DA9070-XXV32 [DIALOG]

Ultra-Low Quiescent Current PMIC;
DA9070-XXV32
型号: DA9070-XXV32
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

Ultra-Low Quiescent Current PMIC

集成电源管理电路
文件: 总130页 (文件大小:3031K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DA9070  
Ultra-Low Quiescent Current PMIC  
General Description  
DA9070 is a highly integrated, configurable, low quiescent current PMIC that integrates the most  
common needs for wearables, home automation and low power battery applications.  
The Power Management IC (PMIC) comprises a linear charger with Power Path management, ultra-  
low quiescent current (Iq) buck regulator and LDO/Load Switches, wide output voltage boost  
regulator, analog battery monitor, watchdog and protection features in an I2C configurable compact  
WLCSP package.  
DA9070 has several power saving modes to increase battery life whether the product sits on the  
shelf or is in operation. Further savings in power are achieved with the ultra-low Iq buck converter  
that is efficient down to 10 µA load currents and low Iq LDOs. The uncommitted inputs of LDOs can  
be connected to either the battery or buck output.  
The integrated, high-efficiency boost regulator supports both sensors and display supply needs with  
a wide range configurable output voltage.  
DA9070 provides charge current up to 500 mA to speed up the charge cycle. The charge profile is  
programmable by external resistors or in software, allowing either stand-alone operation or host  
control.  
DA9070 includes dynamic power path management which automatically balancing current delivered  
to the system and battery charging.  
Suitable for small battery applications, the battery monitor facilitates on-demand battery voltage and  
discharge current monitors to an external MCU’s ADC for supporting software fuel gauging.  
Key Features  
Increased battery life  
High integration and configurability  
800 nA (no load, total battery current) buck  
converter, programmable down to 0.6 V,  
300 mA-capable  
Wide output voltage boost regulator  
(4.5V to 18 V)  
I2C enabled analog battery monitors for  
Software Fuel Gauging  
Three configurable 800nA Quiescent  
Current LDOs/Load Switches, 150 mA-  
capable  
Watchdog input and power-cycling to  
prevent system stall  
Power saving modes optimized for storage  
and operation  
Reset input and status outputs  
Low external component count  
Battery protection  
Compact, 42 pin, 2.97 mm x 2.66 mm  
WLCSP package  
Battery thermal- and over-discharge  
protection  
Fast charge  
20 V tolerant input  
500 mA (max) charge current; 2 mA (min)  
Automatic battery temperature monitoring  
in all operation modes  
Programmable pre-charge, fast charge,  
and termination voltage  
Configurable battery monitors  
Dynamic power path balances multiple  
power sources  
Battery current (IMON)  
Battery voltage (VBAT_DIV)  
Battery temperature (TEMP_SNS)  
Termination current programmable down  
to 500 µA  
±0.5 % accurate termination voltage  
Datasheet  
Revision 3.3  
13-Oct-2020  
1 of 130  
© 2020 Dialog Semiconductor  
 
 
DA9070  
Ultra-Low Quiescent Current PMIC  
Applications  
Wearable devices - Fitness trackers, smart  
watches, wireless headphones  
Health monitoring medical accessories  
Rechargeable toys  
Home automation devices - Smoke detectors,  
Smart thermostats, Smart door locks  
High efficiency, ultra-low power  
applications  
Datasheet  
Revision 3.3  
13-Oct-2020  
2 of 130  
© 2020 Dialog Semiconductor  
 
DA9070  
Ultra-Low Quiescent Current PMIC  
Contents  
General Description ............................................................................................................................ 1  
Key Features ........................................................................................................................................ 1  
Applications ......................................................................................................................................... 2  
Contents ............................................................................................................................................... 3  
Figures.................................................................................................................................................. 6  
Tables ................................................................................................................................................... 7  
1
2
3
4
5
6
System Diagram ............................................................................................................................ 9  
Pinout ........................................................................................................................................... 10  
Absolute Maximum Ratings ....................................................................................................... 13  
Recommended Operating Conditions....................................................................................... 14  
ESD Ratings................................................................................................................................. 15  
Electrical Characteristics ........................................................................................................... 16  
6.1 Battery Charger................................................................................................................... 16  
6.2 Battery Temperature Monitor .............................................................................................. 17  
6.3 LDO / Load Switches .......................................................................................................... 18  
6.4 Digital Inputs (MODE and WD) ........................................................................................... 21  
6.5 I2C Interface ........................................................................................................................ 21  
6.6 Input Currents ..................................................................................................................... 22  
6.7 Power-Path Management and Current Limit ...................................................................... 22  
6.8 Protection ............................................................................................................................ 23  
6.9 Pushbutton Timer (RIN_N).................................................................................................. 24  
6.10 Digital Outputs (SYS_FLT, PWR_FLT, and ROUT_N)....................................................... 24  
6.11 Buck Regulator.................................................................................................................... 25  
6.12 Boost Regulator .................................................................................................................. 26  
6.13 Battery Monitors (VBAT_DIV and IMON)............................................................................ 27  
7
8
9
Thermal Characteristics ............................................................................................................. 28  
Typical Performance................................................................................................................... 29  
Functional Description ............................................................................................................... 36  
9.1 Overview ............................................................................................................................. 36  
9.2 Battery-Powered Operation ................................................................................................ 37  
9.2.1  
9.2.2  
9.2.3  
Ship Mode............................................................................................................ 37  
Active Battery and High Impedance Modes ........................................................ 37  
Battery Protection ................................................................................................ 38  
9.2.3.1  
9.2.3.2  
9.2.3.3  
VBAT Over-Current Protection (OCP)............................................. 38  
VBAT_UVLO and SHORT............................................................... 38  
Battery Temperature Sensing.......................................................... 38  
9.3 Analog Battery Monitor Functions....................................................................................... 43  
9.4 Battery Charging ................................................................................................................. 44  
9.4.1  
Battery Charging Process.................................................................................... 44  
Datasheet  
Revision 3.3  
13-Oct-2020  
3 of 130  
© 2020 Dialog Semiconductor  
 
DA9070  
Ultra-Low Quiescent Current PMIC  
9.4.2  
9.4.3  
9.4.4  
9.4.5  
9.4.6  
9.4.7  
9.4.8  
Charge In-Progress ............................................................................................. 45  
Pre-charge and Termination Current................................................................... 45  
Fast Charge Current............................................................................................ 46  
CV Voltage Regulation and Termination ............................................................. 46  
Charge Done and Recharge................................................................................ 46  
Charge Faults ...................................................................................................... 46  
Safety Timers....................................................................................................... 47  
9.5 USB Powered Operation and Power Path Management.................................................... 48  
9.5.1  
9.5.2  
9.5.3  
9.5.4  
9.5.5  
9.5.6  
9.5.7  
9.5.8  
Under-Voltage Lockout (VDD_PWR_UVLO)....................................................... 48  
Sleep Mode.......................................................................................................... 48  
VDD_PWR Current Limit (IDD_PWR_LIM)......................................................... 48  
Input Voltage Dynamic Power Management (DPM)............................................ 48  
Dynamic Power Path Mode (DPPM) ................................................................... 49  
Battery Supplement Mode ................................................................................... 49  
Input Over-Voltage Protection (VDD_PWR_OVP) .............................................. 49  
VDD_PWR Input Supply Impedance................................................................... 49  
9.6 Power-Cycling..................................................................................................................... 51  
9.6.1  
9.6.2  
Requested Power-Cycle...................................................................................... 51  
Fault Triggered Power-Cycle............................................................................... 52  
9.7 Standalone Mode................................................................................................................ 54  
9.7.1  
9.7.2  
9.7.3  
Termination and Pre-Charge Current Programming (ITER_CHG) ..................... 54  
Input Current Limit Programming (ILIM_PWR) ................................................... 55  
Charge Current Programming (ILIM_CHG)......................................................... 55  
9.8 Host and Pushbutton Communication ................................................................................ 56  
9.8.1  
9.8.2  
9.8.3  
9.8.4  
9.8.5  
9.8.6  
Watchdog Input and Timer .................................................................................. 57  
VDDIO.................................................................................................................. 58  
Interrupt Events and Status Control (SYS_FLT, PWR_FLT) .............................. 58  
Pushbutton Reset Timer and Reset Output (RIN_N and ROUT_N) ................... 59  
System Status Register ....................................................................................... 60  
I2C Programming ................................................................................................. 60  
9.9 Buck Regulator.................................................................................................................... 62  
9.9.1  
9.9.2  
9.9.3  
9.9.4  
9.9.5  
9.9.6  
9.9.7  
9.9.8  
9.9.9  
Buck Output Voltage Programmability................................................................. 62  
Buck Enable and Soft Start Operation................................................................. 62  
Power Saving Mode Operation............................................................................ 62  
Dynamic Voltage Control..................................................................................... 62  
Over-Current Protection....................................................................................... 63  
Output Under-Voltage Protection ........................................................................ 63  
Output Over-Voltage Protection .......................................................................... 63  
Automatic Output voltage Discharge................................................................... 63  
External Component Selection ............................................................................ 63  
9.10 Boost Regulator .................................................................................................................. 64  
9.10.1 Startup ................................................................................................................. 64  
9.10.2 Switch Node Anti-Ringing.................................................................................... 65  
9.10.3 Protection............................................................................................................. 65  
Datasheet  
Revision 3.3  
13-Oct-2020  
4 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
9.10.4 Low Output Voltage Settings ............................................................................... 66  
9.11 LDO / Load Switches .......................................................................................................... 66  
9.12 Thermal Protection.............................................................................................................. 67  
9.13 PCB Layout Guidelines....................................................................................................... 68  
10 Registers ...................................................................................................................................... 70  
10.1 Register Map....................................................................................................................... 70  
10.1.1 System................................................................................................................. 70  
10.1.2 Charger................................................................................................................ 71  
10.1.3 Buck, Boost, and LDO Control ............................................................................ 72  
10.2 Register Definitions............................................................................................................. 74  
10.2.1 System................................................................................................................. 74  
10.2.2 Config................................................................................................................... 87  
10.2.3 Charger................................................................................................................ 88  
10.2.3.1  
Charger and Power-Path................................................................. 88  
10.2.4 Buck, Boost, and LDO Control .......................................................................... 107  
10.2.4.1  
10.2.4.2  
Vout User Registers....................................................................... 107  
Vout Opt Registers ........................................................................ 127  
11 Package Information................................................................................................................. 128  
11.1 Package Outlines.............................................................................................................. 128  
11.2 Moisture Sensitivity Level.................................................................................................. 128  
11.3 Soldering Information........................................................................................................ 128  
12 Ordering Information ................................................................................................................ 129  
Datasheet  
Revision 3.3  
13-Oct-2020  
5 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Figures  
Figure 1: System Diagram..................................................................................................................... 9  
Figure 2: Connection Diagram (bottom view)...................................................................................... 10  
Figure 3: Buck Efficiency, VOUT = 1.8 V ............................................................................................... 29  
Figure 4: Boost Efficiency, VOUT = 12 V, VIN = VDD_BST......................................................................... 29  
Figure 5: Buck Efficiency, VOUT = 0.9 V ............................................................................................... 29  
Figure 6: Buck Regulation, VOUT = 1.8 V.............................................................................................. 29  
Figure 7: Buck Regulation, VOU = 0.9 V............................................................................................... 30  
Figure 8: Boost Efficiency, VOUT = 5 V, VIN = VDD_BST .......................................................................... 30  
Figure 9: Boost Efficiency, VOUT = 12 V, VIN = VBAT ............................................................................. 30  
Figure 10: Boost Efficiency, VOUT = 5 V, VIN = VBAT ............................................................................. 30  
Figure 11: Boost Regulation, VOUT = 12 V........................................................................................... 31  
Figure 12: Boost Regulation, VOUT = 5 V............................................................................................. 31  
Figure 13: Boost Maximum Load Current Capability .......................................................................... 31  
Figure 14: LDO_0 Dropout, VIN = 3.15 V, VOUT Setting = 3.15 V ........................................................ 31  
Figure 15: LDO_1 and LDO_2 Dropout, VIN = 3.3 V, VOUT Setting = 3.3 V......................................... 32  
Figure 16: LDO_0 Regulation and Dropout, VOUT = 1.80 V................................................................. 32  
Figure 17: LDO_0 Regulation and Dropout, VOUT = 3.15 V................................................................. 32  
Figure 18: LDO_1 Regulation and Dropout, VOUT = 3.30 V................................................................. 32  
Figure 19: LDO_1 Regulation and Dropout, VOUT = 1.80 V................................................................. 33  
Figure 20: LDO2 Load Regulation, VOUT = 3.30 V............................................................................... 33  
Figure 21: LDO_2 Regulation and Dropout, VOUT = 1.80 V................................................................. 33  
Figure 22: Typical Buck Startup, VBAT = 3.6 V, VBUCK = 1.8 V and 0.9 V, 0 A ..................................... 33  
Figure 23: Typical Boost Startup, VDD_BST = 3.6 V, VOUT = 5 V and 12 V, 0 A..................................... 34  
Figure 24: VBAT IQ, Buck Switching, no load, Hi-Z mode.................................................................. 34  
Figure 25: VBAT IQ, Ship Mode.......................................................................................................... 34  
Figure 26: VDD_LDO IQ, no load........................................................................................................ 34  
Figure 27: Charger Efficiency, VDD_PWR = 5 V...................................................................................... 35  
Figure 28: Regions of Operation ......................................................................................................... 36  
Figure 29: Battery Temperature Sensing with NTC ............................................................................ 39  
Figure 30: Battery Temperature Sense Timing ................................................................................... 42  
Figu re 31: Example 70mAh Charge Cycle......................................................................................... 44  
Figure 32: VDD_PWR DPM setting recommendations....................................................................... 50  
Figure 33: Power-Cycle by Pushbutton Timer..................................................................................... 51  
Figure 34: Power-Cycle by VDD_PWR Insertion ................................................................................ 52  
Figure 35: Digital Pin Connections ...................................................................................................... 56  
Figure 36: Watchdog Behaviour.......................................................................................................... 57  
Figure 37: PWR_FLT Configured as RIN_N Monitor, 0x11:[4]=1 ....................................................... 58  
Figure 38: PWR_FLT Configured as VDD_PWR Status Indicator, 0x11:[4]=0................................... 58  
Figure 39: RIN_N Pushbutton Reset Timer Timing Diagram.............................................................. 59  
Figure 40: I2C Start and Stop Conditions ............................................................................................ 61  
Figure 41: Maximum Boost Load at Startup vs VBAT......................................................................... 65  
Figure 42: Example PCB Layout, Top Layer....................................................................................... 69  
Figure 43: Example PCB Layout, Layer-2........................................................................................... 69  
Figure 44: WLCSP-42 Package Outline Drawing ............................................................................. 128  
Datasheet  
Revision 3.3  
13-Oct-2020  
6 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Tables  
Table 1: Pin Description ...................................................................................................................... 11  
Table 2: Pin Type Definition ................................................................................................................ 12  
Table 3: Absolute Maximum Ratings................................................................................................... 13  
Table 4: Recommended Operating Conditions ................................................................................... 14  
Table 5: Recommended External Components .................................................................................. 14  
Table 6: Battery Charger ..................................................................................................................... 16  
Table 7: Battery Temperature Monitor ................................................................................................ 17  
Table 8: LDO0/Loadswitch (LV) .......................................................................................................... 18  
Table 9: LDO1/Loadswitch .................................................................................................................. 19  
Table 10: LDO2/Loadswitch ................................................................................................................ 20  
Table 11: Digital Input Pins (MODE,WD) ............................................................................................ 21  
Table 12: I2C Interface........................................................................................................................ 21  
Table 13: Input Currents...................................................................................................................... 22  
Table 14: Power-Path Management and ILIM..................................................................................... 22  
Table 15: Protection ............................................................................................................................ 23  
Table 16: Pushbutton Timer(RIN_N)................................................................................................... 24  
Table 17: Digital Output Pins (SYS_FLT, PWR_FLT, and ROUT_N)................................................. 24  
Table 18: Buck..................................................................................................................................... 25  
Table 19: Boost ................................................................................................................................... 26  
Table 20: Battery Monitors (VBAT_DIV and IMON)............................................................................ 27  
Table 21: Thermal Characteristics ...................................................................................................... 28  
Table 22: MODE Functionality ............................................................................................................ 38  
Table 23: Battery Thermal Protection Measures................................................................................ 39  
Table 24: VBAT_DIV Ratios................................................................................................................ 43  
Table 25: Charge Status...................................................................................................................... 44  
Table 26: Charging Modes .................................................................................................................. 45  
Table 27: Charge Faults...................................................................................................................... 46  
Table 28. Safety Timer Register Settings (0x21) ................................................................................ 48  
Table 29: Power Cycle Trigger Settings.............................................................................................. 51  
Table 30: Power-Cycle Faults ............................................................................................................. 52  
Table 31: BUCK Power Cycle Faults .................................................................................................. 53  
Table 32: Enabling External Resistor Setting Mode............................................................................ 54  
Table 33: ITER_CHG Recommended Resistor Values ...................................................................... 54  
Table 34: ILIM_PWR Recommended Resistor Values ....................................................................... 55  
Table 35: ILIM_CHG Recommended Resistor Values........................................................................ 55  
Table 36: Digital Pins for Host and Pushbutton Interface ................................................................... 56  
Table 37: WD_EN Register 0x14 [1:0] ................................................................................................ 57  
Table 38: WD_CLR_SEL Register 0x14 [3:2] ..................................................................................... 57  
Table 39: SYS_FLT Configuration, 0x11: [0]....................................................................................... 58  
Table 40: RIN_N Pushbutton wake-up timer control (0x10)................................................................ 59  
Table 41: RIN_N Reset Timer Configuration....................................................................................... 60  
Table 42: I2C Interface Configuration .................................................................................................. 60  
Table 43: External Buck Components................................................................................................. 64  
Table 44: Recommended External Boost Components ...................................................................... 64  
Table 45: Register SYS_STS_0.......................................................................................................... 74  
Table 46: Register SYS_ISR_0........................................................................................................... 74  
Table 47: Register SYS_ISR_1........................................................................................................... 75  
Table 48: Register SYS_ISR_2........................................................................................................... 76  
Table 49: Register SYS_ISR_3........................................................................................................... 76  
Table 50: Register SYS_ISR_4........................................................................................................... 77  
Table 51: Register SYS_IMR_0 .......................................................................................................... 77  
Table 52: Register SYS_IMR_1 .......................................................................................................... 78  
Table 53: Register SYS_IMR_2 .......................................................................................................... 79  
Datasheet  
Revision 3.3  
13-Oct-2020  
7 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Table 54: Register SYS_IMR_3 .......................................................................................................... 79  
Table 55: Register SYS_IMR_4 .......................................................................................................... 80  
Table 56: Register SYS_SYS_0.......................................................................................................... 80  
Table 57: Register SYS_BAT_0.......................................................................................................... 81  
Table 58: Register SYS_BAT_1.......................................................................................................... 82  
Table 59: Register SYS_RIN_N_0...................................................................................................... 82  
Table 60: Register SYS_STS_OUT_0 ................................................................................................ 83  
Table 61: Register SYS_PWR_CYC_0............................................................................................... 84  
Table 62: Register SYS_PWR_CYC_1............................................................................................... 85  
Table 63: Register SYS_WD_0........................................................................................................... 86  
Table 64: Register SYS_I2C_0 ........................................................................................................... 87  
Table 65: Register SYS_CFG_I2C_0.................................................................................................. 87  
Table 66: Register CHG_CHG_0........................................................................................................ 88  
Table 67: Register CHG_CHG_1........................................................................................................ 89  
Table 68: Register CHG_ICHG_0....................................................................................................... 89  
Table 69: Register CHG_IPRETERM_0 ............................................................................................. 93  
Table 70: Register CHG_VBREG_0 ................................................................................................... 96  
Table 71: Register CHG_VBPRECHG_0.......................................................................................... 102  
Table 72: Register CHG_BAT_TS_0 ................................................................................................ 103  
Table 73: Register CHG_VDD_PWR_0............................................................................................ 103  
Table 74: Register CHG_VDD_PWR_1............................................................................................ 105  
Table 75: Register CHG_IDISCHG_0............................................................................................... 106  
Table 76: Register VOUT_BUCK...................................................................................................... 107  
Table 77: Register VOUT_BUCK_CFG ............................................................................................ 109  
Table 78: Register VOUT_LS_LDO0 ................................................................................................ 110  
Table 79: Register VOUT_LS_LDO1 ................................................................................................ 113  
Table 80: Register VOUT_LS_LDO2 ................................................................................................ 115  
Table 81: Register VOUT_LS_LDO_CFG......................................................................................... 118  
Table 82: Register VOUT_BOOST ................................................................................................... 119  
Table 83: Register VOUT_BOOST_CFG0........................................................................................ 123  
Table 84: Register VOUT_BOOST_CFG1........................................................................................ 124  
Table 85: Register VOUT_BOOST_CFG2........................................................................................ 125  
Table 86: Register VOUT_BUCK_OPT0........................................................................................... 127  
Table 87: MSL Classification............................................................................................................. 128  
Table 88: Ordering Information ......................................................................................................... 129  
Datasheet  
Revision 3.3  
13-Oct-2020  
8 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
1 System Diagram  
vdd_sys  
VDD_SYS  
VDD_PWR  
4.7µF  
USB  
1.0µF  
VTEMP  
VTEMP Control  
NTC Monitor  
+
-
TEMP_SNS  
20V OVP  
Protection  
Charger and  
Power Path  
Control  
VBAT  
vdd_sys  
VDD_BUCK  
SW_BUCK  
VBAT_SNS  
2.2µH  
ILIM_PWR  
ILIM_CHG  
ITER_CHG  
Vo_buck  
0.6V 2.1V  
300mA  
Buck  
Standalone Mode  
10µF  
BATTERY  
PACK  
PGND_BUCK  
FB_BUCK  
GND  
AGND  
vdd_sys  
VDD_BST  
Vo buck  
4.7µH  
SW_BST  
VDDIO  
VOUT_BST  
Vo_boost  
4.5V 18V  
SCL  
SDA  
10µF  
Boost  
PGND_BST  
FB_BST  
PWR_FLT  
SYS_FLT  
ROUT_N  
MODE  
Host  
Communication  
Vo_buck  
VDD_LDO0  
WD  
Host  
1µF  
LDO 0  
(LV)  
VLDO0  
LDO0  
VBAT_DIV  
0.8V 3.15V  
150mA  
2.2µF  
ADC  
(fuel gauge)  
GND_DIV  
IMON  
VDD_LDO1  
Analog Battery  
Monitors  
vdd_sys  
LDO 1  
(HV)  
VLDO1  
LDO1  
0.8V 3.3V  
150mA  
DA9070  
VDD_LDO2  
PUSHBUTTON RESET  
RIN_N  
LDO 2  
(HV)  
VLDO2  
LDO2  
0.8V 3.3V  
150mA  
Figure 1: System Diagram  
Datasheet  
Revision 3.3  
13-Oct-2020  
9 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
2
Pinout  
7
6
5
4
3
2
1
A
B
C
D
E
F
PGND_BUCK SW_BUCK VDD_BUCK  
VDD_SYS  
TEMP_SNS  
WD  
VDD_SYS  
IMON  
VDD_PWR  
VBAT  
GND  
FB_BUCK  
AGND  
SDA  
SCL  
SYS_FLT  
RIN_N  
MODE  
VBAT  
ILIM_CHG  
GND  
ITER_CHG  
ILIM_PWR  
VTEMP  
VBAT_SNS  
VDD_BST  
PGND_BST  
SW_BST  
PWR_FLT  
ROUT_N  
VBAT_DIV  
GND_DIV  
GND  
VDD_LDO0 VDD_LDO1 VDD_LDO2  
VDDIO  
FB_BST  
VLDO0  
VLDO1  
VLDO2  
VOUT_BST  
COLOR KEY:  
Charger/Power Path  
Buck  
LDO2  
Boost  
Reset/Timer  
Temp Sense Common  
LDO0 LDO1  
Control  
Figure 2: Connection Diagram (Bottom View)  
Datasheet  
Revision 3.3  
13-Oct-2020  
10 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Table 1: Pin Description  
Type  
Pin No. Pin Name  
Description  
(Table 2)  
A1, D3,  
GND  
F4  
GND  
Ground connection. Connect to the ground plane  
Input power supply. VDD_PWR is a 20V-tolerant input. Bypass to  
GND with a minimum 1uF ceramic capacitor.  
A2  
VDD_PWR  
VDD_SYS  
POWER  
POWER  
VDD_SYS is the intermediate rail which typically supplies  
VDD_BUCK and VDD_BST. Bypass to ground with a 4.7uF ceramic  
capacitor.  
A3, A4  
Input of the buck converter. Bypass to PGND_BUCK with a  
minimum 2.2uF ceramic capacitor.  
A5  
A6  
A7  
VDD_BUCK  
SW_BUCK  
POWER  
POWER  
Buck switching node. Connect to the buck inductor.  
Power ground for the buck. Connect to the buck input capacitor and  
ground plane.  
PGND_BUCK POWER  
Battery connection. Connect to the positive terminal of the battery.  
Bypass to ground with a minimum 1uF ceramic capacitor.  
B1,B2  
B3  
VBAT  
POWER  
AO  
IMON  
Battery discharge current monitor output  
Battery Pack NTC monitor. Connect to a resistive network and  
thermistor.  
B4  
TEMP_SNS  
AI  
Open drain status output. Connect to VDDIO through a 1K to  
100KOhm pull-up resistor.  
B5  
SYS_FLT  
DOD  
I2C Interface Data. Connect SDA to VDDIO through a 2k to10k pull-  
up resistor.  
B6  
B7  
C1  
SDA  
DIO  
AI  
FB_BUCK  
VBAT_SNS  
Buck output voltage feedback connection.  
Battery voltage sense connection. Connect to the positive battery  
terminal.  
AI  
Termination current setting pin. Connect a resistor between  
ITER_CHG and ground to set the pre-charge and termination  
currents (ITER). Alternatively, short this pin to ground to allow ITER  
to be programmed by register setting.  
C2  
C3  
ITER_CHG  
ILIM_CHG  
AI  
AI  
Fast-Charge current setting pin. Connect a resistor between  
ILIM_CHG and ground to set the fast-charge current (ICHG).  
Alternatively, short this pin to ground to allow ICHG to be  
programmed by register setting  
Watchdog input. Toggle WD within the watchdog time-out period to  
avoid power reset.  
C4  
C5  
C6  
WD  
DI  
DI  
DI  
Manual reset input pin. RIN_N is internally pulled high. Pulling this  
pin low wakes the device from Ship Mode or performs a reset.  
RIN_N  
SCL  
I2C interface clock. Connect SCL to VDDIO through a 2k to10k pull-  
up resistor.  
C7  
D1  
AGND  
GND  
Quiet ground connection. Connect to a quiet ground area.  
VDD_BST  
POWER  
Input for Boost FET driver. Bypass with a minimum 1uF capacitance.  
Input current limit setting pin. Connect a resistor between ILIM_PWR  
and ground to set the VDD_PWR current limit (ILIM). Alternatively,  
short this pin to ground to allow ILIM to be programmed by register.  
D2  
ILIM_PWR  
AI  
Datasheet  
Revision 3.3  
13-Oct-2020  
11 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Type  
(Table 2)  
Pin No. Pin Name  
Description  
D4  
D5  
VBAT_DIV  
MODE  
AO  
Battery voltage divider, positive output  
Mode control input pin. MODE is internally pulled low. If VDD_PWR  
is powered, driving MODE high disables charging. If VDD_PWR is  
unpowered, driving MODE low enables Hi-Z mode.  
DI  
Reset output pin. Connect this open-drain output to VDDIO through  
a 1k to 100k ohm pull-up resistor.  
D6  
D7  
E1  
ROUT_N  
DOD  
DOD  
POWER  
Power status indicator output. Connect this open-drain output to  
VDDIO through a 1K to 100KOhm pull-up resistor. PWR_FLT pulls  
low when VDD_PWR is plugged into a valid power source.  
PWR_FLT  
PGND_BST  
Power ground for the boost regulator. Connect to the boost output  
capacitors and ground plane.  
E2  
E3  
E4  
VTEMP  
VDDIO  
AO  
Switched VDD_SYS supply for battery temp sense resistor divider  
IO voltage  
POWER  
AO  
GND_DIV  
Battery voltage divider, ground reference.  
Input to Load Switch / LDO 2. Bypass to ground with a minimum 1uF  
ceramic capacitor.  
E5  
E6  
E7  
VDD_LDO2  
VDD_LDO1  
VDD_LDO0  
POWER  
POWER  
POWER  
Input to Load Switch / LDO 1. Bypass to ground with a minimum 1uF  
ceramic capacitor.  
Input to Load Switch / LDO 0. Bypass to ground with a minimum 1uF  
ceramic capacitor.  
F1  
F2  
F3  
SW_BST  
VOUT_BST  
FB_BST  
POWER  
POWER  
AI  
The boost switching node. Connect to the boost inductor.  
Output of the boost converter. Bypass with a minimum of 10uF.  
Boost output voltage feedback connection.  
Load Switch or LDO2 output. Bypass to ground with a minimum 1uF  
ceramic capacitor.  
F5  
F6  
F7  
VLDO2  
VLDO1  
VLDO0  
POWER  
POWER  
POWER  
Load Switch or LDO1 output. Bypass to ground with a minimum 1uF  
ceramic capacitor.  
Load Switch or LDO0 output. Bypass to ground with a minimum 1uF  
ceramic capacitor.  
Table 2: Pin Type Definition  
Pin Type  
DI  
Description  
Digital input  
GND  
DIO  
Ground  
Digital input/output  
Digital output open drain  
Power  
DOD  
POWER  
AI  
Analog input  
Analog output  
AO  
Datasheet  
Revision 3.3  
13-Oct-2020  
12 of 130  
© 2020 Dialog Semiconductor  
 
DA9070  
Ultra-Low Quiescent Current PMIC  
3
Absolute Maximum Ratings  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to  
the device. These are stress ratings only, functional operation of the device at these or any other  
conditions beyond those indicated in the operational sections of the specification are not implied.  
Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.  
Table 3: Absolute Maximum Ratings  
Parameter  
TS  
Description  
Storage temperature  
VDD_PWR  
Conditions  
Min  
-65  
Max  
150  
22  
Unit  
°C  
VPWR  
1V/ µsec max slew rate  
-0.3  
V
VBAT  
VSYS  
VBAT, VBAT_SNS  
-0.3  
-0.3  
6
6
V
V
VDD_SYS, VDD_BUCK,  
SW_BUCK, VDD_BST,  
VDD_LDOx, VTEMP  
VIO  
VDDIO and all IO pins  
(unless otherwise stated)  
Note 1  
-0.3  
-0.3  
6
V
V
VBST  
SW_BST, VOUT_BST,  
FB_BST  
22  
Note 1 VDDIO and IO voltages must be less than the higher of VBAT or VDD_PWR.  
Datasheet  
Revision 3.3  
13-Oct-2020  
13 of 130  
© 2020 Dialog Semiconductor  
 
DA9070  
Ultra-Low Quiescent Current PMIC  
4
Recommended Operating Conditions  
Recommended operating conditions are conditions for which the device is intended to be functional,  
but parameter specifications may not be guaranteed. For guaranteed specifications and associated  
test conditions, refer to the Electrical Characteristics tables.  
Table 4: Recommended Operating Conditions  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
TA  
Operating Ambient  
Temperature  
-40  
85  
C
VDD_PWR  
VDD_PWR voltage  
Including OVP range  
3.6  
3.6  
5
5
20  
V
V
VDD_PWR operating  
voltage  
5.5  
VBAT  
Battery voltage  
VDD_PWR supplied  
VDD_PWR not supplied  
Load switch mode  
LDO mode  
0
3.7  
3.7  
4.7  
4.7  
5.5  
5.5  
3.3  
V
V
V
V
V
Battery voltage (act.bat)  
VDD_LDO voltage  
2.5  
0.8  
1.8  
1.4  
VDD_LDO  
VDDIO  
IO voltage  
VDDIO < VDD_PWR or  
1.8  
VBAT, whichever is greater  
VDD_BST  
Boost input voltage  
2.5  
2.5  
5.5  
5.5  
V
V
VDD_BUCK Buck input voltage  
Note 1  
Note 1 VDD_BUCK must be greater than Buck output voltage+600mV.  
Table 5: Recommended External Components  
Component values shown are typical values (not de-rated). For capacitors assume X5R type or better with a DC  
voltage rating of 2x the maximum applied voltage. For inductors, the saturation current rating is equal or greater  
than the current limit value. The Electrical Specifications are based on the typical values where applicable.  
Parameter  
C_VDD_SYS  
C_VDD_PWR  
C_VBAT  
Description  
Conditions  
Min  
3.3  
1.0  
1.0  
Typ  
4.7  
4.7  
2.2  
10  
Max  
100  
10  
Unit  
µF  
µF  
µF  
µF  
µF  
µH  
µF  
µF  
VDD_SYS capacitance  
VDD_PWR capacitance  
VBAT capacitance  
Buck output capacitance  
Buck input capacitance  
Buck inductor  
10  
C_VO_BUCK  
C_VDD_BUCK  
L_BUCK  
1.0  
2.2  
2.2  
10  
C_VO_BOOST  
Boost output cap.  
1MHz  
4.7  
1.0  
VDD_BST connected to  
VDD_SYS  
1.0  
C_VDD_BOOST  
Boost input capacitance  
VDD_BST powered by  
independent supply  
10  
µF  
L_BOOST  
Boost inductor  
4.7  
2.2  
1.0  
µH  
µF  
µF  
C_VO_LDO  
C_VDD_LDO  
LDO output capacitance  
LDO input capacitance  
1.0  
2.2  
Datasheet  
Revision 3.3  
13-Oct-2020  
14 of 130  
© 2020 Dialog Semiconductor  
 
DA9070  
Ultra-Low Quiescent Current PMIC  
5
ESD Ratings  
Parameter  
Description  
Conditions  
Value  
Unit  
VESD  
Electrostatic discharge  
Human body model (HBM), per  
ANSI/ESDA/JEDEC JS-001  
±2000  
V
Note 1  
Charged device model (CDM), per ±500  
ANSI/ESDA/JEDEC JS-002  
Note 2  
Note 1 JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD  
control process.  
Note 2 JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD  
control process.  
Datasheet  
Revision 3.3  
13-Oct-2020  
15 of 130  
© 2020 Dialog Semiconductor  
 
 
DA9070  
Ultra-Low Quiescent Current PMIC  
6
Electrical Characteristics  
Electrical characteristics table limits are guaranteed by production testing, design, or correlation  
using standard statistical quality control methods unless otherwise stated. Typical (Typ)  
specifications are mean or average values 25 °C and are not guaranteed.  
Unless otherwise noted, VBAT=3.7V, VDD_SYS=3.7V, VDD_PWR=5.0V, VDDIO=1.8V, TA=-40C to  
85C.  
6.1 Battery Charger  
Table 6: Battery Charger  
Parameter Description  
Conditions  
Min  
Typ  
Max  
Unit  
Electrical Performance  
VDD_SYS_THR VDD_SYS DPPM voltage  
VDD_SYS falling, above  
VBAT_CHG  
0.2  
300  
120  
V
threshold  
_DPPM  
battery charger MOSFET on- Measured from VBAT to  
resistance  
RON_CHG_INT  
400  
160  
mΩ  
mV  
VVDD_SYS  
VDROP_BAT_T  
O_VDD_SYS  
VBAT > 3 V, IBAT discharge =  
400 mA  
VVBAT - VVDD_SYS  
VDD_  
SYS <  
VBAT  
Threshold to enter the  
battery supplement mode  
VBAT_SUP  
VVBAT > VVBAT_UVLO  
V
A
IBAT_DCHG_RN Discharge current limit  
Selectable 0.2A / step  
0.55  
3.6  
1.75  
4.65  
0.5  
setting range  
G
Operating in voltage  
regulation, programmable  
range in 10mV steps  
VBAT_CHG  
Charge voltage range  
V
VBAT_CHG_AC  
C
Charge voltage accuracy  
0°C< TJ < 85°C  
-0.5  
%
ICHG  
Fast charge current range  
2
500  
5
mA  
%
ICHG_ACC  
Fast charge current accuracy  
-5  
Termination current  
programmable range  
maximum over I2C.  
Termination and pre-charge  
current setting range  
ITER_RNG  
0.5  
-10  
50  
10  
mA  
Termination charge current  
accuracy  
Peak current below  
termination threshold  
ITER_ACC  
%
ms  
V
tTER_DEGLITCH Termination deglitch time  
Charge current falling  
64  
VTHR_PRE_TO Pre charge to fast charge  
2.7  
3.2  
threshold voltage range  
_FASTCHG  
ICHG_PRE_ACC Pre-charge current accuracy VBAT > 2V  
-10  
10  
%
VRCHG  
Recharge threshold voltage  
VBAT below VBAT_CHG  
100  
120  
140  
mV  
Datasheet  
Revision 3.3  
13-Oct-2020  
16 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Parameter Description  
Conditions  
Min  
Typ  
Max  
Unit  
tRCHG_DEGLIT Recharge threshold deglitch  
tFALL = 100 ns typ, VRCHG  
falling  
32  
ms  
time  
CH  
6.2 Battery Temperature Monitor  
Table 7: Battery Temperature Monitor  
Parameter Description  
Electrical Performance  
Conditions  
Min  
Typ  
Max  
Unit  
% of VVDD_SYS,  
VTEMP_SNS falling  
VTEMP_HI  
High temperature threshold  
14.5  
20.1  
34.4  
39.3  
55  
15  
20.5  
35  
15.2  
20.8  
35.4  
40.2  
60  
%
%
% of VVDD_SYS,  
VTEMP_SNS falling  
VTEMP_WARM Warm threshold  
% of VVDD_SYS,  
VTEMP_SNS rising  
VTEMP_COOL  
Cool threshold  
%
% of VVDD_SYS,  
VTEMP_SNS rising  
VTEMP_LO  
Low temperature threshold  
39.8  
%
VOFF_TEMP_S TEMP_SNS disable  
NS  
% of VVDD_SYSfor rising  
VTEMP_SNS  
%
threshold  
tTEMP_SNS_DE  
TEMP_SNS deglitch time  
GLITCH  
TEMP_SNS at any threshold  
10  
ms  
Datasheet  
Revision 3.3  
13-Oct-2020  
17 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
6.3 LDO / Load Switches  
Table 8: LDO0/Loadswitch (LV)  
Parameter Description  
Electrical Performance  
Conditions  
Min  
Typ  
Max  
Unit  
Input voltage range for  
LDSW  
Load Switch mode VVDD_LDO  
> VVLDO  
VIN_LDSW_0  
VIN_LDO_0  
0.8  
1.8  
-3  
5.5  
5.5  
3
V
V
Input voltage range for LDO  
LDO mode, VVDD_LDO > VVLDO  
VVDD_LDO > VVLDO + 0.2V  
VOUT_ACC_LO  
_0  
DC output accuracy  
Output range  
%
Programmable range, 50mV  
or 75mV steps  
VOUT_LDO_0  
VOUT_LINE_0  
VOUT_LD_0  
0.8  
-0.8  
-3  
3.15  
0.8  
0
V
%
%
1.8V < VVDD_LDO < 5.5V  
IOUT=500uA  
DC line regulation  
DC load regulation  
0< IOUT < 50 mA, VVDD_LDO  
=1.85V VVLDO =1.8V  
2u to 50 mA, 100mA/usec,  
VVDD_LDO >2.0V  
VVLDO=1.8V  
VOUT_TR2_LD_  
0
Load transient  
-120  
-140  
60  
60  
mV  
mV  
2u to 50 mA, 100mA/usec,  
VVDD_LDO =1.85V  
VVLDO=1.8V  
VOUT_TR_LD_0 Load transient  
RON_LDSW_ILI On resistance of LDSW  
VVDD_LDO = 3.7V  
0.7  
0.11  
32  
Ω
Ω
mode with current limit  
M_0  
RON_LDSW_N On resistance of LDSW  
VVDD_LDO = 3.7V  
mode without current limit  
O_ILIM_0  
RDCHG_LDO_O MOSFET on-resistance for  
ILOAD = -10 mA  
Ω
LDO discharge  
N_0  
ILIM_OUT_LDO_ Output current limit for LDO  
VLDO = 0.9 x VLDO(nom)  
VVDD_LDO =1.85V VLDO = 1.8V  
155  
mA  
mA  
mA  
mode  
0
IOUT_LDO_LO_  
0
Output current  
50  
VVDD_LDO > VVLDO + 0.2V  
VVLDO = 1.8 V  
IOUT_LDO_HI_0 Output current  
150  
IIN_LDO_ON_0 Quiescent current  
LDO mode  
0.75  
μA  
μA  
IIN_LDO_OFF_0 OFF-state supply current  
0.001  
PSRR_vddldo  
_0  
Power supply rejection ratio  
@10KHz, IOUT=75mA  
43  
20  
dB  
ms  
tSTART_LDO0  
LDO start-up delay time  
Datasheet  
Revision 3.3  
13-Oct-2020  
18 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Table 9: LDO1/Loadswitch  
Parameter Description  
Electrical Performance  
Conditions  
Min  
Typ  
Max  
Unit  
Input voltage range for Load  
Switch  
Load Switch mode VVDD_LDO  
> VVLDO  
VIN_LDSW_1  
VIN_LDO_1  
0.8  
1.8  
-3  
5.5  
5.5  
3
V
V
Input voltage range for LDO  
LDO mode, VVDD_LDO > VVLDO  
VVDD_LDO > VVLDO + 0.2V  
VOUT_ACC_LO  
_1  
DC output accuracy  
Output range  
%
Programmable range, 50mV  
or 75mV steps  
VOUT_LDO_1  
0.8  
3.3  
0.8  
V
1.8V < VVDD_LDO < 5.5V  
IOUT=500uA  
VOUT_LINE_1  
DC line regulation  
-0.8  
%
2uA < IOUT < 100 mA,  
VVDD_LDO > VVOUT_LDO + 0.2V,  
VVLDO=3.0V  
VOUT_LD_1  
DC load regulation  
-3  
0
%
2uA to 100 mA, 100mA/usec,  
VVDD_LDO > VVLDO +  
0.2V, VVLDO=3.0V  
VOUT_TR_LD_1 Load transient  
-120  
60  
mV  
RON_LDSW_ILI On resistance of LDSW  
VVDD_LDO = 3.7V  
VVDD_LDO = 3.7V  
ILOAD = -10 mA  
1.5  
0.27  
32  
Ω
Ω
mode with current limit  
M_1  
RON_LDSW_N On resistance of LDSW  
mode without current limit  
O_ILIM_1  
RDCHG_LDO_O MOSFET on-resistance for  
Ω
LDO discharge  
N_1  
ILIM_OUT_LDO_ Output current limit (LDO  
VLDO = 0.9 x VLDO(nom)  
155  
mA  
mA  
MODE)  
1
IOUT_LDO_HI1_  
1
Output current  
VVDD_LDO > VVLDO + 0.2V  
LDO mode  
150  
IIN_LDO_ON_1 Quiescent current  
0.8  
μA  
μA  
IIN_LDO_OFF_1 OFF-state supply current  
0.001  
PSRR_vddldo  
_1  
Power supply rejection ratio  
@10KHz, IOUT=75mA  
40  
20  
dB  
ms  
tSTART_LDO1  
LDO start-up delay time  
Datasheet  
Revision 3.3  
13-Oct-2020  
19 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Table 10: LDO2/Loadswitch  
Parameter Description  
Electrical Performance  
Conditions  
Min  
Typ  
Max  
Unit  
Input voltage range for Load  
Switch  
Load Switch mode, VVDD_LDO  
> VVLDO  
VIN_LDSW_2  
VIN_LDO_2  
0.8  
1.8  
-3  
5.5  
5.5  
3
V
V
Input voltage range for LDO  
LDO mode, VVDD_LDO > VVLDO  
VVDD_LDO > VVLDO + 0.2V  
VOUT_ACC_LO  
_2  
DC output accuracy  
Output range for LDO  
DC line regulation  
%
Programmable range, 50mV  
or 75mV steps  
VOUT_LDO_2  
0.8  
3.3  
0.8  
V
1.8V < VVDD_LDO < 5.5V  
IOUT=500uA  
VOUT_LINE_2  
-0.8  
%
2uA < IOUT < 100 mA,  
VVDD_LDO > VVOUT_LDO + 0.2V,  
VVLDO=3.0V  
VOUT_LD_2  
DC load regulation  
-3  
0
%
2uA to 100 mA, 100mA/usec,  
VVDD_LDO > VVLDO +  
0.2V, VVLDO=3.0V  
VOUT_TR_LD_2 Load transient  
-120  
60  
mV  
RON_LDSW_ILI On resistance of LDSW  
VVDD_LDO = 3.7V  
VVDD_LDO = 3.7V  
ILOAD = -10 mA  
1.5  
0.27  
32  
Ω
Ω
mode with current limit  
M_2  
RON_LDSW_N On resistance of LDSW  
mode without current limit  
O_ILIM_2  
RDCHG_LDO_O MOSFET on-resistance for  
Ω
LDO discharge  
N_2  
ILIM_OUT_LDO_ Output current limit (LDO  
VLDO = 0.9 x VLDO(nom)  
155  
mA  
mA  
MODE)  
2
IOUT_LDO_HI1_  
2
Output current  
VVDD_LDO > VVLDO + 0.2V  
LDO mode  
150  
IIN_LDO_ON_2 Quiescent current  
0.8  
μA  
μA  
IIN_LDO_OFF_2 OFF-state supply current  
0.001  
PSRR_vddldo  
_@  
Power supply rejection ratio  
@10KHz, IOUT=75mA  
35  
20  
dB  
ms  
tSTART_LDO2  
LDO start-up delay time  
Datasheet  
Revision 3.3  
13-Oct-2020  
20 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
6.4 Digital Inputs (MODE and WD)  
Table 11: Digital Input Pins (MODE,WD)  
Parameter Description  
Conditions  
Min  
Typ  
Max  
Unit  
External Electrical Conditions  
WD minimum input pulse  
width  
tMIN_WD  
25  
μs  
Electrical Performance  
0.25*V  
DDIO  
VIN_LO  
Input low threshold  
V
0.75*V  
DDIO  
VIN_HI  
Input high threshold  
V
RPD_MODE  
Internal pull-down resistance  
MODE pin deglitch time  
900  
100  
kΩ  
μs  
t_DEGLITCH_M  
ODE  
rising/falling  
6.5 I2C Interface  
Table 12: I2C Interface  
Parameter Description  
Electrical Performance  
Conditions  
Min  
Typ  
Max  
Unit  
fI2C_CLK  
SCL frequency range  
100  
400  
kHz  
V
VDDI  
O*0.25  
VOUT_LO  
Output low threshold level  
Input low threshold level  
SDA 5mA sink current  
Input low threshold level for  
SDA and SCL  
VDDI  
O*0.25  
VIN_LO  
V
Input high threshold level for  
SDA and SCL  
VDDI  
O*0.75  
VIN_HI  
Input high threshold level  
leakage current  
V
ILKG_HILVL  
SDA and SCL, high level  
1
μA  
Datasheet  
Revision 3.3  
13-Oct-2020  
21 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
6.6 Input Currents  
Table 13: Input Currents  
Parameter Description  
Electrical Performance  
Conditions  
Min  
Typ  
Max  
Unit  
0 °C < TJ < 60 °C, VVDD_PWR  
0V or floating, Hi-Z mode,  
Buck switching, no load  
=
IBAT_HIZ_BUCK Battery discharge current in  
0.8  
1.6  
1.5  
μA  
μA  
Hiz mode, no LDO enable  
_ON_LDO_OFF  
0 °C < TJ < 60 °C, VVDD_PWR  
= 0V, Hi-Z mode, Buck  
switching, LDO_0 enabled,  
No load  
IBAT_HIZ_BUCK Battery discharge current in  
Hiz mode, LDO_0 enable  
_ON_LDO0_ON  
0 °C < TJ < 85 °C, VVDD_PWR  
= 0V, Active battery mode,  
Buck switching, LDO_0 +  
IBAT_ACT_LDO Battery discharge current in  
2.5  
1.1  
μA  
μA  
Active battery mode  
0_LDO1_ON  
LDO_1 enabled, I2C enabled,  
VBAT_UVLO < VBAT < 4.65 V  
0 °C < TJ < 85 °C, VVDD_PWR  
< VVDD_PWR_UVLO, Active  
battery mode, Buck  
IBAT_ACT_BUC Battery discharge current in  
Active battery mode  
switching, LDO disabled, I2C  
enabled, MODE = low,  
VBAT_UVLO < VBAT < 4.65 V  
K_ON_LDO_OFF  
Battery discharge current in  
ship mode  
0 °C < TJ < 85 °C, VVDD_PWR  
= 0V, Ship mode  
IBAT_SHIP  
2
200  
3
nA  
mA  
mA  
VVDDPWR_UVLO < VVDD_PWR  
<
VOVP and VVDD_PWR > VVBAT  
VSLP  
+
IIN_BUCK_ON  
Supply Current for control  
Supply Current for control  
0.8  
Buck switching,  
IIN_CHG_READ  
Y
0 °C < TJ < 85 °C, VVDD_PWR  
= 5 V, Charge ready  
1.5  
6.7 Power-Path Management and Current Limit  
Table 14: Power-Path Management and ILIM  
Parameter Description  
Electrical Performance  
Conditions  
Min  
Typ  
Max  
Unit  
Input current in USB  
suspend mode  
IUSBSUSPEND  
2.5  
mA  
mV  
mA  
VDROP_IN_TO_  
VDD_SYS  
VVDD_PWR = 5 V, IIN = 300 mA,  
includes ball resistance  
VDD_PWR - VVDD_SYS  
125  
600  
170  
IDDPWR_LIM_M  
AX  
Programmable Range MAX,  
50-mA steps  
Input Current limit  
Datasheet  
Revision 3.3  
13-Oct-2020  
22 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Parameter Description  
Conditions  
Min  
Typ  
Max  
Unit  
IDDPWR_LIM_M  
IN  
Programmable Range MIN,  
50-mA steps  
Input Current limit  
50  
mA  
IDDPWR_LIM_A  
CC_RNG_LO  
Current limit accuracy  
Current limit accuracy  
50 mA to 100 mA  
100 mA to 600 mA  
-12  
-5  
12  
5
%
%
IDDPWR_LIM_A  
CC_RNG_HI  
At VDD_PWR,  
programmable range, 100mV  
steps  
VDDPWR_IIN_D  
WN  
DPM threshold  
4.2  
-3  
4.9  
3
V
VDDPWR_IIN_D  
WN_ACC  
DPM threshold accuracy  
%
6.8 Protection  
Table 15: Protection  
Parameter Description  
Electrical Performance  
VBAT_SHRT_T  
Conditions  
Min  
Typ  
Max  
Unit  
Battery voltage falling,  
VDD_PWR=5V  
Battery short circuit threshold  
2
V
mV  
mA  
V
HR  
VBAT_SHRT_H  
YS  
Hysteresis for VBAT_SHRT  
100  
ITER  
Battery short circuit charge  
current  
IBAT_SHRT  
VBAT_UVLO_T Battery under-voltage lockout Programmable range,  
2.5  
-3  
3
3
threshold range  
100mV steps VBAT falling  
HR  
VBAT_UVLO_A Default battery under-voltage  
VBAT_UVLO=2.5V  
%
lockout accuracy  
CC  
VBAT_UVLO_H Battery under-voltage lockout  
200  
5.55  
100  
32  
mV  
V
threshold hysteresis  
YS  
VDD_PWR over voltage  
VDDPWR_OVP  
VVDD_PWR rising  
5.35  
5.75  
protection threshold voltage  
VDDPWR_OVP_ Over voltage protection  
mV  
ms  
hysteresis  
HYS  
tDEGLITCH_OV Over voltage protection  
VVDD_PWR falling  
recovery deglitch time  
P
VVDD_PWR - VBAT ,  
VDD_PWR falling  
VSLP  
Sleep entry threshold  
Sleep-mode hysteresis  
65  
120  
200  
mV  
mV  
VSLP_HYS  
VVDD_PWR rising  
80  
130  
Datasheet  
Revision 3.3  
13-Oct-2020  
23 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Parameter Description  
TSHDN Thermal shutdown  
THYS  
Conditions  
Min  
Typ  
118  
20  
Max  
Unit  
°C  
TJ  
Thermal shutdown hysteresis TJ  
°C  
tDEGLITCH_TH_ Thermal shutdown deglitch  
TJ rising  
1
ms  
mV  
V
time  
SHDN  
VDDPWR_UVL VDD_PWR under-voltage  
VVDD_PWR falling  
VVDD_PWR rising  
150  
3.6  
lockout threshold hysteresis  
O_HYS  
VDDPWR_UVL VDD_PWR under-voltage  
3.4  
3.8  
lockout threshold  
O_THR  
6.9 Pushbutton Timer (RIN_N)  
Table 16: Pushbutton Timer(RIN_N)  
Parameter Description  
Conditions  
Min  
Typ  
Max  
Unit  
Electrical Performance  
VRIN_N_LOLVL Low-level input voltage  
0.3  
V
RPU_RIN_N  
Internal pull-up resistance  
120  
kΩ  
6.10 Digital Outputs (SYS_FLT, PWR_FLT, and ROUT_N)  
Table 17: Digital Output Pins (SYS_FLT, PWR_FLT, and ROUT_N)  
Parameter Description  
Electrical Performance  
Conditions  
Min  
Typ  
Max  
Unit  
0.25*V  
DDIO  
VOUT_LO  
Low level output threshold  
Sinking current = 5 mA  
V
ILKG_TO_IN  
tINTR  
Leakage current into pin  
Interrupt pulse width  
Reset pulse duration  
High impedance state  
SYS_FLT  
0
12  
nA  
μs  
128  
400  
tRST_D  
ROUT_N  
ms  
Datasheet  
Revision 3.3  
13-Oct-2020  
24 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
6.11 Buck Regulator  
Table 18: Buck  
Parameter Description  
Electrical Performance  
Conditions  
Min  
Typ  
Max  
Unit  
RON_PMOS  
RON_NMOS  
High-side on resistance  
600  
300  
800  
450  
mΩ  
mΩ  
Low-side on resistance  
Start-up delay time  
From BUCK_EN =1 to  
switching  
tSTART  
3
ms  
ILIM_SW_PMOS SW current limit PMOS  
VFB_BUCK=1.8V  
600  
270  
mA  
ns  
tOFF_BUCK  
fSW_BUCK  
Off time  
VFB_BUCK=1.8V  
Switching frequency  
Continuous conduction mode  
3
MHz  
ILIM_PMOS_SO PMOS switch current limit  
300  
mA  
V
during softstart  
FTSTART  
Programmable range, 50 mV  
steps (VOUT_FB_BUCK_HI > 1.9V,  
VVDD_BUCK>2.7V)  
VOUT_FB_BUC  
K
Buck output voltage range  
0.6  
2.1  
VOUT_FB_BUC  
K_HI  
HI programmable range, 50  
mV steps, VOUT_RANGE_HI = 1  
Buck output voltage range  
1.3  
0.6  
2.1  
1.3  
V
V
VOUT_FB_BUC  
K_LO  
LO programmable range, 50  
mV steps, VOUT_RANGE_HI = 0  
Buck output voltage range  
VVDD_BUCK = 5 V, PFM mode,  
IOUT = 10 mA, VFB_BUCK = 1.8  
V
VOUT_VBUCK_ Buck output voltage  
-2.5  
0
2.5  
%
accuracy  
OUT_ACC  
VOUT = 1.8 V  
VOUT_LD1_BU DC output voltage load  
0.01  
0.02  
%/mA  
%/mA  
regulation  
CK  
100 mA < IOUT < 300 mA  
VOUT = 0.9 V  
VOUT_LD2_BU DC output voltage load  
regulation  
CK  
100 mA < IOUT < 300 mA  
VOUT_LINE_BU DC output voltage line  
VOUT = 1.8 V IOUT = 100 mA  
Vout=1.8V, no load  
0.1  
50  
%/V  
regulation  
CK  
tSTARTUP_BUC  
Softstart time  
K
μs  
VOUT = 0.9 V  
No load  
tSTARTUP_L  
Softstart time  
25  
μs  
Datasheet  
Revision 3.3  
13-Oct-2020  
25 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
6.12 Boost Regulator  
Table 19: Boost  
Parameter Description  
Electrical Performance  
Conditions  
Min  
Typ  
Max  
Unit  
VVBAT=3.7 V, COUT=2.2 uF,  
VBST_OUT=12 V  
tSTARTUP  
Startup time  
2
5
1
ms  
nA  
V
VVDD_BST=4.65 V Boost  
disabled  
IQ_SHDN  
Quiescent current  
100  
18  
9
Output voltage range, 250  
mV step size  
VOUT_BST_HI  
9
12  
Output voltage range, 125  
mV step size  
VOUT_BST_LO  
4.5  
V
SCP threthhold for higher  
Vout range  
VSCP_HI  
VOUT_BST=9V to 18V  
VOUT_BST=4.5V to 9V  
4
2.38  
2
V
V
V
VBST_UVLO  
VSCP_LO  
Boost UVLO  
SCP threthhold for lower  
Vout range  
Referenced to nominal  
VOUT_BST setting  
VOVP  
OVP threshhold  
OVP threshhold  
120  
100  
%
%
Referenced to nominal  
VOUT_BST setting  
VOVP_RLS  
VOUT_ACC  
RON_SHDN  
Boost output voltage  
accuracy  
VVDD_BST = 3.7 V, VBST_OUT  
12 V ,IOUT=10mA  
=
-2.5  
2.5  
%
True shutdown, RDSon  
resistance  
100  
300  
200  
mΩ  
RON_LS  
ILIM_POS  
Low side, RDSon resistance  
Peak current limit  
mΩ  
A
Programmable range  
Programmable range  
0.9  
-30  
2.1  
30  
ILIM_POS_ACC Peak current limit accuracy  
%
ILIM_SOFTSTAR  
T
Softstart current limit  
0.51  
0.95  
1.9  
0.92  
1.05  
2.1  
A
Typical value depends on  
OTP setting. 1MHz  
fSW_BST_1M  
Switching frequency  
Switching frequency  
1
2
MHz  
MHz  
Typical value depends on  
OTP setting. 2MHz  
fSW_BST_2M  
tON_BST  
Minimum on time  
Minimum off time  
105  
100  
ns  
ns  
tOFF_BST  
Datasheet  
Revision 3.3  
13-Oct-2020  
26 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Parameter Description  
Conditions  
Min  
Typ  
0.0015  
0.2  
Max  
Unit  
%/mA  
%/V  
VOUT = 12 V 1mA < Iload <  
100mA  
VOUT_LD  
Boost load reg  
Boost line reg  
VOUT_LINE  
VOUT = 12 V Iload=10mA  
6.13 Battery Monitors (VBAT_DIV and IMON)  
Table 20: Battery Monitors (VBAT_DIV and IMON)  
Parameter Description  
Electrical Performance  
Conditions  
Min  
Typ  
Max  
Unit  
AIMON_GAIN  
IIMON  
IMON current gain  
1
mA/A  
VBAT IQ current increase  
with IMON enabled  
0A discharge current  
4
μA  
Discharge current range  
100mA to 1A  
IMON_ACC_HI  
IMON accuracy  
-20  
-40  
1.4  
20  
40  
%
%
V
Discharge current range  
10mA to 100mA  
IMON_ACC_LO IMON accuracy  
IMON maximum  
VIMON_MAX  
2.5V <VVBAT< 4.7V Imon x  
Rimon  
recommended voltage  
From VBAT_SNS to  
GND_DIV  
RBAT_DIV  
Voltage divider resistance  
Voltage  
150  
kΩ  
V
2.5V < VVBAT < 4.65V 0°C <  
Tj <85°C  
VBAT* VBAT* VBAT*  
0.585 0.6 0.615  
VBAT_DIV1  
Datasheet  
Revision 3.3  
13-Oct-2020  
27 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
7
Thermal Characteristics  
Table 21: Thermal Characteristics  
Parameter Description  
Conditions  
Min  
Typ  
Max  
Unit  
Junction-to-ambient  
RTH_JA_A  
JEDEC 8-layer pcb, no  
airflow  
34  
°C/W  
thermal resistance  
Junction-to-case (top)  
RPSI_JC  
0.5  
10  
79  
°C/W  
°C/W  
°C/W  
JT  
thermal resistance  
Junction-to-board thermal  
resistance  
RTH_JB  
1mm from IC edge  
Junction-to-ambient  
RTH_JA_B  
25mm x 25mm pcb, 8-layer,  
no airflow  
thermal resistance  
Datasheet  
Revision 3.3  
13-Oct-2020  
28 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
8
Typical Performance  
Unless otherwise noted, VBAT = 3.6 V, T A =25 °C  
Figure 3: Buck Efficiency, VOUT = 1.8 V  
Figure 5: Buck Efficiency, VOUT = 0.9 V  
Figure 6: Buck Regulation, VOUT = 1.8 V  
Figure 4: Boost Efficiency, VOUT = 12 V,  
VIN = VDD_BST  
Datasheet  
Revision 3.3  
13-Oct-2020  
29 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Figure 9: Boost Efficiency, VOUT = 12 V,  
VIN = VBAT  
Figure 7: Buck Regulation, VOU = 0.9 V  
Figure 10: Boost Efficiency, VOUT = 5 V,  
VIN = VBAT  
Figure 8: Boost Efficiency, VOUT = 5 V,  
VIN = VDD_BST  
Datasheet  
Revision 3.3  
13-Oct-2020  
30 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Figure 11: Boost Regulation, VOUT = 12 V  
Figure 13: Boost Maximum Load Current  
Capability  
Figure 14: LDO_0 Dropout, VIN = 3.15 V,  
VOUT Setting = 3.15 V  
Figure 12: Boost Regulation, VOUT = 5 V  
Datasheet  
Revision 3.3  
13-Oct-2020  
31 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Figure 15: LDO_1 and LDO_2 Dropout,  
VIN = 3.3 V, VOUT Setting = 3.3 V  
Figure 17: LDO_0 Regulation and Dropout,  
VOUT = 3.15 V  
Figure 16: LDO_0 Regulation and Dropout,  
VOUT = 1.80 V  
Figure 18: LDO_1 Regulation and Dropout,  
VOUT = 3.30 V  
Datasheet  
Revision 3.3  
13-Oct-2020  
32 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Figure 19: LDO_1 Regulation and Dropout,  
VOUT = 1.80 V  
Figure 21: LDO_2 Regulation and Dropout,  
VOUT = 1.80 V  
Figure 22: Typical Buck Startup,  
VBAT = 3.6 V, VBUCK = 1.8 V and 0.9 V, 0 A  
Figure 20: LDO2 Load Regulation,  
VOUT = 3.30 V  
Datasheet  
Revision 3.3  
13-Oct-2020  
33 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Figure 23: Typical Boost Startup,  
VDD_BST = 3.6 V, VOUT = 5 V and 12 V, 0 A  
Figure 25: VBAT IQ, Ship Mode  
Figure 26: VDD_LDO IQ, no load  
Figure 24: VBAT IQ, Buck Switching, no  
load, Hi-Z mode  
Datasheet  
Revision 3.3  
13-Oct-2020  
34 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Figure 27: Charger Efficiency, VDD_PWR = 5 V  
Datasheet  
Revision 3.3  
13-Oct-2020  
35 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
9
Functional Description  
9.1 Overview  
In a typical application, the DA9070 manages to two power inputs: a battery at VBAT and a USB  
supply at VDD_PWR. The larger of these supplies feeds the unregulated system output voltage at  
VDD_SYS. VDD_SYS in turn is used as the input supply to the linear charger, buck, boost, and  
LDOs. Due to its extremely low IQ (<1uA), the buck can remain always on as the primary system  
power rail without draining the battery excessively.  
When USB power is present, VDD_SYS will be near 5V and the linear charger is active. When USB  
power in not connected, VDD_SYS will track the battery voltage. Battery discharge current can be  
monitored using the IMON pin. The DA9070 actively manages this power path, reducing charging  
current and input current as necessary, and allowing VDD_SYS to draw current from both supplies  
during peak loads.  
The DA9070 includes multiple configurable protection features including battery and input over-  
current. All settings can be controlled by I2C , but stand-alone operation is also possible with features  
such as a pushbutton input timer, resistor programmable charge settings, and the MODE pin to  
enable and disable charging.  
As there are two input sources, the DA9070 has multiple regions of operation, illustrated below in  
Figure 28.  
VDD_PWR  
20V  
OVP  
5.5V  
ACTIVE POWER / CHARGING  
SLEEP  
VDD_PWR  
UVLO (3.4V)  
UVLO  
ACTIVE BATTERY,  
HiZ, or SHIP  
POR  
VBAT  
4.65V  
VBAT_UVLO  
(2.0V-3.0V)  
Figure 28: Regions of Operation  
Datasheet  
Revision 3.3  
13-Oct-2020  
36 of 130  
© 2020 Dialog Semiconductor  
 
DA9070  
Ultra-Low Quiescent Current PMIC  
9.2 Battery-Powered Operation  
When the power source is unplugged (VDD_PWR < UVLO ), the DA9070 is battery-powered  
provided that VBAT exceeds VBAT_UVLO (register 0x0E) In this condition, the device will be in one  
of three modes: Ship mode, Active battery mode, or High Impedance mode (Hi-Z).  
9.2.1  
Ship Mode  
Ship mode is an ultra low leakage standby state that minimizes battery depletion while the product  
sits on the shelf. Typical battery current in ship mode is 5nA.  
There are two methods to enter Ship mode:  
1. By Register Write  
a. VDD_PWR disconnected  
b. MODE pin high  
c. Enter Ship mode by setting EN_SHIPMODE bit high: 0x0D [0] = 1  
d. The IC enters Ship mode immediately  
(If VDD_PWR is plugged in, Ship mode entry is delayed until power is removed)  
2. By Pushbutton Timer pin, RIN_N  
a. VDD_PWR disconnected  
b. MODE pin high  
c. Enable RIN_N control of ship mode: 0x10 [1:0] = 0x01  
d. Pull RIN_N low for longer than the reset period: RIN_N_PER_RST (0x10 [7:6])  
e. The IC enters Ship mode when RIN_N is released (internally pulled up)  
To exit Ship mode, apply VDD_PWR or toggle RIN_N low for longer than 50msec. Upon waking from  
Ship mode, all pre-programmed OTP values are loaded.  
9.2.2  
Active Battery and High Impedance Modes  
Under battery power there are two modes of operation, controlled by the MODE pin. A rising edge on  
MODE puts the DA9070 in Active Battery mode. In this mode, all functions are active.  
Conversely, a falling edge on MODE puts the DA9070 into Hi-Z mode, intended to be used during  
system standby states with low power consumption. In this mode, the following communication  
functions are placed in a high impedance mode to reduce leakage from the battery: I2C interface, the  
SYS_FLT and PWR_FLT status outputs, and watchdog timer (WD).  
All other functions and outputs remain active, with the exception of TSD.  
Caution: The Thermal Shutdown function is not active in Hi-Z mode. Hi-Z mode should not be used in  
high power dissipation or heavy load conditions.  
Hi-Z mode can also be entered by setting the HZ_MODE bit to 1 (0x0D [1]); or by using RIN_N  
pushbutton by setting 0x10 [1:0] to 2 and pulling RIN_N low for more than the RIN_N reset time  
(0x10 [7:6]).  
The DA9070 exits Hi-Z mode at a MODE pin rising edge or when VDD_PWR is applied. When  
VDD_PWR is removed, the part will enter Active Battery mode regardless of the MODE pin state.  
The behaviour of the MODE pin depends on whether VDD_PWR is connected, shown in Table 22.  
The MODE pin is internally pulled low.  
Datasheet  
Revision 3.3  
13-Oct-2020  
37 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Table 22: MODE Functionality  
VDD_PWR  
Disconnected  
Connected  
MODE = 0  
MODE = 1  
Hi-Z mode (edge triggered)  
Active Battery mode  
Charge disabled  
Charge enabled if CE_N = 0  
Charge disabled if CE_N = 1  
9.2.3  
Battery Protection  
The DA9070 includes several types of battery protection. The battery is protected during discharge  
by the IBAT_DCHG (over-current protection) and UVLO (over-discharge protection) functions. During  
charging, the TEMP_SNS function protects against over-temperature, and highly accurate voltage  
regulation and charging current prevent over-voltage and over-current conditions.  
9.2.3.1  
VBAT Over-Current Protection (OCP)  
The battery discharge over-current protection threshold, IBAT_DCHG, is selectable from 0.55A to  
1.75A at register 0x29 [4:2]. Over-current protection clamps the maximum battery current at the set  
threshold and is available in all modes of operation. Battery current will begin to be limited  
approximately 150mA below the protection clamp. When an over-current condition occurs during  
charging, safety timers and charge termination are suspended.  
In an over-current fault, a VBAT_OCP interrupt is generated at SYS_FLT and indicated by the event  
bit 0x04:[2].  
All battery current flows from VBAT to VDD_SYS. Therefore, the IBAT_DCHG threshold should be  
set somewhat higher than the maximum expected system current from VDD_SYS. However, if the  
threshold is set higher than the battery can support, battery voltage may drop below VBAT_UVLO  
before the current is limited. When the IBAT_DCHG function clamps the battery current, VDD_SYS  
will droop. This may cause secondary fault conditions such as VDD_SYS UVLO.  
9.2.3.2  
VBAT_UVLO and SHORT  
The battery under voltage protection threshold can be set from 2.5V to 3.0V at register 0x0E. This  
should be set at or above the battery’s minimum discharge voltage specification. VBAT_UVLO  
protects the battery from over-discharge by disconnecting the discharge path when the battery  
voltage falls below the UVLO threshold.  
When a VBAT_UVLO occurs in battery powered modes (VDD_PWR not connected), the DA9070  
outputs, including VDD_SYS, will shut down and all registers will be reset to their default OTP  
values.  
VBAT_UVLO will generate an interrupt at SYS_FLT and will be indicated by the event bit at 0x04[0].  
With VDD_PWR connected, VBAT_UVLO is ignored, making pre-charge level charging available  
down to 0V at VBAT. In this case, a separate fault condition applies: VBAT_SHORT. The  
VBAT_SHORT threshold is typically 2.0V and is indicated by event bit 0x04[3].  
9.2.3.3  
Battery Temperature Sensing  
The temperature sense function uses the battery’s NTC thermistor to monitor battery temperature. If  
the battery is too cold or hot, the fast charge current or target voltage is reduced, or charging is  
terminated. Table 23 summarizes what protective measures are taken in each temperature range.  
Datasheet  
Revision 3.3  
13-Oct-2020  
38 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Table 23: Battery Thermal Protection Measures  
Temperature Range  
Voltage at TEMP_SNS  
Charger Action  
Interrupt name  
TBAT < TLO  
VTEMP_SNS > VTEMP_LO_THR  
Charging terminated  
TS COLD  
VTEMP_LO_THR > VTEMP_SNS  
VTEMP_COOL_THR  
>
Charge current = ½ x ICHG  
setting  
TCOLD < TBAT < TCOOL  
TCOOL < TBAT < TWARM  
TWARM < TBAT < THI  
THI < TBAT  
TS COOL  
VTEMP_COOL_THR > VTEMP_SNS  
> VTEMP_WARM_THR  
Normal charging  
VTEMP_WARM_THR  
>
Target voltage (VBAT_CHG  
reduced by 140mV  
)
TS WARM  
TS HOT  
TS OFF  
VTEMP_SNS > VTEMP_HI_THR  
VTEMP_SNS < VTEMP_HI_THR  
VTEMP_SNS > VOFF_TEMP_SNS  
Charging terminated  
Temp sense disabled,  
Optional Fault  
Setting the Resistor Divider  
The four temperature thresholds are fixed percentages of VTEMP as shown in the Electrical  
Characteristics table. VTEMP is enabled in short pulses to allow the battery temperature to be  
monitored without drawing unnecessary current through the resistor divider. VTEMP is derived from  
the VDD_SYS voltage. The TEMP_SNS voltage is measured after a deglitch time of 10msec, which  
precludes any need for filtering at TEMP_SNS. To avoid measurement error, no filter capacitance  
larger than 10nF should be added to TEMP_SNS pin.  
Temperature monitoring can be disabled at the TS_EN register 0x26[1:0], or by pulling TEMP_SNS  
above the VOFF_TEMP_SNS threshold (TS_OFF). The TS_OFF state disables temperature sensing, and  
can optionally be flagged as a fault condition by setting register 0x26:[2] to 1. When TEMP_SNS is  
pulled high to enter TS_OFF, the off state is latched until TEMP_SNS is disabled.  
Temp sense is disabled in Hi-Z mode.  
Each temp sense threshold will generate an interrupt at SYS_FLT and has an event bit at register  
0x04 or 0x05.  
The battery NTC interfaces to the TEMP_SNS input through a resistive divider, see Figure 29.  
VTEMP  
VBAT  
RHI  
TEMP_SNS  
NTC  
RLO  
Figure 29: Battery Temperature Sensing with NTC  
Datasheet  
Revision 3.3  
13-Oct-2020  
39 of 130  
© 2020 Dialog Semiconductor  
 
DA9070  
Ultra-Low Quiescent Current PMIC  
The resistor divider values (RHI and RLO) are selected as shown below so that the cold and hot  
TEMP_SNS thresholds are reached at the corresponding NTC values.  
Equation 1:  
1
1
(퐶푂퐿퐷) × 푅(퐻푂푇) × ꢀ  
0.398 0.15  
1
(퐿푂)  
=
1
(퐻푂푇) × ꢀ  
− 1ꢁ − 푅(퐶푂퐿퐷) × ꢀ  
− 1ꢁ  
0.15  
0.398  
Equation 2:  
1
− 1ꢁ  
1
0.398  
(퐻퐼)  
=
1
+
(퐿푂) (퐶푂퐿퐷)  
Where  
R(HOT) = the NTC resistance at the hot temperature  
R(COLD) = the NTC resistance at the cold temperature  
Datasheet  
Revision 3.3  
13-Oct-2020  
40 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
The cool and warm thresholds are not independently programmable and are fixed once the cold and  
hot values are determined. The cool and warm thresholds can be determined by the NTC value at  
the threshold:  
Equation 3:  
(퐿푂) × 푅(퐻퐼) × 0.35  
(퐶푂푂퐿)  
=
(퐿푂) − 푅(  
× 0.35 − (  
× 0.35  
)
)
퐿푂  
퐻퐼  
Equation 4:  
(퐿푂) × 푅(퐻퐼) × 0.205  
(퐿푂) − 푅( × 0.205 − (  
(푊퐴ꢄ푀)  
=
× 0.205  
)
)
퐿푂  
퐻퐼  
Where  
R(COOL) = the NTC resistance at the cool temperature  
R(WARM) = the NTC resistance at the warm temperature  
Temp Sense Modes of Operation  
The DA9070 provides two modes of battery temperature sense control: auto-mode and host control  
mode. In auto-mode, the DA9070 enables the VTEMP voltage every 2 second or every 50msec  
depending on the VDD_PWR state. At the start of each cycle, the VTEMP voltage is activated for  
10ms after which the TEMP_SNS voltage is checked. This timing is shown in Figure 30.  
Because auto-mode does not rely on the host to operate, it is ideally suited to provide continuous  
safety monitoring.  
In battery powered operation, VTEMP is enabled for only 0.5% of the time which reduces the typical  
current required for temperature sensing to less than 1uA.  
While VDD_PWR is applied, the Temp Sense function is in auto-mode and host control of the  
VTEMP period is not available. This is illustrated in the Active Power section of Figure 30.  
If lower current consumption is needed, temperature sensing can be controlled by the host. In host-  
controlled mode, an I2C command activates the same 10msec VTEMP and TEMPS_SNS cycle.  
Datasheet  
Revision 3.3  
13-Oct-2020  
41 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
ACTIVE BATTERY (discharging)  
2sec  
2sec  
Auto-mode Period  
VTEMP active  
10ms  
10ms  
TEMP_SNS active  
TEMP_SNS  
update  
TEMP_SNS  
update  
ACTIVE POWER (charging)  
50ms  
50ms  
Auto-mode Period  
VTEMP active  
10ms  
10ms  
TEMP_SNS active  
TEMP_SNS  
update  
TEMP_SNS  
update  
Host Controlled Mode  
I2C Trigger  
VTEMP active  
10ms  
10ms  
10ms  
TEMP_SNS active  
TEMP_SNS  
update  
TEMP_SNS  
update  
TEMP_SNS  
update  
Figure 30: Battery Temperature Sense Timing  
Datasheet  
Revision 3.3  
13-Oct-2020  
42 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
9.3 Analog Battery Monitor Functions  
The DA9070 incorporates two features to support accurate fuel gauging: IMON and VBAT_DIV.  
These provide analog discharge current and battery voltage information scaled for compatibility with  
typical ADC inputs.  
Filter capacitors on IMON and VBAT_DIV should not be used, or should be minimized, in order to  
minimize any time lag when using these outputs for fuel gauging.  
IMON  
The battery discharge current monitor (IMON) sources a current proportional to the battery discharge  
current at a 1mA/A scale. An external resistor from IMON to GND should be selected to optimize the  
dynamic range based on battery current range and maximum tolerance of both the DA9070 and ADC  
inputs. To maintain accuracy, a maximum voltage of 1.4V is allowed at the IMON pin.  
IMON can be enabled and disabled at register 0x2A. When enabled, the function draws an additional  
4uA of quiescent current from VBAT.  
VBAT_DIV  
The VBAT_DIV function divides down the kelvin sensed battery voltage (from VBAT_SNS) and  
provides a selectable output scaled at 60% or 30% of VBAT. The dedicated ground at GND_DIV  
should be used as the reference point for the VBAT_DIV output.  
This is ideal for driving the differential input of an external ADC in battery monitoring functions.  
VBAT_DIV can be enabled and disabled with the VBAT_DIV_EN register at 0x0F[0]. When enabled,  
the total resistance from VBAT_SNS to GND is 150k. To maintain accuracy, a high impedance  
connection is recommended at VBAT_DIV. When disabled the VBAT_DIV resistor divider is  
disconnected from VBAT to eliminate current drain.  
Table 24: VBAT_DIV Ratios  
VBAT_DIV_SEL, 0x0E:[4]  
VBAT_DIV Ratio  
0.6×VBAT  
0
1
0.3×VBAT  
Datasheet  
Revision 3.3  
13-Oct-2020  
43 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
9.4 Battery Charging  
9.4.1  
Battery Charging Process  
When USB power is connected (VDD_PWR > VUVLO_THR), the DA9070 is in one of four states as  
listed in Table 25. Charging is enabled and disabled with the MODE pin and CE_N register at  
0x20:[0]. This status is indicated by the STS_CHG register 0x02:[5:4].  
Table 25: Charge Status  
MODE pin  
CE_N  
ICHG  
VBAT  
Status  
STS_CHG  
Register  
0x20 [0]  
Either High  
N/A  
> ITERM  
< ITERM  
N/A  
N/A  
<= VBAT_CHG  
>= VRCHG  
N/A  
Charge ready  
Charge in-progress  
Charge done  
Fault  
0x0  
0x1  
0x2  
0x3  
L
L
L
L
L
L
STS_CHG is a read-only register which shows immediate charge status. The register does not hold  
status value and changes its value immediately when the charge status changes.  
From the charge ready state, charging begins when the CE_N bit is low and the MODE input is  
pulled low. There is approximately 2.5msec delay between enabling charging and charge starting.  
Charging current operates in three regions based on battery voltage: pre-charge, fast charge (CC),  
and constant voltage (CV). These regions are shown in the typical charging example of Figu re 31.  
The charge status (CHG_STS) is also shown transitioning from the ‘charge ready’ to ‘charge in-  
progress’ to ‘charge done’ states.  
Figu re 31: Example 70 mAh Charge Cycle  
(V_Pre-charge = 3.0 V, I_Pre-charge = 7 mA, I_Charge = 70 mA, V_Term = 4.2 V)  
Datasheet  
Revision 3.3  
13-Oct-2020  
44 of 130  
© 2020 Dialog Semiconductor  
 
 
DA9070  
Ultra-Low Quiescent Current PMIC  
9.4.2  
Charge In-Progress  
Assuming a depleted battery, the battery is initially charged at ICHG_PRE until VBAT reaches the pre-  
charge threshold, at which point the charge current is increased to ICHG. The charger continues to  
charge at constant current (CC) until VBAT approaches the target voltage programmed by VBREG,  
0x24:[6:0]. The battery is then charged at near constant voltage (CV) and the charge current  
gradually falls. Charging ends when the charge current falls below ITER (ITER current is the same as  
ICHG_PRE). If the VDD_PWR remains plugged in, recharging starts when VBAT falls below the  
recharge threshold, VBAT_CHG - 120mV typically.  
Charging modes are shown in Table 26.  
Table 26: Charging Modes  
VBAT Voltage  
Charge Current  
IPRE_CHG  
Charge mode  
Pre-charge  
Pre-charge timer  
Running  
Main timer  
Running  
< VPRECHARGE  
> VPRECHARGE  
< VBAT_CHG  
= VBAT_CHG  
= VBAT_CHG  
ICHG  
CC (fast charge)  
Reset  
Running  
< ICHG  
CV  
Reset  
Reset  
Running  
Reset  
=
Termination  
ITERM  
From the charge ready state, the device enters charge in-progress state when all conditions below  
are met.  
VVDD_PWR > VBAT + VSLP (not in sleep mode)  
VBAT< Recharge threshold  
RMEAS sequence completed, if enabled  
50ms TEMP_SNS delay, if enabled  
MODE input is pulled low and CE_N register is set to 0  
If these conditions are met, charging starts automatically at the appropriate level when VDD_PWR is  
connected.  
9.4.3  
Pre-charge and Termination Current  
In pre-charge mode, a constant low level charge current is supplied to the battery, up to 50mA.  
Termination current is the charge current in CV mode at which charging is terminated. Both pre-  
charge current and termination current are identical and cannot be controlled independently. The  
current setting is selectable by the IPRETERM register at 0x23 within a range of 0.5mA to 50mA.  
Pre-charge and termination currents can also be set by an external resistor connected to the  
ITER_CHG pin.  
Charge termination can be disabled by setting the termination enable bit at 0x21:[4] to 0. TS_WARM  
and TS_COOL conditions can also optionally disable termination at 0x21:[6:5]. This may be useful in  
conditions where the available charging current is reduced due to system load, or when charge  
current is reduced due to fault conditions.  
The pre-charge to fast charge threshold voltage is programmable between 2.7V and 3.2V with the  
VBPRECHG register at 0x25: [2:0]. The threshold has 200mV of hysteresis. When VBAT rises above  
the pre-charge threshold voltage, fast charging begins.  
Pre-charging is indicated by an SYS_FLT interrupt and event bit at 0x05.  
Datasheet  
Revision 3.3  
13-Oct-2020  
45 of 130  
© 2020 Dialog Semiconductor  
 
DA9070  
Ultra-Low Quiescent Current PMIC  
9.4.4  
Fast Charge Current  
In fast charge mode, a constant charging current is supplied to the battery at up to 500mA. Fast  
charge current is selectable by the ICHG registers, 0x22. This can also be set by an external resistor  
connected to ILIM_CHG pin. Charge current is programmable from 5mA to 500mA with an accuracy  
of +/-5% over the full range. Fast charge current settings down to 2mA are available with some OTP  
variants.  
When VBAT reaches VBAT_CHG the device ends CC fast charge operation and starts CV operation.  
9.4.5  
CV Voltage Regulation and Termination  
CV charging mode begins when the battery voltage rises into the regulation range. The regulated  
battery voltage, VBAT_CHG, can be set between 3.6V and 4.65V by the VBCHG register at 0x24.  
Regulation accuracy is +/-0.5% in CV mode.  
When the DA9070 enters CV mode, charge current begins gradually decreasing, while battery  
voltage remains regulated at VBAT_CHG. When charge current drops to the termination current level,  
charging is terminated and the charge status, STS_CHG, changes to charge done.  
Charge done is indicated by an SYS_FLT interrupt and event bit at 0x05.  
To ensure that the charging current is below the termination level, termination will not occur until the  
peak current is below the threshold. In noisy conditions or at very low termination currents, the  
average battery current at termination may be a few mA below the set threshold.  
9.4.6  
Charge Done and Recharge  
To prevent rapid iterations of charging and discharging from the charge done state, there is 120mV  
of hysteresis below the CV regulation level, VRCH. Charging will not restart until VBAT falls below this  
threshold. In addition there is a 32msec deglitch time for noise immunity.  
Recharging will start automatically, when VBAT falls below the VRCH threshold.  
Recharging is indicated by an SYS_FLT interrupt and event bit at 0x05.  
9.4.7  
Charge Faults  
The DA9070 identifies multiple conditions as charge faults, indicated by the STS_CHG status bit.  
These conditions may reduce the charge current, reduce the target battery voltage, or take other  
actions. All are indicated by an interrupt and event bit. When the charger is unable to provide the  
programmed charge current to the battery, such as when VDD_PWR is in current limit, the  
termination current is ignored and charging is allowed to continue until the safety timer expires. All of  
the fault and event interrupts that affect charging are summarized in Table 27. VBAT_UVLO and  
VBAT_SHORT are included in the table although they are not indicated as faults when VDD_PWR is  
present. Normal pre-charging will continue in both cases.  
Table 27: Charge Faults  
Fault  
Charging  
Action  
STS_CHG  
Termination  
Safety timer  
VDD_PWR OVP  
Suspend  
VDD_PWR  
open  
Fault  
-
Reset  
VDD_PWR  
UVLO  
Suspend  
Continue  
VDD_PWR  
open  
Fault  
Fault  
-
Reset  
x2  
VDD_PWR  
DPM  
VDD_PWR  
current limit  
decreased  
Disable  
Datasheet  
Revision 3.3  
13-Oct-2020  
46 of 130  
© 2020 Dialog Semiconductor  
 
 
DA9070  
Ultra-Low Quiescent Current PMIC  
Fault  
Charging  
Action  
STS_CHG  
Termination  
Safety timer  
VDD_PWR ILIM  
Continue  
VDD_PWR  
Fault  
Disable  
x2  
current limited  
VBAT DPPM  
VBAT OCP  
Sleep mode  
Continue  
Suspend  
Charge current  
reduced  
Fault  
Fault  
Disable  
-
x2  
VBAT current  
limited  
Suspend  
Suspend  
Suspend  
Fault  
Fault  
-
-
Suspend  
Suspend  
Supplement  
mode  
Battery  
discharging  
TS COLD  
TS HOT  
Suspend  
Suspend  
Continue  
Fault  
Fault  
-
Suspend  
Suspend  
x2  
-
TS COOL  
Charge current  
reduced to ½  
In-progress  
Disable  
TS WARM  
Continue  
Suspend  
VBAT_CHG  
reduced by  
140mV  
In-progress  
Fault  
Disable  
-
x1  
TS OFF (fault  
option)  
Reset  
Safety timer  
Over-temp.  
Suspend  
Suspend  
Suspend  
Fault  
Fault  
Fault  
-
-
Reset  
Reset  
Reset  
VDD_SYS  
UVLO  
Power-cycle  
VBAT Short  
Pre-charge  
In-progress  
x1  
There are several option bits available to modify the fault behavior described above. Termination can  
be enabled during TS_WARM and TS_COOL, a TS_HOT fault can trigger a power-cycle, and a  
TS_OFF condition can trigger a fault or simply disable the battery Temp Sense feature.  
9.4.8  
Safety Timers  
The safety timer starts counting as soon as a charge cycle begins, ensuring that the charge cycle is  
terminated even if the battery fails to reach the termination condition. The duration of the timer,  
tMAXCHG, is set by register 0x21:[1:0] between 30 minutes and 9 hours. If the safety timer expires  
before charging is terminated, SYS_FLT toggles, and the CHG_TMR event bit is set to 1.  
In pre-charge mode, the timer period is 10% of the safety timer setting. The pre-charge timer counts  
during pre-charging and is reset at the transition to fast-charge. If the charger is still in pre-charge at  
the end of the pre-charge timer period, the charge cycle is terminated. The main safety time is  
running during both fast charge and pre-charge modes.  
To reset the safety timer and resume charging after the timer has expired, toggle the MODE pin or  
the CE_N bit, or remove and re-connect VDD_PWR.  
Charge faults may cause the timer duration to be doubled, suspended, or reset as described in Table  
27. The timer doubling function can be doubled using the TMR2x_EN bit at 0x21:[3].  
Datasheet  
Revision 3.3  
13-Oct-2020  
47 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Table 28. Safety Timer Register Settings (0x21)  
TMR  
0x0  
0x1  
0x2  
0x3  
Pre-charge timer  
3 min  
Main timer  
30 min  
3 h  
18 min  
54 min  
9 h  
(Disable)  
(Disable)  
9.5  
USB Powered Operation and Power Path Management  
The DA9070 monitors battery voltage and current as well as VDD_PWR input voltage and current  
during all modes of operation. At all levels of operation, the appropriate charge current is maintained  
while protecting the battery, system connections, and the input supply from over-voltage and over-  
current and other potential fault conditions.  
The DA9070’s power path management features ensure smooth transitions from charging to reduced  
charging to battery supplementing the load during load peaks.  
9.5.1  
Under-Voltage Lockout (VDD_PWR_UVLO)  
The UVLO threshold for VDD_PWR is 3.6V (typical). Below this voltage, VDD_PWR will be  
disconnected from the power path and the DA9070 will be in battery powered operation. VDD_PWR  
UVLO will cause SYS_FLT to toggle and will set the VDD_PWR_UVLO event bit to 1.  
The UVLO threshold has typically 150mV of hysteresis on the rising edge. When VDD_PWR rises  
above this threshold, charging is re-enabled. UVLO recovery will also toggle the SYS_FLT interrupt  
and will set the UVLO recovery event bit.  
9.5.2  
Sleep Mode  
Sleep mode behavior is similar to VDD_PWR_UVLO, but the falling threshold is relative to VBAT.  
When VDD_PWR falls within 65mV (typical) of VBAT, sleep mode is activated. In sleep mode,  
VDD_PWR is disconnected from the power path, SYS_FLT toggles, and the SLP event bit is set to 1.  
When VDD_PWR falls into the range of sleep mode, it will already be in DPPM mode  
(VDD_PWR<VBAT_CHG), therefore charge current will already be reduced to zero.  
9.5.3  
VDD_PWR Current Limit (IDD_PWR_LIM)  
The VDD_PWR current limit feature protects both the DA9070 and the USB supply from excessive  
current. The current limit threshold is programmable from 50mA to 600mA in 50mA steps at register  
0x27. When the input current reaches the set threshold, VDD_PWR current is clamped and an event  
bit is set at register 0x03. If the load at VDD_SYS increases, the VDD_SYS voltage will drop  
eventually triggering a VDD_SYS UVLO.  
The DPM function, when enabled, will reduce the current limit threshold as USB input voltage is  
reduced.  
9.5.4  
Input Voltage Dynamic Power Management (DPM)  
If the charge current and system load exceed the current capability of the VDD_PWR input source,  
the input voltage will drop. Dynamic power management (DPM) prevents the input from dropping  
below the nominal USB range and into DPPM mode by scaling down the VDD_PWR current limit  
(IDDPWR_LIM) until it matches current capability of the USB source.  
Datasheet  
Revision 3.3  
13-Oct-2020  
48 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
This feature becomes active when VDD_PWR falls below VDDPWR_IIN_DWN, which is programmable  
between 4.2 V and 4.9 Vat 0x28:[2:0]. The DPM feature can be disabled by setting the  
VDD_PWR_DPM_DIS bit to 1. However, when DPM is disabled, the USB power source may be  
pulled down, triggering sleep mode or input UVLO.  
The VDD_PWR_DPM event bit is set to 1 and the SYS_FLT pin toggles whenever the DA9070 is in  
this current-limited mode. In charging mode, termination is ignored to allow the battery to be charged  
with whatever current is still available.  
9.5.5  
Dynamic Power Path Mode (DPPM)  
Dynamic Power Path Mode (DPPM) manages the situation in which the total charging and system  
current exceeds the VDD_PWR current limit. When the input current is clamped, VVDD_SYS drops until  
it reaches VDD_SYS_THR_DPPM (DPPM threshold). In DPPM operation, charging current is reduced as  
needed to service the system current at VDD_SYS. DPPM is only active during charging, and will  
toggle SYS_FLT and set an interrupt bit at register 0x04.  
If VVDD_SYS drops further due to increasing load, the DA9070 eventually enters Battery supplement  
mode.  
9.5.6  
Battery Supplement Mode  
The DA9070 enters Battery Supplement mode when VDD_SYS falls below VBAT. Supplement mode  
occurs in USB powered operation, regardless of whether the battery is charging or not. Similar to  
DPPM mode, the total current at VDD_SYS exceeds the VDD_PWR current limit, causing VDD_SYS  
to drop until it reaches the VBAT voltage. In this mode, the battery supplies current to VDD_SYS,  
thus supplementing the input current to supply the system demands. In battery supplement mode,  
the discharge current from the battery is limited by the over-discharge protection.  
Supplement Mode toggles the SYS_FLT pin and sets an event bit at 0x05.  
The device exits Supplement Mode when the system load is reduced and VDD_SYS rises above  
VBAT.  
9.5.7  
Input Over-Voltage Protection (VDD_PWR_OVP)  
The DA9070 protects itself (and downstream connections to VDD_SYS) against input over-voltage  
conditions by disconnecting VDD_PWR from the power path. Over-voltage protection kicks in  
immediately when VDD_PWR exceeds the OVP threshold. Over-voltage events are common at USB  
plug-in due to the inductance of the long cable, where the transient overshoot may exceed 10V  
depending on cable length, quality, and input capacitance. The VDD_PWR input is capable of  
withstanding up to 20V and will remain in OVP until the voltage returns to nominal levels. During  
OVP, VDD_PWR is disconnected from the power path and the DA9070 will be in normal battery  
powered operation.  
When an over-voltage occurs, the event bit is set to 1 and SYS-FLT toggles.  
9.5.8  
VDD_PWR Input Supply Impedance  
The DA9070 charging path is typically supplied by a 5V USB source. USB cable resistance can  
range from 100’s of milliohms to ohms. At higher charging currents, this parasitic input impedance  
may cause VDD_PWR to drop from 5V into the DPM range.  
High USB cable resistance can lead to oscillations in DPM or Sleep mode. As VDD_PWR drops, the  
DA9070 attempts to reduce current demand, which in turn causes VDD_PWR and current draw to  
increase again. Follow the guidelines in Figure 32 to ensure that the DA9070’s internal hysteresis will  
be sufficient to overcome these effects. The worst case is at highest battery voltage, the VBAT_CHG  
regulation point.  
Datasheet  
Revision 3.3  
13-Oct-2020  
49 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
It is recommended to always enable the DPM function, with the threshold set at least 0.4V above the  
VBAT_CHG voltage. Referring to Figure 32, with a DPM setting of 4.5V and VBAT=4.2V, the system  
has the potential to oscillate at any current greater than 75mA. Note that this would only occur if  
VDD_PWR drops into the DPM or sleep region. For this example, a DPM setting of 4.6V or 4.7V is  
recommended for currents above 75mA.  
Figure 32: VDD_PWR DPM setting recommendations  
(based on typical USB cable impedance)  
Datasheet  
Revision 3.3  
13-Oct-2020  
50 of 130  
© 2020 Dialog Semiconductor  
 
DA9070  
Ultra-Low Quiescent Current PMIC  
9.6 Power-Cycling  
The power-cycle function disables all outputs (buck, boost, and LDOs) for a programmable time  
period and then restarts. Power-cycle can be initiated by a fault condition, RIN_N pushbutton,  
VDD_PWR insertion, or I2C command. The primary purpose of power-cycling is to clear a serious  
fault condition such as IC over-temperature (OVT) or to reset the host.  
9.6.1  
Requested Power-Cycle  
The power-cycle settings are configured at register 0x12. There are 3 methods to enter power-cycle:  
by register write to PWR_CYC_FRC, by holding the RIN_N pushbutton low for the reset period, or by  
inserting and removing VDD_PWR. The setting options are summarized in Table 29.  
Table 29: Power Cycle Trigger Settings  
PWR_CYC_EN  
0x12 [0]  
PWR_CYC_MODE  
0x12 [1]  
RIN_N RESET  
wake-up timer  
VDD_PWR  
insertion / removal  
PWR_CYC_FRC  
0x12 [2]  
0x0  
0x1  
0x1  
(dont care)  
0x0  
Disable  
Disable  
Enable  
Disable  
Enable  
Disable  
Disable  
Enable  
Enable  
0x1  
After any of these three host or user-initiated power-cycles, the Buck, Boost, and LDO outputs will be  
disabled. When auto-restart occurs, only the Buck will restart. All register settings are preserved at  
restart with the exception of the output enable registers. There is also a READ clear event bit at  
0x02:[1] to indicate that a power-cycle has occurred.  
Two timers apply to power-cycling: the wait timer and the period timer. The wait time allows the host  
to take action before power is shut down and can be set between 0 seconds and 2 seconds. The  
period timer controls how long the outputs are powered down before restart and can be set between  
5 and 20 seconds. Both timers are programmable at register 0x12.  
Figure 33 below shows the power-cycle timing using the RIN_N pushbutton. The RESET time is set  
at register 0x10:[7:6]. The RIN_N pushbutton timer can be used for power-cycling only when  
VDD_PWR is present.  
tWAIT  
tPERIOD  
tRESET  
tWAKE2  
RIN_N  
SYS_FLT  
ROUT_N  
tWAKE1  
(don t care)  
tINTR  
tINTR  
tINTR  
tRST_D  
Boost / LDOx  
Buck  
Figure 33: Power-Cycle by Pushbutton Timer  
Datasheet  
Revision 3.3  
13-Oct-2020  
51 of 130  
© 2020 Dialog Semiconductor  
 
 
DA9070  
Ultra-Low Quiescent Current PMIC  
Alternately, the VDD_PWR plug can be used to initiate a power-cycle as shown in Figure 34.  
VDD_PWR must go low and high 3 times within 8 seconds. After the 8 second period, the power-  
cycle will begin.  
< 8 sec  
tWAIT  
tPERIOD  
>150ms  
>150ms  
VDD_PWR (case 1)  
UVLO  
UVLO  
VDD_PWR (case 2)  
SYS_FLT  
tINTR  
ROUT_N  
tRST_D  
Boost / LDOx  
Buck  
Figure 34: Power-Cycle by VDD_PWR Insertion  
The force power-cycle bit (PWR_CYC_FRC) follows the same power-cycle period and behaviour, but  
does not impose any wait time; power-cycle shutdown occurs immediately.  
9.6.2  
Fault Triggered Power-Cycle  
The DA9070 will also initiate a power-cycle in response to various fault conditions, listed in Table 30  
and Table 31. Those not listed as “always on” will trigger a power-cycle only if that option is enabled.  
Fault triggered power-cycles are intended to protect the system from a potentially damaging  
condition. The behaviour is therefore somewhat different to a user-initiated power-cycle.  
When a fault triggered power-cycle occurs, the wait time is skipped and all outputs will be shut-down  
immediately. When the power-cycle period ends, the initial OTP register values are re-loaded at  
restart, including any outputs that are enabled by default.  
A fault triggered power-cycle will also disable VDD_SYS, thus creating a complete power system  
restart (a host or user-initiated power-cycle does not disable VDD_SYS).  
Table 30: Power-Cycle Faults  
Power-cycle Fault  
triggers  
0x13 register bit  
I2C Selectable  
Register Reset  
Battery Temp Sense HOT  
Thermal Shutdown (OVT)  
0
YES  
YES  
YES  
YES  
NA  
NA  
Always On  
Always On  
VBAT UVLO (in act bat  
mode)  
VDD_SYS UVLO  
NA  
Always On  
YES  
There are also three power-cycle faults associated with the Buck, listed in Table 31. Any of these  
faults will cause an immediate power-cycle. Buck faults do not re-load the OTP register values, and  
only the buck will restart after a Buck fault power-cycle.  
Datasheet  
Revision 3.3  
13-Oct-2020  
52 of 130  
© 2020 Dialog Semiconductor  
 
 
DA9070  
Ultra-Low Quiescent Current PMIC  
Table 31: BUCK Power Cycle Faults  
Power-cycle Fault  
triggers  
0x13 register bit  
I2C Selectable  
Register Reset  
BUCK OCP  
4
YES  
NO  
NO  
NO  
BUCK OVP  
BUCK UVP  
NA  
6
Always On  
YES  
Datasheet  
Revision 3.3  
13-Oct-2020  
53 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
9.7 Standalone Mode  
The DA9070 can operate without I2C communication using external resistors to program three  
settings. Fast charge current, input current limit, and termination and pre-charge current can be set  
by external resistors at the ITER_CHG, ILIM_PWR and ILIM_CHG pins, respectively.  
This feature is enabled by the RMEAS_EN register at 0x20 [1]. Whenever VDD_PWR is plugged-in,  
these three external resistors are evaluated and the control registers are set appropriately. If the pins  
are connected to ground, the internal register values will be used.  
If used, all three resistors must be installed. If any of the three pins is grounded, all three currents will  
be determined by their respective register values.  
The specification of RMEAS_EN register is described in Table 32.  
Table 32: Enabling External Resistor Setting Mode  
RMEAS_EN 0x20:[1]  
Setting  
External resistance []  
0
1
1
(dont care)  
Register settings used  
0
Register settings used  
> 0  
Calculated from external resistance  
9.7.1  
Termination and Pre-Charge Current Programming (ITER_CHG)  
The pre-charge and termination currents are the same value and set with the same resistor. When  
using the external resistor setting method, they can be set to 5%, 10%, 15%, or 20% of the fast  
charge current.  
Connect a resistor from the ITER_CHG pin to ground. Table 33 shows the recommended resistor  
values to set the pre-charge and termination currents.  
Table 33: ITER_CHG Recommended Resistor Values  
% of ILIM_CHG (typ)  
Resistance (k)  
5
68  
22  
8.2  
2.2  
0
10  
15  
20  
Register Setting at 0x23 is used  
Once VDD_PWR is connected, the set pre-charge and termination values can be read at register  
0x20:[5:4].  
The pre-charge current cannot be set higher than 50mA, or lower than 0.5mA. Settings which are out  
of range will result the minimum or maximum current setting. For example, with a 400mA fast charge  
current, a 20% setting would result in 80mA, but the actual pre-charge current will be the maximum  
value of 50mA.  
Datasheet  
Revision 3.3  
13-Oct-2020  
54 of 130  
© 2020 Dialog Semiconductor  
 
 
DA9070  
Ultra-Low Quiescent Current PMIC  
9.7.2  
Input Current Limit Programming (ILIM_PWR)  
VDD_PWR input current limit is programmed by a resistor connected from the ILIM_PWR pin to  
ꢅꢆꢆꢆ  
ground. The resistor value can be calculated as: 퐼퐿퐼푀_푃푊(Ω) =  
퐼퐿퐼푀(퐴)  
Not all current limit register settings are available in resistor setting mode. The available current limit  
settings and corresponding resistor values are shown in Table 34.  
Table 34: ILIM_PWR Recommended Resistor Values  
VDD_PWR ILIM (typ)  
Resistance (k)  
Register setting at 0x27 is used  
0
600mA  
500mA  
400mA  
300mA  
200mA  
150mA  
100mA  
50mA  
1.6  
2.0  
2.7  
3.6  
5.1  
6.8  
10.0  
20.0  
9.7.3  
Charge Current Programming (ILIM_CHG)  
Fast charge current is programmed by a resistor connected from the ILIM_CHG pin to ground. The  
ꢅꢆꢆꢆ  
resistor value can be calculated as: 퐼퐿퐼푀_퐶퐻(Ω) =  
퐹푎푠푡퐶ℎ푎푟ꢇ푒(퐴)  
Not all fast charge register settings are available. The available current limit settings and  
corresponding resistor values are shown in Table 35.  
Table 35: ILIM_CHG Recommended Resistor Values  
Fast Charge Current (typ)  
Resistance (k)  
Register setting at 0x22 is used  
0
500mA  
400mA  
300mA  
200mA  
150mA  
100mA  
70mA  
2.0  
2.7  
3.6  
5.1  
6.8  
10.0  
15.0  
20.0  
27.0  
36.0  
51.0  
68.0  
50mA  
40mA  
30mA  
20mA  
15mA  
Datasheet  
Revision 3.3  
13-Oct-2020  
55 of 130  
© 2020 Dialog Semiconductor  
 
 
DA9070  
Ultra-Low Quiescent Current PMIC  
Fast Charge Current (typ)  
Resistance (k)  
100.0  
10mA  
7mA  
5mA  
150.0  
200.0  
9.8 Host and Pushbutton Communication  
The DA9070 features multiple digital pins for host and user communication, as listed in Table 36 with  
connections shown in Figure 35.  
Table 36: Digital Pins for Host and Pushbutton Interface  
Pin Name  
Description  
SCL / SDA  
I2C Interface  
Mode control input  
MODE  
RIN_N  
Used to enter Hi-Z mode and control charging  
(Edge triggered for Hi-Z control; Level triggered for charge control)  
Pushbutton Interface  
Used to wake up from ship mode and Hi-Z mode  
Also used to generate a low-active reset pulse on ROUT_N  
IRQ Interrupt output flag  
SYS_FLT  
PWR_FLT  
Also functions as a charging status indicator  
Power Input status flag  
Can also be configured as a voltage shifted RIN_N output  
ROUT_N  
WD  
Host Reset output which is controlled by RIN_N  
Watchdog input  
DA9070  
SCL  
Host  
SDA  
WD  
MODE  
ROUT_N  
SYS_FLT  
PWR_FLT  
(always-on)  
RIN_N  
Figure 35: Digital Pin Connections  
Datasheet  
Revision 3.3  
13-Oct-2020  
56 of 130  
© 2020 Dialog Semiconductor  
 
 
DA9070  
Ultra-Low Quiescent Current PMIC  
9.8.1  
Watchdog Input and Timer  
A programmable watchdog timer, WD, is available to detect a stall in the host. The WD function is  
enabled or disabled at register 0x14:[1:0]. Each time the host initiates I2C or toggles the watchdog  
input, the timer resets. If no host activity is detected within the timeout period, the DA9070 toggles  
the SYS_FLT flag and sets the WD event bit at 0x07 to 1. If the register reset option is enabled, the  
outputs are disabled for a period of typically 20msec and then re-enabled to reset the host. The  
watchdog is automatically re-activated and the pre-programmed OTP values are loaded (except for  
RIN_N_RST_ROUT_EN and RIN_N_RST_REC at register 0x10:[3:0]).  
The watchdog timeout period is programmable to 25 or 50 seconds via the 0x14 register.  
Optionally, the WD function can also toggle the ROUT_N pin, also selectable at register 0x14.  
The WD_EN register selects when the watchdog timer is available as described in Table 37.  
Table 37: WD_EN Register 0x14 [1:0]  
Register value  
Charge mode  
Disable  
Active battery mode  
Disable  
Hi-Z mode  
Disable  
Disable  
Disable  
Enable  
0x0  
0x1  
0x2  
0x3  
Enable  
Disable  
Enable  
Enable  
Enable  
Enable  
The WD_CLR_SEL register selects which activity the WD uses to clear the timer, described in Table  
38.  
Table 38: WD_CLR_SEL Register 0x14 [3:2]  
Register value  
Description  
Only I2C clears the timer  
Only WD pin clears the timer  
Both I2C and WD pin clear the timer  
Reserved  
0x0  
0x1  
0x2  
0x3  
Figure 36 shows how to periodically feed the watchdog and what happens when the processor stalls.  
VBAT_UVLO_THR  
BAT  
SYS  
tWATCHDOG  
I2C  
Host stalls  
tWATCHDOG  
tWATCHDOG  
tWATCHDOG  
tWATCHDOG  
tWATCHDOG  
WD  
tWATCHDOG  
tWATCHDOG  
tWATCHDOG  
tWATCHDOG  
tWATCHDOG  
Figure 36: Watchdog Behaviour  
Datasheet  
Revision 3.3  
13-Oct-2020  
57 of 130  
© 2020 Dialog Semiconductor  
 
 
 
DA9070  
Ultra-Low Quiescent Current PMIC  
9.8.2  
VDDIO  
VDDIO is the I/O supply rail for the DA9070. I2C communication (SDA, SCL), MODE, WD, ROUT_N,  
SYS_FLT, and PWR_FLT are all referenced to the VDDIO level.  
VDDIO is an input pin, which can be supplied with any voltage between 1.4V and 3.3V as required to  
interface with the host. However, the VDDIO voltage must not be higher than the VDD_PWR and  
VBAT voltages. Therefore, it is recommended to use the Buck or LDO output to supply VDDIO. The  
VDDIO pin should be bypassed with a 1uF capacitor placed close to the pin, and grounded to AGND.  
9.8.3  
Interrupt Events and Status Control (SYS_FLT, PWR_FLT)  
The DA9070 has an interrupt interface for 35 individual events. Some of these events are  
categorized as charge fault events. See 9.4.7 for more details about charge faults.  
There is a READ-only event bit for each interrupt in the SYS_IMR registers 0x03 through 0x07. A  
high state indicates that an event has occurred. The bit will be kept in a high state, even if the fault  
condition is removed, until the bit is cleared. These are READ clear bits which can be READ once to  
identify the event, and READ a second time to reset the bit to 0.  
The DA9070 provides two open drain output flags to indicate system status and interrupts, SYS_FLT  
and PWR_FLT. These should be pulled up to VDDIO with a 1 kto 100 kresistor. Both pins have  
configuration options which can be selected at register 0x11.  
The PWR_FLT output can be configured as an indicator of the VDD_PWR status, or as a level-  
shifted RIN_N monitor. Both options are shown below in Figure 37 and Figure 38.  
When used as a level shifted RIN_N monitor, there is a typical delay of 1.5msec between RIN_N and  
PWR_FLT signals.  
In the case of VDD_PWR status indicator, PWR_FLT goes low only when VDD_PWR is within a valid  
range. In both cases a high state is high impedance.  
RIN_N  
PWR_FLT  
Figure 37: PWR_FLT Configured as RIN_N Monitor, 0x11:[4]=1  
VVDD_PWR_OVP  
VDD_PWR  
VVDD_PWR_UVLO  
PWR_FLT  
Figure 38: PWR_FLT Configured as VDD_PWR Status Indicator, 0x11:[4]=0  
The SYS_FLT output indicates interrupt events with a 128 µs pulse, and can be also be configured to  
indicate charging in progress. SYS_FLT is configured at 0x11:[0] as shown in Table 39.  
Table 39: SYS_FLT Configuration, 0x11: [0]  
Register Setting  
Charge indicator  
IRQ interrupt polarity  
0
1
Disabled  
Active-low  
SYS_FLT low when charge in  
progress  
Active-low when charge is not in-  
progress  
Active-high when charge is in-  
progress  
Datasheet  
Revision 3.3  
13-Oct-2020  
58 of 130  
© 2020 Dialog Semiconductor  
 
 
 
DA9070  
Ultra-Low Quiescent Current PMIC  
The SYS_FLT interrupt flag can be masked for each individual interrupt by setting its mask bit to 1.  
Mask registers, SYS_IMR, are at registers 0x08 through 0x0C. Masking an interrupt will mask the  
SYS_FLT flag but does not mask the event bit.  
Once an interrupt has occurred, the SYS_FLT flag will not toggle a second time for the same  
interrupt. The event bit must first be READ cleared before SYS_FLT will respond to that event again.  
9.8.4  
Pushbutton Reset Timer and Reset Output (RIN_N and ROUT_N)  
The RIN_N input can be used to manually control the DA9070 even in ship mode, Hi-Z mode, or  
when the host has stalled. The pin has three functions: enter/exit ship mode, enter Hi-Z mode, and  
toggle the ROUT_N reset output. RIN_N is active in all modes of operation. The pin is internally  
pulled high and can be pulled directly to ground with an external pushbutton to activate the timer.  
When RIN_N is pulled low, a reset timer begins counting. There are three programmable RIN_N  
timers; each associated with an event bit. Each time the RIN_N timer passes the programmable  
count the SYS_FLT flag toggles, and a WAKE event bit is set. In this way, requests to the host can  
be generated by pressing the button for different durations. The first two timers are WAKE1 and  
WAKE2; the third timer is the RESET timer. If RIN_N is held low for the set RESET time, the DA9070  
can be set to enter ship mode, enter Hi-Z, or initiate a power-cycle. The WAKE and RESET periods  
are set as shown in Table 40.  
Table 40: RIN_N Pushbutton wake-up timer control (0x10)  
Timer Name  
Timer control register  
Programmable Period  
WAKE1  
RIN_N_PER_WAKE1  
0x10 [4]  
50 ms  
500 ms  
WAKE2  
RESET  
RIN_N_PER_WAKE2  
0x10 [5]  
1.0 s  
1.5 s  
RIN_N_PER_RST  
0x10 [7:6]  
4 s  
8 s  
10s  
14s  
The timer status registers, WAKE1, WAKE2, and RESET, are at 0x07. As with all other events, the  
SYS_FLT flag can be masked. The RIN_N timing is described in Figure 39.  
tRST  
tWAKE2  
tWAKE1  
(dont care)  
RIN_N  
tINTR  
tINTR  
tINTR  
tRST_D  
SYS_FLT  
ROUT_N  
RIN_N_WAKE1  
RIN_N_WAKE2  
RIN_N_RST  
Figure 39: RIN_N Pushbutton Reset Timer Timing Diagram  
Revision 3.3  
Datasheet  
13-Oct-2020  
59 of 130  
© 2020 Dialog Semiconductor  
 
 
DA9070  
Ultra-Low Quiescent Current PMIC  
The RESET behavior is configurable with the options shown in Table 41.  
Table 41: RIN_N Reset Timer Configuration  
Register  
Configuration Description  
RIN_N_RST_REC  
0x10 [1:0]  
0: RESET event has no effect  
1: Enter ship mode at RESET  
2: Enter Hi-Z mode at RESET  
PWR_CYC_MODE  
0x12 [1]  
0: Power-cycle triggered by VDD_PWR insertion / removal  
1: Power-cycle triggered by RESET timer when VDD_PWR present  
RIN_N_RST_ROUT_EN  
0x10 [3:2]  
0: Disable ROUT_N toggle at RESET  
1: Enable ROUT_N toggle at RESET  
2: Enable ROUT_N toggle at RESET only when VDD_PWR is present  
The RIN_N timer can also be used to exit Ship mode. A WAKE1 event will trigger Ship mode exit,  
with WAKE2 and RESET being ignored.  
If ROUT_N is enabled, a RESET event will cause the ROUT_N output to toggle low for 400 msec  
(typ). ROUT_N is an open-drain output that should be pulled-up to the logic rail with a 1 kto 100 k  
resistor.  
9.8.5  
System Status Register  
The System Status register (0x02) indicates the status of five system functions:  
BUCK: High = enabled with no faults  
BOOST: High = enabled with no faults  
Charge Status: Ready, Charge in Progress, Charge Done, or Fault  
MODE: Logic state of the MODE pin  
Power-Cycle: High indicates that a power-cycle has occurred  
Only the power-cycle bit shows previous events and is read-clear. The others are READ only,  
reflecting the current status.  
9.8.6  
I2C Programming  
The DA9070 includes an I2C compatible interface which allows READ/WRITE access to all registers.  
The interface is disabled in some modes and is configurable as described in Table 42.  
Table 42: I2C Interface Configuration  
I2C_HIZ_EN  
0x15 [0]  
Ship mode  
Hi-Z mode  
Active battery mode  
Charge mode  
0
1
disabled  
disabled  
disabled  
active  
active  
active  
active  
active  
I2C communication uses the SDA and SCL are open drain I/O pins. These should be pulled up to  
VDDIO with a 1kto 100kresistor. SCL is the serial clock generated by the host and SDA is the  
serial address and data input/output.  
Datasheet  
Revision 3.3  
13-Oct-2020  
60 of 130  
© 2020 Dialog Semiconductor  
 
 
DA9070  
Ultra-Low Quiescent Current PMIC  
The DA9070 is compatible with the standard I2C protocol but only operates as a slave. The I2C bus  
supports a frequency range of 400kHz (fast mode) to 100 kHz (slow mode). The transfer protocol is  
the same whether operating in fast or slow mode.  
The device supports 8-bit addressing only. The I2C slave ID is 7-bit and can be set at register 0x40  
[6:0], with a range of 00 to 7F.  
When active, the I2C bus is monitored at all times for a valid SLAVE address, and an  
ACKNOWLEDGE (ACK) bit is generated if the SLAVE address is true.  
This indicates to the master that the communication link has been established. The master then  
generates SCL clock cycles to transmit or receive data. After receiving data, an ACK is generated  
either by the DA9070 or the master. Basic communication is described below and in Figure 40.  
A START condition is initiated by a high to low transition on the SDA line while the SCL is in the  
high state  
A STOP condition is indicated by a low to high transition on the SDA line while the SCL is in the  
high state  
An ACK is indicated by the receiver pulling the SDA line low during the following clock cycle  
SDA  
SCL  
Data SDA must be stable  
during high part of clock  
Start(S ) is SDA falling while  
SCL high  
Stop (P ) is SDA rising while  
SCL high  
Data sampled on SCL  
rising edge and driven on  
SCL falling edge  
SCL  
Figure 40: I2C Start and Stop Conditions  
Each data sequence is 9-bit, consisting of 8-bit data and 1-bit ACK. Data sequences can be repeated  
indefinitely. At the end of the data transfer, the master generates a STOP condition.  
The bus returns to IDLE mode if during a message a new START or STOP condition occurs. Data is  
transmitted as MSB first for both READ and WRITE operations.  
Datasheet  
Revision 3.3  
13-Oct-2020  
61 of 130  
© 2020 Dialog Semiconductor  
 
DA9070  
Ultra-Low Quiescent Current PMIC  
9.9 Buck Regulator  
The DA9070 includes a nano-ampere quiescent current buck regulator with adjustable output  
voltage, up to 300mA load capability, and power saving mode for excellent efficiency at light load. It  
also features Dynamic Voltage Scaling (DVS) capability and multiple protection features.  
9.9.1  
Buck Output Voltage Programmability  
The DA9070 buck regulator output voltage is programmable in 50mV steps between 0.6V and 2.1V.  
The output voltage is set by register BUCK_VOUT at 0x30 [4:0]. The voltage can be set within two  
ranges based on the value of the VOUT_RANGE_HI register, 0x30 [6]. The output voltage can be  
changed within one of the two range settings while the buck is enabled (0.6V-1.3V or 1.3V-2.1V).  
The range setting, however, can only be changed while the buck is disabled.  
If a command is received outside of the allowable range (that is above 1.3 V for  
VOUT_RANGE_HI = 0 or below 1.3 V for VOUT_RANGE_HI = 1), digital will force the value of  
BUCK_VOUT<3:0> to 01110 (1.3 V).  
Although the output voltage can be set up to 2.1V, there is a headroom requirement of 600mV for  
VDD_BUCK. Therefore if the output voltage is set to 2.0V or 2.1V, the VBAT UVLO must be set to  
2.6V or 2.7V respectively to ensure proper operation.  
9.9.2  
Buck Enable and Soft Start Operation  
DA9070 buck integrates a soft start circuit to minimize output voltage over-shoot and input voltage  
droop during start-up. Writing 1 to BUCK_EN (0x30 : [7]) enables the buck and switching starts after  
a typical delay of 3 ms. During soft-start, the cycle-by-cycle peak current limit is reduced to 300mA  
(typ) to limit inrush current. Although the startup time is not controlled directly, a smooth startup can  
be expected with timing variations due to input and output voltage conditions.  
Due to the reduced current limit in startup, starting the buck regulator into a heavy load is not  
recommended.  
9.9.3  
Power Saving Mode Operation  
The DA9070 buck regulator features power saving mode that greatly reduces the quiescent current  
in light load conditions. When the load decreases to a certain level, the buck regulator enters  
discontinuous mode (DCM) and operates with Pulse Frequency Modulation (PFM). The low-side FET  
will be turned off based on a zero-crossing comparator to prevent negative inductor current, which  
can result in additional conduction loss. If both high and low-side FETs remain in the OFF state for a  
certain delay time after the inductor current crosses zero, the buck will enter power saving mode. In  
this mode, most of the internal circuitry is shut down to reduce quiescent current. The lighter the load,  
the longer the duration power saving mode will be, thus achieve the lowest quiescent current and  
improving light load efficiency. At no-load the buck regulator consumes only 900nA of quiescent  
current typically.  
At heavier loads, the buck operates in continuous conduction mode (CCM) with constant off-time.  
The off timer imposes a minimum off time on the switching cycle, thereby placing a ceiling on the  
switching frequency.  
9.9.4  
Dynamic Voltage Control  
The DVC feature allows the buck output voltage to ramp up or down to a new target value in a  
controlled manner. When a new voltage setting is applied, the register setting value will be  
incremented or decremented by one bit every 4msec, which results in an output voltage slew rate of  
50 mV/4ms. Since the buck output voltage can only be changed within the high or low range while  
enabled, DVC also has this restriction. DVC can be enabled and disabled at register 0x50 [1:0].  
Datasheet  
Revision 3.3  
13-Oct-2020  
62 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Because the buck works in DCM under light load, it cannot quickly discharge the output voltage  
during DCM. When a voltage ramp down is commanded in DCM, the slew rate will depend on the  
load. In CCM, the falling slew rate will be the same 50mV / 4msec as the rising slew rate.  
Different DVC slew rates are available by OTP.  
9.9.5  
Over-Current Protection  
The over-current Protection (OCP) monitors the peak current through high-side FET on a cycle-by-  
cycle basis. When the sensed current exceeds the current limit threshold, the high-side FET will be  
turned OFF immediately to limit the inductor current. The high-side FET will be turned on again after  
the constant-off time expires. Current limit will trigger a BUCK_OCP event bit at 0x06, and SYS_FLT  
will toggle.  
In current limit conditions, the output voltage will drop, potentially causing an under-voltage fault.  
Both over-current and under-voltage can be set to initiate a power-cycle, restarting the buck after a  
programmable wait time. The power-cycle triggers can be configured at 0x13.  
9.9.6  
Output Under-Voltage Protection  
When a buck output short or heavy loading occurs, inductor current will increase until the peak  
reaches the cycle-by-cycle current limit. Because the output is shorted, the inductor current down  
slope is very small during low-side FET on time. In this condition, the inductor current can potentially  
increase with each cycle. To prevent the inductor current from running away in a short-circuit  
condition, the buck output voltage is monitored. If an over-current condition happens and the buck  
output drops 400 mV below the reference voltage, the BUCK_UVP event bit will be set at 0x06. UVP  
can be set to trigger a power-cycle at register 0x13.  
The under-voltage protection is not active during startup. Therefore, a short circuit during startup may  
not trigger a fault event or a power-cycle.  
9.9.7  
Output Over-Voltage Protection  
Over-voltage protection (OVP) protects the load from unexpected output overshoots. When the buck  
output voltage is 200 mV greater than the target voltage, the high side FET is immediately turned off.  
Simultaneously, the output discharge FET will be turned on to discharge the output capacitor. A  
BUCK_OVP event bit will be set at 0x06:[1] and the SYS_FLT flag will toggle. The buck will remain  
off with the output pulled-down until the fault is cleared. BUCK_OVP can also be set to initiate a  
power-cycle.  
9.9.8  
Automatic Output voltage Discharge  
To speed up the discharging of buck output capacitor and ensure a safe re-start, the buck regulator  
provides automatic output voltage discharge when the buck is disabled or shutdown due to a fault.  
Automatic output discharge when the buck is forced OFF by a fault is set at register 0x31:[4].  
Automatic discharge when the buck is disabled is set at register 0x31:[5]. The output of the buck  
regulator is discharged through the FB_BUCK pin with resistance of 33(typical)..  
9.9.9  
External Component Selection  
The choice of inductor and output capacitor is a trade-off between light load efficiency and load  
transient response. In general the combination of a smaller L and larger COUT improves load  
transient performance and reduces the voltage ripple at light loads. A larger L improves light load  
efficiency by reducing the frequency of switching cycles and therefore switching losses.  
Datasheet  
Revision 3.3  
13-Oct-2020  
63 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
The inductor must have a saturation rating which exceeds the maximum value of the current limit  
(ILIM_SW_PMOS). In order to optimize efficiency, decide the inductor value first and then select the  
inductor with the lowest DCR possible given the PCB constraints.  
Recommended component values are shown in Table 43  
Table 43: External Buck Components  
Component  
Value  
2.2 µH  
10uF  
L
COUT  
9.10 Boost Regulator  
The DA9070’s integrated boost is an asynchronous current mode control regulator. This architecture  
provides excellent stability over a wide range of output voltage and operates in DCM at light loads for  
excellent efficiency. The boost regulator also includes a true shutdown switch to disconnect the input  
from the output when disabled.  
The boost input voltage (VDD_BST) is uncommitted and can be powered by VDD_SYS or any  
external supply between 2.5V and 5.5V. The output voltage can be set between 4.5V and 18V at  
register 0x36.  
Load current capability is determined by the peak current limit, which depends primarily on input and  
output voltage conditions. With an output voltage of 12V, the typical load capability is 100mA. At 5V  
output, the boost is capable of supporting 300mA. And up to 80mA at the maximum 18V output. At  
light load, the boost enters DCM mode and will skip pulses as needed to maintain regulation. The  
peak current limit threshold can be selected between 0.5A and 1.5A at register 0x38:[5:4].  
The boost regulator operates at either 1MHz or 2MHz, selectable at 0x37:[0]. A 1MHz setting is  
recommended for higher efficiency and higher load capability. 2MHz can be used to minimize the  
inductor and output capacitor sizes but will have a more limited operation range. Typical component  
values are shown Table 44. Always check capacitor voltage derating values. The values shown here  
assume no more than 50% derating at the operating voltage.  
Table 44: Recommended External Boost Components  
Component  
L
1MHz Value  
4.7 µH  
2MHz Value  
2.2 µH  
COUT, 5V  
> 4.7 µF  
> 10 µF  
>3.3uF  
> 3.3 µF  
> 6.8 µF  
>3.3uF  
COUT, 12V  
CIN (VDD_SYS)  
CIN (VDD_BST)  
>1uF  
>1uF  
9.10.1 Startup  
When the boost is enabled at register 0x36, it begins the soft start cycle. To avoid inrush current and  
potential output overshoot, the true shutdown switch is enabled and a pre-charge current limit is  
imposed. This charges the output voltage to the same level as the input voltage in a controlled  
manner. After a selectable pre-charge time (0x37:[5:4]), the output will begin ramping up to the target  
voltage. During this second period of startup, the boost begins switching, but at a reduced peak  
current limit. The lower startup current limit is selectable at 0x38:[7:6] and will be active for a period  
Datasheet  
Revision 3.3  
13-Oct-2020  
64 of 130  
© 2020 Dialog Semiconductor  
 
 
DA9070  
Ultra-Low Quiescent Current PMIC  
programmable at 0x37:[7:6]. The default soft start configuration will result in a smooth output voltage  
ramp under almost any condition. When disabled, the true shutdown switch is open, allowing the  
output to slowly discharge to 0V.  
The boost should not be enabled before VDD_BST is applied, as this will result in improper startup.  
If startup into a load is required, some derating is required below approximately 3.0V input to avoid  
UVLO. Additional VDD_BST capacitance up to 47uF is recommended when starting into a load.  
Figure 41 shows the typical maximum load capability at startup for battery voltage less than 3V.  
Higher values can be achieved with larger input cap, or by supplying VDD_BST directly.  
Figure 41: Maximum Boost Load at Startup vs VBAT  
(VDD_BST cap = 1 µF and 22 µF)  
9.10.2 Switch Node Anti-Ringing  
An anti-ringing option is available and enabled by default at register 0x39:[4]. The anti-ringing  
function works during the high side OFF state to eliminate SW node ringing in DCM mode. The  
function creates a path across the inductor, between VDD_BST and SW_BST, to quickly bring  
SW_BST to the input voltage level. Anti-ringing eliminates DCM noise which may cause system  
interference while having a minimal impact on efficiency.  
9.10.3 Protection  
The boost regulator includes four types of protection, over-current, short-circuit, OVP, and UVLO.  
When the peak inductor current rises to the current limit threshold, the switching cycle is immediately  
terminated, reducing the duty cycle. If the load is maintained in current limit, the output voltage will  
drop. When the voltage drops to the short circuit threshold, SCP, the boost will stop switching, the  
true shutdown switch will be opened, and the boost will be disabled. The SCP threshold is 4V for the  
output range of 9V to 18V, and 2V for the output range of 4.5V to 9V. SCP will trigger an event flag  
and bit at 0x06.  
Datasheet  
Revision 3.3  
13-Oct-2020  
65 of 130  
© 2020 Dialog Semiconductor  
 
DA9070  
Ultra-Low Quiescent Current PMIC  
If the output voltage rises 120% above the set value, and OVP fault will occur. This triggers an event  
flag and bit at 0x06. In OVP, the boost will stop switching but will not shutdown. Once the output  
voltage falls back to the target voltage, normal switching will resume.  
The boost regulator has an independent UVLO threshold of 2.4V typical. When the input voltage at  
VDD_BST drops to this threshold, the boost will be disabled. Boost UVLO also has an event flag and  
bit at 0x06. The boost will not automatically restart when VDD_BST rises above the UVLO threshold.  
Rather the Boost EN bit must be toggled.  
9.10.4 Low Output Voltage Settings  
The boost output voltage can be set as low as 4.5V, which is below the maximum input voltage range  
of operation. Therefore it is possible for the boost to be subjected to “buck” operating conditions.  
Because the boost is not designed for this range, the output will not be well regulated, but will drift  
upward towards Vin. The boost will continue to switch in pulse skipping mode which creates larger  
than normal output ripple. Additionally, in these “buck” conditions, the SCP may not function  
adequately as the output voltage is not controlled by switching.  
9.11 LDO / Load Switches  
Each of the three LDOs is configurable as either a load switch or an LDO and capable of delivering  
150 mA to the load in either mode. All LDOs have uncommitted inputs which can be connected to  
VDD_SYS, the buck output, or another suitable source. If using the buck output, confirm that the  
buck provides sufficient headroom and current capability.  
In LDO mode, LDO_0 can be programmed between 0.8 V and 3.15V in 25mV or 50mV steps.  
LDO_1 and LDO_2 can be set between 0.8V and 3.3V in 50mV or 75mV steps. To ensure good  
regulation and full load capability, 200mV of headroom is recommended at VDD_LDO, with load  
capability decreasing with lower headroom. With sufficient headroom the LDOs are current limited at  
a minimum of 215mA. LDO_0 is designed to operate with lower headroom.  
To achieve the best performance from the LDOs, it is recommended to place the input bypass cap as  
close as possible to the LDO input pins (VDD_LDO). A 1uF input capacitor is typically sufficient for  
each LDO, provided that there is at least that much capacitance at the VDD_SYS or BUCK output.  
Each LDO is enabled and output voltage set at registers 0x32 through 0x34. The LDOs can be  
configured as load switches at register 0x36. There is an approximately 20ms delay between the I2C  
enable command and LDO startup.  
In load switch mode, there are two modes of operation: current limit enabled and full-on. Full-on  
mode disables the load switch current limit, while providing a much lower on-resistance. In current  
limit enabled operation, current limit is active with the same limit as the LDO mode limit.  
Each load switch can operate over a wider range compared to LDO mode, with a minimum input  
voltage of 0.8V. However, as with LDO mode, the load switch current capability is reduced at lower  
input voltages. At the minimum input voltage, expect a maximum load-switch capability of 1mA.  
Datasheet  
Revision 3.3  
13-Oct-2020  
66 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
9.12 Thermal Protection  
The DA9070 is protected from internal overheating by the over-temperature shutdown function.  
When the junction temperature reaches TSHDN , the device initiates power-cycle and the safety timer  
is reset.  
When power-cycle ends, VDD_SYS will recover for several msec; if the junction temperature is still  
above TSHDN, power-cycle will be initiated again. In this way, the DA9070 continually attempts to  
restart with an active duty cycle of less than 1%, sufficient to allow the IC to cool down. When the  
junction temperature has dropped below TSHUTDOWN THYS, power-cycling will stop. When an over-  
temperature fault occurs, SYS_FLT toggles and the OVT bit at 0x07 is set to 1.  
To avoid tripping thermal shutdown, limit power dissipation to no more than:  
118℃ − ꢉ  
퐷퐼푆푆  
<
푇퐻_퐽퐴  
Where TA is the ambient temperature, RTH_JA is the thermal resistance of the package and pcb.  
Typical values for RTH_JA vary with pcb size, layer count, air-flow, and other factors. A typical value of  
40 ºC/W is a good starting point. PDISS can be estimated as:  
Equation 5:  
퐷퐼푆푆 = 퐵푈퐶퐾 + 퐿퐷푂ꢆ +퐿퐷푂ꢅ + 퐿퐷푂ꢊ + 퐶퐻퐺 + 퐵푆푇  
Where  
PVLDO0 = (VVDD_LDO0 VVLDO0) x ILDO0  
PVLDO1 = (VVDD_LDO1 VVLDO1) x ILDO1  
PVLDO2 = (VVDD_LDO2 VVLDO2) x ILDO2  
PCHG = (VVDD_PWR VBAT) x ICHG  
PBUCK = VO_BUCK x IOUT_BUCK x (1/- 1) DCR x IOUT_BUCK  
PBST = VO_BST x IOUT_BST x (1/- 1) DCR x IOUT_BST x VO_BST/VDD_BST  
where is the efficiency of the buck or boost converter and DCR is the inductor’s DC resistance.  
Datasheet  
Revision 3.3  
13-Oct-2020  
67 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
9.13 PCB Layout Guidelines  
Following a few basic PCB design practices will ensure proper operation and optimal thermal  
performance from the DA9070.  
The first priority is to reduce and isolate high frequency switching noise so that it does not disturb  
sensitive nodes. For the buck regulator, the primary sources of noise are at the input capacitor  
ground and VDD_BUCK nodes. The input capacitor should be connected as close as possible to the  
PGND_BUCK and VDD_BUCK pins. This reduces the parasitic inductance responsible for much of  
the voltage spikes during switching. The current carrying traces (VDD_BUCK, PGND, VOUT) should  
route directly to the pads of all capacitors, not through vias or separate traces. This applies to both  
input and output capacitors and is good practice in general. Where possible these current carrying  
traces should be wide or large copper areas to reduce impedance and improve thermal resistance.  
Route these traces on the top layer only. VDD_SYS and VDD_BUCK can be connected close to or at  
the pins to further reduce impedance.  
These same guidelines apply somewhat differently to the boost, where VOUT_BST and PGND_BST  
are the primary sources of noise. Therefore, the output caps should be placed close to the pins and  
connected by thick traces on the top layer. On the boost input side, it is recommended to route the  
inductor current path and VDD_BST input path separately, with the input cap placed close to the  
VDD_BST pin. This provides some isolation from noise for VDD_BST.  
The second largest noise sources are the SW nodes. Although the current here is not switching, the  
fast voltage swings can introduce noise through capacitive coupling. To reduce this, use the smallest  
area possible for the SW nodes, while keeping in mind the current handling requirements. Both  
SW_BST and SW_BUCK should be routed on the second layer with multiple vias, which allows the  
best routing for the buck input and boost output caps. As much as possible, surround the SW nodes  
with GND copper to help shield the nearby FB traces.  
All signal traces such as FB, SDA, and SCL should be routed away from the SW nodes, buck input  
caps, boost output caps, and inductors. These sensitive traces can be shielded with GND copper or  
routed on a lower layer with a ground plane providing shielding.  
To create a good shield, one inner layer should be flooded with copper and connected as a common  
ground to the GND pins of the IC (A1, D3, and F4) and external GND connections. Layer 2 is  
recommended. The PGND_BUCK pin should connect directly to the buck input cap before  
connecting to the ground plane. Similarly, the PGND_BST pin should connect directly to the boost  
output cap before connecting to the ground plane. Multiple ground planes, for example a mid-layer  
and bottom layer plane, are helpful to control high frequency noise and improve thermal  
performance.  
It is very important that the AGND node should not be used as a ground plane. Instead, all AGND  
connections should connect to a small area or by star connection to the AGND pin. The AGND pin  
should connect to the larger ground plane in a quiet location.  
A good example of top and second layer routing is shown in Figure 42 and Figure 43. The buck input  
cap is C21. C32 and C33 are the boost output caps. These three caps are placed close to the IC with  
no vias between the pin and the caps. C23 is the buck output cap, connected on the top layer. L20  
and L30 are the buck and boost inductors; their SW nodes are routed on layer 2 and connected by  
multiple vias. C30 is the VDD_BST cap, placed close to the pin and connected by a different trace  
than L30.  
Layer-2 is a mostly filled GND plane, which provides shielding around the SW nodes routed on this  
layer. The isolated AGND area is on the right side of Figure 43. AGND is connected to the GND area  
at a single point on another layer, not shown here.  
Datasheet  
Revision 3.3  
13-Oct-2020  
68 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Figure 42: Example PCB Layout, Top Layer  
Figure 43: Example PCB Layout, Layer-2  
Datasheet  
Revision 3.3  
13-Oct-2020  
69 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
10 Registers  
10.1 Register Map  
10.1.1 System  
System  
Register  
Addr 7  
6
5
4
3
2
1
0
0x00  
02  
SYS_STS_0  
STS_BOOST STS_BUCK  
STS_CHG<1:0>  
Reserved  
Reserved  
STS_PWR_CYC STS_MODE  
0x00  
03  
ISR_VDD_SYS_ ISR_VDD_PWR_ILI ISR_VDD_PWR ISR_VDD_PWR_UVL ISR_VDD_PWR_ ISR_VDD_PWR  
SYS_ISR_0  
SYS_ISR_1  
SYS_ISR_2  
SYS_ISR_3  
SYS_ISR_4  
SYS_IMR_0  
SYS_IMR_1  
SYS_IMR_2  
Reserved  
Reserved  
UVLO  
M
_DPM  
O_RCV  
UVLO  
_OVP  
0x00  
04  
ISR_VBAT_SH  
ORT  
ISR_VBAT_DPP ISR_VBAT_UVL  
ISR_TS_HOT ISR_TS_WARM  
ISR_TS_COOL ISR_TS_COLD  
ISR_VBAT_OCP  
M
O
0x00  
05  
ISR_RECHG_STAR ISR_CHG_DON  
Reserved  
Reserved  
ISR_TS_OFF  
Reserved  
ISR_CHG_TMR  
ISR_PRECHG  
ISR_BAT_SPPL ISR_SLP  
ISR_BUCK_OC  
T
E
0x00  
06  
ISR_BOOST_U  
VLO  
ISR_BOOST_S  
CP  
ISR_BOOST_OVP  
ISR_BUCK_UVP  
ISR_RIN_N_RST  
ISR_BUCK_OVP  
P
0x00 ISR_PWR_PL  
07  
ISR_MODE_RIS  
E
ISR_RIN_N_WA ISR_RIN_N_WA  
KE2 KE1  
ISR_MODE_FALL  
Reserved  
ISR_WD  
ISR_OVT  
GGD  
0x00  
08  
IMR_VDD_SYS_ IMR_VDD_PWR_ILI IMR_VDD_PWR IMR_VDD_PWR_UV IMR_VDD_PWR IMR_VDD_PWR  
Reserved  
UVLO  
M
_DPM  
LO_RCV  
_UVLO  
_OVP  
0x00  
09  
IMR_VBAT_SH  
ORT  
IMR_VBAT_DPP IMR_VBAT_UV  
IMR_TS_HOT IMR_TS_WARM  
IMR_TS_COOL IMR_TS_COLD  
IMR_VBAT_OCP  
M
LO  
IMR_BAT_SPPL IMR_SLP  
IMR_BUCK_OC  
0x00  
0A  
IMR_RECHG_STAR IMR_CHG_DON  
Reserved  
Reserved  
IMR_TS_OFF  
Reserved  
IMR_CHG_TMR  
IMR_PRECHG  
T
E
0x00  
0B  
IMR_BOOST_U  
VLO  
IMR_BOOST_S  
CP  
SYS_IMR_3  
IMR_BOOST_OVP  
IMR_BUCK_UVP  
IMR_BUCK_OVP  
P
Datasheet  
Revision 3.3  
13-Oct-2020  
70 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x00 IMR_PWR_PL  
0C GGD  
IMR_MODE_RIS  
E
IMR_RIN_N_WA IMR_RIN_N_W  
SYS_IMR_4  
SYS_SYS_0  
SYS_BAT_0  
SYS_BAT_1  
IMR_MODE_FALL  
IMR_WD  
Reserved  
IMR_OVT  
Reserved  
IMR_RIN_N_RST  
Reserved 1  
KE2  
AKE1  
0x00  
0D  
INIT_REGS  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
HZ_MODE  
EN_SHIPMODE  
0x00  
0E  
Reserved  
Reserved  
VBAT_DIV_RATIO Reserved  
BUVLO<2:0>  
Reserved  
0x00  
0F  
IDISCHG_MON_  
EN  
TS_TRIG  
Reserved  
VBATDIV_EN  
SYS_RIN_N_ 0x00  
RIN_N_PER_W RIN_N_PER_WAKE  
RIN_N_PER_RST<1:0>  
RIN_N_RST_ROUT_EN<1:0>  
RIN_N_RST_REC<1:0>  
0
10  
AKE2  
1
SYS_STS_O 0x00  
SYS_FLT_MOD  
E
Reserved  
Reserved  
Reserved  
PWR_FLT_MODE  
Reserved  
Reserved  
Reserved 0  
Reserved  
Reserved  
UT_0  
11  
SYS_PWR_C 0x00  
PWR_CYC_MOD  
E
PWR_CYC_WAIT_PER<1:0>  
PWR_CYC_PER<1:0>  
PWR_CYC_FRC  
Reserved  
PWR_CYC_EN  
YC_0  
12  
SYS_PWR_C 0x00  
BUCK_UVP_PWR_  
CYC_EN  
BUCK_OCP_PWR_  
CYC_EN  
BTS_PWR_CY  
C_EN  
Reserved  
Reserved 0  
Reserved 0  
YC_1  
13  
0x00 WD_RST_REG  
SYS_WD_0  
WD_ROUT_EN  
WD_TMR_PER<1:0>  
WD_CLR_SEL<1:0>  
WD_EN<1:0>  
14  
S_EN  
0x00  
15  
I2C_RST_TMR_  
EN  
SYS_I2C_0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
I2C_RDCLR_DIS  
I2C_HIZ_EN  
Config  
Register  
Addr 7  
6
5
4
3
2
1
0
SYS_CFG_I2 0x00  
Reserved  
I2C_SLAVE_ADDR<6:0>  
C_0  
40  
10.1.2 Charger  
Charger and Power-path  
Register  
Addr  
7
6
5
4
3
2
1
0
CE_N  
CHG_CHG_0  
Reserved  
IPRETERM_REXT<1:0>  
ICHG_MAX<1:0>  
RMEAS_EN  
0x002 Reserve  
Datasheet  
Revision 3.3  
13-Oct-2020  
71 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0
d
0x002 Reserve TE_TS_COO  
CHG_CHG_1  
CHG_ICHG_0  
TE_TS_WARM  
TE  
TMRX2_EN Reserved  
TMR<1:0>  
1
d
L
0x002 Reserve  
ICHG<6:0>  
2
d
CHG_IPRETERM_ 0x002 Reserve  
IPRETERM<6:0>  
VBCHG<6:0>  
0
3
d
0x002 Reserve  
CHG_VBREG_0  
4
d
CHG_VBPRECHG 0x002 Reserve  
VBPRECHG_COMP_D  
IS  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
VBPRECHG<2:0>  
_0  
5
d
0x002 Reserve  
TS_DISCHG_MODE_S  
EL  
TS_WARM_E TS_OFF_MOD  
N
CHG_BAT_TS_0  
Reserved 0  
Reserved  
TS_EN_DISCHG  
TS_EN_CHG  
6
d
E
0x002 Reserve  
CHG_VDD_PWR_0  
CHG_VDD_PWR_1  
CHG_IDISCHG_0  
Reserved  
ILIM<3:0>  
7
d
0x002 Reserve  
VDD_PWR_OVP_DIS VDD_PWR_DPM_DIS ILIM_EN  
VDD_PWR_DPM<2:0>  
IDISCHG_OCP_HIZ_E IDISCHG_OCP_E  
8
d
0x002 Reserve  
Reserved  
IDISCHG_OCP<2:0>  
9
d
N
N
10.1.3 Buck, Boost, and LDO Control  
Vout User Registers  
Register  
Addr  
7
6
5
4
3
2
1
0
VOUT_BUCK  
0x0030 BUCK_EN  
VOUT_RANGE_HI Reserved  
Reserved  
BUCK_VOUT<4:0>  
VOUT_BUCK_CFG 0x0031 Reserved  
BUCK_PD_CFG2 Reserved 0  
Reserved  
Reserved  
SEL_ILIM_DLT<1:0>  
VOUT_LS_LDO0  
VOUT_LS_LDO1  
VOUT_LS_LDO2  
0x0032 EN_LS_LDO_0 Reserved  
0x0033 EN_LS_LDO_1 Reserved  
0x0034 EN_LS_LDO_2 Reserved  
LS_LDO_0<5:0>  
LS_LDO_1<5:0>  
LS_LDO_2<5:0>  
Datasheet  
Revision 3.3  
13-Oct-2020  
72 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
VOUT_LS_LDO_CFG 0x0035 Reserved  
SEL_FULLON_2 SEL_FULLON_1 SEL_FULLON_0Reserved  
BOOST_VOUT<6:0>  
SEL_LDSW_2 SEL_LDSW_1 SEL_LDSW_0  
VOUT_BOOST  
0x0036 BOOST_EN  
VOUT_BOOST_CFG0 0x0037 TSS_SEL<1:0>  
TPCHG_SEL<1:0>  
BST_CFG_OC<1:0>  
Reserved  
Reserved  
Reserved  
BST_CFG_FREQ  
Reserved 0  
VOUT_BOOST_CFG1 0x0038 BST_CFG_OCS<1:0>  
Reserved 0  
Reserved 1  
Reserved 1  
VOUT_BOOST_CFG2 0x0039 Reserved 0  
Reserved 1  
Reserved 1  
BST_CFG_ANTI BST_CFG_PCHGLMT<3:0>  
Vout Opt Registers  
Register  
Addr  
7
6
5
4
3
2
1
0
0
VOUT_BUCK_OPT0 0x0050 Reserved 0  
Reserved 0  
Reserved 0  
Reserved 1  
Reserved 1  
Reserved 0  
DVC_STEP<1:0>  
Vout Test Registers  
Register  
Addr  
7
6
5
4
3
2
1
Datasheet  
Revision 3.3  
13-Oct-2020  
73 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
10.2 Register Definitions  
10.2.1 System  
Table 45: Register SYS_STS_0  
Address  
0x0002  
Register Name  
POR Value  
0x00  
Status  
SYS_STS_0  
7
6
5
4
3
2
1
0
STS_BOOST  
Field Name  
STS_BOOST  
STS_BUCK  
STS_BUCK  
STS_CHG<1:0>  
Description  
Reserved  
Reserved  
STS_PWR_CYC  
STS_MODE  
Bits  
[7]  
POR  
0x0  
Boost no fault status  
Buck power-good status  
Charge status  
[6]  
0x0  
Value  
Description  
0x0 (POR) Charge ready  
STS_CHG  
[5:4]  
0x0  
0x1  
0x2  
0x3  
Charge in progress  
Charge done  
Fault  
STS_PWR_CYC  
STS_MODE  
[1]  
[0]  
0x0  
0x0  
Power cycle status register. Cleared after being read  
MODE pin status  
Table 46: Register SYS_ISR_0  
Address  
Register Name  
POR Value  
0x00  
IRQ status  
0x0003  
SYS_ISR_0  
Datasheet  
Revision 3.3  
13-Oct-2020  
74 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
7
6
5
4
3
2
1
0
Reserved  
Field Name  
Reserved  
ISR_VDD_SYS_UVLO ISR_VDD_PWR_ILIM ISR_VDD_PWR_DPM ISR_VDD_PWR_UVLO_RCVISR_VDD_PWR_UVLOISR_VDD_PWR_OVP  
Bits  
[5]  
POR Description  
ISR_VDD_SYS_UVLO  
ISR_VDD_PWR_ILIM  
ISR_VDD_PWR_DPM  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
VDD_SYS UVLO IRQ status  
[4]  
VDD_PWR ILIM IRQ status  
VDD_PWR DPM IRQ status  
VDD_PWR UVLO recovery IRQ status  
VDD_PWR UVLO IRQ status  
VDD_PWR OVP IRQ status  
[3]  
ISR_VDD_PWR_UVLO_RCV [2]  
ISR_VDD_PWR_UVLO  
ISR_VDD_PWR_OVP  
[1]  
[0]  
Table 47: Register SYS_ISR_1  
Address  
Register Name  
SYS_ISR_1  
6
POR Value  
0x00  
IRQ status  
0x0004  
7
5
4
3
2
1
0
ISR_TS_HOT  
Field Name  
ISR_TS_WARM  
ISR_TS_COOL  
ISR_TS_COLD  
ISR_VBAT_SHORT ISR_VBAT_OCP  
ISR_VBAT_DPPM ISR_VBAT_UVLO  
Bits  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
POR Description  
ISR_TS_HOT  
ISR_TS_WARM  
ISR_TS_COOL  
ISR_TS_COLD  
ISR_VBAT_SHORT  
ISR_VBAT_OCP  
ISR_VBAT_DPPM  
ISR_VBAT_UVLO  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Battery temperature sensor IRQ status.TS_HOT  
Battery temperature sensor IRQ status.TS_WARM  
Battery temperature sensor IRQ status.TS_COOL  
Battery temperature sensor IRQ status.TS_COLD  
VBAT short IRQ status  
VBAT OCP IRQ status  
VBAT DPPM IRQ status  
VBAT UVLO IRQ status  
Datasheet  
Revision 3.3  
13-Oct-2020  
75 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Table 48: Register SYS_ISR_2  
Address  
0x0005  
Register Name  
POR Value  
0x00  
IRQ status  
SYS_ISR_2  
7
6
5
4
3
2
1
0
Reserved  
Field Name  
ISR_TS_OFF  
ISR_CHG_TMR  
ISR_TS_OFF  
ISR_CHG_TMR  
Description  
ISR_RECHG_START ISR_CHG_DONE  
ISR_PRECHG  
ISR_BAT_SPPL  
ISR_SLP  
Bits  
[6]  
POR  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Battery temperature sensor IRQ status.TS_OFF  
Charge safety timer IRQ status  
Recharge started IRQ status  
Charge done IRQ status  
[5]  
ISR_RECHG_START  
ISR_CHG_DONE  
ISR_PRECHG  
ISR_BAT_SPPL  
ISR_SLP  
[4]  
[3]  
[2]  
[1]  
[0]  
Pre-charge IRQ status  
Battery supplement mode IRQ status  
Sleep mode IRQ status  
Table 49: Register SYS_ISR_3  
Address  
Register Name  
POR Value  
IRQ status  
0x0006  
SYS_ISR_3  
0x00  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
ISR_BOOST_UVLO ISR_BOOST_OVP ISR_BOOST_SCP ISR_BUCK_UVP  
ISR_BUCK_OVP  
ISR_BUCK_OCP  
Field Name  
ISR_BOOST_UVLO  
ISR_BOOST_OVP  
ISR_BOOST_SCP  
ISR_BUCK_UVP  
Bits  
[5]  
POR  
0x0  
0x0  
0x0  
0x0  
Description  
Boost UVP IRQ status  
Boost OVP IRQ status  
Boost OCP IRQ status  
Buck UVP IRQ status  
[4]  
[3]  
[2]  
Datasheet  
Revision 3.3  
13-Oct-2020  
76 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
ISR_BUCK_OVP  
ISR_BUCK_OCP  
[1]  
[0]  
0x0  
0x0  
Buck OVP IRQ status  
Buck OCP IRQ status  
Table 50: Register SYS_ISR_4  
Address  
0x0007  
7
Register Name  
SYS_ISR_4  
6
POR Value  
IRQ status  
0x00  
5
4
3
2
1
0
ISR_PWR_PLGGD ISR_MODE_FALL ISR_MODE_RISE  
ISR_WD  
ISR_OVT  
ISR_RIN_N_RST  
ISR_RIN_N_WAKE2 ISR_RIN_N_WAKE1  
Field Name  
Bits  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
POR  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Description  
ISR_PWR_PLGGD  
ISR_MODE_FALL  
ISR_MODE_RISE  
ISR_WD  
VDD_PWR insertion/removeal power cycle IRQ status  
MODE pin falling edge IRQ status  
MODE pin rising edge IRQ status  
Watchdog timer IRQ status  
ISR_OVT  
Overtemperature IRQ status  
ISR_RIN_N_RST  
ISR_RIN_N_WAKE2  
ISR_RIN_N_WAKE1  
RIN_N RESET timer IRQ status  
RIN_N WAKE2 timer IRQ status  
RIN_N WAKE1 timer IRQ status  
Table 51: Register SYS_IMR_0  
Address  
0x0008  
7
Register Name  
SYS_IMR_0  
5
POR Value  
0x3F  
IRQ mask  
6
4
3
2
1
0
Reserved  
Reserved  
IMR_VDD_SYS_UVLOIMR_VDD_PWR_ILIM IMR_VDD_PWR_DPMIMR_VDD_PWR_UVLO_RCVIMR_VDD_PWR_UVLOIMR_VDD_PWR_OVP  
Datasheet  
Revision 3.3  
13-Oct-2020  
77 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Field Name  
Bits  
[5]  
POR Description  
IMR_VDD_SYS_UVLO  
IMR_VDD_PWR_ILIM  
IMR_VDD_PWR_DPM  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
VDD_SYS UVLO IRQ mask  
[4]  
VDD_PWR ILIM IRQ mask  
[3]  
VDD_PWR DPM IRQ mask  
VDD_PWR UVLO recovery IRQ mask  
VDD_PWR UVLO IRQ mask  
VDD_PWR OVP IRQ mask  
IMR_VDD_PWR_UVLO_RCV [2]  
IMR_VDD_PWR_UVLO  
IMR_VDD_PWR_OVP  
[1]  
[0]  
Table 52: Register SYS_IMR_1  
Address  
Register Name  
SYS_IMR_1  
6
POR Value  
0xFF  
IRQ mask  
0x0009  
7
5
4
3
2
1
0
IMR_TS_HOT  
Field Name  
IMR_TS_WARM  
IMR_TS_COOL  
IMR_TS_COLD  
IMR_VBAT_SHORT IMR_VBAT_OCP  
IMR_VBAT_DPPM IMR_VBAT_UVLO  
Bits  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
POR Description  
IMR_TS_HOT  
IMR_TS_WARM  
IMR_TS_COOL  
IMR_TS_COLD  
IMR_VBAT_SHORT  
IMR_VBAT_OCP  
IMR_VBAT_DPPM  
IMR_VBAT_UVLO  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
Battery temperature sensor IRQ mask.TS_HOT  
Battery temperature sensor IRQ mask.TS_WARM  
Battery temperature sensor IRQ mask.TS_COOL  
Battery temperature sensor IRQ mask.TS_COLD  
VBAT short IRQ mask  
VBAT OCP IRQ mask  
VBAT DPPM IRQ mask  
VBAT UVLO IRQ mask  
Datasheet  
Revision 3.3  
13-Oct-2020  
78 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Table 53: Register SYS_IMR_2  
Address  
Register Name  
POR Value  
0x7F  
IRQ mask  
0x000A  
SYS_IMR_2  
7
6
5
4
3
2
1
0
Reserved  
Field Name  
IMR_TS_OFF  
IMR_CHG_TMR  
IMR_TS_OFF  
IMR_CHG_TMR  
Description  
IMR_RECHG_STARTIMR_CHG_DONE  
IMR_PRECHG  
IMR_BAT_SPPL  
IMR_SLP  
Bits  
[6]  
POR  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
Battery temperature sensor IRQ mask.TS_OFF  
Charge safety timer IRQ mask  
Recharge started IRQ mask  
[5]  
IMR_RECHG_START  
IMR_CHG_DONE  
IMR_PRECHG  
IMR_BAT_SPPL  
IMR_SLP  
[4]  
[3]  
[2]  
[1]  
[0]  
Charge done IRQ mask  
Pre-charge started IRQ mask  
Battery supplement mode IRQ mask  
Sleep mode IRQ mask  
Table 54: Register SYS_IMR_3  
Address  
Register Name  
POR Value  
IRQ mask  
0x000B  
SYS_IMR_3  
0x3F  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
IMR_BOOST_UVLO IMR_BOOST_OVP IMR_BOOST_SCP IMR_BUCK_UVP  
IMR_BUCK_OVP  
IMR_BUCK_OCP  
Field Name  
IMR_BOOST_UVLO  
IMR_BOOST_OVP  
IMR_BOOST_SCP  
IMR_BUCK_UVP  
Bits  
[5]  
POR  
0x1  
0x1  
0x1  
0x1  
Description  
Boost UVP IRQ mask  
Boost OVP IRQ mask  
Boost OCP IRQ mask  
Buck UVP IRQ mask  
[4]  
[3]  
[2]  
Datasheet  
Revision 3.3  
13-Oct-2020  
79 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
IMR_BUCK_OVP  
IMR_BUCK_OCP  
[1]  
[0]  
0x1  
0x1  
Buck OVP IRQ mask  
Buck OCP IRQ mask  
Table 55: Register SYS_IMR_4  
Address  
0x000C  
7
Register Name  
SYS_IMR_4  
6
POR Value  
IRQ mask  
0xFF  
5
4
3
2
1
0
IMR_PWR_PLGGD IMR_MODE_FALL IMR_MODE_RISE IMR_WD  
IMR_OVT  
IMR_RIN_N_RST  
IMR_RIN_N_WAKE2 IMR_RIN_N_WAKE1  
Field Name  
Bits  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
POR  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
Description  
IMR_PWR_PLGGD  
IMR_MODE_FALL  
IMR_MODE_RISE  
IMR_WD  
VDD_PWR insertion/removeal power cycle IRQ mask  
MODE pin falling edge IRQ mask  
MODE pin rising edge IRQ mask  
Watchdog timer IRQ mask  
IMR_OVT  
Overtemperature IRQ mask  
IMR_RIN_N_RST  
IMR_RIN_N_WAKE2  
IMR_RIN_N_WAKE1  
RIN_N RESET timer IRQ mask  
RIN_N WAKE2 timer IRQ mask  
RIN_N WAKE1 timer IRQ mask  
Table 56: Register SYS_SYS_0  
Address  
0x000D  
7
Register Name  
SYS_SYS_0  
6
POR Value  
System configuration  
0x04  
5
4
3
2
1
0
INIT_REGS  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved 1  
HZ_MODE  
EN_SHIPMODE  
Datasheet  
Revision 3.3  
13-Oct-2020  
80 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Field Name  
INIT_REGS  
HZ_MODE  
Bits  
[7]  
POR  
0x0  
0x0  
0x0  
Description  
Initialize register trigger  
[1]  
Hi-Z mode entry control. Automatically cleared when HZ mode exit  
Shipmode entry control  
EN_SHIPMODE  
[0]  
Table 57: Register SYS_BAT_0  
Address  
0x000E  
7
Register Name  
SYS_BAT_0  
6
POR Value  
System configuration  
0x06  
5
4
3
2
1
0
Reserved  
Field Name  
Reserved  
Bits  
Reserved  
VBAT_DIV_RATIO Reserved  
BUVLO<2:0>  
POR  
Description  
VBATDIV divider ratio setting  
Value Description  
0x0 (POR) 60 %  
0x1 30 %  
VBAT_DIV_RATIO  
[4]  
0x0  
Battery UVLO threshold  
Value  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
Description  
Reserved  
2.5V  
2.6V  
BUVLO  
[2:0]  
0x6  
2.7V  
2.8V  
2.9V  
0x6 (POR) 3.0V  
Datasheet  
Revision 3.3  
13-Oct-2020  
81 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x7  
Reserved  
Table 58: Register SYS_BAT_1  
Address  
Register Name  
POR Value  
0x00  
System configuration  
0x000F  
SYS_BAT_1  
7
6
5
4
3
2
1
0
Reserved  
Field Name  
TS_TRIG  
IDISCHG_MON_EN  
VBATDIV_EN  
Reserved  
Bits  
[4]  
Reserved  
TS_TRIG  
Reserved  
Reserved  
IDISCHG_MON_EN VBATDIV_EN  
POR  
0x0  
0x0  
0x0  
Description  
Trigger register for one-shot battery temp sense enable  
Enable battery discharge current monitor  
Battery voltage devider enable  
[1]  
[0]  
Table 59: Register SYS_RIN_N_0  
Address  
0x0010  
7
Register Name  
SYS_RIN_N_0  
6
POR Value  
RIN_N  
0x66  
5
4
3
2
1
0
RIN_N_PER_RST<1:0>  
RIN_N_PER_WAKE2 RIN_N_PER_WAKE1RIN_N_RST_ROUT_EN<1:0>  
RIN_N_RST_REC<1:0>  
Field Name  
Bits  
POR  
Description  
RIN_N RESET timer period  
Value  
Description  
0x0  
4s  
RIN_N_PER_RST  
[7:6]  
0x1  
0x1 (POR) 8s  
0x2  
0x3  
10s  
14s  
Datasheet  
Revision 3.3  
13-Oct-2020  
82 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
RIN_N WAKE2 timer period  
Value  
Description  
RIN_N_PER_WAKE2  
RIN_N_PER_WAKE1  
[5]  
[4]  
0x1  
0x0  
0x0  
1.0s  
0x1 (POR) 1.5s  
RIN_N WAKE1 timer period  
Value  
0x0 (POR) 50ms  
0x1 500ms  
Description  
ROUT_N pulse output enable for RESET wake-up  
Value  
Description  
0x0  
Disable  
RIN_N_RST_ROUT_EN [3:2]  
0x1  
0x1 (POR) Enable  
0x2  
0x3  
Enable only when VDD_PWR is present  
Reserved  
Reset timer Hi-Z / ship mode transition control  
Value  
0x0  
Description  
Reset timer is not used for both  
Enter ship mode after RIN_N reset timer hit  
RIN_N_RST_REC  
[1:0]  
0x2  
0x1  
0x2 (POR) Enter Hi-Z mode after RIN_N reset timer hit  
0x3 Reserved  
Table 60: Register SYS_STS_OUT_0  
Address  
Register Name  
POR Value  
Status inidicator  
0x0011  
SYS_STS_OUT_0 0x01  
Datasheet  
Revision 3.3  
13-Oct-2020  
83 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
7
6
5
4
3
2
1
0
Reserved  
Field Name  
Reserved  
Reserved  
Description  
PWR_FLT_MODE Reserved  
Reserved  
Reserved  
SYS_FLT_MODE  
Bits  
POR  
PWR_FLT mode select  
Value Description  
0x0 (POR) Power good indicator  
PWR_FLT_MODE  
SYS_FLT_MODE  
[4]  
[0]  
0x0  
0x1  
Voltage shifted RIN_N output  
SYS_FLT mode select  
Value  
Description  
IRQ I/F enabled and charge status indicator disabled  
0x1  
0x0  
0x1 (POR) IRQ I/F enabled and charge status indicator enabled  
Table 61: Register SYS_PWR_CYC_0  
Address  
0x0012  
7
Register Name  
POR Value  
Power cycle  
SYS_PWR_CYC_0 0x91  
6
5
4
3
2
1
0
PWR_CYC_WAIT_PER<1:0>  
PWR_CYC_PER<1:0>  
Description  
Reserved  
PWR_CYC_FRC  
PWR_CYC_MODE PWR_CYC_EN  
Field Name  
Bits  
POR  
Power cycle wait period setting  
Value  
0x0  
Description  
0s  
PWR_CYC_WAIT_PER  
[7:6]  
0x2  
0x1  
0.5s  
0x2 (POR) 1.0s  
Datasheet  
Revision 3.3  
13-Oct-2020  
84 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x3  
2.0s  
Power cycle period setting  
Value  
Description  
0x0  
5s  
PWR_CYC_PER  
[5:4]  
0x1  
0x1 (POR) 10s  
0x2  
0x3  
15s  
20s  
PWR_CYC_FRC  
PWR_CYC_MODE  
PWR_CYC_EN  
[2]  
[1]  
[0]  
0x0  
0x0  
0x1  
Write 1 to force power-cycling  
Power cycle trigger select  
Value  
Description  
0x0 (POR) VDD_PWR insertion/removal  
0x1  
RESET wake-up timer when VDD_PWR present  
Power cycle enable  
Table 62: Register SYS_PWR_CYC_1  
Address  
0x0013  
7
Register Name  
POR Value  
Power cycle  
SYS_PWR_CYC_1 0x00  
6
5
4
3
2
1
0
BUCK_UVP_PWR  
_CYC_EN  
BUCK_OCP_PWR_CYC  
_EN  
BTS_PWR_CYC  
_EN  
Reserved  
Reserved 0  
Reserved 0  
Reserved  
Reserved 0  
Field Name  
Bits POR Description  
BUCK_UVP_PWR_CYC_EN  
BUCK_OCP_PWR_CYC_EN  
[6]  
[4]  
0x0  
0x0  
Power cycle enable triggerd by Buck UVP  
Power cycle enable triggerd by Buck OCP  
Datasheet  
Revision 3.3  
13-Oct-2020  
85 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
BTS_PWR_CYC_EN  
[0]  
0x0  
Power cycle enable triggerd by TS_HOT  
Table 63: Register SYS_WD_0  
Address  
0x0014  
7
Register Name  
SYS_WD_0  
6
POR Value  
Watchdog timer  
0x10  
5
4
3
2
1
0
WD_RST_REGS_EN WD_ROUT_EN  
WD_TMR_PER<1:0>  
WD_CLR_SEL<1:0>  
WD_EN<1:0>  
Field Name  
Bits  
[7]  
POR  
0x0  
Description  
WD_RST_REGS_EN  
WD_ROUT_EN  
Register reset on watchdog timeout enable  
Reset output on watchdog timeout enable  
Watchdog timer timeout period  
[6]  
0x0  
Value  
Description  
0x0  
25s  
WD_TMR_PER  
[5:4]  
0x1  
0x1 (POR) 50s  
0x2  
0x3  
Reserved  
Reserved  
Watchdog timer clear condition  
Value Description  
0x0 (POR) Only I2C clears the timer  
WD_CLR_SEL  
[3:2]  
[1:0]  
0x0  
0x0  
0x1  
0x2  
0x3  
Only WD pin clears the timer  
Both I2C and WD pin clear the timer  
Reserved  
Watchdog timer enable  
Value Description  
WD_EN  
Datasheet  
Revision 3.3  
13-Oct-2020  
86 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x0 (POR) Disable  
0x1  
0x2  
0x3  
Enable only when VDD_PWR present  
Disable in Hi-Z mode  
Always enable  
Table 64: Register SYS_I2C_0  
Address  
Register Name  
POR Value  
I2C  
0x0015  
SYS_I2C_0  
0x00  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
I2C_RDCLR_DIS  
I2C_RST_TMR_EN I2C_HIZ_EN  
Field Name  
Bits  
[2]  
POR  
0x0  
0x0  
0x0  
Description  
I2C_RDCLR_DIS  
I2C_RST_TMR_EN  
I2C_HIZ_EN  
I2C read clear disable for ISR registers and STS_PWR_CYC register  
I2C reset timer enable  
[1]  
[0]  
I2C enable in Hi-Z mode  
10.2.2 Config  
Table 65: Register SYS_CFG_I2C_0  
Address  
0x0040  
Register Name  
POR Value  
I2C  
SYS_CFG_I2C_0 0x68  
7
6
5
4
3
2
1
0
Reserved  
Field Name  
I2C_SLAVE_ADDR  
I2C_SLAVE_ADDR<6:0>  
Bits  
POR  
Description  
[6:0]  
0x68  
I2C slave addr  
Datasheet  
Revision 3.3  
13-Oct-2020  
87 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
10.2.3 Charger  
10.2.3.1  
Charger and Power-Path  
Table 66: Register CHG_CHG_0  
Address  
0x0020  
7
Register Name  
CHG_CHG_0  
6
POR Value  
Charge  
0x01  
5
4
3
2
1
0
Reserved  
Field Name  
Reserved  
Bits  
IPRETERM_REXT<1:0>  
ICHG_MAX<1:0>  
RMEAS_EN  
CE_N  
POR  
Description  
Charge termination/pre-charge current range by RITER_CHG. Read-only.  
Value Description  
0x0 (POR) 5% of ICHG  
IPRETERM_REXT  
[5:4]  
0x0  
0x1  
0x2  
0x3  
10% of ICHG  
15% of ICHG  
20% of ICHG  
Maximum charge current limit.  
Value Description  
0x0 (POR) No limit  
ICHG_MAX  
[3:2]  
0x0  
0x1  
0x2  
0x3  
20mA  
70mA  
200mA  
RMEAS_EN  
CE_N  
[1]  
[0]  
0x0  
0x1  
External resistance programming enable. Write-locked when CE_N is 0.  
Charge enable  
Value  
Description  
Datasheet  
Revision 3.3  
13-Oct-2020  
88 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x0  
Enable charging  
0x1 (POR) Disable charging  
Table 67: Register CHG_CHG_1  
Address  
0x0021  
Register Name  
POR Value  
Charge  
CHG_CHG_1  
0x19  
7
6
5
4
3
2
1
0
Reserved  
Field Name  
TE_TS_COOL  
TE_TS_WARM  
TE  
TE_TS_COOL  
TE_TS_WARM  
Description  
TE  
TMRX2_EN  
Reserved  
TMR<1:0>  
Bits  
[6]  
POR  
0x0  
0x0  
0x1  
0x1  
Termination enable during TS COOL. Write-locked when CE_N is 0.  
Termination enable during TS WARM. Write-locked when CE_N is 0.  
Charge current termination enable. Write-locked when CE_N is 0.  
Safety timer half rate enable. Write-locked when CE_N is 0.  
Safety timer period. Write-locked when CE_N is 0.  
[5]  
[4]  
TMRX2_EN  
[3]  
Value  
Description  
0x0  
30m  
TMR  
[1:0]  
0x1  
0x1 (POR) 3h  
0x2  
0x3  
9h  
Timer disabled  
Table 68: Register CHG_ICHG_0  
Address  
Register Name  
POR Value  
Charge current  
0x0022  
CHG_ICHG_0  
0x41  
Datasheet  
Revision 3.3  
13-Oct-2020  
89 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
7
6
5
4
3
2
1
0
Reserved  
Field Name  
ICHG<6:0>  
Bits  
POR  
Description  
Charge current (mA)  
2.0-4.8 mA settings are available when SEL_ICHG_LOW=1.  
Value  
0x0  
Description  
5 (2)  
6 (2.4)  
7 (2.8)  
8 (3.2)  
9 (3.6)  
10 (4)  
11 (4.4)  
12 (4.8)  
13  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
ICHG  
[6:0]  
0x41  
0x7  
0x8  
0x9  
14  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
15  
16  
17  
18  
19  
20  
21  
Datasheet  
Revision 3.3  
13-Oct-2020  
90 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x11  
22  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x3F  
0x40  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
Reserved  
Reserved  
40  
0x41 (POR) 50  
0x42  
0x43  
0x44  
0x45  
0x46  
60  
70  
80  
90  
100  
Datasheet  
Revision 3.3  
13-Oct-2020  
91 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x47  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
210  
220  
230  
240  
250  
260  
270  
280  
290  
300  
310  
320  
330  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
Datasheet  
Revision 3.3  
13-Oct-2020  
92 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x5E  
340  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x7F  
350  
360  
370  
380  
390  
400  
410  
420  
430  
440  
450  
460  
470  
480  
490  
500  
Reserved  
Reserved  
Table 69: Register CHG_IPRETERM_0  
Address  
Register Name  
POR Value  
Precharge / termination current  
0x0023  
CHG_IPRETERM_0 0x04  
Datasheet  
Revision 3.3  
13-Oct-2020  
93 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
7
6
5
4
3
2
1
0
Reserved  
IPRETERM<6:0>  
Field Name  
Bits  
POR  
Description  
Precharge / termination current  
Value  
0x0  
Description  
0.5  
1
0x1  
0x2  
1.5  
2
0x3  
0x4 (POR) 2.5  
0x5  
3
0x6  
3.5  
0x7  
4
IPRETERM  
[6:0]  
0x4  
0x8  
4.5  
0x9  
5
0x0A  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
Reserved  
Reserved  
6
7
8
9
10  
Datasheet  
Revision 3.3  
13-Oct-2020  
94 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x45  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
Datasheet  
Revision 3.3  
13-Oct-2020  
95 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x5C  
34  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x7F  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
Reserved  
Reserved  
Table 70: Register CHG_VBREG_0  
Address  
Register Name  
POR Value  
Battery regulation voltage  
0x0024  
CHG_VBREG_0  
0x3C  
Datasheet  
Revision 3.3  
13-Oct-2020  
96 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
7
6
5
4
3
2
1
0
Reserved  
VBCHG<6:0>  
Field Name  
Bits  
POR  
Description  
Battery regulation voltage  
Value  
0x0  
Description  
3.6  
0x1  
3.61  
3.62  
3.63  
3.64  
3.65  
3.66  
3.67  
3.68  
3.69  
3.7  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
VBCHG  
[6:0]  
0x3C  
0x8  
0x9  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
3.71  
3.72  
3.73  
3.74  
3.75  
3.76  
Datasheet  
Revision 3.3  
13-Oct-2020  
97 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x11  
3.77  
3.78  
3.79  
3.8  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
3.81  
3.82  
3.83  
3.84  
3.85  
3.86  
3.87  
3.88  
3.89  
3.9  
3.91  
3.92  
3.93  
3.94  
3.95  
3.96  
3.97  
3.98  
3.99  
Datasheet  
Revision 3.3  
13-Oct-2020  
98 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x28  
4
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
4.01  
4.02  
4.03  
4.04  
4.05  
4.06  
4.07  
4.08  
4.09  
4.1  
4.11  
4.12  
4.13  
4.14  
4.15  
4.16  
4.17  
4.18  
4.19  
0x3C (POR) 4.2  
0x3D  
0x3E  
4.21  
4.22  
Datasheet  
Revision 3.3  
13-Oct-2020  
99 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x3F  
4.23  
4.24  
4.25  
4.26  
4.27  
4.28  
4.29  
4.3  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
4.31  
4.32  
4.33  
4.34  
4.35  
4.36  
4.37  
4.38  
4.39  
4.4  
4.41  
4.42  
4.43  
4.44  
4.45  
Datasheet  
Revision 3.3  
13-Oct-2020  
100 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x56  
4.46  
4.47  
4.48  
4.49  
4.5  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x7F  
4.51  
4.52  
4.53  
4.54  
4.55  
4.56  
4.57  
4.58  
4.59  
4.6  
4.61  
4.62  
4.63  
4.64  
4.65  
Reserved  
Reserved  
Datasheet  
Revision 3.3  
13-Oct-2020  
101 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Table 71: Register CHG_VBPRECHG_0  
Address  
Register Name  
POR Value  
Battery precharge voltage  
0x0025  
CHG_VBPRECHG_0 0x06  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
Reserved  
VBPRECHG_COMP_DIS Reserved  
VBPRECHG<2:0>  
Field Name  
Bits  
POR  
Description  
Precharge comparator disable. Charger operates in pre-charge mode when VBAT short detected. Write-locked when CE_N is 0.  
Value Description  
0x0 (POR) Precharge threshold is as specified by VBPRECHG  
0x1 Charger will ignore precharge threshold  
VBPRECHG_COMP_DIS [4]  
0x0  
Battery precharge voltage (V)  
Value  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
Description  
Reserved  
2.7  
2.8  
2.9  
3
VBPRECHG  
[2:0]  
0x6  
3.1  
0x6 (POR) 3.2  
0x7 Reserved  
Datasheet  
Revision 3.3  
13-Oct-2020  
102 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Table 72: Register CHG_BAT_TS_0  
Address  
Register Name  
POR Value  
Battery temperature sense  
0x0026  
CHG_BAT_TS_0  
0x01  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
TS_DISCHG_MODE_SEL Reserved 0  
TS_WARM_EN  
TS_OFF_MODE  
TS_EN_DISCHG  
TS_EN_CHG  
Field Name  
Bits  
POR  
Description  
Temp sense mode selection during discharging  
Value Description  
0x0 (POR) Periodic sampling mode with 2s period  
0x1 Host triggered sampling mode  
TS_DISCHG_MODE_SEL [5]  
0x0  
0x0  
0x0  
TS_WARM_EN  
TS_OFF_MODE  
[3]  
[2]  
TS WARM function enable. Write-locked when CE_N is 0, or when TS_EN is not 0.  
TS OFF mode control. Write-locked when CE_N is 0, or when TS_EN is not 0.  
Value  
0x0 (POR) Battery TS feature is disabled when TS_OFF  
0x1 Charger falut condition when TS_OFF  
Description  
TS_EN_DISCHG  
TS_EN_CHG  
[1]  
[0]  
0x0  
0x1  
Battery temperature sense enable during discharging  
Battery temperature sense enable during charging  
Table 73: Register CHG_VDD_PWR_0  
Address  
Register Name  
POR Value  
VDD_PWR  
0x0027  
CHG_VDD_PWR_0 0x02  
Datasheet  
Revision 3.3  
13-Oct-2020  
103 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
ILIM<3:0>  
Field Name  
Bits  
POR  
Description  
Input current limit (mA)  
Value  
0x0  
Description  
2.5  
50  
0x1  
0x2 (POR) 100  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
150  
200  
250  
300  
ILIM  
[3:0]  
0x2  
350  
400  
450  
500  
550  
600  
Reserved  
Reserved  
Reserved  
Datasheet  
Revision 3.3  
13-Oct-2020  
104 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Table 74: Register CHG_VDD_PWR_1  
Address  
Register Name  
POR Value  
VDD_PWR  
0x0028  
CHG_VDD_PWR_1 0x0C  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
VDD_PWR_OVP_DISVDD_PWR_DPM_DISILIM_EN  
VDD_PWR_DPM<2:0>  
Field Name  
Bits  
POR  
0x0  
0x0  
0x1  
Description  
VDD_PWR_OVP_DIS  
VDD_PWR_DPM_DIS  
ILIM_EN  
[5]  
[4]  
[3]  
VDD_PWR OVP disable  
VDD_PWR DPM disable  
Input current limit enable  
VDD_PWR DPM threshold voltage (V)  
Value  
0x0  
Description  
4.2  
4.3  
4.4  
4.5  
0x1  
0x2  
VDD_PWR_DPM  
[2:0]  
0x4  
0x3  
0x4 (POR) 4.6  
0x5  
0x6  
0x7  
4.7  
4.8  
4.9  
Datasheet  
Revision 3.3  
13-Oct-2020  
105 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Table 75: Register CHG_IDISCHG_0  
Address  
Register Name  
POR Value  
Battery discharge current limit  
0x0029  
CHG_IDISCHG_0 0x0D  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
Reserved  
IDISCHG_OCP<2:0>  
IDISCHG_OCP_HIZ_EN IDISCHG_OCP_EN  
Field Name  
Bits  
POR  
Description  
Battery discharge over-current protection setting (A)  
Value  
0x0  
Description  
0.55  
0x1  
0.75  
0x2  
0.95  
IDISCHG_OCP  
[4:2]  
0x3  
0x3 (POR) 1.15  
0x4  
0x5  
0x6  
0x7  
1.35  
1.55  
1.75  
Reserved  
IDISCHG_OCP_HIZ_EN [1]  
0x0  
0x1  
Battery discharge over-current protection enable, even during HiZ  
Battery discharge over-current protection enable  
IDISCHG_OCP_EN  
[0]  
Datasheet  
Revision 3.3  
13-Oct-2020  
106 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
10.2.4 Buck, Boost, and LDO Control  
10.2.4.1  
VOUT User Registers  
Table 76: Register VOUT_BUCK  
Address  
Register Name  
POR Value  
Buck eneble & vout control  
0x0030  
VOUT_BUCK  
0x5C  
7
6
5
4
3
2
1
0
BUCK_EN  
VOUT_RANGE_HI Reserved  
BUCK_VOUT<4:0>  
Field Name  
Bits  
POR  
Description  
BUCK_EN  
[7]  
0x0  
BUCK enable  
Buck output range control.  
This register can be written when buck is disabled or when BUCK_EN is being written to 0.  
Value  
Description  
VOUT_RANGE_HI  
[6]  
0x1  
0x0  
0.60 V <= VBUCK <= 1.30 V  
0x1 (POR) 1.30 V <= VBUCK <= 2.10 V  
Buck output voltage setting (0.6 V to 2.1 V in 50 mV steps).  
0.60 V to 1.30 V can be set when VOUT_RANGE_HI=0 and 1.3 V to 2.1 V can be set when VOUT_RANGE_HI=1.  
Value  
0x00  
0x01  
0x02  
0x03  
Description  
0.60 V  
BUCK_VOUT  
[4:0]  
0x1C  
0.65 V  
0.70 V  
0.75 V  
Datasheet  
Revision 3.3  
13-Oct-2020  
107 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x04  
0.80 V  
0.85 V  
0.90 V  
0.95 V  
1.00 V  
1.05 V  
1.10 V  
1.15 V  
1.20 V  
1.25 V  
1.30 V  
1.35 V  
1.40 V  
1.45 V  
1.50 V  
1.55 V  
1.60 V  
1.65 V  
1.70 V  
1.75 V  
1.80 V  
1.85 V  
1.90 V  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
Datasheet  
Revision 3.3  
13-Oct-2020  
108 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x1B  
1.95 V  
0x1C (POR) 2.00 V  
0x1D  
0x1E  
0x1F  
2.05 V  
2.10 V  
Reserved  
Table 77: Register VOUT_BUCK_CFG  
Address  
Register Name  
POR Value  
Buck config  
0x0031  
VOUT_BUCK_CFG 0x00  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
BUCK_PD_CFG2  
Reserved 0  
Reserved  
Reserved  
SEL_ILIM_DLT<1:0>  
Field Name  
Bits  
POR  
Description  
Output discharge enable at buck disable  
Value Description  
0x0 (POR) Enable  
0x1 Disable  
BUCK_PD_CFG2  
[5]  
0x0  
Buck peak current limit setting  
Value Description  
0x0 (POR) Default -50mA  
SEL_ILIM_DLT  
[1:0]  
0x0  
0x1  
0x2  
0x3  
Default current limit  
Default +50mA  
Default +100mA  
Datasheet  
Revision 3.3  
13-Oct-2020  
109 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Table 78: Register VOUT_LS_LDO0  
Address  
Register Name  
POR Value  
LS_LDO_0 control  
0x0032  
VOUT_LS_LDO0  
0x24  
7
6
5
4
3
2
1
0
EN_LS_LDO_0  
Reserved  
LS_LDO_0<5:0>  
Field Name  
Bits  
POR  
Description  
EN_LS_LDO_0  
[7]  
0x0  
LS_LDO_0 enable. LDO becomes active 20ms after LDO0 gets enabled.  
LDO0 voltage setting, can't be written when LS_LDO0 is enabled.  
0.8 V to 1.6 V in 25 mV steps and 1.6 V to 3.15 V in 50 mV steps.  
Value  
0x0  
Description  
0.8  
0x1  
0.825  
0.85  
0x2  
0x3  
0.875  
0.9  
0x4  
LS_LDO_0  
[5:0]  
0x24  
0x5  
0.925  
0.95  
0x6  
0x7  
0.975  
1
0x8  
0x9  
1.025  
1.05  
0x0A  
0x0B  
1.075  
Datasheet  
Revision 3.3  
13-Oct-2020  
110 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x0C  
1.1  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
1.125  
1.15  
1.175  
1.2  
1.225  
1.25  
1.275  
1.3  
1.325  
1.35  
1.375  
1.4  
1.425  
1.45  
1.475  
1.5  
1.525  
1.55  
1.575  
1.6  
1.65  
1.7  
Datasheet  
Revision 3.3  
13-Oct-2020  
111 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x23  
0x24 (POR) 1.8  
1.85  
1.75  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
1.9  
1.95  
2
2.05  
2.1  
2.15  
2.2  
2.25  
2.3  
2.35  
2.4  
2.45  
2.5  
2.55  
2.6  
2.65  
2.7  
2.75  
2.8  
2.85  
Datasheet  
Revision 3.3  
13-Oct-2020  
112 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x3A  
2.9  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
2.95  
3
3.05  
3.1  
3.15  
Table 79: Register VOUT_LS_LDO1  
Address  
Register Name  
POR Value  
LS_LDO_1 control  
0x0033  
VOUT_LS_LDO1  
0x28  
7
6
5
4
3
2
1
0
EN_LS_LDO_1  
Reserved  
LS_LDO_1<5:0>  
Field Name  
Bits  
POR  
Description  
EN_LS_LDO_1  
[7]  
0x0  
LS_LDO_1 enable. LDO becomes active 20ms after LS_LDO_1 gets enabled.  
LDO1 voltage setting, can't be written when LS_LDO1 is enabled.  
0.8 V to 2.4 V in 50 mV steps and 2.4 V to 3.3 V in 75 mV steps.  
Value  
0x0  
Description  
0.8  
0.85  
0.9  
0.95  
1
LS_LDO_1  
[5:0]  
0x28  
0x1  
0x2  
0x3  
0x4  
Datasheet  
Revision 3.3  
13-Oct-2020  
113 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x5  
0x6  
0x7  
0x8  
0x9  
1.05  
1.1  
1.15  
1.2  
1.25  
1.3  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
1.35  
1.4  
1.45  
1.5  
1.55  
1.6  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
2
2.05  
2.1  
2.15  
Datasheet  
Revision 3.3  
13-Oct-2020  
114 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x1C  
2.2  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
2.25  
2.3  
2.35  
2.4  
2.475  
2.55  
2.625  
2.7  
2.775  
2.85  
2.925  
0x28 (POR) 3  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x3F  
3.075  
3.15  
3.225  
3.3  
Reserved  
Reserved  
Table 80: Register VOUT_LS_LDO2  
Address  
Register Name  
POR Value  
LS_LDO_2 control  
0x0034  
VOUT_LS_LDO2  
0x14  
Datasheet  
Revision 3.3  
13-Oct-2020  
115 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
7
6
5
4
3
2
1
0
EN_LS_LDO_2  
Reserved  
LS_LDO_2<5:0>  
Field Name  
Bits  
POR  
Description  
EN_LS_LDO_2  
[7]  
0x0  
LS_LDO_2 enable. LDO becomes active 20ms after LS_LDO_2 gets enabled.  
LDO2 voltage setting, can't be written when LS_LDO2 is enabled.  
0.8 V to 2.4 V in 50 mV steps and 2.4 V to 3.3 V in 75 mV steps.  
Value  
0x0  
Description  
0.8  
0x1  
0.85  
0.9  
0x2  
0x3  
0.95  
1
0x4  
0x5  
1.05  
1.1  
0x6  
LS_LDO_2  
[5:0]  
0x14  
0x7  
1.15  
1.2  
0x8  
0x9  
1.25  
1.3  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
1.35  
1.4  
1.45  
1.5  
1.55  
Datasheet  
Revision 3.3  
13-Oct-2020  
116 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x10  
1.6  
0x11  
0x12  
0x13  
1.65  
1.7  
1.75  
0x14 (POR) 1.8  
1.85  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
1.9  
1.95  
2
2.05  
2.1  
2.15  
2.2  
2.25  
2.3  
2.35  
2.4  
2.475  
2.55  
2.625  
2.7  
2.775  
2.85  
Datasheet  
Revision 3.3  
13-Oct-2020  
117 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x27  
2.925  
3
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x3F  
3.075  
3.15  
3.225  
3.3  
Reserved  
Reserved  
Table 81: Register VOUT_LS_LDO_CFG  
Address  
Register Name  
POR Value  
LS_LDO_CFG  
0x0035  
VOUT_LS_LDO_CFG0x00  
7
6
5
4
3
2
1
0
Reserved  
SEL_FULLON_2  
SEL_FULLON_1  
SEL_FULLON_0  
Reserved  
SEL_LDSW_2  
SEL_LDSW_1  
SEL_LDSW_0  
Field Name  
Bits  
POR  
Description  
LS_LDO2 current limit enable, can't be written when LS_LDO2 is enabled.  
Value Description  
0x0 (POR) Enable  
0x1 Disable  
SEL_FULLON_2  
[6]  
0x0  
0x0  
LS_LDO1 current limit enable, can't be written when LS_LDO1 is enabled.  
Value Description  
0x0 (POR) Enable  
SEL_FULLON_1  
[5]  
Datasheet  
Revision 3.3  
13-Oct-2020  
118 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x1  
Disable  
LS_LDO0 current limit enable, can't be written when LS_LDO0 is enabled.  
Value Description  
0x0 (POR) Enable  
0x1 Disable  
SEL_FULLON_0  
SEL_LDSW_2  
SEL_LDSW_1  
SEL_LDSW_0  
[4]  
[2]  
[1]  
[0]  
0x0  
0x0  
0x0  
0x0  
LS_LDO2 function select, can't be written when LS_LDO2 is enabled.  
Value Description  
0x0 (POR) LDO  
0x1  
LDSW  
LS_LDO1 function select, can't be written when LS_LDO1 is enabled.  
Value  
Description  
0x0 (POR) LDO  
0x1  
LDSW  
LS_LDO0 function select, can't be written when LS_LDO0 is enabled.  
Value  
Description  
0x0 (POR) LDO  
0x1  
LDSW  
Table 82: Register VOUT_BOOST  
Address  
Register Name  
POR Value  
BOOST control  
0x0036  
VOUT_BOOST  
0x27  
Datasheet  
Revision 3.3  
13-Oct-2020  
119 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
7
6
5
4
3
2
1
0
BOOST_EN  
BOOST_VOUT<6:0>  
Field Name  
Bits  
POR  
Description  
BOOST_EN  
[7]  
0x0  
Boost enable  
Boost voltage setting, can be written when boost is disabled or being disabled by the same write access.  
4.5 V to 9 V in 125 mV steps and 9 V to 18 V in 250 mV steps.  
Writing 0x1A or lower becomes writing 0x1B.  
Value  
0x0  
Description  
Reserved  
Reserved  
9
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
9.25  
9.5  
9.75  
BOOST_VOUT  
[6:0]  
0x27  
10  
10.25  
10.5  
10.75  
11  
11.25  
11.5  
11.75  
0x27 (POR) 12  
Datasheet  
Revision 3.3  
13-Oct-2020  
120 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x28  
12.25  
12.5  
12.75  
13  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
13.25  
13.5  
13.75  
14  
14.25  
14.5  
14.75  
15  
15.25  
15.5  
15.75  
16  
16.25  
16.5  
16.75  
17  
17.25  
17.5  
17.75  
Datasheet  
Revision 3.3  
13-Oct-2020  
121 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x3F  
18  
0x40  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
Reserved  
Reserved  
4.5  
4.625  
4.75  
4.875  
5
5.125  
5.25  
5.375  
5.5  
5.625  
5.75  
5.875  
6
6.125  
6.25  
6.375  
6.5  
6.625  
6.75  
6.875  
Datasheet  
Revision 3.3  
13-Oct-2020  
122 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
0x6F  
7
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
7.125  
7.25  
7.375  
7.5  
7.625  
7.75  
7.875  
8
8.125  
8.25  
8.375  
8.5  
8.625  
8.75  
8.875  
9
Table 83: Register VOUT_BOOST_CFG0  
Address  
Register Name  
POR Value  
BOOST config0  
0x0037  
VOUT_BOOST_CFG0 0x00  
7
6
5
4
3
2
1
0
TSS_SEL<1:0>  
TPCHG_SEL<1:0>  
Reserved  
Reserved  
Reserved  
BST_CFG_FREQ  
Datasheet  
Revision 3.3  
13-Oct-2020  
123 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Field Name  
Bits  
POR  
Description  
BOOST Tss select, can't be written when boost is enabled.  
Value  
Description  
0x0 (POR) 3 ms  
TSS_SEL  
[7:6]  
0x0  
0x1  
0x2  
0x3  
6 ms  
9 ms  
12 ms  
BOOST Tpchg select, can't be written when boost is enabled.  
Value Description  
0x0 (POR) 2 ms  
TPCHG_SEL  
[5:4]  
0x0  
0x1  
0x2  
0x3  
4 ms  
8 ms  
16 ms  
Switching frequency select, can't be written when boost is enabled.  
Value Description  
0x0 (POR) 1 MHz  
0x1 2 MHz  
BST_CFG_FREQ  
[0]  
0x0  
Table 84: Register VOUT_BOOST_CFG1  
Address  
Register Name  
POR Value  
BOOST config1  
0x0038  
VOUT_BOOST_CFG1 0xA6  
Datasheet  
Revision 3.3  
13-Oct-2020  
124 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
7
6
5
4
3
2
1
0
BST_CFG_OCS<1:0>  
BST_CFG_OC<1:0>  
Reserved 0  
Reserved 1  
Reserved 1  
Reserved 0  
Field Name  
Bits  
POR  
Description  
Over current protection during soft start, can't be written when boost is enabled.  
Value  
0x0  
Description  
510 mA  
BST_CFG_OCS  
[7:6]  
0x2  
0x1  
650 mA  
0x2 (POR) 780 mA  
0x3 920 mA  
Over current protection at normal operation, can't be written when boost is enabled.  
Value  
0x0  
Description  
0.9 A  
BST_CFG_OC  
[5:4]  
0x2  
0x1  
1.3 A  
0x2 (POR) 1.7 A  
0x3 2.1 A  
Table 85: Register VOUT_BOOST_CFG2  
Address  
Register Name  
POR Value  
BOOST config2  
0x0039  
VOUT_BOOST_CFG2 0x70  
7
6
5
4
3
2
1
0
Reserved 0  
Reserved 1  
Reserved 1  
BST_CFG_ANTI  
BST_CFG_PCHGLMT<3:0>  
Datasheet  
Revision 3.3  
13-Oct-2020  
125 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Field Name  
Bits  
POR  
Description  
BST_CFG_ANTI  
[4]  
0x1  
Anti ringing enable, can't be written when boost is enabled.  
Pre-charge current limit, can't be written when boost is enabled.  
Value  
Description  
0x0 (POR) x1  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
x2  
x3  
x4  
x5  
x6  
x7  
BST_CFG_PCHGLMT  
[3:0]  
0x0  
x8  
x9  
x10  
x11  
x12  
x13  
x14  
x15  
x16  
Datasheet  
Revision 3.3  
13-Oct-2020  
126 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
10.2.4.2  
VOUT Opt Registers  
Table 86: Register VOUT_BUCK_OPT0  
Address  
0x0050  
Register Name  
POR Value  
BUCK_OPT0  
VOUT_BUCK_OPT0 0x1B  
7
6
5
4
3
2
1
0
Reserved 0  
Field Name  
Reserved 0  
Reserved 0  
Description  
Reserved 1  
Reserved 1  
Reserved 0  
DVC_STEP<1:0>  
Bits  
POR  
DVC step control; 00: No DVC, 01: 50mV/0.5ms, 10: 50mV/1ms, 11: 50mV/2ms  
Value  
0x0  
Description  
No DVC  
DVC_STEP  
[1:0]  
0x3  
0x1  
50mV/1ms  
50mV/2ms  
0x2  
0x3 (POR) 50mV/4ms  
Datasheet  
Revision 3.3  
13-Oct-2020  
127 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
11 Package Information  
11.1 Package Outlines  
Figure 44: WLCSP-42 Package Outline Drawing  
11.2 Moisture Sensitivity Level  
The Moisture Sensitivity Level (MSL) is an indicator for the maximum allowable time period (floor  
lifetime) in which a moisture sensitive plastic device, once removed from the dry bag, can be  
exposed to an environment with a maximum temperature of 30 °C and a maximum relative humidity  
of 60 % RH before the solder reflow process. The MSL classification is defined in Table 87.  
The device package is qualified for MSL 1.  
Table 87: MSL Classification  
MSL Level  
Floor Lifetime  
Conditions  
MSL 1  
Unlimited  
30 °C / 85 % RH  
11.3 Soldering Information  
Refer to the IPC/JEDEC standard J-STD-020 for relevant soldering information. This document can  
be downloaded from http://www.jedec.org.  
Datasheet  
Revision 3.3  
13-Oct-2020  
128 of 130  
© 2020 Dialog Semiconductor  
 
DA9070  
Ultra-Low Quiescent Current PMIC  
12 Ordering Information  
The ordering number consists of the part number followed by a suffix indicating the OTP variant (xx),  
package type, and packing method. For details and availability, please consult Dialog  
Semiconductor’s customer support portal or your local sales representative.  
Table 88: Ordering Information  
Part Number  
DA9070-xxV32  
DA9070-xxV36  
Package  
WLCSP  
WLCSP  
Size (mm)  
2.97 x 2.66  
2.97 x 2.66  
Shipment Form  
T&R  
Pack Quantity  
2000  
90  
Waffle  
Datasheet  
Revision 3.3  
13-Oct-2020  
129 of 130  
© 2020 Dialog Semiconductor  
DA9070  
Ultra-Low Quiescent Current PMIC  
Status Definitions  
Revision  
Datasheet Status  
Product Status  
Definition  
1.<n>  
Target  
Development  
This datasheet contains the design specifications for product development.  
Specifications may be changed in any manner without notice.  
2.<n>  
3.<n>  
Preliminary  
Final  
Qualification  
Production  
This datasheet contains the specifications and preliminary characterisation  
data for products in pre-production. Specifications may be changed at any  
time without notice in order to improve the design.  
This datasheet contains the final specifications for products in volume  
production. The specifications may be changed at any time in order to  
improve the design, manufacturing and supply. Relevant changes will be  
communicated via Customer Product Notifications.  
4.<n>  
Obsolete  
Archived  
This datasheet contains the specifications for discontinued products. The  
information is provided for reference only.  
Disclaimer  
Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no  
responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.  
Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the  
specification and the design of the related semiconductor products, software and applications.  
Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes  
no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further  
testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog  
Semiconductor excludes all liability in this respect.  
Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software  
and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.  
All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor’s Standard  
Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.  
Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names are the property of  
their respective owners.  
© 2020 Dialog Semiconductor. All rights reserved.  
RoHS Compliance  
Dialog Semiconductor’s suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European  
Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our  
suppliers are available on request.  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Hong Kong  
China (Shenzhen)  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Dialog Semiconductor Hong Kong  
Phone: +852 2607 4271  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Korea  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5769 5100  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
The Netherlands  
Taiwan  
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
Datasheet  
Revision 3.3  
13-Oct-2020  
130 of 130  
© 2020 Dialog Semiconductor  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY