DA9121-XXV76 [DIALOG]

High-Performance, 10 A, Dual-Phase DC-DC Converter;
DA9121-XXV76
型号: DA9121-XXV76
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

High-Performance, 10 A, Dual-Phase DC-DC Converter

文件: 总50页 (文件大小:1421K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
General Description  
DA9121 is a power management unit (PMU) suitable for supplying CPUs, GPUs, DDR memory rails  
in single in-line pin package (SIPP) modules, smartphones, tablets, and other handheld applications.  
DA9121 operates as a single-channel dual-phase buck converter, each phase requiring a small  
external 0.10 µH inductor. It is capable of delivering up to 10 A output current at a 0.3 V to 1.9 V  
output voltage range. The 2.5 V to 5.5 V input voltage range is suitable for a wide variety of low-  
voltage systems, including, but not limited to, all Li-Ion battery supplied applications.  
With remote sensing, the DA9121 guarantees the highest accuracy and supports multiple PCB  
routing scenarios without loss of performance.  
The pass devices are fully integrated, so no external FETs or Schottky diodes are needed.  
A programmable soft start-up can be enabled, which limits the inrush current from the input node and  
secures a slope-controlled rail activation.  
The dynamic voltage control (DVC) supports adaptive adjustment of the supply voltage dependent on  
the processor load, via either a direct register write using the communication interface (I2C-  
compatible) or with a programmable input pin.  
A configurable GPI allows multiple I2C address selection for multiple instances of DA9121 in the  
same application.  
DA9121 has integrated over-temperature and over-current protection for increased system reliability,  
without the need for external sensing components.  
Key Features  
2.5 V to 5.5 V input voltage  
0.3 V to 1.9 V output voltage  
4 MHz nominal switching frequency  
±1 % accuracy (static)  
Voltage, current, and temperature  
supervision  
-40 °C to +85 ºC ambient temperature  
range  
Package:  
±5 % accuracy (dynamic)  
I2C-compatible interface (FM+)  
Programmable GPIOs  
24WLCSP 2.5 mm x 1.7 mm (0.4 mm pitch)  
24WLP 2.7 mm x 1.9 mm (0.4 mm pitch)  
Programmable soft-start  
Applications  
SIPP modules (SoC, DRAM)  
Smartphones  
Ultrabooks™  
Wi-Fi Modules  
Game Consoles  
Tablet PCs  
Infotainment  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
1 of 50  
© 2020 Dialog Semiconductor  
 
 
 
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
System Diagrams  
DDR  
1.1 V  
1.8 V  
CPU  
GPU  
IC_EN  
PVDD  
IC_EN  
CONF  
PVDD  
IC_EN  
CONF  
PVDD  
DA9122AVDD  
DA9121AVDD  
DA9121AVDD  
SoC  
VR_  
HOT  
AGND  
AGND  
AGND  
GPIO  
VR_CPU_HOT  
VR_GPU_HOT  
PG (DVS ready)  
CPU_LP  
GPU_EN  
GPU_LP  
IO_LP  
DDR_LP  
VR_DDR_HOT  
Figure 1: Typical Application Diagram (Port Control)  
DDR  
1.1 V  
1.8 V  
CPU  
GPU  
IC_EN  
CONF  
PVDD  
IC_EN  
CONF  
PVDD  
IC_EN  
CONF  
PVDD  
DA9122AVDD  
DA9121AVDD  
DA9121AVDD  
SoC  
AGND  
AGND  
AGND  
I2C  
GPIO  
I2C CLK  
I2C DATA  
Faults  
PG (ENx/DVS ready)  
GPU_EN  
Figure 2: Typical Application Diagram (I2C Control)  
VDD = 2.5 V to 5.5 V  
1 µF  
2x 10 µF  
PVDD1  
FB1P  
100 nH  
100 nH  
VOUT1 = 0.3 V to 1.9 V  
Buck1  
4 x 10 µF  
PGND  
FB1N  
Digital Core  
OTP Memory  
Register Map  
IC_EN  
CONF/GPIO0  
GPIO1  
GPIO2  
SCL/GPIO3  
SDA/GPIO4  
DA9121  
Bias Supervision  
Oscillator  
NC  
NC  
I2C  
GPIO  
AGND  
Figure 3: Simplified Schematic Diagram  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
2 of 50  
© 2020 Dialog Semiconductor  
 
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Contents  
General Description ............................................................................................................................ 1  
Key Features ........................................................................................................................................ 1  
Applications ......................................................................................................................................... 1  
System Diagrams ................................................................................................................................ 2  
1
2
3
Terms and Definitions................................................................................................................... 5  
Pinout ............................................................................................................................................. 6  
Characteristics .............................................................................................................................. 8  
3.1 Absolute Maximum Ratings .................................................................................................. 8  
3.2 Recommended Operating Conditions................................................................................... 8  
3.3 Thermal Characteristics ........................................................................................................ 9  
3.3.1  
3.3.2  
Thermal Ratings .................................................................................................... 9  
Power Dissipation.................................................................................................. 9  
3.4 ESD Characteristics............................................................................................................ 10  
3.5 Buck Characteristics ........................................................................................................... 10  
3.6 Performance and Supervision Characteristics.................................................................... 12  
3.7 Digital IO Characteristics..................................................................................................... 12  
3.8 Timing Characteristics......................................................................................................... 14  
3.9 Typical Performance ........................................................................................................... 15  
4
Functional Description ............................................................................................................... 19  
4.1 DC-DC Buck Converter....................................................................................................... 19  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
4.1.5  
4.1.6  
Switching Frequency ........................................................................................... 19  
Operation Modes and Phase Selection............................................................... 19  
Output Voltage Selection..................................................................................... 20  
Soft Start-Up and Shutdown................................................................................ 20  
Current Limit ........................................................................................................ 20  
Thermal Protection .............................................................................................. 21  
4.2 Internal Circuits ................................................................................................................... 22  
4.2.1  
4.2.2  
4.2.3  
IC_EN/Chip Enable/Disable................................................................................. 22  
nIRQ/Interrupt...................................................................................................... 22  
GPIO.................................................................................................................... 25  
4.3 Operating Modes................................................................................................................. 27  
4.3.1  
4.3.2  
ON........................................................................................................................ 27  
OFF...................................................................................................................... 27  
4.4 I2C Communication ............................................................................................................. 27  
4.4.1  
I2C Protocol.......................................................................................................... 27  
5
6
Register Definitions .................................................................................................................... 30  
5.1 Register Map....................................................................................................................... 30  
5.1.1  
5.1.2  
5.1.3  
System................................................................................................................. 32  
Buck1................................................................................................................... 40  
Serialization ......................................................................................................... 44  
Package Information................................................................................................................... 45  
6.1 Package Outlines................................................................................................................ 45  
6.2 Moisture Sensitivity Level.................................................................................................... 47  
6.3 Package Handling............................................................................................................... 47  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
3 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
6.4 Soldering Information.......................................................................................................... 47  
7
8
Ordering Information .................................................................................................................. 48  
Application Information.............................................................................................................. 48  
8.1 Capacitor Selection............................................................................................................. 48  
8.2 Inductor Selection ............................................................................................................... 49  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
4 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
1
Terms and Definitions  
ATE  
CPU  
DDR  
DVC  
FET  
Automated test equipment  
Central processing unit  
Dual data rate  
Dynamic voltage control  
Field effect transistor  
Fast mode plus  
FM+  
GBD  
GBQ  
Guaranteed by design  
Guaranteed by qualification  
GBSPC  
GPI  
Guaranteed by statistical process characterization  
General purpose input  
General purpose input/output  
Graphics processing unit  
Integrated circuit  
GPIO  
GPU  
IC  
HW  
Hardware  
Li-Ion  
OTP  
PCB  
PRS  
SCL  
SDA  
SIPP  
SW  
Lithium-ion  
One time programmable  
Printed circuit board  
Product requirements specification  
Serial clock  
Serial data  
Single in-line pin package  
Software  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
5 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
2
Pinout  
Figure 4: DA9121 Pinout Diagram (Top View)  
Table 1: Pin Description  
Type  
Drive  
Reset  
State  
Pin No. Pin Name  
Description  
(Table 2) (mA)  
Supply voltage for buck power stage, decouple  
with 10 µF and connect to same source as  
AVDD  
A1, B1  
A2, B2  
PVDD1  
LX1  
PWR  
AIO  
5000  
5000  
Switch node of buck, connect a 100 nH inductor  
between LX1 and output capacitor  
A3, B3  
A4, B4  
PGND1  
PGND2  
GND  
GND  
5000  
5000  
Buck power stage VSS rail  
Buck power stage VSS rail  
Switch node of buck, connect a 100 nH inductor  
between LX1 and output capacitor  
A5, B5  
A6, B6  
LX2  
AIO  
5000  
5000  
Supply voltage for buck power stage, decouple  
with 10 µF and connect to same source as  
AVDD  
PVDD2  
PWR  
C1  
C2  
SCL/GPIO3  
SDA/GPIO4  
DIO  
DIO  
15  
15  
I2C clock or general purpose I/O  
I2C data or general purpose I/O  
Powers up SW control interface and auxiliary  
circuitry (including bandgap, oscillator, and  
references).  
C3  
IC_EN  
AI  
10  
C4  
C5  
C6  
CONF/GPIO0 AI/DIO  
10  
10  
10  
Chip configuration or general purpose I/O  
General purpose I/O  
GPIO1  
GPIO2  
DIO  
DIO  
General purpose I/O  
Buck negative node of differential voltage  
feedback, connect to VSS at point of load  
D1  
D2  
D3  
FB1N  
FB1P  
AVDD  
AI  
10  
10  
10  
Buck positive node of differential voltage  
feedback, connect to VOUT1 at point of load  
AI  
Supply rail for analog control circuitry, decouple  
with 1 µF and connect to same source as PVDD  
PWR  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
6 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Type  
(Table 2) (mA)  
Drive  
Reset  
State  
Pin No. Pin Name  
Description  
D4  
D5  
D6  
AGND  
NC  
GND  
AI  
10  
Analog control and auxiliary circuitry VSS  
Not used  
Not used  
NC  
AI  
Table 2: Pin Type Definition  
Pin Type  
DI  
Description  
Digital input  
Digital output  
Digital input/output  
Power  
Pin Type  
AI  
Description  
Analog input  
Analog output  
Analog input/output  
Ground  
DO  
AO  
DIO  
AIO  
GND  
PWR  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
7 of 50  
© 2020 Dialog Semiconductor  
 
