mA in full-current  
mode (double pass device  
and current limit)  
BUCKMEM  
VBUCKMEM  
0.8 to  
3.34  
1500  
1.0 µH/  
44 µF  
GPIO and host interface-  
controlled DVC with  
variable slew rate (10 mV  
in [0.5/1.0/2.0/4.0] µs)  
20 mV steps  
Can be merged with  
BUCK_IO towards single  
buck with up to 3 A output  
current  
BUCKIO  
VBUCKIO  
0.8 to  
3.34  
1500  
1.0 µH/  
44 µF  
GPIO and host interface-  
controlled DVC with  
variable slew rate (10 mV  
in [0.5/1.0/2.0/4.0] µs)  
20 mV steps, can be  
merged with BUCK_MEM  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
8 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Regulator  
Supplied Pins  
Supplied Supplied  
External  
Notes  
Voltage  
(V)  
Max.  
Current  
(mA)  
Component  
BUCKPERI  
VBUCKPERI  
0.8 to  
3.34  
1500  
1.0 µH/  
44 µF  
GPIO and host interface-  
controlled DVC with  
variable slew rate (10 mV  
in [0.5/1.0/2.0/4.0] µs)  
20 mV steps  
LDO1  
VLDO1  
0.6 to  
1.86  
100  
1.0 µF  
GPIO and host interface-  
controlled DVC with  
variable slew rate (10 mV  
in [0.5/1.0/2.0/4.0] µs)  
20 mV steps  
Optional voltage tracking  
of BUCKCORE or  
BUCKPRO  
LDO2  
LDO3  
VLDO2  
VLDO3  
0.6 to  
1.86  
200  
200  
2.2 µF  
2.2 µF  
GPIO and host interface-  
controlled DVC with  
variable slew rate (10 mV  
in [0.5/1.0/2.0/4.0] µs)  
20 mV steps  
Bypass mode  
0.9 to  
3.44  
GPIO and host interface-  
controlled DVC with  
variable slew rate (10 mV  
in [0.5/1.0/2.0/4.0] µs)  
20 mV steps  
Bypass mode  
LDO4  
VLDO4  
0.9 to  
3.44  
200  
2.2 µF  
GPIO and host interface-  
controlled DVC with  
variable slew rate (10 mV  
in [0.5/1.0/2.0/4.0] µs)  
20 mV steps  
LDO5  
LDO6  
VLDO5  
VLDO6  
0.9 to 3.6 100  
0.9 to 3.6 200  
1.0 µF  
2.2 µF  
50 mV steps  
Low noise  
50 mV steps  
LDO7  
VLDO7  
0.9 to 3.6 200  
2.2 µF  
Bypass mode  
50 mV steps  
Common supply with  
LDO8  
LDO8  
VLDO8  
0.9 to 3.6 200  
2.2 µF  
Bypass and switching  
vibration motor driver  
mode  
50 mV steps  
Common supply with  
LDO7  
LDO9  
VLDO9  
0.95 to  
3.6  
200  
2.2 µF  
Low noise  
50 mV steps  
OTP trimmed  
Common supply with  
LDO10  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
9 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Regulator  
Supplied Pins  
Supplied Supplied  
External  
Notes  
Voltage  
(V)  
Max.  
Current  
(mA)  
Component  
LDO10  
VLDO10  
0.9 to 3.6 300  
2.2 µF  
Low noise LDO  
50 mV steps  
Common supply with  
LDO9  
LDO11  
VLDO11  
VBBAT  
0.9 to 3.6 300  
2.2 µF  
470 nF  
Bypass mode  
50 mV steps  
BACKUP  
1.1 to 3.1  
6
4
100/200 mV steps  
Configurable charge  
current between 100 µA  
and 6000 µA  
Reverse current protection  
(RCP)  
LDOCORE  
Internal PMIC  
supply  
2.5 ± 2 %  
accuracy  
2.2 µF  
Internal LDO  
OTP trimmed  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
10 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
4
Package Information  
4.1 Package Outlines  
Figure 2: Package Outline Drawing 100 VFBGA 0.3 mm Ball Diameter  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
11 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
Figure 3: Package Outline Drawing 100 TFBGA 0.45 mm Ball Diameter  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
12 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
4.2 Pinout  
1
2
3
4
5
6
7
8
9
10  
nVDD_FAULT  
_
GPIO12  
DATA_  
GPIO14  
CLK_  
GPIO15  
XTAL_OUT  
VREF  
VSYS  
SO  
SI  
VDDCORE  
OUT32K  
A
B
C
D
E
F
A
B
C
D
E
F
DA9063 (8x8)  
see balls through package  
VTTR_  
CMP1V2  
SYS_EN_  
GPIO8  
PWR1_EN_  
GPIO10  
XTAL_IN  
VLDO11  
VLDO10  
VLDO9  
VLDO8  
VLDO6  
VLDO5  
VLDO4  
VLNREF  
nCS  
SK  
CHG_WAKE  
nIRQ  
nSHUTDOWN  
BGA100 (87 + 13 VSS)  
Very High Power  
Signals  
VHPWR  
up to 1A/ball,  
maximize routing width  
High Power Signals  
ADCIN2_  
GPIO1  
ADCIN3_  
GPIO2  
ADCIN1_  
GPIO0  
PWR_EN_  
GPIO9  
HIPWR  
IREF  
VDD_IO2  
VDD_IO1  
GP_FB2  
V_CP  
up to 1A, use wide  
routing  
Power Signals  
MPWR  
up to 500mA  
VDDQ_  
E_GPI2  
PERI_SWS_  
GPIO6  
SWBUCKPRO  
_B  
Noisy Digital Signals  
not sensitive to noise  
VDD_LDO11  
GPIO_7  
TP  
VSS_QUIET  
VSS_NOISY  
VSS_NOISY  
VSS_NOISY  
VSS_QUIET  
VSS_NOISY  
VSS_NOISY  
VSS_NOISY  
nRESET  
NOISY  
Quasi Static Digital  
NORM  
Signals  
not sensitive to noise  
VDD_  
LDO7_8  
VDD_  
LDO9_10  
GP_FB1_  
GPIO13  
SWBUCKPRO  
_A  
Sensitive Analog  
SENS  
VSS_QUIET  
VSS_QUIET  
VDD_LDO4  
VSS_NOISY  
VSS_NOISY  
VSS_NOISY  
GPIO11  
Signals  
Potentially not used  
(improved heat sink  
VSS plane when vias  
removed)  
XXX  
SW  
BUCKCORE2_  
A
VDD_  
BUCKPRO  
VDD_  
BUCKPRO  
VLDO7  
VDD_LDO6  
VDD_LDO3  
VDD_LDO1  
VBUCKMEM  
Via  
Noisy High Power  
Ground,  
VSS_NOISY  
maximize routing  
width  
SW  
BUCKCORE2_  
B
VDD_  
BUCKCORE2  
VDD_  
BUCKCORE2  
Quiet Ground,  
VSS_QUIET  
VDD_LDO5  
VDD_LDO2  
VBUCKPERI  
G
H
J
G
H
J
use wide routing  
PCB routing  
SW  
BUCKCORE1_  
A
VDD_  
BUCKPERI  
VDD_  
BUCKMEM  
VDD_  
BUCKIO  
VDD_  
BUCKCORE1  
VDD_  
BUCKCORE1  
GP_FB3  
SW  
BUCKCORE1_  
B
PERI_SWG_  
GPIO5  
CORE_SWG_  
GPIO3  
CORE_SWS_  
GPIO4  
nOFF  
nONKEY  
VBBAT  
SWBUCKME  
M
VBUCKCORE  
1
VBUCKCORE  
2
VLDO3  
1
VLDO2  
2
VLDO1  
3
VBUCKIO  
4
SWBUCKPERI  
SWBUCKIO  
VBUCKPRO  
10  
K
K
5
6
7
8
9
Figure 4: Connection Diagram  
Table 2: Pin Type Definition  
Pin Type  
DI  
Description  
Pin Type  
AI  
Description  
Analog input  
Analog output  
Digital input  
DO  
Digital output  
Digital input/output  
Power supply  
AO  
DIO  
AIO  
Analog input/output  
Ground connection  
PWR  
GND  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
13 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
Table 3: Pin Description  
Pin  
Pin name  
Alternate  
Function  
Type  
(Table 2)  
Description  
Power Manager  
A9  
nVDD_FAULT  
GPIO12  
DO/DIO  
DI/PWR  
Indication for low supply voltage / GPIO12 /  
VDD_MON controlled GPO  
B6  
CHG_WAKE  
Wakeup signal from companion charger to  
trigger a start-up and temporary supply voltage  
for PMIC (VBUS_PROT in case of an inserted  
supply until charger Buck provides power to  
VSYS).  
Connect to GND if not used.  
B7  
B8  
nIRQ  
DO  
DI  
IRQ line for host  
nSHUTDOWN  
Active-low input from switch or host to initiate  
shutdown  
B9  
SYS_EN  
GPIO8  
DI/DIO  
DI/DIO  
Hardware enable of power domain  
SYSTEM/GPIO8  
B10  
PWR1_EN  
GPIO10  
Hardware enable of power domain  
POWER1/GPIO10 with high power output / input  
for power sequencer WAIT ID  
C3  
C4  
C8  
VDD_IO2  
VDD_IO1  
GP_FB2  
PWR  
PWR  
DO/DI  
Alternate supply I/O voltage  
First supply I/O voltage rail  
PWR_OK status indicator: all supervised  
regulators are in-range / HW input for watchdog  
supervision / dual-phase BUCKCORE voltage  
sense at output capacitor  
C9  
PWR_EN  
GPIO9  
DI/DIO  
Hardware enable of power domain power /  
sequencer controlled GPO  
D3  
D5  
GPIO7  
TP  
DIO  
DIO  
Sequencer controlled GPO  
Test pin: enables power commander boot mode  
and supply pin for OTP fusing voltage  
D9  
E8  
nRESET  
GP_FB1  
DO  
Active low reset for host  
GPIO13  
DO/DIO  
Status indication for host of a valid wakeup  
event (EXT_WAKEUP) / indicator for on-going  
power mode transition (READY) / GPIO13,  
regulator HW control  
E9  
H9  
GPIO11  
GP_FB3  
DIO  
GPIO11 with high power output and blinking  
feature  
DO/DO  
Second 32K oscillator output: OUT32_2 /  
VIB_BREAK control signal for vibration motor  
driver (LDO8)  
J4  
J7  
nOFF  
DI  
DI  
Active-low input from error indication line to  
initiate fast emergency shutdown  
nONKEY  
On/off key with optional long press shutdown  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
14 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
Pin  
Pin name  
Alternate  
Function  
Type  
(Table 2)  
Description  
4-Wire/2-Wire Interfaces  
A4  
A5  
A7  
SO  
DO  
DIO  
DIO  
4-wire data output  
SI  
4-wire data input / 2-wire data  
DATA  
GPIO14  
GPIO15  
HS-2-WIRE data / GPIO14 (optional reset if long  
press in parallel with GPI15) with high power  
output and blinking feature  
A8  
CLK  
DI  
HS-2-WIRE clock / GPIO15 (optional reset if  
long press in parallel with GPI14) with high  
power output and blinking feature  
B3  
B4  
nCS  
SK  
DI  
DI  
4-wire (active low) chip select  
4-wire/2-wire clock  
Voltage Regulators  
A3  
A6  
VSYS  
PWR  
AO  
Supply voltage for PMIC and input for voltage  
supervision  
(decouple with 1.0 µF)  
VDDCORE  
Regulated supply for internal circuitry  
(2.2 V/2.5 V)  
(decouple with 2.2 µF)  
C1  
D1  
D2  
E1  
E2  
E3  
F1  
F2  
F3  
G1  
G2  
G3  
G4  
H1  
H2  
H3  
J1  
VLDO11  
AO  
AO  
Output voltage from LDO11  
Output voltage from LDO10  
Supply voltage for LDO11  
Output voltage from LDO9  
Supply voltage for LDO7 and LDO8  
Supply voltage for LDO9 and LDO10  
Output voltage from LDO8  
Output voltage from LDO7  
Supply voltage for LDO6  
Output voltage from LDO6  
Supply voltage for LDO5  
Supply voltage for LDO3  
Supply voltage for LDO4  
Output voltage from LDO5  
Supply voltage for LDO2  
Supply voltage for LDO1  
Output voltage from LDO4  
Output voltage from LDO3  
Output voltage from LDO2  
Output voltage from LDO1  
VLDO10  
VDD_LDO11  
VLDO9  
PWR  
AO  
VDD_LDO7_8  
VDD_LDO9_10  
VLDO8  
PWR  
PWR  
AO  
VLDO7  
AO  
VDD_LDO6  
VLDO6  
PWR  
AO  
VDD_LDO5  
VDD_LDO3  
VDD_LDO4  
VLDO5  
PWR  
PWR  
PWR  
AO  
VDD_LDO2  
VDD_LDO1  
VLDO4  
PWR  
PWR  
AO  
K1  
K2  
K3  
VLDO3  
AO  
VLDO2  
AO  
VLDO1  
AO  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
15 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Pin  
Pin name  
Alternate  
Function  
Type  
(Table 2)  
Description  
DC/DC Buck Converters  
A1  
A2  
XTAL_OUT  
VREF  
AIO  
AIO  
32 kHz crystal connection  
(adjust with 10 pF)  
Filter node for internal reference voltage  
(decouple with 2.2 µF)  
A10  
B1  
OUT_32K  
XTAL_IN  
DO  
32 kHz oscillator buffer  
AIO  
32 kHz crystal connection  
(adjust with 10 pF)  
B2  
B5  
C2  
C5  
C6  
C7  
VLNREF  
VTTR  
Filter node for LN (low noise)  
(decouple with 2.2 µF)  
CMP1V2  
AO/DO  
AO  
Memory bus termination reference voltage  
(50 % of VDDQ), COMP1V2 controlled GPO  
IREF  
Connection for bias setting  
(configure with high precision 200 kΩ resistor)  
ADCIN2  
ADCIN3  
ADCIN1  
GPIO1  
GPIO2  
GPIO0  
AI/DIO  
AI/DIO  
AI/DIO  
Connection to GPADC channel 2 with 1.2 V HW  
comparator IRQ/GPIO1, regulator HW control  
Connection to GPADC channel 3/GPIO2,  
regulator HW control  
Connection to GPADC auto channel 1 with  
threshold IRQ and resistor measurement  
option/GPIO0  
C10  
D4  
V_CP  
AIO  
Charge pump output bypass  
(decouple with 10 nF)  
VDDQ  
E_GPI2  
GPIO6  
AI/DO  
AI/DO  
BUCKPRO target voltage sense port / state of  
E_GPI2 controlled GPO  
D8  
PERI_SWS  
BUCKPERI sense node from rail switch output/  
GPIO6  
Pulled down when switch is open  
D10  
E10  
SWBUCKPRO_B  
SWBUCKPRO_A  
AO  
AO  
Switching node for BUCKPRO (full-current)  
Switching node for BUCKPRO (half-current)  
F8, F9 VDD_BUCKPRO  
PWR  
Supply voltage for buck  
To be connected to VSYS  
F10  
SWBUCKCORE2_A  
AO  
Switching node for BUCKCORE2 (half-current)  
G8, G9 VDD_BUCKCORE2  
PWR  
Supply voltage for buck  
To be connected to VSYS  
G10  
H4  
SWBUCKCORE2_B  
VDD_BUCKPERI  
AO  
Switching node for BUCKCORE2 (full-current)  
PWR  
Supply voltage for buck  
To be connected to VSYS  
H5  
H6  
VDD_BUCKMEM  
VDD_BUCKIO  
PWR  
PWR  
PWR  
AO  
Supply voltage for buck  
To be connected to VSYS  
Supply voltage for buck  
To be connected to VSYS  
H7, H8 VDD_BUCKCORE1  
Supply voltage for buck  
To be connected to VSYS  
H10  
SWBUCKCORE1_A  
Switching node for BUCKCORE1 (half-current)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
16 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Pin  
Pin name  
Alternate  
Function  
Type  
(Table 2)  
Description  
J2  
J3  
J5  
J6  
J8  
VBUCKPERI  
AI  
AI  
Sense node for BUCKPERI  
VBUCKMEM  
PERI_SWG  
CORE_SWG  
CORE_SWS  
Sense node for DC/DC BUCKMEM  
GPIO5  
AIO/DIO NMOS gate driver for buck rail switch/GPIO5  
AIO/DIO NMOS gate driver for buck rail switch/GPIO3  
GPIO3  
GPIO4  
AI/DO  
BUCKCORE sense node from rail switch output  
or output capacitor of dual-phase BUCKCORE/  
connection of internal switch to the output of  
LDO1/GPIO4  
Pulled down when switch is open  
Switching node for BUCKCORE1 (full-current)  
Sense node for BUCKIO  
J10  
K4  
K5  
K6  
K7  
SWBUCKCORE1_B  
VBUCKIO  
AO  
AI  
SWBUCKPERI  
SWBUCKMEM  
SWBUCKIO  
AO  
AO  
AO  
Switching node for BUCKPERI  
Switching node for BUCKMEM  
Switching node for BUCKIO  
To be connected to SWBUCKMEM for buck  
merge  
K8  
K9  
VBUCKCORE1  
VBUCKCORE2  
VBUCKPRO  
AI  
AI  
AI  
Sense node for BUCKCORE1  
Sense node for BUCKCORE2  
Sense node for BUCKPRO  
K10  
Backup Battery Charger  
J9  
VBBAT  
AIO  
Backup battery connection  
Coin-cell or super-cap (decouple with 470 nF)  
Vss  
D6-7,  
E4, F4  
GND  
GND  
GND  
GND  
VSS_LDO, VSS_ADC, VSS_CORE, VSUB  
E5-7,  
F5-7,  
G5-7  
VSS_BUCKCORE1_A, VSS_BUCKCORE1_B,  
VSS_BUCKCORE2_A, VSS_BUCKCORE2_B,  
VSS_BUCK_PRO_A, VSS_BUCK_PRO_B,  
VSS_BUCK_IO, VSS_BUCK_MEM,  
VSS_BUCK_PERI  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
17 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
5
Electrical Characteristics  
5.1 Absolute Maximum Ratings  
Stresses beyond those listed under Absolute maximum ratings may cause permanent damage to the  
device. These are stress ratings only, so functional operation of the device at these or any other  
conditions beyond those indicated in the operational sections of the specification are not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Table 4: Absolute Maximum Ratings  
Parameter  
Symbol/Pin  
Conditions  
Min  
-65  
-40  
Typ  
Max  
+150  
+150  
Unit  
°C  
Storage temperature  
Junction temperature  
TSTG  
TJ  
Note 1  
°C  
VSYS,  
CHG_WAKE  
-0.3  
-0.3  
5.5  
V
V
Supply voltage  
All other  
pins  
Note 2  
VDDREF + 0.3  
ESD protection -  
Human Body Model  
(HBM)  
VESD_HBM  
2000  
V
V
ESD protection -  
Charged Device Model  
(CDM)  
VESD_CDM  
Corner pins  
All other pins  
750  
500  
Note 1 See Section 5.16 and Section 6.17.  
Note 2 Maximum VDDREF = 5.5 V. An internal node VDDREF is defined as the higher rail of CHG_WAKE and  
VSYS.  
5.2 Recommended Operating Conditions  
All voltages are referenced to VSS unless otherwise stated. Currents flowing into DA9063 are  
deemed positive; currents flowing out are deemed negative. All parameters are valid over the  
recommended temperature range and power supply range unless otherwise stated. Please note that  
the power dissipation must be limited to avoid overheating of DA9063.  
Table 5: Recommended Operating Conditions  
Parameter  
Symbol/Pin  
Conditions  
Min  
Typ  
Max  
Unit  
Junction temperature  
TJ  
-40  
+125  
°C  
Supply voltage  
VSYS,  
CHG_WAKE  
0
5.5  
3.6  
V
V
Supply voltage IO  
VDD_IO1/2  
Note 1  
1.2  
Thermal resistance  
junction to ambient  
100 VFBGA package  
Note 2  
27.7  
26.1  
°C/W  
°C/W  
JA  
100 TFBGA package  
Note 2  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
18 of 219  
© 2017 Dialog Semiconductor  
 
 
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol/Pin  
Conditions  
100 VFBGA  
Min  
Typ  
Max  
Unit  
Maximum power  
dissipation, see Section  
5.2.1  
PD  
2000  
mW  
Derating factor above  
TA = 70 °C:  
36.1 mW/°C (1/θJA)  
100 TFBGA  
2100  
mW  
Derating factor above  
TA = 70 °C:  
38.3 mW/°C (1/θJA)  
Note 1 VDDIO1/2 must not exceed VDDREF  
.
Note 2 Obtained from package thermal simulations, JEDEC 2S2P four layer board (76.2 mm x 114 mm x  
1.6 mm), 70 μm (2 oz) copper thickness power planes, 35 μm (1 oz) copper thickness signal layer  
traces, natural convection (still air), see Section 4.14.1.  
5.2.1  
Power Derating Curves  
Figure 5: 100 VFBGA Power Derating Curve  
Table 6: Typical Temperatures  
TA = 70 °C  
PD = 1.99 W  
PD = 2.53 W  
TA = 85 °C  
PD = 1.44 W  
PD = 1.99 W  
TA = 105 °C  
PD = 0.72 W  
PD = 1.26 W  
TJ_WARN  
TJ_CRIT  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
19 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
Figure 6:100 TFBGA Power Derating Curve  
Table 7: Typical Temperatures  
TA = 70 °C  
PD = 2.11 W  
PD = 2.68 W  
TA = 85 °C  
PD = 1.53 W  
PD = 2.11 W  
TA = 105 °C  
PD = 0.77 W  
PD = 1.34 W  
TJ_WARN  
TJ_CRIT  
5.3 Typical Current Consumption  
Table 8: Typical Current Consumption  
Operating Mode  
Conditions (Note 1)  
Backup  
Device  
Battery  
Unit  
NO-POWER mode (POR)  
2.4 V > VDDREF > VBBAT > 1.5 V  
0
16  
µA  
0.4  
Note 3  
VBBAT > VDDREF > 1.5 V  
VDDREF > VBBAT > 1.5 V  
VBBAT > VDDREF > 2.0 V  
VDDREF > VBBAT > 2.0 V  
0.5  
0
DELIVERY mode Note 2  
RTC mode Note 2  
µA  
µA  
1.5  
1.06  
Note 3  
1.4  
0.05  
7
VDDREF > 2.2 V, supplies off (except  
LDOCORE), RTC on, pulsed mode:  
RESET mode  
µA  
VBBAT > VDDREF  
VBBAT < VDDREF  
1.6  
11  
18  
0.05  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
20 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Operating Mode  
Conditions (Note 1)  
Backup  
Device  
Battery  
Unit  
VSYS > VDD_FAULT_LOWER,  
supplies off (except LDOCORE), all  
blocks in POWERDOWN mode,  
RTC on, pulsed mode with limited  
parametric compliance  
LOW-POWER mode  
18  
µA  
VSYS > VDD_FAULT_LOWER,  
supplies off (except LDOCORE), all  
blocks in POWERDOWN mode,  
RTC on  
POWERDOWN mode  
(Hibernate)  
40  
µA  
BUCKCORE, LDOCORE, LDO2, 4,  
5 enabled, RTC and GPIO unit on  
65  
Note 4  
POWERDOWN mode (Standby)  
ACTIVE mode  
µA  
µA  
All supplies, GPIO, RTC and  
GPADC on  
320  
Note 1 nONKEY/CHG_WAKE/VDDREF detection circuit is enabled in all modes.  
Note 2 See VBBAT current in RTC or DELIVERY modes [1]  
Note 3 0 µA if no main battery available.  
Note 4 Regulators are running in sleep mode.  
5.4 Digital I/O Characteristics  
Table 9: Digital I/O Electrical Characteristics, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
GPI0 to GPI15, nOFF,  
nSHUTDOWN  
VDDCORE mode  
1.0  
VSYS  
SYS_EN, PWR_EN,  
PWR1_EN  
Input High Voltage  
VIH  
V
VDD_IO2 mode  
0.7*VDD_IO2  
-0.3  
VSYS  
0.4  
GPI0 to GPI15, nOFF,  
nSHUTDOWN  
VDDCORE mode  
SYS_EN, PWR_EN,  
PWR1_EN  
Input Low Voltage  
VIL  
V
VDD_IO2 mode  
RTC mode  
-0.3  
1.0  
0.3*VDD_IO2  
nONKEY, CHG_WAKE  
Input High Voltage  
VIH  
VIL  
VSYS  
0.4  
V
V
nONKEY, CHG_WAKE  
Input Low Voltage  
RTC mode  
-0.3  
1.0  
CLK, DATA, SK, SI  
(2-WIRE mode)  
VDDCORE mode  
VDD_IO2 mode  
VDDCORE mode  
VDD_IO2 mode  
VIH  
VIL  
VIH  
VIL  
V
V
V
V
0.7*VDD_IO2  
Input High Voltage  
CLK, DATA, SK, SI  
(2-WIRE mode)  
0.4  
0.3*VDD_IO2  
Input Low Voltage  
SK, nCS, SI  
(4-WIRE mode)  
Input High Voltage  
0.7*VDD_IOx  
SK, nCS, SI  
(4-WIRE mode)  
Input Low Voltage  
0.3*VDD_IOx  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
21 of 219  
© 2017 Dialog Semiconductor  
 
 
 
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
GPO0 to GPO15,  
nVDD_FAULT, SO,  
nRESET, nIRQ, ,  
E_GPI_2, COMP1V2,  
OUT_32K, OUT_32K_2  
VDD_IO1 mode  
0.8*VDD_IO1  
VOH = 1 mA  
V
VDD_IOx ≥  
1.5 V  
VDD_IO2 mode  
Open drain  
0.8*VDD_IO2  
Output High Voltage  
GPO1, 3 to 6, 10, and 12  
to 15, DATA, SI (2-WIRE  
mode) SO, nRESET,  
nIRQ, PWR_OK (open  
drain mode)  
VOH  
VDDREF  
V
Output High Voltage  
GPO0 to GPO15, SO,  
nVDD_FAULT, nRESET  
(Note 1), nIRQ (Note 1),  
PWR_OK, E_GPI_2,  
COMP1V2, OUT_32K,  
OUT_32K_2,  
VOL = 1 mA  
VOL = 3 mA  
0.3  
V
V
Output Low Voltage  
DATA, SI (2-WIRE  
mode)  
0.24  
Output Low Voltage  
SI (2-WIRE mode)  
Output Low Voltage  
VOL = 20 mA  
CIN  
0.4  
10  
V
CLK, DATA, SK, SI  
Input Capacitance  
pF  
Fast  
20 + 0.1 Cb  
120  
40  
Cb < 550 pF  
SI (2-WIRE MODE)  
Data Fall Time  
HS  
tfDA  
10  
20  
ns  
10 < Cb < 100 pF  
HS  
80  
Cb < 400 pF  
Sink current capability  
GPO 10, 11, 14, 15  
VGPIO = 0.5 V  
Note 2  
11  
-4  
mA  
mA  
mA  
VGPIO  
=
Source current capability  
GPO 10, 11,14,15  
0.8*VDD_IO1/2  
Note 2  
Sink current capability  
GPO 0 to 9, 12, 13  
VGPIO = 0.3 V  
1
VGPIO  
0.8*VDD_IO1/2  
=
Source current capability  
GPO 0 to 9, 12, 13  
-1  
mA  
Note 3  
GPI pull-down resistor  
50  
100  
250  
kΩ  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
22 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VDD_IO1/2 =  
1.5 V  
60  
180  
310  
GPO pull-up resistor  
Note 4  
VDD_IO1/2 =  
1.8 V  
45  
20  
120  
40  
190  
60  
kΩ  
VDD_IO1/2 =  
3.3 V  
Note 1 Electrical characteristics are guaranteed down to VDDREF = 2.0 V (VPOR_LOWER). For lower voltages  
the port continues operating with reduced performance.  
Note 2 At low VDDREF values and high temperatures, the sink current capability is reduced.  
Note 3 For VDD_IO1/2 < 1.5 V the source current capability is reduced.  
Note 4 V(PAD) = 0 V.  
5.5 Watchdog  
Table 10: Watchdog, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol  
TWDMIN  
TWDMAX  
Test Conditions  
Min  
0.18  
1.44  
Typ  
Max  
0.33  
2.64  
Unit  
Minimum Watchdog time  
Maximum Watchdog time  
0.256  
2.048  
s
s
5.6 Power Manager and HS-2-Wire Control Bus  
CLKL  
CLKH  
CLK/SK  
STH  
DST  
TSS  
DHT  
DATA/SI  
Figure 7: 2-Wire Bus Timing  
Table 11: Power Manager and HS-2-Wire Control Bus Electrical Characteristics, TJ = -40 ºC to  
+125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
µs  
Bus free time STOP to START  
Bus line capacitive load  
Standard/Fast/Fast+ Mode  
CLK clock frequency  
0.5  
Cb  
150  
pF  
Note 1  
0
1000  
kHz  
µs  
Bus free time STOP to START  
Start condition set-up time  
Start condition hold time  
CLK low time  
0.5  
0.26  
0.26  
0.5  
µs  
STH  
µs  
CLKL  
µs  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
23 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
µs  
CLK high time  
CLKH  
0.26  
2-WIRE CLK and DATA rise  
time  
(input requirement)  
(input requirement)  
1000  
300  
ns  
2-WIRE CLK and DATA fall  
time  
ns  
Data set-up time  
DST  
DHT  
50  
0
ns  
ns  
µs  
µs  
µs  
Data hold-time  
Data valid time  
0.45  
0.45  
Data valid time acknowledge  
Stop condition set-up time  
High Speed Mode  
CLK clock frequency  
TSS  
0.26  
0
Requires VDDIO ≥ 1.8 V  
3400  
kHz  
Note 1  
Start condition set-up time  
Start condition hold time  
CLK low time  
160  
160  
160  
60  
ns  
ns  
ns  
ns  
ns  
STH  
CLKL  
CLKH  
CLK high time  
2-WIRE CLKH and SDAH  
rise/fall time  
Input requirement  
160  
Data set-up time  
DST  
DHT  
TSS  
10  
0
ns  
ns  
ns  
Data hold-time  
Stop condition set-up time  
160  
Note 1 Minimum clock frequency is 10 kHz if 2WIRE_TO is enabled  
5.7 4-Wire Control Bus  
nCS  
4
2
11  
1
3
5
SK  
SI  
7
6
10  
A4  
R/W  
LSB  
A6  
A5  
BIT 1  
BIT 1  
8
9
SO  
LSB  
BIT 7  
R/W  
Address  
DATA  
Figure 8: 4-Wire Bus Timing  
Note 1 The above timing is valid for active-low and high CS  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
24 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
Table 12: 4-Wire Control Bus, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol Label in Plot  
Min  
Typ  
Max  
Unit  
pF  
Bus line capacitive load  
Cycle time  
100  
tC  
1
70  
20  
ns  
Enable lead time  
tCSS  
2, from nCS active to first SK  
edge  
ns  
Enable lag time  
Clock low time  
tSCS  
tCL  
3, from last SK edge to nCS idle  
20  
0.4 * tC  
0.4 * tC  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
Clock high time  
Data-in setup time  
Data-in hold time  
Data-out valid time  
Data-out hold time  
CS inactive time  
tCH  
5
tSIS  
6
tSIH  
tSOV  
tSOH  
tWCS  
7
5
8
22  
9
6
11  
20  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
25 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
5.8 LDO Voltage Regulators  
5.8.1  
LDO1  
Table 13: LDO1, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
5.5  
Unit  
V
VDD = VSYS  
2.8  
Input voltage  
Output voltage  
VDD  
1.5  
Note 1  
If supplied from buck  
VLDO  
0.6  
Note 2  
1.86  
V
VDD = VSYS = 2.8 V to 5.5 V  
IOUT = 100 mA  
Output accuracy  
-3  
+3  
%
Including static line/load  
regulation  
f > 1 MHz  
Output capacitor ESR  
RCOUT_ESR  
0
300  
mΩ  
Including wiring parasitics  
Output current  
IOUT_max  
ISHORT  
VDD = VSYS = 2.8 V to 5.5 V  
100  
mA  
mA  
Short circuit current  
200  
100  
Maximum forced sleep  
mode current  
ISLEEP  
VDD ≥ 1.8 V  
10  
mA  
mV  
VDD = VSYS > 2.8 V  
Dropout voltage  
VDROPOUT  
150  
IOUT = 100 mA  
(VDD = 1.5 V, IOUT = IMAX/3)  
VDD = VSYS = 3.0 V to 5.5 V  
IOUT = 100 mA  
Static line regulation  
Static load regulation  
VS_LINE  
1
5
5
mV  
mV  
VS_LOAD  
IOUT = 1 mA to 100 mA  
10  
VDD = VSYS = 3.0 V to 3.6 V  
IOUT = 100 mA  
tr = tf = 10 µs  
Line transient response VTR_LINE  
5
10  
50  
mV  
mV  
dB  
VDD = 3.6 V  
IOUT = 1 mA to 100 mA  
tr = tf = 1 µs  
Load transient  
VTR_LOAD  
30  
50  
response  
f = 10 Hz to 10 kHz , RT  
VDD = 3.6 V, IOUT = IMAX/2  
VDD VLDO ≥ 0.6 V  
PSRR  
PSRR  
Note 3  
40  
Output noise  
N
μV  
rms  
VDD = VSYS = 3.6 V,  
VLDO = 1.8 V  
IOUT = 5 mA to IMAX  
f = 10 Hz to 100 kHz , RT  
70  
Quiescent current in  
ON mode  
9 + 0.7 %  
of IOUT  
IQ_ON  
Note 4  
μA  
μA  
1.5 +  
1.4% of  
IOUT  
Quiescent current  
forced sleep mode  
IQ_SLEEP  
Quiescent current OFF  
mode  
IQ_OFF  
1
μA  
μs  
10 % to 90 %  
SLEEP mode  
300  
390  
Turn-on time  
tON  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
26 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
90 % to 10%  
Turn off time  
tOFF  
1
ms  
Pull-down resistor enabled  
Pull-down resistance in  
OFF mode  
Can be disabled via  
LDO1_PD_DIS  
ROFF  
100  
Note 1 Max output current is 30 % when the input voltage is 1.5 V  
Note 2 Programmable in 20 mV voltage steps, maximum output voltage is determined by VDD - dropout  
voltage  
Note 3 Measured at point of load  
Note 4 Internal regulator current flowing to ground  
5.8.2  
LDO2  
Table 14: LDO2, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol  
Test conditions  
Min  
Typ  
Max  
5.5  
Unit  
V
VDD = VSYS  
2.8  
Input voltage  
Output voltage  
VDD  
1.5  
Note 1  
If supplied from buck  
VLDO  
0.6  
Note 2  
1.86  
V
VDD = VSYS = 2.8 V to 5.5 V  
IOUT = 200 mA  
Output accuracy  
-3  
+3  
%
Including static line/load  
regulation  
Including voltage and  
temperature coefficient at  
configured VLDO2  
Stabilisation  
capacitor  
COUT  
-55 %  
2.2  
+35 %  
300  
µF  
Output capacitor  
ESR  
f > 1 MHz  
including wiring parasitics  
RCOUT_ESR  
IOUT_max  
0
mΩ  
Output current  
VDD = VSYS = 2.8 V to 5.5 V  
200  
mA  
mA  
Short circuit current ISHORT  
400  
Maximum forced  
ISLEEP  
VDD ≥ 1.8 V  
20  
mA  
mV  
sleep mode current  
VDD = VSYS > 2.8 V  
Dropout voltage  
VDROPOUT  
100  
1
150  
5
IOUT = 200 mA  
(VDD = 1.5 V, IOUT = IMAX/3)  
Static line  
regulation  
VDD = VSYS = 3.0 V to 5.5 V  
IOUT = 200 mA  
VS_LINE  
mV  
mV  
5
5
10  
Static load  
regulation  
VS_LOAD  
IOUT = 1 mA to 200 mA  
VDD = VSYS = 3.0 V to 3.6 V  
IOUT = 100 mA  
tr = tf = 10 µs  
Line transient  
response  
VTR_LINE  
10  
50  
mV  
VDD = 3.6 V  
IOUT = 1 mA to 200 mA  
tr = tf = 1 µs  
Load transient  
response  
VTR_LOAD  
30  
50  
mV  
dB  
f = 10 Hz to 10 kHz , RT  
VDD = 3.6 V, IOUT = IMAX/2  
VDD VLDO ≥ 0.6 V  
PSRR  
Note 3  
PSRR  
40  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
27 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test conditions  
Min  
Typ  
Max  
Unit  
Output noise  
N
μV  
rms  
VDD = VSYS = 3.6 V  
VLDO = 1.8 V  
IOUT = 5 mA to IMAX  
f = 10 Hz to 100 kHz , RT  
70  
Quiescent current  
in ON mode  
9 + 0.4%  
of IOUT  
IQ_ON  
Note 4  
μA  
μA  
1.5 +  
0.9% of  
IOUT  
Quiescent current  
forced sleep mode  
IQ_SLEEP  
Quiescent current  
OFF mode  
IQ_OFF  
1
μA  
μs  
10 to 90%  
150  
195  
Turn-on time  
Turn off time  
tON  
SLEEP mode  
90 to 10%, pull-down resistor  
enabled  
tOFF  
1
ms  
Pull-down  
resistance in OFF  
mode  
Can be disabled via  
LDO2_PD_DIS  
ROFF  
100  
Note 1 Max output current is 30% when the input voltage is 1.5 V  
Note 2 Programmable in 20 mV voltage steps, maximum output voltage is determined by VDD - dropout  
voltage  
Note 3 Measured at point of load  
Note 4 Internal regulator current flowing to ground  
5.8.3  
LDO3  
Table 15: LDO3, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
5.5  
Unit  
VDD = VSYS  
2.8  
Input voltage  
Output voltage  
VDD  
V
V
(1.5)  
Note 1  
If supplied from buck  
VLDO  
0.9  
Note 2  
3.44  
VDD = VSYS = 2.8V to 5.5 V  
IOUT = 200 mA  
Output accuracy  
-3  
+3  
%
Including static line/load  
regulation  
Including voltage and  
temperature coefficient at  
configured VLDO3  
Stabilisation  
capacitor  
COUT  
-55%  
2.2  
+35%  
300  
µF  
Output capacitor  
ESR  
f > 1 MHz including wiring  
parasitics  
RCOUT_ESR  
IOUT_max  
0
mΩ  
Output current  
VDD = VSYS = 2.8 V to 5.5 V  
200  
mA  
mA  
Short circuit current ISHORT  
400  
100  
Maximum forced  
ISLEEP  
VDD ≥ 1.8 V  
20  
mA  
mV  
sleep mode current  
VDD = VSYS > 2.8 V  
Dropout voltage  
VDROPOUT  
150  
IOUT = 100 mA  
(VDD = 1.5 V, IOUT = IMAX/3)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
28 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
1
Max  
5
Unit  
Static line  
regulation  
VDD = VSYS = 3.0 V to 5.5 V  
IOUT = 200 mA  
VS_LINE  
mV  
5
10  
Static load  
regulation  
VS_LOAD  
IOUT = 1 mA to 200 mA  
mV  
mV  
VDD = VSYS = 3.0 V to 3.6 V  
IOUT = 100 mA  
tr = tf = 10 µs  
Line transient  
response  
VTR_LINE  
5
10  
50  
VDD = 3.6 V  
IOUT = 1 mA to 200 mA  
tr = tf = 1 µs  
Load transient  
response  
VTR_LOAD  
30  
mV  
dB  
f = 10 Hz to 10 kHz , RT  
VDD = 3.6 V, IOUT = IMAX/2  
VDD VLDO ≥ 0.6 V  
PSRR  
Note 3  
PSRR  
40  
50  
70  
Output noise  
N
μV  
rms  
VDD = VSYS = 3.6 V,  
VLDO = 2.8 V  
IOUT = 5 mA to IMAX  
f = 10 Hz to 100 kHz , RT  
9 +  
0.45% of  
IOUT  
Quiescent current  
in ON mode  
IQ_ON  
Note 4  
μA  
1.5 +  
1.0% of  
IOUT  
Quiescent current  
forced sleep mode  
IQ_SLEEP  
μA  
μA  
Quiescent current  
OFF mode  
IQ_OFF  
1
300  
10 to 90%  
Turn-on time  
Turn off time  
tON  
μs  
SLEEP mode  
390  
1
90 % to 10 %  
tOFF  
ms  
Pull-down resistor enabled  
Pull-down  
resistance in OFF  
mode  
Can be disabled via  
LDO3_PD_DIS  
ROFF  
100  
0.5  
Bypass mode  
VDD > 2.2 V  
0.7  
1.0  
Bypass on-  
resistance  
RON  
VDD > 1.8 V  
Current limit in  
Bypass mode  
ILIM  
300  
600  
100  
mA  
Quiescent current  
in Bypass mode  
IQ_BYPASS  
50  
μA  
Note 1 Max output current is 30% when the input voltage is 1.5 V  
Note 2 Programmable in 20 mV voltage steps, maximum output voltage is determined by VDD - dropout  
voltage  
Note 3 Measured at point of load  
Note 4 Internal regulator current flowing to ground  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
29 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
5.8.4  
LDO4  
Table 16: LDO4, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
5.5  
Unit  
V
VDD = VSYS  
2.8  
Input voltage  
Output voltage  
VDD  
1.5  
If supplied from buck  
Note 1  
VLDO  
0.9  
-3  
Note 2  
3.44  
V
VDD = VSYS = 2.8 V to 5.5 V  
IOUT = 200 mA  
Output accuracy  
+3  
%
Including static line/load  
regulation  
Including voltage and  
temperature coefficient at  
configured VLDO4  
Stabilisation  
capacitor  
COUT  
-55 %  
2.2  
+35 %  
300  
µF  
Output capacitor  
ESR  
f > 1 MHz  
Including wiring parasitics  
RCOUT_ESR  
IOUT_max  
0
mΩ  
Output current  
VDD = VSYS = 2.8 V to 5.5 V  
200  
mA  
mA  
Short circuit current ISHORT  
400  
Maximum forced  
ISLEEP  
VDD ≥ 1.8 V  
30  
mA  
mV  
mV  
sleep mode current  
VDD = VSYS > 2.8 V  
Dropout voltage  
VDROPOUT  
100  
1
150  
5
IOUT = 200 mA  
(VDD = 1.5 V, IOUT = IMAX/3)  
Static line  
regulation  
VDD = VSYS = 3.0 V to 5.5 V  
IOUT = 200 mA  
VS_LINE  
Static load  
regulation  
VS_LOAD  
IOUT = 1 mA to 200 mA  
5
5
10  
10  
mV  
VDD = VSYS = 3.0V to 3.6 V  
IOUT = 100 mA  
tr = tf = 10 µs  
Line transient  
response  
VTR_LINE  
mV  
mV  
dB  
VDD = 3.6 V  
IOUT = 1 mA to 200 mA  
tr = tf = 1 µs  
30  
50  
Load transient  
response  
VTR_LOAD  
f = 10 Hz to 10 kHz , RT  
VDD = 3.6 V, IOUT = IMAX/2  
VDD VLDO ≥ 0.6 V  
PSRR  
Note 3  
PSRR  
40  
50  
70  
Output noise  
N
μV  
rms  
VDD = VSYS = 3.6 V,  
VLDO = 2.8 V  
IOUT = 5 mA to IMAX  
f = 10 Hz to 100 kHz , RT  
Quiescent current  
in ON mode  
9 + 0.4%  
of IOUT  
IQ_ON  
Note 4  
μA  
μA  
μA  
1.5 +  
1.0% of  
IOUT  
Quiescent current  
forced sleep mode  
IQ_SLEEP  
Quiescent current  
OFF mode  
IQ_OFF  
1
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
30 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test Conditions  
10 % to 90%  
Min  
Typ  
Max  
Unit  
300  
Turn-on time  
tON  
μs  
SLEEP mode  
390  
1
90 % to 10%  
Turn off time  
tOFF  
ms  
Pull-down resistor enabled  
Pull-down  
resistance in OFF  
mode  
Can be disabled via  
LDO4_PD_DIS  
ROFF  
100  
0.5  
Bypass mode  
VDD > 2.2 V  
0.7  
1.0  
Bypass on-  
resistance  
RON  
VDD > 1.8 V  
Current limit in  
Bypass mode  
ILIM  
200  
400  
100  
mA  
Quiescent current  
in Bypass mode  
IQ_BYPASS  
50  
μA  
Note 1 Max output current is 30% when the input voltage is 1.5 V  
Note 2 Programmable in 20 mV voltage steps, maximum output voltage is determined by VDD - dropout  
voltage  
Note 3 Measured at point of load  
Note 4 Internal regulator current flowing to ground  
5.8.5  
LDO5  
Table 17: LDO5, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
5.5  
Unit  
V
VDD = VSYS  
2.8  
Input voltage  
Output voltage  
VDD  
1.5  
If supplied from buck  
Note 1  
VLDO  
0.9  
-3  
Note 2  
3.6  
V
VDD = VSYS = 2.8 V to 5.5 V  
IOUT = 100 mA  
Output accuracy  
+3  
%
Including static line/load  
regulation  
Including voltage and  
temperature coefficient at  
configured VLDO5  
Stabilisation  
capacitor  
COUT  
-55 %  
1.0  
+35 %  
300  
µF  
Output capacitor  
ESR  
f > 1 MHz  
Including wiring parasitics  
RCOUT_ESR  
IOUT_max  
ISHORT  
0
mΩ  
mA  
mA  
Output current  
VDD = VSYS = 2.8 V to 5.5 V  
100  
Short circuit  
current  
200  
100  
Maximum forced  
sleep mode  
current  
ISLEEP  
VDD ≥ 1.8 V  
20  
mA  
mV  
VDD = VSYS > 2.8 V  
Dropout voltage  
VDROPOUT  
150  
IOUT = 100 mA  
(VDD = 1.5 V, IOUT = IMAX/3)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
31 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Static line  
regulation  
VDD = VSYS = 3.0 V to 5.5 V  
IOUT = 100 mA  
VS_LINE  
1
5
mV  
Static load  
regulation  
VS_LOAD  
IOUT = 1 mA to 100 mA  
5
5
10  
10  
mV  
mV  
VDD = VSYS = 3.0 V to 3.6 V  
IOUT = 100 mA  
tr = tf = 10 µs  
Line transient  
response  
VTR_LINE  
VDD = 3.6 V  
IOUT = 1 mA to 100 mA  
tr = tf = 1 µs  
Load transient  
response  
VTR_LOAD  
30  
50  
50  
mV  
dB  
f = 10 Hz to 10 kHz , RT  
VDD = 3.6 V, IOUT = IMAX/2  
VDD VLDO ≥ 0.6 V  
40  
PSRR  
Note 3  
PSRR  
Output noise  
N
μV  
rms  
VDD = Vsys = 3.6 V,  
VLDO = 2.8 V  
IOUT = 5 mA to IMAX  
f = 10 Hz to 100 kHz , RT  
70  
Quiescent current  
in ON mode  
9 + 0.9 %  
of IOUT  
IQ_ON  
Note 4  
μA  
μA  
μA  
Quiescent current  
forced sleep  
mode  
1.5 +  
1.6 % of  
IOUT  
IQ_SLEEP  
Quiescent current  
OFF mode  
IQ_OFF  
1
350  
10 % to 90 %  
SLEEP mode  
Turn-on time  
Turn off time  
tON  
μs  
450  
1
90 % to 10 %  
tOFF  
ms  
Pull-down resistor enabled  
Pull-down  
resistance in OFF  
mode  
Can be disabled via  
LDO5_PD_DIS  
ROFF  
100  
Note 1 Max output current is 30% when the input voltage is 1.5 V  
Note 2 Programmable in 50 mV voltage steps, maximum output voltage is determined by VDD - dropout  
voltage  
Note 3 Measured at point of load  
Note 4 Internal regulator current flowing to ground  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
32 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
5.8.6  
LDO6  
Table 18: LDO6, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
5.5  
Unit  
V
VDD = VSYS  
2.8  
Input voltage  
Output voltage  
VDD  
1.5  
If supplied from buck  
Note 1  
VLDO  
0.9  
-3  
Note 2  
3.6  
V
VDD = VSYS = 2.8 V o 5.5 V  
IOUT = 200 mA  
Output accuracy  
+3  
%
Including static line/load  
regulation  
Including voltage and  
temperature coefficient at  
configured VLDO6  
Stabilisation  
capacitor  
COUT  
-55%  
2.2  
+35%  
300  
µF  
Output capacitor  
ESR  
f > 1 MHz  
Including wiring parasitics  
RCOUT_ESR  
IOUT_max  
0
mΩ  
Output current  
VDD = VSYS = 2.8 V to 5.5 V  
200  
mA  
mA  
Short circuit current ISHORT  
400  
Maximum forced  
ISLEEP  
VDD ≥ 1.8 V  
30  
mA  
mV  
sleep mode current  
VDD = VSYS > 2.8 V  
Dropout voltage  
VDROPOUT  
100  
1
150  
5
IOUT = 200 mA  
(VDD = 1.5 V, IOUT = IMAX/3)  
Static line  
regulation  
VDD = VSYS = 3.0 V to 5.5 V  
IOUT = 200 mA  
VS_LINE  
mV  
mV  
5
5
10  
10  
Static load  
regulation  
VS_LOAD  
IOUT = 1 mA to 200 mA  
VDD = VSYS = 3.0 V to 3.6 V  
IOUT = 100 mA  
tr = tf = 10 µs  
Line transient  
response  
VTR_LINE  
mV  
mV  
VDD = 3.6 V  
IOUT = 1 mA to 200 mA  
tr = tf = 1 µs  
Load transient  
response  
VTR_LOAD  
30  
80  
50  
VDD = 3.6 V,  
IOUT = IMAX/2  
VDD VLDO ≥ 0.6 V  
70  
f = 10 Hz to 1 kHz , RT  
f = 1 kHz to 10 kHz  
PSRR  
Note 3  
PSRR  
dB  
60  
40  
30  
70  
50  
40  
f = 10 kHz to 100 kHz  
f = 100 kHz to 10 MHz  
Output noise  
N
μV  
rms  
VDD = VSYS = 3.6 V,  
VLDO = 2.8 V  
IOUT = 5 mA to IMAX  
f = 10 Hz to 100 kHz , RT  
35  
Quiescent current  
in ON mode  
9+0.45%  
of IOUT  
IQ_ON  
Note 4  
μA  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
33 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Quiescent current  
forced sleep mode  
2+1.0%  
of IOUT  
IQ_SLEEP  
μA  
Quiescent current  
OFF mode  
IQ_OFF  
1
μA  
μs  
10 % to 90 %  
SLEEP mode  
200  
260  
Turn-on time  
Turn off time  
tON  
90 % to 10 %  
tOFF  
1
ms  
Pull-down resistor enabled  
Pull-down  
resistance in OFF  
mode  
Can be disabled via  
LDO6_PD_DIS  
ROFF  
100  
Note 1 Max output current is 30% when the input voltage is 1.5 V  
Note 2 Programmable in 50 mV voltage steps, maximum output voltage is determined by VDD - dropout  
voltage  
Note 3 Measured at point of load  
Note 4 Internal regulator current flowing to ground  
5.8.7  
LDO7  
Table 19: LDO7, TJ = -40 ºC to 125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
5.5  
Unit  
VDD = VSYS  
2.8  
Input voltage  
Output voltage  
VDD  
V
V
1.5  
Note 1  
If supplied from buck  
VLDO  
0.9  
Note 2  
3.6  
VDD = VSYS = 2.8 V to 5.5 V  
IOUT = 200 mA  
Output accuracy  
-3  
+3  
%
Including static line/load  
regulation  
Including voltage and  
temperature coefficient at  
configured VLDO7  
Stabilisation  
capacitor  
COUT  
-55 %  
2.2  
+35 %  
300  
µF  
f > 1 MHz  
Including track impedance  
ESR of capacitor  
0
mΩ  
mA  
mA  
mA  
Maximum output  
current  
IOUT_max  
ISHORT  
VDD = VSYS = 2.8 V to 5.5 V  
200  
Short circuit  
current  
400  
100  
Maximum forced  
sleep mode current  
ISLEEP  
VDD ≥ 1.8 V  
30  
VDD = VSYS > 2.8 V  
Dropout voltage  
VDROPOUT  
150  
mV  
IOUT = 200 mA  
(VDD = 1.5 V, IOUT = IMAX/3)  
Static line  
regulation  
VDD = VSYS = 3.0V to 5.5 V  
IOUT = 200 mA  
VS_LINE  
1
5
5
mV  
mV  
10  
Static load  
regulation  
VS_LOAD  
IOUT = 1 mA to 200 mA  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
34 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VDD = VSYS = 3.0 V to 3.6 V  
IOUT = 100 mA  
tr = tf = 10 µs  
5
10  
Line transient  
response  
VTR_LINE  
mV  
VDD = 3.6 V  
IOUT = 1 mA to 200 mA  
tr = tf = 1 µs  
Load transient  
response  
VTR_LOAD  
30  
50  
50  
mV  
dB  
f = 10 Hz to 10 kHz , RT  
VDD = 3.6 V, IOUT = IMAX/2  
VDD VLDO ≥ 0.6 V  
40  
PSRR  
Note 3  
PSRR  
Output noise  
N
μV  
rms  
VDD = Vsys = 3.6 V,  
VLDO = 2.8 V  
IOUT = 5 mA to IMAX  
f = 10 Hz to 100 kHz , RT  
70  
Quiescent current  
in ON mode  
9+0.4% of  
IOUT  
IQ_ON  
Note 4  
μA  
μA  
μA  
Quiescent current  
forced sleep mode  
1.5+1.0%  
of IOUT  
IQ_SLEEP  
IQ_OFF  
Quiescent current  
OFF mode  
1
10 % to 90 %  
SLEEP mode  
300  
390  
Turn-on time  
Turn off time  
TON  
μs  
90 % to 10 %  
TOFF  
1
ms  
Pull-down resistor enabled  
Pull-down  
resistance in OFF  
mode  
Can be disabled via  
LDO7_PD_DIS  
ROFF  
100  
0.5  
Bypass mode  
VDD > 2.2 V  
0.7  
1.0  
Bypass on-  
resistance  
RON  
VDD > 1.8 V  
Current limit in  
Bypass mode  
ILIM  
300  
600  
100  
mA  
Quiescent current  
IQBypass  
50  
μA  
Note 1 Max output current is 30% when the input voltage is 1.5 V  
Note 2 Programmable in 50 mV voltage steps, maximum output voltage is determined by VDD - dropout  
voltage  
Note 3 Measured at point of load  
Note 4 Internal regulator current flowing to ground  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
35 of 219  
© 2017 Dialog Semiconductor  
 
 
DA9063  
System PMIC for Mobile Application Processors  
5.8.8  
LDO8  
Table 20: LDO8, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
5.5  
Unit  
V
VDD = VSYS  
2.8  
Input voltage  
Output voltage  
VDD  
1.5  
Note 1  
If supplied from buck  
VLDO  
0.9  
Note 2  
3.6  
V
VDD = VSYS = 2.8 V to 5.5 V  
IOUT = 200 mA  
Output accuracy  
-3  
+3  
%
Including static line/load  
regulation  
Including voltage and  
temperature coefficient at  
configured VLDO8  
Stabilisation  
capacitor  
COUT  
-55 %  
2.2  
+35 %  
300  
µF  
f > 1 MHz  
Including track impedance  
ESR of capacitor  
0
mΩ  
mA  
mA  
Maximum output  
current  
IOUT_max  
ISHORT  
VDD = VSYS = 2.8 V to 5.5 V  
200  
Short circuit  
current  
400  
Maximum forced  
sleep mode  
current  
ISLEEP  
VDD ≥ 1.8 V  
30  
mA  
mV  
VDD = VSYS > 2.8 V  
Dropout voltage  
VDROPOUT  
100  
1
150  
5
IOUT = 200 mA  
(VDD = 1.5 V, IOUT = IMAX/3)  
Static line  
regulation  
VDD = VSYS = 3.0 V to 5.5 V  
IOUT = 200 mA  
VS_LINE  
mV  
mV  
5
5
10  
10  
Static load  
regulation  
VS_LOAD  
IOUT = 1 mA to 200 mA  
VDD = VSYS = 3.0 V to 3.6 V  
IOUT = 100 mA  
tr = tf = 10 µs  
Line transient  
response  
VTR_LINE  
mV  
mV  
dB  
VDD = 3.6 V  
IOUT = 1 mA to 200 mA  
tr = tf = 1 µs  
30  
50  
50  
Load transient  
response  
VTR_LOAD  
f = 10 Hz to 10 kHz , RT  
VDD = 3.6 V, IOUT = IMAX/2  
VDD VLDO ≥ 0.6 V  
40  
PSRR  
Note 3  
PSRR  
Output noise  
N
μV  
rms  
VDD = VSYS = 3.6 V,  
VLDO = 2.8 V  
IOUT = 5 mA to IMAX  
f = 10 Hz to 100 kHz , RT  
70  
Quiescent current  
in ON mode  
9 + 0.4 %  
of IOUT  
IQ_ON  
Note 4  
μA  
μA  
1.5 +  
1.0 % of  
IOUT  
Quiescent current  
forced sleep mode  
IQ_SLEEP  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
36 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Quiescent current  
OFF mode  
IQ_OFF  
1
μA  
10 % to 90 %  
SLEEP mode  
300  
390  
Turn-on time  
Turn off time  
TON  
μs  
90 % to 10 %  
TOFF  
1
ms  
Pull-down resistor enabled  
Pull-down  
resistance in OFF  
mode  
Can be disabled via  
LDO8_PD_DIS  
ROFF  
100  
Vibration Motor Driver Mode  
Output voltage  
VIB_SET  
6-bit resolution  
0
8
3
V
(average)  
Maximum output  
IMAX  
300  
mA  
mA  
current  
Short circuit  
ISHORT  
400  
current  
Load resistance  
Load impedance  
Pull-up resistor  
Pull-down resistor  
Bypass Mode  
RLOAD  
RLOAD  
Ron  
10  
200  
0.5  
5
10000  
µH  
Roff  
VDD > 2.2 V  
VDD > 1.8 V  
0.5  
0.7  
1.0  
Bypass on-  
resistance  
RON  
Current limit in  
Bypass mode  
ILIM  
300  
600  
100  
mA  
Quiescent current  
in Bypass mode  
IQBypass  
50  
μA  
Note 1 Max output current is 30% when the input voltage is 1.5 V  
Note 2 Programmable in 50 mV voltage steps, maximum output voltage is determined by VDD - dropout  
voltage  
Note 3 Measured at point of load  
Note 4 Internal regulator current flowing to ground  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
37 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
5.8.9  
LDO9  
Table 21: LDO9, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
5.5  
Unit  
V
VDD = VSYS  
2.8  
Input voltage  
Output voltage  
VDD  
1.5  
If supplied from buck  
Note 1  
VLDO  
0.95  
Note 2  
3.6  
V
VDD = VSYS = 2.8 V to 5.5 V  
IOUT = 200 mA  
Output accuracy  
-3  
+3  
%
Including static line/load  
regulation  
Note 3  
Including voltage and  
temperature coefficient at  
configured VLDO9  
Stabilisation  
capacitor  
COUT  
-55 %  
2.2  
+35 %  
300  
µF  
ESR of capacitor  
f > 1 MHz  
0
mΩ  
Maximum output  
current  
IOUT_max  
ISHORT  
VDD = VSYS = 2.8 V to 5.5 V  
200  
mA  
Short circuit  
current  
400  
mA  
mA  
Maximum forced  
sleep mode current  
ISLEEP  
VDD ≥ 1.8 V  
30  
VDD = VSYS > 2.8 V  
Dropout voltage  
VDROPOUT  
100  
1
150  
5
mV  
IOUT = 200 mA  
(VDD = 1.5 V, IOUT = IMAX/3)  
Static line  
regulation  
VDD = VSYS = 3.0 V to 5.5 V  
IOUT = 200 mA  
VS_LINE  
mV  
mV  
5
5
10  
10  
Static load  
regulation  
VS_LOAD  
IOUT = 1 mA to 200 mA  
VDD = VSYS = 3.0 V to 3.6 V  
IOUT = 100 mA  
tr = tf = 10 µs  
Line transient  
response  
VTR_LINE  
mV  
mV  
dB  
VDD = 3.6 V  
IOUT = 1 mA to 200 mA  
tr = tf = 1 µs  
Load transient  
response  
VTR_LOAD  
30  
50  
50  
f = 10 Hz to 10 kHz , RT  
VDD = 3.6 V, IOUT = IMAX/2  
VDD VLDO ≥ 0.6 V  
40  
PSRR  
Note 4  
PSRR  
Output noise  
N
μV  
rms  
VDD = Vsys = 3.6 V,  
VLDO = 2.8 V  
IOUT = 5 mA to IMAX  
f = 10 Hz to 100 kHz , RT  
35  
Quiescent current  
in ON mode  
9+0.4% of  
IOUT  
IQ_ON  
Note 5  
μA  
μA  
μA  
Quiescent current  
forced sleep mode  
2+1.0% of  
IOUT  
IQ_SLEEP  
IQ_OFF  
Quiescent current  
OFF mode  
1
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
38 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test Conditions  
10 % to 90 %  
SLEEP mode  
Min  
Typ  
Max  
200  
260  
Unit  
Turn-on time  
TON  
μs  
90 % to 10 %  
Turn off time  
TOFF  
1
ms  
Pull-down resistor enabled  
Pull-down  
resistance in OFF  
mode  
Can be disabled via  
LDO9_PD_DIS  
ROFF  
100  
Note 1 Max output current is 30 % when the input voltage is 1.5 V  
Note 2 Programmable in 50 mV voltage steps, maximum output voltage is determined by VDD - dropout  
voltage  
Note 3 At trimmed output voltage  
Note 4 Measured at point of load  
Note 5 Internal regulator current flowing to ground  
5.8.10 LDO10  
Table 22: LDO10, TJ = -40 ºC to 125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
5.5  
Unit  
VDD = VSYS  
2.8  
Input voltage  
Output voltage  
VDD  
V
V
1.5  
Note 1  
If supplied from buck  
VLDO  
0.9  
Note 2  
3.6  
VDD = VSYS = 2.8 to 5.5 V  
IOUT = 300 mA  
Output accuracy  
-3  
+3  
%
Including static line/load  
regulation  
Including voltage and  
temperature coefficient  
configured VLDO10  
Stabilisation  
capacitor  
COUT  
-55%  
2.2  
+35%  
300  
µF  
Output capacitor  
ESR  
f > 1 MHz  
Including wiring parasitics  
RCOUT_ESR  
IOUT_max  
0
mΩ  
Output current  
VDD = VSYS = 2.8 V to 5.5 V  
300  
mA  
mA  
Short circuit current ISHORT  
600  
Maximum sleep  
ISLEEP  
VDD ≥ 1.8 V  
30  
mA  
mV  
mode current  
VDD = VSYS > 2.8 V  
Dropout voltage  
VDROPOUT  
100  
2
150  
10  
IOUT = 300 mA  
(VDD = 1.5 V, IOUT = IMAX/3)  
Static line  
regulation  
VDD = VSYS = 3.0 V to 5.5 V  
IOUT = 300 mA  
VS_LINE  
mV  
mV  
Static load  
regulation  
VS_LOAD  
IOUT = 1 mA to 300 mA  
5
5
20  
10  
VDD = VSYS = 3.0 V to 3.6 V  
IOUT = 300 mA  
tr = tf = 10 µs  
Line transient  
response  
VTR_LINE  
mV  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
39 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VDD = 3.6 V  
IOUT = 1 mA to 300 mA  
tr = tf = 1 µs  
Load transient  
response  
VTR_LOAD  
30  
50  
mV  
VDD = 3.6 V  
IOUT = IMAX/2  
VDD VLDO ≥ 0.6 V  
70  
80  
f = 10 Hz to 1 kHz , RT  
PSRR  
Note 3  
PSRR  
dB  
f = 1 kHz to 10 kHz  
60  
40  
30  
70  
50  
40  
f = 10 kHz to 100 kHz  
f = 100 kHz to 10 MHz  
Output noise  
N
μV  
rms  
VDD = VSYS = 3.6 V,  
VLDO = 2.8 V  
IOUT = 5 mA to IMAX  
f = 10 Hz to 100 kHz , RT  
35  
9 +  
0.34 % of  
IOUT  
Quiescent current  
in ON mode  
IQ_ON  
Note 4  
μA  
Quiescent current  
forced sleep mode  
2 + 0.7 %  
of IOUT  
IQ_SLEEP  
IQ_OFF  
μA  
μA  
Quiescent current  
OFF mode  
1
10 % to 90 %  
SLEEP mode  
200  
300  
Turn-on time  
Turn off time  
tON  
μs  
90 % to 10 %  
tOFF  
1
ms  
Pull-down resistor enabled  
Pull-down  
resistance in OFF  
mode  
Can be disabled via  
LDO10_PD_DIS  
ROFF  
100  
Note 1 Max output current is 30 % when the input voltage is 1.5 V  
Note 2 Programmable in 50 mV voltage steps, maximum output voltage is determined by VDD - dropout  
voltage  
Note 3 Measured at point of load  
Note 4 Internal regulator current flowing to ground  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
40 of 219  
© 2017 Dialog Semiconductor  
 
 
DA9063  
System PMIC for Mobile Application Processors  
5.8.11 LDO11  
Table 23: LDO11, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
5.5  
Unit  
V
VDD = VSYS  
2.8  
Input voltage  
Output voltage  
VDD  
1.5  
If supplied from buck  
Note 1  
VLDO  
0.9  
-3  
Note 2  
3.6  
V
VDD = VSYS = 2.8V to 5.5 V  
IOUT = 200 mA  
Output accuracy  
+3  
%
Including static line/load  
regulation  
Including voltage and  
temperature coefficient at  
configured VLDO11  
Stabilisation  
capacitor  
COUT  
-55 %  
2.2  
+35 %  
300  
µF  
f > 1 MHz  
Including track impedance  
ESR of capacitor  
0
mΩ  
Maximum output  
current  
IOUT_max  
VDD = VSYS = 2.8 V to 5.5 V  
300  
mA  
mA  
mA  
Short circuit current ISHORT  
600  
Maximum sleep  
ISLEEP  
VDD ≥ 1.8 V  
30  
mode current  
VDD = VSYS > 2.8 V  
Dropout voltage  
VDROPOUT  
100  
2
150  
15  
mV  
IOUT = 300 mA  
(VDD = 1.5 V, IOUT = IMAX/3)  
VDD = VSYS = 2.8 V to 5.5 V  
Static line  
regulation  
VS_LINE  
mV  
mV  
VLDO = 1.86 V  
IOUT = 300 mA  
Static load  
regulation  
VS_LOAD  
IOUT = 1 mA to 300 mA  
5
5
20  
10  
VDD = VSYS = 2.8 V to 5.5 V  
Line transient  
response  
VLDO = 1.86 V  
IOUT = 300 mA  
tr = tf = 10 µs  
VTR_LINE  
mV  
VDD = 3.6 V  
IOUT = 1 mA to 300 mA  
tr = tf = 1 µs  
30  
50  
50  
Load transient  
response  
VTR_LOAD  
mV  
dB  
f = 10 Hz to 10 kHz , RT  
VDD = 3.6 V, IOUT = IMAX/2  
VDD VLDO ≥ 0.6 V  
40  
PSRR  
Note 3  
PSRR  
Output noise  
N
μV  
rms  
VDD = VSYS = 3.6 V,  
VLDO = 2.8 V  
IOUT = 5 mA to IMAX  
f = 10 Hz to 100 kHz , RT  
70  
9 +  
0.45 % of  
IOUT  
Quiescent current  
in ON mode  
IQ_ON  
Note 4  
μA  
μA  
Quiescent current  
forced sleep mode  
2 + 0.7 %  
of IOUT  
IQ_SLEEP  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
41 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Quiescent current  
OFF mode  
IQ_OFF  
1
μA  
10 % to 90 %  
SLEEP mode  
200  
260  
Turn-on time  
Turn off time  
TON  
μs  
90 % to 10 %  
TOFF  
1
ms  
Pull-down resistor enabled  
Pull-down  
resistance in OFF  
mode  
Can be disabled via  
LDO11_PD_DIS  
ROFF  
100  
0.3  
Bypass Mode  
VDD > 2.2 V  
0.7  
1.0  
Bypass on-  
resistance  
RON  
VDD > 1.8 V  
Current limit in  
Bypass mode  
ILIM  
300  
600  
100  
mA  
Quiescent current  
in Bypass mode  
IQBypass  
50  
μA  
Note 1 Max output current is 30% when the input voltage is 1.5 V  
Note 2 Programmable in 50 mV voltage steps, maximum output voltage is determined by VDD - dropout  
voltage  
Note 3 Measured at point of load  
Note 4 Internal regulator current flowing to ground  
5.8.12 LDOCORE  
Table 24: LDOCORE, TJ = -40 ºC to 125 ºC  
Parameter  
Symbol  
Test Conditions  
Note 1  
Min  
Typ  
2.5  
2.2  
2.2  
Max  
Unit  
Output voltage  
VDDCORE  
2.45  
2.55  
V
V
RESET mode  
Stabilisation capacitor  
Output capacitor ESR  
Dropout voltage  
COUT  
Including voltage and  
temperature coefficient  
-55 %  
0
+35 %  
300  
µF  
RCOUT_ESR f > 1 MHz  
Including wiring parasitics  
mΩ  
VDROPOUT  
Note 2  
50  
100  
mV  
Note 1 Setting VDD_FAULT_LOWER ≥ 2.65 V avoids LDOCORE dropout, see Section 5.15.  
Note 2 The LDOCORE supply, VSYS or CHG_WAKE , must be maintained above VDDCORE + VDROPOUT  
Note  
LDOCORE is only used to supply internal circuits.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
42 of 219  
© 2017 Dialog Semiconductor  
 
 
DA9063  
System PMIC for Mobile Application Processors  
5.9 DC/DC Buck Converters  
5.9.1  
BUCKCORE1 and BUCKCORE2  
Table 25: BUCKCORE1, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Input voltage  
VDD  
VDD = VSYS  
2.8  
5.5  
V
Including voltage and  
temperature coefficient  
µF  
Output capacitor  
COUT  
Half-current mode  
Full-current mode  
2 x 22  
2 x 47  
-50 %  
+30 %  
Including wiring parasitics  
f > 100 kHz  
Half-current mode  
Output capacitor  
ESR  
15  
50  
25  
mΩ  
COUT = 2 * 22 μF  
Full-current mode  
7.5  
COUT = 2 * 47 μF  
Including current and  
temperature dependence  
Inductor value  
LBUCK  
LESR  
0.7  
1.0  
55  
1.3  
µH  
Inductor resistance  
100  
mΩ  
PWM Mode  
Programmable in 10 mV  
steps  
Output voltage  
VBUCK  
0.3  
-1  
1.57  
+1  
V
Note 1  
Excluding static line/load  
regulation and voltage  
ripple  
TA = 25 °C  
VDD = 4.2 V  
VBUCK = 1.03 V  
Excluding static line/load  
regulation and voltage  
ripple  
-1.5  
+1.5  
TA = -40 °C to +85 °C  
VDD = 4.2 V  
Output voltage  
accuracy  
%
VBUCK = 1.03 V  
Including static line/load  
regulation and voltage  
ripple  
-2  
-3  
+2  
+3  
IOUT = IMAX  
VBUCK = 1.03 V  
LBUCK, LESR = Typ  
Including static line/load  
regulation and voltage  
ripple  
IOUT = IMAX  
Note 2  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
43 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VDD = 3.6 V  
VBUCK = 1.2 V  
IOUT = 200 mA / 0.8 * IMAX  
dI/dt = 3 A/µs  
LBUCK = 1.0 µH  
Note 3  
Load regulation  
transient  
VTR_LD  
-4  
+4  
%
VDD = 3.0 V to 3.6 V  
IOUT = 500 mA  
tr = tf = 10 µs  
Line regulation  
transient  
VTR_LINE  
0.2  
10  
5
3
mV  
mΩ  
nH  
From output capacitor to  
sense connection at point-  
of-load  
Parasitic track  
resistance  
From output capacitor to  
sense connection at point-  
of-load  
Parasitic track  
inductance  
Feedback  
Comparator input  
impedance  
RFB  
500  
kΩ  
Half-current mode  
Full-current mode  
1250  
2500  
Output current  
IMAX  
mA  
BCORE1_ILIM=0000  
BCORE1_ILIM=1111  
-20 %  
-20 %  
500  
+20 %  
+20 %  
mA  
mA  
Current limit  
(programmable)  
ILIM  
Note 4  
2000  
Quiescent current  
in OFF mode  
IQ_OFF  
1
µA  
Half-current mode  
IOUT = 0 mA  
9.0  
Quiescent current  
in PWM mode  
IQ_ON  
mA  
Full-current mode  
11.0  
Switching  
frequency  
f
OSC_FRQ = 0000  
2.85  
10.5  
3
3.15  
84  
MHz  
%
Note 5  
Switching duty  
cycle  
D
VBUCK = 1.15 V  
BUCK_SLOWSTART =  
disabled  
Turn on time  
TON  
0.37  
1.2  
ms  
SLEW_RATE = 10  
mV/1 µs  
BUCK<x>_ILIM = 1500 mA  
VBUCK = 0.5 V  
Output pull-down  
resistor  
RPD  
80  
200  
Can be disabled via  
BCORE1_PD_DIS  
PMOS ON  
resistance  
RPMOS  
Half-current mode  
Including pin and routing  
VSYS = 3.6 V  
160  
mΩ  
Full-current mode  
Including pin and routing  
VSYS = 3.6 V  
80  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
44 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
NMOS ON  
resistance  
RNMOS  
Half-current mode  
Including pin and routing  
VSYS = 3.6 V  
60  
mΩ  
Full-current mode  
Including pin and routing  
VSYS = 3.6 V  
30  
84  
VDD = 3.6 V  
Efficiency  
Note 6  
η
VBUCK = 1.2 V  
%
IOUT = 0.1 to 0.7 * IMAX  
PFM Mode  
Programmable in 10 mV  
steps  
Output voltage  
VBUCK  
0.3  
1.57  
V
Typical automatic  
mode switching  
current  
IAUTO_THR  
260  
mA  
Output current  
Current limit  
IOUT_PFM  
ILIM_PFM  
300  
600  
mA  
mA  
IOUT = 0  
Quiescent current  
IQ_PFM  
Forced PFM mode  
AUTO mode  
27  
35  
32  
42  
µA  
Frequency of  
operation  
0
3
MHz  
%
VDD = 3.6 V  
VBUCK = 1.2 V  
IOUT = 10 mA  
Efficiency  
Note 6  
η
86  
Note 1 If BUCK<x>_MODE = 10 (synchronous) then the buck operates in PFM mode when VBUCK < 0.7 V.  
For complete control of the buck mode (PWM versus PFM) use BUCK<x>_MODE = 00.  
Note 2 Minimum tolerance 35 mV  
Note 3 Measured at COUT, depends on parasitics of PCB and external components when remote sensing  
Note 4 Current limit values are doubled in full-current mode  
Note 5 Generated from internal 6 MHz oscillator and can be adjusted by ± 10 % via control OSC_FRQ  
Note 6 Depends on external components and PCB routing  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
45 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
5.9.2  
BUCKPRO  
Table 26: BUCKPRO, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Input voltage  
VDD  
VDD = VSYS  
2.8  
5.5  
V
Including voltage and  
temperature coefficient  
Output capacitor  
COUT  
µF  
Half-current mode  
Full-current mode  
2 * 22  
2 * 47  
-50 %  
+30 %  
Including wiring parasitics  
f > 100 kHz  
Half-current mode  
Output capacitor ESR  
Inductor value  
15  
50  
25  
mΩ  
COUT = 2 * 22 μF  
Full-current mode  
7.5  
COUT = 2 * 47 μF  
Including current and  
temperature dependence  
LBUCK  
LESR  
0.7  
1.0  
55  
1.3  
µH  
Inductor resistance  
100  
mΩ  
PWM Mode  
Programmable in 10 mV  
steps  
Output voltage  
VBUCK  
0.53  
-3  
1.8  
+3  
V
Note 1  
Including static line/load  
regulation and voltage  
ripple  
IOUT = IMAX  
Note 2  
Output voltage accuracy  
%
Excluding static line/load  
regulation and voltage  
ripple  
-1  
+1  
TA = 25 °C  
VBUCK > 1 V  
VDD = 5 V  
VDD = 3.6 V  
VBUCK = 1.2 V  
IOUT = 200 mA / 0.8 * IMAX  
dI/dt = 3 A/µs  
LBUCK = 1.0 µH  
Note 3  
Transient load regulation VTR_LD  
20  
50  
3
mV  
VDD = 3.0 V to 3.6 V  
IOUT = 500 mA  
tr = tf = 10 µs  
Transient line regulation  
Output current  
VTR_LINE  
0.2  
mV  
mA  
Half-current mode  
Full-current mode  
BPRO_ILIM=0000  
BPRO_ILIM=1111  
1250  
2500  
IMAX  
-20 %  
-20 %  
500  
+20 %  
+20 %  
mA  
mA  
Current limit  
(programmable)  
ILIM  
2000  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
46 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Quiescent current in  
OFF mode  
IQ_OFF  
1
µA  
Half-current mode  
Full-current mode  
9.0  
Quiescent current in  
PWM mode  
IQ_ON  
mA  
11.0  
Switching frequency  
Note 4  
f
OSC_FRQ = 0000  
2.85  
10.6  
3
3.15  
84  
MHz  
%
Switching duty cycle  
D
@ VOUT = 0.5 V  
Output pull-down resistor RPD  
80  
200  
Can be disabled via  
BPRO_PD_DIS  
Including pin and routing  
VSYS = 3.6 V  
mΩ  
mΩ  
PMOS ON resistance  
NMOS ON resistance  
RPMOS  
150  
60  
Including pin and routing  
VSYS = 3.6 V  
RNMOS  
VDD = 3.6 V  
Efficiency  
Note 5  
η
VBUCK = 1.2 V  
84  
%
IOUT = 0.1 mA to 0.7 * IMAX  
PFM Mode  
Programmable in 10 mV  
steps  
Output voltage  
VBUCK  
0.53  
1.8  
V
Typical automatic mode  
switching current  
IAUTO_THR  
260  
mA  
Output current  
Current limit  
IOUT_PFM  
ILIM  
300  
600  
mA  
mA  
IOUT = 0 mA  
Quiescent current  
IQ_PFM  
Forced PFM mode  
AUTO mode  
22  
30  
25  
35  
3
µA  
Frequency of operation  
f
0
MHz  
%
VDD = 3.6 V  
VBUCK = 1.2 V  
IOUT = 10 mA  
Efficiency  
Note 5  
η
86  
VTT Mode  
Input voltage  
VDD  
VDD = VSYS  
2.8  
5.5  
V
Including voltage and  
temperature coefficient  
Output capacitor  
Output capacitor ESR  
Inductor value  
COUT  
-50 %  
2 * 47  
7.5  
+30 %  
µF  
ESR of COUT  
@ f > 100 kHz + track  
impedance  
RCOUT_ESR  
25  
mΩ  
Including current and  
temperature dependence  
LBUCK  
0.7  
1.0  
55  
1.3  
µH  
Inductor resistance  
Output voltage  
LESR  
100  
1.3  
mΩ  
VBUCK  
VBUCK = VDDQ/2  
0.675  
V
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
47 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Relative to VTTR  
Including static line and  
load regulation  
Output voltage accuracy  
VBUCK_ACC  
- 3  
4
%
IOUT = 1 A  
CESR  
Output voltage ripple  
VBPRO_RPL  
10  
20  
30  
mV  
Half-current mode  
VDD = 3.6 V  
VBUCK = 0.7 V  
40  
IOUT = 10 mA to 1 A  
IOUT = -750 mA to -10 mA  
LBUCK = 0.24 µH  
dI/dt = 3 A/µs  
Full-current mode  
VDD = 3.6 V  
VBUCK = 0.75 V  
IOUT = 10 mA to 1.4 A  
IOUT = -10 mA to -1.4 A  
LBUCK = 0.24 µH  
dI/dt = 3 A/µs  
20  
20  
20  
40  
40  
40  
mV  
Transient load regulation VTR_LD  
Full-current mode  
VDD = 3.6 V  
VBUCK = 0.7 V  
IOUT = 10 mA to 1.1 A  
IOUT = -10 mA to -1.1 A  
LBUCK = 0.24 µH  
dI/dt = 3 A/µs  
Full-current mode  
VDD = 3.6 V  
VBUCK = 0.675 V  
IOUT = 10 mA to 900 mA  
IOUT = -10 mA to -900 mA  
LBUCK = 0.24 µH  
dI/dt = 3 A/µs  
Half-current mode  
VBUCK = 0.7 V  
-550  
-1400  
-1100  
-900  
1250  
2500  
2500  
2500  
mA  
mA  
Full-current mode  
VBUCK = 0.75  
Maximum output current  
IMAX  
Full-current mode  
VBUCK = 0.7 V  
Full-current mode  
VBUCK = 0.675 V  
VBUCK = 0.75 V  
BUCK_SLOWSTART =  
disabled  
SLEW_RATE =  
10 mV/1 µs  
Turn-on time  
tON  
0.33  
1.2  
ms  
BUCK4_ILIM = 1500 mA  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
48 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VTTR Buffer  
Feedback voltage  
Output voltage  
VDDQ  
VVTTR  
VDD = VSYS  
1.35  
2.6  
1.3  
V
V
IOUT = 0 mA to IVTTR  
0.675  
VDDQ/2  
VDDQ/2  
VVTTR_ACC related to VDDQ  
input voltage  
Voltage accuracy  
VVTTR_ACC  
-1  
+1  
%
Including voltage and  
temperature coefficient  
Output capacitor  
COUT  
IOUT  
-50 %  
-10  
0.1  
+30 %  
10  
µF  
Sink/source current  
mA  
Note 1 If BUCK<x>_MODE = 10 (synchronous) then the buck operates in PFM mode when VBUCK < 0.7 V.  
For complete control of the buck mode (PWM versus PFM) use BUCK<x>_MODE = 00.  
Note 2 Minimum tolerance 35 mV  
Note 3 Measured at COUT, depends on parasitics of PCB and external components when remote sensing  
Note 4 Generated from internal 6 MHz oscillator and can be adjusted by ± 10 % via control OSC_FRQ  
Note 5 Depends on external components and PCB routing  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
49 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
5.9.3  
BUCKMEM  
Table 27: BUCKMEM, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Input voltage  
VDD  
VDD = VSYS  
2.8  
5.5  
V
Including voltage and  
temperature coefficient  
2 * 22  
2 * 47  
Output capacitor  
COUT  
-50 %  
+30 %  
µF  
Merged mode  
Including wiring parasitics  
f > 100 kHz  
Output capacitor ESR  
COUT = 2 * 22 μF  
COUT = 2 * 47 μF  
15  
50  
25  
mΩ  
7.5  
Including current and  
temperature dependence  
Inductor value  
LBUCK  
LESR  
0.7  
0.8  
1.0  
55  
1.3  
100  
3.34  
µH  
mΩ  
V
Inductor resistance  
Output voltage  
Programmable in 20 mV  
steps  
VBUCK  
Including static line/load  
regulation and voltage  
ripple  
-3  
-2  
+3  
+2  
IOUT = IMAX  
Note 1  
Output voltage accuracy  
%
Excluding static line/load  
regulation and voltage  
ripple  
TA = 25 °C  
VDD = 5 V  
VBUCK > 1 V  
VDD = 3.6 V  
VBUCK = 1.2 V  
IOUT = 200 mA / 0.8 * IMAX  
dI/dt = 3 A/µs  
Note 2  
Transient load regulation VTR_LD  
-4  
+4  
3
%
VDD = 3.0 V to 3.6 V  
IOUT = 500 mA  
Transient line regulation  
Output current  
VTR_LINE  
0.2  
mV  
tr = tf = 10 µs  
IMAX  
1500  
-20 %  
-20 %  
mA  
mA  
mA  
BMEM_ILIM = 0000  
BMEM_ILIM = 1111  
1500  
3000  
+20 %  
+20 %  
Current limit  
ILIM  
(programmable)  
Note 3  
Quiescent current in  
OFF mode  
IQ_OFF  
IQ_ON  
1
µA  
Quiescent current in  
PWM mode  
IOUT = 0 mA  
9
3
mA  
Switching frequency  
Note 4  
f
OSC_FRQ = 0000  
2.85  
14.5  
3.15  
MHz  
Switching duty cycle  
D
100  
200  
%
Output pull-down resistor  
VBUCK = 0.5 V  
80  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
50 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Disabled via  
BMEM_PD_DIS  
VDD = 3.6 V  
Efficiency  
Note 5  
η
VBUCK = 1.2 V  
83  
%
IOUT = 0.1 mA to 0.7 * IMAX  
PFM Mode  
Programmable in 20 mV  
steps  
Output voltage  
VBUCK  
0.8  
3.34  
V
Typical automatic mode  
switching current  
260  
mA  
Output current  
Current limit  
IMAX  
ILIM  
300  
600  
mA  
mA  
IOUT = 0 mA  
Quiescent current  
IQ_PFM  
Forced PFM mode  
AUTO mode  
22  
30  
25  
35  
3
µA  
Frequency of operation  
f
0
MHz  
VDD = 3.6 V  
Efficiency  
Note 5  
η
VBUCK = 1.2 V  
IOUT = 10 mA  
86  
%
Note 1 Minimum tolerance 35 mV  
Note 2 Measured at COUT, depends on parasitics of PCB and external components when remote sensing  
Note 3 The current limits are automatically doubled when BUCKMEM is merged with BUCKIO  
Note 4 Generated from internal 6 MHz oscillator and can be adjusted by ± 10 % via control OSC_FRQ  
Note 5 Depends on external components and PCB routing  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
51 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
5.9.4  
BUCKIO  
Table 28: BUCKIO, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Input voltage  
VDD  
VDD = VSYS  
2.8  
5.5  
V
Including voltage and  
temperature coefficient  
Output capacitor  
Output capacitor ESR  
Inductor value  
COUT  
-50%  
2x22  
15  
+30%  
50  
µF  
f > 100 kHz  
mΩ  
All caps + track impedance  
Including current and  
temperature dependence  
LBUCK  
LESR  
0.7  
1.0  
55  
1.3  
µH  
Inductor resistance  
100  
mΩ  
PWM Mode  
Programmable in 20 mV  
steps  
3.34  
Note 2  
Output voltage  
VBUCK  
0.8  
-3  
V
Note 1  
Including static line/load  
regulation and voltage  
ripple @ IOUT = IMAX  
Note 3  
+3  
+2  
Output voltage  
accuracy  
TA = 25 °C  
IOUT = 0  
%
-2  
-4  
VOUT > 1 V  
VDD = 5 V  
IOUT = 200 mA/0.8 * IMAX  
dI/dt = 3 A/µs  
Load regulation  
transient  
VTR_LD  
Note 4  
0.2  
+4  
3
%
VDD = 3.0 V to 3.6 V  
IOUT = 500 mA  
tr = tf = 10 µs  
Line regulation  
transient  
VTR_LINE  
mV  
Output current  
IMAX  
ILIM  
1500  
-20 %  
-20 %  
mA  
mA  
mA  
BIO_ILIM=0000  
BIO_ILIM=1111  
1500  
3000  
20 %  
20 %  
Current limit  
(programmable)  
Quiescent current in  
OFF mode  
IQ_OFF  
IQ_ON  
1
µA  
Quiescent current in  
PWM mode  
9
3
mA  
Switching frequency  
Switching duty cycle  
f
2.85  
14.5  
3.15  
100  
MHz  
%
D
VOUT = 0.5 V  
Output pull-down  
resistor  
80  
87  
200  
Can be disabled via  
BIO_PD_DIS  
VDD = 3.6 V  
Efficiency  
Note 5  
η
VBUCK = 1.8 V  
%
IOUT = 0.1 to 0.7 * IMAX  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
52 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
PFM Mode  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Typical automatic  
mode switching  
current  
260  
mA  
Output current  
Current limit  
IMAX  
ILIM  
300  
600  
mA  
mA  
Quiescent current in  
PFM mode  
25  
Note 6  
IQ_PFM  
IOUT = 0  
22  
µA  
Frequency of  
operation  
0
3
MHz  
VDD = 3.6 V  
Efficiency  
Note 5  
η
VBUCK = 1.8 V  
IOUT = 10 mA  
90  
%
Note 1 If BUCK<x>_MODE = 10 (synchronous) then the buck operates in PFM mode when VBUCK < 0.7 V.  
For complete control of the buck mode (PWM versus PFM) use BUCK<x>_MODE = 00.  
Note 2 Maximum VDD to 0.7 V  
Note 3 Minimum tolerance 35 mV  
Note 4 Measured at COUT, depends on parasitics of PCB and external components when remote sensing  
Note 5 Depends on external components and PCB routing  
Note 6 <35 µA with automatic mode switching enabled  
5.9.5  
BUCKPERI  
Table 29: BUCKPERI, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Input voltage  
VDD  
VDD = VSYS  
2.8  
5.5  
V
Including voltage and  
temperature coefficient  
Output capacitor  
COUT  
-50 %  
2 x 22  
15  
+30 %  
50  
µF  
f > 100 kHz  
Output capacitor ESR  
mΩ  
All caps + track impedance  
Including current and  
temperature dependence  
Inductor value  
LBUCK  
LESR  
0.7  
1.0  
55  
1.3  
µH  
Inductor resistance  
100  
mΩ  
Programmable in 20 mV  
steps  
3.34  
Note 2  
Output voltage  
VBUCK  
0.8  
-3  
V
Note 1  
Including static line/load  
regulation and voltage ripple  
IOUT = IMAX  
Note 3  
+3  
+2  
Output voltage  
accuracy  
TA = 25 °C  
IOUT = 0  
%
-2  
VOUT > 1 V  
VDD = 5 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
53 of 219  
© 2017 Dialog Semiconductor  
 
 
DA9063  
System PMIC for Mobile Application Processors  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
IOUT = 200 mA/0.8 * IMAX  
dI/dt = 3 A/µs  
Load regulation  
transient  
VTR_LD  
-4  
Note 4  
+4  
%
VDD = 3.0 V to 3.6 V  
IOUT = 500 mA  
Line regulation  
transient  
VTR_LINE  
0.2  
3
mV  
tr = tf = 10 µs  
Output current  
IMAX  
ILIM  
1500  
-20%  
-20%  
mA  
mA  
mA  
BPERI_ILIM = 0000  
BPERI_ILIM = 1111  
1500  
3000  
+20%  
+20%  
Current limit  
(programmable)  
Quiescent current in  
OFF mode  
IQ_OFF  
IQ_ON  
1
µA  
Quiescent current in  
PWM mode  
9
3
mA  
Switching frequency  
Switching duty cycle  
f
2.85  
14.5  
3.15  
100  
MHz  
%
D
VOUT = 0.5 V  
Output pull-down  
resistor  
80  
91  
200  
Can be disabled via  
BPERI_PD_DIS  
VDD = 3.6 V  
Efficiency  
Note 5  
η
VBUCK = 2.86 V  
IOUT = 0.1 to 0.7 * IMAX  
%
PFM Mode  
Typical automatic  
mode switching current  
260  
mA  
Output current  
Current limit  
IMAX  
ILIM  
300  
600  
mA  
mA  
Quiescent current in  
PFM mode  
25  
Note 6  
IQ_PFM  
IOUT = 0  
22  
µA  
Frequency of operation  
0
3
MHz  
VDD = 3.6 V  
Efficiency  
Note 5  
η
VBUCK = 2.86 V  
IOUT = 10 mA  
93  
%
Note 1 If BUCK<x>_MODE = 10 (synchronous) then the buck operates in PFM mode when VBUCK < 0.7 V.  
For complete control of the buck mode (PWM versus PFM) use BUCK<x>_MODE = 00.  
Note 2 Maximum VDD to 0.7 V  
Note 3 Minimum tolerance 35 mV  
Note 4 Measured at COUT, depends on parasitics of PCB and external components when remote sensing  
Note 5 Depends on external components and PCB routing  
Note 6 <35 µA with automatic mode switching enabled  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
54 of 219  
© 2017 Dialog Semiconductor  
 
 
 
DA9063  
System PMIC for Mobile Application Processors  
5.9.6  
Typical Characteristics  
Figure 9: BUCKCORE1 Efficiency in AUTO Mode, VOUT = 1.2 V  
Figure 10: BUCKCORE2 Efficiency in AUTO Mode, VOUT = 1.2 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
55 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Figure 11: BUCKPRO Efficiency in AUTO Mode, VOUT = 1.2 V  
Figure 12: BUCKMEM Efficiency in AUTO Mode, VOUT = 1.2 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
56 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Figure 13: BUCKIO Efficiency in AUTO Mode, VOUT = 1.8 V  
Figure 14: BUCKPERI Efficiency in AUTO Mode, VOUT = 2.86 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
57 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
5.10 Buck Rail Switches  
Table 30: Buck Rail Switches, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Input voltage  
VDD  
VDD = VDDCORE  
2.45  
2.5  
2.55  
V
Including voltage and  
temperature coefficient  
Output capacitor  
Output voltage  
COUT  
V_CP  
TON  
-30%  
4.5  
47  
nF  
V
IOUT = 10 µA  
4.6  
Charge pump turn on  
time  
20 to 80% of V_CP  
0.6  
2.8  
5
ms  
V
NMOS input voltage  
VBUCK  
Gate driver source  
current  
Vgate = 4.4 V  
Vgate = 0.5 V  
µA  
Gate driver sink current  
Voltage slew rate  
180  
50  
µA  
1
1
mV/us  
Note 1  
Output pull-down  
resistor  
@ VOUT = 0.1 V  
370  
Note 1 OTP programmable via SWITCH_SR (register SWITCH_CONT).  
5.11 Backup Battery Charger  
Table 31: Backup Battery Charger, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
100  
Typ  
Max  
Unit  
Backup Battery  
Charging Current  
VSYS = 3.6 V,  
VBBAT = 2.5 V  
BCHG_ISET  
Note 1  
Note 2  
6000  
µA  
Charger Termination  
Voltage  
BCHG_VSET  
VSYS = 3.6 V  
VBBAT = 0 V  
1.1  
3.1  
V
Backup Battery Short  
Circuit Current  
6.8  
mA  
Stabilization capacitor  
ESR of capacitor  
Dropout voltage  
COUT  
-55%  
470  
+35%  
100  
nF  
mΩ  
mV  
f > 1 MHz  
VDROPOUT  
IOUT = 5 mA  
150  
200  
5.25+1.75%  
of IOUT  
IOUT > 50 µA  
µA  
µA  
Quiescent Current  
IQ  
5.25+1.5%  
of IOUT  
IOUT < 50 μA  
Note 1 Programmable in 100 µA increments from 100 µA to 1000 µA and 1 mA increments from 1 mA to  
6 mA  
Note 2 Programmable in steps of 100 mV /200 mV  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
58 of 219  
© 2017 Dialog Semiconductor  
 
 
 
DA9063  
System PMIC for Mobile Application Processors  
5.12 General Purpose ADC  
Table 32: General Purpose ADC, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
2.55  
1
Unit  
V
ADC reference voltage  
Off current  
VDD  
VDD = VDDCORE  
2.45  
2.5  
µA  
bit  
ADC resolution  
10  
ADC integral non  
linearity  
± 2  
LSB  
ADC differential non  
linearity  
± 0.8  
13  
LSB  
mV  
kΩ  
ADC absolute accuracy  
15  
Maximum source  
impedance  
RSRC  
Note 1  
120  
Input capacitance  
CIN  
Total input capacitance  
VSYS minus VDDCORE  
10.5  
pF  
Vsys = 3.125*(ADC/255)+2.5  
(Auto)  
VSYS voltage range  
Channel 0  
2.5  
0
5.5  
2.5  
V
V
Vsys = 3.125*(ADC/1023)+2.5  
(Man)  
ADCIN1 to 3 voltage  
range  
Channel 1 to 3  
Vin= (ADC*2.5)/255 (Auto)  
Vin= (ADC*2.5)/1023 (Man)  
Internal temperature  
Sensor voltage range  
Channel 4  
TJ = -0.398 * ADC +330  
VBBAT = (ADC*5)/1023  
0
0
0
0.833  
5.0  
V
V
V
VBBAT voltage range  
Channel 5  
Regulator monitor  
voltage range  
Channel 8 to 10  
Vreg = (ADC*5)/255  
Note 2  
5.0  
Inter channel isolation  
60  
dB  
µA  
ADCIN1,2 current source  
Note 3  
-3%  
1-40  
3%  
COMP1V2 comparator  
level  
1.2  
V
Channel 2  
Note 1 RSRC is the impedance of the external source the ADC is sampling  
Note 2 80 dB for channel A2 (ADC_IN2)  
Note 3 Variance guaranteed for 10 µA to 40 µA and up to 2 V output voltage  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
59 of 219  
© 2017 Dialog Semiconductor  
 
 
 
DA9063  
System PMIC for Mobile Application Processors  
5.13 32K Oscillator  
Table 33: 32K Oscillator, TJ = -40 ºC to 125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Supply voltage  
VDDRTC  
1.5  
2.75  
V
Oscillator crystal  
frequency  
fOSC  
32.768  
kHz  
Crystal series resistance  
Output frequency  
ROSC  
fOUT  
100  
2.0  
kΩ  
32.768  
0.5  
kHz  
Start-up time for cell over  
the voltage range  
TSTART  
VBBAT = 1.5 V to 2.75 V  
s
Current consumption  
from backup device  
during RTC mode  
0.5  
8
µA  
Current consumption  
from VDDREF with  
OUT_32K enabled  
µA  
ns  
Cycle-to-cycle jitter (rms)  
Period jitter (rms)  
Bypass Mode  
1000 pulse  
20  
12  
35  
20  
10000 pulse  
Input frequency  
FIN  
DC  
VIH  
-5%  
40  
32  
+5%  
60  
kHz  
%
Input duty cycle  
XTAL_IN  
Input high voltage  
RTC_EN = 0  
1.8  
1.1  
VSYS  
V
RTC_EN = 1  
VBBAT < VSYS  
RTC_EN = 1  
VBBAT > VSYS  
0.7 * VBBAT  
-0.3  
VBBAT  
XTAL_OUT  
VIL  
RTC_EN = 0  
0.6  
0.4  
V
Input low voltage  
RTC_EN = 1  
VBBAT < VSYS  
RTC_EN = 1  
VBBAT > VSYS  
0.2 * VBBAT  
Input slew rate  
SR  
2 pF input capacitance  
0.1  
V/ns  
5.14 Internal Oscillator  
Table 34: Internal Oscillator, TJ = -40 ºC to +125 ºC  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
MHz  
Internal oscillator  
frequency  
After trimming  
5.7  
6.0  
6.3  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
60 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
5.15 POR, Reference Generation, and Voltage Supervision  
Table 35: POR, Reference Generation and Voltage/Temperature Supervision, TJ = -40 ºC to  
+125 ºC  
Test  
Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Deep discharge  
lockout lower  
threshold  
VPOR_LOWER  
2.0  
V
Deep discharge  
lockout upper  
threshold  
VPOR_UPPER  
2.3  
2.8  
±2  
V
V
Under-voltage  
lower threshold  
VDD_FAULT_LOWER  
Note 1  
2.5  
-1%  
-1%  
3.25  
+1%  
+1%  
Under-voltage  
lower threshold  
accuracy  
VDD_FAULT_LOWER  
Accuracy  
%
Under-voltage  
upper threshold  
VDD_FAULT_UPPER  
Note 2  
VDD_FAULT_LOWER  
+ VDD_HST_ADJ  
V
V
Reference  
voltage  
VREF  
1.2  
2.2  
VREF decoupling  
capacitor  
uF  
VLNREF  
decoupling  
capacitor  
2.2  
uF  
Reference current  
resistor  
IREF  
200  
kΩ  
Note 1 During production VDD_FAULT_LOWER voltage is configured via OTP over the range 2.5 V to 3.25 V  
in 50 mV steps.  
Note 2 During production the hysteresis between VDD_FAULT_LOWER and VDD_FAULT_UPPER is  
configured via OTP over the range 100 mV to 450 mV in 50 mV steps, the hysteresis can be further  
changed through control VDD_HYST_ADJ.  
5.16 Thermal Supervision  
Parameter  
Symbol  
Test Conditions  
Note 1  
Min  
110  
125  
135  
Typ  
125  
140  
150  
Max  
140  
155  
165  
Unit  
°C  
Thermal warning  
Thermal shutdown  
Thermal POR threshold  
TEMP_WARN  
TEMP_CRIT  
TEMP_POR  
Note 1  
°C  
Note 1  
°C  
Note 1 Thermal thresholds are non-overlapping.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
61 of 219  
© 2017 Dialog Semiconductor  
 
 
 
DA9063  
System PMIC for Mobile Application Processors  
6
Functional Description  
The DA9063 provides separate power domains for the host processor, memory, and peripherals to  
nable a flexible low-power system design. Multiple low-power modes permit varying combinations of  
peripherals to be powered off to conserve battery power. Other system components, such as DRAM  
and FLASH memory, RF transceivers, audio codec, and companion chips, are supplied from  
optimized regulators designed for dedicated power requirements. The DA9063 power supplies can  
be programmed to default voltages via OTP and provide system-configuration flexibility by selecting  
the power-up sequence of the regulators and switching converters.  
Vdd  
nSHUTDOWN  
nIRQ  
nONKEY  
SYS_UP  
CHG_WAKE  
nVDD_FAULT  
Host  
processor  
PMIC  
VSYS  
OUT_32K  
nRESET  
GPIO_0...15  
Control IF  
Figure 15: Control Ports and Interface  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
62 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.1 Power Manager IO Ports  
The power manager input ports are supplied from either the internal rail VDDCORE or VDD_IO2,  
selected via PM_I_V. The output ports are supplied from VDD_IO1 or VDD_IO2, selected via  
PM_O_V (nVDD_FAULT, GP_FB1 via GPIO controls). During the initial start-up sequence all power  
manager IO ports (with the exception of nRESET and nIRQ) are in a high impedance (tri-state) mode  
until they are configured from OTP prior to reaching POWERDOWN mode. Output ports are push-  
pull except for nRESET and nIRQ, which can also be configured as open-drain via PM_O_TYPE.  
The nONKEY and CHG_WAKE signals for the RTC block are supplied from VDDREF  
.
6.1.1  
On/Off Port (nONKEY)  
The nONKEY signal is a wakeup interrupt/event intended to power-on the application supplied by  
DA9063. The level of the debounced signal is provided by status flag nONKEY (asserted at low  
level). The nONKEY unit is always enabled so that the application can be powered-on when the  
GPIO extender is disabled. The IRQ assertion and wakeup event can be suppressed via the interrupt  
mask M_nONKEY.  
nONKEY provides four modes of operation selected by field nONKEY_PIN in register CONFIG_I.  
Table 36: nONKEY_PIN Settings  
nONKEY_PIN  
Description  
00  
An E_nONKEY event is generated when the debounced signal from port nONKEY goes low  
(asserting edge). If not masked, an interrupt is signaled to the host via nIRQ (with wakeup  
during POWERDOWN mode).  
01  
10  
If (after powering up from POWERDOWN mode) the debounced signal from port nONKEY is  
low after an asserting edge for less than the key-press time (selected by KEY_DELAY, default  
2 s), an E_nONKEY event is generated at the releasing edge. If the signal is low for longer  
than selected by KEY_DELAY, the DA9063 asserts the event E_nONKEY plus control  
nONKEY_LOCK when it reaches the selected key-press time.  
If (after powering up from POWERDOWN mode) the debounced signal from port nONKEY is  
low after an asserting edge for less than the key-press time (selected by KEY_DELAY, default  
2 s), an E_nONKEY event is generated at the releasing edge. If the signal is low for longer  
than selected by KEY_DELAY, the DA9063 asserts the event E_nONKEY plus control  
nONKEY_LOCK when it reaches the selected key-press time and powers down by clearing  
control SYSTEM_EN.  
11  
If (after powering up from POWERDOWN mode) the debounced signal from port nONKEY is  
low after an asserting edge for less than the key-press time (selected by KEY_DELAY, default  
2 s), an E_nONKEY event is generated at the releasing edge. Control SYSTEM_EN is cleared  
and STANDBY asserted, which triggers a partial power down from a short press. If the signal is  
low for longer than selected by KEY_DELAY, the DA9063 asserts the event E_nONKEY plus  
control nONKEY_LOCK and clear SYSTEM_EN plus STANDBY when it reaches the selected  
pressing time (powers down to full POWERDOWN from a long press).  
For nONKEY_PIN settings other than ‘00’, the wakeup is not suppressed by an asserted  
M_nONKEY. With an asserted nONKEY_LOCK, the wakeup is only executed if the debounced  
nONKEY signal is asserted for more than the key-press time (selected by KEY_DELAY, default 2 s).  
This behaves similarly to a keypad lock since any short (unintended) pressing of nONKEY does not  
wake the application. If the application also has wakeup from a short nONKEY press, the host has to  
clear nONKEY_LOCK before entering POWERDOWN mode. In mode ‘10’ when nONKEY key press  
is longer than the time selected by KEY_DELAY, SYSTEM_EN is re-asserted in mode ‘11’.  
SYSTEM_EN is re-asserted from any consecutive pressing of nONKEY. nONKEY_LOCK is  
automatically cleared by the DA9063 when powering up from POWERDOWN mode. POWERDOWN  
mode is described in Section 6.2.2.  
Note  
During RTC/DELIVERY-MODE, the functionality of nONKEY is restricted to a termination of this mode. To  
enable this feature, the pull-up resistor of nONKEY has to be connected to VSYS. Asserting nONKEY stops the  
RTC/DELIVERY-MODE and triggers a start-up of the DA9063.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
63 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
6.1.2  
Wakeup Port (CHG_WAKE)  
The CHG_WAKE signal is a rising edge sensitive, wakeup interrupt/event intended to wake the  
DA9063 from an event on the companion charger (for example, supply insertion). The CHG_WAKE  
port is always enabled so that the application can be powered-on with a disabled GPIO extender.  
The IRQ assertion and wakeup event can be suppressed via the interrupt mask M_WAKE. During  
RTC/DELIVERY mode, asserting CHG_WAKE terminates this mode.  
6.1.3  
Hardware Reset (nOFF, nSHUTDOWN, nONKEY, GPIO14, GPIO15,  
WATCHDOG)  
The DA9063 nOFF port is an active-low input (no debouncing) typically initiated by an asserted error  
detection line. It asserts nSHUTDOWN in the fault register. The sequencer asserts port nRESET,  
and all domains and supplies of the DA9063 except LDOCORE (and possibly LDO1) are disabled in  
a fast emergency shutdown.  
The DA9063 nSHUTDOWN port is an active-low input typically asserted from a host processor (or a  
push button switch). It asserts nSHUTDOWN in the fault register. The sequencer asserts port  
nRESET and then powers down all domains in reverse sequencer order down to slot 0 and all  
supplies of the DA9063 except LDOCORE (and possibly LDO1) are disabled. HOST_SD_MODE  
determines if normal power sequence timing or a fast shutdown is implemented.  
The DA9063 includes a third hardware reset trigger that follows the debounced nONKEY signal after  
being asserted for a period greater than KEY_DELAY + SHUT_DELAY. The same can be achieved  
by a long parallel connection of GPI14 and GPI15 to ground. The long nONKEY shutdown and  
GPIO14/15 shutdown are enabled by the power manager control register bits nONKEY_SD and  
GPI14_15_SD.  
If the hardware reset was initiated by a (debounced) press of nONKEY (or GPIO14 and GPIO15  
together) longer than SD_DELAY, the DA9063 initially only asserts control bit KEY_RESET in the  
fault register and signals a non-maskable interrupt allowing the host to clear the armed reset  
sequence within 1 s. If the host does not clear KEY_RESET then a shutdown to RESET mode is  
executed. KEY_SD_MODE determines if normal power sequence timing or a fast shutdown is  
implemented.  
The DA9063 then waits for a valid wakeup event (for example, a key press) or starts the power  
sequencer automatically if AUTO_BOOT is configured.  
If the WATCHDOG has been disabled, this hardware reset can be used to turn off the application in  
the event of a software lock-up without removing the battery. This type of reset should only be used  
for severe hardware or software problems as it will completely reset the processor and could result in  
data loss.  
6.1.4  
Reset Output (nRESET)  
The nRESET signal is an active-low output signal from DA9063 to the host processor that can either  
be push-pull or open drain (selected via PM_O_TYPE), which tells the host to enter the reset state.  
nRESET is always asserted at the beginning of a DA9063 cold start from NO-POWER, DELIVERY,  
and RTC modes. It is asserted in ACTIVE mode before the DA9063 starts powering down to RESET  
mode (triggered from user, host, or an error condition detected by the DA9063). nRESET may also  
be asserted (depending on nRES_MODE setting) as a soft reset before the sequencer starts  
powering down without progressing to RESET mode.  
An assertion of nRESET from voltage supervised regulators being out-of-range can be enabled via  
control MON_RES (minimum assertion time 1 ms).  
After being asserted, nRESET remains low until the reset timer has been started from the selected  
trigger signal and expires. The reset release timer trigger signal can be selected via RESET_EVENT  
to be EXT_WAKEUP, SYS_UP, PWR_UP, or leaving PMIC RESET state. The expiry time can be  
configured via RESET_TIMER from 1 ms to 1 s.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
64 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.1.5  
System Enable (SYS_EN)  
SYS_EN is an input signal from the host processor to the DA9063 that enables the regulators in  
domain SYSTEM. The feature is enabled using GPIO8_PIN and configured as active-low or -high by  
GPIO8_TYPE. It asserts SYSTEM_EN and simultaneously generates an IRQ. It also triggers a  
wakeup event in POWERDOWN mode if enabled via GPIO8_WEN. De-asserting SYS_EN (changing  
from active to passive state) clears control SYSTEM_EN which triggers a power down sequence into  
hibernate/standby mode (without IRQ assertion or wakeup event trigger). By setting nRES_MODE,  
the port SYS_EN can be used as a soft reset input with the assertion of nRESET before powering  
down. With the exception of supplies that have the xxxx_CONF control bit asserted, all regulators in  
power domains POWER1, POWER, and SYSTEM are sequentially disabled in reverse order.  
Regulators with the <x>_CONF bit set remain on but change the active voltage control registers from  
V<x>_A to V<x>_B (if V<x>_B is not already selected).  
The control register bit SYSTEM_EN can also be used to power down domain SYSTEM by a  
software command. It can be read and changed via the control interfaces and can be initialized from  
OTP when leaving POWERDOWN mode. The DA9063 will not process any changes on port  
SYS_EN or register control SYSTEM_EN until the sequencer has stopped processing IDs.  
6.1.6  
Power Enable (PWR_EN)  
PWR_EN is an input signal from the host processor to the DA9063. The input signal can be  
configured as active-high or -low via GPIO9_TYPE, and to trigger a wakeup event from  
POWERDOWN mode if configured via GPIO9_WEN. Initialization, IRQ assertion and the direct  
control via register bit POWER_EN is similar to the function of SYS_EN in domain SYSTEM as  
described in Section 6.1.5. To ensure correct sequencing, SYSTEM_EN (SYS_EN) must be active  
before asserting PWR_EN/POWER_EN. When de-asserting PWR_EN/POWER_EN, the sequencer  
sequentially powers down POWER1 and POWER domains.  
6.1.7  
Power1 Enable (PWR1_EN)  
PWR1_EN is an input signal from a host to the DA9063. The input signal can be configured as  
active-high or -low via GPIO10_TYPE, and to trigger a wakeup event in POWERDOWN mode if  
enabled via GPIO10_WEN. Initialization, IRQ assertion and the direct control via register bit  
POWER1_EN is similar to the function of SYS_EN in domain SYSTEM as described in Section 6.1.5.  
POWER1 is a general purpose power domain.  
6.1.8  
GP_FB1, General Purpose Signal 1 (EXT_WAKEUP/READY)  
This port supports two different modes selected by the control PM_FB1_PIN.  
Table 37: PM_FB1_PIN Settings  
PM_FB1_PIN  
Description  
0
EXT_WAKEUP. This output signal to the host processor indicates a valid wakeup event during  
POWERDOWN mode. External signals that can trigger wakeup events are debounced before  
the EXT_WAKEUP signal is asserted. EXT_WAKEUP is released when register control  
SYSTEM_EN is asserted (minimum pulse duration = 500 µs).  
1
READY. The READY signal indicates on-going DVC or power sequencer activities. The  
READY signal is asserted (typically active-low) from the DA9063 power sequencer when the  
processing of IDs commences, and is released when the target power state (final sequencer  
slot) has been reached. READY is also asserted during DVC voltage transitions.  
The active level is configured via the control GPIO13_MODE. The logical threshold voltage is  
selected by GPIO13_TYPE.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
65 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
6.1.9  
GP_FB2, General Purpose Signal 2 (PWR_OK/KEEP_ACT)  
The GP_FB2 port supports two different modes selected by the control PM_FB2_PIN.  
Table 38: PM_FB2_PIN Settings  
PM_FB2_PIN  
Description  
0
PWR_OK. In this mode the port is a regulator status indicator. The port is an open drain output  
asserted if none of the selected regulators are out-of-range. The regulator monitoring via ADC  
must be enabled and all regulators to be monitored must have supervision enabled with the  
selected persistence, and mask bit M_REG_UVOV must be asserted. In case at least one of  
the supervised regulators is out-of-range or regulator monitoring is disabled, the PWR_OK  
signal is low.  
1
KEEP_ACT. If enabled, every assertion of the port (rising to active level edge sensitive) sets  
the watchdog trigger, similar to writing to bit WATCHDOG via the power manager bus. The  
host has to release KEEP_ACT before the next assertion during continuous watchdog  
supervision (if enabled). The minimum assertion and de-assertion cycle time is 150 µs.  
The output active level (and driver type) can be configured via GP_FB2_TYPE.  
Alternatively, with BCORE_MERGE = 1, FB in register BCORE1_CFG set to 0b000 and  
MERGE_SENSE = 0, the GP_FB2 pin becomes a voltage feedback signal for BUCKCORE.  
6.1.10 GP_FB3, General Purpose Signal 3 (OUT32K_2/nVIB_BRAKE)  
The GP_FB3 port supports two different modes selected by the control PM_FB3_PIN.  
Table 39: PM_FB3_PIN Settings  
PM_FB3_PIN  
Description  
0
1
OUT32K_2. This provides a second 32K signal output (push-pull).  
nVIB_BRAKE. If LDO8 is configured as a vibrator motor driver, GP_FB3 can be configured to  
provide an external brake signal. The vibrator motor can be started or stopped by a change in  
the level on the nVIB_BRAKE signal. If the port is not used as a brake command, the vibration  
motor runs continuously at the speed configured by VIB_SET.  
GP_FB3_TYPE defines the active level.  
6.1.11 Supply Rail Fault (nVDD_FAULT)  
nVDD_FAULT is a signal to the host processor to indicate a supply voltage (VSYS) low status.  
Asserting nVDD_FAULT indicates that the main supply input voltage is low  
(VSYS < VDD_FAULT_UPPER) and therefore informs the host processor that the power will shut  
down soon. The event control E_VDD_WARN is asserted and the nIRQ line is asserted (if not  
masked). During POWER_DOWN mode a wakeup is generated. After that the processor may  
operate for a limited time from the remaining battery capacity or the processor may enter a standby  
mode. As long as VSYS does not recover, the host can re-enable the nIRQ line by asserting  
M_VDD_WARN or clearing E_VDD_WARN. The DA9063 starts a fault power down sequence. If  
VSYS drops below VDD_FAULT_LOWER, the DA9063 enters RESET mode. The  
VDD_FAULT_LOWER threshold and the hysteresis on VDD_FAULT_UPPER are OTP configurable.  
The nVDDFAULT port can alternatively be controlled by the state of the debounced VSYS monitor  
inside the ADC (selected via GPIO12_PIN). The signal is asserted when the ADC detects three  
consecutive results below the configurable threshold VSYS_MON (it becomes passive after three  
consecutive results above VSYS_MON). This provides a variable power good signal to trigger boot  
activities on external ICs.  
The active level/debounce, wakeup, and IO supply voltage can be selected via the controls  
GPIO12_MODE, GPIO12_WEN and GPIO12_TYPE, respectively.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
66 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.1.12 Interrupt Request (nIRQ)  
The nIRQ is an output signal that can either be push-pull or open drain (selected via PM_O_TYPE).  
If an active high IRQ signal is required, it can be achieved by asserting control IRQ_TYPE  
(recommended for push-pull mode). This port indicates that an interrupt-causing event has occurred  
and that event/status information is available in the EVENT and STATUS registers. Events are  
triggered by a status change at the monitored signals. When an event bit is set, the nIRQ signal is  
asserted (unless this interrupt is masked by a bit in the IRQ mask register). The nIRQ is not released  
until all event registers with asserted bits have been read and cleared. New events that occur during  
reading an event register are held until the event register is cleared, ensuring that the host processor  
does not miss them. The same happens to all events occurring while the sequencer processes time  
slots (that is, the generation of interrupts is delayed).  
6.1.13 Real Time Clock Output (OUT_32K)  
OUT_32K is a buffered output of the DA9063 32 kHz oscillator. If enabled via CRYSTAL, the 32 kHz  
oscillator always runs on the DA9063 following the initial start-up from NO-POWER or DELIVERY  
mode until the device has reached NO-POWER (or DELIVERY) mode again. The signal output buffer  
can be disabled manually via EN_32KOUT and paused during POWERDOWN mode by setting  
OUT32K_PAUSE. The 32K signal can additionally be made available at port GP_FB3.  
6.1.14 IO Supply Voltage (VDD_IO1 and VDD_IO2)  
VDD_IO1 and VDD_IO2 are two independent IO supply rail inputs of the DA9063 that can be  
individually assigned to the power manager interfaces (see control bit GPI_V), power manager IOs  
(see control bits PM_O_V, PM_I_V) and GPIOs (bits GPIOx_TYPE). The rail assignment determines  
the IO voltage levels and logical thresholds, see Section 5.4. The selection of the supply rail for  
GPIOs is also partially used for their alternate functions, see Table 2 and Table 3. As an example,  
GPIO13_TYPE determines the supply rail when this pin is configured as the GP_FB1 output.  
Note  
Maximum speed at 4-WIRE interface is only available if the selected supply rail is greater than 1.6 V, see Table  
44.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
67 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.2 Operating Modes  
6.2.1  
ACTIVE Mode  
A running application is typically in ACTIVE mode. The DA9063 transitions to ACTIVE mode after the  
host processor performs at least one initial ‘alive’ watchdog write (or alternatively an initial assertion  
of the KEEP_ACT port) inside the target time window. If the WATCHDOG function is disabled by  
setting TWDSCALE to zero, the DA9063 transitions to ACTIVE mode when all of the sequencer IDs  
in the POWER domain are complete.  
In ACTIVE mode, the PMIC core functions as LDOCORE, calendar counter and internal oscillator are  
running. Typically additional features are enabled, such as the GPADC. The DA9063 can send  
interrupt requests to the host via a dedicated interrupt port (nIRQ) and status information can be read  
from the host processor via the power manager interface. Temperature and voltages inside and  
outside the DA9063 can be monitored and fault conditions can be flagged to the host processor.  
6.2.2  
POWERDOWN Mode  
The DA9063 is in POWERDOWN mode when the power domain SYSTEM is disabled (even  
partially). This can be achieved when progressing from NO-POWER/DELIVERY/RTC mode or by  
returning from ACTIVE mode. A return from ACTIVE mode is initiated by low power mode  
instructions from the host (for example, releasing signal SYS_EN or clearing register bit  
SYSTEM_EN), from the user by asserting nONKEY (if nONKEY_PIN=‘1x’) or as an interim state  
during a shutdown to RESET mode.  
During POWERDOWN mode LDOCORE, VREF reference voltage, the nONKEY pin, CHG_WAKE  
port, and the calendar counter are active. Dedicated power supplies can be kept enabled during  
POWERDOWN mode if their xxx_CONF bits are asserted (supply voltage settings are taken from the  
respective Vxxx_B registers).  
GPIO ports, the GPADC, and the control interfaces also remain active in POWERDOWN mode if not  
configured otherwise via register PD_DIS. Disabling these blocks during POWERDOWN mode  
reduces quiescent current, especially if all blocks that require an oscillator clock are disabled  
(CLDR_PAUSE, HS2WIRE_DIS, PMIF_DIS, GPADC_PAUSE,GPI_DIS, PMCONT_DIS). If required,  
the application supervision by the WATCHDOG timer can be continued in POWERDOWN mode via  
WATCHDOG_PD. If the host will not communicate with the DA9063 during POWERDOWN mode,  
then the control interfaces may also be temporarily disabled (see controls  
PMIF_DIS/HS2WIRE_DIS).  
If the sequencer pointer has stopped at position PART_DOWN (inside domain SYSTEM) it results in  
a partial power down. When on the way down the sequencer pointer reaches position 0, relevant  
regulators/rail switches with corresponding position 0 IDs that have cleared control  
Bxxx_CONF/LDOxx_CONF/xxx_SW_CONF are disabled, otherwise the regulator voltages change to  
the values defined in VBxxx_B/VLDOxx_B when control DEF_SUPPLY is asserted. When  
DEF_SUPPLY is released, slot 0 is not processed by the sequencer, hence regulators/rail switches  
with an ID pointing to slot 0 remain unchanged. Following the next wakeup event Vxxx_A voltage  
levels and the sequencer power domain controls/timers are set to their default OTP values if  
OTPREAD_EN is asserted.  
Position 0 also allows an automatic transition into a dedicated RTC mode, where all features of the  
DA9063 (including LDOCORE) are disabled except for the RTC oscillator and calendar. This mode is  
armed via control RTC_MODE_PD and terminated by an RTC alarm/tick asserting  
nONKEY/CHG_WAKE, or if VDDREF rises above 2.6 V, this automatically re-enables LDOCORE and  
the full-power manager logic.  
If POWERDOWN mode is reached in response to a long nONKEY press, RTC mode is not entered  
until the key is released. When nONKEY_SD is asserted and the key is continuously pressed for  
longer than the time selected by KEY_DELAY + SHUT_DELAY, it asserts KEY_RESET to indicate  
that the transition to RESET mode was triggered by a long nONKEY, see Section 6.1.1.  
When the device is in POWERDOWN or RESET mode, asserting ECO_MODE enables low power.  
This is achieved internally by using a pulsed mode for VDDCORE and reference voltage generation.  
This maintains basic functionality but full parametric compliance is no longer guaranteed (as it affects  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
68 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
ADC precision, buck performance, LDO voltage resolution, and so on). When the DA9063 is  
connected to a 32 kHz crystal (and enabled via control CRYSTAL), the pulsed mode timing is  
generated from this source. Otherwise the pulsed mode is driven from a (free-running) low-power on-  
chip oscillator.  
6.2.3  
RESET Mode  
The DA9063 is in RESET mode when a complete application shutdown is required. The RESET  
mode can be triggered by the user, a host processor or by an action on the DA9063, as outlined  
below:  
By the user:  
from a long press of nONKEY (interruptible by host)  
from a long parallel assertion of GPIO14 and GPIO15 (interruptible by host)  
By pressing a reset switch connected to port nSHUTDOWN (non-interruptible)  
Forced from the host processor (non-interruptible) by:  
asserting port nSHUTDOWN (falling edge)  
writing to register bit SHUTDOWN  
By an error condition that forces a RESET mode (non-interruptible):  
no WATCHDOG write (KEEP_ACT signal assertion) from the host inside the watchdog time  
window (if watchdog was enabled)  
an under-voltage detected at VSYS (VSYS < VDD_FAULT_LOWER)  
an internal die over-temperature  
Forced by the error detection line (non-interruptible):  
by asserting port nOFF (falling edge)  
The controls INT_SD_MODE, HOST_SD_MODE, and KEY_SD_MODE can be used to individually  
configure the shutdown sequences from an internal fault, host or user trigger. In each case, the  
sequence can be configured to implement either the reverse timing of the power-up sequence or an  
immediate transition into RESET mode, skipping any delay from the sequencer or dummy slot timers.  
Asserting nOFF always triggers a fast emergency shutdown. To allow the host to determine the  
reason for the reset, the source is recorded in FAULT_LOG (as either the KEY_RESET or  
nSHUT_DOWN bit). The host processor clears FAULT_LOG by writing asserted bits with a 1.  
Note  
KEY_SD_MODE = 1 enables a full POR following a long press of ONKEY or a long assertion of GPIO14  
and 15.  
In the case of an aborted OTP read, the DA9063 enters RESET mode without asserting any bits in  
FAULT_LOG.  
A shutdown to RESET mode begins with the DA9063 asserting the nRESET port. Then domain  
SYSTEM is completely powered down (sequencer position 0) at which time the device has reached  
RESET mode: this is a low current consumption state. The only circuits in RESET mode remaining  
active are LDOCORE (at a reduced level of 2.2 V), the control interfaces and GPIOs, the calendar  
counter, the VREF reference, and the comparators for over-temperature and VSYS level. Except for  
LDO1 and the backup battery charger, other regulators and blocks are automatically disabled to  
avoid draining the battery. During the DA9063 RESET mode, the host processor can be held in a  
RESET state via port nRESET.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
69 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
When entering RESET mode, all user and system events are cleared. When leaving RESET mode,  
the complete DA9063 register configuration is reloaded from OTP (with the exception of  
AUTO_BOOT in case of a VDD_START fault).  
Note  
FAULT_LOG, GP_ID_10 to GP_ID_19 and other non-OTP loaded registers (for example, RTC calendar and  
alarm) remain unchanged when leaving RESET mode.  
nRESET is always asserted low after a cold start from NO-POWER, RTC, or DELIVERY mode and can also be  
asserted (depending on configuration of nRES_MODE) before the sequencer starts to power down towards  
POWERDOWN mode.  
Some reset conditions such as shutdown via register write, watchdog error, or over-temperature  
automatically expire (that is, are automatically cleared by the device as it shuts down). Other RESET  
triggers such as via port nOFF or nSHUTDOWN need to be released before the DA9063 can move  
from RESET to POWERDOWN mode. In the case that the application requires regulators to  
discharge in advance of a consecutive power-up sequence, a minimum duration of the RESET mode  
can be selected via RESET_DUR.  
If the reset was initiated by user action from a long nONKEY key-press (or GPI14 and GPI15), bit  
KEY_RESET is set and the nIRQ port asserted. After 1 s the shutdown sequence is started, unless  
this is inhibited by the host clearing KEY_RESET within this 1 s period (by writing a 1 to the related  
bit in register FAULT_LOG). When the RESET condition has been removed, the DA9063 requires  
the presence of a good supply (VSYS > VDD_FAULT_UPPER and able to provide enough power)  
before it can start-up again and move into POWERDOWN mode.  
RESET mode is also used during an automatic transition by the device into RTC mode, as described  
in Section 6.2.4.  
6.2.4  
RTC Mode  
The RTC mode is an ultra-low power mode intended to maintain only the application’s system time  
inside the RTC block. It can be armed by asserting control RTC_EN from OTP or host register write.  
With RTC_MODE_PD enabled, the device enters RTC mode when the power sequencer reaches  
slot 0 in a power down sequence. All regulators (including LDOCORE) and most features on the  
DA9063 are disabled. Only the FAULT_LOG register, calendar counter, and their related registers  
(including the alarms) are maintained. With RTC_EN = 1, the DA9063 automatically enters RTC  
mode when a VDD_FAULT condition is present, when RTC_MODE_SD is asserted, or when VDDREF  
drops below the POR threshold.  
RTC mode is automatically terminated when asserting nONKEY or CHG_WAKE, or from an RTC  
tick/alarm. The same occurs when VDDREF has risen above 2.6 V (for example, from insertion of an  
external supply or a pre-charged battery). LDOCORE is then switched on and a start-up sequence is  
triggered.  
6.2.5  
DELIVERY Mode  
The DELIVERY mode provides the lowest possible quiescent current, allowing connected pre-  
charged batteries (backup or main battery) to maintain charge prior to the end-user starting the  
device for the first time. It is armed by setting RTC_EN = 0 and then entered by the same conditions  
as RTC mode. During DELIVERY mode, only the nONKEY, CHG_WAKE, and the VDDREF detection  
circuitry is enabled. Connecting only a backup battery results in DELIVERY mode.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
70 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
6.2.6  
NO-POWER Mode  
In the absence of a (charged) backup battery, the DA9063 enters NO-POWER mode when  
VDDCORE drops below the VPOR_LOWER threshold. As long as VDDCORE stays below the  
VPOR_UPPER threshold, an internal power-on-reset (nPOR) signal remains asserted. In this mode,  
only the VDDCORE threshold comparator is active. This comparator simply checks for a condition  
that allows the DA9063 to turn on again. When a good supply is subsequently available again on  
VDDREF (> 2.4 V), VDDCORE is able to rise above VPOR_UPPER and the DA9063 leaves NO-  
POWER mode.  
6.2.7  
Power Commander Mode  
This is a special mode for evaluation and configuration development. In Power Commander mode,  
the DA9063 is configured to load the control register default values from the HS 2-WIRE interface,  
instead of from the OTP cells, so that un-programmed DA9063 samples will power up, allowing  
evaluation and verification of a proposed user configuration.  
Power Commander mode is enabled by connecting TP to a 3.3 V to 5.0 V voltage.  
Note  
In Power Commander mode, GPI14 and 15 are configured for HS-2-WIRE interface operation (with VDDCORE  
as the supply) and GPO12 is configured as an output for nVDD_FAULT. Any register writes or OTP loads which  
can change this configuration are ignored until DA9063 has exited from Power Commander mode.  
After leaving the POR state, the DA9063 informs the system that it is waiting for a programming  
sequence by driving nVDD_FAULT low. The software running on the PC monitors nVDD_FAULT and  
responds by downloading the values into the configuration registers within DA9063. nVDD_FAULT is  
automatically released after the download is complete.  
There are two programming sequences performed in Power Commander mode. The first takes place  
between RESET and POWERDOWN mode and the second between POWERDOWN and SYSTEM  
mode.  
Note  
To correctly configure DA9063, addresses 0x0A to 0x36, 0x82 to 0xCF, and 0x104 to 0x12E should be  
programmed during the first sequence. Registers 0x0E, 0x82, and 0xA3 to 0xB3 should be programmed during  
the second sequence.  
When the first programming sequence is complete, DA9063 will be in POWERDOWN mode.  
Progression from this mode is determined by the values programmed for SYS_EN and  
AUTO_BOOT. If DA9063 has been directed to progress from POWERDOWN mode then it drives pin  
nVDD_FAULT low for a second time to request that the SW performs the second programming  
sequence.  
Once the second programming sequence is complete, the progress of the power-up sequence is  
controlled by the values loaded during the programming sequence.  
The programmed configuration can be identified by reading the fuse register CONFIG_ID.  
Note  
During Power Commander mode, the fault detection status bit VDD_FAULT and the level at the related pin  
nVDD-FAULT do not match and do not indicate a low voltage level at VDDOUT. An enabled shutdown from a  
5 s assertion of GPIO14/15 will be ignored during POWER Commander mode. Any nIRQ and event assertion  
when accessing the HS 2-WIRE interface (E_GPI14) is suppressed in this mode.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
71 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.3 Start-Up from NO-POWER Mode  
6.3.1  
Power-On-Reset (nPOR)  
The DA9063 generates an internal power-on-reset nPOR (active low) following the initial connection  
of a supply to VDDREF  
.
While the VDDCORE voltage is below the threshold VPOR_UPPER, the internal signal nPOR is  
driven low and the DA9063 will not start-up. This is NO-POWER mode. When the VDDCORE voltage  
rises above VPOR_UPPER, the following occur:  
The nPOR is driven high (flagged by the POR bit being set in register FAULT_LOG).  
The oscillator is enabled.  
The VREF reference is enabled.  
The complete OTP block is read and stored in the register bank.  
The DA9063 progresses into POWERDOWN mode.  
From POWERDOWN mode, the DA9063 continues through the power-up sequence if either:  
the power domain SYSTEM was enabled by the input port, SYS_EN, or,  
the power domain SYSTEM was enabled in OTP settings and AUTO_BOOT was enabled.  
With AUTO_BOOT disabled and the power domain SYSTEM enabled in OTP settings, a non-  
suppressed wakeup event allows the DA9063 to continue through the power-up sequence.  
6.4 Exiting Reset Mode and Application Wakeup  
DA9063 offers two types of wakeup event, user events and system events (see Table 40). Non-  
suppressed user events (for example, nONKEY, CHG_WAKE or from GPIOs) are always processed  
and trigger a wakeup.  
To exit RESET mode, the DA9063 requires either VSYS to rise above the threshold  
VDD_FAULT_UPPER, or a user event. However, if the previous power-up sequence terminated with  
a shutdown to RESET mode that was caused by a VDD_START fault, VSYS must rise instead above  
the higher threshold of VDD_FAULT_UPPER + 250 mV. If the consecutive power-up sequence is  
also terminated with an under-voltage error, this threshold increases further to  
VDD_FAULT_UPPER + 500 mV. From then on, AUTO_BOOT and wakeup from non-user events are  
temporarily disabled. AUTO_BOOT and wakeup from non-user events are re-enabled after the  
application has successfully powered up to ACTIVE mode for a time > 16 s: this also resets the start-  
up threshold (to VDD_FAULT_UPPER + 0 mV).  
During a VDD_START fault with VSYS > ~3.7 V, the DA9063 requires a user event to leave the  
RESET mode. Until the host has been booted, an OTP-enabled flashing LED may be driven from  
GPIO11, 14, or 15 to indicate to the user that the device is supplied with (insufficient) power. When  
CHG_WAKE is connected to a charger, the VDDSTART-triggered LED flashing continues as long as  
an external supply is charging the battery. The flashing LED can be configured via controls  
RESET_BLINKING, BLINK_DUR, and BLINK_FRQ. After the application is running, the blinking LED  
can be stopped via a host register write.  
Wakeup events can be individually suppressed by setting the related nIRQ mask bit. When  
nONKEY_LOCK is asserted a wakeup requires the debounced signal from nONKEY to be low for a  
time longer than the configured KEY_DELAY. It is not recommended to mask system events, instead  
disable the unwanted event sources (for example, GPIs, GPADC, 1.2 V comparator). The wakeup  
from GPIOs (or selected alternate features that use a shared GPI event) has to be enabled via  
GPI<x>_WEN.  
After a valid wakeup condition is detected, a subset of the OTP configuration is read and the values  
are used to reconfigure the regulator voltage registers Vxxx_A, the power domain enable settings (if  
not suppressed via SYSTEM_EN_RD) and the sequencer timer.  
DA9063 then asserts the EXT_WAKEUP signal towards the host processors and configures  
regulators with an ID pointing at slot 0 to their target state. If the power domains are not pre-enabled  
from OTP settings, the host processor must control further application start-up (via the power domain  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
72 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
enable ports, SYS_EN, PWR_EN and PWR1_EN). Alternatively the DA9063 continues powering-up  
the OTP-enabled domains via the power domain sequencer, but the power sequencer will not start to  
enable the system supplies unless SYSTEM_EN is asserted.  
Progression to ACTIVE mode requires assertion of POWER_EN from the host via port PWR_EN, a  
register write, or enabled in OTP. After starting the WATCHDOG timer the host processor must  
assert the WATCHDOG bit within the configured time window. If this does not happen, the state-  
machine terminates ACTIVE mode and returns to RESET mode.  
Table 40: Wakeup Events  
Signal : Event  
Wakeup  
User  
Event  
System  
Event  
IRQ  
VSYS monitor : E_VDD_MON  
VDD_FAULT pre-warning : E_VDD_WARN  
RTC alarm : E_ALARM  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
RTC periodic tick : E_TICK  
Voltage comparator flipped : E_COMP1V2  
Pressed On key : E_nONKEY  
X
X
Wakeup from companion charger : E_WAKE  
LDO over current detect : E_LDO_LIM  
Regulator voltage out-of-range : E_REG_UVOV  
Critical junction temperature : E_TEMP  
Power sequencing ready : E_SEQ_RDY  
Voltage ramping ready : E_DVC_RDY  
Manual ADC result ready : E_ADC_RDY  
GPIOs passive to active transition : E_GPIx  
ADC 1, 2, 3 threshold : via GPI0, 1, 2  
X
X
X
X
X
X
X
X
X
X
X
X
SYS_EN, PWR_EN, PWR1_EN (passive to active transition) :  
via GPIO8, 9, 10  
HS-2-WIRE interface : via GPIO14  
X
X
X
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
73 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.5 Power Supply Sequencer  
The DA9063 power supplies are enabled with a sequencer that contains a programmable step timer,  
a programmable ID array of slot pointers, and four predefined pointers (SYSTEM_END,  
POWER_END, MAX_COUNT, and PART_DOWN), as illustrated by Figure 16. The sequencer is  
able to control up to 32 IDs (six bucks, 11 LDOs, 7 external FET/IC controls, a Wait ID (GPI10), an  
EN_32K enable, and an ID to activate power down settings), which can be grouped to three power  
domains.  
The power domains have configurable size and their borders are described by the location pointers  
SYSTEM_END, POWER_END, and MAX_COUNT.  
The lowest level power domain SYSTEM starts at step 1 and ends at the step that is described by  
the location pointer SYSTEM_END. The second level domain POWER starts at the successive step  
and ends at POWER_END. The third level domain POWER1 starts at the consecutive step and ends  
at MAX_COUNT. The values of pointer SYSTEM_END, POWER_END, and MAX_COUNT are  
predefined in OTP registers and should be configured as SYSTEM_END < POWER_END <  
MAX_COUNT.  
The domain system can be thought of as the minimum set of supplies required to enable the core of  
the target system.  
If the control OTPREAD_EN is enabled, the regulator voltages, sequence domain enables (if not  
suppressed via control SYSTEM_EN_RD), and the sequence timer are reset to their OTP values  
during the transition from power down to system.  
The second level domain POWER includes supplies that are required on top to trigger the application  
and set the DA9063 into ACTIVE mode. POWER1 can be understood as one of the POWER  
domains that can be used for further sequenced control of supply blocks during ACTIVE mode (for  
example, for a sub-application like WLAN or a baseband chipset).  
Note  
It is recommended that the system is configured to reach ACTIVE mode before running applications.  
6.5.1  
Powering Up  
All buck converters and 11 LDOs of DA9063 have a unique sequencer ID. The power-up sequence is  
defined by an OTP register bank that contains a series of supplies (and other features), each of  
which point to a selected sequencer time slot. Several supplies can point to the same time slot which  
is therefore enabled in parallel by the sequencer. Time slots that have no IDs pointing at them are  
dummy steps that do nothing but insert a configurable time delay (marked in Figure 16 as D).  
Supplies/IDs that do not point to a sequencer time slot between 1 and MAX_COUNT are not enabled  
by the power sequencer but can be controlled individually by the host (via the power manager  
interface).  
During power-up, the sequencer starts at slot 0. If DEF_SUPPLY is asserted, it checks all  
regulators/rail switches for an ID pointing to slot 0. Cleared LDOxx_AUTO/  
BUCKxxx_AUTO/xxx_SW_AUTO bits are configured by setting the related control  
Bxxx_CONF/LDOxx_CONF/xxx_SW_CONF, otherwise the regulator is enabled. To minimize inrush  
currents, it is recommended to enable no more than a single default regulator via DEF_SUPPLY.  
During power-up, the regulator output voltage is taken from the VBxxx_A/VLDOxx_A registers.  
During power-down, regulators/rail switches with a cleared control in Bxxx_CONF/LDOxx_CONF/  
xxx_SW_CONF are disabled, otherwise the regulator voltage is changed to VBxxx_B/VLDOxx_B  
when entering slot 0. When DEF_SUPPLY is released, slot 0 is not processed by the sequencer  
(regulators/rail switches with an ID pointing at slot 0 remain unchanged).  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
74 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
The progression of the sequencer to slot 1 is dependent on certain conditions:  
If AUTO_BOOT and SYSTEM_EN are both asserted (via port, by register write or in OTP), the  
sequencer asserts the READY signal (if GP_FB1 is so configured) and then continues by  
processing slot 1.  
If AUTO_BOOT is not asserted, the sequencer remains in a holding start state, waiting for either:  
the assertion of SYSTEM_EN, or,  
any other wakeup event if SYSTEM_EN is already enabled.  
All supplies (and other sequenced features) that are pointing at slot 1 are then processed. This is  
similar to the processing of slot 0 with the exception that DEF_SUPPLY has no effect on slots apart  
from slot 0. From slot 1, the sequencer progresses until it reaches the position of pointer  
SYSTEM_END. At this point, all IDs of the first power domain SYSTEM are enabled and, if  
POWER_EN is not asserted, the DA9063 releases the READY signal (in combination with optional  
assertion of E_SEQ_RDY).  
Power Domain  
Slot Timer  
Programmable  
4 bit OTP  
Start/Stop  
SYSTEM  
POWER  
POWER1  
SYSTEM_END  
PART_DOWN  
POWER_END  
MAX_COUNT  
STAND_BY  
Sequencer  
Slot ID  
counter  
2
3
1
D
D
0
5
D
7
D
10  
D
13  
D
14 15  
Slot ID  
definition  
...  
Figure 16: Assignment of Actions to Sequencer Slot IDs  
Table 41: Power Sequencer Controlled Actions  
Action  
Sequencer Time Slot  
LDO1_STEP  
Control LDO1  
Control LDO2  
LDO2_STEP  
Control LDO3  
LDO3_STEP  
Control LDO4  
LDO4_STEP  
Control LDO5  
LDO5_STEP  
Control LDO6  
LDO6_STEP  
Control LDO7  
LDO7_STEP  
Control LDO8  
LDO8_STEP  
Control LDO9  
LDO9_STEP  
Control LDO10  
LDO10_STEP  
LDO11_STEP  
BUCKCORE1_STEP  
BUCKCORE2_STEP  
BUCKPRO_STEP  
BUCK_IO_STEP  
Control LDO11  
Control BUCKCORE1  
Control BUCKCORE2  
Control BUCKPRO  
Control BUCKIO  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
75 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
Action  
Sequencer Time Slot  
BUCKMEM_STEP  
BUCKPERI_STEP  
CORE_SW_STEP  
BUCKPERI_STEP  
GP_RISE1_STEP  
GP_FALL1_STEP  
GP_RISE2_STEP  
GP_FALL2_STEP  
GP_RISE3_STEP  
GP_FALL3_STEP  
GP_RISE4_STEP  
GP_FALL4_STEP  
GP_RISE5_STEP  
GP_FALL5_STEP  
WAIT_STEP  
Control BUCKMEM  
Control BUCKPERI  
Control CORE_SW  
Control PERI_SW  
Assert/Release GPIO2  
Release/Assert GPIO2  
Assert/Release GPIO7  
Release/Assert GPIO7  
Assert/Release GPIO8  
Release/Assert GPIO8  
Assert/Release GPIO9  
Release/Assert GPIO9  
Assert/Release GPIO11  
Release/Assert GPIO11  
Wait for active state at GPI 10  
Wait for stable oscillator signal  
PD_DIS  
EN32K_STEP  
PD_DIS_STEP  
On completion of domain SYSTEM, the sequencer waits for POWER_EN to be asserted (via the  
PWR_EN port, a register write or in OTP). When POWER_EN is asserted, the signal READY is  
asserted (if not already asserted) and regulators/IDs of domain POWER are enabled sequentially.  
The sequencer stops at the position of pointer POWER_END. At this point it also: releases the  
READY signal (if POWER1_EN is not asserted); optionally asserts E_SEQ_RDY; enables the initial  
WATCHDOG timer and waits for the first associated alive feedback from the host processor. After  
this, the start-up of the DA9063 progresses into ACTIVE mode.  
A third power domain, POWER1, can be enabled via POWER1_EN (asserted by PWR1_EN port,  
register write or in OTP). It enables all consecutive IDs until the position of pointer MAX_COUNT has  
been reached. The READY signal is asserted as long as IDs are processed (if enabled) and  
E_SEQ_RDY is asserted when reaching MAX_COUNT.  
On start-up, and if OUT_CLOCK is asserted, the sequencer waits at a slot containing ID  
EN32K_STEP until the 32 kHz clock stabilizes, see Section 6.14.1.1.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
76 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.5.2  
Power-Up Timing  
nPOR_UPPER  
VDDREF  
VDD_FAULT_UPPER  
VSYS  
Registers Loaded From OTP  
VDDCORE  
nVDD_FAULT  
nONKEY  
Debouncing  
(10ms  
default)  
EXT_WAKEUP  
SYSTEM_EN  
POWER_EN  
POWER1_EN  
Wait for PWR_EN  
SEQ1  
Wait for PWR1_EN  
SEQ2  
Wait for SYS_EN  
SEQ1+SEQ2+SEQ3=15step  
POWER-UP  
SEQ3  
SYS_UP (int)  
PWR_UP (int)  
1ms to 1s  
nRESET  
Start Reset Time  
Figure 17: Power-Up Timing  
6.5.3  
Programmable Slot Delays  
The delay between the slots of a sequence is controlled via the programmable value of SEQ_TIME in  
register SEQ_TIMER. This has a default delay of 128 µs per slot (min. 32 µs, max. 8 ms). The delay  
time between individual supplies can be extended by leaving a consecutive slot(s) with no IDs  
pointing to it: these are dummy slots. The dummy slots have an independent delay configured by  
SEQ_DUMMY. These delay times, in register SEQ_TIMER, are (re-)loaded from OTP every time  
domain SYSTEM begins to power-up.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
77 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.5.4  
Powering Down  
When the DA9063 is powering down, the sequencer disables the supplies in reverse order and  
timing, asserts READY during sequencing, and triggers E_SEQ_RDY on reaching the target  
sequencer slot. Supplies that are configured to stay on (LDO<x>_CONF, B<x>_CONF,  
xxx_SW_CONF bit is set) are not disabled and are configured with the voltage setting from register  
VB<x>_B/VLDO<x>_B when the related time slot/ID is processed. The state of the regulators that  
are enabled for GPI control will not be changed by the sequencer when processing the related ID.  
This also applies for the selection of the related V<x>_A or V<x>_B voltage control register in case a  
regulator is enabled for GPI voltage selection.  
If powering down is initiated by clearing POWER1_EN, the sequencer stops controlling IDs before  
the domain pointer POWER_END is reached. If POWER_EN is cleared, the domain POWER1 is  
powered down followed by POWER before the sequencer reaches pointer SYSTEM_END. These  
modes are used to temporarily disable optional features of a running application for reduced power  
(sleep mode).  
If SYSTEM_EN is cleared the sequencer processes all IDs lower than the pointer position down to  
slot 0. The sequencer can be forced to stop the intended power down sequence prior to maturity at  
pointer position PART_DOWN via an asserted control STANDBY (PART_DOWN has to point into  
domain SYSTEM). In these cases the power sequencer has reached the application’s  
POWERDOWN mode (hibernate/standby), which enables the option to reset regulator settings for  
the consecutive power-up sequence from OTP (enabled by OTPREAD_EN).  
Wakeup events are enabled when the sequencer reaches slot 0 or pointer PART_DOWN (ignored  
outside of POWERDOWN mode). The assertion of nIRQ from events during POWERDOWN mode  
may be delayed until ACTIVE mode is reached the next time if configured by nIRQ_MODE. During  
processing slot 0, all supplies pointing into this step with a cleared control  
Bxxx_CONF/LDOxx_CONF/xxx_SW_CONF are disabled, otherwise the regulator voltage is changed  
to VBxxx_B/VLDOxx_B (if bit DEF_SUPPLY is asserted). Asserting control register bit SHUTDOWN  
first powers down to slot 0 and then forces the DA9063 into RESET mode. Autonomous features  
such as the 32K output buffer or the Auto-ADC measurement can be disabled temporarily for  
POWERDOWN mode via register PD_DIS. The timing for processing PD_DIS can be defined by  
selecting a step inside the sequence. Features asserted in PD_DIS are (re-)enabled when PD_DIS is  
processed during a power-up sequence.  
Control nRES_MODE enables the assertion of nRESET before executing a power-down sequence  
and starting the reset timer during the consecutive powering up. This is also true for partial  
POWERDOWN mode, when the sequencer powers down to pointer position PART_DOWN. The  
reset timer starts to run from the selected RESET_EVENT and releases the nRESET port after the  
reset timer expires.  
6.5.5  
User Programmable Delay  
A conditional mode transition can be achieved using ID WAIT_STEP. If pointing into the power  
sequence the progress of an initiated mode transition can be synchronized, for example with the  
state of a host. This is indicated by toggling the signal at GPI10 to its configured active state. A safety  
timeout of 500 ms can be selected in TIME_OUT to trigger a power-down to RESET mode (including  
the assertion of WAIT_SHUT inside register FAULT_LOG) if E_GPI10 is not asserted in time. The ID  
WAIT_STEP provides an alternate timer mode, selected by WAIT_MODE and configured by  
WAIT_TIME, which provides a delay timer for a selected sequencer step. To enable symmetric  
sequence behavior, ID WAIT_STEP should not share a sequencer slot with other IDs. In the case of  
a shutdown sequence to RESET mode any waiting/delay at ID WAIT_STEP is skipped.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
78 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Figure 18: Power Mode Transitions  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
79 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.6 System Monitor (Watchdog)  
After powering up domain POWER, the DA9063 can initiate a watchdog monitor function. The host  
processor must write a 1 within a configured TWDMAX time into control WATCHDOG, thereby  
indicating that the host is alive. If the host does not write 1 to this watchdog bit within the TWDMAX  
time, the DA9063 asserts TWD_ERROR in the FAULT_LOG register and powers down to RESET  
mode.  
After this first write, the host must continue to write to this watchdog bit within the configured time or  
DA9063 powers down as described above. The time window has a minimum time TWDMIN fixed at  
256 ms and a maximum time TWDMAX, nominally 2.048 s. The TWDMAX value can be extended by  
multiplying the nominal TWDMAX by the value of register bits TWDSCALE. TWDSCALE is used to  
extend the TWDMAX time by x1, x2, x4, x8, x16, x32, or x64.  
Once in the ACTIVE state, the DA9063 continues to monitor the system unless it is disabled by  
setting TWDSCALE to zero. When powering down from ACTIVE mode, the watchdog monitor is  
stopped unless it enters POWERDOWN mode via WATCHDOG_PD.  
If the WATCHDOG register bit is set to a 1 within the time window, the watchdog monitor resets the  
timer, sets the watchdog bit back to zero (this bit is always read as zero) and waits for the next  
watchdog signal. The watchdog trigger can also be asserted from the host by asserting KEEP_ACT  
in hardware. This mode is selected with control PM_FB2_PIN and removes the above requirement  
for the periodic setting of the watchdog bit.  
The watchdog feature can be disabled by setting TWDSCALE to zero.  
6.7 GPIO Extender  
The DA9063 includes a GPIO extender that provides up to 16 VDDREF -tolerant general purpose  
input/output ports, each controlled via registers from the host, see Table 42 and Figure 19.  
The GPIO ports are pin-shared with ports from GPADC, HS-2-WIRE-interface and signals from the  
power manager. Configuration settings and events from GPIx ports are also shared with alternative  
features. For example, if GPIO1_PIN is configured to be ADCIN2, exceeding the configured ADC  
thresholds triggers a GPI1 event that generates a maskable GPI1 interrupt. The GPI active High/Low  
setting from the GPIOx_TYPE register and the selection of pull-up resistor is also applicable to the  
alternative port functions selected via GPIOx_PIN (for example, SYS_EN, PWR_EN and  
PWR1_EN). This is also true for GPIOx_WEN, which is used to enable triggering of a wakeup event  
(ADCIN1, ADCIN2, ADCIN3, SYS_EN, PWR_EN, PWR1_EN, HS-2-WIRE interface). When GPI  
ports are enabled (including being enabled by changing the setting of GPIOx_PIN), the GPI status  
bits are set to their non-active state. This ensures that any signals that are already active are  
detected and immediately generate any appropriate events.  
In ACTIVE and POWERDOWN mode, the GPIO extender can continuously monitor the level of ports  
that are selected as general purpose inputs. GPIs are supplied from the internal rail VDDCORE or  
VDD_IO2 (selected via GPI_V) and can be configured to trigger events in active-high or active-low  
mode. The input signals can optionally be debounced (configurable via control DEBOUNCING,  
10 ms default) and the resulting signal level is reflected by the status register GPIx. When the status  
has changed to its configured active state (edge sensitive) the assigned event register is set and the  
nIRQ signal is asserted (unless this nIRQ is masked). GPIs can be individually configured to  
generate a system wakeup via GPIxx_WEN.  
If enabled via regulator controls LDOx_GPI/Bxxx_GPI, the ports GPI1, GPI2, and GPI13 can be used  
to enable/disable regulators or rail switches (that is, controlling LDOx_EN/Bxxx_EN/xxx_SW_EN).  
The GPI active level is selected via the related GPIxx_TYPE control. GPI ports that are selected for  
this hardware control of one or more regulators do not generate events (nIRQ). GPI1, 2, and 13 can  
alternatively be selected to toggle the VLDOx_SEL/VBxxxx_SEL. Apart from changing the regulator  
output voltage, this feature also allows hardware control of regulator mode (sync/sleep mode) via  
selection of the settings contained in xxxx_SL_A and xxxx_SL_B (but only for those bucks configured  
with Bxxxx_MODE = 00). When a regulator is controlled via GPI, its enable and voltage register  
selection are no longer controlled by the power sequencer (processing the related ID only affects  
non-GPI controlled functionality). However, these settings can still be changed via register writes  
from the control interface.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
80 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Events on GPI10 can be used to control the progress of the power sequencer. Processing ID  
WAIT_STEP causes the sequencer to wait until GPI10 changes into its active state.  
Note  
Supplies directly enabled/disabled from GPI1, 2, or 13 have to be excluded from the power sequencer control  
(IDs of these supplies should point into a slot higher than MAX_COUNT)  
If defined as an output, GPO0, 1, 3 to 6, 10 to 11, and 13 to 15 can be configured to be open-drain  
instead of push-pull. The supply rail can be individually selected from either VDD_IO1 or VDD_IO2.  
By disabling the internal 120 kΩ pull-up resistor when in open-drain mode, the GPO can also be  
supplied from an external rail (see registers CONFIG_K and CONFIG_L). The GPO output state  
reflects the respective register bit GPIOx_MODE.  
When configured as outputs, GPO 2, 7, 8, 9, and 11 can be controlled by the DA9063 power  
sequencer. Five pairs of level asserting and level releasing IDs (GP_RISE1_STEP/  
GP_FALL1_STEP to GP_RISE5_STEP/GP_FALL5_STEP) may be assigned individually to slots of  
the power sequencer, which trigger the configured level transition on the GPOs when processing the  
related ID during powering up (see Table 41 for assignments). The configured level change is  
inverted when processing the IDs during powering down. These are intended for use as enable  
signals either for external regulators or other devices in the system.  
When the GPIO unit is off (POR), all ports are configured as open drain output with high level (pass  
device switched off, high impedance state). When leaving POR, the pull-up or pull-down resistors are  
configured from registers CONFIG_K and CONFIG_L. When the GPIO unit is temporarily disabled by  
the power sequencer (via GPI_DIS or PMCONT_DIS) level transitions on inputs are no longer  
detected and I/O drivers keep their configuration and programmed levels.  
GPO12 can be driven by the state of VDD_MON to provide an active high ‘Power good’ signal  
(selected via GPIO12_PIN).  
GPO10, 11, 14, and 15 are extended power GPO ports, where the maximum sink current is 11 mA  
and the maximum source current is 4 mA. This enables driving LEDs. The output ports GPO11,  
GPO14, and GPO15 can be toggled with a configurable periodic pulse configured via BLINK_FRQ  
and BLINK_DUR and include an optional PWM control. The generated PWM signals have a duty  
cycle from 0 % to 100 % with a repetition frequency of 21 kHz and 95 steps (using one 2 MHz clock  
for each step). The duty cycle is set by the controls GPO11_PWM, GPO14_PWM, and  
GPO15_PWM, with any value larger than 0 enabling the PWM mode of operation. The PWM control  
can also be made to dim the brightness between its current value and a new value at a rate of 32 ms  
per step. Selection of this mode is set by GPO11_DIM, GPO14_DIM, and GPO15_DIM. When set to  
zero the PWM ratio immediately changes. This creates a common anode tricolor LED brightness  
control. Flashing is driven from the crystal oscillator when control CRYSTAL has been asserted;  
otherwise an auxiliary on-chip oscillator is used.  
LEDs are recommended to be low-side driven (using the GPIOs in sink mode) which is configured by  
setting GPIOx_MODE = 1.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
81 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 42: GPIO Overview  
GPIO Alternate Port  
Alternate Port Shared  
Resources  
GPI Wakeup  
Remark  
Auto measure ADC  
Auto measure ADC/1.2V  
0
1
ADCIN1  
ADCIN2  
E_GPI0, M_GPI0,  
GPIO0_MODE  
x
E_GPI1, M_GPI1,  
GPIO1_MODE  
Regulator control  
x (in other modes) comparator, HW control of  
regulator  
2
ADCIN3  
E_GPI2, M_GPI2,  
GPIO2_MODE  
Regulator control  
x (in other modes) control of regulator/ power  
sequencer controlled GPO  
Auto measure ADC, HW  
3
4
5
6
7
8
CORE_SWG  
CORE_SWS  
PERI_SWG  
PERI_SWS  
x
x
x
x
x
x
Power sequencer controlled  
ext. FET  
Power sequencer controlled  
ext. FET voltage sense  
Power sequencer controlled  
ext. FET  
Power sequencer controlled  
ext. FET voltage sense  
Power sequencer controlled  
GPO  
SYS_EN  
PWR_EN  
PWR1_EN  
E_GPI8, M_GPI8,  
GPIO8_TYPE, GPIO8_WEN,  
GPIO8_MODE  
Power sequencer controlled  
GPO  
9
E_GPI9, M_GPI9,  
GPIO9_TYPE, GPIO9_WEN,  
GPIO9_MODE  
x
x
Power sequencer controlled  
GPO  
10  
E_GPI10, M_GPI10,  
GPIO10_TYPE,  
GPIO10_WEN,  
High power GPO, input signal  
for ID WAIT  
GPIO10_MODE  
11  
12  
x
x
High power GPO (LED  
flashing/PWM), Power  
Sequencer controlled GPO  
nVDD_FAULT  
GPIO12_TYPE,  
GPIO12_WEN,  
GPIO12_MODE  
VDD_MON state controlled  
GPO (POWER_GOOD)  
13  
14  
GP_FB1  
DATA  
GPIO13_TYPE,  
GPIO13_MODE  
Regulator control  
x (in other modes)  
HW control of regulator  
E_GPI14, M_GPI14,  
GPIO14_TYPE,  
GPIO14_MODE  
x
High power GPO (LED  
flashing/PWM), Reset via long  
assertion in parallel with  
GPI15, 2nd 2-WIRE or DVC  
Control Interface  
15  
CLK  
x
High power GPO (LED  
flashing/PWM), Reset via long  
assertion in parallel with  
GPI14, 2nd 2-WIRE or DVC  
Control Interface  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
82 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
GPIO_0_WEN:  
on/off  
Interrupt mask:  
M_GPI_0  
GP-ADC_SEQ ADCIN4_I_EN  
15 uA  
Wake-up  
OR  
GPIO_0_MODE:  
Debounce on/off  
GPIO_0_TYPE:  
Active high/low  
AND  
...  
2x true  
(same limit)  
AUTO4_LOW  
AUTO4_HIGH  
GP-ADC  
Status register  
GPI_0  
Event register  
Comparator  
NOR  
OR  
E_GPI_0  
Reset  
ADCIN4  
Rising or  
Falling edge  
Debounce  
GP-ADC_SEQ  
nIRQ  
NOR  
GPI  
VDDIO2  
VDDIO1  
GPIO_0_PIN  
...  
Event register write  
GPIO_0_TYPE:  
VDDIO selection  
GPIO0_PUPD  
GPIO0_PUPD  
100kΩ  
120kΩ  
GPO (Open drain)  
VDDIO1  
VDDIO2  
GPO_0_MODE:  
0 or 1  
GPIO_0_TYPE:  
VDDIO selection  
GPO (Push-pull)  
VDDIO1 VDDIO2  
GPIO_13_TYPE:  
...  
VDDIO selection  
GPIO13_PUPD  
120kΩ  
GPIO_13_WEN:  
on/off  
Interrupt mask:  
M_GPI_13  
VDDIO1 VDDIO2  
Status of  
GP_FB1:  
GPIO_13_TYPE:  
VDDIO selection  
GPIO_13_TYPE:  
Active high/low  
AND  
Event register  
Status register  
GPI_13  
No regulator HW  
control  
NOR  
E_GPI_13  
Reset  
GPIO_13_MODE:  
Debounce on/off  
GP_FB1  
Rising or  
Falling edge  
Debounce  
GPIO_13_PIN  
Event register write  
GPI  
Regulator HW control  
GPIO13_PUPD  
Regulator  
configure  
100kΩ  
GPI_13  
XOR  
xxxx_ EN  
Rising and  
Falling edge  
VDDIO1 VDDIO2  
GPIO_13_TYPE:  
VDDIO selection  
GPIO_13_TYPE:  
Active high/low  
GPO (Push-pull)  
GPO_13_MODE  
0 or 1  
...  
Figure 19: GPIO Principal Block Diagram (Example Paths)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
83 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.8 Control Interfaces  
The DA9063 is register controlled by the host software. The DA9063 offers two independent serial  
control interfaces to access these registers (Figure 20). The communication via the main power  
manager interface is selected via control IF_TYPE during the initial OTP read to be either a 2- or 4-  
WIRE connection (I2C respective SPI compliant). The alternate interface is a fixed 2-WIRE bus. Data  
is shifted into or out from DA9063 under the control of the host processor that also provides the serial  
clock. The interfaces are usually only configured once from OTP values, which are loaded during the  
initial start-up. The interface configuration can be changed by the host. However, care must be taken  
that changes are not made while the interface is active. If enabled, IF_RESET forces a reset of all  
control interfaces when port nSHUTDOWN is asserted.  
6.8.1  
Power Manager Interface (4- and 2-WIRE Control Bus)  
This is the dedicated power control interface from the primary host processor. In 4-WIRE mode, the  
interface uses a chip-select line (nCS/nSS), a clock line (SK), a data input (SI), and a data output line  
(SO).  
6.8.1.1  
4-WIRE Communication  
In 4-WIRE mode, the DA9063 register map is split into four pages with each page containing up to  
128 registers. The register at address zero on each page is used as a page control register. The  
default active page after reset includes registers 0x01 to 0x7F. Writing to the page control register  
changes the active page for all subsequent read/write operations unless an automatic return to page  
0 was selected by asserting control REVERT. Unless REVERT was asserted after modifying the  
active page it is recommended to read back the page control register to ensure that future data  
exchange accesses the intended registers.  
The 4-WIRE interface features a half-duplex operation (data can be transmitted and received within a  
single 16-bit frame) with an enhanced clock speed (up to 14 MHz). It operates at the provided host  
clock frequencies.  
VDDIO  
VDDIO  
VDDIO  
SK  
Host  
processor  
VDDIO  
SK  
SI  
SO  
SI  
PMIC  
(slave)  
Host  
processor  
VDDIO  
SK  
SI Peripheral  
device  
nCS/nSS  
nCS/nSS  
SCL  
SDA  
SO  
nCS/nSS  
PMIC  
VDDIO  
SK  
SI  
SO  
4-WIRE interface  
2-WIRE interface  
SCL  
SDA  
Slave device  
Peripheral  
device  
nCS/nSS  
Figure 20: Schematic of 4- and 2-WIRE Power Manager Bus  
A transmission begins when initiated by the host. Reading and writing is accomplished using an 8-bit  
command, which is sent by the host prior to the exchanged 8-bit data. The byte from the host begins  
shifting in on the SI pin under the control of the serial clock SK provided from the host. The first 7 bits  
specify the register address (0x01 to 0x7F) to be written or read by the host. The register address is  
automatically decoded after receiving the seventh address bit. The command word ends with a R/W  
bit which, together with the control bit R/W_POL, specifies the direction of the next data exchange.  
During register writing, the host continues sending out data during the following 8 SK clocks. For  
reading, the host stops transmitting and the 8-bit register is clocked out of the DA9063 during the  
consecutive 8 SK clocks of the frame. Address and data are transmitted MSB first. The polarity  
(active state) of nCS is defined by control bit nCS_POL. nCS resets the interface when inactive and it  
must be released between successive cycles.  
The SO output from DA9063 is normally in a high-impedance state and active only during the second  
half of read cycles. A pull-up or pull-down resistor may be needed on the SO line if a floating logic  
signal can cause unintended current consumption inside other circuits.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
84 of 219  
© 2017 Dialog Semiconductor  
 
 
DA9063  
System PMIC for Mobile Application Processors  
Table 43: 4-WIRE Clock Configurations  
CPOL Clock Polarity  
CPHA Clock Phase  
Output Data is Updated Input Data is Registered  
at SK Edge  
at SK Edge  
0 (idle low)  
0 (idle low)  
1 (idle high)  
1 (idle high)  
0
1
0
1
falling  
rising  
rising  
falling  
rising  
falling  
falling  
rising  
The DA9063 4-WIRE interface offers two further configuration bits. Clock polarity (CPOL) and clock  
phase (CPHA). CPOL determines whether SK idles high (CPOL = 1) or low (CPOL = 0). CPHA  
determines on which SK edge, data is shifted in and out. With CPOL = 0 and CPHA = 0, the DA9063  
latches data on the SK rising edge. If CPHA = 1, the data is latched on the SK falling edge. The  
CPOL and CPHA states allow four different combinations of clock polarity and phase; each setting is  
incompatible with the other three. The host and DA9063 must be set to the same CPOL and CPHA  
states to communicate with each other.  
4-WIRE WRITE  
nCS  
SK  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/Wn  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SI  
SO  
4-WIRE READ  
nCS  
SK  
SI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/Wn  
HI-Z  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SO  
latch data  
Figure 21: 4-WIRE Host Write and Read Timing (Ncs_POL = 0, CPOL = 0, CPHA = 0)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
85 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
4-WIRE WRITE  
nCS  
SK  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/Wn  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SI  
SO  
4-WIRE READ  
nCS  
SK  
SI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/Wn  
HI-Z  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SO  
latch data  
Figure 22: 4-WIRE Host Write and Read Timing (Ncs_POL = 0, CPOL = 0, CPHA = 1)  
4-WIRE WRITE  
nCS  
SK  
SI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/Wn  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SO  
4-WIRE READ  
nCS  
SK  
SI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/Wn  
HI-Z  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SO  
latch data  
Figure 23: 4-WIRE Host Write and Read Timing (Ncs_POL = 0, CPOL = 1, CPHA = 0)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
86 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
4-WIRE WRITE  
nCS  
SK  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/Wn  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SI  
SO  
4-WIRE READ  
nCS  
SK  
SI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/Wn  
HI-Z  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SO  
latch data  
Figure 24: 4-WIRE Host Write and Read Timing (Ncs_POL = 0, CPOL = 1, CPHA = 1)  
Table 44: 4-WIRE Interface Summary  
Parameter  
Description  
Chip select  
nCS  
SI Serial input data  
SO Serial output data  
SK  
Master out, Slave in  
Master in, Slave out  
Transmission clock  
Signal Lines  
Interface  
Supply voltage  
Data rate  
Push-pull with tri-state  
Selected from VDD_IO1 / VDD_IO2  
Effective read/write data  
Half-duplex  
1.6 to 3.3 V  
Up to 7 Mbps  
MSB first  
Transmission  
16-bit cycles  
7-bit address, 1-bit read/write, 8-bit data  
clock polarity  
CPOL  
Configuration  
CPHA  
clock phase  
nCS_POL  
nCS active-low / -high  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
87 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.8.1.2  
2-WIRE Communication  
With control IF_TYPE = 1, the DA9063 power manager interface is configured for 2-WIRE serial data  
exchange. It has a configurable device address IF_BASE_ADDR (default read address: 0xB0, write  
address 0xB1). For details of configurable addresses, see control IF_BASE_ADDR in Section A.4.2.  
In 2-WIRE mode, SK is the clock (CLK) and SI is data (DATA). The 2-WIRE interface is open-drain,  
supporting multiple devices on a single line. The bus lines must be pulled high by external pull-up  
resistors (2 kto 20 kΩ). The attached devices only drive the bus lines low by connecting them to  
ground. As a result, two devices cannot conflict if they drive the bus simultaneously. In standard/fast  
mode, the highest frequency of the bus is 400 kHz. The exact frequency can be determined by the  
application and does not have any relation to the DA9063 internal clock signals. The DA9063 follows  
the host clock speed within the described limitations and does not initiate any clock arbitration or  
slow down. Control TWOWIRE_TO enables an automatic interface RESET that is triggered when the  
clock signal ceases to toggle for >35 ms (compatible with SMBus TTIMEOUT).  
The interface supports operation compatible with Standard, Fast, Fast-Plus and High Speed modes  
of the I2C-bus specification Rev 03 (UM10204_3). Bus clear, in the case of the DATA signal being  
stuck low, is achieved after receiving 9 clock pulses. Operation in High Speed mode at 3.4 MHz  
requires a minimum interface supply voltage of 1.8 V and a mode change in order to enable spike  
suppression and slope control characteristics compatible with the I2C-bus specification. The high  
speed mode can be enabled on a transfer-by-transfer basis by sending the master code  
(0000 1XXX) at the beginning of the transfer. The DA9063 does not make use of clock stretching and  
delivers read data without additional delay up to 3.4 MHz.  
Alternatively, the interface can be configured to continuously use High Speed mode via PM_IF_HSM,  
so that the master code is not required at the beginning of every transfer. This reduces  
communication overhead on the bus, but limits the attachable slaves to the bus to compatible  
devices.  
Communication on the 2-WIRE bus always takes place between two devices, one acting as the  
master and the other as the slave. The DA9063 only operates as a slave. Opposite to the 4-WIRE  
mode, the 2-WIRE interface has direct access to two pages of the DA9063 register map (up to 256  
addresses). The register at address zero on each page is used as a page control register (with the 2-  
WIRE bus ignoring the LSB of control REG_PAGE). Writing to the page control register changes the  
active page for all subsequent read/write operations unless an automatic return to page 0 was  
selected by asserting control REVERT. Unless REVERT was asserted after modifying the active  
page, a read-back of the page control register is recommended to ensure that future data exchange  
is accessing the intended registers.  
In 2-WIRE operation, the DA9063 offers an alternative method to access register pages 2 and 3.  
These pages can be accessed directly by incrementing the device address by one (default read  
address 0xB2; write address 0xB3). This removes the need to write to the page register before  
access to pages 2 and 3, thus reducing the traffic on the 2-WIRE bus.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
88 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.8.1.3  
Details of the 2-WIRE control bus protocol  
All data is transmitted across the 2-WIRE bus in groups of 8 bits. To send a bit, the SI line is driven at  
the intended state while the SK is LOW (a low on SI indicates a zero bit). Once the SI has settled, the  
SK line is brought high and then low. This pulse on SK clocks the SI bit into the receiver’s shift  
register, see Figure 25.  
A two byte serial protocol is used containing one byte for address and one byte data. Data and  
address transfer is MSB transmitted first for both read and write operations. Transmission begins  
with the START condition from the master while the bus is idle. It is initiated by a high-to-low  
transition on the SI line while the SK is in the high state (a STOP condition is indicated by a low-to-  
high transition on the SI line while the SK is in the high state).  
SK/  
SLK  
SI/  
DATA  
Figure 25: Timing of 2-WIRE START and STOP Condition  
The 2-WIRE bus is monitored by the DA9063 for a valid slave address when the interface is enabled.  
It responds immediately when it receives its own slave address. This ‘Acknowledge’ is done by  
pulling the SI line low during the following clock cycle (see the white blocks marked A in Figure 27 to  
Figure 30).  
The protocol for a register write from master to slave consists of a start condition, a slave address  
with read/write bit and the 8-bit register address followed by 8 bits of data terminated by a STOP  
condition (all bytes responded by DA9063 with Acknowledge), as illustrated in Figure 26.  
S
SLAVEadr  
7 bits  
W
A
REGadr  
8 bits  
A
DATA  
8 bits  
A
P
1 bit  
Master to slave  
Slave to master  
S = START condition  
P = STOP condition  
A = Acknowledge (low)  
W = Write (low)  
Figure 26: 2-WIRE Byte Write (SI/DATA Line)  
When the host reads data from a register, it first has to write access the DA9063 with the target  
register address and then read access the DA9063 with a Repeated START or alternatively a second  
START condition. After receiving the data, the host sends Not Acknowledge and terminates the  
transmission with a STOP condition (Figure 27).  
S
SLAVEadr  
7 bits  
W
A
REGadr  
8 bits  
A
Sr  
SLAVEadr  
7 bits  
R
A
DATA  
8 bits  
A*  
P
1 bit  
1 bit  
S
SLAVEadr  
7 bits  
W
A
REGadr  
8 bits  
A
P
S
SLAVEadr  
7 bits  
R
A
DATA  
8 bits  
A*  
P
1 bit  
1 bit  
Master to slave  
Slave to master  
S = START condition  
Sr = Repeated START condition  
P = STOP condition  
A = Acknowledge (low)  
A* = No Acknowledge  
W = Write (low)  
R = Read (high)  
Figure 27: Examples of 2-WIRE Byte Read (SI/DATA Line)  
DA9063_2v1  
Datasheet  
23-Mar-2017  
CFR0011-120-00  
89 of 219  
© 2017 Dialog Semiconductor  
 
 
 
DA9063  
System PMIC for Mobile Application Processors  
Consecutive (page) read mode is initiated from the master by sending an Acknowledge instead of  
Not Acknowledge after receipt of the data word. The 2-WIRE control block then increments the  
address pointer to the next 2-WIRE address and sends the data to the master. This enables an  
unlimited read of data bytes until the master sends a Not Acknowledge directly after the receipt of  
data, followed by a subsequent STOP condition. If a non-existent 2-WIRE address is read then the  
DA9063 returns code zero (Figure 28).  
S
SLAVEadr  
7 bits  
W
A
REGadr  
8 bits  
A
Sr  
SLAVEadr  
7 bits  
R
A
DATA  
8 bits  
A
DATA  
8 bits  
A
DATA  
8 bits  
A*  
P
1 bit  
1 bit  
S
SLAVEadr  
7 bits  
W
A
REGadr  
8 bits  
A
P
S
SLAVEadr  
7 bits  
R
A
DATA  
8 bits  
A
DATA  
8 bits  
A*  
P
1 bit  
1 bit  
Master to slave  
Slave to master  
S = START condition  
Sr = Repeated START condition  
P = STOP condition  
A = Acknowledge (low)  
A* = No Acknowledge  
W = Write (low)  
R = Read (high)  
Figure 28: Examples of 2-WIRE Page Read (SI/DATA Line)  
The slave address after the Repeated START condition must be the same as the previous slave  
address.  
For enhanced data transfer efficiency, the DA9063 supports two write modes: Page Write mode and  
Repeated Write mode.  
Page Write mode is used where the host has multiple bytes of data to be written to consecutive  
register addresses. It is selected by setting the WRITE MODE control to 0. For Page Write mode the  
master sends a device address followed by a register address then multiple data bytes. The 2-WIRE  
interface automatically increments the register address pointer after each data byte is received. The  
slave acknowledges each received byte of data until the master sends the STOP condition (Figure  
29).  
S
SLAVEadr  
7 bits  
W
A
REGadr  
8 bits  
A
DATA  
8 bits  
A
DATA  
8 bits  
A
DATA  
8 bits  
A
……...  
A
P
1 bit  
Repeated writes  
Master to slave  
Slave to master  
S = START condition  
P = STOP condition  
A = Acknowledge (low)  
W = Write (low)  
Figure 29: 2-WIRE Page Write (SI/DATA Line)  
Repeated Write mode is used where the host has multiple bytes of data to be sent to non-  
consecutive registers. It is selected by setting the WRITE MODE control to 1. For Repeated Write  
mode the master sends a device address followed by multiple address-data pairs. The slave  
acknowledges each received byte until the master sends the STOP condition (Figure 30).  
S
SLAVEadr  
7 bits  
W
A
REGadr  
8 bits  
A
DATA  
8 bits  
A
REGadr  
8 bits  
A
DATA  
8 bits  
A
……...  
A
P
1 bit  
Repeated writes  
Master to slave  
Slave to master  
S = START condition  
P = STOP condition  
A = Acknowledge (low)  
W = Write (low)  
Figure 30: 2-WIRE Repeated Write (SI/DATA Line)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
90 of 219  
© 2017 Dialog Semiconductor  
 
 
 
DA9063  
System PMIC for Mobile Application Processors  
6.8.2  
High Speed 2-WIRE Interface  
The high speed HS 2-WIRE interface is the alternate serial control bus. It consists of DATA (data  
line) and CLK (clock line) and can be used as an independent control interface for data transactions  
between the DA9063 and a second host processor. The DA9063 high speed 2-WIRE interface has a  
configurable 8-bit write address (default 0xB4) and a configurable read address (default 0xB5). For  
details of configurable addresses see control IF_BASE_ADDR in Section A.4.2 The interface is  
enabled if HS2DATA was selected via configuration control GPIO14_PIN. The bus lines have to be  
pulled high by external pull-up resistors (2 kΩ to 20 kΩ). GPIO14_TYPE defines the supply rail of the  
interface (used for input logic levels and the internal pull-up resistors). The controls GPIO15_PIN and  
GPIO15_WEN are disabled when enabling the interface via GPIO14_PIN.  
When the interface receives a read or write command that includes a matching slave address, the  
DA9063 can trigger the assertion of nIRQ and an optional wakeup event (enabled via  
GPIO14_WEN). If the nIRQ assertion from interface access is enabled (E_GPI14), it should be  
masked as long as the HS 2-WIRE is in use. This nIRQ cannot be cleared via the HS 2-WIRE  
interface because every interface access triggers a re-assertion.  
Except for the interface device addresses and the optional wakeup, the characteristics of the HS 2-  
WIRE interface are identical to the power manager 2-WIRE interface, see Section 6.8.1. High speed  
mode at 3.4 MHz can be enabled either via master code or continuously via PM_IF_HSM, but it does  
not support slope control for minimum tfDA specification.  
6.9 Voltage Regulators  
Three types of low drop-out regulators (LDOs) are integrated on the DA9063: for sensitive analog  
rails (for example, RF transceiver supply), the low noise regulators offer high PSRR across a wide  
frequency range; the LDOs provide an optimized PSRR and noise performance with lowest  
quiescent current. Quiescent current has been optimized for the always-on type regulators.  
The regulators employ Dialog Semiconductor’s Smart Mirror™ dynamic biasing that guarantees  
PSRR to be maintained across the full current range. Quiescent current consumption is dynamically  
adjusted to the load, which improves efficiency at light load conditions. Furthermore, Dialog  
Semiconductor’s Smart Mirror™ technology allows the capacitor to be placed close to the load.  
Note  
When placing an LDO capacitor remotely from the DA9063, the voltage drop (= load current * parasitic PCB  
impedance) needs to be considered when configuring the LDO output voltage.  
Table 45: Regulator Control  
Regulator  
Type  
VOUT  
Steps  
(mV)  
Mode  
Output  
Voltage  
(V)  
Supplied  
Max.  
Current  
(mA)  
Current  
Limit  
LDO/  
Bypass  
(mA)  
VOUT Control  
Notes  
LDO1  
Always-on  
20  
0.6 to 1.86  
100  
200  
DVC variable  
slew rate  
Optional  
voltage  
tracking  
LDO2  
LDO3  
LDO4  
LDO5  
Standard  
Standard  
Standard  
Standard  
20  
20  
20  
50  
0.6 to 1.86  
0.9 to 3.44  
0.9 to 3.44  
0.9 to 3.6  
200  
200  
200  
100  
400/300  
400/200  
400  
DVC variable  
slew rate  
Bypass  
Bypass  
DVC variable  
slew rate  
DVC variable  
slew rate  
200  
VOUT  
programmable  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
91 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Regulator  
Type  
VOUT  
Steps  
(mV)  
Mode  
Output  
Voltage  
(V)  
Supplied  
Max.  
Current  
(mA)  
Current  
Limit  
LDO/  
Bypass  
(mA)  
VOUT Control  
Notes  
LDO6  
LDO7  
LDO8  
Low noise  
Standard  
Standard  
50  
50  
50  
0.9 to 3.6  
0.9 to 3.6  
0.9 to 3.6  
200  
200  
200  
400  
VOUT  
programmable  
Bypass  
Bypass  
400/300  
400/300  
VOUT  
programmable  
VOUT  
programmable  
Switching  
vibration  
motor driver,  
common  
supply with  
LDO7  
LDO9  
Low noise  
Low noise  
50  
50  
50  
0.95 to 3.6  
0.9 to 3.6  
0.9 to 3.6  
200  
300  
400  
400  
VOUT  
programmable  
Common  
supply with  
LDO10  
LDO10  
VOUT  
programmable  
Common  
supply with  
LDO9  
LDO11  
Standard  
Bypass  
300  
4
400/300  
VOUT  
programmable  
LDOCORE  
Always-on  
2.5  
±2%  
VOUT non-  
programmable  
Internal LDO  
accuracy  
6.9.1  
Regulators Controlled by Software  
The regulators can be programmed via the power manager interface. All regulators can be enabled  
or disabled by a write command to the enable bit LDOxx_EN. Each LDO has two voltage registers for  
output voltage A and B. The appropriate values are stored in the registers VLDOxx_A and  
VLDOxx_B. The specific output voltage is selected with the bit VLDOxx_SEL. Changes to this control  
result in immediate output voltage changes on non-DVC regulators and ramped voltage transitions  
on DVC-enabled regulators. The output voltage can also be changed by directly re-programming the  
voltage control register. The sequencer also uses these registers and may write to them: their  
contents can therefore be found to differ from previous write commands.  
For security reasons, the re-programming of registers that may cause damage when being  
incorrectly programmed (for example, voltage settings) can be disabled with control V_LOCK. This  
disables write access to registers with an address higher than 0x7F.  
6.9.2  
Regulators Controlled by Hardware  
All regulators can be enabled or disabled under hardware control using GPIO1, 2, or 13. The GPIO  
port used is defined in register LDOxx_GPI. The output voltages can be switched by the GPIO port  
between the A and B voltage. The specific GPIO port is defined in register VLDOxx_GPI. After  
detecting a rising or falling edge at the GPI, the DA9063 configures the related regulators with the  
status of GPI1, GPI2, or GPI13 (the event bit E_GPI1, E_GPI2, or E_GPI13 is automatically cleared).  
A parallel write access to the regulator control registers is delayed and later overrides the hardware  
configuration. The sequencer does not affect regulators controlled via GPIOs.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
92 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.9.3  
Power Sequencer Control of LDOs  
The power sequencer can control LDO1 to LDO11. The specific time slot of each LDO is defined with  
bit LDOx_STEP in register bank starting at address 0x83. The sequencer enables and disables each  
LDO individually depending on the setting of each LDO’s bit LDOx_CONF and LDOx_AUTO. To limit  
the inrush current, it is recommended to enable a maximum of one regulator (including bucks) per  
time slot.  
If the control OTPREAD_EN is set, the regulator control registers are reloaded from OTP before  
leaving POWERDOWN mode. During power-up, the sequencer always takes output voltage A  
(defined in register VLDOxx_A). Therefore it also clears all VLDOxx_SEL bits.  
When powering down, the sequencer disables all LDOs, but the LDOs can be configured to remain  
on by setting bit LDOxx_CONF. In this case the output voltage B is always selected (value  
programmed in register VLDOxx_B). The related bit VLDOxx_SEL is set by the sequencer  
accordingly.  
Table 46: LDO Power Sequence Voltage  
LDO Output Voltage During Power-Up Sequencing  
LDOx_CONF  
LDOx_AUTO  
LDO  
Output Voltage  
-
1
0
gets enabled  
gets enabled  
disabled  
A
A
-
1
0
LDO Output Voltage During Power-Down Sequencing  
LDOx_CONF  
LDOx_AUTO  
LDO  
Output Voltage  
1
0
-
remains enabled  
gets disabled  
B
-
The bit DEF_SUPPLY defines the sequencer action for time slot 0. If Bit DEF_SUPPLY is set, all  
LDOs configured to time slot 0 are enabled or disabled during power-up according to Table 46. If bit  
DEF_SUPPLY is not set, the LDOs configured to time slot 0 are disabled.  
Note  
When control bit LDOxx_SL_B is asserted, the LDO enters a forced sleep mode with the lowest quiescent  
current, but with a reduced maximum output current. The maximum current is reduced because a smaller output  
driver is used (a partial pass device). Asserting LDOxx_SL_A results in the same forced sleep mode for an LDO  
when using the type A voltage register. Before wakeup from POWERDOWN mode (processing time slots from  
domain SYSTEM), the sequencer can configure all regulators with default voltage values from OTP: this allows  
any previously altered VLDOxx_A and LDOxx_SL_A settings to be reset.  
Entering RESET mode automatically disables all regulators except LDO1. LDO1 stays enabled when  
entering RESET mode and can be used as an always-on supply (staying on even when VSYS drops  
below VDD_FAULT). However, LDO1 is disabled during NO-POWER, RTC and DELIVERY modes.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
93 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
6.9.4  
Dynamic Voltage Control  
LDO1 to 4 include DVC:  
The output voltage can be programmed in 20 mV steps.  
If the feedback signal GP_FB1 is configured to be READY (by asserting PM_FB1_PIN), this port  
is asserted while slewing and asserts E_DVC_RDY after all voltage and buck regulators have  
completed slewing.  
DVC voltage transitions are handled by the following registers:  
Output voltage setting registers VLDO1_A/VLDO1_B to VLDO4_A/VLDO4_B.  
When writing into a selected voltage control register the output voltage is immediately ramped to  
the new value. When writing into the non-selected voltage register the ramping is delayed until  
this register is selected by toggling VLDOxx_SEL.  
The voltage selection registers VLDOx_SEL activate a pre-configured transition to the alternate  
output voltage. These controls have been grouped together in registers DVC_1 and DVC_2 to  
better enable synchronized ramping of supply voltages.  
The DVC slew rate for all DVC-enabled regulators can be configured as 10 mV per (0.5, 1.0, 2.0,  
or 4.0) µs via control SLEW_RATE. Under light load conditions (< 10 mA), the slew rate is less  
than the programmed value when the output is close to the start and end of the slope This is  
especially the case for the fastest slew rate settings. The negative slew rate is load dependent  
and might be lower than the one mentioned above.  
6.9.5  
Voltage Tracking Mode LDO1  
LDO1 is able to follow the output voltage of buck converters BUCKCORE1, BUCKCORE2, or  
BUCKPRO. The specific buck converter is selected and enabled with the bits LDO1_TRACK. The  
initial voltage delta between LDO1 and the DC-DC converter is captured and any voltage transition of  
the buck converter is mirrored to LDO1. Re-programming the LDO1 voltage register has no effect.  
Although LDO1 shares the ramping speed with the buck converter, the real LDO1 output voltage is  
also influenced by the load current. When the tracking mode is terminated via bit LDO1_TRACK or  
the selected buck converter enters shutdown, LDO1 returns to its default output voltage (that is, to  
the value set in register VLDO1_B or VLDO1_A).  
When the buck converter ramping exceeds the maximum or minimum voltage capability of LDO1,  
further steps below 0.6 V or above 1.86 V result in the temporary saturation of the LDO1 output  
voltage. The tracked buck converter should not ramp to below 0.6 V while LDO1 tracking is enabled.  
The minimum delta voltage between the output of LDO1 and BUCKCORE is achieved by connecting  
the output of LDO1 to port CORE_SWS_GPIO4 and enabling the internal rail switch for the output of  
BUCKCORE1 (or dual-phase BUCKCORE) through the assertion of control CORE_SW_INT. In this  
case, the settings of the CORE_SW rail controller are used to configure the internal switch with the  
result that this channel of the rail switch controller can no longer drive external switches (GPIO3 may  
be used as a standard GPIO). The configured LDO1 output voltage should be equal to or slightly  
lower than VBUCK when closing the switch. DVC transitions on BUCKCORE1 (or BUCKCORE) during  
this mode require LDO1_TRACK to be programmed to 10.  
6.9.6  
Pull-Down Resistor  
All LDOs have a pull-down resistor at the output when they are disabled. The pull-down resistor can  
be disabled with bit LDOxx_PD_DIS, and is required when LDOs are used in parallel with another  
supply. Otherwise the output is pulled to GND.  
If an over-voltage occurs (LDO1 to 4: VOUT > 109 % of nominal VOUT, LDO5 to 11: VOUT > 106 % of  
nominal VOUT), the voltage regulators enable an internal load to discharge the output back to its  
configured voltage. This can be disabled via LDOxx_PD_DIS.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
94 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
6.9.7  
Bypass Mode and Current Limit  
All LDOs feature a current limiting function. For LDOs with a bypass mode (LDO3, 4, 7, 8, and 11),  
an over-current is indicated with an interrupt. When at least one of these LDOs reaches the current  
limit for more than 10 ms, an interrupt is raised to the host (during POWERDOWN mode a wakeup  
sequence is initiated) and the event bit E_LDO_LIM is set. The interrupt IRQ can be suppressed via  
the mask bit M_LDO_LIM.  
If the current limit condition persists for more than 200 ms (indicating a probable short circuit  
condition), the related LDO is disabled and its LDOx_EN bit is de-asserted. The LDO remains  
disabled until a new enable occurs (via hardware or software activation). The automatic shutdown of  
the LDO can be disabled via bit LDO_SD. The host processor can distinguish if the IRQ is related to  
a temporary over-current or to a permanent shutdown by polling the related bit LDOx_ILIM or  
checking LDO3_EN, LDO4_EN, LDO7_EN, LDO8_EN, and LDO11_EN.  
If the current limit is hit for more than 10 ms but less than 200 ms, the IRQ is generated but the  
related LDO is not disabled. If the current limit is hit for more than 200 ms and the involved LDO is  
shut down, the LDO<x>_EN bit is de-asserted. If the over-current spike has stopped before the host  
is able to read the xx_LIM bits, the LDO that has been in current limit cannot be evaluated.  
Changing from LDO to bypass mode and back triggers a change of the output voltage with some  
over/undershoot during the transition phase.  
6.9.8  
LDO Supply from Buck Converter  
LDO1 to LDO11 can optionally be supplied from a buck output (VDD < 2.8 V). In this mode some  
specification parameters change:  
at VDD = 1.8 V, the dropout voltage at Imax increases by 70 %  
for a supply voltage less than 1.8 V, the LDO dropout voltage is valid only for 1/3 of the standard  
Imax and the current capability decreases with the provided supply voltage.  
LDO5 and LDO11 may be supplied from a rail higher than VSYS/CHG_WAKE (for example, the output  
of a 5 V boost) as long as VDD < 5.5 V.  
6.9.9  
LDO Sleep Mode for Reduced Iout  
If the required output current is < 10 % of IMAX, the quiescent power can be reduced by setting an  
LDO into sleep mode. In this mode, the output driver current capability is reduced to 10 % of IMAX  
Sleep mode can be set independently for the output voltage A and B by setting bit LDOxx_SL_A or  
bit LDOxx_SL_B. During LDO sleep mode, the over-current limit of the LDOs with a bypass function  
(LDO3, 4, 7, 8, and 11) is reduced to 50 %. As a benefit of Dialog Semiconductor’s Smart Mirror™  
technology, sleep mode is typically not required because the quiescent current taken by the regulator  
is automatically minimized when operating at low current demands.  
.
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
95 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.9.10 Vibration Motor Driver  
LDO8 provides a third mode dedicated to drive vibration motors selected via bit LDO8_MODE. In this  
mode, the voltage regulation circuitry is disabled and no external stabilization capacitor is needed. In  
comparison to LDO mode, the PWM control is more efficient and allows an instant on and off for the  
vibrator signal.  
VSUP  
PWM  
VLDO8  
Vibrator  
motor  
BRAKE  
GND  
Figure 31: Vibration Motor Driver  
The vibrator motor driver is a half-bridge PWM-controlled motor driver, with an automatic battery  
supply correction of the PWM duty cycle (Figure 31). The PWM base frequency can be selected by  
PWM_CLK to be either 1.0 MHz or 2.0 MHz (resulting in a PWM repetition rate of 15.6 kHz or  
31.25 kHz). The vibration motor speed is determined by the effective output voltage which is set via  
control VIB_SET (6 bits giving 64 programmable speeds). Setting the output voltage to 0 turns on a  
braking NMOS transistor to stop the vibration motor immediately.  
The motor can also be stopped and started by a level on port nVIB_BRAKE, if enabled via bit  
PM_FB3_PIN.  
The PWM duty cycle is corrected automatically before it is enabled and after each breaking period. It  
is also automatically corrected every 10 s when it is running for longer periods. These corrections are  
done via autonomous VSYS measurement via the internal GPADC (overrides control setting of  
AUTO_VSYS_EN). The duty cycle, D, is given by D = VIB_SET / VSYS  
.
Note  
The half-bridge driver transistors have an internal current limit of approximately 400 mA  
6.9.11 Core Regulator LDOCORE  
The LDOCORE is a 2.5 V supply dedicated for the internal logic of DA9063. It is used for running the  
state machine, GPIO pins with comparators, bias, reference, GPADC, OTP, and power manager  
registers. It is supplied from internal rail VDDREF , powered from either CHG_WAKE or VSYS. When  
LDOCORE is supplied in RESET mode, its output voltage is temporarily reduced to 2.2 V. In general,  
LDOCORE is an always-on supply (remaining enabled during RESET mode), but for lowest  
dissipation power LDOCORE can also be disabled when progressing towards RTC or DELIVERY  
mode.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
96 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
6.10 DC/DC Buck Converters  
DA9063 includes six DC/DC buck converters with DVC.  
VDD (2.8 ... 5.5V)  
Isense  
DCDC CONVERTER  
1.0uH  
(3 MHz )  
VBUCK  
DRV  
V FB  
CNTRL  
DAC  
CTRL  
REF  
COUT  
SLEEP_EN  
POWER-EN  
Figure 32: DC-DC Buck Converter  
The converters are high efficiency synchronous step-down regulators, operating at a high frequency  
(3 MHz), supplying individual output voltages with ± 3 % accuracy. The default output voltage is  
loaded from OTP and can be set in 10 mV steps. To limit in-rush current from VSYS, the buck  
converters perform a soft-start for up to 3 ms, when enabled via control SOFT_START. During this  
3 ms period, the output current of the buck is limited.  
The DVC controller allows the following features:  
The buck converter output voltage is programmable over the power manager bus in 10 mV steps.  
If the feedback port GP_FB1 is configured as READY, this port is asserted while slewing and  
asserts E_DVC_RDY after all voltage and buck regulators have stopped slewing.  
Output voltages below 0.7 V are only supported in Pulse Frequency Modulation (PFM) mode.  
During a voltage reduction below 0.7 V, the slew rate control ends at 0.7 V and the buck mode is  
automatically changed to PFM mode.  
The DVC control is handled by the following registers:  
Output voltage setting register VBxxxx_A/VBxxxx_B.  
When writing to the voltage control register that is in use by an enabled buck, the output  
immediately ramps to the new setting. When writing to the voltage control register that is not in  
use, the ramping is delayed until this register is selected by toggling VBxxxx_SEL.  
The voltage register selection VBxxxx_SEL.  
This activates a pre-configured transition to the alternate output voltage. These controls are  
grouped into registers DVC_1 and DVC_2 to better enable synchronized ramping of supply  
voltages.  
The DVC slew rate is programmable as at 10 mV per (4, 2, 1, or 0.5) µs via control SLEW_RATE.  
During PFM mode, the negative slew rate is load-dependent and might be lower than the  
programmed rate.  
The supply current during PWM (synchronous) operation is in the order of 3.5 mA (quiescent current  
and charge/discharge current) and drops to <1 µA in shutdown. Switching frequency is chosen to be  
high enough (3 MHz) to allow the use of a small 1.0 µH inductor.  
The operating mode of the buck converter is selected via the buck control register bits B<x>_MODE.  
The buck converter can be forced to operate in either PWM or PFM mode. Additionally, the buck  
converter has an automatic mode where it switches between PWM and PFM modes depending on  
the load current.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
97 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
The switching converters can be enabled/disabled/configured via the power manager and HS 2-  
WIRE interface. Writing to Bxxxx_EN/VBxxxx_SEL unconditionally configures the regulator to the  
selected mode (enabled/disabled). Reading Bxxxx_EN/VBxxxx_SEL provides the actual state, which  
may differ from a previous write (in the case where the regulator state is changed from GPIO or  
power sequencer control). All bucks can be controlled with an ID from the power sequencer. If  
enabled in DEF_SUPPLY, supplies can be configured to default settings when the sequencer passes  
slot 0.  
To limit the inrush current, it is recommended to select individual regulators (including LDOs) only  
with xxxx_DEF settings.  
When powering up, the power sequencer clears VBxxxx_SEL for a buck when it has an ID pointing  
to the time slot being processed. This forces the regulator to ramp the output voltage to the value  
programmed inside the related register VBxxxx_A.  
When powering down (for example, to POWERDOWN mode), sequencer-controlled supplies are  
usually disabled but can be configured to remain on by setting Bxxxx_CONF. In the latter case, the  
sequencer sets VBxxxx_SEL so that the regulator output voltage is ramped to the value programmed  
inside the related register VBxxxx_B. Disabled bucks can switch off their pull-down resistor, see  
Section 6.9.5. Before wakeup from POWERDOWN mode (processing time slots from domain  
SYSTEM), the sequencer can configure the bucks with default voltage values from OTP and reset  
any changed VBxxxx_A settings.  
All buck converters provide an optional hardware enable/disable via GPIO1, 2, and 13. A regulator  
that has to be enabled/disabled from a GPI port selects this feature via its control Bxxxx_GPI. A  
change of the output voltage from the state of a GPI is enabled via control VBxxxx_GPI. After  
detecting a rising or falling edge at the GPI, the DA9063 configures the enabled regulators with the  
status of GPI1, GPI2, or GPI13 (the event bit E_GPI1, E_GPI2 or E_GPI13 is automatically cleared).  
A parallel write access to the regulator control registers is delayed and later overrides the HW  
configuration. The sequencer does not change regulator settings enabled for GPI control. Powering  
down to RESET mode automatically disables all buck converters. When the output of a buck  
converter is combined with a parallel low power LDO, its pull-down resistor needs to be disabled via  
Bxxxx_PD_DIS. Otherwise its output is discharged to GND when being disabled.  
To allow DVC transitions under load, the buck current limit should be configured at least 40% higher  
than the required maximum continuous output current. See Table 47 as a guide to determining this  
limit.  
Table 47: Selection of Buck Current Limit from Coil Parameters  
Min. ISAT  
(mA)  
Frequency  
(MHz)  
Buck Current Limit  
(mA)  
Max. Output Current  
(mA)  
3800  
3100  
2400  
1700  
3
3
3
3
3400  
2800  
2100  
1700  
2400  
2000  
1500  
1200  
To ensure correct regulation, the buck converters require the supply voltage to be 0.7 V higher than  
the output voltage. As this is not always possible at higher output voltage settings, the converters  
BUCKMEM, BUCKIO, and BUCKPERI provide a follower mode where the electrical characteristics of  
the DC-DC converter no longer apply, but instead the PMOS output driver is fully-on and the output  
voltage simply follows the dropping input voltage. There will be a voltage drop between the buck  
VDD supply and the output which results from the on-resistance of the buck PMOS driver and the  
coil, with the voltage drop magnitude being depending on load current. Bucks running in follower  
mode will temporarily stop switching and by that process will generate PWM mode 3 MHz sub-  
harmonics.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
98 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
6.10.1 BUCKCORE1, BUCKCORE2, and BUCKPRO  
BUCKCORE1, BUCKCORE2, and BUCKPRO include a full-current (previously overdrive) mode,  
individually enabled via control BCORE1_OD, BCORE2_OD, and BPRO_OD.  
In full-current mode:  
The maximum current capability is 2500 mA  
The selected current limits are automatically doubled  
The quiescent current increases due to the increased switching losses  
For full-current mode, the application requires two 47 µF output capacitors and an appropriate  
inductor that can sustain higher currents without heating up or suffering from inductance degradation.  
BUCKCORE1 and 2 can also be merged as a dual-phase BUCKCORE with up to 5000 mA  
maximum output current. If enabled in OTP via BCORE_MERGE, the register controls of  
BUCKCORE2 (except BCORE2_PD_DIS) are automatically disabled and the output from both coils  
must be routed together. The feedback signal for both phases is taken from the sense node switch  
matrix of BUCKCORE1 (the VBUCKCORE2 pin may be left floating if the internal pull-down resistor  
is enabled by setting BCORE2_PD_DIS = 0). With BCORE1_FB programmed in OTP to 0b000, a  
differential remote sensing at the point-of-load can be enabled, using VBUCKCORE2 as a GND  
sense port. In this mode, the BUCKCORE output capacitor voltage has to be routed to port  
CORE_SWS or GP_FB_2 (selected via control MERGE_SENSE). Depending on the settings of  
BCORE1_OD, the dual-phase buck provides a maximum 2500 mA or 5000 mA, requiring two or four  
47 µF output capacitors, respectively.  
BUCKCORE2 always runs on the inverted clock (anti-phase) of BUCKCORE1. The switching node  
output of both phases must be connected symmetrically on the PCB (with matched routing  
inductances and resistances).  
GP_FB2 or CORE_SWS  
VSYS  
VBUCK_CORE1  
BUCK  
CORE1  
1µH  
ZT  
VSYS  
3x22/47µF  
ZT  
VBUCK_CORE2  
1µH  
Load  
BUCK  
CORE2  
1x22/47µF  
ZT = resistance of PCB traces  
Figure 33: BUCKCORE1 and BUCKCORE2 in Dual-Phase Remote Sense Mode  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
99 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.10.2 BUCKPRO in DDR Memory Bus Termination Mode  
If enabled via BPRO_VTT_EN, BUCKPRO offers an alternative mode to provide VTT bus termination  
for DDR memory. In this mode, its output voltage tracks 50 % of the VDDQ sense port voltage  
(Figure 34). In this mode, BUCKPRO must be set to sync mode either by the host or by OTP  
configuration. If enabled via BPRO_VTTR_EN, a second VTTR output provides the same voltage for  
a DDR VTTR reference rail, buffered with ± 10 mA source/sink capability (requires 0.1 µF  
stabilization capacitor). With BPRO_VTTR_EN being asserted in combination with BPRO_VTT_EN  
released, the DA9063 provides a VTTR reference buffer with BUCKPRO running in a normal output  
voltage control mode. If memory termination is not required (BPRO_VTTR_EN = 0), port VDDQ  
provides the state of event E_GPI2 and port VTTR provides the state of the 1.2 V comparator.  
-
VTT = VBUCKPRO  
+
VSYS  
BUCK  
SWBUCKPRO  
PRO  
VSS  
Figure 34: BUCKPRO Memory Bus Termination Mode  
6.10.3 BUCKMEM and BUCKIO in Merged Mode  
The converter BUCKMEM can be merged with BUCKIO via control BUCK_MERGE to form a single  
DC-DC converter with a maximum output current of 3000 mA (Figure 35). The routing of the switcher  
output pins to the common inductor must be symmetrical. The VBUCKIO feedback pin may be left  
floating in merged mode if its internal pull-down resistor is enabled by setting BIO_PD_DIS = 0. The  
inductor (1.0 µH) and the output capacitor have to be selected according to the increased output  
current configuration controls of BUCKIO are disabled by asserting the bit BUCK_MERGE; the  
selected current limits of BUCKMEM are automatically doubled.  
SWBUCKIO  
Symmetrical  
wiring required  
40uF  
SWBUCKMEM  
VBUCKMEM  
Figure 35: BUCKMEM Merged With BUCKIO  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
100 of 219  
© 2017 Dialog Semiconductor  
 
 
DA9063  
System PMIC for Mobile Application Processors  
6.11 Buck Rail Switches  
BUCKCORE and BUCKPERI offer a gate driver for an external NMOS that allows an output rail  
shutdown and re-enable independently from the state of the buck (Figure 36). If a switch is open, the  
associated pin is discharged to VSS by a pull-down resistor. All switch outputs require 100 nF  
decoupling. All switches provide a soft-start in the form of a slew-rate limit which can be programmed  
via control SWITCH_SR. The input surge current is therefore linearly proportional to the capacitance  
connected to the output of the switch.  
When the switch is closed, the buck can be configured by control Bxxx_FB to select the switch output  
signal as a voltage sense node (instead of the buck output voltage) to compensate for losses in the  
switch. Otherwise, Bxxx_FB should be programmed as 0b001 (setting 0b000 is invalid).  
Where a buck does not require a rail switch, it can be routed to the output of another buck. In this  
case, the feedback control should be programmed to 0b001. The feedback of the buck using both  
switches may be programmed to be taken from the output of CORE_SW (CORE_SWS) or the output  
of PERI_SW (PERI_SWS), or even from a mix of both (averaged). When a switch is opened, its  
signal is automatically disconnected from the feedback path. When all switches selected for the  
feedback signal mix are open, the buck automatically switches the feedback back to its output.  
Before any of the rail switches can be closed, a charge pump must be enabled via control CP_EN.  
Depending on the setting of CP_EN_MODE, it may be automatically disabled when all buck rail  
switches are opened. During charge pump automatic mode, closing the first switch is delayed until  
the charge pump has stabilized its output voltage (< 700 µs).  
The state of each switch is controlled via its control xxx_SW_EN. These bits can be modified by a  
register write or via GPI1, 2, or 13 if enabled by register SWITCH_CONT. Alternatively, they can be  
controlled from the power sequencer by programming controls xxx_SW_STEP into the intended time  
slot (which closes the switches on power-up and opens the switches on power-down). By asserting  
xxx_SW_CONF, the sequencer can be forced to leave the switch closed when powering down.  
If a buck rail switch is not required, its ports can instead be used as a GPIO (selected via  
GPIOxx_TYPE).  
Additional rail switches are available by using LDOs 3, 4, 7, 8, and 11 in bypass mode.  
C
Figure 36: Buck Rail Switches  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
101 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
6.12 Backup Battery Charger/RTC Supply Rail Generator  
The backup battery charger provides a constant charge current with a programmable top-up charging  
voltage for charging of Lithium-Manganese coin cell batteries and super capacitors. Charging current  
is programmable via BCHG_ISET from 100 to 1000 µA (in 100 µA steps) and from 1 mA to 6 mA (in  
1 mA steps). End-of-charge termination voltage is programmable in 100 mV/200 mV steps from 1.1 V  
to 3.1 V. The backup battery charger is enabled by setting BCHG_VSET and BCHG_ISET to a non-  
zero value. When enabled, the charger aims to maintain the backup battery at its target voltage. The  
backup battery charger can be temporarily disabled in POWERDOWN mode via control bit  
BBAT_DIS and it switches off automatically during a POR.  
The backup battery charger includes reverse current protection and can also be used as an ultra-low  
quiescent always-on supply for low voltage/power rails (may stay on during RESET mode).  
The backup battery rail follower provides the internal supply voltage VDDRTC for the 32 kHz  
oscillator and RTC digital whenever being powered from VDDREF (VDDREF > 2.4 V) or from a backup  
battery (VBBAT > 2.0 V), depending on the following conditions:  
If only the backup battery is applied (for example, in case of a deep discharged or removed main  
battery) the switch automatically connects the RTC block to the backup battery.  
If both the system rail VDDREF and the backup battery are present, the RTC block is powered by  
the higher of these two voltage sources. This implementation allows for maximum utilization of  
the energy left in the main battery, thus extending the life of the lower capacity backup battery. A  
seamless transition is achieved by the VDDRTC follower by generating a replica of the backup  
battery voltage from VDDREF (min. 1.45 V). To limit the oscillation while switching between VBBAT  
and the internal replica voltage, the backup battery switch has a built-in hysteresis of 75 mV.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
102 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.13 General Purpose ADC  
6.13.1 ADC Overview  
The Analog to Digital Converter (ADC) uses a sample and hold successive approximation switched  
capacitor architecture. It is supplied from VDDCORE (2.5 V). Configured via control ADC_MODE, it  
can be used either in high-speed mode with measurement sequences repeated every 1 ms or in  
economy mode with sequences repeated every 10 ms.  
6.13.2 ADC Input MUX  
The DA9063 provides an ADC with 10-bit resolution and track and hold circuitry combined with an  
analog input multiplexer (Figure 37). The analog input multiplexer allows conversion of up to nine  
different inputs. The track and hold circuit ensures stable input voltages at the input of the ADC  
during the conversion.  
The ADC is used to measure the following inputs:  
Channel 0: VSYS_RES measurement of the system VDD (2.5 to 5.5 V)  
Channel 1: ADCIN1_RES high impedance input (0 to 2.5 V)  
Channel 2: ADCIN2_RES high impedance input (0 to 2.5 V)  
Channel 3: ADCIN3_RES high impedance input (0 to 2.5 V)  
Channel 4: TJ measurement of internal temperature sensor  
Channel 5: VBBAT measurement of the backup battery voltage (0 to 5.0 V)  
Channel 8: MON_A8_RES group 1 internal regulators voltage (0 to 5.0 V)  
Channel 9: MON_A9_RES group 2 internal regulators voltage (0 to 5.0 V)  
Channel 10: MON_A10_RES group 3 internal regulators voltage (0 to 5.0 V)  
Figure 37: ADC Block Diagram  
The MUX selects from and isolates the nine inputs, and presents the channel to be measured to the  
ADC input. When selected, an input amplifier on the VSYS channel subtracts the VDDCORE reference  
voltage and scales the signal to the correct value for the ADC.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
103 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
6.13.3 Manual Conversion Mode  
Manual measurements by the ADC are initiated by an ADC_MAN bit register write. The ADC powers  
up, one conversion is done on the channel specified by ADC_MUX and the 10-bit result is stored in  
the ADC_RES_H and ADC_RES_L registers. After the conversion is completed, the ADC powers  
down again, ADC_MAN bit is reset and an IRQ event flag is set (E_ADC_RDY). The generation of  
this IRQ can be masked by the IRQ mask M_ADC_RDY.  
6.13.4 Automatic Measurements Scheduler  
The automatic measurement scheduler allows monitoring of the system voltage VSYS, the auxiliary  
channels ADCIN1 to 3 and the output voltage supervision of embedded regulators. The results are  
automatically compared with upper and lower thresholds set by power manager registers to give an  
nIRQ event if a measurement is outside these levels. All measurements are handled by the  
scheduler system detailed below.  
The scheduler performs a sequence of 10 slots continually repeated according to the configured  
mode. A slot requires 100 µs. The pattern of measurements over the 10 slots depends upon the  
enabled automatic measurements. Additional manual measurement opportunities are available in  
slots where automatic measurements have been disabled by control bits in ADC_CONT. Automatic  
measurements only store the eight MSBs of the ADC measurement.  
Figure 38 shows (with typical configurations) how the different measurements are scheduled.  
Figure 38: ADC Sequence  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
104 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
6.13.4.1  
A0: VSYS Voltage nIRQ Measurement Mode  
VSYS is measured, stored in VSYS_RES and compared with the VSYS_MON threshold. If the result  
of the comparison is different to its previous state (being either lower or higher) for three consecutive  
readings, an E_VDD_MON event is generated. Glitches of a duration less than three consecutive  
measurements do not update the state; events are triggered at rising and falling edges of the state  
signal. This multiple reading debounces the VSYS voltage before issuing an nIRQ. After the nIRQ  
assertion, the automatic measurement of channel VSYS is paused for reading. The host must clear the  
associated event flag to re-enable the supervision of VSYS. The event-causing value is kept in the  
result register.  
If selected via GPIO12_PIN, the debounced comparator state can be indicated via the GPO12 port,  
representing a power good signal that can be used, for example, to trigger boot activities on external  
ICs. If no action is taken to restore the VSYS voltage (that is, discharging of the battery continues), the  
host may consider switching off optional ‘always-on’ blocks (for example, backup battery) to save  
energy later on. VSYS measurements are enabled via control AUTO_VSYS_EN.  
Figure 39: VSYS Monitor Persistence Behavior  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
105 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.13.4.2  
A1, A2, A3: Automatic Measurement and High/Low Threshold Warning nIRQ Mode  
The automatic measurement result of channel ADC_IN1 is stored in the ADCIN1_RES register. If a  
reading of A1 is less than AUTO1_LOW or greater than AUTO1_HIGH, then the event flag E_GPI0 is  
set. If nIRQ is asserted, the automatic measurement of channel ADC_IN1 is paused until the host  
has cleared the associated event flag (the event-causing value is kept in the result register). The  
assertion of nIRQ can be masked by IRQ mask M_GPI0, which also disables the pausing of  
automatic measurements. If debouncing is selected via ADCIN1_DEB the event is only asserted if  
two consecutive measurements override the same threshold. The automatic measurement is  
enabled by register AUTO_AD1_EN. In addition, it is possible to use ADCIN_1 with a 1 μA to 40 μA  
current source that allows automatic measurement of a resistor value (programmed via  
ADCIN1_CUR). The current source is enabled by AD1_ISRC_EN. During automatic measurements  
the enabled current source is dynamically switched off at the end of the conversion and switched on  
one slot prior to the next ADCIN_1 measurement (to enable minimum current consumption, and  
allow any external capacitance voltage to settle); otherwise its status is static.  
A similar functionality is available at ADC_IN2 and ADC_IN3. ADC_IN2 provides notification to the  
processor via a fixed voltage comparator (also available when ADC is powered down) but the  
ADCIN2 current source is static (no dynamic switch-off at the end of automatic conversion). The  
input selection switch of ADC_IN2 provides an enhanced isolation (80 dB typ.) between the  
externally-connected circuit and the internal ADC block (for example, allowing the DC supervision of  
noise sensitive audio lines).  
Figure 40: A1, A2, A3 Persistence Behavior  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
106 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.13.4.3  
A8, A9, A10: Automatic Regulator Monitor with Under- Or Over-Voltage Shutdown  
DA9063 provides the capability to monitor the output voltage of internal regulators. In case of a  
catastrophic failure, the related regulator is disabled. This feature is enabled using control  
MON_MODE. Each internal regulator is assigned to a GPADC input channel and can be individually  
enabled for monitoring via controls BCORE1_MON_EN to LDO11_MON_EN. For example, if ADC  
channel A8 is connected to an enabled regulator and it is also enabled for monitoring, the ADC  
automatically measures the regulator output voltage every 1 ms (10 ms in ADC economy mode).  
Simultaneously, two relative thresholds are calculated from the regulator nominal output voltage  
(supporting DVC). If the regulator is out of range, the voltage measurement is stored inside  
MON_A8_RES, the regulator ID is recorded inside the index MON_A8_IDX and the event flag  
E_REG_UVOV is set. To secure a stable output voltage, the monitoring is delayed after regulators  
are switched on and when changing their voltage level to a new target (that is, during DVC slewing,  
after writing into the active regulator voltage register, or when the active voltage control register is  
changing between Vxxx_A and Vxxx_B). This delay is programmable using control UVOV_DELAY.  
If debouncing is selected via MON_DEB, an event is only created if two consecutive measurements  
exceed the same threshold. The feature is also available for channels A9 and A10.  
Table 48: Assignment of Regulators for Voltage Monitoring  
ADC channel  
Regulator  
Enable  
A8  
BUCKCORE1  
BCORE1_MON_EN  
BCORE2_MON_EN  
BPRO_MON_EN  
LDO3_MON_EN  
LDO4_MON_EN  
LDO11_MON_EN  
BUCKCORE2  
BUCKPRO  
LDO3  
LDO4  
LDO11  
A9  
BUCKIO  
BUCKMEM  
BUCKPERI  
LDO1  
LDO2  
LDO5  
BIO_MON_EN  
BMEM_MON_EN  
BPERI_MON_EN  
LDO1_MON_EN  
LDO2_MON_EN  
LDO5_MON_EN  
A10  
LDO6  
LDO7  
LDO8  
LDO9  
LDO10  
LDO6_MON_EN  
LDO7_MON_EN  
LDO8_MON_EN  
LDO9_MON_EN  
LDO10_MON_EN  
If more than one regulator is assigned to A8, A9, or A10, the regulator measurements are  
sequentially multiplexed on this channel (elongates the measurement period of 1 ms or 10 ms by  
each additional assigned regulator). In the case of an E_REG_UVOV event, the regulator monitoring  
continues and shuts down rails facing catastrophic failure (voltage and IDX controls contain  
information for determining the cause of the most recently detected under- or over-voltage). When  
clearing E_REG_UVOV via a host write, the related regulator index controls are reset. In the unlikely  
case in which several regulators from a sequenced ADC channel have triggered an under- or over-  
voltage condition before the host was able to read the related controls, all monitored supplies may be  
checked for their actual state (enabled or shutdown) to detect if further supplies have also been shut  
down in addition to the one captured by the index control.  
The assertion of nIRQ can be masked by IRQ mask M_REG_UVOV. With a masked nIRQ from  
regulator supervision, the setting of MON_RES determines whether an out-of-range detection  
disables the related regulator or triggers the assertion of port nRESET. In the latter case, nRESET is  
asserted for 1 ms and continues to be asserted until the regulator returns to being in range  
(regulators that are not enabled but are selected for monitoring do not trigger the assertion of  
nRESET). With a masked nIRQ, GP_FB2 can be configured to flag PWR_OK, indicating that all  
monitored regulator voltages are in-range. Selecting disabled regulators for monitoring suppresses  
the assertion of PWR_OK.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
107 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
The regulator monitor unit provides alternative modes selected via MON_MODE. In measurement-  
only mode, the event flag E_REG_UVOV is set for every automatic measurement result being  
available on either A8, A9, or A10 (with a maximum of one regulator per channel being enabled for  
measurements). When enabled, an auto-measurement on A8, A9, or A10 allows the host to get its  
actual output voltage from registers MON_A8_RES to MON_A10_RES. When multiple ADC  
channels are enabled for automatic regulator voltage measurements, the burst measurement mode  
may reduce the control interface traffic and number of nIRQ assertions. When the ADC time slot of  
A10 has finished, the event flag E_REG_UVOV is set (independent of A10 being enabled for auto-  
measurements). The host can then read the measurement results stored inside MON_A8_RES -  
MON_A10_RES as a block. During measurement modes, there are no threshold comparisons or  
regulator shutdowns. If the nIRQ line was asserted, automatic measurements on channels A8 (A9  
and A10) are paused until the host has cleared the associated event flag (the event-causing value is  
kept in the result registers). During measurement modes, E_REG_UVOV is cleared by writing the  
read value into register EVENT_B. To sequentially measure other regulators on ADC input channels  
A8, A9, and A10, the host has to set the monitor enable for the next measurement slot to the  
required regulator before clearing the event. The assertion of nIRQ can be masked by IRQ mask  
M_REG_UVOV, which also disables the pausing of automatic measurements. For further information  
about voltage monitoring, please see DA9063 Voltage Monitoring [2].  
Note  
Voltage monitoring function cannot be used for any LDO in bypass mode.  
6.13.4.4  
A4 and A5: Manual Measurement TJ and VBBAT  
The 10-bit result of manual measurements is stored in the registers ADC_RES_L and ADC_RES_H.  
Channel 4 (TJ) is used to measure the output of the internal temperature sensor (generated from a  
proportional to absolute temperature (PTAT) current using a bandgap reference circuit). The ADC  
measurement result and the T_OFFSET value can be used by the host to calculate the internal  
junction temperature, defined by the following formula:  
TJ [°C] = -0.398 * (ADC - T_OFFSET) + 330  
Channel 5 can be used to measure the voltage of the backup battery.  
Manual measurements on A8 to A10 are possible, but require disabling the automatic measurements  
on these channels and also ensuring that only one regulator is connected to each of these ADC  
channels.  
NOTE  
The T_OFFSET value is stored in the T_OFFSET register at address 0x104 during manufacture.  
6.13.5 Fixed Threshold Comparator  
A comparator with a threshold of 1.2 V is connected to the input of ADC channel 2. The comparator  
is asserted when the input voltage exceeds or drops below 1.2 V for at least 10 ms (debouncing).  
After being enabled via COMP1V2_EN, the status flag COMP1V2 indicates the actual state and a  
maskable interrupt request E_COMP1V2 is generated at the falling and rising edge state transitions.  
The comparator may be disabled via COMP1V2_EN when auto-measurements with high resolution  
are executed on ADCIN2.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
108 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.14 Real Time Clock  
The RTC circuit maintains the real time clock and alarm functions. The variable RTC supply voltage,  
VDDRTC, is derived from VBBAT. Generally, the RTC block is powered from VDDREF, but with  
RTC_EN asserted, the DA9063 enters a special low-power RTC mode under the following  
conditions:  
Unconditionally, when the VBBAT (the backup battery supply) is the only available voltage source  
in the system (no external charger or main battery). DA9063 enters RTC mode automatically  
since all the other supply domains are down (VDDREF < VPOR_LOWER).  
If the RTC_MODE_PD control bit is set (from OTP or host) and the power sequencer reaches  
slot 0 during a power transition from ACTIVE to POWERDOWN mode. The above condition  
disables LDOCORE and powers down all blocks (that are unrelated to the RTC circuit operation).  
Similar to the above case, the device goes in to RTC mode if RTC_MODE_SD control bit is set  
(from OTP or host) and the main PM control logic reaches RESET mode in the presence of a  
VSYS fault.  
The following conditions (edge sensitive) that re-enable the DA9063’s full control logic (terminating  
RTC mode):  
VDDREF rising to > 2.6 V (unconditionally)  
There is no dedicated event bit. A start-up with POR asserted but no asserted E_WAKE,  
E_nONKEY, E_TICK, or E_ALARM event bit indicates main battery insertion. Depending on the  
VSYS rise timing and final level, an E_VDD_WARN or E_VDD_MON wakeup event may be  
triggered which, if not masked via M_VDD_WARN and M_VDD_MON in OTP, will cause an  
application power-up, even when AUTO_BOOT is cleared in OTP.  
External charger insertion via CHG_WAKE in the presence of a valid VDDREF supply (VDDREF  
2.6 V)  
>
Assertion of nONKEY in the presence of a valid VDDREF supply (VDDREF > 2.6 V)  
Alarm/tick event when there is a valid VDDREF supply (VDDREF > 2.6 V; alarm event is otherwise  
stored in case this condition later becomes true)  
The above assertions from nONKEY or CHG_WAKE must remain until LDOCORE is able to leave  
the POR state, otherwise the DA9063 relapses back into RTC mode.  
6.14.1 32K Oscillator  
The clock oscillator circuit is used to drive the RTC. It works with an external piezoelectric oscillator  
crystal at 32.768 kHz and is enabled via control CRYSTAL. If enabled, the DA9063 biases the crystal  
when leaving DELIVERY or NO-POWER mode, which starts up the oscillator. By asserting RTC_EN,  
the crystal remains biased (the RTC continues to run).  
Note  
When the 32 kHz oscillator is disabled, an external oscillator signal may be applied to port XOUT (the signal is  
forwarded phase-inverted).  
In order to achieve the desired crystal frequency, an external capacitor (10 pF to 20 pF, depending  
on the parasitic capacitance of the board) should be connected to ground from each of the crystal  
pins. The start-up time of the oscillator is typically 0.5 s to 1 s. The XTAL pins should be grounded  
when the crystal is not mounted and when not being driven by an external oscillator signal. The  
32 kHz clock signal is available at the OUT_32K port and the buffer can be enabled/disabled from  
the host via control EN_32KOUT. The 32 kHz signal can also be made available at GP_FB3  
(enabled via control PM_FB3_PIN).  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
109 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
6.14.1.1  
First Power-Up Sequencing after Enable of 32 kHz Oscillator (ID EN32K_STEP)  
When the oscillator is enabled (when asserting control CRYSTAL, or when leaving DELIVERY or  
NO-POWER mode with CRYSTAL already asserted), OUT_CLOCK determines whether the clock  
provision at OUT_32K (GP_FB3) is gated by a timer. This enables the clock output only when the  
oscillator signal has become stable. The control RTC_CLOCK provides a similar gating function prior  
to the clock signal being fed into the internal RTC counter. The stabilization timer (configured via  
STABILISATION_TIME) can either be started immediately or be configured to wait until the clock’s  
duty cycle is within the range 30-70% (selected via DELAY_MODE). When powering up before the  
stabilization timer has expired, ID EN32K_STEP forces the sequencer to wait for timer expiry, which  
allows a correlation of the 32 kHz signal being provided to outputs with other power up actions  
following the enable of the 32 kHz oscillator. When reaching ID EN32K_STEP with OUT_CLOCK  
being released, the gating of the 32 kHz signal is terminated immediately. ID EN32K_STEP is not  
processed by the sequencer powering-down, nor during consecutive sequencing powering-up.  
6.14.1.2  
Other Power-Up and -Down Sequencing (ID PD_DIS_STEP)  
If the power sequence does not contain the sequencer ID EN32K_STEP, the control  
OUT_32K_PAUSE from ID PD_DIS_STEP can be used to control the dedicated clock output port  
OUT_32K in relation to other sequencer actions when powering up and down. The same is true for  
any sequencing following the first signal provision to port OUT_32K in case the power sequence  
contains ID EN32K_STEP.  
Clearing control crystal enables the provision of the 32 kHz signal from an external clock source  
connected to the XOUT pin, see Table 49. The provision of external clock signals is not timing  
controlled and the sequencer ID EN_32K immediately progresses in this case. The crystal input pins  
can withstand leakage currents corresponding to connected resistances at least as low as 10 MΩ,  
connected between the pin and any signal level between VDDREF and GND.  
Table 49: 32 kHz Oscillator Modes  
Power Mode  
Conditions  
NO-POWER  
DELIVERY  
No operation, supplies < ~2V  
No operation, though powered  
0
0
0
1
0
0
x
x
x
-
-
-
-
0
0
1
x
0
1
x
-
-
-
Note 1  
1
x
1
x
x
1
x
1
Only RTC and Alarm operating from  
external clock  
0
0
EXT  
Note 1  
RTC  
Only RTC and Alarm operating from  
internal crystal oscillator  
0
1
1
OSC  
-
Note 1  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
110 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
Power Mode  
Conditions  
Half-current operation, RTC and alarm off  
using external clock  
1
1
1
1
1
x
x
x
x
0
1
0
1
0
0
1
1
-
EXT  
EXT  
Note 2  
Half-current operation, RTC and alarm on  
using external clock  
1
EXT  
-
Note 3  
ACTIVE  
Half-current operation, RTC and alarm off  
using internal crystal oscillator  
1
OSC  
Note 4  
Note 2  
Half-current operation, RTC and alarm on  
using internal crystal oscillator  
1
OSC  
OSC  
Note 3  
Note 1 Requires nOFF or nSHUTDOWN to be asserted during VDDREF rising, or a power-down transition from  
ACTIVE mode with RTC_MODE_PD or RTC_MODE_SD being enabled  
Note 2 Triggered from nONKEY press, assertion of CHG_WAKE or VDDREF rising towards > 2.6 V  
Note 3 Triggered from nONKEY press, assertion of CHG_WAKE, alarm/tick event or VDDREF rising towards  
> 2.6 V  
Note 4 RTC_EN = 0 causes an initially unstable clock signal when entering half-current mode  
The timekeeping error from the frequency variance of crystal oscillators (typ. ±20 ppm) can be  
trimmed individually during the application end test via the OTP-programmable register TRIM_CLDR  
by ± 242 ppm with a resolution of 1.9 ppm (1/[32768 * 16]). More advanced solutions can  
dynamically correct even the temperature related oscillator frequency drift (> 100 ppm) using a  
periodic temperature measurement located close to the crystal. The timekeeping correction is applied  
only to the RTC calendar counter. Because of potential clock jitter issues, the 32 kHz clock signal at  
the OUT_32K pin provides the original frequency of the crystal.  
6.14.2 RTC Counter and Alarm  
The RTC counter counts the number of 32 kHz clock periods, providing a sec, min, hrs, day, month,  
and year output. Year 0 corresponds to 2000. It is able to count up to 63 years. The value of the RTC  
calendar is read-/write-able via the power manager communication. A read of COUNT_S (seconds)  
latches the current RTC calendar count into the registers COUNT_S through to COUNT_Y (coherent  
for approx. 0.5 s), so to obtain an updated calendar value requires a read of COUNT_S. Registers  
are only valid when RTC_READ status bit is asserted (assertion may take several milliseconds from  
leaving POR).  
There is an alarm register containing min, hrs, day, month, and year. When the RTC counter register  
value corresponds to the value set in the alarm, an IRQ event is triggered and a wakeup is triggered  
if the DA9063 is in POWERDOWN mode. The trigger also sets a bit in an event register to notify that  
an alarm has occurred. The alarm can alternatively be asserted from a periodic ‘tick’ signal that,  
depending on control TICK_TYPE, is either asserted every second or minute.  
Note  
After modifying TICK_TYPE or TICK_WAKE, a write to register ALARM_Y is required to activate the new  
settings.  
The power manager controls, ALARM_ON and TICK_ON, enable/disable the alarm and tick.  
The power manager register bit MONITOR is set to 0 each time the RTC is powered up. Software  
should set this bit to 1 when setting the time and date which allows software to detect a subsequent  
loss of the clock. Values written into the RTC calendar and alarm registers must be valid for the  
associated units of calendar time, for example less than 60 for second and minute registers, see  
register description for further details.  
The RTC registers SECOND_A to SECOND_D define a 32-bit seconds counter (approx. 136 years)  
that can only be reset after powering up from NO-POWER mode. A read of SECOND_A (seconds  
counter LSBs) latches the full 32-bit counter into the registers SECOND_A to SECOND_D (coherent  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
111 of 219  
© 2017 Dialog Semiconductor  
 
 
 
DA9063  
System PMIC for Mobile Application Processors  
for approx. 0.5 s), so that receiving an updated counter value requires a read of SECOND_A. After  
MONITOR has been set, any host write to CRYSTAL and RTC_EN is prohibited to ensure that the  
SECOND_A to SECOND_D counters are never stopped.  
6.15 Adjustable Frequency Internal Oscillator  
An internal oscillator provides a nominal 6.0 MHz clock that is divided down to 3.0 MHz for the buck  
converters. It is divided down to 2.0 MHz to control the digital core, timers, PWM units, charge pump  
and ADC. The frequency of the internal oscillator is adjusted during the initial start-up sequence of  
the DA9063 to within 5% of the nominal 6.0 MHz. It can be adjusted further within ±10% via register  
control OSC_FRQ. The tolerance of this frequency affects most absolute timer values and PWM  
repetition rates (for example, LED and vibrator mode drivers) of the DA9063.  
6.16 Reference Voltage Generation: VREF, VLNREF  
The DA9063 includes a temperature-independent voltage reference circuit which is derived from an  
internal band-gap reference and OTP-trimmed buffer amplifier. The output voltage on VREF is  
trimmed to 1.2 V and the reference is decoupled by an external capacitor on the VREF pin. A lower  
voltage instance of VREF is provided at VLNREF (0.9 V) and used for the LDOs. These pins must  
not be loaded. The IREF pin provides the internally used accurate current bias and requires an  
external 200 kΩ precision resistor.  
6.17 Thermal Supervision  
The application must ensure that the DA9063 junction temperature does not exceed 125 °C. To  
protect the DA9063 from damage due to excessive power dissipation, the internal temperature is  
continuously monitored. Whenever the junction temperature is higher than TEMP_WARN = 125 °C,  
an E_TEMP event is asserted and an IRQ is generated for the host. If this occurs during  
POWERDOWN mode, a wakeup is triggered.  
The host may then check the exact junction temperature by a manual measurement on GPADC  
channel 4. An 8-bit OTP register (T_OFFSET) can be used to store its offset at a known temperature  
(for example 50 °C) to improve the absolute accuracy, which should then be ±7 °C of the measured  
silicon die junction temperature. This T_OFFSET can be used by the host to calculate the absolute  
die temperature.  
The absolute die junction temperature can be calculated by the host using the result from the ADC  
channel 4 measurement result and the T_OFFSET trim values.  
When the junction temperature exceeds 125 °C, it is recommended to shut down optional functions  
of the application allowing the DA9063 to cool. When the junction temperature increases further,  
exceeding TEMP_CRIT = 140 °C, the fault flag TEMP_CRIT is asserted in the FAULT_LOG register  
and the DA9063 immediately shuts down to RESET mode. The fault condition remains as long as the  
junction temperature is higher than TEMP_WARN. The TEMP_CRIT flag can be evaluated by the  
application after the next power up. Whenever the junction temperature exceeds TEMP_POR =  
150 °C, a POR to the digital core is immediately asserted and this stops all functions of the DA9063  
except for the RTC. This is necessary to prevent the possibility of permanent device damage.  
6.18 Main System Rail Voltage Supervision  
The supervision of the system supply VSYS is performed by two comparators. One monitors the  
under-voltage level VDD_FAULT_LOWER (fault condition indicator); the other,  
VDD_FAULT_UPPER, indicates a good (valid) battery/external supply. The high-to-low transition of  
the VDD_FAULT_UPPER signal is also used as a low system supply warning indicator, informing the  
host via event E_VDD_WARN (or the assertion of port nVDDFAULT) that the system rail may soon  
drop below the under-voltage threshold.  
The VDD_FAULT_LOWER threshold is OTP-configurable and can be set via the VDD_FAULT_ADJ  
control bits from 2.5 V to 3.25 V in steps of 50 mV. The VDD_FAULT_UPPER level is also OTP-  
configurable and can be set via the VDD_HYST_ADJ from 100 to 450 mV higher than the  
programmed VDD_FAULT_LOWER threshold.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
112 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
7
Register Map  
This section provides an overview of the registers. A description of each register is provided in  
Appendix A.  
PAGE 0  
(Hex)  
REG_PAGE  
PAGE_CON  
Revert  
WRITE_MODE  
Reserved  
Reserved  
Reserved  
00  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
System Control and Event Registers (SYSMON)  
Reserved  
STATUS_A  
STATUS_B  
STATUS_C  
STATUS_D  
FAULT_LOG  
EVENT_A  
Reserved  
GPI7  
Reserved  
GPI6  
Reserved  
COMP1V2  
DVC_BUSY  
GPI2  
WAKE  
GPI1  
nONKEY  
GPI0  
GPI5  
GPI13  
GPI4  
GPI3  
GPI11  
GPI15  
GPI14  
GPI12  
GPI10  
GPI9  
GPI8  
LDO11_LIM  
LDO8_LIM  
nSHUTDOWN  
EVENTS_C  
E_VDD_MON  
E_GPI6  
LDO7_LIM  
KEY_RESET  
EVENTS_B  
E_DVC_RDY  
E_GPI5  
LDO4_LIM  
LDO3_LIM  
Reserved  
Reserved  
Reserved  
TWD_ERROR  
E_nONKEY  
E_WAKE  
WAIT_SHUT  
EVENTS_D  
E_VDD_WARN  
E_GPI7  
TEMP_CRIT  
E_SEQ_RDY  
E_REG_UVOV  
E_GPI4  
VDD_START  
E_ADC_RDY  
E_LDO_LIM  
E_GPI3  
VDD_FAULT  
E_TICK  
POR  
E_ALARM  
E_TEMP  
EVENT_B  
E_COMP_1V2  
E_GPI2  
EVENT_C  
E_GPI1  
E_GPI0  
EVENT_D  
E_GPI15  
E_GPI14  
E_GPI13  
E_GPI12  
E_GPI11  
E_GPI10  
E_GPI9  
E_GPI8  
IRQ_MASK_A  
IRQ_MASK_B  
IRQ_MASK_C  
IRQ_MASK_D  
CONTROL_A  
CONTROL_B  
CONTROL_C  
CONTROL_D  
CONTROL_E  
CONTROL_F  
PD_DIS  
Reserved  
M _VDD_WARN  
M _GP I7  
Reserved  
M _VDD_M ON  
M _GP I6  
Reserved  
M _DVC_RDY  
M _GP I5  
M _SEQ_RDY  
M _REG_UVOV  
M _GP I4  
M _ADC_RDY  
M _LDO_LIM  
M _GP I3  
M _TICK  
M _ALARM  
M _TEM P  
M _GP I1  
M _nONKEY  
M _WAKE  
M _GP I0  
M _GP I8  
SYSTEM _EN  
CHG_SEL  
M _COM P _1V2  
M _GP I2  
M _GP I15  
M _GP I14  
M_POWER1_EN  
Reserved  
M _GP I13  
M_POWER_EN  
Reserved  
M _GP I12  
M _GP I11  
M _GP I10  
P OWER1_EN  
RESET_BLINKING  
M _GP I9  
CP _EN  
M_SYSTEM_EN  
nONKEY_LOCK  
OTP READ_EN  
BLINK_FRQ  
STANDBY  
nRES_M ODE  
AUTO_BOOT  
P OWER_EN  
WATCHDOG_DIS  
DEBOUNCING  
TWDSCALE  
BUCK_SLOWSTART  
DEF_SUP P LY  
SLEW_RATE  
BLINK_DUR  
V_LOCK  
Reserved  
P M _FB3_P IN  
Reserved  
P M _FB2_P IN  
Reserved  
P M _FB1_P IN  
Reserved  
ECO_M ODE  
Reserved  
RTC_EN  
WAKE_UP  
P M IF_DIS  
RTC_M ODE_SD  
SHUTDOWN  
RTC_M ODE_P D  
WATCHDOG  
GP I_DIS  
P M CONT_DIS  
OUT32K_P AUSE  
BBAT_DIS  
Reserved  
HS2IF_DIS  
GP ADC_P AUSE  
GPIO Control Registers (GPIO)  
GP IO1_P IN  
GP IO0_P IN  
GPIO0-1  
GPIO2-3  
GP IO1_WEN  
GP IO3_WEN  
GP IO5_WEN  
GP IO7_WEN  
GP IO9_WEN  
GP IO11_WEN  
GP IO13_WEN  
GP IO15_WEN  
GP IO7_ M ODE  
GP IO15_ M ODE  
CP _EN_M ODE  
GP IO1_TYP E  
GP IO3_TYP E  
GP IO5_TYP E  
GP IO7_TYP E  
GP IO9_TYP E  
GP IO11_TYP E  
GP IO13_TYP E  
GP IO15_TYP E  
GP IO6_ M ODE  
GP IO14_ M ODE  
CORE_SW_INT  
GP IO0_WEN  
GP IO2_WEN  
GP IO4_WEN  
GP IO6_WEN  
GP IO8_WEN  
GP IO10_WEN  
GP IO12_WEN  
GP IO14_WEN  
GP IO3_ M ODE  
GP IO11_ M ODE  
GP IO0_TYP E  
GP IO2_TYP E  
GP IO4_TYP E  
GP IO6_TYP E  
GP IO8_TYP E  
GP IO10_TYP E  
GP IO12_TYP E  
GP IO14_TYP E  
GP IO2_M ODE  
GP IO10_ M ODE  
GP IO3_P IN  
GP IO5_P IN  
GP IO7_P IN  
GP IO9_P IN  
GP IO11_P IN  
GP IO2_P IN  
GP IO4_P IN  
GP IO6_P IN  
GP IO8_P IN  
GP IO10_P IN  
GP IO12_P IN  
GP IO14_P IN  
GPIO4-5  
GPIO6-7  
GPIO8-9  
GPIO10-11  
GP IO13_P IN  
GP IO15_P IN  
GPIO12-13  
GPIO14-15  
GPIO_MODE0-7  
GPIO_MODE8-15  
SWITCH_CONT  
GP IO5_ M ODE  
GP IO13_ M ODE  
SWITCH_SR  
GP IO4_ M ODE  
GP IO1_ M ODE  
GP IO9_ M ODE  
GP IO0_ M ODE  
GP IO8_ M ODE  
GP IO12_ M ODE  
P ERI_SW_GP I  
CORE_SW_GP I  
Regulator Control Registers (REG)  
VBCORE2_GP I  
BCORE2_GP I  
BCORE2_CONT  
BCORE1_CONT  
BPRO_CONT  
BMEM_CONT  
BIO_CONT  
Reserved  
CORE_SW_CONF  
Reserved  
Reserved  
CORE_SW_EN  
Reserved  
BCORE2_CONF  
BCORE2_EN  
BCORE1_EN  
BPRO_EN  
BMEM_EN  
BIO_EN  
VBCORE1_GP I  
VBP RO_GP I  
VBM EM _GP I  
VBIO_GP I  
BCORE1_GP I  
BP RO_GP I  
BM EM _GP I  
BIO_GP I  
BCORE1_CONF  
BP RO_CONF  
BM EM _CONF  
BIO_CONF  
Reserved  
Reserved  
Reserved  
Reserved  
VBP ERI_GP I  
VLDO1_GP I  
VLDO2_GP I  
VLDO3_GP I  
VLDO4_GP I  
VLDO5_GP I  
VLDO6_GP I  
VLDO7_GP I  
VLDO8_GP I  
VLDO9_GP I  
VLDO10_GP I  
VLDO11_GP I  
BP ERI_GP I  
LDO1_GP I  
LDO2_GP I  
LDO3_GP I  
LDO4_GP I  
LDO5_GP I  
LDO6_GP I  
LDO7_GP I  
LDO8_GP I  
LDO9_GP I  
LDO10_GP I  
LDO11_GP I  
BPERI_CONT  
LDO1_CONT  
LDO2_CONT  
LDO3_CONT  
LDO4_CONT  
LDO5_CONT  
LDO6_CONT  
LDO7_CONT  
LDO8_CONT  
LDO9_CONT  
LDO10_CONT  
LDO11_CONT  
VIB  
P ERI_SW_CONF  
LDO1_CONF  
LDO2_CONF  
LDO3_CONF  
LDO4_CONF  
LDO5_CONF  
LDO6_CONF  
LDO7_CONF  
LDO8_CONF  
LDO9_CONF  
LDO10_CONF  
LDO11_CONF  
Reserved  
PERI_SW_EN  
Reserved  
BP ERI_CONF  
LDO1_P D_DIS  
LDO2_P D_DIS  
LDO3_P D_DIS  
LDO4_P D_DIS  
LDO5_P D_DIS  
LDO6_P D_DIS  
LDO7_P D_DIS  
LDO8_P D_DIS  
LDO9_P D_DIS  
LDO10_P D_DIS  
LDO11_P D_DIS  
BPERI_EN  
LDO1_EN  
Reserved  
LDO2_EN  
LDO3_EN  
LDO4_EN  
LDO5_EN  
LDO6_EN  
LDO7_EN  
LDO8_EN  
LDO9_EN  
LDO10_EN  
LDO11_EN  
Reserved  
Reserved  
VLDO5_SEL  
VLDO6_SEL  
VLDO7_SEL  
VLDO8_SEL  
VLDO9_SEL  
VLDO10_SEL  
VLDO11_SEL  
VIB_SET  
Reserved  
DVC_1  
VLDO3_SEL  
VLDO2_SEL  
Reserved  
VLDO1_SEL  
Reserved  
VBPERI_SEL  
Reserved  
VBMEM_SEL  
Reserved  
VBPRO_SEL  
Reserved  
VBCORE2_SEL  
VBCORE1_SEL  
VBIO_SEL  
DVC_2  
VLDO4_SEL  
Reserved  
GP-ADC Control Registers (GPADC)  
ADC_MAN  
ADC_CONT  
VSYS_MON  
ADC_RES_L  
ADC_RES_H  
VSYS_RES  
Reserved  
Reserved  
ADC_M ODE  
ADC_MAN  
ADC_M UX  
COM P 1V2_EN  
AD3_ISRC_EN  
AD2_ISRC_EN  
AD1_ISRC_EN  
AUTO_AD3_EN  
AUTO_AD2_EN  
AUTO_AD1_EN  
AUTO_VSYS_EN  
VSYS_M ON  
ADC_RES_LSB  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ADC_RES_MSB  
VSYS_RES  
ADCIN1_RES  
ADCIN2_RES  
ADCIN3_RES  
MON1_RES  
MON2_RES  
MON3_RES  
ADCIN1_RES  
ADCIN2_RES  
ADCIN3_RES  
MON1_RES  
MON2_RES  
MON3_RES  
RTC Calendar and Alarm Registers (RTC)  
COUNT_SEC  
COUNT_MIN  
COUNT_S  
COUNT_MI  
COUNT_H  
RTC_READ  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
MONITOR  
COUNT_HOUR  
COUNT_DAY  
Reserved  
COUNT_D  
Reserved  
Reserved  
COUNT_MONTH  
COUNT_MO  
COUNT_Y  
Reserved  
COUNT_YEAR  
ALARM_SEC  
ALARM_MIN  
ALARM_TYPE  
ALARM_S  
ALARM_MI  
ALARM_H  
ALARM_D  
ALARM_MO  
ALARM_Y  
SECOND_A  
SECOND_B  
SECOND_C  
SECOND_D  
Reserved  
Reserved  
Reserved  
Reserved  
TICK_ON  
Reserved  
Reserved  
ALARM_HOUR  
ALARM_DAY  
ALARM_MONTH  
Reserved  
Reserved  
Reserved  
Reserved  
TICK_WAKE  
TICK_TYPE  
ALARM_YEAR  
ALARM_ON  
SECONDS_A  
SECONDS_B  
SECONDS_C  
SECONDS_D  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
113 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
PAGE 1  
REG_PAGE  
PAGE_CON  
Revert  
WRITE_MODE  
Reserved  
Reserved  
Reserved  
80  
80  
Sequencer Control Registers (SEQ)  
NXT_SEQ_START  
SEQ_POINTER  
SEQ_TIM E  
SEQ  
SEQ_TIMER  
ID_2_1  
81  
SEQ_DUM M Y  
LDO2_STEP  
LDO4_STEP  
LDO6_STEP  
LDO8_STEP  
LDO10_STEP  
P D_DIS_STEP  
82  
LDO1_STEP  
LDO3_STEP  
LDO5_STEP  
LDO7_STEP  
LDO9_STEP  
LDO11_STEP  
83  
ID_4_3  
84  
ID_6_5  
85  
ID_8_7  
86  
ID_10_9  
ID_12_11  
ID_14_13  
ID_16_15  
ID_18_17  
ID_20_19  
ID_22_21  
ID_24_23  
ID_26_25  
ID_28_27  
ID_30_29  
ID_32_31  
Reserved  
Reserved  
SEQ_A  
87  
88  
BUCKCORE2_STEP  
BUCKIO_STEP  
BUCKP ERI_STEP  
P ERI_SW_STEP  
GP _FALL1_STEP  
GP _FALL2_STEP  
GP _FALL3_STEP  
GP _FALL4_STEP  
GP _FALL5_STEP  
EN32K_STEP  
BUCKCORE1_STEP  
BUCKP RO_STEP  
BUCKM EM _STEP  
CORE_SW_STEP  
GP _RISE1_STEP  
GP _RISE2_STEP  
GP _RISE3_STEP  
GP _RISE4_STEP  
GP _RISE5_STEP  
WAIT_STEP  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
Reserved  
Reserved  
93  
Reserved  
Reserved  
94  
P OWER_END  
SYSTEM _END  
M AX_COUNT  
95  
P ART_DOWN  
SEQ_B  
96  
WAIT_DIR  
WAIT_TIM E  
STABILISATION_TIM E  
WAIT  
TIM E_OUT  
OUT_CLOCK  
WAIT_M ODE  
WAIT_TIM E  
CRYSTAL  
97  
EN_32K  
RESET  
OUT_32K_EN  
RTC_CLOCK  
DELAY_M ODE  
98  
RESET_EVENT  
RESET_TIM ER  
99  
99  
Regulator Setting Registers (REG)  
BM EM _ILIM  
BP ERI_ILIM  
BIO_ILIM  
BUCK_ILIM_A  
BUCK_ILIM_B  
BUCK_ILIM_C  
BCORE2_CONF  
BCORE1_CONF  
BPRO_CONF  
BIO_CONF  
BMEM_CONF  
BPERI_CONF  
VBCORE2_A  
VBCORE1_A  
VBPRO_A  
VBMEM_A  
VBIO_A  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
C0  
C1  
C2  
C3  
C4  
C4  
C5  
C5  
C6  
C7  
C8  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
BP RO_ILIM  
BCORE2_ILIM  
BCORE2_P D_DIS  
BCORE1_P D_DIS  
BCORE1_ILIM  
BCORE2_M ODE  
BCORE1_M ODE  
BP RO_M ODE  
BIO_M ODE  
BCORE2_FB  
BCORE1_FB  
BP RO_FB  
BIO_FB  
Reserved  
Reserved  
Reserved  
Reserved  
BP RO_P D_DIS  
BIO_P D_DIS  
BP RO_VTT_EN  
Reserved  
BP RO_VTTR_EN  
Reserved  
BM EM _ M ODE  
BP ERI_ M ODE  
BM EM _FB  
BP ERI_FB  
BM EM _P D_DIS  
BP ERI_P D_DIS  
Reserved  
Reserved  
Reserved  
Reserved  
VBCORE2_A  
VBCORE1_A  
VBP RO_A  
VBM EM _A  
VBIO_A  
BCORE2_SL_A  
BCORE1_SL_A  
BCP RO_SL_A  
BM EM _SL_A  
BIO_SL_A  
VBP ERI_A  
VBPERI_A  
VLDO1_A  
BP ERI_SL_A  
LDO1_SL_A  
LDO2_SL_A  
LDO3_SL_A  
LDO4_SL_A  
LDO5_SL_A  
LDO6_SL_A  
LDO7_SL_A  
LDO8_SL_A  
LDO9_SL_A  
LDO10_SL_A  
LDO11_SL_A  
BCORE2_SL_B  
BCORE1_SL_B  
BCP RO_SL_B  
BM EM _SL_B  
BIO_SL_B  
VLDO1_A  
Reserved  
Reserved  
VLDO2_A  
VLDO2_A  
VLDO3_A  
VLDO4_A  
VLDO3_A  
VLDO4_A  
VLDO5_A  
VLDO6_A  
VLDO7_A  
VLDO8_A  
VLDO9_A  
VLDO10_A  
VLDO11_A  
VLDO5_A  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
VLDO6_A  
VLDO7_A  
VLDO8_A  
VLDO9_A  
VLDO10_A  
VLDO11_A  
VBCORE2_B  
VBCORE1_B  
VBP RO_B  
VBM EM _B  
VBIO_B  
VBCORE2_B  
VBCORE1_B  
VBPRO_B  
VBMEM_B  
VBIO_B  
VBP ERI_B  
VBPERI_B  
VLDO1_B  
BP ERI_SL_B  
LDO1_SL_B  
LDO2_SL_B  
LDO3_SL_B  
LDO4_SL_B  
LDO5_SL_B  
LDO6_SL_B  
LDO7_SL_B  
LDO8_SL_B  
LDO9_SL_B  
LDO10_SL_B  
LDO11_SL_B  
VLDO1_B  
VLDO2_B  
Reserved  
Reserved  
VLDO2_B  
VLDO3_B  
VLDO4_B  
VLDO3_B  
VLDO4_B  
VLDO5_B  
VLDO6_B  
VLDO7_B  
VLDO8_B  
VLDO9_B  
VLDO10_B  
VLDO11_B  
VLDO5_B  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
VLDO6_B  
VLDO7_B  
VLDO8_B  
VLDO9_B  
VLDO10_B  
VLDO11_B  
Backup Battery Charger Control Registers (BBAT)  
GPIO PWM (LED)  
BCHG_ISET  
BCHG_VSET  
BBAT_CONT  
GP O11_P WM  
GPO11_LED  
GPO14_LED  
GPO15_LED  
GP O11_DIM  
GP O14_DIM  
GP O15_DIM  
GP O14_P WM  
GP O15_P WM  
GP-ADC Threshold Registers (GPADC)  
ADCIN1_CUR  
ADCIN1_CUR  
ADC_CONT  
AUTO1_HIGH  
AUTO1_LOW  
AUTO2_HIGH  
AUTO2_LOW  
AUTO3_HIGH  
AUTO3_LOW  
ADCIN3_DEB  
ADCIN2_DEB  
ADCIN1_DEB  
ADCIN3_CUR  
AUTO1_HIGH  
AUTO1_LOW  
AUTO2_HIGH  
AUTO2_LOW  
AUTO3_HIGH  
AUTO3_LOW  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
114 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
PAGE 2  
REG_PAGE  
PAGE_CON  
Revert  
WRITE_MODE  
Reserved  
Reserved  
Reserved  
100  
100  
101  
102  
103  
04F  
104  
105  
106  
107  
108  
109  
10A  
10B  
10C  
10D  
10E  
10F  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
11A  
11B  
11C  
11D  
11E  
11F  
11E  
11E  
11F  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
12A  
12B  
12C  
12D  
12E  
12F  
130  
131  
132  
132  
133  
134  
135  
136  
137  
138  
139  
13A  
13B  
13C  
13D  
OTP (OTP)  
OTP _GP _LOCK  
OTP_CONT  
OTP_ADDR  
OTP_DATA  
GP _WRITE_DIS  
OTP _CONF_LOCK  
OTP _AP P S_LOCK  
PC_DONE  
OTP_APPS_RD  
OTP_GP_RD  
OTP_TIM  
OTP_ADDR  
OTP_DATA  
Customer Trim and Configuration Registers (APPS)  
T_OFFSET  
T_OFFSET  
INTERFACE  
CONFIG_A  
CONFIG_B  
CONFIG_C  
CONFIG_D  
CONFIG_E  
CONFIG_F  
CONFIG_G  
CONFIG_H  
CONFIG_I  
IF_BASE_ADDR  
R/W_P OL  
CP HA  
CP OL  
nCS_P OL  
P M _I_V  
IF_TYP E  
CHG_CLK_M ODE  
BP ERI_CLK_INV  
GP _FB3_TYP E  
P ERI_SW_AUTO  
LDO11_BYP  
P M _IF_HSM  
P M _IF_FM P  
P M _IF_V  
IRQ_TYP E  
P M _O_TYP E  
P M _O_V  
VDD_HYST_ADJ  
VDD_FAULT_ADJ  
LDO1_TRACK  
BIO_CLK_INV  
GP _FB2_TYP E  
CORE_SW_AUTO  
LDO8_BYP  
BM EM _CLK_INV  
FORCE_RESET  
BP ERI_AUTO  
LDO7_BYP  
BP RO_CLK_INV  
HS_IF_HSM  
BIO_AUTO  
BCORE1_CLK_INV  
HS_IF_FM P  
BUCK_DISCHG  
SYSTEM _EN_RD  
BP P RO_AUTO  
LDO11_AUTO  
nIRQ_M ODE  
GP I_V  
BM EM _AUTO  
LDO3_BYP  
BCORE2_AUTO  
LDO10_AUTO  
LDO2_AUTO  
LDO8_M ODE  
BCORE1_AUTO  
LDO9_AUTO  
LDO1_AUTO  
P WM _CLK  
LDO4_BYP  
LDO8_AUTO  
BUCK_M ERGE  
LDO_SD  
LDO7_AUTO  
BCORE1_OD  
INT_SD_M ODE  
IF_TO  
LDO6_AUTO  
LDO5_AUTO  
BP RO_OD  
LDO4_AUTO  
LDO3_AUTO  
BCORE2_OD  
BCORE_M ERGE  
GP I14_15_SD  
M ERGE_SENSE  
nONKEY_SD  
nONKEY_P IN  
KEY_DELAY  
GP IO0_P UP D  
HOST_SD_M ODE  
KEY_SD_M ODE  
RESET_DURATION  
SHUT_DELAY  
CONFIG_J  
CONFIG_K  
CONFIG_L  
CONFIG_M  
CONFIG_N  
MON_REG_1  
MON_REG_2  
MON_REG_3  
MON_REG_4  
Reserved  
IF_RESET  
GP I7_P UP D  
GP I6_P UP D  
GP I5_P UP D  
GP IO13_P UP D  
Reserved  
GP I4_P UP D  
GP IO12_P UP D  
Reserved  
GP I3_P UP D  
GP IO11_P UP D  
Reserved  
Reserved  
M ON_DEB  
LDO4_M ON_EN  
Reserved  
BIO_M ON_EN  
Reserved  
GP IO2_P UP D  
GP IO10_P UP D  
Reserved  
GP IO1_P UP D  
GP IO9_P UP D  
Reserved  
GP IO15_P UP D  
GP IO14_P UP D  
GP IO8_P UP D  
Reserved  
OSC_FREQ  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
UVOV_DELAY  
M ON_M ODE  
M ON_THRES  
M ON_RES  
LDO3_M ON_EN  
LDO11_M ON_EN  
BP RO_M ON_EN  
Reserved  
LDO8_M ON_EN  
Reserved  
Reserved  
Reserved  
LDO7_M ON_EN  
Reserved  
Reserved  
Reserved  
LDO6_M ON_EN  
Reserved  
BP ERI_M ON_EN  
Reserved  
LDO5_M ON_EN  
Reserved  
BM EM _M ON_EN  
Reserved  
LDO2_M ON_EN  
LDO10_M ON_EN  
BCORE2_M ON_EN  
Reserved  
LDO1_M ON_EN  
LDO9_M ON_EN  
BCORE1_M ON_EN  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
MONA9_IDX  
MONA8_IDX  
MONA10_IDX  
MON_REG_5  
MON_REG_6  
TRIM_CLDR  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TRIM _CLDR  
General Purpose Registers (GP)  
GP _0  
GP_ID_0  
GP_ID_1  
GP_ID_2  
GP_ID_3  
GP_ID_4  
GP_ID_5  
GP_ID_6  
GP_ID_7  
GP_ID_8  
GP_ID_9  
GP_ID_10  
GP_ID_11  
GP_ID_12  
GP_ID_13  
GP_ID_14  
GP_ID_15  
GP_ID_16  
GP_ID_17  
GP_ID_18  
GP_ID_19  
GP _1  
GP _2  
GP _3  
GP _4  
GP _5  
GP _6  
GP _7  
GP _8  
GP _9  
GP _10  
GP _11  
GP _12  
GP _13  
GP _14  
GP _15  
GP _16  
GP _17  
GP _18  
GP _19  
Debug Registers (DEB)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
MISC_SUPP  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CRYSTAL_OK  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
OTP_CLK_ON  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Most register bits are reset to defaults (zero in most cases) when powering up from RESET mode.  
An exceptions is for example FAULT_LOG that is not loaded from OTP. Register fields shown in  
BOLD are loaded from OTP.  
PAGE 3  
REG_PAGE  
PAGE_CON  
Revert  
WRITE_MODE  
Reserved  
Reserved  
Reserved  
180  
180  
181  
182  
183  
184  
Chip ID, Trim and Production Test (PROD)  
DEV_ID  
DEVICE_ID  
VARIANT_ID  
CUSTOMER_ID  
CONFIG_ID  
MRC  
VRC  
CUST_ID  
CONFIG_REV  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
115 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
8
Application Information  
The following recommended components are examples selected from requirements of a typical  
application. The electrical characteristics (for example, supported voltage/current range) have to be  
cross-checked and component types may need to be adapted from the individual needs of the target  
circuitry.  
8.1 Capacitor Selection  
Ceramic capacitors are used as bypass capacitors at all VDD and output rails. When selecting a  
capacitor, especially for types with high capacitance at smallest physical dimension, the DC bias  
characteristic has to be taken into account. On the VSYS main supply rail a minimum distributed  
capacitance of 40 μF (actual capacitance after voltage and temperature derating) is required. For  
example, a typical design might use:  
22 μF within 1.5 mm of each BUCKCORE1, BUCKCORE2 and BUCKPRO supply pin.  
10 μF within 1.5 mm of each BUCKPERI, BUCKIO and BUCKMEM supply pin or 1 μF x 22 μF if  
all are attached to a PCB power/split plane.  
2 μF x 1 μF shared by all VDD_LDOx pins if they are all close together, for example, all attached  
to a power/split plane.  
1 μF close to the VSYS pin.  
Buck output capacitors should be close to the buck inductors.  
The amount of decoupling required will be dependent on the specific application.  
Table 50: Recommended Capacitor Types  
Rated  
Tol.  
(%)  
Height  
(mm)  
Temp.  
Char.  
Application  
Value  
Size  
Voltage  
(V)  
Type (Murata/Samsung)  
VLDO1, VLDO5  
1.0 µF  
± 10  
± 20  
0402  
0.55  
0.55  
X5R ±15 %  
X5R ±15 %  
10  
GRM155R61A105KE15  
VDDCORE,  
VLDOA,  
VLDOB,  
VLDOC,  
2.2 µF  
0402  
6.3  
GRM155R60J225ME95  
VLDOD,  
VLDOE, VREF,  
VLNREF, VSYS  
± 20  
± 20  
± 20  
± 20  
0805  
0402  
0805  
0603  
0.95  
0.5  
X5R ±15 %  
X5R ±15 %  
X5R ±15 %  
X5R ±15 %  
6.3  
4.0  
4.0  
4.0  
GRM219R60J226M***  
CL05A226MR5NZNC  
GRM219R60G476M***  
CL10A476MR8NZN  
22 µF  
47 µF  
VBUCKPER,  
VBUCKIO,  
VBUCKMEM,  
VSYS  
0.95  
0.8  
GRM188R60J226MEA0  
Note 1  
± 20  
0603  
1.0  
X5R ±15 %  
6.3  
22 µF  
47 µF  
VBUCKCORE1  
and 2,  
VBUCKPRO  
(using full-  
± 20  
± 20  
± 20  
± 20  
± 20  
± 10  
± 10  
0402  
0805  
0805  
0603  
0603  
0402  
0402  
0.5  
0.95  
1.45  
0.8  
X5R ±15 %  
X5R ±15 %  
X5R ±15 %  
X5R ±15 %  
X5R ±15 %  
X5R ±15 %  
X5R ±15 %  
4.0  
4.0  
4.0  
4.0  
6.3  
10  
CL05A226MR5NZNC  
GRM219R60G476M***  
GRM21BR60G476ME15  
CL10A476MR8NZN  
current mode)  
10 µF  
1.0 µF  
470 nF  
0.95  
0.55  
0.55  
GRM188R60J106ME84  
GRM155R61A105KE15  
GRM155R61A474KE15  
VSYS  
VBBAT  
10  
VDDCORE,  
VREF, VLNREF  
2.2 µF  
± 20  
0402  
0.55  
X5R ±15 %  
6.3  
GRM155R60J225ME95  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
116 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Rated  
Voltage  
(V)  
Tol.  
(%)  
Height  
(mm)  
Temp.  
Char.  
Application  
Value  
Size  
Type (Murata/Samsung)  
XIN, XOUT  
V_CP  
12 pF  
47 nF  
± 5  
0402  
0402  
0.55  
0.55  
U2J  
50  
10  
GRM1557U1H120JZ01  
GRM155R71A473KA01  
± 10  
X7R ±15 %  
Note 1 For output voltages > 1.4 V Murata GRM219R60J226M*** is recommended.  
8.2 Backup Device  
The backup battery charger supports Lithium coin cells as well as Supercaps/Goldcaps. The RTC will  
require approximately 1.5 µA between 3.1 V and 2 V for each hour that the RTC should stay alive  
with the main supply removed. The choice of backup device is dependent on application  
requirements.  
Table 51: Example Backup Devices  
Type  
Size (mm)  
4.8 (dia.) x 2.1  
4.8 (dia.) x 1.4  
6.8 (dia.) x 1.4  
Manufacturer  
Panasonic  
Korchip  
Lithium Battery (rechargeable) ML421, 2.3 mAh, 3.0 V  
Starcap SC SM 2R8, 0.1 F, 2.8 V  
Lithium Battery (rechargeable) ML614, 3.4 mAh, 3.0 V  
Panasonic  
8.3 Inductor Selection  
Inductors should be selected based upon the following parameters:  
Rated maximum current: Usually a coil provides two current limits: ISAT of an Inductor specifies  
the current required to cause a reduction in the Inductance by a specified amount, typically 30%,  
IRMS of an Inductor specifies the current required to affect a temperature rise of a maximum  
specified amount.  
DC resistance: Critical to converter efficiency at high current and should therefore be minimised.  
ESR at the buck switching frequency: Critical to converter efficiency in PFM mode and should  
therefore be minimised.  
Inductance: Given by converter electrical characteristics; 1.0 µH for all DA9063 switched-mode  
step-down converters.  
Table 52: Recommended Inductor Types  
Application  
Value Tol.  
ISAT  
(A)  
IRMS  
(A)  
DCR  
(Typ.)  
(mΩ)  
Size (mm)  
Type  
(µH)  
(%)  
±30  
±20  
Toko  
1285AS-H-1R0N  
2.7  
2.3  
55  
60  
2.0x1.6x1.0  
2.0x1.6x1.0  
BUCKPERI,  
BUCKMEM,  
BUCKIO,  
BUCKCORE1,  
BUCKCORE2  
Tayo Yuden  
MAKK2016T1R0M  
(Reference)  
1.0  
2.65  
2.45  
TDK  
±20  
±30  
±20  
2.9  
3.4  
3.6  
2.2  
3.0  
3.1  
60  
60  
45  
2.0x1.6x1.0  
2.5x2.0x1.0  
2.5x2.0x1.2  
TFM201610A-1R0M  
Toko  
1269AS-H-1R0N  
BUCKPRO,  
BUCKCORE1  
and 2 using full-  
current mode or  
merged  
Tayo Yuden  
MAMK2520T1R0M  
1.0  
Toko  
1239AS-H-1R0N  
(Reference)  
BUCKMEM/  
BUCKIO  
±20  
3.8  
3.5  
45  
2.5x2.0x1.2  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
117 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Application  
Value Tol.  
ISAT  
(A)  
IRMS  
(A)  
DCR  
(Typ.)  
(mΩ)  
Size (mm)  
Type  
(µH)  
(%)  
Toko  
1276AS-H-1R0N  
±30  
±20  
±20  
3.9  
3.5  
3.1  
2.5  
2.5  
48  
54  
52  
3.2x2.5x1.0  
2.5x2.0x1.0  
3.0x3.0x1.2  
TDK  
TFM252010A-1R0M  
Cyntec  
PST031B-1R0MS  
3.35  
Coilcraft  
±20  
5.4  
11.0  
11  
4.0x4.0x2.1  
XFL4020-102ME (Ref.high  
current)  
8.4 Resistors  
Table 53: Recommended Resistor Types  
Application  
Value  
Size  
Tolerance  
±1%  
PMAX  
Type  
IREF bias current reference  
200 kΩ  
0402  
100 mW  
Panasonic  
ERJ2RKF2003x  
8.5 External Pass Transistors  
Table 54: Recommended External Pass Transistor Types  
Application  
Package  
Type  
BUCK Rail Switches  
WLCSP 1.6x1.6x0.55 mm  
Fairchild FDME410NZT  
8.6 Crystal  
The Real Time Clock module requires an external 32.768 kHz crystal. For correct component  
selection, the effective load capacitance must to be taken into account: this includes both external  
capacitors on pins XIN and XOUT in series combination, plus the PCB and DA9063 stray  
capacitances. For example, if two 12 pF external capacitors are used, giving a series combination of  
6 pF, and the stray capacitances are 3 pF, then a crystal type that specifies a load capacitance of  
9 pF should be chosen. Different stray capacitances may require different external capacitors and/or  
a different crystal type. Furthermore, the series resistance of the crystal must not exceed 100 kΩ.  
Table 55: Example Crystal Type  
Type  
Size  
Manufacturer  
CC7V-T1A 32.768 kHz 9.0 pF ±30 ppm  
3.2x1.5x0.9 mm  
Micro Crystal  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
118 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
8.7 Layout Guidelines  
8.7.1  
General Recommendations  
Appropriate trace width and quantity of vias should be used for all power supply paths.  
Too high trace resistances can prevent the system from achieving the best performance, for  
example, the efficiency and the current ratings of switch-mode converters and charger might be  
degraded. Furthermore, the PCB may be exposed to thermal hot spots, which can lead to critical  
overheating due to the positive temperature coefficient of copper.  
Special care must be taken with the DA9063 pad connections. The traces of the outer row should  
be connected with the same width as the pads and should become wider as soon as possible.  
For supply pins in the second row, connection to an inner board layer is recommended  
(depending on the maximum current two or more vias might be required).  
A common ground plane should be used, which allows proper electrical and thermal  
performance. Noise sensitive references such as the VREF/VLNREF capacitors and IREF  
resistor should be referred to a silent ground which is connected at a star point underneath or  
close to the DA9063 main ground connection.  
Generally, all power tracks with discontinuous/high currents should be kept as short as possible.  
Noise sensitive analog signals such as feedback lines or crystal connections should be kept  
away from traces carrying pulsed analog or digital signals. This can be achieved by separation  
(distance) or shielding with quiet signals or ground traces.  
8.7.2  
LDOs and Switched Mode Supplies  
The placement of the distributed capacitors on the VSYS rail must ensure that all VDD inputs –  
and especially to the VSYS pin, the buck converters and LDOs are connected to a bypass  
capacitor close to the pads. It is recommended placing at least two 1 µF capacitors close to the  
LDO supply pads and at least one 10 µF close to the buck VDD rail.  
Using a local power plane underneath the chip for VSYS might be considered.  
Transient current loops in the area of the switched mode converters should be minimised.  
The common references (IREF resistor, VREF/VLNREF capacitors) should be placed close to  
the DA9063 and cross coupling to any noisy digital or analog trace must be avoided.  
Output capacitors of the LDOs can be placed close to the input pins of the supplied devices  
(remote from the DA9063) .  
Care must be taken with trace routing to ensure that no current is carried on feedback lines of the  
buck output voltages VBUCK  
.
The inductor placement is less critical since parasitic inductances have negligible effect.  
8.7.3  
Crystal Oscillator  
The crystal and its load capacitors should be placed as close as possible to the IC with short and  
symmetric traces.  
The traces must be isolated from noisy signals, especially from clocked digital ones. Ideally the  
lines should be buried between two ground layers, surrounded by additional ground traces.  
8.7.4  
Thermal Connection, Land Pad, and Stencil Design  
The DA9063 provides a central ground area of balls, which are soldered to the PCB’s central  
ground pad. This PCB ground pad must be connected with as many vias and as direct as  
possible to the PCB’s main ground plane in order to achieve good thermal performance.  
Solder mask openings for the ball landing pads must be arranged to prohibit solder balls flowing  
into vias.  
For further PCB layout guidance, see PCB Layout Guidelines [3].  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
119 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
9
Definitions  
9.1 Power Dissipation and Thermal Design  
When designing with the DA9063, consideration must be given to power dissipation as the level of  
integration of the device can result in high power when all functions are operating with high battery  
voltages. Exceeding the package power dissipation capabilities results in the internal thermal sensor  
shutting down the device until it has sufficiently cooled.  
The package includes a thermal management paddle to improve heat spreading into the PCB.  
For Linear Regulators:  
Linear regulators operating with a high current and high differential voltage between input and output  
dissipate the following power:  
(
)
ꢄꢋꢄꢈꢉꢊ  
 
ꢀꢁꢂꢂ  
ꢃꢄ  ꢇꢄꢅ  
ꢁꢆ  
ꢈꢉꢊ  
Example: a regulator supplying 150 mA at 2.8 V from a fully-charged lithium battery (VDD=4.1 V):  
( )  
ꢃꢄ ꢎꢏꢅ  ꢄꢐꢎꢑꢅ  ꢒꢎꢏꢓꢔꢄ  ꢏꢕꢓꢖꢗ  
 
ꢀꢁꢂꢂ  
For Switching Regulators:  
 
ꢈꢉꢊ  
  ꢁꢆ  ꢘꢙꢙꢚꢛꢚꢜꢝꢛꢞ  
Therefore,  
 
ꢀꢁꢂꢂ  
  ꢁꢆ    
ꢈꢉꢊ  
 
ꢈꢉꢊ  
 
   
ꢈꢉꢊ  
ꢀꢁꢂꢂ  
ꢘꢙꢙꢚꢛꢚꢜꢝꢛꢞ  
 
      
 ꢏꢠ  
ꢀꢁꢂꢂ  
ꢈꢉꢊ  
ꢘꢙꢙꢚꢛꢚꢜꢝꢛꢞ  
 
 ꢈꢉꢊ  ꢈꢉꢊ    
 ꢏꢠ  
ꢀꢁꢂꢂ  
ꢘꢙꢙꢚꢛꢚꢜꢝꢛꢞ  
Example: an 85 % efficient buck converter supplying 1.2 V at 400 mA:  
 
ꢀꢁꢂꢂ  
 ꢏꢎꢐꢅ  ꢒꢎꢍꢔ    
 ꢏꢠ  ꢑꢓꢖꢗ  
ꢒꢎꢑꢓ  
As the DA9063 has multiple regulators, each supply must be separately considered and their powers  
summed to give the total device dissipation (current drawn from the reference and control circuitry  
can be considered negligible in these calculations).  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
120 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
9.2 Regulator Parameter - Dropout Voltage  
In the DA9063, a regulator’s dropout voltage is defined as the minimum voltage differential between  
the input and output voltages whilst regulation still takes place. Within the regulator, voltage control  
takes place across a PMOS pass transistor and, when entering the dropout condition, the transistor  
is fully turned on and therefore cannot provide any further voltage control. When the transistor is fully  
turned on, the output voltage tracks the input voltage and regulation ceases. As the DA9063 is a  
CMOS device and uses a PMOS pass transistor, the dropout voltage is directly related to the on-  
resistance of the device. In the device, the pass transistors are sized to provide the optimum balance  
between required performance and silicon area. By employing a 0.25 µm process, Dialog  
Semiconductor is able to achieve very small pass transistor sizes for superior performance.  
ꢀꢡꢈꢢꢈꢉꢊ      ꢀꢂꢈꢆ  ꢈꢉꢊ  
ꢁꢆ  
ꢈꢉꢊ  
When defining dropout voltage, it is specified in relation to a minimum acceptable change in output  
voltage. For example, all Dialog Semiconductor regulators have dropout voltage defined as the point  
at which the output voltage drops 10 mV below the output voltage at the minimum guaranteed  
operating voltage. The worst case conditions for dropout are high temperature (highest on-resistance  
for the internal pass device) and maximum current load.  
9.3 Regulator Parameter - Power Supply Rejection  
Power supply rejection (PSRR) is especially important in the supplies to the RF and audio parts of  
the telephone. In a TDMA system such as GSM, the 217 Hz transmit burst from the power amplifier  
results in significant current pulses being drawn from the battery. These can peak at up to 2 Amps  
before reaching a steady state of 1.4 Amps (see below). Due to the battery having a finite internal  
resistance (typically 0.5 ), these current peaks induce ripple on the battery voltage of up to 500 mV.  
Since the supplies to the audio and RF are derived from this supply, it is essential that this ripple is  
removed otherwise it would show as a 217 Hz tone in the audio and could also affect the transmit  
signal. Power supply rejection should always be specified under worst case conditions when the  
battery is at its minimum operating voltage and when there is minimum headroom available due to  
dropout.  
9.4 Regulator Parameter - Line Regulation  
Static line regulation is a measurement that indicates a change in the regulator output voltage, Vreg  
(regulator operating with a constant load current), in response to a change in the input voltage, Vin.  
Transient line regulation is a measurement of the peak change, Vreg, in regulated voltage seen  
when the line input voltage changes.  
4.6ms TDMA frame rate  
Vbat  
577µS  
Vreg  
Figure 41: Line Regulation  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
121 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
9.5 Regulator Parameter - Load Regulation  
Static load regulation is a measurement that indicates a change in the regulator output voltage,  
∆Vreg, in response to a change in the regulator loading, ∆load, whilst the regulator input voltage  
remains constant. Transient load regulation is a measurement of the peak change in regulated  
voltage, ∆Vreg, seen when the regulator load changes.  
Iload max  
Iload min  
Vreg  
Figure 42: Load Regulation  
Please contact Dialog Semiconductor for latest application information on the DA9063 and other  
power management devices.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
122 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
10 Ordering Information  
The ordering number consists of the part number followed by a suffix indicating the packing method.  
For details and availability, please consult Dialog Semiconductor’s customer portal or your local sales  
representative.  
Table 56: Ordering Information  
Part Number  
Package  
Shipment Form  
Pack Quantity  
Consumer: 0.30 mm ball diameter, RT production testing  
DA9063-xxHK1  
DA9063-xxHK2  
100 VFBGA, 8.0 mm x 8.0 mm x 1.0 mm,  
0.8 mm pitch, Pb-free/green  
Tray  
T&R  
260  
100 VFBGA, 8.0 mm x 8.0 mm x 1.0 mm,  
0.8 mm pitch, Pb-free/green  
3000  
Automotive AEC-Q100 Grade 3: 0.30 mm ball diameter, RT production testing  
DA9063-xxHK1-A  
100 VFBGA, 8.0 mm x 8.0 mm x 1.0 mm,  
0.8 mm pitch, Pb-free/green  
Tray  
260  
DA9063-xxHK2-A  
100 VFBGA, 8.0 mm x 8.0 mm x 1.0 mm,  
0.8 mm pitch, Pb-free/green  
T&R  
3000  
Automotive AEC-Q100 Grade 3: 0.45 mm ball diameter, RT production testing  
DA9063-xxHO1-A  
100 TFBGA, 8.0 mm x 8.0 mm x 1.2 mm,  
0.8 mm pitch, Pb-free/green  
Tray  
260  
DA9063-xxHO2-A  
100 TFBGA, 8.0 mm x 8.0 mm x 1.2 mm,  
0.8 mm pitch, Pb-free/green  
T&R  
3000  
Automotive AEC-Q100 Grade 3: 0.45 mm ball diameter, HT production testing  
DA9063-xxHO1-AT  
100 TFBGA, 8.0 mm x 8.0 mm x 1.2 mm,  
0.8 mm pitch, Pb-free/green  
Tray  
260  
DA9063-xxHO2-AT  
100 TFBGA, 8.0 mm x 8.0 mm x 1.2 mm,  
0.8 mm pitch, Pb-free/green  
T&R  
3000  
Variants Ordering Information  
DA9063 supports delivery of variants indicated by xx in the Part number above, please contact your  
local Dialog Semiconductor office or representative to discuss requirements.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
123 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Appendix A Register Descriptions  
This appendix describes the registers summarized in Section 7.  
A.1 Register Page Control  
Table 57: PAGE_CON  
Register Address  
Bit  
Type  
Label  
Description  
0x00 PAGE_CON  
7
RW  
REVERT  
Resets REG_PAGE to 00 after read/write  
access has finished  
6
RW  
WRITE_MODE  
2-WIRE multiple write mode  
0: Page Write Mode  
1: Repeated Write Mode  
5:3  
2:0  
RW  
RW  
Reserved  
REG_PAGE  
000: Selects Register 0x01 to 0x3F  
001: Selects Register 0x81 to 0xCF  
010: Selects Register 0x101 to 0x13F  
011: Reserved for production and test  
The PAGE_CON register is located at address 0x00 of each register page (0x00 and 0x80). Each of  
the control interfaces (4-WIRE and the two 2-WIRE) provides an individual instance of the  
PAGE_CON register.  
A.2 Register Page 0  
A.2.1  
Power Manager Control and Monitoring  
The STATUS register reports the current value of the various signals at the time that it is read out. All  
the status bits have the same polarity as their corresponding signals.  
Table 58: STATUS_A  
Register Address  
Bit  
7:4  
3
Type  
R
Label  
Reserved  
COMP1V2  
DVC  
Description  
0x01 STATUS_A  
R
Output state of 1.2 V comparator  
2
R
Asserted as long as at least one DVC supply  
performs voltage ramping  
1
0
R
R
WAKE  
CHG_WAKE level  
nONKEY  
Asserted as long nONKEY is pressed (low  
level)  
Table 59: STATUS_B  
Register Address  
Bit  
Type  
R
Label  
GPI7  
GPI6  
GPI5  
GPI4  
GPI3  
GPI2  
Description  
GPI7 level  
0x02 STATUS_B  
7
6
5
4
3
2
R
GPI6 level  
R
GPI5 level  
R
GPI4 level  
R
GPI3 level  
R
GPI2 level or ADCIN3 threshold indicator (1  
when overriding high limit)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
124 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
1
R
GPI1  
GPI1 level or ADCIN2 threshold indicator (1  
when overriding high limit)  
0
R
GPI0  
GPI0 level or ADCIN1 threshold indicator (1  
when overriding high limit)  
Table 60: STATUS_C  
Register Address  
Bit  
Type  
R
Label  
GPI15  
GPI14  
GPI13  
GPI12  
GPI11  
GPI10  
GPI9  
Description  
GPI15 level  
0x03 STATUS_C  
7
6
5
4
3
2
1
0
R
GPI14 level  
R
GPI13/ EXT_WAKEUP/READY level  
GPI12/nVDD_FAULT/VDD_MON level  
GPI11 level  
R
R
R
GPI10/PWR1_EN level  
GPI9/PWR_EN level  
GPI8/SYS_EN level  
R
R
GPI8  
Table 61: STATUS_D  
Register Address  
Bit  
Type  
Label  
Description  
0x04 STATUS_D  
7
R/W  
LDO11_LIM  
Asserted as long LDO11 hits its over-current  
limit  
6
R/W  
R/W  
R/W  
R/W  
R/W  
LDO8_LIM  
LDO7_LIM  
LDO4_LIM  
LDO3_LIM  
Reserved  
Asserted as long LDO8 hits its over-current  
limit  
5
Asserted as long LDO7 hits its over-current  
limit  
4
Asserted as long LDO4 hits its over-current  
limit  
3
Asserted as long LDO3 hits its over-current  
limit  
2:0  
Table 62: FAULT_LOG  
Register Address  
Bit  
Type  
Label  
Description  
Note 1  
0x05 FAULT_LOG  
7
6
R
R
WAIT_SHUT  
Power down by time out of ID WAIT  
nSHUT_DOWN Power down by assertion of port nOFF,  
nSHUTDOWN  
5
R
KEY_RESET  
Power down from a long press of nONKEY or  
GPIO14/15  
4
3
R
R
TEMP_CRIT  
VDD_START  
Junction over-temperature detected  
Power down by VSYS under-voltage detect before or  
within 16 seconds after entering ACTIVE mode  
2
1
R
R
VDD_FAULT  
POR  
Power down by VSYS under-voltage detect  
DA9063 starts up from no power or RTC/DELIVERY  
mode  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
125 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
Note 1  
0
R
TWD_ERROR  
Watchdog time violated  
Note 1 Cleared from the host by writing back the read value.  
The EVENT registers hold information about events that have occurred in the DA9063. Events are  
triggered by a change in the status registers that contains the status of monitored signals. When an  
EVENT bit is set in the event register the nIRQ signal is asserted (unless the nIRQ is to be masked  
by a bit in the IRQ mask register). The nIRQ is also masked during the power-up sequence and is  
not released until the event registers have been cleared. The IRQ triggering event register is cleared  
from the host by writing back its read value. The event registers may be read in page/repeated mode.  
New events that occur during clearing are delayed before they are passed to the event register,  
ensuring that the host controller does not miss them.  
Table 63: EVENT_A  
Register Address  
Bit  
Type  
Label  
Description  
0x06  
EVENT_A  
7
6
5
4
R
R
R
EVENTS_D  
EVENTS_C  
EVENTS_B  
Asserted when register EVENT_B to EVENT_D have  
at least one event bit asserted  
Asserted when register EVENT_B to EVENT_C have  
at least one event bit asserted  
Asserted when register EVENT_B has at least one  
event bit asserted  
R
E_SEQ_RDY Sequencer reached final position caused event  
E_ADC_RDY ADC manual conversion result ready caused event  
Note 1  
3
2
1
0
R
Note 1  
R
E_TICK  
E_ALARM  
E_nONKEY  
RTC tick caused event  
RTC alarm caused event  
nONKEY caused event  
Note 1  
R
Note 1  
R
Note 1  
Note 1 Cleared from the host by writing back the read value.  
Table 64: EVENT_B  
Register Address  
Bit  
Type  
Label  
Description  
Note 1  
0x07  
EVENT_B  
7
6
R
E_VDD_WARN  
E_VDD_MON  
VSYS dropped below VDD_FAULT_UPPER  
threshold  
R
VSYS less or higher than VSYS_MON threshold  
caused event  
5
4
R
R
E_DVC_RDY  
Finish of all DVC voltage ramping event  
E_REG_UVOV  
Event triggered from a monitored regulator  
voltage being out of selected range or from  
new regulator voltage measurement being  
available (depends on settings of  
MON_MODE)  
3
R
E_LDO_LIM  
LDO3, 4, 7, 8 or 11 current limit exceeded for  
more than 10 ms  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
126 of 219  
© 2017 Dialog Semiconductor  
 
 
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
Note 1  
2
1
0
R
R
R
E_COMP1V2  
E_TEMP  
1.2 V comparator caused event  
Junction high temp caused event  
Detected rising edge on CHG_WAKE  
E_WAKE  
Note 1 Cleared from the host by writing back the read value.  
Table 65: EVENT_C  
Register Adress  
Bit  
Type  
Label  
Description  
Note 1  
0x08  
EVENT_C  
7
6
5
4
3
2
R
R
R
R
R
R
E_GPI7  
E_GPI6  
E_GPI5  
E_GPI4  
E_GPI3  
E_GPI2  
GPI event according to active state setting  
GPI event according to active state setting  
GPI event according to active state setting  
GPI event according to active state setting  
GPI event according to active state setting  
GPI event according to active state setting /  
ADCIN3 high / low threshold exceeded caused  
event  
1
0
R
R
E_GPI1  
E_GPI0  
GPI event according to active state setting /  
ADCIN2 high / low threshold exceeded caused  
event  
GPI event according to active state setting /  
ADCIN1 high / low threshold exceeded caused  
event  
Note 1 Cleared from the host by writing back the read value.  
Table 66: EVENT_D  
Register Address  
Bit  
Type  
Label  
Description  
Note 1  
0x09  
EVENT_D  
7
6
R
R
E_GPI15  
E_GPI14  
GPI event according to active state setting  
GPI event according to active state  
setting/Event caused from host addressing  
HS-2-WIRE interface  
5
4
3
2
R
R
R
R
E_GPI13  
E_GPI12  
E_GPI11  
E_GPI10  
GPI event according to active state setting  
GPI event according to active state setting  
GPI event according to active state setting  
GPI/PWR1_EN event according to active state  
setting  
1
0
R
R
E_GPI9  
E_GPI8  
GPI/PWR_EN event according to active state  
setting  
GPI/SYS_EN event according to active state  
setting  
Note 1 Cleared from the host by writing back the read value.  
The nIRQ line is released only when all events have been cleared from the host processor by writing  
the read value into all registers with an asserted event bit.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
127 of 219  
© 2017 Dialog Semiconductor  
 
 
DA9063  
System PMIC for Mobile Application Processors  
Table 67: IRQ_MASK_A  
Register Address  
Bit  
7:5  
4
Type  
R/W  
R/W  
R/W  
Label  
Description  
Reserved  
0x0A  
IRQ_MASK_A  
M_SEQ_RDY  
M_ADC_RDY  
Mask nIRQ from finishing power sequencing  
3
Mask ADC manual conversion result ready  
caused nIRQ  
M_TICK  
M_ALARM  
M_nONKEY  
2
1
0
R/W  
R/W  
R/W  
Mask RTC tick caused nIRQ  
Mask RTC alarm caused nIRQ  
Mask nONKEY caused nIRQ  
Table 68: IRQ_MASK_B  
Register Address  
Bit  
Type  
Label  
Description  
M_VDD_WARN  
0x0B  
IRQ_MASK_B  
7
R/W  
Mask VDDFAULT _UPPER comparator  
triggered event  
M_VDD_MON  
M_DVC_RDY  
M_REG_UVOV  
6
5
4
R/W  
R/W  
R/W  
Mask VSYS caused nIRQ  
Mask DVC voltage ramping triggered event  
Mask events generated from regulator output  
voltage monitoring  
M_LDO_LIM  
3
R/W  
Mask LDO current limit exceeded caused  
nIRQ  
M_COMP1V2  
M_TEMP  
2
1
0
R/W  
R/W  
R/W  
Mask 1.2 V comparator caused nIRQ  
Mask junction over temp caused nIRQ  
Mask companion charger caused event  
M_WAKE  
Table 69: IRQ_MASK_E  
Register Address  
Bit  
7
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Label  
Description  
Mask GPI caused nIRQ  
Mask GPI caused nIRQ  
Mask GPI caused nIRQ  
Mask GPI caused nIRQ  
Mask GPI caused nIRQ  
M_GPI7  
M_GPI6  
M_GPI5  
M_GPI4  
M_GPI3  
M_GPI2  
0x0C  
IRQ_MASK_E  
6
5
4
3
2
Mask GPI caused / ADCIN3 high / low  
threshold exceeded caused nIRQ  
M_GPI1  
M_GPI0  
1
0
R/W  
R/W  
Mask GPI caused / ADCIN2 high / low  
threshold exceeded caused nIRQ  
Mask GPI caused / ADCIN1 high / low  
threshold exceeded caused nIRQ  
Table 70: IRQ_MASK_F  
Register Address  
Bit  
7
Type  
R/W  
R/W  
R/W  
Label  
Description  
Mask GPI caused nIRQ  
M_GPI15  
M_GPI14  
M_GPI13  
0x0D  
IRQ_MASK_F  
6
Mask GPI/HS-2-WIRE caused nIRQ  
Mask GPI caused nIRQ  
5
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
128 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
4
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
Label  
Description  
Mask GPI caused nIRQ  
M_GPI12  
M_GPI11  
M_GPI10  
M_GPI9  
M_GPI8  
3
Mask GPI caused nIRQ  
2
Mask GPI/PWR1_EN caused nIRQ  
Mask GPI/PWR_EN caused nIRQ  
Mask GPI/SYS_EN caused nIRQ  
1
0
Table 71: CONTROL_A  
Register Address  
Bit  
Type  
Label  
Description  
CP_EN  
0xE CONTROL_A  
7
R/W  
When asserted charge pump for rail switches  
is enabled  
6
5
4
3
R/W  
R/W  
R/W  
R/W  
M_POWER1_EN  
M_POWER_EN  
M_SYSTEM_EN  
STANDBY  
Mask the update of POWER1_EN when  
writing to CONTROL_A  
Mask the update of POWER_EN when writing  
to CONTROL_A  
Mask the update of SYSTEM_EN when  
writing to CONTROL_A  
Clearing SYSTEM_EN/releasing port  
SYS_EN press will  
0: completely power down to Slot 0  
(Hibernate)  
1: stop powering down at pointer  
PART_DOWN (Standby)  
POWER1_EN  
POWER_EN  
SYSTEM_EN  
2
1
0
R/W  
R/W  
R/W  
Target status of power domain POWER1:  
controlled from OTP/PM interface and port  
PWR1_EN  
Target status of power domain POWER:  
controlled from OTP/PM interface and port  
PWR_EN  
Target status of power domain SYSTEM:  
controlled from OTP/PM interface and port  
SYS_EN  
Table 72: CONTROL_B  
Register Address  
Bit  
Type  
Label  
Description  
BUCK_SLOWSTART  
Enables soft-start for buck converters  
(recommended for application instant-on  
with discharged battery and weak external  
supply)  
0xF CONTROL_B  
7
R/W  
Note 1  
Reserved  
6:5  
4
R/W  
R/W  
nONKEY_LOCK  
0: Half-current POWERDOWN mode  
1: Wakeup from POWERDOWN mode  
requires the nONKEY signal being low for  
longer than selected in KEY_DELAY  
(automatically cleared during power-up  
sequence)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
129 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
nRES_MODE  
3
R/W  
0: No assertion of nRESET for power down  
sequence  
1: Assert nRESET before starting power  
down sequence (release after leaving  
POWERDOWN mode in case  
RESET_EVENT < ‘11’)  
RES_BLINKING  
WATCHDOG_PD  
2
1
R/W  
R/W  
Enables (time limited) VDD_START triggered  
GPO11/4/15 flashing in case of no connected  
external supply  
0: Discontinue Watchdog timer during  
POWERDOWN mode  
1: Watchdog timer continues during  
POWERDOWN mode  
CHG_SEL  
Port CHG_WAKE is connected to  
0
R/W  
0: Dialog charger WAKE port  
1: Charger SAFE_OUT  
Note 1 Increases buck start-up time up to 3 ms.  
Table 73: CONTROL_C  
Register Address  
Bit  
Type  
Label  
Description  
DEF_SUPPLY  
0x10  
7
R/W  
When asserted all supplies (except  
CONTROL_C  
LDOCORE) are enabled/disabled from OTP  
default mode when entering sequencer Slot 0.  
SLEW_RATE  
6:5  
R/W  
DVC slewing (bucks and LDOs) is executed  
at  
00: 10 mV every 4.0 µs  
01: 10 mV every 2.0 µs  
10: 10 mV every 1.0 µs  
11: 10 mV every 0.5 µs  
OTPREAD_EN  
AUTO_BOOT  
4
3
R/W  
R/W  
0: OTP read after POWERDOWN mode  
disabled  
1: Power supplies are configured with OTP  
values when leaving POWERDOWN mode  
0: Start-up of power sequencer after  
progressing from RESET mode requires a  
valid wakeup event  
1: PMIC automatically starts power sequencer  
after progressing from RESET mode  
DEBOUNCING  
2:0  
R/W  
GPI, nONKEY and nSHUTDOWN debounce  
time  
000: no debounce time  
001: 0.1 ms  
010: 1.0 ms  
011: 10.2 ms  
100: 51.2 ms  
101: 256 ms  
110: 512 ms  
111: 1024 ms  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
130 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 74: CONTROL_D  
Register Address  
Bit  
Type  
Label  
Description  
BLINK_DUR  
0x11  
7:6  
R/W  
GPO10/GPO11 flashing on-time  
CONTROL_D  
00: 10 ms  
01: 20 ms  
10: 40 ms  
11: 20 ms double stroke (180 ms period)  
BLINK_FRQ  
5:3  
R/W  
GPO11/4/15 flashing frequency  
000: no blinking (GPO11/14/15 state selected  
via GPIOxx_MODE)  
001: every second  
010: every two seconds  
011: every four seconds  
100: every 180 ms (flicker mode)  
101: every two seconds enabled by  
VDD_START  
110: every four seconds enabled by  
VDD_START  
111: every 180 ms enabled by VDD_START  
Note 1  
TWDSCALE  
000: Watchdog disabled  
2:0  
R/W  
001: 1x scaling applied to TWDMAX period  
010: 2x  
011: 4x  
100: 8x  
101: 16x  
110: 32x  
111: 64x  
Note 1 Blinking from OTP settings 001 to 100 continues as long as an active charger is connected to port  
CHG_WAKE. In the absence of a battery charger a time limited blinking can be enabled via  
RES_BLINKING.  
Table 75: CONTROL_E  
Register Address  
Bit  
Type  
Label  
Description  
V_LOCK  
0: Allows host writes into registers 0x81 to  
0x120  
0x12  
CONTROL_E  
7
R/W  
1: Disables register 0x81 to 0x120 re-  
programming from host interfaces  
PM_FB3_PIN  
PM_FB2_PIN  
0: 2nd 32K signal output  
6
5
R/W  
R/W  
1: Feedback pin is used as an input signal to  
stop and start the vibration motor (active low  
nVIB_BRAKE)  
0: Feedback pin indicates the status of  
regulators being selected for voltage  
supervision (PWR_OK)  
1: Feedback pin is used as KEEP_ACT signal  
for the Watchdog unit  
PM_FB1_PIN  
ECO_MODE  
0: Feedback pin indicates the detection of  
a wakeup event (EXT_WAKEUP)  
1: Feedback pin is used as an indicator,  
signaling via low level ongoing power mode  
transitions (power sequencer and DVC)  
(READY)  
4
3
R/W  
R/W  
When asserted DA9063 is armed for the  
pulsed mode when entering RESET  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
131 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
RTC_EN  
2
R/W  
Enables the power supply of the 32K  
oscillator and RTC (for DA9063 the  
DELIVERY mode if cleared under certain pre-  
conditions, locked from the assertion of  
control MONITOR  
RTC_MODE_SD  
RTC_MODE_PD  
1
0
R/W  
R/W  
When asserted all supplies (including  
LDOCORE) and functional blocks except of  
the RTC are disabled when reaching RESET  
mode with a VDDFAULT condition  
When asserted all supplies (including  
LDOCORE) and functional blocks except of  
the RTC are disabled when reaching  
POWERDOWN mode  
Table 76: CONTROL_F  
Register Address  
Bit  
7:3  
2
Type  
R/W  
R/W  
Label  
Description  
0x13  
CONTROL_F  
Reserved  
WAKE_UP  
If set to 1 PMU wakes up from  
POWERDOWN mode. The bit is cleared back  
to 0 automatically 16 sec after entering  
ACTIVE mode  
1
0
R/W  
R/W  
SHUTDOWN  
WATCHDOG  
If set to 1 the sequencer powers down to  
RESET mode. The bit is cleared back to 0  
automatically when entering the RESET mode  
If set to 1 watchdog timer is reset. The bit is  
cleared back to 0 automatically.  
Table 77: PD_DIS  
Register Address  
Bit  
Type  
Label  
Description  
PMCONT_DIS  
0: SYS_EN, PWR_EN, PWR1_EN enabled  
during power down  
0x14  
PD_DIS  
7
R/W  
1: Auto-Disable of SYS_EN, PWR_EN and  
PWR1_EN during POWERDOWN mode and  
force the detection hidden transition when re-  
enabling the control from ports  
OUT_32K_PAUSE  
BBAT_DIS  
0: Enables OUT_32K during power down  
1: Auto-Disable OUT_32K output buffer  
during POWERDOWN mode  
6
5
R/W  
R/W  
0: Enables Backup battery charger during  
POWERDOWN mode  
1: Auto-disable backup battery charger during  
power down  
CLDR_PAUSE  
HS2WIRE_DIS  
4
3
R/W  
R/W  
0: Calendar/Clock readout registers are  
updated during POWERDOWN mode  
1: Update of Calendar/Clock readout  
registers is paused during POWERDOWN  
mode  
0: HS-2-WIRE not disabled during power  
down  
1: Auto-disable of HS-2-WIRE interface during  
POWERDOWN mode  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
132 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
PMIF_DIS  
0: Power manager interface not disabled  
during power down  
2
R/W  
1: Auto-disable of power manager interface  
during POWERDOWN mode  
GPADC_PAUSE  
1
0
R/W  
R/W  
0: ADC measurements continue during power  
down as configured  
1: Auto-PAUSE auto measurements on A0,  
A1, A2 and A3 and manual measurement  
during POWERDOWN mode; if no  
autonomous auto-measurements are  
required (VSYS from vibration motor driver)  
switch off the ADC completely  
GPI_DIS  
0: GPIO extender enabled during power  
down  
1: Auto-disable of features configured as GPI  
pins during POWERDOWN mode and force  
the detection hidden transition when re-  
enabling the pin  
Note 1 When the related ID is configured to be 1 < PD_DIS_STEP MAX_COUNT the value of the above  
controls define whether functions are switched on when entering POWERDOWN mode from POR or  
wait until ID PD_DIS_STEP is processed.  
A.2.2  
GPIO Control  
Table 78: GPIO0 to 1  
Register Address  
Bit  
Type  
Label  
Description  
GPIO1_WEN  
0: Passive to active transition triggers a  
wakeup  
0x15  
GPIO0 to 1  
7
R/W  
1: Wakeup suppressed  
GPIO1_TYPE  
GPIO1_PIN  
0: GPI: active low  
GPO: supplied from VDD_IO1  
6
R/W  
R/W  
1: GPI: active high  
GPO: supplied from VDD_IO2  
5:4  
PIN assigned to  
00: ADCIN2/1.2 V comparator  
01: GPI (optional regulator HW control)  
10: GPO mode controlled (Open drain)  
11: GPO mode controlled (Push-pull)  
GPIO0_WEN  
GPIO0_TYPE  
3
2
R/W  
R/W  
0: Passive to active transition triggers a  
wakeup  
1: Wakeup suppressed  
0: GPI: active low  
GPO: supplied from VDD_IO1  
1: GPI: active high  
GPO: supplied from VDD_IO2  
GPIO0_PIN  
1:0  
R/W  
PIN assigned to  
00: ADCIN1  
01: GPI  
10: GPO mode controlled (Open drain)  
11: GPO mode controlled (Push-pull)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
133 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
Table 79: GPIO2 to 3  
Register Address  
Bit  
Type  
Label  
Description  
GPIO3_WEN  
0x16  
GPIO2 to 3  
7
R/W  
0: Passive to active transition triggers a  
wakeup  
1: Wakeup suppressed  
GPIO3_TYPE  
GPIO3_PIN  
6
R/W  
R/W  
0: GPI: active low  
GPO: supplied from VDD_IO1  
1: GPI: active high  
GPO: supplied from VDD_IO2  
5:4  
PIN assigned to  
00: CORE_SWG  
01: GPI  
10: GPO mode controlled (Open drain)  
11: GPO mode controlled (Push-pull)  
GPIO2_WEN  
GPIO2_TYPE  
3
2
R/W  
R/W  
0: Passive to active transition triggers a  
wakeup  
1: Wakeup suppressed  
0: GPI: active low  
GPO: supplied from VDD_IO1  
1: GPI: active high  
GPO: supplied from VDD_IO2  
GPIO2_PIN  
1:0  
R/W  
PIN assigned to  
00: ADCIN3  
01: GPI (optional regulator HW control)  
10: GPO Sequencer controlled (Push-pull)  
11: GPO mode controlled (Push-pull)  
Table 80: GPIO4 to 5  
Register Address  
Bit  
Type  
Label  
Description  
GPIO5_WEN  
0x17  
GPIO4 to 5  
7
R/W  
0: Passive to active transition triggers a  
wakeup  
1: Wakeup suppressed  
GPIO5_TYPE  
GPIO5_PIN  
6
R/W  
R/W  
0: GPI: active low  
GPO: supplied from VDD_IO1  
1: GPI: active high  
GPO: supplied from VDD_IO2  
5:4  
PIN assigned to  
00: PERI_SWG  
01: GPI  
10: GPO mode controlled (Open drain)  
11: GPO mode controlled (Push-pull)  
GPIO4_WEN  
GPIO4_TYPE  
3
2
R/W  
R/W  
0: Passive to active transition triggers a  
wakeup  
1: Wakeup suppressed  
0: GPI: active low  
GPO: supplied from VDD_IO1  
1: GPI: active high  
GPO: supplied from VDD_IO2  
GPIO4_PIN  
1:0  
R/W  
PIN assigned to  
00: CORE_SWS  
01: GPI  
10: GPO mode controlled (Open drain)  
11: GPO mode controlled (Push-pull)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
134 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 81: GPIO6 to 7  
Register Address  
Bit  
Type  
Label  
Description  
GPIO7_WEN  
0x18  
GPIO6 to 7  
7
R/W  
0: Passive to active transition triggers a  
wakeup  
1: Wakeup suppressed  
GPIO7_TYPE  
GPIO7_PIN  
6
R/W  
R/W  
0: GPI: active low  
GPO: supplied from VDD_IO1  
1: GPI: active high  
GPO: supplied from VDD_IO2  
5:4  
PIN assigned to  
00: Reserved  
01: GPI  
10: GPO Sequencer controlled (Push-pull)  
11: GPO mode controlled (Push-pull)  
GPIO6_WEN  
GPIO6_TYPE  
3
2
R/W  
R/W  
0: Passive to active transition triggers a  
wakeup  
1: Wakeup suppressed  
0: GPI: active low  
GPO: supplied from VDD_IO1  
1: GPI: active high  
GPO: supplied from VDD_IO2  
GPIO6_PIN  
1:0  
R/W  
PIN assigned to  
00: PERI_SWS  
01: GPI  
10: GPO mode controlled (Open drain)  
11: GPO mode controlled (Push-pull)  
Table 82: GPIO8 to 9  
Register Address  
Bit  
Type  
Label  
Description  
GPIO9_WEN  
0: Passive to active transition triggers a  
wakeup  
0x19  
GPIO8 to 9  
7
R/W  
1: Wakeup suppressed  
GPIO9_TYPE  
GPIO9_PIN  
0: GPI/PWR_EN: active low  
GPO: supplied from VDD_IO1  
6
R/W  
R/W  
1: GPI/PWR_EN: active high  
GPO: supplied from VDD_IO2  
5:4  
PIN and status register bit assigned to  
00: GPI with PWR_EN  
01: GPI  
10: GPO Sequencer controlled (Push-pull)  
11: GPO mode controlled (Push-pull)  
GPIO8_WEN  
GPIO8_TYPE  
0: Passive to active transition triggers a  
wakeup  
1: Wakeup suppressed  
3
2
R/W  
R/W  
0: GPI/SYS_EN: active low  
GPO: supplied from external/VDD_IO1  
1: GPI/SYS_EN: active high  
GPO: supplied from VDD_IO2  
GPIO8_PIN  
1:0  
R/W  
PIN and status register bit assigned to  
00: GPI with SYS_EN  
01: GPI  
10: GPO Sequencer controlled (Push-pull)  
11: GPO mode controlled (Push-pull)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
135 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 83: GPIO10 to 11  
Register Address  
Bit  
Type  
Label  
Description  
0x1A  
GPIO10 to 11  
7
R/W  
GPIO11_WEN  
0: Passive to active transition triggers a  
wakeup  
1: Wakeup suppressed  
0: GPI: active low  
GPO: supplied from external/VDD_IO1  
6
R/W  
R/W  
GPIO11_TYPE  
GPIO11_PIN  
1: GPI: active high  
GPO: supplied from VDD_IO2  
5:4  
PIN assigned to  
00: GPO (Open drain, with optional blinking)  
01: GPI  
10: GPO GPO Sequencer controlled (Push-  
pull)  
11: GPO mode controlled (Push-pull)  
0: Passive to active transition triggers a  
wakeup  
1: Wakeup suppressed  
3
2
R/W  
R/W  
GPIO10_WEN  
GPIO10_TYPE  
0: GPI/PWR1_EN: active low  
GPO: supplied from external/VDD_IO1  
1: GPI/PWR1_EN: active high  
GPO: supplied from VDD_IO2  
1:0  
R/W  
GPIO10_PIN  
PIN and status register bit assigned to  
00: GPI with PWR1_EN  
01: GPI  
10: GPO (Open drain)  
11: GPO mode controlled (Push-pull )  
Table 84: GPIO12 to 13  
Register Address  
Bit  
Type  
Label  
Description  
GPIO13_WEN  
0x1B  
GPIO12 to 13  
7
6
R/W  
0: Passive to active transition triggers a  
wakeup  
1: Wakeup suppressed  
GPIO13_TYPE  
GPIO13_PIN  
0: GPI: active low  
GPO/GP_FB1: supplied from  
external/VDD_IO1  
R/W  
R/W  
1: GPI: active high  
GPO/GP_FB1: supplied from VDD_IO2  
5:4  
PIN and status register bit assigned to  
00: GPO controlled by state of GP_FB1  
(EXT_WAKEUP/READY) (Push-pull)  
01: GPI (optional regulator HW control)  
10: GPO controlled by state of GP_FB1  
(EXT_WAKEUP/READY) (Open drain)  
11: GPO mode controlled (Push-pull)  
GPIO12_WEN  
GPIO12_TYPE  
3
2
R/W  
R/W  
0: Passive to active transition triggers a  
wakeup  
1: Wakeup suppressed  
0: GPI: active low  
GPO/ nVDD_FAULT/VSYS monitor:  
supplied from VDD_IO1  
1: GPI: active high  
GPO/DD_FAULT/VSYS monitor: supplied  
from VDD_IO2  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
136 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
GPIO12_PIN  
1:0  
R/W  
PIN assigned to  
00: nVDD_FAULT (Push-pull)  
01: GPI  
10: GPO controlled by the state of VSYS  
monitor (Push-pull)  
11: GPO mode controlled (Push-pull)  
Table 85: GPIO14 to 15  
Register Address  
Bit  
Type  
Label  
Description  
GPIO15_WEN  
0: Passive to active transition triggers a  
wakeup  
1: Wakeup suppressed  
0x1C  
GPIO14 to 15  
7
6
R/W  
GPIO15_TYPE  
GPIO15_PIN  
0: GPI: active low  
GPO: supplied from external/VDD_IO1  
R/W  
R/W  
1: GPI: active high  
GPO: supplied from VDD_IO2  
5:4  
PIN assigned to  
00: GPO (Open drain, with optional blinking)  
01: GPI  
10: CLK (configured via GPIO14_PIN)  
11: GPO mode controlled (Open drain)  
GPIO14_WEN  
GPIO14_TYPE  
0: Passive to active transition triggers a  
wakeup  
1: Wakeup suppressed  
3
2
R/W  
R/W  
0: GPI: active low  
GPO: supplied from external/VDD_IO1  
DATA/CLK supplied from VDD_IO1  
(Note 1)  
1: GPI: active high  
GPO: supplied from VDD_IO2  
DATA/CLK supplied from VDD_IO2  
(Note 1)  
GPIO14_PIN  
1:0  
R/W  
PIN assigned to  
00: GPO(Open drain, with optional blinking)  
01: GPI  
10: DATA (assigns GPIO15_PIN to CLK)  
11: GPO mode controlled (Push-pull)  
Note 1 When using as HS-2-WIRE IF input logic levels are derived from VDDCORE.  
Table 86: GPIO_MODE0_7  
Register Address  
Bit  
Type  
Label  
Description  
0: GPI: debouncing off  
GPIO7_ MODE  
0x1D  
7
R/W  
GPIO_MODE0_7  
GPO: Sets output to low level (active low for  
sequencer control)  
1: GPI: debouncing on  
GPO: Sets output to high level (active high  
for sequencer control)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
137 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
0: GPI: debouncing off  
GPIO6_ MODE  
6
R/W  
GPO: Sets output to low level (active low for  
sequencer control)  
1: GPI: debouncing on  
GPO: Sets output to high level (active high  
for sequencer control)  
GPIO5_ MODE  
GPIO4_ MODE  
5
4
R/W  
R/W  
0: GPI: debouncing off  
GPO: Sets output to low level  
1: GPI: debouncing on  
GPO: Sets output to high level  
0: GPI: debouncing off  
GPO: Sets output to low level(active low for  
sequencer control)  
1: GPI: debouncing on  
GPO: Sets output to high level (active high  
for sequencer control)  
GPIO3_ MODE  
3
R/W  
0: GPI: debouncing off  
GPO: Sets output to low level (active low for  
sequencer control)  
1: GPI: debouncing on  
GPO: Sets output to high level (active high  
for sequencer control)  
GPIO2_MODE  
GPIO1_ MODE  
GPIO0_ MODE  
2
1
0
R/W  
R/W  
R/W  
0: GPI: debouncing off  
GPO: Sets output to low level  
1: GPI: debouncing on  
GPO: Sets output to high level  
0: GPI: debouncing off  
GPO: Sets output to low level  
1: GPI: debouncing on  
GPO: Sets output to high level  
0: GPI: debouncing off  
GPO: Sets output to low level  
1: GPI: debouncing on  
GPO: Sets output to high level  
Table 87: GPIO_MODE8_15  
Register Address  
Bit  
Type  
Label  
Description  
GPIO15_ MODE  
0x1E  
7
R/W  
0: GPI: debouncing off  
GPIO_MODE8_15  
GPO: Sets output to low level (active high for  
blinking)  
1: GPI: debouncing on  
GPO: Sets output to high level (active low for  
blinking)  
GPIO14_ MODE  
6
R/W  
0: GPI: debouncing off  
GPO: Sets output to low level (active high for  
blinking)  
1: GPI:debouncing on  
GPO: Sets output to high level (active low for  
blinking)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
138 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
0: GPI: debouncing off  
GPIO13_ MODE  
5
R/W  
GPO: Sets output to low level (active low for  
GP_FB1)  
1: GPI: debouncing on  
GPO: Sets output to high level (active high  
for GP_FB1)  
GPIO12_ MODE  
GPIO11_ MODE  
4
3
R/W  
R/W  
0: GPI: debouncing off  
GPO: Sets output to low level (active low for  
nVDD_FAULT, VSYS monitor state)  
1: GPI: debouncing on  
GPO: Sets output to high level (active high  
for nVDD_FAULT, VSYS monitor state)  
0: GPI: : debouncing off  
GPO: Sets output to low level (active high for  
blinking)  
1: GPI: : debouncing on  
GPO: Sets output to high level (active low for  
blinking)  
GPIO10_ MODE  
GPIO9_ MODE  
2
1
R/W  
R/W  
0: GPI/PWR1_EN: debouncing off  
GPO: Sets output to low level  
1: GPI/PWR1_EN: debouncing on  
GPO: Sets output to high level  
0: GPI/PWR_EN: debouncing off  
GPO: Sets output to low level (active low for  
sequencer control)  
1: GPI/PWR_EN debouncing on  
GPO: Sets output to high level (active high  
for sequencer control)  
GPIO8_ MODE  
0
R/W  
0: GPI/SYS_EN: debouncing off  
GPO: Sets output to low level  
1: GPI/SYS_EN: debouncing on  
GPO: Sets output to high level  
Table 88: SWITCH_CONT  
Register Address  
Bit  
Type  
Label  
Description  
CP_EN_MODE  
0x1F SWITCH_CONT  
7
R/W  
Rail switch charge pump is enabled  
0: static (does not shut down, when all  
switches are open)  
1: auto, CP enabled before closing the first  
switch, CP disabled after last switch was  
opened  
CORE_SW_INT  
SWITCH_SR  
6
R/W  
R/W  
Changes the CORE external switch controller  
into an internal switch between the output of  
BUCKCORE1 and port CORE_SWS/GPIO4  
5:4  
Maximum slew rate when closing the rail  
switch:  
00: 1 mV/µs  
01: 5 mV/µs  
10: 10 mV/µs  
11: as fast as possible  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
139 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
PERI_SW_GPI  
3:2  
R/W  
GPIO closes PERI_SW on passive to active  
state transition, opens PERI_SW on active to  
passive state transition  
00: Not controlled by GPIO  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
CORE_SW_GPI  
1:0  
R/W  
GPIO closes CORE_SW on passive to active  
state transition, opens CORE_SW on active  
to passive state transition  
00: Not controlled by GPIO  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
A.2.3  
Regulator Control  
Table 89: BCORE2_CONT  
Register Address  
Bit  
7
Type  
R/W  
R/W  
Label  
Description  
Reserved  
0x20  
BCORE2_CONT  
Note 1  
VBCORE2_GPI  
6:5  
GPIO select target voltage VBCORE2_A on  
passive to active transition, selects target  
voltage VBCORE2_B on active to passive  
transition (ramping)  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
4
3
R/W  
R/W  
R/W  
Reserved  
BCORE2_CONF  
BCORE2_GPI  
Sequencer target state of BCORE2_EN  
2:1  
GPIO enables BUCKCORE2 on passive to  
active state transition, disables  
BUCKCORE2 on active to passive state  
transition  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
0: BUCKCORE2 disabled  
0
R/W  
BCORE2_EN  
1: BUCKCORE2 enabled  
Note 1 Disabled in BUCKCORE dual-phase mode.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
140 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
Table 90: BCORE1_CONT  
Register Address  
Bit  
7
Type  
R/W  
R/W  
Label  
Description  
CORE_SW_CONF  
VBCORE1_GPI  
0x21  
BCORE1_CONT  
Sequencer target state of CORE_SW_EN  
6:5  
GPIO select target voltage VBCORE1_A on  
passive to active transition, selects target  
voltage VBCORE1_B on active to passive  
transition (ramping)  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
0: CORE_SW opened  
4
R/W  
CORE_SW_EN  
1: CORE_SW closed  
BCORE1_CONF  
BCORE1_GPI  
3
R/W  
R/W  
Sequencer target state of BCORE1_EN  
2:1  
GPIO enables BUCKCORE1 on passive to  
active state transition, disables  
BUCKCORE1 on active to passive state  
transition  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
0: BUCKCORE1 disabled  
0
R/W  
BCORE1_EN  
1: BUCKCORE1 enabled  
Table 91: BPRO_CONT  
Register Address  
Bit  
Type  
R/W  
R/W  
Label  
Description  
Reserved  
VBPRO_GPI  
0x22  
BPRO_CONT  
7
6:5  
GPIO select target voltage VBPRO_A on  
passive to active transition, selects target  
voltage VBPRO_B on active to passive  
transition (ramping)  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
4
3
R/W  
R/W  
R/W  
Reserved  
BPRO_CONF  
BPRO_GPI  
Sequencer target state of BPRO_EN  
2:1  
GPIO enables BUCKPRO on passive to  
active state transition, disables BUCKPRO  
on active to passive state transition  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
0: BUCKPRO disabled  
0
R/W  
BPRO_EN  
1: BUCKPRO enabled  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
141 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 92: BMEM_CONT  
Register Address  
Bit  
7
Type  
R/W  
R/W  
Label  
Description  
Reserved  
VBMEM_GPI  
0x23  
BMEM_CONT  
6:5  
GPIO select target voltage VBMEM_A on  
passive to active transition, selects target  
voltage VBMEM_B on active to passive  
transition (ramping)  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
4
3
R/W  
R/W  
Reserved  
BMEM_CONF  
Sequencer target state of BMEM_EN in  
case of being a default supply)  
BMEM_GPI  
2:1  
R/W  
GPIO enables BUCKMEM on passive to  
active state transition, disables BUCKMEM  
on active to passive state transition  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
0: BUCKMEM disabled  
0
R/W  
BMEM_EN  
1: BUCKMEM enabled  
Table 93: BIO_CONT  
Register Address  
Bit  
7
Type  
R/W  
R/W  
Label  
Description  
Reserved  
VBIO_GPI  
0x24  
BIO_CONT  
6:5  
GPIO select target voltage VBIO_A on  
passive to active transition, selects target  
voltage VBIO_B on active to passive  
transition (ramping)  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
4
3
R/W  
R/W  
R/W  
Reserved  
BIO_CONF  
BIO_GPI  
Sequencer target state of BIO_EN  
2:1  
GPIO enables BUCKIO on passive to active  
state transition, disables BUCKIO on active  
to passive state transition  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
0: BUCKIO disabled  
0
R/W  
BIO_EN  
1: BUCKIO enabled  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
142 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 94: BPERI_CONT  
Register Address  
Bit  
7
Type  
R/W  
R/W  
Label  
Description  
PERI_SW_CONF  
VBPERI_GPI  
0x25  
BPERI_CONT  
Sequencer target state of PERI_SW_EN  
6:5  
GPIO select target voltage VBPERI_A on  
passive to active transition, selects target  
voltage VBPERI_B on active to passive  
transition (ramping)  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
0: PERI_SW opened  
4
R/W  
PERI_SW_EN  
1: PERI_SW closed  
BPERI_CONF  
BPERI_GPI  
3
R/W  
R/W  
Sequencer target state of BPERI_EN  
2:1  
GPIO enables BUCKPERI on passive to  
active state transition, disables BUCKPERI  
on active to passive state transition  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
BPERI_EN  
0: BUCKPERI disabled  
0
R/W  
1: BUCKPERI enabled  
Table 95: LDO1_CONT  
Register Address  
Bit  
Type  
R/W  
R/W  
Label  
Description  
LDO1_CONF  
VLDO1_GPI  
0x26  
LDO1_CONT  
7
Sequencer target state of LDO1_EN  
6:5  
GPIO select target voltage VLDO1_A on  
passive to active transition, selects target  
voltage VLDO1_B on active to passive  
transition (ramping)  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
4
3
R/W  
R/W  
Reserved  
LDO1_PD_DIS  
0: Enable pull-down resistor  
1: No pull-down resistor in disabled mode  
LDO1_GPI  
2:1  
R/W  
GPIO enables LDO1 on passive to active  
state transition, disables LDO1 on active to  
passive state transition  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
0: LDO1 disabled  
0
R/W  
LDO1_EN  
1: LDO1 enabled  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
143 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 96: LDO2_CONT  
Register Address  
Bit  
7
Type  
R/W  
R/W  
Label  
Description  
LDO2_CONF  
VLDO2_GPI  
0x27  
LDO2_CONT  
Sequencer target state of LDO2_EN  
6:5  
GPIO select target voltage VLDO2_A on  
passive to active transition, selects target  
voltage VLDO2_B on active to passive  
transition (ramping)  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
4
3
R/W  
R/W  
Reserved  
LDO2_PD_DIS  
0: Enable pull-down resistor  
1: No pull-down resistor in disabled mode  
LDO2_GPI  
2:1  
R/W  
GPIO enables LDO2 on passive to active  
state transition, disables LDO2 on active to  
passive state transition  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
0: LDO2 disabled  
0
R/W  
LDO2_EN  
1: LDO2 enabled  
Table 97: LDO3_CONT  
Register Address  
Bit  
Type  
R/W  
R/W  
Label  
Description  
LDO3_CONF  
VLDO3_GPI  
0x28  
LDO3_CONT  
7
Sequencer target state of LDO3_EN  
6:5  
GPIO select target voltage VLDO3_A on  
passive to active transition, selects target  
voltage VLDO3_B on active to passive  
transition (ramping)  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
4
3
R/W  
R/W  
Reserved  
LDO3_PD_DIS  
0: Enable pull-down resistor  
1: No pull-down resistor in disabled mode  
LDO3_GPI  
2:1  
R/W  
GPIO enables LDO3 on passive to active  
state transition, disables LDO3 on active to  
passive state transition  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
0: LDO3 disabled  
0
R/W  
LDO3_EN  
1: LDO3 enabled  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
144 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 98: LDO4_CONT  
Register Address  
Bit  
7
Type  
R/W  
R/W  
Label  
Description  
LDO4_CONF  
VLDO4_GPI  
0x29  
LDO4_CONT  
Sequencer target state of LDO4_EN  
6:5  
GPIO select target voltage VLDO4_A on  
passive to active transition, selects target  
voltage VLDO4_B on active to passive  
transition (ramping)  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
4
3
R/W  
R/W  
Reserved  
LDO4_PD_DIS  
0: Enable pull-down resistor  
1: No pull-down resistor in disabled mode  
LDO4_GPI  
2:1  
R/W  
GPIO enables LDO4 on passive to active  
state transition, disables LDO4 on active to  
passive state transition  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
0: LDO4 disabled  
0
R/W  
LDO4_EN  
1: LDO4 enabled  
Table 99: LDO5_CONT  
Register Address  
Bit  
Type  
R/W  
R/W  
Label  
Description  
LDO5_CONF  
VLDO5_GPI  
0x2A  
LDO5_CONT  
7
Sequencer target state of LDO5_EN  
6:5  
GPIO select target voltage VLDO5_A on  
passive to active transition, selects target  
voltage VLDO5_B on active to passive  
transition (immediate voltage change)  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
4
R/W  
VLDO5_SEL  
LDO5 voltage is selected from (immediate  
change):  
0: VLDO5_A  
1: VLDO5_B  
LDO5_PD_DIS  
LDO5_GPI  
0: Enable pull-down resistor  
1: No pull-down resistor in disabled mode  
3
R/W  
R/W  
2:1  
GPIO enables LDO5 on passive to active  
state transition, disables LDO6 on active to  
passive state transition  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
0: LDO5 disabled  
0
R/W  
LDO5_EN  
1: LDO5 enabled  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
145 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 100: LDO6_CONT  
Register Address  
Bit  
7
Type  
R/W  
R/W  
Label  
Description  
LDO6_CONF  
VLDO6_GPI  
0x2B  
LDO6_CONT  
Sequencer target state of LDO6_EN  
6:5  
GPIO select target voltage VLDO6_A on  
passive to active transition, selects target  
voltage VLDO6_B on active to passive  
transition (immediate voltage change)  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
4
R/W  
VLDO6_SEL  
LDO6 voltage is selected from (immediate  
change):  
0: VLDO6_A  
1: VLDO6_B  
LDO6_PD_DIS  
LDO6_GPI  
0: Enable pull-down resistor  
1: No pull-down resistor in disabled mode  
3
R/W  
R/W  
2:1  
GPIO enables LDO6 on passive to active  
state transition, disables LDO6 on active to  
passive state transition  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
0: LDO6 disabled  
0
R/W  
LDO6_EN  
1: LDO6 enabled  
Table 101: LDO7_CONT  
Register Address  
Bit  
Type  
R/W  
R/W  
Label  
Description  
LDO7_CONF  
VLDO7_GPI  
0x2C  
LDO7_CONT  
7
Sequencer target state of LDO7_EN  
6:5  
GPIO select target voltage VLDO7_A on  
passive to active transition, selects target  
voltage VLDO7_B on active to passive  
transition (immediate voltage change)  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
4
3
R/W  
R/W  
VLDO7_SEL  
LDO7 voltage is selected from (immediate  
change):  
0: VLDO7_A  
1: VLDO7_B  
LDO7_PD_DIS  
0: Enable pull-down resistor  
1: No pull-down resistor in disabled mode  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
146 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
LDO7_GPI  
2:1  
R/W  
GPIO enables LDO7 on passive to active  
state transition, disables LDO7 on active to  
passive state transition  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
0: LDO7 disabled  
0
R/W  
LDO7_EN  
1: LDO7 enabled  
Table 102: LDO8_CONT  
Register Address  
Bit  
Type  
R/W  
R/W  
Label  
Description  
LDO8_CONF  
VLDO8_GPI  
0x2D  
LDO8_CONT  
7
Sequencer target state of LDO8_EN  
6:5  
GPIO select target voltage VLDO8_A on  
passive to active transition, selects target  
voltage VLDO8_B on active to passive  
transition (immediate voltage change)  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
4
R/W  
VLDO8_SEL  
LDO8 voltage is selected from (immediate  
change):  
0: VLDO8_A  
1: VLDO8_B  
LDO8_PD_DIS  
LDO8_GPI  
0: Enable pull-down resistor  
1: No pull-down resistor in disabled mode  
3
R/W  
R/W  
2:1  
GPIO enables LDO8 on passive to active  
state transition, disables LDO8 on active to  
passive state transition  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
0: LDO8 disabled  
0
R/W  
LDO8_EN  
1: LDO8 enabled  
Table 103: LDO9_CONT  
Register Address  
Bit  
Type  
R/W  
R/W  
Label  
Description  
LDO9_CONF  
VLDO9_GPI  
0x2E  
LDO9_CONT  
7
Sequencer target state of LDO9_EN  
6:5  
GPIO select target voltage VLDO9_A on  
passive to active transition, selects target  
voltage VLDO9_B on active to passive  
transition (immediate voltage change)  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
147 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
4
R/W  
VLDO9_SEL  
LDO9 voltage is selected from (immediate  
change):  
0: VLDO9_A  
1: VLDO9_B  
LDO9_PD_DIS  
LDO9_GPI  
0: Enable pull-down resistor  
1: No pull-down resistor in disabled mode  
3
R/W  
R/W  
2:1  
GPIO enables LDO9 on passive to active  
state transition, disables LDO9 on active to  
passive state transition  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
0: LDO9 disabled  
0
R/W  
LDO9_EN  
1: LDO9 enabled  
Table 104: LDO10_CONT  
Register Address  
Bit  
7
Type  
R/W  
R/W  
Label  
Description  
LDO10_CONF  
VLDO10_GPI  
0x2F LDO10_CONT  
Sequencer target state of LDO10_EN  
6:5  
GPIO select target voltage VLDO10_A on  
passive to active transition, selects target  
voltage VLDO10_B on active to passive  
transition (immediate voltage change)  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
4
R/W  
VLDO10_SEL  
LDO10 voltage is selected from (immediate  
change):  
0: VLDO10_A  
1: VLDO10_B  
LDO10_PD_DIS  
LDO10_GPI  
0: Enable pull-down resistor  
1: No pull-down resistor in disabled mode  
3
R/W  
R/W  
2:1  
GPIO enables LDO10 on passive to active  
state transition, disables LDO10 on active to  
passive state transition  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
0: LDO10 disabled  
0
R/W  
LDO10_EN  
1: LDO10 enabled  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
148 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 105: LDO11_CONT  
Register Address  
Bit  
7
Type  
R/W  
R/W  
Label  
Description  
LDO11_CONF  
VLDO11_GPI  
0x30 LDO11_CONT  
Sequencer target state of LDO11_EN  
6:5  
GPIO select target voltage VLDO11_A on  
passive to active transition, selects target  
voltage VLDO11_B on active to passive  
transition (immediate voltage change)  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
VLDO11_SEL  
4
R/W  
LDO11 voltage is selected from (immediate  
change):  
0: VLDO11_A  
1: VLDO11_B  
LDO11_PD_DIS  
LDO11_GPI  
0: Enable pull-down resistor  
1: No pull-down resistor in disabled mode  
3
R/W  
R/W  
2:1  
GPIO enables LDO11 on passive to active  
state transition, disables LDO11 on active to  
passive state transition  
00: Not controlled by GPIO (sequencer  
control)  
01: GPIO1 controlled  
10: GPIO2 controlled  
11: GPIO13 controlled  
LDO11_EN  
0: LDO11 disabled  
0
R/W  
1: LDO11 enabled  
Table 106: VIB  
Register Address  
Bit  
7:6  
5:0  
Type  
R/W  
R/W  
Label  
Description  
Reserved  
VIB_SET  
0x31  
VIB  
000000: OFF-BREAK, NMOS on, PMOS off  
000001: 47.55 mV  
000010: 95.1 mV  
Average output level set in a range of 0 to  
3 V in steps of 3 V/63  
111111: 3.0 V  
Table 107: DVC_1  
Register Address  
Bit  
Type  
Label  
Description  
0x32  
DVC_1  
7
R/W  
VLDO3_SEL  
LDO3 voltage is selected from (ramping):  
0: VLDO3_A  
1: VLDO3_B  
6
R/W  
VLDO2_SEL  
LDO2 voltage is selected from (ramping):  
0: VLDO2_A  
1: VLDO2_B  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
149 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
5
R/W  
VLDO1_SEL  
LDO1 voltage is selected from (ramping):  
0: VLDO1_A  
1: VLDO1_B  
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
VBPERI_SEL  
VBMEM_SEL  
VBPRO_SEL  
BUCKPERI voltage is selected from  
(ramping):  
0: VBPERI_A  
1: VBPERI_B  
BUCKMEM voltage is selected from  
(ramping):  
0: VBMEM_A  
1: VBMEM_B  
BUCKPRO voltage is selected from  
(ramping):  
0: VBPRO_A  
1: VBPRO_B  
VBCORE2_SEL  
VBCORE1_SEL  
BUCKCORE2 voltage is selected from  
(ramping):  
0: VBCORE2_A  
1: VBCORE2_B  
BUCKCORE1 voltage is selected from  
(ramping):  
0: VBCORE1_A  
1: VBCORE1_B  
Table 108: DVC_2  
Register Address  
Bit  
Type  
Label  
Description  
0x33  
DVC_2  
7
R/W  
VLDO4_SEL  
LDO4 voltage is selected from (ramping):  
0: VLDO4_A  
1: VLDO4_B  
6:1  
0
R/W  
R/W  
Reserved  
VBIO_SEL  
BUCKIO voltage is selected from (ramping):  
0: VBIO_A  
1: VBIO_B  
A.2.4  
GPADC  
Table 109: ADC_MAN  
Register Address  
Bit  
7:6  
5
Type  
R/W  
R/W  
Label  
Description  
Reserved  
ADC_MODE  
0x34  
ADC_MAN  
0: Measurement sequence interval 10 ms  
(economy mode)  
1: Measurement sequence interval 1 ms  
4
R/W  
ADC_MAN  
Perform manual conversion. Bit is reset to 0  
when conversion is complete.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
150 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
ADC_MUX  
3:0  
R/W  
Manual measurement selects:  
0000: VSYS port  
0001: ADCIN1  
0010: ADCIN2  
0011: ADCIN3  
0100: internal T-Sense  
0101: VBBAT-voltage  
0110: reserved  
0111: reserved  
1000: Group 1 regulators voltage  
1001: Group 2 regulators voltage  
1010: Group 3 regulators voltage  
> 1010: reserved  
Table 110: ADC_CONT  
Register Address  
Bit  
Type  
Label  
Description  
COMP1V2_EN  
0: Disable 1.2 V comparator at ADCIN2  
1: Enable 1.2 V comparator  
0x35  
ADC_CONT  
7
6
5
4
3
2
1
0
R/W  
AD3_ISRC_EN  
AD2_ISRC_EN  
AD1_ISRC_EN  
AUTO_AD3_EN  
AUTO_AD2_EN  
AUTO_AD1_EN  
AUTO_VSYS_EN  
0: Disable ADCIN3 current source  
1: Enable ADCIN3 current source  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0: Disable ADCIN2 current source  
1: Enable ADCIN2 current source  
0: Disable ADCIN1 current source  
1: Enable ADCIN1 current source  
0: ADCIN3 auto-measurements disabled  
1: ADCIN3 auto-measurements enabled  
0: ADCIN2 auto-measurements disabled  
1: ADCIN2 auto-measurements enabled  
0: ADCIN1 auto-measurements disabled  
1: ADCIN1 auto-measurements enabled  
0: VSYS auto-measurements disabled  
when charger/vibration motor driver is  
off  
1: VSYS auto-measurements enabled  
Table 111: VSYS_MON  
Register Address  
Bit  
Type  
Label  
Description  
0x36  
7:0  
R/W  
VSYS_MON  
VSYS_MON threshold setting (8-bit).  
VSYS_MON  
00000000 corresponds to 2.5 V  
11111111 corresponds to 5.5 V  
A.2.5  
ADC Results  
Table 112: ADC_RES_L  
Register Address  
Bit  
7:6  
5:0  
Type  
R
Label  
Description  
0x37 ADC_RES_L  
ADC_RES_LSB  
Reserved  
10-bit manual conversion result (2 LSBs)  
R
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
151 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 113: ADC_RES_H  
Register Address  
Bit  
Type  
Label  
Description  
0x38 ADC_RES_H  
7:0  
R
ADC_RES_MSB  
10-bit manual conversion result (8 MSBs)  
Table 114: VSYS_RES  
Register Address  
Bit  
Type  
Label  
Description  
0x39 VSYS_RES  
7:0  
R
VSYS_RES  
0x00 0xFF: Auto VSYS conversion result  
(A0)  
0x00 corresponds to 2.5 V  
0xFF corresponds to 5.5 V  
Table 115: ADCIN1_RES  
Register Address  
Bit  
Type  
Label  
Description  
0x3A  
7:0  
R
ADCIN1_RES  
0x00 0xFF: Auto ADC ADCIN1 conversion  
ADCIN1_RES  
result  
Table 116: ADCIN2_RES  
Register Address  
Bit  
Type  
Label  
Description  
0x3B  
7:0  
R
ADCIN2_RES  
0x00 0xFF: Auto ADC ADCIN2 conversion  
ADCIN2_RES  
result  
Table 117: ADCIN3_RES  
Register Address  
Bit  
Type  
Label  
Description  
0x3C  
7:0  
R
ADCIN3_RES  
0x00 0xFF: Auto ADC ADCIN3 conversion  
ADCIN3_RES  
result  
Table 118: MON_A8_RES  
Register Address  
Bit  
Type  
Label  
Description  
0x3D  
7:0  
R
MON_A8_RES  
0x00 0xFF: Regulator output voltage  
MON_A8_RES  
monitor 1 (A8) conversion result  
0x00 corresponds to 0.0 V  
0xFF corresponds to 5.0 V  
Table 119: MON_A9_RES  
Register Address  
Bit  
Type  
Label  
Description  
0x3E  
7:0  
R
MON_A9_RES  
0x00 0xFF: Regulator output voltage  
MON_A9_RES  
monitor 2 (A9) conversion result  
0x00 corresponds to 0.0 V  
0xFF corresponds to 5.0 V  
Table 120: MON_A10_RES  
Register Address  
Bit  
Type  
Label  
Description  
0x3F  
7:0  
R
MON_A10_RES  
0x00 0xFF: Regulator output voltage  
MON_A10_RES  
monitor 3 (A10) conversion result  
0x00 corresponds to 0.0 V  
0xFF corresponds to 5.0 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
152 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
A.2.6  
RTC Calendar and Alarm  
Table 121: COUNT_S  
Register Address  
Bit  
Type  
Label  
Description  
0x40  
COUNT_S  
7
R
RTC_READ  
Asserted when below registers have been  
transferred from RTC logic into host readable  
registers (for example, after leaving POR)  
6
R
Reserved  
5:0  
R/W  
COUNT_SEC  
0x00 0x3B: RTC seconds read-out. A read  
of this register latches the current RTC  
calendar count into the registers COUNT_S  
to COUNT_Y cohererent for approx 0.5 s).  
Table 122: COUNT_MI  
Register Address  
Bit  
7:6  
5:0  
Type  
R
Label  
Description  
0x41 COUNT_MI  
Reserved  
R/W  
COUNT_MIN  
0x00 0x3B: RTC minutes read-out  
Table 123: COUNT_H  
Register Address  
Bit  
Type  
R
Label  
Description  
0x42  
COUNT_H  
7:5  
4:0  
Reserved  
R/W  
COUNT_HOUR  
0x00 0x17: RTC hours read-out  
Table 124: COUNT_D  
Register Address  
Bit  
Type  
R
Label  
Description  
0x43  
COUNT_D  
7:5  
4:0  
Reserved  
R/W  
COUNT_DAY  
0x01 0x1F: RTC days read-out  
Table 125: COUNT_MO  
Register Address  
Bit  
7:4  
3:0  
Type  
R
Label  
Description  
0x44 COUNT_MO  
Reserved  
R/W  
COUNT_MONTH  
0x01 0x0C: RTC months read-out  
Table 126: COUNT_Y  
Register Address  
Bit  
Type  
R
Label  
Description  
0x45  
COUNT_Y  
7
6
Reserved  
MONITOR  
R/W  
Read-out 0 indicates that the power was lost.  
Read-out of 1 indicates that the clock is OK  
Set to 1 when setting time to arm RTC  
monitor function. Cannot be cleared via  
register write.  
5:0  
R/W  
COUNT_YEAR  
0x00 0x3F: RTC years read-out (0  
corresponds to year 2000). A write to this  
register latches the registers COUNT_S to  
COUNT_Y into the current RTC calendar  
counters.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
153 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 127: ALARM_S  
Register Address  
Bit  
Type  
Label  
Description  
Alarm event caused by:  
0x46  
7:6  
R
ALARM_TYPE  
ALARM_S  
00: No alarm  
01: Tick  
10: Timer alarm  
11: Both  
5:0  
R/W  
ALARM_SEC  
0x00 0x3B: Alarm seconds setting  
Table 128: ALARM_MI  
Register Address  
Bit  
7:6  
5:0  
Type  
R
Label  
Description  
0x47 ALARM_MI  
Reserved  
R/W  
ALARM_MIN  
0x00 0x3B: Alarm minutes setting  
Table 129: ALARM_H  
Register address  
Bit  
Type  
R
Label  
Description  
0x48  
ALARM_H  
7:5  
4:0  
Reserved  
R/W  
ALARM_HOUR  
0x00 0x17: Alarm hours setting  
Table 130: ALARM_D  
Register Address  
Bit  
Type  
R
Label  
Description  
0x49  
ALARM_D  
7:5  
4:0  
Reserved  
R/W  
ALARM_DAY  
0x01 0x1F: Alarm days setting  
Table 131: ALARM_MO  
Register Address  
Bit  
7:6  
5
Type  
R
Label  
Description  
0x4A ALARM_MO  
Reserved  
R/W  
TICK_WAKE  
Tick alarm wakeup  
0: disabled  
1: enabled  
4
R/W  
R/W  
TICK_TYPE  
Tick alarm interval is:  
0: one second  
1: one minute  
3:0  
ALARM_MONTH  
0x01 0x0C: Alarm months setting  
Table 132: ALARM_Y  
Register Address  
Bit  
Type  
Label  
Description  
0x4B  
7
R/W  
TICK_ON  
0: Tick function is disabled  
ALARM_Y  
1: Periodic tick alarm enabled  
6
R/W  
R/W  
ALARM_ON  
0: Alarm function is disabled  
1: Alarm enabled  
5:0  
ALARM_YEAR  
0x00 0x3F: Alarm years setting (0  
corresponds to year 2000). A write to this  
register latches the registers ALARM_MI to  
ALARM_Y  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
154 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 133: SECOND_A  
Register Address  
Bit  
Type  
Label  
Description  
0x4C SECOND_A  
7:0  
R
SECONDS_A  
RTC seconds counter A (LSBs). A read of  
this register latches the current 32-bit counter  
into the registers SECOND_A to SECOND_D  
(cohererent for approx 0.5 s).  
Table 134: SECOND_B  
Register Address  
Bit  
Type  
Label  
Description  
0x4D SECOND_B  
7:0  
R
SECONDS_B  
RTC seconds counter B  
Table 135: SECOND_C  
Register Address  
Bit  
Type  
Label  
Description  
0x4E SECOND_C  
7:0  
R
SECONDS_C  
RTC seconds counter C  
Table 136: SECOND_D  
Register Address  
Bit  
Type  
Label  
Description  
0x4F SECOND_D  
7:0  
R
SECONDS_D  
RTC seconds counter D (MSBs)  
Table 137: Copmic_S to Copmic_E  
Register Address  
0x50 CoPMIC_S  
0x67 CoPMIC_E  
Bit  
7:0  
7:0  
Type  
R
Label  
Description  
Reserved for Co-PMIC  
Reserved for Co-PMIC  
Reserved  
Reserved  
R
Table 138: CHG_Co_S to CHG_Co_E  
Register Address  
0x68 CHG_Co_S  
0x7F CHG_Co_E  
Bit  
7:0  
7:0  
Type  
R
Label  
Description  
Reserved for companion charger  
Reserved for companion charger  
Reserved  
Reserved  
R
A.3 Register Page 1  
Table 139: PAGE_CON  
Register Address  
Bit  
7
Type  
RW  
RW  
RW  
RW  
Label  
REVERT  
Description  
0x80 PAGE_CON  
See register 0x00, Table 57  
6
WRITE_MODE  
Reserved  
5:3  
2:0  
REG_PAGE  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
155 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
A.3.1  
Power Sequencer  
Table 140: SEQ  
Register Address  
Bit  
Type  
Label  
Description  
0x81  
SEQ  
7:4  
R/W  
NXT_SEQ_START  
Start time slot for first sequencing after being  
modified via register write  
3:0  
R
SEQ_POINTER  
Actual pointer position (time slot) of power  
sequencer  
Table 141: SEQ_TIMER  
Register Address  
Bit  
Type  
Label  
Description  
SEQ_DUMMY  
0x82 SEQ_TIMER  
7:4  
R/W  
0000: 32 µs  
0001: 64 µs  
0010: 96 µs  
0011: 128 µs  
0100: 160 µs  
0101: 192 µs  
0110: 224 µs  
0111: 256 µs  
1000: 288 µs  
1001: 384 µs  
1010: 448 µs  
1011: 512 µs  
1100: 1.024 ms  
1101: 2.048 ms  
1110: 4.096 ms  
1111: 8.192 ms  
SEQ_TIME  
3:0  
R/W  
0000: 32 µs  
0001: 64 µs  
0010: 96 µs  
0011: 128 µs  
0100: 160 µs  
0101: 192 µs  
0110: 224 µs  
0111: 256 µs  
1000: 288 µs  
1001: 384 µs  
1010: 448 µs  
1011: 512 µs  
1100: 1.024 ms  
1101: 2.048 ms  
1110: 4.096 ms  
1111: 8.192 ms  
Table 142: ID_2_1  
Register Address  
Bit  
7:4  
3:0  
Type  
R/W  
R/W  
Label  
Description  
LDO2_STEP  
LDO1_STEP  
0x83  
ID_2_1  
Power sequencer time slot for LDO2 control  
Power sequencer time slot for LDO1 control  
Table 143: ID_4_3  
Register Address  
Bit  
7:4  
3:0  
Type  
R/W  
R/W  
Label  
Description  
LDO4_STEP  
LDO3_STEP  
0x84  
ID_4_3  
Power sequencer time slot for LDO4 control  
Power sequencer time slot for LDO3 control  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
156 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 144: ID_6_5  
Register Address  
Bit  
7:4  
3:0  
Type  
R/W  
R/W  
Label  
Description  
LDO6_STEP  
LDO5_STEP  
0x85  
ID_6_5  
Power sequencer time slot for LDO6 control  
Power sequencer time slot for LDO5 control  
Table 145: ID_8_7  
Register Address  
Bit  
7:4  
3:0  
Type  
R/W  
R/W  
Label  
Description  
LDO8_STEP  
LDO7_STEP  
0x86  
ID_8_7  
Power sequencer time slot for LDO8 control  
Power sequencer time slot for LDO7 control  
Table 146: ID_10_9  
Register Address  
Bit  
7:4  
3:0  
Type  
R/W  
R/W  
Label  
Description  
LDO10_STEP  
LDO9_STEP  
0x87  
ID_10_9  
Power sequencer time slot for LDO10 control  
Power sequencer time slot for LDO9 control  
Table 147: ID_12_11  
Register Address  
Bit  
Type  
Label  
Description  
PD_DIS_STEP  
0x88  
ID_12_11  
7:4  
3:0  
R/W  
Power sequencer time slot for control of  
blocks to be disabled/paused during  
POWERDOWN mode  
LDO11_STEP  
R/W  
Power sequencer time slot for LDO11 control  
Table 148: ID_14_13  
Register Address  
Bit  
Type  
Label  
Description  
BUCKCORE2_STEP  
0x89  
ID_14_13  
7:4  
3:0  
R/W  
Power sequencer time slot for control of  
BUCKCORE2 (disabled in BUCKCORE dual  
phase mode)  
BUCKCORE1_STEP  
R/W  
Power sequencer time slot for control of  
BUCKCORE1  
Table 149: ID_16_15  
Register Address  
Bit  
Type  
Label  
Description  
BUCK_IO_STEP  
0x8A  
ID_16_15  
7:4  
R/W  
Power sequencer time slot for control of  
BUCKPRO  
BUCKPRO_STEP  
3:0  
R/W  
Power sequencer time slot for control of  
BUCKPRO  
Table 150: ID_18_17  
Register Address  
Bit  
Type  
Label  
Description  
BUCKPERI_STEP  
0x8B  
ID_18_17  
7:4  
R/W  
Power sequencer time slot for control of  
BUCKPERI  
BUCKMEM_STEP  
3:0  
R/W  
Power sequencer time slot for control of  
BUCKMEM  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
157 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 151: ID_20_19  
Register Address  
Bit  
Type  
Label  
Description  
PERI_SW_STEP  
0x8C  
ID_20_19  
7:4  
R/W  
Power sequencer time slot for control of  
PERI rail switch  
CORE_SW_STEP  
3:0  
R/W  
Power sequencer time slot for control of  
CORE rail switch  
Table 152: ID_22_21  
Register Address  
Bit  
Type  
Label  
Description  
GP_FALL1_STEP  
0x8D  
ID_22_21  
7:4  
R/W  
Power sequencer time slot for falling edge  
control of GPO2  
GP_RISE1_STEP  
3:0  
R/W  
Power sequencer time slot for rising edge  
control of GPO2  
Table 153: ID_24_23  
Register Address  
Bit  
Type  
Label  
Description  
GP_FALL2_STEP  
0x8E  
ID_24_23  
7:4  
R/W  
Power sequencer time slot for falling edge  
control of GPO7  
GP_RISE2_STEP  
3:0  
R/W  
Power sequencer time slot for rising edge  
control of GPO7  
Table 154: ID_26_25  
Register Address  
Bit  
Type  
Label  
Description  
GP_FALL3_STEP  
0x8F  
ID_26_25  
7:4  
R/W  
Power sequencer time slot for falling edge  
control of GPO8  
GP_RISE3_STEP  
3:0  
R/W  
Power sequencer time slot for rising edge  
control of GPO8  
Table 155: ID_28_27  
Register Address  
Bit  
Type  
Label  
Description  
GP_FALL4_STEP  
0x90  
ID_28_27  
7:4  
R/W  
Power sequencer time slot for falling edge  
control of GPO9  
GP_RISE4_STEP  
3:0  
R/W  
Power sequencer time slot for rising edge  
control of GPO9  
Table 156: ID_30_29  
Register Address  
Bit  
Type  
Label  
Description  
GP_FALL5_STEP  
0x91  
ID_30_29  
7:4  
R/W  
Power sequencer time slot for falling edge  
control of GPO11  
GP_RISE5_STEP  
3:0  
R/W  
Power sequencer time slot for rising edge  
control of GPO11  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
158 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 157: ID_32_31  
Register Address  
Bit  
Type  
Label  
Description  
EN32K_STEP  
0x92  
ID_32_31  
7:4  
R/W  
Power sequencer time slot for enable/disable  
of 32K output signals  
WAIT_STEP  
3:0  
R/W  
Power sequencer time slot that gates the  
progress with state of GPI10 (or used a  
dedicated delay timer)  
Table 158: Reserved  
Register Address  
Bit  
Type  
Label  
Description  
Reserved  
0x93  
7:0  
R/W  
Table 159: SEQ_A  
Register Address  
Bit  
Type  
Label  
Description  
POWER_END  
0x95  
SEQ_A  
7:4  
R/W  
OTP pointer to last supply of domain  
POWER  
SYSTEM_END  
3:0  
R/W  
OTP pointer to last supply of domain  
SYSTEM  
Table 160: SEQ_B  
Register Address  
Bit  
7:4  
3:0  
Type  
R/W  
R/W  
Label  
Description  
PART_DOWN  
MAX_COUNT  
0x96  
SEQ_B  
OTP pointer for partial POWERDOWN mode  
OTP pointer to last supply of domain  
POWER1  
Table 161: WAIT  
Register Address  
Bit  
Type  
Label  
Description  
WAIT_DIR  
00: No wait during power sequencing  
01: Wait during power-up sequence  
10:: Wait during power-down sequence  
11: Wait during power-up and power-down  
sequence  
0x97  
WAIT  
7:6  
R/W  
TIME_OUT  
0: No time limit  
1: 500 ms time out for waiting GPIO10 to get  
active  
5
4
R/W  
R/W  
WAIT_MODE  
0: Wait for GPIO10 to be active  
1: Timer mode (start timer and wait for  
expire)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
159 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
WAIT_TIME  
3:0  
R/W  
0000: 0.0 µs  
0001: 512 µs  
0010: 1.0 ms  
0011: 2.0 ms  
0100: 4.1 ms  
0101: 8.2 ms  
0110: 16.4 ms  
0111: 32.8 ms  
1000: 65.5 ms  
1001: 128 ms  
1010: 256 ms  
1011: 512 ms  
1100: 1.0 s  
1101: 2.1 s  
1110: 4.2 s  
1111: 8.4 s  
Table 162: EN_32K  
Register Address  
Bit  
Type  
Label  
Description  
EN_32KOUT  
0x98  
7
R/W  
0: 32K clock buffer off (OUT_32K)  
1: 32K clock buffer enabled (OUT_32K),  
when powering up with a power sequence  
including EN32K_STEP the buffer is enabled  
when reaching EN32K_STEP, in case the  
power sequence includes PD_DIS_STEP  
with OUT_32K_PAUSE asserted the buffer  
enable is delayed until reaching  
EN_32K  
PD_DIS_STEP on the way up  
Note: with OUT_CLOCK being asserted the  
buffer enable is delayed until 32K oscillator  
signal is stable  
RTC_CLOCK  
OUT_CLOCK  
6
5
R/W  
R/W  
0: No gating of RTC calendar clock  
1: Clock to RTC counter is gated until 32K  
oscillator stabilisation timer has expired  
0: No gating of OUT_32K and clock signals  
at GP_FB3  
1: Clock to buffers is gated until 32K  
oscillation stabilisation timer has expired  
(indicating stable 32K oscillator signal)  
DELAY_MODE  
0: Start stabilisation timer when duty  
cycle of oscillator signal is in between  
30% and 70%  
1: Start stabilisation timer when CRYSTAL is  
asserted, RTC_EN changed or when leaving  
DELIVERY/NO-POWER mode with  
CRYSTAL asserted  
4
3
R/W  
R/W  
CRYSTAL  
0: No 32 kHz crystal connected (bypass via  
XOUT)  
1: 32 kHz crystal connected  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
160 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
STABILISATION_TIME  
2:0  
R/W  
Time to allow crystal oscillator to stabilize:  
000: 0.0 s (delay off)  
001: 0.52 s  
010: 1.0 s  
011: 1.5 s  
100: 2.1 s  
101: 2.6 s  
110: 3.1 s  
111: 3.6 s  
Table 163: RESET  
Register Address  
Bit  
Type  
Label  
Description  
RESET_EVENT  
0x99  
7:6  
R/W  
RESET timer started by  
RESET  
00: EXT_WAKEUP  
01: SYS_UP  
10: PWR_UP  
11: leaving PMIC RESET state (do not use  
in combination with nRES_MODE = 1)  
RESET_TIMER  
5:0  
R/W  
000000: 0.000 ms  
000001: 1.024 ms  
000010: 2.048 ms  
000011: 3.072 ms  
000100: 4.096 ms  
000101: 5.120 ms  
….  
011110: 30.720 ms  
011111: 31.744 ms  
100000: 32.768 ms  
100001: 65.536 ms  
100010: 98.304 ms  
…..  
111101: 983.040 ms  
111110: 1015.808 ms  
111111: 1048.576 ms  
A.3.2  
Regulator Settings  
Table 164: BUCK_ILIM_A  
Register Address  
Bit  
Type  
Label  
Description  
BMEM_ILIM  
0x9A  
BUCK_ILIM_A  
7:4  
R/W  
BUCKMEM current limit (all limits x2 in  
MERGE mode)  
0000:1500 mA  
0001:1600 mA  
0010:1700 mA  
0011:1800 mA  
0100:1900 mA  
0101:2000 mA  
0110:2100 mA  
0111:2200 mA  
1000:2300 mA  
1001:2400 mA  
1010:2500 mA  
1011:2600 mA  
1100:2700 mA  
1101:2800 mA  
1110:2900 mA  
1111:3000 mA  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
161 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
BUCKIO current limit  
BIO_ILIM  
3:0  
R/W  
0000:1500 mA  
0001:1600 mA  
0010:1700 mA  
0011:1800 mA  
0100:1900 mA  
0101:2000 mA  
0110:2100 mA  
0111:2200 mA  
1000:2300 mA  
1001:2400 mA  
1010:2500 mA  
1011:2600 mA  
1100:2700 mA  
1101:2800 mA  
1110:2900 mA  
1111:3000 mA  
Table 165: BUCK_ILIM_B  
Register Address  
Bit  
Type  
Label  
Description  
BPERI_ILIM  
0x9B  
7:4  
R/W  
BUCKPERI current limit  
BUCK_ILIM_B  
0000:1500 mA  
0001:1600 mA  
0010:1700 mA  
0011:1800 mA  
0100:1900 mA  
0101:2000 mA  
0110:2100 mA  
0111:2200 mA  
1000:2300 mA  
1001:2400 mA  
1010:2500 mA  
1011:2600 mA  
1100:2700 mA  
1101:2800 mA  
1110:2900 mA  
1111:3000 mA  
BPRO_ILIM  
3:0  
R/W  
BUCKPRO current limit (all limits x2 in full-  
current mode)  
0000:500 mA  
0001:600 mA  
0010:700 mA  
0011:800 mA  
0100:900 mA  
0101:1000 mA  
0110:1100 mA  
0111:1200 mA  
1000:1300 mA  
1001:1400 mA  
1010:1500 mA  
1011:1600 mA  
1100:1700 mA  
1101:1800 mA  
1110:1900 mA  
1111:2000 mA  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
162 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 166: BUCK_ILIM_C  
Register Address  
Bit  
Type  
Label  
Description  
BCORE2_ILIM  
0x9C  
BUCK_ILIM_C  
7:4  
R/W  
BUCKCORE2 current limit (all limits x2 in  
full-current mode)  
0000:500 mA  
0001:600 mA  
0010:700 mA  
0011:800 mA  
0100:900 mA  
0101:1000 mA  
0110:1100 mA  
0111:1200 mA  
1000:1300 mA  
1001:1400 mA  
1010:1500 mA  
1011:1600 mA  
1100:1700 mA  
1101:1800 mA  
1110:1900 mA  
1111:2000 mA  
BCORE1_ILIM  
3:0  
R/W  
BUCKCORE1 current limit (all limits x2 in  
full-current mode)  
0000:500 mA  
0001:600 mA  
0010:700 mA  
0011:800 mA  
0100:900 mA  
0101:1000 mA  
0110:1100 mA  
0111:1200 mA  
1000:1300 mA  
1001:1400 mA  
1010:1500 mA  
1011:1600 mA  
1100:1700 mA  
1101:1800 mA  
1110:1900 mA  
1111:2000 mA  
Table 167: BCORE2_CONF  
Register Address  
Bit  
Type  
Label  
Description  
BCORE2_MODE  
0x9D  
BCORE2_CONF  
7:6  
R/W  
00: Sleep/Synchronous mode controlled via  
voltage A and B registers  
01: BUCKCORE2 always operates in Sleep  
mode  
10: BUCKCORE2 always operates in  
Synchronous mode  
11: BUCKCORE2 operates in Automatic  
mode  
BCORE2_PD_DIS  
Reserved  
0: Enable pull-down resistor  
(automatically disabled in dual-phase  
mode)  
5
R/W  
1: No pull-down resistor in disabled mode  
4:3  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
163 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
BCORE2_FB  
2:0  
R/W  
BUCKCORE2 feedback signal is created  
out of:  
xx1: VBUCKCORE2  
x1x: CORE_SWS  
1xx: PERI_SWS  
Each switch connected to the output of the  
buck may be selected; setting 0b000 is  
invalid  
Table 168: BCORE1_CONF  
Register Address  
Bit  
Type  
Label  
Description  
BCORE1_MODE  
0x9E  
BCORE1_CONF  
7:6  
R/W  
00: Sleep/Synchronous mode controlled via  
voltage A and B registers  
01: BUCKCORE1 always operates in Sleep  
mode  
10: BUCKCORE1 always operates in  
Synchronous mode  
11: BUCKCORE1 operates in Automatic  
mode  
BCORE1_PD_DIS  
0: Enable pull-down resistor  
1: No pull-down resistor in disabled mode  
5
R/W  
R/W  
Reserved  
4:3  
2:0  
BCORE1_FB  
BUCKCORE feedback signal is created out  
of:  
000:  
BCORE_MERGE= 0: VBUCKCORE1  
BCORE_MERGE= 1: Differential remote  
sensing via VBUCKCORE1 –  
VBUCKCORE2 and output capacitor  
voltage sense via port CORE_SWS or  
GP_FB_2  
xx1: VBUCKCORE1  
x1x: CORE_SWS  
1xx: PERI_SWS  
Each switch connected to the output of the  
buck may be selected; setting 0b000  
disables sense voltage mixer for  
BUCKCORE  
Table 169: BPRO_CONF  
Register Address  
Bit  
Type  
Label  
Description  
BPRO_MODE  
0x9F BPRO_CONF  
7:6  
R/W  
00: Sleep/Synchronous mode controlled via  
voltage A and B registers  
10: BUCKPRO always operates in Sleep  
mode  
10: BUCKPRO always operates in  
Synchronous  
11: BUCKPRO operates in Automatic  
mode  
BPRO_PD_DIS  
0: Enable pull-down resistor  
5
R/W  
1: No pull-down resistor in disabled mode  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
164 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
0: Buck voltage mode  
BPRO_VTT_EN  
4
R/W  
1: VTT mode, buck target voltage tracks  
50% of VDDQ sense port (requires  
BPRO_VTTR_EN to be asserted as well)  
BPRO_VTTR_EN  
BPRO_FB  
0: VTTR port is assigned to E_CMP1V2,  
port VDDQ provides status of E_GPI2  
1: VTTR port provides 50% of VDDQ  
voltage  
3
R/W  
R/W  
2:0  
BUCKPRO feedback signal is created out  
of:  
xx1: VBUCKPRO  
x1x: CORE_SWS  
1xx: PERI_SWS  
Each switch connected to the output of the  
buck may be selected; setting 0b000 is  
invalid  
Table 170: BIO_CONF  
Register Address  
Bit  
Type  
Label  
Description  
BIO_MODE  
0xA0  
BIO_CONF  
7:6  
R/W  
00: Sleep/Synchronous mode controlled via  
voltage A and B registers  
10: BUCKIO always operates in Sleep  
mode  
10: BUCKIO always operates in  
Synchronous  
11: BUCKIO operates in Automatic mode  
BIO_PD_DIS  
0: Enable pull-down resistor  
1: No pull-down resistor in disabled mode  
5
R/W  
R/W  
Reserved  
BIO_FB  
4:3  
2:0  
BUCKIO feedback signal is created out of:  
xx1: VBUCKBIO  
x1x: CORE_SWS  
1xx: PERI_SWS  
Each switch connected to the output of the  
buck may be selected; setting 0b000 is  
invalid  
Table 171: BMEM_CONF  
Register Address  
Bit  
Type  
Label  
Description  
BMEM_ MODE  
0xA1  
BMEM_CONF  
7:6  
R/W  
00: Sleep/Synchronous mode controlled via  
voltage A and B registers  
01: BUCKMEM always operates in Sleep  
mode  
10: BUCKMEM always operates in  
Synchronous mode  
11: BUCKMEM operates in Automatic  
mode  
BMEM_PD_DIS  
Reserved  
0: Enable pull-down resistor  
1: No pull-down resistor in disabled mode  
5
R/W  
4:3  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
165 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
BMEM_FB  
2:0  
R/W  
BUCKMEM feedback signal is created out  
of:  
xx1: VBUCKMEM  
x1x: CORE_SWS  
1xx: PERI_SWS  
Each switch connected to the output of the  
buck may be selected; setting 0b000 is  
invalid  
Table 172: BPERI_CONF  
Register Address Bit  
0xA2 BPERI_CONF 7:6  
Type  
Label  
Description  
BPERI_ MODE  
R/W  
00: Sleep/Synchronous mode controlled via  
voltage A and B registers  
01: BUCKPERI always operates in Sleep  
mode  
10: BUCKPERI always operates in  
Synchronous mode  
11: BUCKPERI operates in Automatic  
mode  
BPERI_PD_DIS  
0: Enable pull-down resistor  
1: No pull-down resistor in disabled mode  
5
R/W  
R/W  
Reserved  
BPERI_FB  
4:3  
2:0  
BUCKPERI feedback signal is created out  
of:  
xx1: VBUCKPERI  
x1x: CORE_SWS  
1xx: PERI_SWS  
Each switch connected to the output of the  
buck may be selected; setting 0b0000 is  
invalid  
Table 173: VBCORE2_A  
Register Address  
Bit  
Type  
Label  
Description  
BCORE2_SL_A  
0: Configures BUCKCORE2 to  
Synchronous mode, when selecting A  
voltage settings  
0xA3 VBCORE2_A  
57  
7
R/W  
1: Configures BUCKCORE2 to Sleep mode,  
when selecting A voltage settings  
VBCORE2_A  
6:0  
R/W  
0000000: 0.30 V  
0000001: 0.31 V  
0000010: 0.32 V  
0000011: 0.33 V  
0000100: 0.34 V  
0000101: 0.35 V  
0100101: 0.67 V  
0100110: 0.68 V  
0100111: 0.69 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
166 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
0101000: 0.70 V  
0101001: 0.71 V  
1010000: 1.10 V  
1110011: 1.45 V  
1110100: 1.46 V  
1110101: 1.47 V  
1110110: 1.48 V  
1110111: 1.49 V  
1111000: 1.50 V  
1111001: 1.51 V  
1111010: 1.52 V  
1111011: 1.53 V  
1111100: 1.54 V  
1111101: 1.55 V  
1111110: 1.56 V  
1111111: 1.57 V  
PWM mode voltage  
range  
Table 174: VBCORE1_A  
Register Address  
Bit  
Type  
Label  
Description  
BCORE1_SL_A  
0: Configures BUCKCORE1 to  
Synchronous mode, when selecting A  
voltage settings  
0xA4 VBCORE1_A  
7
R/W  
1: Configures BUCKCORE1 to Sleep mode,  
when selecting A voltage settings  
VBCORE1_A  
6:0  
R/W  
0000000: 0.30 V  
0000001: 0.31 V  
0000010: 0.32 V  
0000011: 0.33 V  
0000100: 0.34 V  
0000101: 0.35 V  
0100101: 0.67 V  
0100110: 0.68 V  
0100111: 0.69 V  
0101000: 0.70 V  
0101001: 0.71 V  
1010000: 1.10 V  
1110011: 1.45 V  
1110100: 1.46 V  
1110101: 1.47 V  
1110110: 1.48 V  
1110111: 1.49 V  
1111000: 1.50 V  
1111001: 1.51 V  
1111010: 1.52 V  
1111011: 1.53 V  
1111100: 1.54 V  
1111101: 1.55 V  
1111110: 1.56 V  
1111111: 1.57 V  
PWM mode voltage  
range  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
167 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 175: VBPRO_A  
Register Address  
Bit  
Type  
Label  
Description  
BPRO_SL_A  
0: Configures BUCKPRO to Synchronous  
mode, when selecting A voltage settings  
1: Configures BUCKPRO to Sleep mode,  
when selecting A voltage settings  
0xA5  
VBPRO_A  
7
R/W  
VBPRO_A  
6:0  
R/W  
0000000: 0.53 V  
0000001: 0.54 V  
0000010: 0.55 V  
0000011: 0.56 V  
0000100: 0.57 V  
0000101: 0.58 V  
0010000: 0.69 V  
0010001: 0.70 V  
0010010: 0.71 V  
0010011: 0.72 V  
0010100: 0.73 V  
0010101: 0.74 V  
0010110: 0.75 V  
1000011: 1.20 V  
1110011: 1.68 V  
1110100: 1.69 V  
1110101: 1.70 V  
1110110: 1.71 V  
1110111: 1.72 V  
1111000: 1.73 V  
1111001: 1.74 V  
1111010: 1.75 V  
1111011: 1.76 V  
1111100: 1.77 V  
1111101: 1.78 V  
1111110: 1.79 V  
1111111: 1.80 V  
PWM mode voltage  
range  
Table 176: VBMEM_A  
Register Address  
Bit  
Type  
Label  
Description  
BMEM_SL_A  
0: Configures BUCKMEM to Synchronous  
mode, when selecting A voltage settings  
1: Configures BUCKMEM to Sleep mode,  
when selecting A voltage settings  
0xA6  
VBMEM_A  
7
R/W  
VBMEM_A  
6:0  
R/W  
0000000: 0.80 V  
0000001: 0.82 V  
0000010: 0.84 V  
0010100: 1.20 V  
...  
0111100: 2.00 V  
0111101: 2.02 V  
0111110: 2.04 V  
0111111: 2.06 V  
1111111: 3.34 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
168 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 177: VBIO_A  
Register Address  
Bit  
Type  
Label  
Description  
0: Configures BUCKIO to Synchronous  
mode, when selecting A voltage settings  
1: Configures BUCKIO to Sleep mode, when  
selecting A voltage settings  
0xA7  
VBIO_A  
7
R/W  
VBIO_A  
6:0  
R/W  
0000000: 0.80 V  
0000001: 0.82 V  
0000010: 0.84 V  
0010100: 1.20 V  
...  
0111100: 2.00 V  
0111101: 2.02 V  
0111110: 2.04 V  
0111111: 2.06 V  
1111111: 3.34 V  
Table 178: VBPERI_A  
Register Address  
Bit  
Type  
Label  
Description  
BPERI_SL_A  
0: Configures BUCKPERI to Synchronous  
mode, when selecting A voltage settings  
1: Configures BUCKPERI to Sleep mode,  
when selecting A voltage settings  
0xA8  
VBPERI_A  
7
R/W  
VBPERI_A  
6:0  
R/W  
0000000: 0.80 V  
0000001: 0.82 V  
0000010: 0.84 V  
0110010: 1.80 V  
...  
0111100: 2.00 V  
0111101: 2.02 V  
0111110: 2.04 V  
0111111: 2.06 V  
1111111: 3.34 V  
Table 179: VLDO1_A  
Register Address  
Bit  
Type  
Label  
Description  
LDO1_SL_A  
0: Configures LDO to half-current mode,  
when selecting A voltage settings  
1: Configures LDO to Sleep mode, when  
selecting A voltage settings  
0xA9  
VLDO1_A  
7
R/W  
Reserved  
6
R/W  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
169 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
VLDO1_A  
5:0  
R/W  
000000: 0.60 V  
000001: 0.62 V  
000010: 0.64 V  
000011: 0.66 V  
000100: 0.68 V  
000101: 0.70 V  
000110: 0.72 V  
000111: 0.74 V  
001000: 0.76 V  
001001: 0.78 V  
001010: 0.80 V  
001011: 0.82 V  
001100: 0.82 V  
001101: 0.86 V  
001110: 0.88 V  
001111: 0.90 V  
010000: 0.92 V  
010001: 0.94 V  
010010: 0.96 V  
010011: 0.98 V  
010100: 1.00 V  
010101: 1.02 V  
010110: 1.04 V  
010111: 1.06 V  
011000: 1.08 V  
011001: 1.10 V  
011010: 1.12 V  
011011: 1.14 V  
011100: 1.16 V  
011101: 1.18 V  
011110: 1.20 V  
011111: 1.22 V  
100000: 1.24 V  
100001: 1.26 V  
111000: 1.72 V  
111001: 1.74 V  
111010: 1.76 V  
111011: 1.78 V  
111100: 1.80 V  
111101: 1.82 V  
111110: 1.84 V  
111111: 1.86 V  
Table 180: VLDO2_A  
Register Address  
Bit  
Type  
Label  
Description  
LDO2_SL_A  
0: Configures LDO to half-current mode,  
when selecting A voltage settings  
1: Configures LDO to Sleep mode, when  
selecting A voltage settings  
0xAA  
VLDO2_A  
7
R/W  
Reserved  
6
R/W  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
170 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
VLDO2_A  
5:0  
R/W  
000000: 0.60 V  
000001: 0.62 V  
000010: 0.64 V  
000011: 0.66 V  
000100: 0.68 V  
000101: 0.70 V  
000110: 0.72 V  
000111: 0.74 V  
001000: 0.76 V  
001001: 0.78 V  
001010: 0.80 V  
001011: 0.82 V  
001100: 0.82 V  
001101: 0.86 V  
001110: 0.88 V  
001111: 0.90 V  
010000: 0.92 V  
010001: 0.94 V  
010010: 0.96 V  
010011: 0.98 V  
010100: 1.00 V  
010101: 1.02 V  
010110: 1.04 V  
010111: 1.06 V  
011000: 1.08 V  
011001: 1.10 V  
011010: 1.12 V  
011011: 1.14 V  
011100: 1.16 V  
011101: 1.18 V  
011110: 1.20 V  
011111: 1.22 V  
100000: 1.24 V  
100001: 1.26 V  
111000: 1.72 V  
111001: 1.74 V  
111010: 1.76 V  
111011: 1.78 V  
111100: 1.80 V  
111101: 1.82 V  
111110: 1.84 V  
111111: 1.86 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
171 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 181: VLDO3_A  
Register Address  
Bit  
Type  
Label  
Description  
LDO3_SL_A  
0: Configures LDO to half-current mode,  
when selecting A voltage settings  
1: Configures LDO to Sleep mode, when  
selecting A voltage settings  
0xAB  
VLDO3_A  
7
R/W  
VLDO3_A  
6:0  
R/W  
0000000: 0.90 V  
0000001: 0.92 V  
0000010: 0.94 V  
0000011: 0.96 V  
0000100: 0.98 V  
0000101: 1.00 V  
0000110: 1.02 V  
0000111: 1.04 V  
0001000: 1.06 V  
0001001: 1.08 V  
0001010: 1.10 V  
0001011: 1.12 V  
0001100: 1.14 V  
0001101: 1.16 V  
0001110: 1.18 V  
0001111: 1.20 V  
0010000: 1.22 V  
0010001: 1.24 V  
0010010: 1.26 V  
0010011: 1.28 V  
0010100: 1.30 V  
0010101: 1.32 V  
...  
1110000: 3.14 V  
1110001: 3.16 V  
1110010: 3.18 V  
1110011: 3.20 V  
1110100: 3.22 V  
1110101: 3.24 V  
1110110: 3.26 V  
1110111: 3.28 V  
1111000: 3.30 V  
1111001: 3.32 V  
1111010: 3.34 V  
1111011: 3.36 V  
1111100: 3.38 V  
1111101: 3.40 V  
1111110: 3.42 V  
1111111: 3.44 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
172 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 182: VLDO4_A  
Register Address  
Bit  
Type  
Label  
Description  
LDO4_SL_A  
0: Configures LDO to half-current mode,  
when selecting A voltage settings  
1: Configures LDO to Sleep mode, when  
selecting A voltage settings  
0xAC  
VLDO4_A  
7
R/W  
VLDO4_A  
6:0  
R/W  
0000000: 0.90 V  
0000001: 0.92 V  
0000010: 0.94 V  
0000011: 0.96 V  
0000100: 0.98 V  
0000101: 1.00 V  
0000110: 1.02 V  
0000111: 1.04 V  
0001000: 1.06 V  
0001001: 1.08 V  
0001010: 1.10 V  
0001011: 1.12 V  
0001100: 1.14 V  
0001101: 1.16 V  
0001110: 1.18 V  
0001111: 1.20 V  
0010000: 1.22 V  
0010001: 1.24 V  
0010010: 1.26 V  
0010011: 1.28 V  
0010100: 1.30 V  
0010101: 1.32 V  
...  
1110000: 3.14 V  
1110001: 3.16 V  
1110010: 3.18 V  
1110011: 3.20 V  
1110100: 3.22 V  
1110101: 3.24 V  
1110110: 3.26 V  
1110111: 3.28 V  
1111000: 3.30 V  
1111001: 3.32 V  
1111010: 3.34 V  
1111011: 3.36 V  
1111100: 3.38 V  
1111101: 3.40 V  
1111110: 3.42 V  
1111111: 3.44 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
173 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 183: VLDO5_A  
Register Address  
Bit  
Type  
Label  
Description  
LDO5_SL_A  
0: Configures LDO to half-current mode,  
when selecting A voltage settings  
1: Configures LDO to Sleep mode, when  
selecting A voltage settings  
0xAD  
VLDO5_A  
7
R/W  
Reserved  
VLDO5_A  
6
R/W  
R/W  
5:0  
000000: 0.90 V  
000001: 0.90 V  
000010: 0.90 V  
000011: 0.95 V  
000100: 1.00 V  
000101: 1.05 V  
000110: 1.10 V  
000111: 1.15 V  
001000: 1.20 V  
001001: 1.25 V  
001010: 1.30 V  
001011: 1.35 V  
001100: 1.40 V  
001101: 1.45 V  
001110: 1.50 V  
001111: 1.55 V  
010000: 1.60 V  
010001: 1.65 V  
010010: 1.70 V  
010011: 1.75 V  
010100: 1.80 V  
010101: 1.85 V  
...  
100010: 2.50 V  
100011: 2.55 V  
100100: 2.60 V  
100101: 2.65 V  
100110: 2.70 V  
100111: 2.75 V  
101000: 2.80 V  
101001: 2.85 V  
101010: 2.90 V  
101011: 2.95 V  
101100: 3.00 V  
101101: 3.05 V  
101110: 3.10 V  
101111: 3.15 V  
110000: 3.20 V  
110001: 3.25 V  
110010: 3.30 V  
110011: 3.35 V  
110100: 3.40 V  
110101: 3.45 V  
110110: 3.50 V  
110111: 3.55 V  
111000: 3.60 V  
>111000: 3.60 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
174 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 184: VLDO6_A  
Register Address  
Bit  
Type  
Label  
Description  
LDO6_SL_A  
0: Configures LDO to half-current mode,  
when selecting A voltage settings  
1: Configures LDO to Sleep mode, when  
selecting A voltage settings  
0xAE  
VLDO6_A  
7
R/W  
Reserved  
VLDO6_A  
6
R/W  
R/W  
5:0  
000000: 0.90 V  
000001: 0.90 V  
000010: 0.90 V  
000011: 0.95 V  
000100: 1.00 V  
000101: 1.05 V  
000110: 1.10 V  
000111: 1.15 V  
001000: 1.20 V  
001001: 1.25 V  
001010: 1.30 V  
001011: 1.35 V  
001100: 1.40 V  
001101: 1.45 V  
001110: 1.50 V  
001111: 1.55 V  
010000: 1.60 V  
010001: 1.65 V  
010010: 1.70 V  
010011: 1.75 V  
010100: 1.80 V  
010101: 1.85 V  
...  
100010: 2.50 V  
100011: 2.55 V  
100100: 2.60 V  
100101: 2.65 V  
100110: 2.70 V  
100111: 2.75 V  
101000: 2.80 V  
101001: 2.85 V  
101010: 2.90 V  
101011: 2.95 V  
101100: 3.00 V  
101101: 3.05 V  
101110: 3.10 V  
101111: 3.15 V  
110000: 3.20 V  
110001: 3.25 V  
110010: 3.30 V  
110011: 3.35 V  
110100: 3.40 V  
110101: 3.45 V  
110110: 3.50 V  
110111: 3.55 V  
111000: 3.60 V  
>111000: 3.60 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
175 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 185: VLDO7_A  
Register Address  
Bit  
Type  
Label  
Description  
LDO7_SL_A  
0: Configures LDO to half-current mode,  
when selecting A voltage settings  
1: Configures LDO to Sleep mode, when  
selecting A voltage settings  
0xAF  
VLDO7_A  
7
R/W  
Reserved  
VLDO7_A  
6
R/W  
R/W  
5:0  
000000: 0.90 V  
000001: 0.90 V  
000010: 0.90 V  
000011: 0.95 V  
000100: 1.00 V  
000101: 1.05 V  
000110: 1.10 V  
000111: 1.15 V  
001000: 1.20 V  
001001: 1.25 V  
001010: 1.30 V  
001011: 1.35 V  
001100: 1.40 V  
001101: 1.45 V  
001110: 1.50 V  
001111: 1.55 V  
010000: 1.60 V  
010001: 1.65 V  
010010: 1.70 V  
010011: 1.75 V  
010100: 1.80 V  
010101: 1.85 V  
...  
100010: 2.50 V  
100011: 2.55 V  
100100: 2.60 V  
100101: 2.65 V  
100110: 2.70 V  
100111: 2.75 V  
101000: 2.80 V  
101001: 2.85 V  
101010: 2.90 V  
101011: 2.95 V  
101100: 3.00 V  
101101: 3.05 V  
101110: 3.10 V  
101111: 3.15 V  
110000: 3.20 V  
110001: 3.25 V  
110010: 3.30 V  
110011: 3.35 V  
110100: 3.40 V  
110101: 3.45 V  
110110: 3.50 V  
110111: 3.55 V  
111000: 3.60 V  
>111000: 3.60 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
176 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 186: VLDO8_A  
Register Address  
Bit  
Type  
Label  
Description  
LDO8_SL_A  
0: Configures LDO to half-current mode,  
when selecting A voltage settings  
1: Configures LDO to Sleep mode, when  
selecting A voltage settings  
0xB0  
VLDO8_A  
7
R/W  
Reserved  
VLDO8_A  
6
R/W  
R/W  
5:0  
000000: 0.90 V  
000001: 0.90 V  
000010: 0.90 V  
000011: 0.95 V  
000100: 1.00 V  
000101: 1.05 V  
000110: 1.10 V  
000111: 1.15 V  
001000: 1.20 V  
001001: 1.25 V  
001010: 1.30 V  
001011: 1.35 V  
001100: 1.40 V  
001101: 1.45 V  
001110: 1.50 V  
001111: 1.55 V  
010000: 1.60 V  
010001: 1.65 V  
010010: 1.70 V  
010011: 1.75 V  
010100: 1.80 V  
010101: 1.85 V  
...  
100010: 2.50 V  
100011: 2.55 V  
100100: 2.60 V  
100101: 2.65 V  
100110: 2.70 V  
100111: 2.75 V  
101000: 2.80 V  
101001: 2.85 V  
101010: 2.90 V  
101011: 2.95 V  
101100: 3.00 V  
101101: 3.05 V  
101110: 3.10 V  
101111: 3.15 V  
110000: 3.20 V  
110001: 3.25 V  
110010: 3.30 V  
110011: 3.35 V  
110100: 3.40 V  
110101: 3.45 V  
110110: 3.50 V  
110111: 3.55 V  
111000: 3.60 V  
>111000: 3.60 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
177 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 187: VLDO9_A  
Register Address  
Bit  
Type  
Label  
Description  
LDO9_SL_A  
0: Configures LDO to half-current mode,  
when selecting A voltage settings  
1: Configures LDO to Sleep mode, when  
selecting A voltage settings  
0xB1  
VLDO9_A  
7
R/W  
Reserved  
VLDO9_A  
6
R/W  
R/W  
5:0  
000000: not used  
000001: 0.95 V  
000010: 0.95 V  
000011: 0.95 V  
000100: 1.00 V  
000101: 1.05 V  
000110: 1.10 V  
000111: 1.15 V  
001000: 1.20 V  
001001: 1.25 V  
001010: 1.30 V  
001011: 1.35 V  
001100: 1.40 V  
001101: 1.45 V  
001110: 1.50 V  
001111: 1.55 V  
010000: 1.60 V  
010001: 1.65 V  
010010: 1.70 V  
010011: 1.75 V  
010100: 1.80 V  
010101: 1.85 V  
...  
100010: 2.50 V  
100011: 2.55 V  
100100: 2.60 V  
100101: 2.65 V  
100110: 2.70 V  
100111: 2.75 V  
101000: 2.80 V  
101001: 2.85 V  
101010: 2.90 V  
101011: 2.95 V  
101100: 3.00 V  
101101: 3.05 V  
101110: 3.10 V  
101111: 3.15 V  
110000: 3.20 V  
110001: 3.25 V  
110010: 3.30 V  
110011: 3.35 V  
110100: 3.40 V  
110101: 3.45 V  
110110: 3.50 V  
110111: 3.55 V  
111000: 3.60 V  
>111000: 3.60 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
178 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 188: VLDO10_A  
Register Address  
Bit  
Type  
Label  
Description  
LDO10_SL_A  
0: Configures LDO to half-current mode,  
when selecting A voltage settings  
1: Configures LDO to Sleep mode, when  
selecting A voltage settings  
0xB2  
VLDO10_A  
7
R/W  
Reserved  
6
R/W  
R/W  
VLDO10_A  
5:0  
000000: 0.90 V  
000001: 0.90 V  
000010: 0.90 V  
000011: 0.95 V  
000100: 1.00 V  
000101: 1.05 V  
000110: 1.10 V  
000111: 1.15 V  
001000: 1.20 V  
001001: 1.25 V  
001010: 1.30 V  
001011: 1.35 V  
001100: 1.40 V  
001101: 1.45 V  
001110: 1.50 V  
001111: 1.55 V  
010000: 1.60 V  
010001: 1.65 V  
010010: 1.70 V  
010011: 1.75 V  
010100: 1.80 V  
010101: 1.85 V  
...  
100010: 2.50 V  
100011: 2.55 V  
100100: 2.60 V  
100101: 2.65 V  
100110: 2.70 V  
100111: 2.75 V  
101000: 2.80 V  
101001: 2.85 V  
101010: 2.90 V  
101011: 2.95 V  
101100: 3.00 V  
101101: 3.05 V  
101110: 3.10 V  
101111: 3.15 V  
110000: 3.20 V  
110001: 3.25 V  
110010: 3.30 V  
110011: 3.35 V  
110100: 3.40 V  
110101: 3.45 V  
110110: 3.50 V  
110111: 3.55 V  
111000: 3.60 V  
>111000: 3.60 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
179 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 189: VLDO11_A  
Register Address  
Bit  
Type  
Label  
Description  
LDO11_SL_A  
0: Configures LDO to half-current mode,  
when selecting A voltage settings  
1: Configures LDO to Sleep mode, when  
selecting A voltage settings  
0xB3  
VLDO11_A  
7:4  
R/W  
Reserved  
6
R/W  
R/W  
VLDO11_A  
5:0  
000000: 0.90 V  
000001: 0.90 V  
000010: 0.90 V  
000011: 0.95 V  
000100: 1.00 V  
000101: 1.05 V  
000110: 1.10 V  
000111: 1.15 V  
001000: 1.20 V  
001001: 1.25 V  
001010: 1.30 V  
001011: 1.35 V  
001100: 1.40 V  
001101: 1.45 V  
001110: 1.50 V  
001111: 1.55 V  
010000: 1.60 V  
010001: 1.65 V  
010010: 1.70 V  
010011: 1.75 V  
010100: 1.80 V  
010101: 1.85 V  
...  
100010: 2.50 V  
100011: 2.55 V  
100100: 2.60 V  
100101: 2.65 V  
100110: 2.70 V  
100111: 2.75 V  
101000: 2.80 V  
101001: 2.85 V  
101010: 2.90 V  
101011: 2.95 V  
101100: 3.00 V  
101101: 3.05 V  
101110: 3.10 V  
101111: 3.15 V  
110000: 3.20 V  
110001: 3.25 V  
110010: 3.30 V  
110011: 3.35 V  
110100: 3.40 V  
110101: 3.45 V  
110110: 3.50 V  
110111: 3.55 V  
111000: 3.60 V  
>111000: 3.60 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
180 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 190: VBCORE2_B  
Register Address  
Bit  
Type  
Label  
Description  
BCORE2_SL_B  
0: Configures BUCKCORE2 to  
Synchronous mode, when selecting B  
voltage settings  
0xB4 VBCORE2_B  
7
R/W  
1: Configures BUCKCORE2 to Sleep mode,  
when selecting B voltage settings  
VBCORE2_B  
6:0  
R/W  
0000000: 0.30 V  
0000001: 0.31 V  
0000010: 0.32 V  
0000011: 0.33 V  
0000100: 0.34 V  
0000101: 0.35 V  
0100101: 0.67 V  
0100110: 0.68 V  
0100111: 0.69 V  
0101000: 0.70 V  
0101001: 0.71 V  
0111100: 0.90 V  
1110011: 1.45 V  
1110100: 1.46 V  
1110101: 1.47 V  
1110110: 1.48 V  
1110111: 1.49 V  
1111000: 1.50 V  
1111001: 1.51 V  
1111010: 1.52 V  
1111011: 1.53 V  
1111100: 1.54 V  
1111101: 1.55 V  
1111110: 1.56 V  
1111111: 1.57 V  
PWM mode voltage  
range  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
181 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 191: VBCORE1_B  
Register Address  
Bit  
Type  
Label  
Description  
BCORE1_SL_B  
0xB5 VBCORE1_B  
7
R/W  
0: Configures BUCKCORE1 to Synchronous  
mode, when selecting B voltage settings  
1: Configures BUCKCORE1 to Sleep  
mode, when selecting B voltage settings  
VBCORE1_B  
6:0  
R/W  
0000000: 0.30 V  
0000001: 0.31 V  
0000010: 0.32 V  
0000011: 0.33 V  
0000100: 0.34 V  
0000101: 0.35 V  
0100101: 0.67 V  
0100110: 0.68 V  
0100111: 0.69 V  
0101000: 0.70 V  
0101001: 0.71 V  
0111100: 0.90 V  
1110011: 1.45 V  
1110100: 1.46 V  
1110101: 1.47 V  
1110110: 1.48 V  
1110111: 1.49 V  
1111000: 1.50 V  
1111001: 1.51 V  
1111010: 1.52 V  
1111011: 1.53 V  
1111100: 1.54 V  
1111101: 1.55 V  
1111110: 1.56 V  
1111111: 1.57 V  
PWM mode voltage  
range  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
182 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 192: VBPRO_B  
Register Address  
Bit  
Type  
Label  
Description  
BPRO_SL_B  
0xB6  
VBPRO_B  
7
R/W  
0: Configures BUCKPRO to Synchronous  
mode, when selecting B voltage settings  
1: Configures BUCKPRO to Sleep mode,  
when selecting B voltage settings  
VBPRO_B  
6:0  
R/W  
0000000: 0.53 V  
0000001: 0.54 V  
0000010: 0.55 V  
0000011: 0.56 V  
0000100: 0.57 V  
0000101: 0.58 V  
0010000: 0.69 V  
0010001: 0.70 V  
0010010: 0.71 V  
0010011: 0.72 V  
0010100: 0.73 V  
0010101: 0.74 V  
0010110: 0.75 V  
1000011: 1.20 V  
1110011: 1.68 V  
1110100: 1.69 V  
1110101: 1.70 V  
1110110: 1.71 V  
1110111: 1.72 V  
1111000: 1.73 V  
1111001: 1.74 V  
1111010: 1.75 V  
1111011: 1.76 V  
1111100: 1.77 V  
1111101: 1.78 V  
1111110: 1.79 V  
1111111: 1.80 V  
PWM mode voltage  
range  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
183 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 193: VBMEM_B  
Register Address  
Bit  
Type  
Label  
Description  
BMEM_SL_B  
0xB7  
VBMEM_B  
7
R/W  
0: Configures BUCKMEM to Synchronous  
mode, when selecting B voltage settings  
1: Configures BUCKMEM to Sleep mode,  
when selecting B voltage settings  
VBMEM_B  
6:0  
R/W  
0000000: 0.80 V  
0000001: 0.82 V  
0000010: 0.84 V  
0010100: 1.20 V  
...  
0111100: 2.00 V  
0111101: 2.02 V  
0111110: 2.04 V  
0111111: 2.06 V  
1111111: 3.34 V  
Table 194: VBIO_B  
Register Address  
Bit  
Type  
Label  
Description  
BIO_SL_B  
0: Configures BUCKIO to Synchronous  
mode, when selecting B voltage settings  
1: Configures BUCKIO to Sleep mode, when  
selecting B voltage settings  
0xB8  
VBIO_B  
7
R/W  
VBIO_B  
6:0  
R/W  
0000000: 0.80 V  
0000001: 0.82 V  
0000010: 0.84 V  
0010100: 1.20 V  
...  
0111100: 2.00 V  
0111101: 2.02 V  
0111110: 2.04 V  
0111111: 2.06 V  
1111111: 3.34 V  
Table 195: VBPERI_B  
Register Address  
Bit  
Type  
Label  
Description  
BPERI_SL_B  
0xB9  
VBPERI_B  
7
R/W  
0: Configures BUCKPERI to Synchronous  
mode, when selecting A voltage settings  
1: Configures BUCKPERI to Sleep mode,  
when selecting B voltage settings  
VBPERI_B  
6:0  
R/W  
0000000: 0.80 V  
0000001: 0.82 V  
0000010: 0.84 V  
0110010: 1.80 V  
...  
0111100: 2.00 V  
0111101: 2.02 V  
0111110: 2.04 V  
0111111: 2.06 V  
1111111: 3.34 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
184 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 196: VLDO1_B  
Register Address  
Bit  
Type  
Label  
Description  
LDO1_SL_B  
0: Configures LDO to half-current mode,  
when selecting B voltage settings  
1: Configures LDO to Sleep mode, when  
selecting B voltage settings  
0xBA  
VLDO1_B  
7
R/W  
Reserved  
VLDO1_B  
6
R/W  
R/W  
5:0  
000000: 0.60 V  
000001: 0.62 V  
000010: 0.64 V  
000011: 0.66 V  
000100: 0.68 V  
000101: 0.70 V  
000110: 0.72 V  
000111: 0.74 V  
001000: 0.76 V  
001001: 0.78 V  
001010: 0.80 V  
001011: 0.82 V  
001100: 0.82 V  
001101: 0.86 V  
001110: 0.88 V  
001111: 0.90 V  
010000: 0.92 V  
010001: 0.94 V  
010010: 0.96 V  
010011: 0.98 V  
010100: 1.00 V  
010101: 1.02 V  
010110: 1.04 V  
010111: 1.06 V  
011000: 1.08 V  
011001: 1.10 V  
011010: 1.12 V  
011011: 1.14 V  
011100: 1.16 V  
011101: 1.18 V  
011110: 1.20 V  
011111: 1.22 V  
100000: 1.24 V  
100001: 1.26 V  
111000: 1.72 V  
111001: 1.74 V  
111010: 1.76 V  
111011: 1.78 V  
111100: 1.80 V  
111101: 1.82 V  
111110: 1.84 V  
111111: 1.86 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
185 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 197: VLDO2_B  
Register Address  
Bit  
Type  
Label  
Description  
LDO2_SL_B  
0: Configures LDO to half-current mode,  
when selecting B voltage settings  
1: Configures LDO to Sleep mode, when  
selecting B voltage settings  
0xBB  
VLDO2_B  
7
R/W  
Reserved  
VLDO2_B  
6
R/W  
R/W  
5:0  
000000: 0.60 V  
000001: 0.62 V  
000010: 0.64 V  
000011: 0.66 V  
000100: 0.68 V  
000101: 0.70 V  
000110: 0.72 V  
000111: 0.74 V  
001000: 0.76 V  
001001: 0.78 V  
001010: 0.80 V  
001011: 0.82 V  
001100: 0.82 V  
001101: 0.86 V  
001110: 0.88 V  
001111: 0.90 V  
010000: 0.92 V  
010001: 0.94 V  
010010: 0.96 V  
010011: 0.98 V  
010100: 1.00 V  
010101: 1.02 V  
010110: 1.04 V  
010111: 1.06 V  
011000: 1.08 V  
011001: 1.10 V  
011010: 1.12 V  
011011: 1.14 V  
011100: 1.16 V  
011101: 1.18 V  
011110: 1.20 V  
011111: 1.22 V  
100000: 1.24 V  
100001: 1.26 V  
111000: 1.72 V  
111001: 1.74 V  
111010: 1.76 V  
111011: 1.78 V  
111100: 1.80 V  
111101: 1.82 V  
111110: 1.84 V  
111111: 1.86 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
186 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 198: VLDO3_B  
Register Address  
Bit  
Type  
Label  
Description  
LDO3_SL_B  
0: Configures LDO to half-current mode,  
when selecting B voltage settings  
1: Configures LDO to Sleep mode, when  
selecting B voltage settings  
0xBC  
VLDO3_B  
7
R/W  
VLDO3_B  
6:0  
R/W  
0000000: 0.90 V  
0000001: 0.92 V  
0000010: 0.94 V  
0000011: 0.96 V  
0000100: 0.98 V  
0000101: 1.00 V  
0000110: 1.02 V  
0000111: 1.04 V  
0001000: 1.06 V  
0001001: 1.08 V  
0001010: 1.10 V  
0001011: 1.12 V  
0001100: 1.14 V  
0001101: 1.16 V  
0001110: 1.18 V  
0001111: 1.20 V  
0010000: 1.22 V  
0010001: 1.24 V  
0010010: 1.26 V  
0010011: 1.28 V  
0010100: 1.30 V  
0010101: 1.32 V  
...  
1110000: 3.14 V  
1110001: 3.16 V  
1110010: 3.18 V  
1110011: 3.20 V  
1110100: 3.22 V  
1110101: 3.24 V  
1110110: 3.26 V  
1110111: 3.28 V  
1111000: 3.30 V  
1111001: 3.32 V  
1111010: 3.34 V  
1111011: 3.36 V  
1111100: 3.38 V  
1111101: 3.40 V  
1111110: 3.42 V  
1111111: 3.44 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
187 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 199: VLDO4_B  
Register Address  
Bit  
Type  
Label  
Description  
LDO4_SL_B  
0: Configures LDO to half-current mode,  
when selecting B voltage settings  
1: Configures LDO to Sleep mode, when  
selecting B voltage settings  
0xBD  
VLDO4_B  
7
R/W  
VLDO4_B  
6:0  
R/W  
0000000: 0.90 V  
0000001: 0.92 V  
0000010: 0.94 V  
0000011: 0.96 V  
0000100: 0.98 V  
0000101: 1.00 V  
0000110: 1.02 V  
0000111: 1.04 V  
0001000: 1.06 V  
0001001: 1.08 V  
0001010: 1.10 V  
0001011: 1.12 V  
0001100: 1.14 V  
0001101: 1.16 V  
0001110: 1.18 V  
0001111: 1.20 V  
0010000: 1.22 V  
0010001: 1.24 V  
0010010: 1.26 V  
0010011: 1.28 V  
0010100: 1.30 V  
0010101: 1.32 V  
...  
1110000: 3.14 V  
1110001: 3.16 V  
1110010: 3.18 V  
1110011: 3.20 V  
1110100: 3.22 V  
1110101: 3.24 V  
1110110: 3.26 V  
1110111: 3.28 V  
1111000: 3.30 V  
1111001: 3.32 V  
1111010: 3.34 V  
1111011: 3.36 V  
1111100: 3.38 V  
1111101: 3.40 V  
1111110: 3.42 V  
1111111: 3.44 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
188 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 200: VLDO5_B  
Register Address  
Bit  
Type  
Label  
Description  
LDO5_SL_B  
0: Configures LDO to half-current mode,  
when selecting B voltage settings  
1: Configures LDO to Sleep mode, when  
selecting B voltage settings  
0xBE  
VLDO5_B  
7
R/W  
Reserved  
VLDO5_B  
6
R/W  
R/W  
5:0  
000000: 0.90 V  
000001: 0.90 V  
000010: 0.90 V  
000011: 0.95 V  
000100: 1.00 V  
000101: 1.05 V  
000110: 1.10 V  
000111: 1.15 V  
001000: 1.20 V  
001001: 1.25 V  
001010: 1.30 V  
001011: 1.35 V  
001100: 1.40 V  
001101: 1.45 V  
001110: 1.50 V  
001111: 1.55 V  
010000: 1.60 V  
010001: 1.65 V  
010010: 1.70 V  
010011: 1.75 V  
010100: 1.80 V  
010101: 1.85 V  
...  
100010: 2.50 V  
100011: 2.55 V  
100100: 2.60 V  
100101: 2.65 V  
100110: 2.70 V  
100111: 2.75 V  
101000: 2.80 V  
101001: 2.85 V  
101010: 2.90 V  
101011: 2.95 V  
101100: 3.00 V  
101101: 3.05 V  
101110: 3.10 V  
101111: 3.15 V  
110000: 3.20 V  
110001: 3.25 V  
110010: 3.30 V  
110011: 3.35 V  
110100: 3.40 V  
110101: 3.45 V  
110110: 3.50 V  
110111: 3.55 V  
111000: 3.60 V  
>111000: 3.60 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
189 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 201: VLDO6_B  
Register Address  
Bit  
Type  
Label  
Description  
LDO6_SL_B  
0: Configures LDO to half-current mode,  
when selecting B voltage settings  
1: Configures LDO to Sleep mode, when  
selecting B voltage settings  
0xBF  
VLDO6_B  
7
R/W  
Reserved  
VLDO6_B  
6
R/W  
R/W  
5:0  
000000: 0.90 V  
000001: 0.90 V  
000010: 0.90 V  
000011: 0.95 V  
000100: 1.00 V  
000101: 1.05 V  
000110: 1.10 V  
000111: 1.15 V  
001000: 1.20 V  
001001: 1.25 V  
001010: 1.30 V  
001011: 1.35 V  
001100: 1.40 V  
001101: 1.45 V  
001110: 1.50 V  
001111: 1.55 V  
010000: 1.60 V  
010001: 1.65 V  
010010: 1.70 V  
010011: 1.75 V  
010100: 1.80 V  
010101: 1.85 V  
...  
100010: 2.50 V  
100011: 2.55 V  
100100: 2.60 V  
100101: 2.65 V  
100110: 2.70 V  
100111: 2.75 V  
101000: 2.80 V  
101001: 2.85 V  
101010: 2.90 V  
101011: 2.95 V  
101100: 3.00 V  
101101: 3.05 V  
101110: 3.10 V  
101111: 3.15 V  
110000: 3.20 V  
110001: 3.25 V  
110010: 3.30 V  
110011: 3.35 V  
110100: 3.40 V  
110101: 3.45 V  
110110: 3.50 V  
110111: 3.55 V  
111000: 3.60 V  
>111000: 3.60 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
190 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 202: VLDO7_B  
Register Address  
Bit  
Type  
Label  
Description  
LDO7_SL_B  
0: Configures LDO to half-current mode,  
when selecting B voltage settings  
1: Configures LDO to Sleep mode, when  
selecting B voltage settings  
0xC0  
VLDO7_B  
7
R/W  
Reserved  
VLDO7_B  
6
R/W  
R/W  
5:0  
000000: 0.90 V  
000001: 0.90 V  
000010: 0.90 V  
000011: 0.95 V  
000100: 1.00 V  
000101: 1.05 V  
000110: 1.10 V  
000111: 1.15 V  
001000: 1.20 V  
001001: 1.25 V  
001010: 1.30 V  
001011: 1.35 V  
001100: 1.40 V  
001101: 1.45 V  
001110: 1.50 V  
001111: 1.55 V  
010000: 1.60 V  
010001: 1.65 V  
010010: 1.70 V  
010011: 1.75 V  
010100: 1.80 V  
010101: 1.85 V  
...  
100010: 2.50 V  
100011: 2.55 V  
100100: 2.60 V  
100101: 2.65 V  
100110: 2.70 V  
100111: 2.75 V  
101000: 2.80 V  
101001: 2.85 V  
101010: 2.90 V  
101011: 2.95 V  
101100: 3.00 V  
101101: 3.05 V  
101110: 3.10 V  
101111: 3.15 V  
110000: 3.20 V  
110001: 3.25 V  
110010: 3.30 V  
110011: 3.35 V  
110100: 3.40 V  
110101: 3.45 V  
110110: 3.50 V  
110111: 3.55 V  
111000: 3.60 V  
>111000: 3.60 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
191 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 203: VLDO8_B  
Register Address  
Bit  
Type  
Label  
Description  
LDO8_SL_B  
0: Configures LDO to half-current mode,  
when selecting B voltage settings  
1: Configures LDO to Sleep mode, when  
selecting B voltage settings  
0xC1  
VLDO8_B  
7
R/W  
Reserved  
VLDO8_B  
6
R/W  
R/W  
5:0  
000000: 0.90 V  
000001: 0.90 V  
000010: 0.90 V  
000011: 0.95 V  
000100: 1.00 V  
000101: 1.05 V  
000110: 1.10 V  
000111: 1.15 V  
001000: 1.20 V  
001001: 1.25 V  
001010: 1.30 V  
001011: 1.35 V  
001100: 1.40 V  
001101: 1.45 V  
001110: 1.50 V  
001111: 1.55 V  
010000: 1.60 V  
010001: 1.65 V  
010010: 1.70 V  
010011: 1.75 V  
010100: 1.80 V  
010101: 1.85 V  
...  
100010: 2.50 V  
100011: 2.55 V  
100100: 2.60 V  
100101: 2.65 V  
100110: 2.70 V  
100111: 2.75 V  
101000: 2.80 V  
101001: 2.85 V  
101010: 2.90 V  
101011: 2.95 V  
101100: 3.00 V  
101101: 3.05 V  
101110: 3.10 V  
101111: 3.15 V  
110000: 3.20 V  
110001: 3.25 V  
110010: 3.30 V  
110011: 3.35 V  
110100: 3.40 V  
110101: 3.45 V  
110110: 3.50 V  
110111: 3.55 V  
111000: 3.60 V  
>111000: 3.60 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
192 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 204: VLDO9_B  
Register Address  
Bit  
Type  
Label  
Description  
LDO9_SL_B  
0: Configures LDO to half-current mode,  
when selecting B voltage settings  
1: Configures LDO to Sleep mode, when  
selecting B voltage settings  
0xC2  
VLDO9_B  
7
R/W  
Reserved  
VLDO9_B  
6
R/W  
R/W  
5:0  
000000: 0.95 V  
000001: 0.95 V  
000010: 0.95 V  
000011: 0.95 V  
000100: 1.00 V  
000101: 1.05 V  
000110: 1.10 V  
000111: 1.15 V  
001000: 1.20 V  
001001: 1.25 V  
001010: 1.30 V  
001011: 1.35 V  
001100: 1.40 V  
001101: 1.45 V  
001110: 1.50 V  
001111: 1.55 V  
010000: 1.60 V  
010001: 1.65 V  
010010: 1.70 V  
010011: 1.75 V  
010100: 1.80 V  
010101: 1.85 V  
...  
100010: 2.50 V  
100011: 2.55 V  
100100: 2.60 V  
100101: 2.65 V  
100110: 2.70 V  
100111: 2.75 V  
101000: 2.80 V  
101001: 2.85 V  
101010: 2.90 V  
101011: 2.95 V  
101100: 3.00 V  
101101: 3.05 V  
101110: 3.10 V  
101111: 3.15 V  
110000: 3.20 V  
110001: 3.25 V  
110010: 3.30 V  
110011: 3.35 V  
110100: 3.40 V  
110101: 3.45 V  
110110: 3.50 V  
110111: 3.55 V  
111000: 3.60 V  
>111000: 3.60 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
193 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 205: VLDO10_B  
Register Address  
Bit  
Type  
Label  
Description  
LDO10_SL_B  
0: Configures LDO to half-current mode,  
when selecting B voltage settings  
1: Configures LDO to Sleep mode, when  
selecting B voltage settings  
0xC3  
VLDO10_B  
7
R/W  
Reserved  
6
R/W  
R/W  
VLDO10_B  
5:0  
000000: 0.90 V  
000001: 0.90 V  
000010: 0.90 V  
000011: 0.95 V  
000100: 1.00 V  
000101: 1.05 V  
000110: 1.10 V  
000111: 1.15 V  
001001: 1.25 V  
001010: 1.30 V  
001011: 1.35 V  
001100: 1.40 V  
001101: 1.45 V  
001110: 1.50 V  
001111: 1.55 V  
010000: 1.60 V  
010001: 1.65 V  
010010: 1.70 V  
010011: 1.75 V  
010100: 1.80 V  
010101: 1.85 V  
...  
100010: 2.50 V  
100011: 2.55 V  
100100: 2.60 V  
100101: 2.65 V  
100110: 2.70 V  
100111: 2.75 V  
101000: 2.80 V  
101001: 2.85 V  
101010: 2.90 V  
101011: 2.95 V  
101100: 3.00 V  
101101: 3.05 V  
101110: 3.10 V  
101111: 3.15 V  
110000: 3.20 V  
110001: 3.25 V  
110010: 3.30 V  
110011: 3.35 V  
110100: 3.40 V  
110101: 3.45 V  
110110: 3.50 V  
110111: 3.55 V  
111000: 3.60 V  
>111000: 3.60 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
194 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 206: VLDO11_B  
Register Address  
Bit  
Type  
Label  
Description  
LDO1_SL_B  
0: Configures LDO to half-current mode,  
when selecting B voltage settings  
1: Configures LDO to Sleep mode, when  
selecting B voltage settings  
0xC4  
VLDO11_B  
7:4  
R/W  
Reserved  
6
R/W  
R/W  
VLDO11_B  
5:0  
000000: 0.90 V  
000001: 0.90 V  
000010: 0.90 V  
000011: 0.95 V  
000100: 1.00 V  
000101: 1.05 V  
000110: 1.10 V  
000111: 1.15 V  
001001: 1.25 V  
001010: 1.30 V  
001011: 1.35 V  
001100: 1.40 V  
001101: 1.45 V  
001110: 1.50 V  
001111: 1.55 V  
010000: 1.60 V  
010001: 1.65 V  
010010: 1.70 V  
010011: 1.75 V  
010100: 1.80 V  
010101: 1.85 V  
...  
100010: 2.50 V  
100011: 2.55 V  
100100: 2.60 V  
100101: 2.65 V  
100110: 2.70 V  
100111: 2.75 V  
101000: 2.80 V  
101001: 2.85 V  
101010: 2.90 V  
101011: 2.95 V  
101100: 3.00 V  
101101: 3.05 V  
101110: 3.10 V  
101111: 3.15 V  
110000: 3.20 V  
110001: 3.25 V  
110010: 3.30 V  
110011: 3.35 V  
110100: 3.40 V  
110101: 3.45 V  
110110: 3.50 V  
110111: 3.55 V  
111000: 3.60 V  
>111000: 3.60 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
195 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
A.3.3  
Backup Battery Charger  
Table 207: BBAT_CONT  
Register Address  
Bit  
Type  
Label  
Description  
BCHG_ISET  
0000: disabled  
0001: 100 µA  
0010: 200 µA  
0011: 300 µA  
0100: 400 µA  
0101: 500 µA  
0110: 600 µA  
0111: 700 µA  
1000: 800 µA  
1001: 900 µA  
1010: 1 mA  
0xC5  
BBAT_CONT  
7:4  
R/W  
1011: 2 mA  
1100: 3 mA  
1101: 4 mA  
1110: 5 mA  
1111: 6 mA  
BCHG_VSET  
3:0  
R/W  
0000: disabled  
0001: 1.1 V  
0010: 1.2 V  
0011: 1.4 V  
0100: 1.6 V  
0101: 1.8 V  
0110: 2.0 V  
0111: 2.2 V  
1000: 2.4 V  
1001: 2.5 V  
1010: 2.6 V  
1011: 2.7 V  
1100: 2.8 V  
1101: 2.9 V  
1110: 3.0 V  
1111: 3.1 V  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
196 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
A.3.4  
High Power GPO PWM  
Table 208: GPO11_LED  
Register Address  
Bit  
Type  
Label  
Description  
GPO11_DIM  
0: PWM ratio changes instantly  
1: GPO ramps between changes in PWM  
ratio with 32 ms per step  
0xC6 GPO11_LED  
7
R/W  
GPO11_PWM  
6:0  
R/W  
GPO11 LED on-time (low level at GPIO 11,  
period 21 kHz = 95 cycles of 0.5 µs)  
0000000: off  
0000001: 1%  
0000010: 2% (1 µs bursts)  
0000011: 3%  
0000100: 4%  
0000101: 5%  
0000110: 6%  
0000111: 7%  
0001000: 8%  
0001001: 9%  
0001010: 10%  
0001011: 11%  
0001100: 12%  
0001101: 13%  
0001110: 14%  
0001111: 15%  
0010000: 16%  
....  
1011111: 100%  
>1011111: 100%  
Table 209: GPO14_LED  
Register Address  
Bit  
Type  
Label  
Description  
GPO14_DIM  
0: PWM ratio changes instantly  
1: GPO ramps between changes in PWM  
ratio with 32 ms per step  
0xC7 GPO14_LED  
7
R/W  
GPO14_PWM  
6:0  
R/W  
GPO14 LED on-time (low level at GPIO 14,  
period 21 kHz = 95 cycles of 0.5 µs)  
0000000: off  
0000001: 1%  
0000010: 2% (1 µs bursts)  
0000011: 3%  
0000100: 4%  
0000101: 5%  
0000110: 6%  
0000111: 7%  
0001000: 8%  
0001001: 9%  
0001010: 10%  
0001011: 11%  
0001100: 12%  
0001101: 13%  
0001110: 14%  
0001111: 15%  
0010000: 16%  
....  
1011111: 100%  
>1011111: 100%  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
197 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 210: GPO15_LED  
Register Address  
Bit  
Type  
Label  
Description  
GPO15_DIM  
0: PWM ratio changes instantly  
1: GPO ramps between changes in PWM  
ratio with 32 ms per step  
0xC8 GPO15_LED  
7
R/W  
GPO15_PWM  
6:0  
R/W  
GPO15 LED on-time (low level at GPIO 15,  
period 21 kHz = 95 cycles of 0.5 µs)  
0000000: off  
0000001: 1%  
0000010: 2% (1 µs bursts)  
0000011: 3%  
0000100: 4%  
0000101: 5%  
0000110: 6%  
0000111: 7%  
0001000: 8%  
0001001: 9%  
0001010: 10%  
0001011: 11%  
0001100: 12%  
0001101: 13%  
0001110: 14%  
0001111: 15%  
0010000: 16%  
....  
1011111: 100%  
>1011111: 100%  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
198 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
A.3.5  
GPADC Thresholds  
Table 211: ADC_CFG  
Register Address  
Bit  
Type  
Label  
Description  
ADCIN3_DEB  
0xC9  
7
R/W  
0: ADCIN3: debouncing off  
1: ADCIN3: debouncing on  
ADC_CFG  
ADCIN2_DEB  
ADCIN1_DEB  
ADCIN3_CUR  
6
5
4
R/W  
R/W  
R/W  
0: ADCIN2: debouncing off  
1: ADCIN2: debouncing on  
0: ADCIN1: debouncing off  
1: ADCIN1: debouncing on  
ADCIN3 current source:  
0: 10 µA  
1: 40 µA  
ADCIN2_CUR  
ADCIN1_CUR  
3:2  
1:0  
R/W  
R/W  
ADCIN2 current source:  
00: 1 µA  
01: 2.5 µA  
10: 10 µA  
11: 40 µA  
ADCIN1 current source:  
00: 1 µA  
01: 2.5 µA  
10: 10 µA  
11: 40 µA  
Table 212: AUTO1_HIGH  
Register Address  
Bit  
Type  
Label  
Description  
AUTO1_HIGH  
0xCA AUTO1_HIGH  
7:0  
R/W  
00000000 11111111: ADCIN1 high level  
threshold  
Table 213: AUTO1_LOW  
Register Address  
Bit  
Type  
Label  
Description  
AUTO1_LOW  
0xCB AUTO1_LOW  
7:0  
R/W  
00000000 11111111: ADCIN1 low level  
threshold  
Table 214: AUTO2_HIGH  
Register Address  
Bit  
Type  
Label  
Description  
AUTO2_HIGH  
0xCC AUTO2_HIGH  
7:0  
R/W  
00000000 11111111: ADCIN2 high level  
threshold  
Table 215: AUTO2_LOW  
Register Address  
Bit  
Type  
Label  
Description  
AUTO2_LOW  
0xCD AUTO2_LOW  
7:0  
R/W  
00000000 11111111: ADCIN2 low level  
threshold  
Table 216: AUTO3_HIGH  
Register Address  
Bit  
Type  
Label  
Description  
AUTO3_HIGH  
0xCE AUTO3_HIGH  
7:0  
R/W  
00000000 11111111: ADCIN3 high level  
threshold  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
199 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 217: AUTO3_LOW  
Register Address  
Bit  
Type  
Label  
Description  
AUTO3_LOW  
0xCF AUTO3_LOW  
7:0  
R/W  
00000000 11111111: ADCIN3 low level  
threshold  
Table 218: Copmic_S to Copmic_E  
Register Address  
Bit  
Type  
Label  
Description  
0xD0  
7:0  
R
Reserved  
Reserved for Co-PMIC  
CoPMIC_S  
0xDF  
7:0  
R
Reserved  
Reserved for Co-PMIC  
CoPMIC_E  
Table 219: CHG_Co_S to CHG_Co_E  
Register Address  
Bit  
Type  
Label  
Description  
0xE0  
7:0  
R
Reserved  
Reserved for companion charger  
CHG_Co_S  
0xFF CHG_Co_E  
7:0  
R
Reserved  
Reserved for companion charger  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
200 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
A.4 Register Page 2  
Table 220: PAGE_CON  
Register  
Address  
Bit  
Type  
Label  
Description  
0x100  
PAGE_CON  
7
RW  
RW  
RW  
RW  
REVERT  
WRITE_MODE  
Reserved  
See register 0x00, Table 57  
6
5:3  
2:0  
REG_PAGE  
A.4.1  
OTP  
Table 221: OTP_CONT  
Register  
Address  
Bit  
Type  
R
Label  
Description  
GP_WRITE_DIS  
OTP_CONF_LOCK  
0: Enables write access to GP_ID registers  
1: GP_ID_0to GP_ID_9 registers are ‘read only’  
0x101  
OTP_CONT  
7
6
R
0: Registers 0x0A to 0x36 and 0x82 to 0xCF are not  
locked for OTP programming (only for evaluation  
samples)  
1: OTP registers 0x0A to 0x36 and 0x82 to 0xCF  
are locked in OTP (set for all mass production  
parts, no further fusing possible)  
OTP_APPS_LOCK  
5
R
0: Registers 0x104 to 0x117are not locked for OTP  
programming (only for evaluation samples)  
1: OTP registers 0x104 to 0x117 are locked in OTP  
(set for all mass production parts, no further  
fusing possible)  
OTP_GP_LOCK  
PC_DONE  
0: Registers 0x120 to 0x134 are not locked for  
OTP programming  
1: Registers 0x120 to 0x134 are locked in OTP (no  
further fusing possible if once fused with 1)  
4
3
R
R/W  
Asserted from PowerCommander SW after emulated  
OTP read has finished (control shared with Co-PMIC),  
automatically cleared when leaving emulated OTP  
read  
OTP_APPS_RD  
OTP_GP_RD  
2
1
R/W  
R/W  
Reads on assertion application specific registers  
(0x104 to 0x117 and OTP_APPS_LOCK) from OTP  
Reads on assertion device specific registers 0x120 to  
0x134 (plus GP_WRITE_DIS and OTP_GP_LOCK)  
from OTP  
OTP_TIM  
0
R/W  
OTP read timing  
0: normal read  
1: marginal read (for OTP fuse verification)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
201 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 222: OTP_ADDR  
Register Address  
Bit  
Type  
Label  
Description  
0x102 OTP_ADDR  
7:0  
R/W  
OTP_ADDR  
OTP Array address (shared with Companion  
ICs)  
Table 223: OTP_DATA  
Register Address  
Bit  
Type  
Label  
Description  
0x103 OTP_DATA  
7:0  
R/W  
OTP_DATA  
OTP read/write data (shared with Companion  
ICs)  
OTP_DATA written to OTP_ADDR selects  
the IC and accepts unlock sequence (1 + 3  
bytes)  
A.4.2  
Customer Trim and Configuration  
Table 224: T_OFFSET  
Register Address  
Bit  
Type  
Label  
Description  
T_OFFSET  
0x104 T_OFFSET  
7:0  
R
10000000 – 01111111: signed two’s  
complement calibration offset for junction  
temperature measurement (loaded from the  
OTP memory, must be programmed during  
production)  
Table 225: INTERFACE  
Register Address  
Bit  
Type  
Label  
Description  
Note 1  
IF_BASE_ADDR  
0x105  
INTERFACE  
7:4  
R
4 MSB of 2-WIRE control interfaces base  
address  
XXXX0000  
10110000 = 0xB0 write address of PM 2-  
WIRE interface (page 0 and 1)  
10110001 = 0xB1 read address of PM 2-  
WIRE interface (page 0 and 1)  
10110010 = 0xB2 write address of PM-2-  
WIRE interface (page 2 and 3)  
10110011 = 0xB3 read address of PM-2-  
WIRE interface (page 2 and 3)  
10110100 = 0xB4 write address of HS 2-  
WIRE interface (page 0 and 1)  
10110101 = 0xB5 read address of HS 2-  
WIRE interface (page 0 and 1)  
10110110 = 0xB6 write address of HS-2-  
WIRE interface (page 2 and 3)  
10110111 = 0xB7 read address of HS-2-  
WIRE interface (page 2 and 3)  
Code ‘0000’ is reserved for unprogrammed  
OTP (triggers start-up with hardware default  
interface address)  
R/W_POL  
CPHA  
3
2
R
R
4-WIRE: Read/Write bit polarity  
0: Host indicates reading access via R/W bit  
= 0  
1: Host indicates reading access via R/W  
bit = 1  
4-WIRE IF clock phase (see Table 43)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
202 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
CPOL  
Description  
Note 1  
1
R
4-WIRE IF clock polarity  
0: SK is low during idle  
1: SK is high during idle  
nCS_POL  
0
R
4-WIRE chip select polarity  
0: nCS is active low  
1: nCS is active high  
Note 1 The interface configuration can be written/modified only for unmarked samples which do not have the  
control OTP_APPS_LOCK asserted/fused.  
Table 226: CONFIG_A  
Register Address  
Bit  
Type  
Label  
Description  
IF_TYPE  
0x106 CONFIG_A  
7
R
0: Power manager IF is 4-WIRE  
1: Power manager IF is 2-WIRE  
Note 1  
PM_IF_HSM  
6
R/W  
Enables continuous High Speed mode on PM  
2-WIRE IF if asserted (no master code  
required)  
PM_IF_FMP  
PM_IF_V  
5
4
R/W  
R/W  
Selects fast-mode+ timings for PM 2-WIRE IF  
if asserted  
0: Power manager IF in 4-WIRE mode is  
supplied from VDD_IO1, in 2-WIRE mode  
from VDDCORE  
1: Power manager IF (4-WIRE/2-WIRE)  
supplied from VDD_IO2  
IRQ_TYPE  
3
2
R/W  
R/W  
nIRQ output is:  
0: Active low  
1: Active high (invert signal)  
PM_O_TYPE  
nRESET, nIRQ output are:  
0: Push-pull  
1: Open drain (requires external pull-up  
resistor)  
PM_O_V  
PM_I_V  
1
0
R/W  
R/W  
OUT_32K, OUT_32K_2, E_GPI_2,  
COMP1V2, nRESET, nIRQ are supplied  
from:  
0: VDD_IO1  
1: VDD_IO2  
nONKEY, nOFF, nSHUTDOWN, SYS_EN,  
PWR_EN, PWR1_EN, KEEP_ACT,  
nVIB_BRAKE are supplied from:  
0: VDDCORE  
1: VDD_IO2  
Note 1 The interface configuration can be written/modified only for unmarked samples which do not have the  
control OTP_APPS_LOCK asserted/fused.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
203 of 219  
© 2017 Dialog Semiconductor  
 
DA9063  
System PMIC for Mobile Application Processors  
Table 227: CONFIG_B  
Register Address  
Bit  
7
Type  
R/W  
R/W  
Label  
Description  
Reserved  
0x107 CONFIG_B  
VDD_HYST_ADJ  
6:4  
Hysteresis adjust of VDD_FAULT comparator  
(VDD_FAULT_UPPER) in 50 mV steps  
000: 100 mV  
001: 150 mV  
111: 450 mV  
VDD_FAULT_ADJ  
3:0  
R/W  
Setting of VDD_FAULT_LOWER comparator  
in 50 mV steps  
0000: 2.50 V  
0001: 2.55 V  
0110: 2.80 V  
1110: 3.20 V  
1111: 3.25 V  
Table 228: CONFIG_C  
Register Address  
Bit  
Type  
Label  
Description  
BPERI_CLK_INV  
0x108 CONFIG_C  
7
R/W  
BUCKPERI clock polarity  
0: Normal  
1: Inverted  
BIO_CLK_INV  
BMEM_CLK_INV  
BPRO_CLK_INV  
6
5
4
R/W  
R/W  
R/W  
BUCKIO clock polarity  
0: Normal  
1: Inverted  
BUCKMEM clock polarity  
0: Normal  
1: Inverted  
BUCKPRO clock polarity (should be  
configured opposite to BUCKMEM clock  
polarity)  
0: Normal  
1: Inverted  
BCORE1_CLK_INV  
3
R/W  
BUCKCORE1 clock polarity (BUCKCORE2  
always runs on opposite clock polarity)  
0: Normal  
1: Inverted  
BUCK_DISCHG  
LDO1_TRACK  
2
R/W  
R/W  
Enable active discharge of buck rails  
1:0  
LDO1 follows voltage transitions of  
00: none  
01:VBUCK_PRO  
10:VBUCK_CORE1  
11:VBUCK_CORE2  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
204 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 229: CONFIG_D  
Register Address  
Bit  
Type  
Label  
Description  
GP_FB3 output is:  
GP_FB3_TYPE  
0x109 CONFIG_D  
7
R/W  
0: Active low  
1: Active high (invert signal)  
GP_FB2_TYPE  
6
R/W  
GP_FB2 output is:  
0: Active low (invert signal, push-pull for  
PWR_OK)  
1: Active high (open drain for PWR_OK)  
FORCE_RESET  
HS_IF_HSM  
5
4
R/W  
R/W  
Asserts port nRESET in case of being set  
Enables continuous High Speed mode on HS  
2-WIRE IF (no master code required)  
HS_IF_FMP  
3
2
R/W  
R/W  
Selects fast-mode+ timings for HS 2-WIRE IF  
if asserted  
SYSTEM_EN_RD  
During second OTP read control  
SYSTEM_EN is  
0: updated from OTP  
1: not changed  
nIRQ_MODE  
GPI_V  
1
0
R/W  
R/W  
nIRQ will be asserted from events during  
POWERDOWN mode (and modes lower than  
ACTICE)  
0: immediately  
1: after powering up to ACTIVE mode  
GPIs (not configured as Power Manager  
control inputs) and HS-2-WIRE IF are  
supplied from:  
0: VDDCORE  
1: VDD_IO2  
Table 230: CONFIG_E  
Register Address  
Bit  
Type  
Label  
Description  
PERI_SW_AUTO  
0x10A CONFIG_E  
7
R/W  
Selects PERI_SW (during powering up):  
0: configured from PERI_SW_CONF  
1: enabled  
CORE_SW_AUTO  
BPERI_AUTO  
BIO_AUTO  
6
5
4
3
2
R/W  
R/W  
R/W  
R/W  
R/W  
Selects CORE_SW (during powering up):  
0: configured from CORE_SW_CONF  
1: enabled  
Selects BUCKPERI (during powering up):  
0: configured from BPERI_CONF  
1: enabled  
Selects BUCKIO (during powering up):  
0: configured from BIO_CONF  
1: enabled  
BMEM_AUTO  
BPRO_AUTO  
Selects BUCKMEM (during powering up):  
0: configured from BMEM_CONF  
1: enabled  
Selects BUCKPRO (during powering up):  
0: configured from BPRO_CONF  
1: enabled  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
205 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
BCORE2_AUTO  
1
R/W  
Selects BUCKCORE2 (during powering up):  
0: configured from BCORE2_CONF  
1: enabled  
BCORE1_AUTO  
0
R/W  
Selects BUCKCORE1 (during powering up):  
0: configured from BCORE1_CONF  
1: enabled  
Table 231: CONFIG_F  
Register Address  
Bit  
Type  
Label  
Description  
LDO11_BYP  
0: LDO11 is configured for regulator mode  
0x10B CONFIG_F  
7
R/W  
1: LDO11 bypass mode enabled  
LDO8_BYP  
LDO7_BYP  
LDO4_BYP  
LDO3_BYP  
LDO11_AUTO  
0: LDO8 is configured for regulator mode  
1: LDO8 bypass mode enabled  
6
5
4
3
2
R/W  
R/W  
R/W  
R/W  
R/W  
0: LDO7 is configured for regulator mode  
1: LDO7 bypass mode enabled  
0: LDO4 is configured for regulator mode  
1: LDO4 bypass mode enabled  
0: LDO3 is configured for regulator mode  
1: LDO3 bypass mode enabled  
Selects LDO11 (during powering up):  
0: configured from LDO11_CONF  
1: enabled  
LDO10_AUTO  
LDO9_AUTO  
1
0
R/W  
R/W  
Selects LDO10 (during powering up):  
0: configured from LDO10_CONF  
1: enabled  
Selects LDO9 (during powering up):  
0: configured from LDO9_CONF  
1: enabled  
Table 232: CONFIG_G  
Register Address  
Bit  
Type  
Label  
Description  
LDO8_AUTO  
0x10C CONFIG_G  
7
R/W  
Selects LDO8 (during powering up):  
0: configured from LDO8_CONF  
1: enabled  
LDO7_AUTO  
LDO6_AUTO  
LDO5_AUTO  
LDO4_AUTO  
6
5
4
3
R/W  
R/W  
R/W  
R/W  
Selects LDO7 (during powering up):  
0: configured from LDO7_CONF  
1: enabled  
Selects LDO6 (during powering up):  
0: configured from LDO6_CONF  
1: enabled  
Selects LDO5 (during powering up):  
0: configured from LDO5_CONF  
1: enabled  
Selects LDO4 (during powering up):  
0: configured from LDO4_CONF  
1: enabled  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
206 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
LDO3_AUTO  
2
R/W  
Selects LDO3 (during powering up):  
0: configured from LDO3_CONF  
1: enabled  
LDO2_AUTO  
LDO1_AUTO  
1
0
R/W  
R/W  
Selects LDO2 (during powering up):  
0: configured from LDO2_CONF  
1: enabled  
Selects LDO1 (during powering up):  
0: configured from LDO1_CONF  
1: enabled  
Table 233: CONFIG_H  
Register Address  
Bit  
Type  
Label  
Description  
BUCK_MERGE  
0x10D CONFIG_H  
7
R/W  
Has to be set if the outputs of BUCKMEM  
and BUCKIO are merged towards a single  
coil; the control from BUCKIO registers is  
disabled  
BCORE1_OD  
BCORE2_OD  
BPRO_OD  
6
5
4
3
R/W  
R/W  
R/W  
R/W  
If set, BUCKCORE1 changes to full-current  
mode (double pass device and current limit)  
If set, BUCKCORE2 changes to full-current  
mode (double pass device and current limit)  
If set, BUCKPRO changes to full-current  
mode (double pass device and current limit)  
BCORE_MERGE  
Has to be set if the outputs of BUCKCORE1  
and BUCKCORE2 are merged towards a  
dual phase buck; the control from  
BUCKCORE2 registers is disabled  
MERGE_SENSE  
2
R/W  
In case BUCKCORE is merged and  
configured for remote sensing the output  
capacitor voltage rail is routed to port:  
0: GP_FB_2 (setting disables normal  
GP_FB_2 functionality)  
1: CORE_SWS (setting disables CORE rail  
switch pull-down functionality)  
Note: In case MERGE_SENSE is asserted all  
Bxxx_FB control settings 0bx1x are invalid  
LDO8_MODE  
PWM_CLK  
0: LDO mode (external capacitor required)  
1: Vibration motor driver (no external  
capacitor)  
1
0
R/W  
R/W  
0: 2.0 MHz (31.25 kHz repetition frequency)  
1: 1.0 MHz (15.6 kHz repetition frequency)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
207 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 234: CONFIG_I  
Register Address  
Bit  
Type  
Label  
Description  
LDO_SD  
0x10E CONFIG_I  
7
R/W  
If asserted LDO3, 4, 7, 8 and 11 will shut  
down after current limit was hit for more than  
200 ms  
INT_SD_MODE  
6
5
R/W  
R/W  
Shut down sequence from internal fault  
condition is:  
0: Normal  
1: Fast (skipping seq and dummy slot timers)  
HOST_SD_MODE  
Shut down sequence from SHUTDOWN  
(register bit or port nSHUTDOWN) is:  
0: Normal  
1: Fast (skipping seq and dummy slot  
timers)  
KEY_SD_MODE  
4
R/W  
User triggered (nONKEY, GPIO14/15)  
shutdown sequence is:  
0: Normal  
1: PMU POR: triggers an instant disable of all  
regulators incl. LDOCORE (RTC and  
FAULTLOG registers remain unchanged).  
After leaving POR automatically the  
RESET_DURATION timer must expire before  
starting a power-up sequence.  
GPI14_15_SD  
nONKEY_SD  
0: Disables shutdown via parallel  
assertion of GPI14 and GPI15  
1: Enables shutdown via GPI14 & GPI15  
3
2
R/W  
R/W  
nONKEY is configured  
0: without shutdown via long press of  
nONKEY  
1: with shutdown via long press of nONKEY  
nONKEY_PIN  
1:0  
R/W  
nONKEY is configured to  
00: Port mode  
01: Key mode with key lock during SW  
triggered POWERDOWN mode  
10: Key mode with key locked autonomous  
powering down (multi-functional key)  
11: Key mode with autonomous powering  
down to partial or key locked full  
POWERDOWN mode (dedicated power key)  
Details: see Section 6.1.1  
Table 235: CONFIG_J  
Register Address  
Bit  
Type  
Label  
Description  
IF_RESET  
0x10F CONFIG_J  
7
R/W  
Enables automatic reset of all control  
interfaces when port nSHUTDOWN is  
asserted  
IF_TO  
6
R/W  
R/W  
Enables automatic reset of 2-WIRE-IF in  
case of clock ceases to toggle for >19 ms  
RESET_DURATION  
5:4  
Power controller stays in RESET mode for  
minimum duration of  
00: 20 ms  
01: 100 ms  
10: 500 ms  
11: 1000 ms  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
208 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
SHUT_DELAY  
3:2  
R/W  
Long press time threshold for shutdown  
feature from nONKEY and GPIO14/15:  
00: KEY_DELAY + 0 s  
01: KEY_DELAY + 4 s  
10: KEY_DELAY + 5 s  
11: KEY_DELAY + 6 s  
KEY_DELAY  
1:0  
R/W  
Long press threshold for nONKEY lock:  
00: nONKEY_LOCK after 1 s  
01: nONKEY_LOCK after 1.5 s  
10: nONKEY_LOCK after 2 s  
11: nONKEY_LOCK after 7 s  
Note 1 This setting may trigger glidges on regulator outputs and disable the automatic RESET/POR of slave  
PMUs).  
Table 236: CONFIG_K  
Register Address  
Bit  
Type  
Label  
Description  
GPIO7_PUPD  
0: GPI: pull-down resistor disabled  
GPO (open drain): pull-up resistor  
disabled (external pull-up resistor)  
0x110 CONFIG_K  
7
R/W  
1: GPI: pull-down resistor enabled  
GPO (open drain): pull-up resistor enabled  
(supply rail selected via GPIOx_TYPE)  
GPIO6_PUPD  
GPIO5_PUPD  
GPIO4_PUPD  
GPIO3_PUPD  
GPIO2_PUPD  
0: GPI: pull-down resistor disabled  
GPO (open drain): pull-up resistor  
disabled (external pull-up resistor)  
6
5
4
3
2
R/W  
R/W  
R/W  
R/W  
R/W  
1: GPI: pull-down resistor enabled  
GPO (open drain): pull-up resistor enabled  
(supply rail selected via GPIOx_TYPE)  
0: GPI: pull-down resistor disabled  
GPO (open drain): pull-up resistor  
disabled (external pull-up resistor)  
1: GPI: pull-down resistor enabled  
GPO (open drain): pull-up resistor enabled  
(supply rail selected via GPIOx_TYPE)  
0: GPI: pull-down resistor disabled  
GPO (open drain): pull-up resistor  
disabled (external pull-up resistor)  
1: GPI: pull-down resistor enabled  
GPO (open drain): pull-up resistor enabled  
(supply rail selected via GPIOx_TYPE)  
0: GPI: pull-down resistor disabled  
GPO (open drain): pull-up resistor  
disabled (external pull-up resistor)  
1: GPI: pull-down resistor enabled  
GPO (open drain): pull-up resistor enabled  
(supply rail selected via GPIOx_TYPE)  
0: GPI: pull-down resistor disabled  
GPO (open drain): pull-up resistor  
disabled (external pull-up resistor)  
1: GPI: pull-down resistor enabled  
GPO (open drain): pull-up resistor enabled  
(supply rail selected via GPIOx_TYPE)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
209 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
GPIO1_PUPD  
0: GPI: pull-down resistor disabled  
GPO (open drain): pull-up resistor  
disabled (external pull-up resistor)  
1
R/W  
1: GPI: pull-down resistor enabled  
GPO (open drain): pull-up resistor enabled  
(supply rail selected via GPIOx_TYPE)  
GPIO0_PUPD  
0: GPI: pull-down resistor disabled  
GPO (open drain): pull-up resistor  
disabled (external pull-up resistor)  
0
R/W  
1: GPI: pull-down resistor enabled  
GPO (open drain): pull-up resistor enabled  
(supply rail selected via GPIOx_TYPE)  
Table 237: CONFIG_L  
Register Address  
Bit  
Type  
Label  
Description  
GPIO15_PUPD  
0: GPI: pull-down resistor disabled  
GPO (open drain): pull-up resistor  
disabled (external pull-up resistor)  
0x111 CONFIG_L  
7
R/W  
1: GPI: pull-down resistor enabled  
GPO (open drain): pull-up resistor enabled  
(supply rail selected via GPIOx_TYPE)  
GPIO14_PUPD  
GPIO13_PUPD  
GPIO12_PUPD  
GPIO11_PUPD  
GPIO10_PUPD  
0: GPI: pull-down resistor disabled  
GPO (open drain): pull-up resistor  
disabled (external pull-up resistor)  
6
5
4
3
2
R/W  
R/W  
R/W  
R/W  
R/W  
1: GPI: pull-down resistor enabled  
GPO (open drain): pull-up resistor enabled  
(supply rail selected via GPIOx_TYPE)  
0: GPI: pull-down resistor disabled  
GPO (open drain): pull-up resistor  
disabled (external pull-up resistor)  
1: GPI: pull-down resistor enabled  
GPO (open drain): pull-up resistor enabled  
(supply rail selected via GPIOx_TYPE)  
0: GPI: pull-down resistor disabled  
GPO (open drain): pull-up resistor  
disabled (external pull-up resistor)  
1: GPI: pull-down resistor enabled  
GPO (open drain): pull-up resistor enabled  
(supply rail selected via GPIOx_TYPE)  
0: GPI: pull-down resistor disabled  
GPO (open drain): pull-up resistor  
disabled (external pull-up resistor)  
1: GPI: pull-down resistor enabled  
GPO (open drain): pull-up resistor enabled  
(supply rail selected via GPIOx_TYPE)  
0: GPI: pull-down resistor disabled  
GPO (open drain): pull-up resistor  
disabled (external pull-up resistor)  
1: GPI: pull-down resistor enabled  
GPO (open drain): pull-up resistor enabled  
(supply rail selected via GPIOx_TYPE)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
210 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
GPIO9_PUPD  
0: GPI: pull-down resistor disabled  
GPO (open drain): pull-up resistor  
disabled (external pull-up resistor)  
1
R/W  
1: GPI: pull-down resistor enabled  
GPO (open drain): pull-up resistor enabled  
(supply rail selected via GPIOx_TYPE)  
GPIO8_PUPD  
0: GPI: pull-down resistor disabled  
GPO (open drain): pull-up resistor  
disabled (external pull-up resistor)  
0
R/W  
1: GPI: pull-down resistor enabled  
GPO (open drain): pull-up resistor enabled  
(supply rail selected via GPIOx_TYPE)  
Table 238: CONFIG_M  
Register Address  
Bit  
Type  
Label  
Description  
OSC_FRQ  
0x112 CONFIG_M  
7:4  
R/W  
Offset for internal HF oscillator frequency  
0x8: -10.67%  
0xF: -1.33%  
0x0: 0.00%  
0x1: 1.33%  
0x7: 9.33%  
Reserved  
3:0  
R/W  
Table 239: Reserved  
Register Address  
Bit  
7:0  
Type  
Label  
Description  
Description  
Reserved  
0x113  
R/W  
Table 240: MON_REG_1  
Register Address  
Bit  
Type  
Label  
UVOV_DELAY  
0x114  
MON_REG_1  
7:6  
R/W  
Range comparison is enabled after regulator  
enable:  
00: immediately  
01: with one measurement delay  
10: with two measurements delay  
11: with four measurements delay  
MON_MODE  
5:4  
R/W  
Regulator monitor executes  
00: Under-voltage/Over-voltage lockout  
with an E_REG_UVOV event (nIRQ  
assertion) and regulator shutdown from  
an output voltage being out of the  
selected range  
01: Normal auto measurement with an  
E_REG_UVOV event (nIRQ assertion) from  
any finished auto measurement on A8, A9  
and A10  
10: Burst auto measurement with an  
E_REG_UVOV event (nIRQ assertion)  
generated after the time slot of A10 has been  
processed  
11: reserved  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
211 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Register Address  
Bit  
Type  
Label  
Description  
MON_DEB  
3
R/W  
0: Regulator monitor (A8, 9, 10): debouncing  
off  
1: Regulator monitor (A8, 9, 10):  
debouncing on  
MON_RES  
2
R/W  
R/W  
Control requires M_REG_UVOV = 1:  
1: Enables assertion of nRESET from out-of-  
range detection  
Note: It is not recommended to assert this  
control inside OTP  
MON_THRES  
1:0  
Regulator Monitor Threshold  
00: Approx = 25 %  
01: Approx = 12.5 %  
10: Approx = 6.25 %  
11: Approx = 3.125 %  
Table 241: MON_REG_2  
Register Address  
Bit  
7
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Label  
Description  
LDO8_MON_EN  
LDO7_MON_EN  
LDO6_MON_EN  
LDO5_MON_EN  
LDO4_MON_EN  
LDO3_MON_EN  
LDO2_MON_EN  
LDO1_MON_EN  
0x115  
MON_REG_2  
Enable LDO8 regulator monitoring  
Enable LDO7 regulator monitoring  
Enable LDO6 regulator monitoring  
Enable LDO5 regulator monitoring  
Enable LDO4 regulator monitoring  
Enable LDO3 regulator monitoring  
Enable LDO2 regulator monitoring  
Enable LDO1 regulator monitoring  
6
5
4
3
2
1
0
Table 242: MON_REG_3  
Register Address  
Bit  
7:3  
2
Type  
R/W  
R/W  
R/W  
R/W  
Label  
Description  
Reserved  
0x116  
MON_REG_3  
LDO11_MON_EN  
LDO10_MON_EN  
LDO9_MON_EN  
Enable LDO11 regulator monitoring  
Enable LDO10 regulator monitoring  
Enable LDO9 regulator monitoring  
1
0
Table 243: MON_REG_4  
Register Address  
Bit  
7
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Label  
Description  
BPERI_MON_EN  
BMEM_MON_EN  
BIO_MON_EN  
0x117  
MON_REG_4  
Enable BUCKPERI regulator monitoring  
Enable BUCKMEM regulator monitoring  
Enable BUCKIO regulator monitoring  
Enable BUCKPRO regulator monitoring  
Enable BUCKCORE2 regulator monitoring  
Enable BUCKCORE1 regulator monitoring  
6
5
BPRO_MON_EN  
BCORE2_MON_EN  
BCORE1_MON_EN  
Reserved  
4
3
2
1:0  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
212 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 244: MON_REG_5  
Register Address  
Bit  
7
Type  
R
Label  
Description  
0x11E  
Reserved  
MON_REG_5  
6:4  
R
MON_A9_IDX  
Latest measurement at channel A9 was:  
000: none  
001: BUCKIO  
010: BUCKMEM  
011: BUCKPERI  
100: LDO1  
101: LDO2  
101: LDO5  
> 110: reserved  
3
R
R
Reserved  
2:0  
MON_A8_IDX  
Latest measurement at channel A8 was:  
000: none  
001: BUCKCORE1  
010: BUCKCORE2  
011: BUCKPRO  
100: LDO3  
101: LDO4  
110: LDO11  
> 110: reserved  
Table 245: MON_REG_6  
Register Address  
Bit  
7:3  
2:0  
Type  
R
Label  
Description  
0x11F  
MON_REG_6  
Reserved  
R
MON_A10_IDX  
Latest measurement at channel A10 was:  
000: none  
001: LDO6  
010: LDO7  
011: LDO8  
100: LDO9  
101: LDO10  
> 101: reserved  
Table 246: TRIM_CLDR  
Register Address  
Bit  
Type  
Label  
Description  
TRIM_32K  
0x120  
TRIM_CLDR  
7:0  
R/W  
Bits for correction of the 32K oscillator  
frequency for internal calendar:  
10000000: -244.1 ppm  
11111111: -1.9 ppm  
00000000: off  
00000001: 1.9 ppm (1/(32768*16))  
01111111: 242.2 ppm  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
213 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 247: GP_ID_0  
Register Address  
Bit  
Type  
Label  
GP_0  
Description  
0x121  
7:0  
R/W  
Data from fuse array (OTP)  
GP_ID_0  
Note 1  
Note 1 Write access can be disabled by OTP if required.  
Table 248: GP_ID_1  
Register Address  
Bit  
Type  
Label  
GP_1  
Description  
0x122  
7:0  
R/W  
Data from fuse array (OTP)  
GP_ID_1  
Note 1  
Note 1 Write access can be disabled by OTP if required.  
Table 249: GP_ID_2  
Register Address  
Bit  
Type  
Label  
GP_2  
Description  
0x123  
7:0  
R/W  
Data from fuse array (OTP)  
GP_ID_2  
Note 1  
Note 1 Write access can be disabled by OTP if required.  
Table 250: GP_ID_3  
Register Address  
Bit  
Type  
Label  
GP_3  
Description  
0x124  
7:0  
R/W  
Data from fuse array (OTP)  
GP_ID_3  
Note 1  
Note 1 Write access can be disabled by OTP if required.  
Table 251: GP_ID_4  
Register Address  
Bit  
Type  
Label  
GP_4  
Description  
0x125  
7:0  
R/W  
Data from fuse array (OTP)  
GP_ID_4  
Note 1  
Note 1 Write access can be disabled by OTP if required.  
Table 252: GP_ID_5  
Register Address  
Bit  
Type  
Label  
GP_5  
Description  
0x126  
7:0  
R/W  
Data from fuse array (OTP)  
GP_ID_5  
Note 1  
Note 1 Write access can be disabled by OTP if required.  
Table 253: GP_ID_6  
Register Address  
Bit  
Type  
Label  
GP_6  
Description  
0x127  
7:0  
R/W  
Data from fuse array (OTP)  
GP_ID_6  
Note 1  
Note 1 Write access can be disabled by OTP if required.  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
214 of 219  
© 2017 Dialog Semiconductor  
 
 
 
 
 
 
 
DA9063  
System PMIC for Mobile Application Processors  
Table 254: GP_ID_7  
Register Address  
Bit  
Type  
Label  
GP_7  
Description  
0x128  
7:0  
R/W  
Data from fuse array (OTP)  
GP_ID_7  
Note 1  
Note 1 Write access can be disabled by OTP if required.  
Table 255: GP_ID_8  
Register Address  
Bit  
Type  
Label  
GP_8  
Description  
0x129  
7:0  
R/W  
Data from fuse array (OTP)  
GP_ID_8  
Note 1  
Note 1 Write access can be disabled by OTP if required.  
Table 256: GP_ID_9  
Register Address  
Bit  
Type  
Label  
GP_9  
Description  
0x12A  
7:0  
R/W  
Data from fuse array (OTP)  
GP_ID_9  
Note 1  
Note 1 Write access can be disabled by OTP if required.  
Table 257: GP_ID_10  
Register Address  
Bit  
Type  
Label  
Description  
GP_10  
0x12B GP_ID_10  
7:0  
R/W  
Data from fuse array (OTP), no OTP reload  
after powering up from NO-POWER mode  
Table 258: GP_ID_11  
Register Address  
Bit  
7:0  
Type  
Label  
Description  
GP_11  
0x12C GP_ID_11  
R/W  
Data from fuse array (OTP)  
Table 259: GP_ID_12  
Register Address  
Bit  
7:0  
Type  
Label  
Description  
GP_12  
0x12D GP_ID_12  
R/W  
Data from fuse array (OTP)  
Table 260: GP_ID_13  
Register Address  
Bit  
7:0  
Type  
Label  
Description  
GP_13  
0x12E GP_ID_13  
R/W  
Data from fuse array (OTP)  
Table 261: GP_ID_14  
Register Address  
Bit  
7:0  
Type  
Label  
Description  
GP_14  
0x12F GP_ID_14  
R/W  
Data from fuse array (OTP)  
Table 262: GP_ID_15  
Register Address  
Bit  
7:0  
Type  
Label  
Description  
GP_15  
0x130 GP_ID_15  
R/W  
Data from fuse array (OTP)  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
215 of 219  
© 2017 Dialog Semiconductor  
 
 
 
DA9063  
System PMIC for Mobile Application Processors  
Table 263: GP_ID_16  
Register Address  
Bit  
Type  
Label  
Description  
GP_16  
0x131 GP_ID_16  
7:0  
R/W  
Data from fuse array (OTP)  
Table 264: GP_ID_17  
Register Address  
Bit  
7:0  
Type  
Label  
Description  
GP_17  
0x132 GP_ID_17  
R/W  
Data from fuse array (OTP)  
Table 265: GP_ID_18  
Register Address  
Bit  
7:0  
Type  
Label  
Description  
GP_18  
0x133 GP_ID_18  
R/W  
Data from fuse array (OTP)  
Table 266: GP_ID_19  
Register Address  
Bit  
7:0  
Type  
Label  
Description  
GP_19  
0x134 GP_ID_19  
R/W  
Data from fuse array (OTP)  
Table 267: Copmic_S to Copmic_E  
Register Address  
0x140 CoPMIC_S  
0x14F CoPMIC_E  
Bit  
7:0  
7:0  
Type  
R
Label  
Description  
Reserved for Co-PMIC  
Reserved for Co-PMIC  
Reserved  
Reserved  
R
Table 268: CHG_Co_S to CHG_Co_E  
Register Address  
0x150 CHG_Co_S  
0x17F CHG_Co_E  
Bit  
7:0  
7:0  
Type  
R
Label  
Description  
Reserved for companion charger  
Reserved for companion charger  
Reserved  
Reserved  
R
A.5 Register Page 3  
Table 269: PAGE_CON  
Register Address  
Bit  
7
Type  
RW  
RW  
RW  
RW  
Label  
REVERT  
Description  
0x180 PAGE_CON  
See register 0x00, Table 57  
6
WRITE_MODE  
Reserved  
5:3  
2:0  
REG_PAGE  
Table 270: DEVICE_ID  
Register Address  
Bit  
Type  
Label  
Description  
0x181 DEVICE_ID  
7:0  
R
DEVICE_ID  
Read back of chip ID  
Table 271: VARIANT_ID  
Register Address  
Bit  
7:4  
3:0  
Type  
R
Label  
MRC  
VRC  
Description  
0x182  
VARIANT_ID  
Read back of mask revision code (MRC)  
Read back of package variant code (VRC)  
R
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
216 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Table 272: CUSTOMER_ID  
Register Address  
Bit  
Type  
Label  
Description  
CUSTOMER_ID  
0x183  
7:0  
R
ID for customer and target application  
CUSTOMER_ID  
platform, written during production of variant  
Table 273: CONFIG_ID  
Register Address  
Bit  
Type  
Label  
Description  
CONFIG_REV  
0x184 CONFIG_ID  
7:0  
R
ID for revision of OTP settings, written during  
production of variant  
00000000 OTP unprogrammed  
(RESERVED)  
> 00000000 OTP configuration revision xxx  
Table 274: PMIC_STATUS  
Register Address  
Bit  
7
Type  
R
Label  
Description  
PC_DONE  
Reserved  
STATUS  
0x1A8  
PMIC_STATUS  
Power Commander download complete  
6:5  
4:0  
R/W  
R
Decimal Decode:  
03=Reset (Shutdown)  
28= System  
25=Power  
23=Power Down  
20=Power1  
17=Active  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
217 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
Status Definitions  
Revision  
Datasheet Status  
Product Status  
Definition  
1.<n>  
Target  
Development  
This datasheet contains the design specifications for product  
development. Specifications may be changed in any manner without  
notice.  
2.<n>  
3.<n>  
Preliminary  
Final  
Qualification  
Production  
This datasheet contains the specifications and preliminary  
characterization data for products in pre-production. Specifications  
may be changed at any time without notice in order to improve the  
design.  
This datasheet contains the final specifications for products in  
volume production. The specifications may be changed at any time  
in order to improve the design, manufacturing and supply. Major  
specification changes are communicated via Customer Product  
Notifications. Datasheet changes are communicated via  
www.dialog-semiconductor.com.  
4.<n>  
Obsolete  
Archived  
This datasheet contains the specifications for discontinued products.  
The information is provided for reference only.  
Disclaimer  
Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any  
representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog  
Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information  
source outside of Dialog Semiconductor.  
Dialog Semiconductor reserves the right to change without notice the information published in this document, including without  
limitation the specification and the design of the related semiconductor products, software and applications.  
Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog  
Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be  
suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or  
modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.  
This Dialog Semiconductor product has been qualified for use in automotive applications. Unless otherwise agreed in writing,  
the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems  
or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product can reasonably be expected  
to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers accept  
no liability for inclusion and/or use of Dialog Semiconductor products in such equipment or applications and therefore such  
inclusion and/or use is at the customer's own risk.  
Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor  
products, software and applications referred to in this document. Such license must be separately sought by customer with  
Dialog Semiconductor.  
All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog  
Semiconductor’s Standard Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com)  
unless otherwise stated.  
Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names  
are the property of their respective owners.  
© 2017 Dialog Semiconductor. All rights reserved.  
RoHS Compliance  
Dialog Semiconductor’s suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of  
the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment.  
RoHS certificates from our suppliers are available on request.  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Singapore  
China (Shenzhen)  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Dialog Semiconductor Singapore  
Phone: +65 64 8499 29  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Hong Kong  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5425 4567  
Dialog Semiconductor Hong Kong  
Phone: +852 3769 5200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
218 of 219  
© 2017 Dialog Semiconductor  
DA9063  
System PMIC for Mobile Application Processors  
The Netherlands  
Taiwan  
Korea  
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
Datasheet  
DA9063_2v1  
23-Mar-2017  
CFR0011-120-00  
219 of 219  
© 2017 Dialog Semiconductor  

相关型号:

DA9063-xxHO2-AT

System PMIC for Mobile Application Processors
DIALOG

DA9063_17

System PMIC for Mobile Application Processors
DIALOG

DA9070

Ultra-Low Quiescent Current PMIC
DIALOG

DA9070-XXV32

Ultra-Low Quiescent Current PMIC
DIALOG

DA9070-XXV36

Ultra-Low Quiescent Current PMIC
DIALOG

DA9121

High-Performance, 10 A, Dual-Phase DC-DC Converter
DIALOG

DA9121-B0OZ2

High-Performance, 10 A, Dual-Phase DC-DC Converter
DIALOG

DA9121-B0V72

High-Performance, 10 A, Dual-Phase DC-DC Converter
DIALOG

DA9121-B0V76

High-Performance, 10 A, Dual-Phase DC-DC Converter
DIALOG

DA9121-XXOZ2

High-Performance, 10 A, Dual-Phase DC-DC Converter
DIALOG

DA9121-XXOZ6

High-Performance, 10 A, Dual-Phase DC-DC Converter
DIALOG

DA9121-XXV72

High-Performance, 10 A, Dual-Phase DC-DC Converter
DIALOG