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
3
Characteristics  
3.1 Absolute Maximum Ratings  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to  
the device. These are stress ratings only, so functional operation of the device at these or any other  
conditions beyond those indicated in the operational sections of the specification are not implied.  
Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.  
Table 3: Absolute Maximum Ratings  
Parameter Description  
Conditions  
Min  
-65  
Max  
150  
150  
6.0  
Unit  
°C  
°C  
V
TSTG  
TJ  
Storage temperature  
Junction temperature  
System supply voltage  
Voltage on pins  
-40  
VSYS  
VPIN  
-0.3  
-0.3  
6.0  
V
3.2 Recommended Operating Conditions  
Table 4: Recommended Operating Conditions  
Parameter Description  
Conditions (Note 1)  
Min  
Typ  
Max  
Unit  
VSYS  
VPIN  
System supply voltage  
2.5  
5.5  
V
V
VSYS  
0.3  
+
Voltage on pins  
-0.3  
TJ  
Junction temperature  
Ambient temperature  
-40  
-40  
125  
85  
°C  
°C  
TA  
Note 1 Within the specified limits, a lifetime of 10 years is guaranteed. If operating outside of these  
recommended conditions, please consult with Dialog Semiconductor.  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
8 of 50  
© 2020 Dialog Semiconductor  
 
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
3.3 Thermal Characteristics  
3.3.1  
Thermal Ratings  
Table 5: Package Ratings  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
WLCSP Package thermal  
resistance  
Note 1  
32.7  
°C/W  
JA_WLCSP  
WLP Package thermal  
resistance  
Note 1  
34.8  
°C/W  
JA_WLP  
Note 1 Obtained from package thermal simulation, 2S2P4L board (JEDEC), influenced by PCB technology  
and layout.  
3.3.2  
Power Dissipation  
Table 6: Power Dissipation  
Parameter Description  
Conditions  
Min  
Typ  
Max  
Unit  
Derating factor above TA  
70°C : 30.6 mW/°C (1/θJA)  
=
PD  
Power dissipation  
2140  
mW  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
PD = (TJ - TA) / θJA  
θJA = 32.7 °C/W  
Still air (0 m/s)  
TJ(WARN) = 125 °C  
TJ(CRIT) = 140 °C  
20  
30  
40  
50  
60  
70  
80  
90 100 110 120 130 140  
TA (°C)  
Figure 5: 24WLCSP Power Derating Curve  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
9 of 50  
© 2020 Dialog Semiconductor  
 
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Figure 6: 24WLP Power Derating Curve  
3.4 ESD Characteristics  
Table 7: ESD Characteristics  
Parameter Description  
ESD protection, human  
Conditions  
Min  
Typ  
Max  
Unit  
VESD_HBM  
2
kV  
body model (HBM)  
3.5 Buck Characteristics  
Unless otherwise noted, the following is valid for TJ = -40 °C to +125 °C, VSYS = 2.5 V to 5.5 V.  
Table 8: Buck Electrical Characteristics  
Parameter Description  
Conditions  
Min  
Typ  
Max  
Unit  
External Electrical Conditions  
VIN  
Input voltage  
VIN = VSYS  
2.5  
5.5  
V
Output capacitance, per  
phase, including voltage and  
temperature coefficient  
COUT  
-40 % 2 x 10 +30 %  
μF  
Output capacitor series  
resistance, per phase  
ESRCOUT  
f > 100 kHz  
2
mΩ  
Inductor value, per phase,  
including current and  
temperature dependence  
L
-50 %  
0.1  
30  
+20 %  
50  
μH  
DCRL  
Inductor DC resistance  
mΩ  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
10 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Parameter Description  
Electrical Performance  
Output voltage,  
Conditions  
Min  
Typ  
Max  
Unit  
IOUT = 0 mA to IMAX  
VIN = 2.5 V to 5.5 V  
VOUT  
programmable in 10 mV  
0.3  
0.3  
1.57  
1.9  
V
V
steps  
Output voltage,  
programmable in 10 mV  
steps  
IOUT = 0 mA to IMAX  
VIN = 3.0 V to 5.5 V  
VOUT_LIM  
Current limit, programmable  
per phase  
ILIM  
CHx_ILIM = 1010  
-20 %  
-1  
8
+20 %  
1
A
Note 1  
Output voltage accuracy,  
including static line and load  
regulation  
VOUT_ACC  
VOUT ≥ 1 V  
%
Output voltage accuracy,  
including static line and load  
regulation  
VOUT_ACC  
VOUT < 1 V  
-10  
-80  
10  
mV  
mV  
Power good voltage  
threshold for rising  
VTHR_PG_RISE  
VOUT = VBUCK  
-50  
-20  
Power good voltage  
threshold for falling  
VTHR_PG_DWN  
VTHR_HV  
VOUT = VBUCK  
VOUT = VBUCK  
-160  
100  
-130  
150  
-100  
200  
mV  
mV  
High VOUT voltage threshold  
VIN = 3 V to 3.6 V  
IOUT = 0.5 * IMAX  
dt = 10 μs  
VOUT_TR_LINE Line transient response  
15  
mV  
Switching frequency, post-  
trim  
fSW  
4
MHz  
Minimum turn-on pulse  
tON_MIN  
20  
ns  
0 % duty is also supported  
tBUCK_EN  
Turn-on time  
CHx_EN = high  
20  
μs  
Output pull-down resistance  
for each phase at the LX  
node, see  
VIN = 3.7 V  
RPD  
100  
150  
200  
Ω
VOUT = 0.5 V  
BUCK<x>_PD_DIS  
On resistance of switching  
PMOS, per phase  
RON_PMOS  
VIN = 3.7 V  
VIN = 3.7 V  
36  
17  
mΩ  
mΩ  
On resistance of switching  
NMOS, per phase  
RON_NMOS  
AUTO Mode  
VOUT = 1 V  
VOUT_TR_LD_2 Load transient response,  
IOUT = 0 A to 10 A  
dl/dt = 10 A/μs  
±5  
%
phase shedding enabled  
PH  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
11 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Parameter Description  
PFM Mode  
Conditions  
Min  
Typ  
Max  
Unit  
VIN = 3.7 V  
No load  
IQ_PFM_2PH  
Quiescent current in PFM  
164  
μA  
No switching  
Note 1 tON > 40 ns  
3.6 Performance and Supervision Characteristics  
Table 9: Electrical Characteristics  
Parameter Description  
Electrical Performance  
Conditions  
Min  
Typ  
Max  
Unit  
VTHR_POR  
Power-on-reset threshold  
Threshold for AVDD falling  
2.1  
2.25  
V
VTHR_POR_HY  
S
Power-on-reset hysteresis  
200  
mV  
Thermal warning  
temperature threshold  
TWARN  
115  
130  
125  
140  
135  
150  
°C  
°C  
Thermal shutdown  
temperature threshold  
TCRIT  
OFF state  
TA = 27 °C  
IC_EN = 0  
IIN_OFF  
Supply current  
Supply current  
0.1  
10  
1
μA  
μA  
ON state  
TA = 27 °C  
IC_EN = 1  
Buck off  
IIN_ON  
5
20  
3.7 Digital IO Characteristics  
Table 10: Digital I/O Electrical Characteristics  
Parameter Description  
Electrical Performance  
Conditions  
Min  
Typ  
Max  
Unit  
VIH_EN  
VIL_EN  
tIC_EN  
Input high voltage, IC enable  
1.2  
AVDD  
0.4  
V
V
Input low voltage, IC enable  
IC enable time  
1000  
μs  
Input high voltage  
GPIO, SCL, SDA  
VIH_GPIO_SCL  
_SDA  
1.2  
AVDD  
V
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
12 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Parameter Description  
Conditions  
Min  
Typ  
Max  
Unit  
Input low voltage  
VIL_GPIO_SCL_  
SDA  
0.4  
V
GPIO, SCL, SDA  
Output high voltage  
GPIO  
Push-pull mode  
IOUT = 1 mA  
0.8*AV  
DD  
VOH_GPIO  
VOL_GPIO  
VOL_SDA  
AVDD  
V
V
V
Output low voltage  
GPIO  
Push-pull mode  
IOUT = 1 mA  
0.2*AV  
DD  
Output low voltage  
SDA  
IOUT = 3 mA  
0.24  
RPD  
RPU  
GPIO pull-down resistor  
GPIO pull-up resistor  
2
2
10  
10  
120  
120  
kΩ  
kΩ  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
13 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
3.8 Timing Characteristics  
Table 11: I2C Electrical Characteristics  
Parameter Description  
Electrical Performance  
Conditions  
Min  
Typ  
Max  
Unit  
Bus free time between a  
STOP and START condition  
tBUS  
0.5  
μs  
CBUS  
Bus line capacitive load  
150  
pF  
20  
fSCL  
SCL clock frequency  
1000  
kHz  
Note 1  
tLO_SCL  
tHI_SCL  
tRISE  
SCL low time  
0.5  
μs  
μs  
ns  
ns  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
SCL high time  
0.26  
SCL and SDA rise time  
SCL and SDA fall time  
Requirement for input  
Requirement for input  
1000  
300  
tFALL  
tSETUP_START Start condition setup time  
0.26  
0.26  
0.26  
tHOLD_START  
tSETUP_STOP  
tDATA  
Start condition hold time  
Stop condition setup time  
Data valid time  
0.45  
0.45  
tDATA_ACK  
tSETUP_DATA  
tHOLD_DATA  
Data valid acknowledge time  
Data setup time  
50  
0
Data hold time  
Note 1 Minimum clock frequency is limited to 20 kHz if I2C_TIMEOUT is enabled  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
14 of 50  
© 2020 Dialog Semiconductor  
 
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
3.9 Typical Performance  
Unless otherwise noted, VIN = 3.7 V, VOUT = 1.0 V, TA = 25 °C, 2.0 mm x 1.6 mm 0.1 μH per-phase  
output inductors (DCR = typ. 11.5 mΩ) and 4 x 10 μF output capacitors.  
Figure 7: Efficiency v Load, VOUT = 0.7 V  
Figure 8: Efficiency vs Load, VOUT = 1.0 V  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
15 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Figure 9: Efficiency vs Load, VOUT = 1.2 V  
Figure 10: Efficiency vs Load, VOUT = 1.8 V  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
16 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Figure 11: Buck Soft Start-up at 20 mV/µs Slew Rate  
Figure 12: Buck Active Shutdown at 20 mV/µs Slew Rate  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
17 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Figure 13: Buck Load Transient Response in PWM Mode, 0 A to 10 A at 10 A/μs  
Figure 14: Buck Load Transient Response in AUTO Mode, 0 A to 10 A at 10 A/μs  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
18 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
4
Functional Description  
4.1 DC-DC Buck Converter  
DA9121 operates as a single-channel dual-phase buck converter capable of delivering up to 10 A  
output current at a 0.3 V to 1.9 V output voltage range.  
The buck converter has two voltage registers. One defines the normal output voltage, while the other  
offers an alternative retention voltage. In this way, different application power modes can easily be  
supported. The voltage selection can be operated either via GPI or via control interface to guarantee  
the maximum flexibility according to the specific host processor status in the application.  
When a buck is enabled, its output voltage is monitored and a power good signal indicates that the  
buck output voltage has reached a level higher than the VTHR_PG_RISE threshold. The power good  
status is lost when the voltage drops below VTHR_PG_DWN or increases above VTHR_HV. The status of the  
power good indicator can be read back via I2C from the PG1 status bit. It can be also individually  
assigned to any of the GPIOs by setting the GPIO mode registers to PG1 output.  
The buck converter is capable of supporting DVC transitions that occur when:  
the active and selected A- or B-voltage is updated to a new target value  
the voltage selection is changed from the A- to B-voltage (or B- to A-voltage) using CH1_VSEL  
The DVC controller operates in pulse width modulation (PWM) mode with synchronous rectification.  
The slew rate of the DVC transition is programmed at 10 mV per 8 µs, 4 µs, 2 µs, 1 µs, or 0.5 µs in  
register bits CH1_SR_DVC.  
A pull-down resistor (typically 150 Ω) for each phase is always activated unless it is disabled by  
setting register bits CH1_PD_DIS to 1.  
4.1.1  
Switching Frequency  
The buck switching frequency can be tuned using register bit OSC_TUNE. The internal 8 MHz  
oscillator frequency is tuned in ±160 kHz steps. This impacts the buck converter frequency in steps of  
80 kHz and helps to mitigate possible disturbances to other high frequency systems in the  
application.  
4.1.2  
Operation Modes and Phase Selection  
The buck converters can operate in PWM and PFM modes. The operating mode is selected using  
register bits CH1_<A or B>_MODE.  
Phase shedding automatically changes between 1- and 2-phase operation at a typical current of  
2.0 A.  
If the automatic operation mode is selected on CH1_<A or B>_MODE, the buck converter  
automatically changes between synchronous PWM mode and PFM depending on the load current.  
This improves the efficiency across the whole range of output load currents.  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
19 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
4.1.3  
Output Voltage Selection  
The switching converter can be configured using the I2C interface.  
Two output voltages can be pre-configured in registers CH1_<A or B>_VOUT. The output voltage  
can be selected by either toggling register bit CH1_VSEL or by re-programming the selected voltage  
control register. Both changes will result in ramped voltage transitions. After being enabled, the buck  
converter will, by default, use the register settings in CH1_A_VOUT unless the output voltage  
selection is configured via the GPI port.  
Registers CH1_VMAX limit the output voltage that can be set for each of the respective buck  
converters.  
Figure 15: Buck Output Voltage Control Concept  
4.1.4  
Soft Start-Up and Shutdown  
To limit in-rush current from VSYS, the buck converter can perform a soft-start after being enabled.  
The start-up behavior is a compromise between acceptable inrush current from the battery and turn-  
on time. Ramp times can be configured in register CH1_SR_STARTUP. Rates higher than 20 mV/µs  
may produce overshoot during the start-up phase, so it should be considered carefully.  
A ramped power down can be selected in register bits CH1_SR_SHDN. When no ramp is selected  
(immediate power down), the output node will be discharged only by the pull-down resistor, if  
enabled in register CH1_PD_DIS.  
4.1.5  
Current Limit  
The integrated current limit protects the power stages and external coil from excessive current. The  
buck current limit should be configured to at least 40 % higher than the required maximum output  
current.  
When the current limit is reached, the buck converter generates an event and an interrupt to the host  
processor unless the interrupt has been masked using register M_OC1 in SYS_MASK_1. Register  
bit OC_DVC_MASK is used to mask over-current events during DVC transitions.  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
20 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
4.1.6  
Thermal Protection  
DA9121 is protected from internal overheating by thermal shutdown.  
There are two kinds of flags concerning thermal protection, thermal warning and thermal critical. The  
warning flag is asserted when TJ > TWARN and the critical flag is asserted when TJ > TCRIT. When the  
critical flag is asserted, Buck1 is shut down immediately.  
Table 12: Thermal Protection Control Registers  
Category  
Register name  
TEMP_WARN  
TEMP_CRIT  
Description  
Asserted as long as the thermal warning threshold is reached  
Asserted as long as the thermal shutdown threshold is reached  
TEMP_WARN caused event  
Status  
E_TEMP_WARN  
E_TEMP_CRIT  
M_TEMP_WARN  
M_TEMP_CRIT  
M_VR_HOT  
IRQ event  
IRQ mask  
TEMP_CRIT caused event  
TEMP_WARN event IRQ mask  
TEMP_CRIT event IRQ mask  
TEMP_WARN status IRQ mask  
Buck1 Shutdown  
IRQ  
IRQ  
TCRIT  
TWARN  
Junction  
Temperature  
Warning Flag  
Critical Flag  
I2C Bus  
Write  
1
to CH<x>_EN  
Buck Enable  
Figure 16: Thermal Protection Operation  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
21 of 50  
© 2020 Dialog Semiconductor  
 
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
4.2 Internal Circuits  
4.2.1  
IC_EN/Chip Enable/Disable  
IC_EN is chip enable/disable control input. When IC_EN = 0, all blocks except for low IQ POR are  
powered-down and buck output is pulled-down.  
4.2.2  
nIRQ/Interrupt  
The interrupt triggers events. Trigger conditions and control registers for each interrupt event are  
listed in Table 13.  
Some of these events are categorized as fault events and affect device operation (for example, buck  
disable), see Section 4.1.6.  
Table 13: Interrupt List  
Polarity  
(Note 1)  
IRQ Status  
Register  
IRQ Mask  
Register  
Deglitch  
Period  
Name  
Trigger  
Thermal  
warning  
N
N
P
TJ rising above TWARN  
E_TEMP_WARN M_TEMP_WARN  
0 s  
0 s  
0 s  
(event)  
Thermal  
critical  
TJ rising above TCRIT  
E_TEMP_CRIT  
E_PG1  
M_TEMP_CRIT  
M_PG1  
(event)  
Buck1  
power-good  
Buck1 VOUT is in power-good  
voltage range  
(event)  
(not under- or over-voltage)  
Buck1 VOUT rising above  
over-voltage  
Buck1  
over-voltage  
Rise:8 µs  
Fall:8 µs  
N
E_OV1  
M_OV1  
threshold (target voltage +  
150 mV)  
(event)  
Buck1  
under-  
voltage  
Buck1 VOUT falling below  
under-voltage  
N
N
P
E_UV1  
E_OC1  
PG1  
M_UV1  
M_OC1  
0 s  
0 s  
0 s  
threshold (target voltage -  
VTH_PG)  
(event)  
Buck1  
over-current  
Buck1 current rising above  
over-current threshold  
(event)  
Buck1  
power-good  
Buck1 VOUT is in power-good  
voltage range  
M_PG1_STAT  
(Note 3)  
(status)  
(Note 2)  
(not under- or over-voltage)  
Thermal  
warning  
M_VR_HOT  
(Note 3)  
N
N
N
TJ rising above TWARN  
TEMP_WARN  
E_GPIO0  
0 s  
(status)  
(Note 2)  
Detect GPIO0 change for  
active trigger  
GPIO0  
change  
100 µs/  
1 ms/  
M_GPIO0  
M_GPIO1  
selected GPIO0_TRIG  
register  
(event)  
10 ms/  
100 ms  
Detect GPIO1 change for  
active trigger  
GPIO1  
change  
E_GPIO1  
selected GPIO1_TRIG  
register  
(event)  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
22 of 50  
© 2020 Dialog Semiconductor  
 
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Polarity  
(Note 1)  
IRQ Status  
Register  
IRQ Mask  
Register  
Deglitch  
Period  
Name  
Trigger  
Detect GPIO2 change for  
active trigger  
GPIO2  
change  
N
E_GPIO2  
M_GPIO2  
selected GPIO2_TRIG  
register  
(event)  
Note 1 Polarity at the source of the flag: P = active-high, N = active-low.  
General rule is: normal system state is high, and abnormal system state is low (for example,  
PG = high means power-good, TEMP_CRIT = low when TEMP critical state).  
Note 2 Interrupt outputs the status as is. I2C write is not required for interrupt clear.  
Note 3 OTP load value defined by CONF pin setting if CONF_EN = 1.  
Table 14: Interrupt Registers Except for Power Good Status  
Register  
Description  
E_<name>  
Read-only interrupt event register  
0: No interrupt  
1: Interrupt occurred  
Cleared after being written to I2C. Set until IRQ is removed.  
M_<name>  
Interrupt mask register  
0: Not masked  
1: Masked. No IRQ signal sent. Event register (E_<name>) is updated.  
Table 15: Interrupt Registers for Power Good and Temp Warning Status  
Register  
Description  
PG<x>  
Buck<x> power good status. Asserted as long as the buck<x> output voltage is in range  
(under-voltage threshold < buck output voltage < over-voltage threshold)  
0: Not power good  
1: Power good  
M_PG<x>_STAT  
TEMP_WARN  
M_VR_HOT  
Power good status interrupt mask register  
0: Not masked  
1: Masked. No IRQ signal sent. Power good status register (PG<x>) is updated  
Asserted as long as the thermal warning threshold (TWARN) is reached  
0: Junction temperature is below TWARN  
1: Junction temperature is above TWARN  
Temperature warning status (TEMP_WARN) interrupt mask register  
0: Not masked  
1: Masked. No IRQ signal sent. Temperature warning status register (TEMP_WARN) is  
updated  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
23 of 50  
© 2020 Dialog Semiconductor  
 
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
I2C  
Write  
Clear  
Condition  
TJ > TWARN TJ < TWARN  
·
·
·
GPIO is cofigured as nIRQ  
M_TEMP_WARN = 0  
M_PG#_STAT = 0  
Over-voltage  
Target Voltage  
Under-voltage  
VOUT  
Status Reg  
TEMP_WARN  
Event Reg  
0
1
0
E_TEMP_WARN  
IRQ Not  
Masked  
Status Reg  
PG#  
Active-High Setting  
(GPIO#_POL = 0)  
GPIO (nIRQ)  
Active-Low Setting  
(GPIO#_POL = 1)  
Figure 17: Interrupt Operation Example  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
24 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
4.2.3  
GPIO  
4.2.3.1  
GPIO Pin Assignment  
The DA9121 provides up to five GPIO pins, three if the I2C is enabled, see Table 16. These registers  
are OTP programmable. When CONF_EN = 1 GPIO0 can be used for chip configuration.  
Any register settings for GPIO3 and GPIO4 are ignored and GPIO3 and GPIO4 function as SCL and  
SDA respectively if I2C_EN = 1.  
Table 16: GPIO Pin Assignment  
OTP Option  
GPIO Pin  
GPIO2  
Available  
GPIOs  
CONF/  
GPIO0  
SCL/  
GPIO3  
SDA/  
GPIO4  
I2C_EN  
CONF_EN  
GPIO1  
1’b0  
1’b1  
1’b0  
1’b1  
GPIO0  
CONF  
GPIO0  
CONF  
GPIO1  
GPIO1  
GPIO1  
GPIO1  
GPIO2  
GPIO2  
GPIO2  
GPIO2  
GPIO3  
GPIO3  
SCL  
GPIO4  
GPIO4  
SDA  
5
4
3
2
1’b0  
1’b1  
SCL  
SDA  
4.2.3.2  
GPIO Function  
The GPIOs pins are configurable as the following functions in register GPIO<x>_MODE (x = 0 to 4):  
Buck1 enable input (EN1)  
Buck1 DVC control input (DVC1)  
Buck1 OTP setting reload input (RELOAD)  
Buck1 power good output (PG1)  
Interrupt output (nIRQ)  
Table 17: GPIO Function Configuration  
GPIO<x>_MODE[3:0]  
Function  
GPIO disable  
EN1  
IO Condition  
4’h0  
4’h1  
4’h2  
4’h3  
4’h4  
4’h5  
4’h6  
4’h7  
4’h8  
4’h9  
4’hA  
4’hB  
4’hC  
4’hD  
4’hE  
4’hF  
HiZ  
In  
Reserved  
Reserved  
DVC1  
In  
In  
In  
Reserved  
Reserved  
RELOAD  
PG1  
In  
In  
In  
Out  
Out  
Out  
Out  
Out  
HiZ  
Out  
Out  
Reserved  
Reserved  
Reserved  
nIRQ  
Reserved  
Low level  
High level  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
25 of 50  
© 2020 Dialog Semiconductor  
 
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
4.2.3.3  
Chip Configuration Select (CONF)  
GPIO0 functions as chip configuration select (CONF) input when CONF_EN = 1.  
Three different chip configurations can be selected according to the CONF pin level, whether it is  
HIGH, LOW, or Hi-Z.  
Table 18: GPIO0-Configurable Registers when CONF_EN = 1  
Register Name  
IF_SLAVE_ADDR[6:0]  
CH1_A_MODE[1:0]  
CH1_B_MODE[1:0]  
CH1_VSEL  
Description  
I2C slave address  
CH1_A Operation mode select  
CH1_B Operation mode select  
CH1 output voltage and operation selection  
CH1 enable  
CH1_EN  
CH1_A_VOUT[7:0]  
CH1_B_VOUT[7:0]  
M_PG1_STAT  
CH1 output voltage setting A  
CH1 output voltage setting B  
IRQ mask setting for CH1 power good status  
IRQ mask setting for temp warning status  
GPIO1 mode setting  
M_VR_HOT  
GPIO1_MODE[3:0]  
GPIO2_MODE[3:0]  
GPIO1_OBUF  
GPIO2 mode setting  
GPIO1 output buffer select  
GPIO2_OBUF  
GPIO2 output buffer select  
GPIO1_TRIG[1:0]  
GPIO1_POL  
GPIO1 input trigger select  
GPIO1 polarity select  
GPIO1_PUPD  
GPIO1 pull-up/pull-down enable  
GPIO1 input debounce time setting  
GPIO1 input debounce rising edge enable  
GPIO1 input debounce falling edge enable  
GPIO2 input trigger select  
GPIO1_DEB[1:0]  
GPIO1_DEB_RISE  
GPIO1_DEB_FALL  
GPIO2_TRIG[1:0]  
GPIO2_POL  
GPIO2 polarity select  
GPIO2_PUPD  
GPIO2 pull-up/pull-down enable  
GPIO2 input debounce time setting  
GPIO2 input debounce rising edge enable  
GPIO2 input debounce falling edge enable  
GPIO2_DEB[1:0]  
GPIO2_DEB_RISE  
GPIO2_DEB_FALL  
4.2.3.4  
OTP Reload (RELOAD)  
Buck settings listed in Table 19 are reloaded from CONF registers by triggering GPIO configured as  
RELOAD input.  
The OTP reload happens at the same time for Buck1 settings. During reloading, Buck1 keeps  
operating as configured without shut-down.  
Table 19: OTP Reload Registers  
Register Name  
Description  
CH#_VSEL  
CH# output voltage and operation selection.  
0: A, 1: B  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
26 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Register Name  
Description  
CH#_A_VOUT[7:0]  
CH# output voltage setting A : CH#_A_VOUT * 10 mV  
Setting under 0.3V is clamped to 0.3V, and setting over 1.9V is clamped to 1.9 V  
CH#_B_VOUT[7:0]  
CH#_A_MODE[1:0]  
CH# output voltage setting B : CH#_A_VOUT * 10 mV  
Setting under 0.3 V is clamped to 0.3 V, and setting over 1.9V is clamped to 1.9 V  
Operation mode selection  
0: Force PFM  
1: Force PWM. full phase  
2: Force PWM with phase shedding  
3: Auto mode  
CH#_B_MODE[1:0]  
Operation mode selection  
0: Force PFM  
1: Force PWM. full phase  
2: Force PWM with phase shedding  
3: Auto mode  
4.3 Operating Modes  
4.3.1 ON  
DA9121 is ON when the IC_EN port is higher than VIH_EN and the supply voltage is higher than  
VTHR_POR. Once enabled, the host processor can start communicating with DA9121 using the control  
interface, after the tIC_EN delay.  
4.3.2  
OFF  
DA9121 is OFF when the IC_EN port is lower than VIL_EN. In OFF, the bucks are always disabled and  
LX nodes are pulled down by (typically 150 Ω) internal pull-down resistors.  
4.4 I2C Communication  
All features of DA9121 can be controlled with the I2C interface which is enabled or disabled in  
register I2C_EN.  
I2C_EN  
Description  
0
I2C disable: SCL/GPIO3 and SDA/GPIO4 pins can be used as GPIO  
I2C enable: SCL/GPIO3 and SDA/GPIO4 pins are used as I2C clock input and I2C data  
input/output.  
1
GPIO3 functions as the I2C clock and GPIO4 carries all the power manager bidirectional I2C data.  
The I2C interface is open-drain supporting multiple devices on a single line. The bus lines have to be  
pulled high by external pull-up resistors (2 kΩ to 20 kΩ). The standard frequency of the I2C bus is  
1 MHz in fast-mode plus (FM+), 400 kHz in fast-mode, or 100 kHz in standard mode.  
4.4.1  
I2C Protocol  
All data is transmitted across the I2C bus in eight-bit groups. To send a bit, the SDA line is driven  
towards the intended state while the SCL is low (a low SDA indicates a zero bit). Once the SDA has  
settled, the SCL line is brought high and then low. This pulse on SCL clocks the SDA bit into the  
receiver’s shift register.  
A two-byte serial protocol is used containing one byte for address and one byte data. Data and  
address transfer are transmitted MSB first for both read and write operations. All transmissions begin  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
27 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
with the START condition from the master while the bus is in idle state (the bus is free). It is initiated  
by a high to low transition on the SDA line while the SCL is in the high state (a STOP condition is  
indicated by a low to high transition on the SDA line while the SCL is in the high state).  
SCL  
SDA  
Figure 18: I2C START and STOP Condition Timing  
The I2C bus is monitored for a valid slave address whenever the interface is enabled. It responds  
immediately when it receives its own slave address. The acknowledge is done by pulling the SDA  
line low during the following clock cycle (white blocks marked with A in Figure 19 and Figure 20).  
The protocol for a register write from master to slave consists of a START condition, a slave address  
with read/write bit, and the eight-bit register address followed by eight bits of data, terminated by a  
STOP condition. DA9121 responds to all bytes with acknowledge (A), see Figure 19.  
P
S
SLAVEadr  
7-bits  
W
A
REGadr  
8-bits  
A
DATA  
8-bits  
A
1-bit  
Master to Slave  
Slave to Master  
S = START condition  
P = STOP condition  
A = Acknowledge (low)  
W = Write (low)  
Figure 19: I2C Byte Write (SDA Line)  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
28 of 50  
© 2020 Dialog Semiconductor  
 
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
When the host reads data from a register it first has to write to DA9121 with the target register  
address and then read from DA9121 with a repeated START, or alternatively a second START,  
condition. After receiving the data, the host sends no acknowledge (A*) and terminates the  
transmission with a STOP condition, see Figure 20.  
A*  
P
S
SLAVEadr W A REGadr A Sr SLAVEadr  
R
A
DATA  
8-bits  
1-bit  
7-bits 1-bit  
8-bits  
7-bits  
S
SLAVEadr W A REGadr  
A
P
S
SLAVEadr  
R
A
DATA  
8-bits  
A*  
P
7-bits 1-bit  
8-bits  
7-bits 1-bit  
Master to Slave  
Slave to Master  
S = START condition  
Sr = Repeated START condition  
P = STOP condition  
A = Acknowledge (low)  
A* = No Acknowledge  
W = Write (low)  
R = Read (high)  
Figure 20: I2C Byte Read (SDA Line) Examples  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
29 of 50  
© 2020 Dialog Semiconductor  
 
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
5
Register Definitions  
5.1 Register Map  
Table 20: Register Map  
Addr  
Register  
7
6
5
4
3
2
1
0
System Module  
System  
TEMP_WA  
RN  
0x0001  
SYS_STATUS_0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TEMP_CRIT  
0x0002  
0x0003  
SYS_STATUS_1  
SYS_STATUS_2  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PG1  
OV1  
UV1  
OC1  
Reserved  
GPIO2  
GPIO1  
GPIO0  
E_TEMP_C  
RIT  
E_TEMP_  
WARN  
0x0004  
SYS_EVENT_0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x0005  
0x0006  
SYS_EVENT_1  
SYS_EVENT_2  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
E_PG1  
E_OV1  
E_UV1  
E_OC1  
Reserved  
E_GPIO2  
E_GPIO1  
E_GPIO0  
M_TEMP_C  
RIT  
M_TEMP_  
WARN  
0x0007  
SYS_MASK_0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x0008  
0x0009  
SYS_MASK_1  
SYS_MASK_2  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
M_PG1  
M_OV1  
M_UV1  
M_OC1  
Reserved  
M_GPIO2  
M_GPIO1  
M_GPIO0  
M_VR_HO  
T
M_PG1_ST  
AT  
0x000A  
SYS_MASK_3  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x000B  
0x000C  
SYS_CONFIG_0  
SYS_CONFIG_1  
Reserved  
Reserved  
Reserved  
Reserved  
OC_DVC_  
MASK  
0x000D  
0x000E  
0x0010  
0x0011  
0x0012  
0x0013  
0x0014  
0x0015  
SYS_CONFIG_2  
SYS_CONFIG_3  
SYS_GPIO0_0  
SYS_GPIO0_1  
SYS_GPIO1_0  
SYS_GPIO1_1  
SYS_GPIO2_0  
SYS_GPIO2_1  
Reserved  
Reserved  
Reserved  
OC_LATCHOFF<1:0>  
OSC_TUNE<2:0>  
PG_DVC_MASK<1:0>  
Reserved  
Reserved  
Reserved  
I2C_TIMEO  
UT  
Reserved  
Reserved  
GPIO0_OB  
UF  
Reserved  
Reserved  
GPIO0_MODE<3:0>  
GPIO0_P  
GPIO0_D  
EB_FALL  
GPIO0_D  
EB_RISE  
GPIO0_DEB<1:0>  
GPIO0_POL  
GPIO1_POL  
GPIO2_POL  
GPIO0_TRIG<1:0>  
UPD  
GPIO1_OB  
Reserved  
Reserved  
Reserved  
GPIO1_MODE<3:0>  
UF  
GPIO1_D  
EB_FALL  
GPIO1_D  
EB_RISE  
GPIO1_P  
UPD  
GPIO1_DEB<1:0>  
GPIO1_TRIG<1:0>  
GPIO2_OB  
Reserved  
Reserved  
Reserved  
GPIO2_MODE<3:0>  
UF  
GPIO2_D  
EB_FALL  
GPIO2_D  
EB_RISE  
GPIO2_P  
UPD  
GPIO2_DEB<1:0>  
GPIO2_TRIG<1:0>  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
30 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Addr  
Register  
7
6
5
4
3
2
1
0
Buck Control  
Buck1  
0x0020  
0x0021  
BUCK_BUCK1_0  
Reserved  
Reserved  
Reserved  
CH1_SR_DVC_DWN<2:0>  
CH1_SR_SHDN<2:0>  
CH1_SR_DVC_UP<2:0>  
CH1_SR_STARTUP<2:0>  
CH1_ILIM<3:0>  
CH1_EN  
CH1_PD_D  
IS  
BUCK_BUCK1_1  
0x0022  
0x0023  
BUCK_BUCK1_2  
BUCK_BUCK1_3  
Reserved  
Reserved  
Reserved  
CH1_VMAX<7:0>  
CH1_VSE  
L
0x0024  
BUCK_BUCK1_4  
Reserved  
Reserved  
Reserved  
CH1_B_MODE<1:0>  
CH1_A_MODE<1:0>  
0x0025  
0x0026  
0x0027  
BUCK_BUCK1_5  
BUCK_BUCK1_6  
BUCK_BUCK1_7  
CH1_A_VOUT<7:0>  
CH1_B_VOUT<7:0>  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
VRC<3:0>  
Reserved  
Reserved  
Serialization  
0x0048  
0x0049  
0x004A  
0x004B  
OTP_DEVICE_ID  
DEV_ID<7:0>  
MRC<3:0>  
OTP_VARIANT_ID  
OTP_CUSTOMER_ID  
OTP_CONFIG_ID  
CUST_ID<7:0>  
CONFIG_REV<7:0>  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
31 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
5.1.1  
System  
Table 21: SYS_STATUS_0 (0x0001)  
Bit  
[1]  
[0]  
Symbol  
Description  
TEMP_CRIT  
TEMP_WARN  
Asserted as long as the thermal shutdown threshold is reached  
Asserted as long as the thermal warning threshold is reached  
Table 22: SYS_STATUS_1 (0x0002)  
Bit  
[3]  
[2]  
[1]  
[0]  
Symbol  
PG1  
Description  
Asserted as long as the Buck1 output voltage is in range  
Asserted as long as Buck1 hitting over-voltage  
Asserted as long as Buck1 hitting under-voltage  
Asserted as long as Buck1 hitting over-current  
OV1  
UV1  
OC1  
Table 23: SYS_STATUS_2 (0x0003)  
Bit  
[2]  
[1]  
[0]  
Symbol  
GPIO2  
GPIO1  
GPIO0  
Description  
GPIO2 status  
GPIO1 status  
GPIO0 status  
Table 24: SYS_EVENT_0 (0x0004)  
Bit  
Symbol  
Description  
TEMP_CRIT caused event. Writing 1 action clear this bit into 0 if  
event source has been released.  
[1]  
E_TEMP_CRIT  
TEMP_WARN caused event. Writing 1 action clear this bit into 0  
if event source has been released.  
[0]  
E_TEMP_WARN  
Table 25: SYS_EVENT_1 (0x0005)  
Bit  
Symbol  
Description  
PG1 caused event. Writing 1 action clear this bit into 0 if event  
source has been released.  
[3]  
E_PG1  
OV1 caused event. Writing 1 action clear this bit into 0 if event  
source has been released.  
[2]  
[1]  
[0]  
E_OV1  
E_UV1  
E_OC1  
UV1 caused event. Writing 1 action clear this bit into 0 if event  
source has been released.  
OC1 caused event. Writing 1 action clear this bit into 0 if event  
source has been released.  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
32 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Table 26: SYS_EVENT_2 (0x0006)  
Bit  
Symbol  
Description  
GPIO2 event. Writing 1 action clear this bit into 0 if event source  
has been released.  
[2]  
E_GPIO2  
GPIO1 event. Writing 1 action clear this bit into 0 if event source  
has been released.  
[1]  
[0]  
E_GPIO1  
E_GPIO0  
GPIO0 event. Writing 1 action clear this bit into 0 if event source  
has been released.  
Table 27: SYS_MASK_0 (0x0007)  
Bit  
[1]  
[0]  
Symbol  
Description  
M_TEMP_CRIT  
TEMP_CRIT IRQ mask  
M_TEMP_WARN TEMP_WARN IRQ mask  
Table 28: SYS_MASK_1 (0x0008)  
Bit  
[3]  
[2]  
[1]  
[0]  
Symbol  
M_PG1  
M_OV1  
M_UV1  
M_OC1  
Description  
PG1 event IRQ mask  
OV1 event IRQ mask  
UV1 event IRQ mask  
OC1 event IRQ mask  
Table 29: SYS_MASK_2 (0x0009)  
Bit  
[2]  
[1]  
[0]  
Symbol  
Description  
M_GPIO2  
M_GPIO1  
M_GPIO0  
GPIO2 IRQ mask  
GPIO1 IRQ mask  
GPIO0 IRQ mask  
Table 30: SYS_MASK_3 (0x000A)  
Bit  
Symbol  
Description  
Temp warning status IRQ mask. Initial value is determined by  
CONF pin setting at the start-up in CONF_EN = 1  
[3]  
M_VR_HOT  
PG1 status IRQ mask. Initial value is determined by CONF pin  
setting at the start-up in CONF_EN = 1  
[0]  
M_PG1_STAT  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
33 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Table 31: SYS_CONFIG_2 (0x000D)  
Bit  
Symbol  
Description  
Over-current latch-off setting. BUCK shut-down after OCP for  
8 µs/1 ms/3 ms unless disable setting. IRQ is generated unless  
IRQ is masked.  
Value  
0x0  
0x1  
Description  
[6:5]  
OC_LATCHOFF  
Latch off disable  
Latch off after 8 µs of OCP signal  
Latch off after 1 ms of OCP signal  
Latch off after 3 ms of OCP signal  
0x2  
0x3  
Over-current event (IRQ and latch-off feature) mask during DVC  
ramp-up and ramp-down  
[4]  
OC_DVC_MASK  
PG_DVC_MASK  
Power-good mask during DVC  
Value  
0x0  
0x1  
Description  
No mask  
[3:2]  
Mask as not power good during DVC  
Mask as power good during DVC  
Reserved  
0x2  
0x3  
Table 32: SYS_CONFIG_3 (0x000E)  
Bit  
Symbol  
Description  
Tune oscillator frequency, tuned frequency = Current +  
OSC_TUNE * 160 kHz  
Value  
0x3  
0x2  
0x1  
0x0  
0x7  
0x6  
0x5  
0x4  
Description  
3
2
1
[6:4]  
OSC_TUNE  
0
-1  
-2  
-3  
-4  
Enable automatic reset of 2-wire interface (if SDA stays low for  
>50 ms).  
[1]  
I2C_TIMEOUT  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
34 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Table 33: SYS_GPIO0_0 (0x0010)  
Bit  
Symbol  
Description  
GPIO function mode select  
Value  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
Description  
GPIO disable  
EN1 input  
Reserved  
Reserved  
DVC1 input  
Reserved  
Reserved  
[4:1]  
GPIO0_MODE  
RELOAD input  
PG1 output  
Reserved  
Reserved  
Reserved  
nIRQ output  
Reserved  
Low output  
High output  
GPIO output buffer select  
Value  
0x0  
Description  
[0]  
GPIO0_OBUF  
open-drain output  
push-pull output  
0x1  
Table 34: SYS_GPIO0_1 (0x0011)  
Bit  
[7]  
[6]  
Symbol  
Description  
GPIO0_DEB_FALL  
GPIO0_DEB_RISE  
GPI debouce falling edge  
GPI debounce rising edge  
GPI debounce time  
Value  
0x0  
0x1  
Description  
100 µs debouce  
1 ms debouce  
[5:4]  
GPIO0_DEB  
0x2  
10 ms debounce  
100 ms debounce  
0x3  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
35 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Bit  
Symbol  
Description  
GPIO pull-up/pull-down enable  
Value  
0x0  
Description  
GPI: pull-down disabled, GPO: pull-up to  
AVDD disabled  
[3]  
GPIO0_PUPD  
GPI: pull-down enabled, GPO: pull-up to AVDD  
enabled  
0x1  
GPIO polarity  
Value  
0x0  
Description  
[2]  
GPIO0_POL  
GPIO is active-high  
0x1  
GPIO is active-low  
GPI trigger type  
Value  
0x0  
0x1  
Description  
Dual-edge triggered  
Pos-edge triggered  
Neg-edge triggered  
Reserved (No trigger)  
[1:0]  
GPIO0_TRIG  
0x2  
0x3  
Table 35: SYS_GPIO1_0 (0x0012)  
Bit  
Symbol  
Description  
GPIO function mode select. Initial value is determined by  
CONF pin setting at the start-up in CONF_EN = 1  
Value  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
Description  
GPIO disable  
EN1 input  
Reserved  
Reserved  
DVC1 input  
Reserved  
Reserved  
[4:1]  
GPIO1_MODE  
RELOAD input  
PG1 output  
Reserved  
Reserved  
Reserved  
nIRQ output  
Reserved  
Low output  
High output  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
36 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Bit  
Symbol  
Description  
GPIO output buffer select. Initial value is determined by  
CONF pin setting at the start-up in CONF_EN = 1  
Value  
0x0  
Description  
[0]  
GPIO1_OBUF  
open-drain output  
push-pull output  
0x1  
Table 36: SYS_GPIO1_1 (0x0013)  
Bit  
Symbol  
Description  
GPI debouce falling edge. Initial value is determined by  
CONF pin setting at the start-up in CONF_EN = 1  
[7]  
GPIO1_DEB_FALL  
GPI debounce rising edge. Initial value is determined by  
CONF pin setting at the start-up in CONF_EN = 1  
[6]  
GPIO1_DEB_RISE  
GPIO1_DEB  
GPI debounce time. Initial value is determined by CONF  
pin setting at the start-up in CONF_EN = 1  
Value  
0x0  
0x1  
Description  
100 µs debouce  
1 ms debouce  
[5:4]  
0x2  
10 ms debounce  
100 ms debounce  
0x3  
GPIO pull-up/pull-down enable. Initial value is determined  
by CONF pin setting at the start-up in CONF_EN = 1  
Value  
0x0  
Description  
[3]  
GPIO1_PUPD  
GPI: pull-down disabled, GPO: pull-up to  
AVDD disabled  
GPI: pull-down enabled, GPO: pull-up to AVDD  
enabled  
0x1  
GPIO polarity. Initial value is determined by CONF pin  
setting at the start-up in CONF_EN = 1  
Value  
0x0  
Description  
[2]  
GPIO1_POL  
GPIO is active-high  
GPIO is active-low  
0x1  
GPI trigger type. Initial value is determined by CONF pin  
setting at the start-up in CONF_EN = 1  
Value  
0x0  
0x1  
Description  
Dual-edge triggered  
Pos-edge triggered  
Neg-edge triggered  
Reserved (No trigger)  
[1:0]  
GPIO1_TRIG  
0x2  
0x3  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
37 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Table 37: SYS_GPIO2_0 (0x0014)  
Bit  
Symbol  
Description  
GPIO function mode select. Initial value is determined by  
CONF pin setting at the start-up in CONF_EN = 1  
Value  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
Description  
GPIO disable  
EN1 input  
Reserved  
Reserved  
DVC1 input  
Reserved  
Reserved  
[4:1]  
GPIO2_MODE  
RELOAD input  
PG1 output  
Reserved  
Reserved  
Reserved  
nIRQ output  
Reserved  
Low output  
High output  
GPIO output buffer select. Initial value is determined by  
CONF pin setting at the start-up in CONF_EN = 1  
Value  
0x0  
Description  
[0]  
GPIO2_OBUF  
open-drain output  
push-pull output  
0x1  
Table 38: SYS_GPIO2_1 (0x0015)  
Bit  
Symbol  
Description  
GPI debouce falling edge. Initial value is determined by  
CONF pin setting at the start-up in CONF_EN = 1  
[7]  
GPIO2_DEB_FALL  
GPI debounce rising edge. Initial value is determined by  
CONF pin setting at the start-up in CONF_EN = 1  
[6]  
GPIO2_DEB_RISE  
GPIO2_DEB  
GPI debounce time. Initial value is determined by CONF  
pin setting at the start-up in CONF_EN = 1  
Value  
0x0  
0x1  
Description  
100 µs debouce  
1 ms debouce  
[5:4]  
0x2  
10 ms debounce  
100 ms debounce  
0x3  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
38 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Bit  
Symbol  
Description  
GPIO pull-up/pull-down enable. Initial value is determined  
by CONF pin setting at the start-up in CONF_EN = 1  
Value  
0x0  
Description  
[3]  
GPIO2_PUPD  
GPI: pull-down disabled, GPO: pull-up to  
AVDD disabled  
GPI: pull-down enabled, GPO: pull-up to AVDD  
enabled  
0x1  
GPIO polarity. Initial value is determined by CONF pin  
setting at the start-up in CONF_EN = 1  
Value  
0x0  
Description  
[2]  
GPIO2_POL  
GPIO is active-high  
GPIO is active-low  
0x1  
GPI trigger type. Initial value is determined by CONF pin  
setting at the start-up in CONF_EN = 1  
Value  
0x0  
0x1  
Description  
Dual-edge triggered  
Pos-edge triggered  
Neg-edge triggered  
Reserved (No trigger)  
[1:0]  
GPIO2_TRIG  
0x2  
0x3  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
39 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
5.1.2  
Buck1  
Table 39: BUCK_BUCK1_0 (0x0020)  
Bit  
Symbol  
Description  
Voltage slew-rate for DVC ramp-down  
Value  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
Description  
10 mV/8 µs  
10 mV/4 µs  
10 mV/2 µs  
10 mV/µs  
[6:4]  
CH1_SR_DVC_DWN  
20 mV/µs  
Reserved  
Reserved  
Reserved  
Voltage slew-rate for DVC ramp-up  
Value  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
Description  
10 mV/8 µs  
10 mV/4 µs  
10 mV/2 µs  
10 mV/µs  
[3:1]  
CH1_SR_DVC_UP  
20 mV/µs  
40 mV/µs  
Reserved  
Reserved  
Channel enable. Initial value is determined by CONF pin  
setting at the start-up in CONF_EN = 1  
[0]  
CH1_EN  
Table 40: BUCK_BUCK1_1 (0x0021)  
Bit  
Symbol  
Description  
Voltage slew-rate during shut-down  
Value  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
Description  
10 mV/8 µs  
10 mV/4 µs  
10 mV/2 µs  
10 mV/µs  
[6:4]  
CH1_SR_SHDN  
20 mV/µs  
Reserved  
Reserved  
Immediate power-down  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
40 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Bit  
Symbol  
Description  
Voltage slew-rate during startup  
Value  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
Description  
10 mV/8 µs  
10 mV/4 µs  
10 mV/2 µs  
10 mV/µs  
[3:1]  
CH1_SR_STARTUP  
20 mV/µs  
40 mV/µs  
Reserved  
Reserved  
[0]  
CH1_PD_DIS  
Pull-down while buck is disabled. 0: enable, 1: disable  
Table 41: BUCK_BUCK1_2 (0x0022)  
Bit  
Symbol  
Description  
Select OCP threshold (A)  
Value  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
Description  
Reserved  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
[3:0]  
CH1_ILIM  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5  
10.0  
Disable  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
41 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Table 42: BUCK_BUCK1_3 (0x0023)  
Bit  
Symbol  
Description  
VOUT max setting (V):  
From 0.30 V (0x1E) to 1.90 V (0xBE) in 10 mV steps.  
This is a read-only register.  
Value  
0x1E  
0x1F  
0x20  
Description  
0.3  
0.31  
[7:0]  
CH1_VMAX  
0.32  
Continuing through…  
0x99  
To…  
0xBD  
0xBE  
1.53  
1.89  
1.9  
Table 43: BUCK_BUCK1_4 (0x0024)  
Bit  
Symbol  
Description  
Output voltage and operation selection: 0: A, 1: B.  
Initial value is determined by CONF pin setting at the start-  
up in CONF_EN = 1  
[4]  
CH1_VSEL  
Operation mode selection.  
Initial value is determined by CONF pin setting at the start-  
up in CONF_EN = 1  
Value  
0x0  
Description  
[3:2]  
CH1_B_MODE  
Force PFM operation  
0x1  
Force PWM operation (full phase)  
Force PWM operation (with phase shedding)  
Auto mode  
0x2  
0x3  
Operation mode selection.  
Initial value is determined by CONF pin setting at the start-  
up in CONF_EN = 1  
Value  
0x0  
Description  
[1:0]  
CH1_A_MODE  
Force PFM operation  
0x1  
Force PWM operation (full phase)  
Force PWM operation (with phase shedding)  
Auto mode  
0x2  
0x3  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
42 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Table 44: BUCK_BUCK1_5 (0x0025)  
Bit  
Symbol  
Description  
Output voltage setting A: Initial value is determined by  
CONF pin setting at the start-up in CONF_EN = 1  
From 0.30 V (0x1E) to 1.90 V (0xBE) in steps of 10 mV  
(default 1.0 V)  
Write-protected when value is written below 0.30 V or  
above 1.90 V  
Value  
0x1E  
0x1F  
0x20  
Description  
0.3  
0.31  
[7:0]  
CH1_A_VOUT  
0.32  
Continuing through…  
0x64  
To…  
0xBC  
0xBD  
0xBE  
1
1.88  
1.89  
1.9  
Table 45: BUCK_BUCK1_6 (0x0026)  
Bit  
Symbol  
Description  
Output voltage setting B: Initial value is determined by  
CONF pin setting at the start-up in CONF_EN = 1  
From 0.30 V (0x1E) to 1.90 V (0xBE) in steps of 10 mV  
(default 1.0 V)  
Write-protected when value is written below 0.30 V or  
above 1.90 V  
Value  
0x1E  
0x1F  
0x20  
Description  
0.3  
0.31  
[7:0]  
CH1_B_VOUT  
0.32  
Continuing through…  
0x64  
To…  
0xBC  
0xBD  
0xBE  
1
1.88  
1.89  
1.9  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
43 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
5.1.3  
Serialization  
Table 46: OTP_DEVICE_ID (0x0048)  
Bit  
Symbol  
Description  
[7:0]  
DEV_ID  
Device ID  
Table 47: OTP_VARIANT_ID (0x0049)  
Bit  
Symbol  
MRC  
Description  
[7:4]  
[3:0]  
Mask Revision Code  
Chip Variant Code  
VRC  
Table 48: OTP_CUSTOMER_ID (0x004A)  
Bit  
Symbol  
Description  
[7:0]  
CUST_ID  
Customer ID  
Table 49: OTP_CONFIG_ID (0x004B)  
Bit  
Symbol  
Description  
[7:0]  
CONFIG_REV  
OTP Variant  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
44 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
6
Package Information  
6.1 Package Outlines  
Figure 21: WLCSP Package Outline Drawing  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
45 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Figure 22: WLP Package Outline Drawing  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
46 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
6.2 Moisture Sensitivity Level  
The moisture sensitivity level (MSL) is an indicator for the maximum allowable time period (floor  
lifetime) in which a moisture sensitive plastic device, once removed from the dry bag, can be  
exposed to an environment with a specified maximum temperature and a maximum relative humidity  
before the solder reflow process. The MSL classification is defined in Table 50.  
For detailed information on MSL levels refer to the IPC/JEDEC standard J-STD-020, which can be  
downloaded from http://www.jedec.org.  
The DA9121 package is qualified for MSL1.  
Table 50: MSL Classification  
MSL Level  
Floor Lifetime  
Conditions  
MSL 1  
Unlimited  
30 °C / 85 % RH  
6.3 Package Handling  
Manual handling of WLCSP packages should be reduced to the absolute minimum. In cases where it  
is still necessary, a vacuum pick-up tool should be used. In extreme cases plastic tweezers could be  
used, but metal tweezers are not acceptable, since contact may easily damage the silicon chip.  
Removal of a WLP or WLCSP package will cause damage to the solder balls. Therefore a removed  
sample cannot be reused.  
WLCSP packages are sensitive to visible and infrared light. For light sensitive applications, the WLP  
package should be used.  
6.4 Soldering Information  
Refer to the IPC/JEDEC standard J-STD-020 for relevant soldering information. This document can  
be downloaded from http://www.jedec.org.  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
47 of 50  
© 2020 Dialog Semiconductor  
 
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
7
Ordering Information  
The ordering number consists of the part number followed by a suffix indicating the packing method.  
For details and availability, please consult Dialog Semiconductor’s customer support portal or your  
local sales representative.  
Table 51: Ordering Information  
Part Number  
DA9121-xxV72  
DA9121-xxV76  
Package  
24 WLCSP  
24 WLCSP  
Size (mm)  
2.5 x 1.7  
2.5 x 1.7  
Shipment Form  
T&R  
Pack Quantity  
4500  
Waffle Tray  
140  
DA9121-B0V72  
Standard OTP Variant  
VOUT1 = 1.0 V  
24 WLCSP  
24 WLCSP  
2.5 x 1.7  
2.5 x 1.7  
T&R  
4500  
140  
DA9121-B0V76  
Standard OTP Variant  
VOUT1 = 1.0 V  
Waffle Tray  
DA9121-xxOZ2  
DA9121-xxOZ6  
24 WLP  
24 WLP  
2.7 x 1.9  
2.7 x 1.9  
T&R  
TBD  
TBD  
Waffle Tray  
DA9121-B0OZ2  
Standard OTP Variant  
VOUT1 = 1.0 V  
24 WLP  
2.7 x 1.9  
T&R  
TBD  
8
Application Information  
The following recommended components are examples selected from requirements of a typical  
application.  
8.1 Capacitor Selection  
Ceramic capacitors are used as bypass capacitors at all VDD and output rails. When selecting a  
capacitor, especially for types with high capacitance at smallest physical dimension, the DC bias  
characteristic has to be taken into account.  
Table 52: Recommended Capacitor Types  
Application  
Value  
Size  
Temp. Char.  
Tol. (%)  
V-Rate  
Type  
Murata  
VOUT  
output bypass  
10 µF  
0402  
X5R ±15 %  
±20  
6.3 V  
GRM155R60J106ME15  
Murata  
PVDDx  
bypass  
10 µF  
0603  
0402  
X5R ±15 %  
X5R ±15 %  
±20  
±10  
25 V  
10 V  
GRM188R61E106MA73  
Murata  
GRM155R61A105KE15  
AVDD bypass 1 µF  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
48 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
8.2 Inductor Selection  
Inductors should be selected based on the following parameters:  
Rated maximum current  
Usually a coil provides two current limits: ISAT specifies the maximum current at which the  
inductance drops by 30 % of the nominal value, and IMAX is defined by the maximum power  
dissipation and is applied to the effective current.  
DC resistance  
Critical for the converter efficiency and should therefore be minimized.  
Table 53: Recommended Inductor Types  
DC  
Tol. (%) Resistance Type  
(mΩ)  
Value  
(µH)  
IMAX (DC)  
(A)  
Size (mm)  
ISAT (A)  
Cyntec  
0.1  
0.1  
2.0 x 1.6 x 1.0  
1.6 x 0.8 x 1.0  
1.6 x 0.8 x 0.8  
2.0 x 1.25 x 0.8  
2.5 x 2.0 x 1.2  
1.6 x 0.8 x 0.95  
2.0 x 1.6 x 0.6  
6.5  
5.2  
4.1  
5.8  
12  
9.0  
6.5  
9.4  
6.9  
13  
±20  
±20  
±20  
±20  
±20  
±20  
±20  
11.5  
17  
19  
9.1  
4
HTEN20161T-R10MDR  
Taiyo Yuden  
MEKK1608TR10M  
Taiyo Yuden  
0.1  
MCHK1608TR10MJN  
Taiyo Yuden  
0.11  
0.1  
MCHK2012TR11MKG  
TDK  
TFM252012ALMAR10MT  
Tokyo Coil Engineering  
TFP160810M-R10N  
0.1  
3.8  
3.0  
4.3  
6.0  
15  
24  
Wurth Elektronik  
0.11  
WE-PMMI 744 799 771 11  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
49 of 50  
© 2020 Dialog Semiconductor  
DA9121  
High-Performance, 10 A, Dual-Phase DC-DC Converter  
Status Definitions  
Revision  
Datasheet Status  
Product Status  
Definition  
This datasheet contains the design specifications for product development.  
Specifications may be changed in any manner without notice.  
1.<n>  
Target  
Development  
This datasheet contains the specifications and preliminary characterization  
data for products in pre-production. Specifications may be changed at any  
time without notice in order to improve the design.  
2.<n>  
3.<n>  
Preliminary  
Qualification  
This datasheet contains the final specifications for products in volume  
production. The specifications may be changed at any time in order to  
improve the design, manufacturing and supply. Major specification changes  
are communicated via Customer Product Notifications. Datasheet changes  
are communicated via www.dialog-semiconductor.com.  
Final  
Production  
Archived  
This datasheet contains the specifications for discontinued products. The  
information is provided for reference only.  
4.<n>  
Obsolete  
Disclaimer  
Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not  
designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications  
where failure or malfunction of a Dialog Semiconductor product (or associated software) can reasonably be expected to result in personal injury,  
death or severe property or environmental damage. Dialog Semiconductor and its suppliers accept no liability for inclusion and/or use of Dialog  
Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion and/or use is at the  
customer’s own risk.  
Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or  
warranties, express or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no  
responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.  
Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the  
specification and the design of the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive  
grade version of the device, Dialog Semiconductor reserves the right to change the information published in this document, including, without  
limitation, the specification and the design of the related semiconductor products, software and applications, in accordance with its standard  
automotive change notification process.  
Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes  
no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further  
testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog  
Semiconductor excludes all liability in this respect.  
Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications  
referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.  
All use of Dialog Semiconductor products, software and applications referred to in this document is subject to Dialog Semiconductor’s Standard  
Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.  
Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service  
names and marks are the property of their respective owners.  
© 2020 Dialog Semiconductor. All rights reserved.  
RoHS Compliance  
Dialog Semiconductor’s suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European  
Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our  
suppliers are available on request.  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Hong Kong  
China (Shenzhen)  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Dialog Semiconductor Hong Kong  
Phone: +852 2607 4271  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Korea  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5769 5100  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
The Netherlands  
Taiwan  
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
Datasheet  
Revision 2.3  
18-Sep-2020  
CFR0011-120-00  
50 of 50  
© 2020 Dialog Semiconductor  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY