DA9224-A [DIALOG]

Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter;
DA9224-A
型号: DA9224-A
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter

多相元件
文件: 总60页 (文件大小:1412K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
General Description  
DA9223-A and DA9224-A are PMICs optimized for the supply of CPUs, GPUs, and DDR memory  
rails in automotive in-vehicle infotainment systems, Advanced Driver Assistance Systems (ADAS),  
navigation and telematics applications. The fast transient response (10 A/µs) and load regulation are  
optimized for the latest generation of multi core application processors.  
DA9223-A operates as a single four-phase buck converter delivering up to 16 A output current.  
DA9224-A integrates two dual-phase buck converters, capable of delivering 2 x 8 A output current.  
Each buck regulates a programmable output voltage in the range of 0.3 V to 1.57 V. With an external  
resistor divider the output voltage can be set to any voltage between 1.57 V and 4.3 V. The input  
voltage range of 2.8 V to 5.5 V makes it suited for a wide variety of low voltage systems, including all  
Li-Ion battery powered applications.  
To guarantee the highest accuracy and to support multiple PCB routing scenarios without loss of  
performance, a remote sensing capability is implemented in both the DA9223-A and DA9224-A.  
The power devices are fully integrated, so no external FETs or Schottky diodes are needed.  
A programmable soft start-up can be enabled, which limits the inrush current from the input node and  
secures a slope controlled activation of the rail.  
The Dynamic Voltage Control (DVC) supports adaptive adjustment of the supply voltage depending  
on the processor load, either via direct register writes through the communication interface (I2C or  
SPI compatible) or via an input pin.  
DA9223-A and DA9224-A feature integrated over-temperature and over-current protection for  
increased system reliability without the need for external sensing components. The safety feature set  
is completed by a VDDIO under voltage lockout.  
The configurable I2C address selection via GPI allows multiple instances of DA9223-A and DA9224-  
A to be placed in an application sharing the same communication interface with different addresses.  
Key Features  
2.8 V to 5.5 V input voltage  
1 x 16 A DA9223-A  
Dynamic Voltage Control (DVC)  
Automatic phase shedding  
Integrated power switches  
Remote sensing at point of load  
I2C/SPI compatible interface  
Adjustable soft start  
2 x 8 A DA9224-A  
3 MHz nominal switching frequency (allows  
use of low profile [1 mm] inductors)  
±1 % accuracy (static)  
±3 % accuracy (dynamic)  
-40 °C to +105 ºC temperature range  
AEC-Q100 grade 2 qualified  
66 TFBGA 0.8 mm pitch  
0.3 V to 1.57 V output voltage  
1.57 V to 4.3 V with resistor divider  
Applications  
In-car infotainment  
Navigation and telematics  
Mobile computing  
Automotive display clusters  
Advanced Driver Assistance Systems (ADAS)  
Industrial embedded systems  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
1 of 60  
© 2021 Dialog Semiconductor  
 
 
 
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
System Diagrams  
1µF  
4x 10µF  
FBAP  
IC_EN  
OTP  
DIGITAL  
MEMORY  
CORE  
GPI  
GPI  
GPI0  
GPI1  
4x 0.22µH  
CTRL  
+
DRIVE  
BIAS  
SUPERV  
OSC  
GPIO  
GPIO2  
REGISTER  
SPACE  
PoL  
4x 47µF  
OUT  
nIRQ  
VDDIO  
DVS  
2/4-WIRE INTERFACE  
100nF  
VSS_ANA  
FBAN  
FBBP  
FBBN  
Figure 1: DA9223-A System Diagram  
1µF  
4x 10µF  
Buck A  
FBAP  
IC_EN  
2x 0.22µH  
OTP  
MEMORY  
DIGITAL  
CORE  
CTRL  
+
GPI  
GPI0  
GPI1  
PoL  
DRIVE  
GPI  
2x 47µF  
BIAS  
SUPERV  
OSC  
GPIO  
GPIO2  
REGISTER  
SPACE  
DVS  
DAC  
FBAN  
FBBP  
Buck B  
OUT  
nIRQ  
2x 0.22µH  
VDDIO  
CTRL  
+
2/4-WIRE INTERFACE  
PoL  
DRIVE  
100nF  
2x 47µF  
VSS_ANA  
DVS  
DAC  
FBBN  
Figure 2: DA9224-A System Diagram  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
2 of 60  
© 2021 Dialog Semiconductor  
 
 
 
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Contents  
General Description ............................................................................................................................ 1  
Key Features ........................................................................................................................................ 1  
Applications ......................................................................................................................................... 1  
System Diagrams ................................................................................................................................ 2  
1
2
3
4
5
6
7
Terms and Definitions................................................................................................................... 5  
Pinout ............................................................................................................................................. 6  
Absolute Maximum Ratings ......................................................................................................... 9  
Recommended Operating Conditions......................................................................................... 9  
Electrical Characteristics ........................................................................................................... 11  
Efficiency Measurements ........................................................................................................... 17  
Functional Description ............................................................................................................... 19  
7.1 DC-DC Buck Converter....................................................................................................... 21  
7.1.1  
7.1.2  
7.1.3  
7.1.4  
7.1.5  
7.1.6  
Switching Frequency ........................................................................................... 22  
Operation Modes and Phase Selection............................................................... 22  
Output Voltage Selection..................................................................................... 23  
Soft Start Up ........................................................................................................ 24  
Current Limit ........................................................................................................ 24  
Variable VOUT above 1.57 V .............................................................................. 24  
7.2 Ports Description................................................................................................................. 26  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
VDDIO.................................................................................................................. 26  
IC_EN .................................................................................................................. 26  
nIRQ..................................................................................................................... 26  
GPIO Extender .................................................................................................... 27  
7.3 Operating Modes................................................................................................................. 29  
7.3.1  
7.3.2  
ON Mode ............................................................................................................. 29  
OFF Mode............................................................................................................ 29  
7.4 Control Interfaces................................................................................................................ 29  
7.4.1  
7.4.2  
7.4.3  
4-WIRE Communication ...................................................................................... 29  
2-WIRE Communication ...................................................................................... 33  
Details of the 2-WIRE Control Bus Protocol........................................................ 34  
7.5 Internal Temperature Supervision....................................................................................... 36  
8
Register Definitions .................................................................................................................... 37  
8.1 Register Map....................................................................................................................... 37  
8.2 Register Definitions............................................................................................................. 39  
8.2.1  
8.2.2  
8.2.3  
8.2.4  
8.2.5  
Register Page Control ......................................................................................... 39  
Register Page 0................................................................................................... 39  
Register Page 1................................................................................................... 44  
Register Page 2................................................................................................... 49  
Register Page 4................................................................................................... 55  
9
Application Information.............................................................................................................. 56  
9.1 Capacitor Selection............................................................................................................. 56  
9.2 Inductor Selection ............................................................................................................... 57  
10 Package Information................................................................................................................... 58  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
3 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
10.1 Package Outlines................................................................................................................ 58  
10.2 Package Marking ................................................................................................................ 59  
11 Ordering Information .................................................................................................................. 59  
Figures  
Figure 1: DA9223-A System Diagram................................................................................................... 2  
Figure 2: DA9224-A System Diagram................................................................................................... 2  
Figure 3: 66 TFBGA 0.8 mm Pitch Ball Map ......................................................................................... 6  
Figure 4: 66 TFBGA 0.8 mm Pitch Power Derating Curve.................................................................. 10  
Figure 5: 2-WIRE Bus Timing.............................................................................................................. 16  
Figure 6: 4-WIRE Bus Timing.............................................................................................................. 16  
Figure 7: DA9223-A Efficiency vs Load, VOUT = 1.0 V, 0-16 A............................................................ 17  
Figure 8: DA9223-A Efficiency vs Load, VIN = 3.6 V, 0-16 A............................................................... 17  
Figure 9: DA9224-A Efficiency vs Load, VOUT = 1.0 V, 0-8 A.............................................................. 18  
Figure 10: DA9224-A Efficiency vs Load, VIN = 3.6 V, 0-8 A............................................................... 18  
Figure 11: Interface of DA9223-A/24-A with DA9063 and the Host Processor................................... 19  
Figure 12: Typical Application of DA9223-A........................................................................................ 20  
Figure 13: Typical Application of DA9224-A........................................................................................ 21  
Figure 14: Concept of Control of the Buck’s Output Voltage .............................................................. 23  
Figure 15: Resistive Divider from VOUT to FBAN .............................................................................. 24  
Figure 16: GPIO Principle of Operation (Example Paths)................................................................... 28  
Figure 17: Schematic of 4-WIRE and 2-WIRE Power Manager Bus .................................................. 30  
Figure 18: 4-WIRE Host Write and Read Timing (nCS_POL = ‘0’, CPOL = ‘0’, CPHA = ‘0’) ............. 31  
Figure 19: 4-WIRE Host Write and Read Timing (nCS_POL= ‘0’, CPOL = ‘0’, CPHA = ‘1’) .............. 31  
Figure 20: 4-WIRE Host Write and Read Timing (nCS_POL = ‘0’, CPOL = ‘1’, CPHA = ‘0’) ............. 32  
Figure 21: 4-WIRE Host Write and Read Timing (nCS_POL = ‘0’, CPOL = ‘1’, CPHA = ‘1’) ............. 32  
Figure 22: Timing of 2-WIRE START and STOP Condition................................................................ 34  
Figure 23: 2-WIRE Byte Write (SDA Line) .......................................................................................... 34  
Figure 24: Examples of 2-WIRE Byte Read (SDA Line) ..................................................................... 35  
Figure 25: Examples of 2-WIRE Page Read (SDA Line).................................................................... 35  
Figure 26: 2-WIRE Page Write (SDA Line) ......................................................................................... 35  
Figure 27: 2-WIRE Repeated Write (SDA Line).................................................................................. 36  
Figure 28: DA9223-A/24-A 66 TFBGA 0.8 mm Pitch Package Outline Drawing................................ 58  
Tables  
Table 1: Pin Description ........................................................................................................................ 7  
Table 2: Pin Type Definition .................................................................................................................. 8  
Table 3: Absolute Maximum Ratings..................................................................................................... 9  
Table 4: Recommended Operating Conditions ..................................................................................... 9  
Table 5: Buck Converters Characteristics........................................................................................... 11  
Table 6: IC Performance and Supervision .......................................................................................... 13  
Table 7: Digital I/O Characteristics...................................................................................................... 14  
Table 8: 2-WIRE Control Bus Characteristics ..................................................................................... 15  
Table 9: 4-WIRE Control Bus Characteristics ..................................................................................... 16  
Table 10: 4-WIRE Clock Configurations.............................................................................................. 30  
Table 11: 4-WIRE Interface Summary ................................................................................................ 33  
Table 12: Over-Temperature Thresholds............................................................................................ 36  
Table 13: Register Map ....................................................................................................................... 38  
Table 14: Recommended Capacitor Types......................................................................................... 56  
Table 15: Recommended Inductor Types ........................................................................................... 57  
Table 16: Package Marking................................................................................................................. 59  
Table 17: Ordering Information ........................................................................................................... 59  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
4 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
1
Terms and Definitions  
AP  
Application Processor  
Central Processing Unit  
Dual Data Rate  
CPU  
DDR  
DVC  
FET  
GPI  
Dynamic Voltage Control  
Field Effect Transistor  
General Purpose Input  
Graphic Processing Unit  
Integrated Circuit  
GPU  
IC  
OTP  
PCB  
PMIC  
POL  
PWM  
One Time Programmable memory  
Printed Circuit Board  
Power Management Integrated Circuit  
Point Of Load  
Pulse Width Modulation  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
5 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
2
Pinout  
Figure 3: 66 TFBGA 0.8 mm Pitch Ball Map  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
6 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Table 1: Pin Description  
Type  
Signal  
Name  
Second  
Function  
Pin Name  
Description  
(See Table 2)  
B1, B2, B3, B4  
E1, E2, E3, E4  
B8, B9, B10, B11  
E8, E9, E10, E11  
LX_A1  
LX_A2  
LX_B1  
LX_B2  
AO  
AO  
AO  
AO  
Switching node for Buck A phase 1  
Switching node for Buck A phase 2  
Switching node for Buck B phase 1  
Switching node for Buck B phase 2  
Supply voltage for Buck A phase 1  
To be connected to VSYS  
A1, A2, A3, A4  
F1, F2, F3, F4  
VDD_A1  
VDD_A2  
VDD_B1  
VDD_B2  
PS  
PS  
PS  
PS  
Supply voltage for Buck A phase 2  
To be connected to VSYS  
Supply voltage for Buck B phase 1  
To be connected to VSYS  
A8, A9, A10, A11  
F8, F9, F10, F11  
Supply voltage for Buck B phase 2  
To be connected to VSYS  
F7  
D7  
E7  
B6  
C6  
IC_EN  
nIRQ  
DI  
Integrated Circuit (IC) Enable Signal  
Interrupt line towards the host  
I/O Voltage Rail  
DO  
PS  
AI  
VDDIO  
FBAP  
FBAN  
Positive sense node for Buck A  
Negative sense node for Buck A  
AI  
Positive sense node for Buck B of  
DA9224-A  
FBBP  
NC  
AI  
D6  
E6  
AO  
AI  
Do not connect for DA9223-A  
Negative sense node for Buck B of  
DA9224-A  
FBBN  
NC  
AO  
Do not connect for DA9223-A  
General purpose input, input track  
General purpose input  
A7  
B7  
B5  
GPI0  
GPI1  
GPIO2  
TRK  
DI/AI  
DI  
DIO  
General purpose input/output  
2-WIRE data, 4-WIRE data  
input/output  
A5  
A6  
D5  
SDA  
SCL  
nCS  
SI  
DIO  
DI  
SK  
2-WIRE clock, 4-WIRE clock  
4-WIRE chip select, general purpose  
input  
GPI4  
DI  
4-WIRE data output, general  
purpose input/output  
C7  
C5  
F6  
SO  
GPIO3  
DIO  
AO  
PS  
Regulated supply for internal  
circuitry. Decouple with 150 nF (or  
220 nF)  
VDDCORE  
VSYS  
Supply for IC and input for voltage  
supervision  
E5  
F5  
VSS  
VSS  
VSS  
VSS_ANA  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
7 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Type  
Signal  
Name  
Second  
Function  
Pin Name  
Description  
(See Table 2)  
C1, C2, C3, C4,  
D1, D2, D3, D4,  
C8, C9, C10, C11,  
D8, D9, D10, D11  
VSS_A1,  
VSS_A2  
VSS_B1  
VSS_B2  
VSS  
Connect together  
Table 2: Pin Type Definition  
Pin Type  
DI  
Description  
Pin Type  
AI  
Description  
Digital Input  
Analogue Input  
Analogue Output  
Analogue Input/Output  
Ground  
DO  
Digital Output  
Digital Input/Output  
Power Supply  
AO  
DIO  
AIO  
PS  
VSS  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
8 of 60  
© 2021 Dialog Semiconductor  
 
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
3
Absolute Maximum Ratings  
Table 3: Absolute Maximum Ratings  
Parameter Description Conditions (Note 1)  
Min  
-65  
-40  
-0.3  
Typ  
Max  
+150  
+150  
6.0  
Unit  
°C  
°C  
V
TSTG  
TJ  
Storage temperature  
Junction temperature  
Limiting supply voltage  
VDD_LIM  
VDD + 0.3  
(max 6.0)  
Limiting voltage at all  
pins except above  
VPIN  
-0.3  
V
Electrostatic discharge  
voltage  
VESD_HBM  
Human Body Model  
2
kV  
Note 1 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the  
device. These are stress ratings only, so functional operation of the device at these or any other  
conditions beyond those indicated in the operational sections of the specification are not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
4
Recommended Operating Conditions  
Table 4: Recommended Operating Conditions  
Parameter Description Conditions (Note 1)  
Min  
Typ  
Max  
Unit  
VDD  
Supply voltage  
2.8  
5.5  
V
Operating junction  
temperature  
TJ_OP  
TA  
-40  
-40  
1.2  
125  
105  
°C  
°C  
V
Ambient temperature  
Input/output supply  
voltage  
3.6  
(Note 2)  
VDDIO  
TFBGA 0.8 mm pitch  
Derating factor above  
TA = 70 °C: 29.3 mW/°C  
Total power dissipation  
(Note 3)  
PTOT  
1620  
34.2  
mW  
Thermal resistance  
junction to ambient  
TFBGA 0.8 mm pitch  
°C/W  
JA  
(Note 3)  
Note 1 Within the specified limits, a lifetime of 10 years is guaranteed. If operating outside of these  
recommended conditions, please consult with Dialog Semiconductor.  
Note 2 VDDIO is not allowed to be higher than VDD  
.
Note 3 Obtained from measurement on a 6-layer evaluation board. Influenced by PCB technology and layout.  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
9 of 60  
© 2021 Dialog Semiconductor  
 
 
 
 
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
PD = (TJ - TA) / θJA  
θJA = 34.2 °C/W  
Still air (0 m/s)  
TJ(WARN) = 125 °C  
TJ(CRIT) = 140 °C  
20  
30  
40  
50  
60  
70  
80  
90 100 110 120 130 140  
TA (°C)  
Figure 4: 66 TFBGA 0.8 mm Pitch Power Derating Curve  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
10 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
5
Electrical Characteristics  
Unless otherwise noted, the following is valid for TJ = -40 to +125 ºC, VDD = 2.8 V to 5.5 V,  
COUT = 47 μF per phase, local sensing.  
Table 5: Buck Converters Characteristics  
Parameter Description  
Conditions  
Min  
Typ  
Max  
Unit  
External Component Electrical Conditions  
Output capacitance (per  
phase)  
Including voltage and  
temperature coefficient  
COUT  
23  
47  
62  
10  
µF  
Equivalent series resistance  
(per phase)  
ESRCOUT  
f > 100 kHz  
mΩ  
Including current and  
temperature dependence  
LPHASE  
Inductance (per phase)  
0.11  
0.22  
0.29  
100  
µH  
DCRLPHASE Inductor resistance  
mΩ  
Electrical Characteristics  
VDD  
Supply voltage  
VDD_x = VSYS  
IO = 0 to IO_MAX  
2.8  
0.3  
5.5  
V
V
VBUCK  
Buck output voltage (Note 1)  
1.57  
Incl. static line/load reg  
and voltage ripple  
-2.0  
+2.0  
%
VBUCK ≥ 1 V  
Incl. static line/load reg  
and voltage ripple  
±20  
mV  
Output voltage accuracy  
PWM mode  
VOACC  
VBUCK < 1 V  
VBUCK = 1 V  
VDD = 3.8 V  
no load  
-1.0  
-0.5  
+1.0  
+0.5  
%
%
VBUCK = 1 V  
VDD = 3.8 V  
no load  
TA = 27 ºC  
DA9223-A  
IO = 0 to 5 A, tr = 500 ns  
PWM 4-phase  
VBUCK ≥ 1 V  
VTR_LOAD  
Load regulation transient  
voltage  
±2  
%
(Note 2)  
VBUCK < 1 V  
±20  
mV  
DA9223-A  
IO = 0 to 5 A, tr = 500 ns  
auto mode, ph shedding  
VBUCK = 1 V  
±3.5  
±3.5  
15  
%
%
DA9224-A  
Load regulation transient  
voltage  
IO = 0 to 5 A, tr = 500 ns  
PWM 2-phase  
VBUCK = 1 V  
(Note 2)  
VDD = 3 to.3.6 V  
dt =10 µs  
Line regulation transient  
voltage  
VTR_LINE  
mV  
mA  
IO = IO(MAX)/2  
IO_MAX  
Maximum output current  
Per phase  
4000  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
11 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Parameter Description  
Minimum current limit  
Conditions  
Min  
Typ  
Max  
Unit  
BUCKA_ILIM  
BUCKB_ILIM  
= 0000  
ILIM_MIN  
per phase (programmable)  
(Note 3)  
-20%  
4000  
20%  
mA  
BUCKA_ILIM  
BUCKB_ILIM  
= 1111  
Maximum current limit  
ILIM_MAX  
-20%  
7000  
20%  
mA  
per phase (programmable)  
(Note 3)  
Per phase  
No load  
Quiescent current  
synchronous rectification  
mode  
IQ_PWM  
17  
3
mA  
VDD = 3.7 V  
fSW  
Switching frequency  
MHz  
VOUT = 1.0 V  
BUCKA_UP_CTRL  
50  
(Note 4)  
tSTUP  
Startup time  
µs  
BUCKB_UP_CTRL  
= 100  
For each phase at the LX  
node at 0.5 V,  
RO_PD  
Output pull-down resistance  
PMOS on-resistance  
150  
29  
200  
(see BUCKx_PD_DIS)  
Incl. pin and routing  
VDD = 3.7 V  
RON_PMOS  
mΩ  
mΩ  
per phase  
Incl. pin and routing  
VDD = 3.7 V  
RON_NMOS  
NMOS on-resistance  
21  
per phase  
PFM Mode  
VBUCK_PFM  
Buck output voltage in PFM  
IO = 0 mA to IO_MAX  
0.3  
2
1.57  
V
Minimum output current in  
PFM  
Static output voltage,  
no DVC  
IMIN_PFM  
mA  
DA9224-A quiescent current  
Buck A enabled  
No switching  
VDD = 3.7 V  
(Note 5)  
IQ_PFM_A2  
58  
72  
µA  
µA  
DA9223-A quiescent current  
Buck enabled  
No switching  
VDD = 3.7 V  
(Note 5)  
IQ_PFM_A4  
DA9224-A quiescent current  
Buck A enabled  
No switching  
VDD = 3.7 V  
(Note 5)  
IQ_PFM_A2B2  
106  
µA  
Buck B enabled  
Note 1 Programmable in 10 mV increments.  
Note 2 Additional to the dc accuracy. Inductor value 0.22 uH. The value is measured directly at COUT(EXT). In  
case of remote sensing, parasitics of PCB and external components may affect this value.  
Note 3 On-time > 50 ns.  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
12 of 60  
© 2021 Dialog Semiconductor  
 
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Note 4 Time from beginning to end of the voltage ramp. Additional 10 µs typical delay, plus internal sync to  
the enable port.  
Note 5 For the total quiescent current of the IC, the IDD_ON should be added.  
Table 6: IC Performance and Supervision  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
IC_EN = 0  
TA = 27 °C  
IDD_OFF  
Off state supply current  
0.1  
1
µA  
IC_EN = 1  
Buck A/B off  
TA = 27 °C  
IDD_ON  
On state supply current  
14  
µA  
Power good threshold  
voltage  
VTH_PG  
referred to VBUCK  
-50  
50  
mV  
mV  
Power good hysteresis  
voltage  
VHYS_PG  
BUCK_EN = 0  
BUCK_EN = 1  
2.0  
V
V
Under voltage lockout  
threshold at VDD  
VTH_UVLO_VDD  
2.55  
Under voltage lockout  
threshold at VDDIO  
VTH_UVLO_IO  
VHYS_UVLO_IO  
TTH_WARN  
TTH_CRIT  
TTH_POR  
1.315  
1.45  
70  
1.55  
V
mV  
°C  
Under voltage lockout  
hysteresis at VDDIO  
Thermal warning  
threshold temperature  
110  
125  
135  
-7%  
125  
140  
150  
6.0  
140  
155  
165  
+7%  
Thermal critical  
threshold temperature  
ºC  
Thermal power on reset  
threshold temperature  
°C  
Internal oscillator  
frequency  
fOSC  
MHz  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
13 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Table 7: Digital I/O Characteristics  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
HIGH level input voltage  
at pin IC_EN  
VIH_EN  
1.1  
V
LOW level input voltage  
at pin IC_EN  
VIL_EN  
tEN  
RO_PU_GPO  
0.35  
V
Enable time  
I/F operating  
750  
100  
µs  
VDDIO = 1.8 V  
VGPO = 0 V  
Pull up resistor at GPO  
k  
k  
VDDIO = 1.8 V  
VGPI = VDDIO  
RI_PD_GPI  
Pull down resistor at GPI  
150  
GPI0-4, SCL, SDA,  
(2-WIRE mode)  
VDDCORE mode  
VDDIO mode  
1.75  
VIH  
0.7*VDDIO  
V
V
V
V
HIGH level input voltage  
GPI0-4, SCL, SDA,  
(2-WIRE mode)  
VDDCORE mode  
VDDIO mode  
0.75  
VIL  
0.3*VDDIO  
LOW level input voltage  
SK, nCS, SI  
VIH_4WIRE  
(4-WIRE Mode)  
0.7*VDDIO  
HIGH level input voltage  
SK, nCS, SI  
VIL_4WIRE  
(4-WIRE Mode)  
LOW level input voltage  
0.3*VDDIO  
GPO2-3, SO (4-WIRE  
mode)  
push-pull mode  
at 1 mA  
VOH  
0.8*VDDIO  
V
V
HIGH level output  
voltage  
VDDIO ≥ 1.5 V  
GPO2-3, SDA (2-WIRE  
mode) SO (4-WIRE  
mode)  
VOL1  
0.3  
LOW level output voltage  
at IOL = 1 mA  
SDA (2-WIRE Mode)  
VOL3  
0.24  
0.4  
V
V
LOW level output voltage  
at IOL = 3 mA  
SDA (2-WIRE Mode)  
VOL20  
LOW level output voltage  
at IOL = 20 mA  
CLK, SDA  
CIN  
(2-WIRE Mode)  
input capacitance  
2.5  
10  
pF  
ns  
CLK, SDA  
Fast/Fast+ mode  
High Speed mode  
0
0
50  
10  
(2-WIRE Mode)  
tSP  
spike suppression pulse  
width  
Fast at CB < 550 pF  
20+0.1 CB  
120  
80  
Fall time of SDA signal  
(2-WIRE Mode)  
HS at 10 < CB <100  
pF  
tfDA  
10  
20  
ns  
160  
HS at CB < 400 pF  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
14 of 60  
© 2021 Dialog Semiconductor  
 
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Table 8: 2-WIRE Control Bus Characteristics  
Parameter  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Bus free time from  
STOP to START  
condition  
tBUF  
0.5  
µs  
Bus line capacitive  
load  
CB  
150  
pF  
Standard/Fast/Fast+ Mode  
Clock frequency at pin  
SCL  
0
fSCL  
1000  
kHz  
µs  
(Note 1)  
START condition set-  
up time  
tSU_STA  
tH_STA  
0.26  
0.26  
START condition hold  
time  
µs  
tW_CL  
tW_CH  
Clock LOW duration  
Clock HIGH duration  
0.5  
µs  
µs  
0.26  
Rise time  
tR  
Input requirement  
Input requirement  
1000  
300  
ns  
ns  
at pin CLK and DATA  
Fall time  
tF  
at pin CLK and DATA  
tSU_D  
tH_D  
Data set-up time  
Data hold time  
50  
0
ns  
ns  
High Speed Mode  
Clock frequency at pin  
SCL  
0
fSCL_HS  
3400  
kHz  
ns  
(Note 1)  
START condition set-  
up time  
tSU_STA_HS  
tH_STA_HS  
160  
160  
START condition hold  
time  
ns  
tW_CL_HS  
tW_CH_HS  
Clock LOW duration  
Clock HIGH duration  
160  
60  
ns  
ns  
Rise time  
tR_HS  
Input requirement  
Input requirement  
160  
160  
ns  
ns  
at pin CLK and DATA  
Fall time  
tF_HS  
at pin CLK and DATA  
tSU_D_HS  
tH_D_HS  
Data set-up time  
Data hold time  
10  
0
ns  
ns  
STOP condition set-  
up time  
tSU_STO_HS  
160  
ns  
Note 1 Minimum clock frequency is 10 kHz if 2WIRE_TO is enabled.  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
15 of 60  
© 2021 Dialog Semiconductor  
 
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Figure 5: 2-WIRE Bus Timing  
Table 9: 4-WIRE Control Bus Characteristics  
Parameter  
Description  
Label in Plot  
Min  
Typ  
Max  
Unit  
pF  
Bus line capacitive  
load  
CB  
100  
tC  
Cycle time  
1
70  
20  
ns  
2, from CS active to first  
SK edge  
tSU_CS  
Chip select setup time  
ns  
3, from last SK edge to  
CS idle  
tH_CS  
Chip select hold time  
20  
ns  
tW_CL  
tW_CH  
tSU_SI  
tH_SI  
Clock LOW duration  
Clock HIGH duration  
Data input setup time  
Data input hold time  
Data output valid time  
Data output hold time  
4
5
6
7
8
9
0.4 x tC  
0.4 x tC  
10  
ns  
ns  
ns  
ns  
ns  
ns  
10  
tV_SO  
tH_SO  
22  
6
Chip select HIGH  
duration  
tW_CS  
10  
20  
ns  
(2) tSU_CS  
(3) tH_CS (10) tW_CS  
70%  
nCS  
30%  
(5) tW_CH  
(4) tW_CL  
(1) tC  
70%  
30%  
SK  
SI  
(7) tH_SI  
(6) tSU_SI  
70%  
30%  
(8) tV_SO  
(9) tH_SO  
70%  
30%  
SO  
Figure 6: 4-WIRE Bus Timing  
Revision 2.6  
Datasheet  
23-Apr-2021  
CFR0011-120-00  
16 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
6
Efficiency Measurements  
The efficiency measurements for DA9223-A and DA9224-A (in TFBGA 0.8 mm pitch package) are shown with  
phase shedding enabled in each plot and were measured using 2520 size inductor with typ. 8 mDCR.  
Figure 7: DA9223-A Efficiency vs Load, VOUT = 1.0 V, 0-16 A  
Figure 8: DA9223-A Efficiency vs Load, VIN = 3.6 V, 0-16 A  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
17 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Figure 9: DA9224-A Efficiency vs Load, VOUT = 1.0 V, 0-8 A  
Figure 10: DA9224-A Efficiency vs Load, VIN = 3.6 V, 0-8 A  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
18 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
7
Functional Description  
Flexible configurability and the availability of different control schemes make both DA9223-A and  
DA9224-A the ideal single/dual buck companion ICs to expand the existing capabilities of a system  
PMIC such as DA9063.  
Due to the advanced compatibility between both DA9223-A and DA9224-A and the DA9063, they  
offer several advantages when they are operated together. These advantages include:  
DA9223-A and DA9224-A can be enabled and controlled by DA9063 during the power up  
sequence, thanks to DA9063’s dedicated output signals during power-up, and compatible input  
controls in both DA9223-A and DA9224-A.  
DA9223-A and DA9224-A can be used in a completely transparent way for the host processor  
and can share the same Control Interface (same SPI chip select or I2C address), thanks to the  
compatible registers map. DA9223-A and DA9224-A have a dedicated register space for  
configuration and control which doesn’t conflict with DA9063.  
DA9223-A and DA9224-A support a power-good configurable port for enhanced communication  
to the host processor and improved power-up sequencing.  
DA9223-A and DA9224-A can both share the same interrupt line with DA9063.  
In addition, the 2-WIRE / 4-WIRE interfaces allow DA9223-A and DA9224-A to fit to many standard  
PMU parts and power applications.  
Vdd  
nIRQ  
nSHUTDOWN  
SYS_EN  
nOFF  
PWR_EN  
Host  
Processor  
PWR1_EN  
OUT_32K  
nRESET  
nONKEY  
LID  
DA9063  
GPIOs  
VCharger  
Control IF  
GPIO9  
IC_EN  
Control IF  
DA9223-A/  
DA9224-A  
nIRQ  
GPI1 (voltage set)  
GPI0 (enable)  
Figure 11: Interface of DA9223-A/24-A with DA9063 and the Host Processor  
As shown in Figure 11, a typical application case includes a host processor, a main PMIC (for  
example, DA9063) and DA9223-A or DA9224-A used as companion IC for the high power core  
supply.  
The easiest way of controlling DA9223-A and DA9224-A is through the Control Interface. The master  
initiating the communication must always be the host processor that reads and writes to the main  
PMIC, and to the DA9223-A and DA9224-A registers. To poll the status of DA9223-A or DA9224-A,  
the host processor must access the dedicated register area through the Control Interface. DA9223-A  
and DA9224-A can additionally be controlled by means of hardware inputs.  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
19 of 60  
© 2021 Dialog Semiconductor  
 
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
CORE  
VDDIO  
DA9223-A  
SCL  
SDA  
nIRQ  
VSEL (GPI1)  
EN (GPI0)  
LP_MODE  
DA9063  
(PMIC)  
IC_EN  
GPIO9 (seq)  
VIN  
VDD_A1  
VDD_A2  
VDD_B1  
VDD_B2  
SENSE+  
LX_A1  
LX_A2  
CPU /  
GPU /  
DDR  
VSYS  
LX_B1  
LX_B2  
VSS_ANA  
SENSE-  
VDDIO  
FBAP  
FBAN  
I2C_ADDR_SEL (GPI4)  
Power Good (GPIO3)  
Ext Supply  
Figure 12: Typical Application of DA9223-A  
Figure 12 shows a typical use case of DA9223-A for the supply of CPU, GPU, or DDR rails. The IC is  
enabled and disabled by the main PMIC via IC_EN port as part of its sequencer. Once the IC is  
enabled, the CORE application processor enables the buck converter with the EN1 signal and  
manages the output voltage selection with the VSEL signal.  
The VSEL signal can be shared between the main PMIC and the DA9223-A. Three GPI/GPIOs  
embedded in DA9223-A are used in this case:  
GPIO2 signals the insertion of an external charger in the application (through interrupt to the host  
processor)  
GPIO3 indicates a power-good-condition, either to proceed with the power up sequence or to  
enable an external supply connected to the port  
GPI4 is used for the I2C interface address hardware selection  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
20 of 60  
© 2021 Dialog Semiconductor  
 
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
DA9224-A  
VDDIO  
CORE  
SCL  
SDA  
nIRQ  
EN_A (GPI0)  
EN_B (GPI1)  
VIN  
VDD_A1  
VDD_A2  
VDD_B1  
VDD_B2  
SENSE+  
CPU/  
GPU  
LX_A1  
LX_A2  
SENSE-  
VSYS  
FBAP  
FBAN  
VSS_ANA  
SENSE+  
DDR  
LX_B1  
LX_B2  
(LX_A3 in DA9215)  
SENSE-  
VDDIO  
FBBP  
FBBN  
I2C_ADDR_SEL (GPI4)  
IC_EN  
VSYS  
Figure 13: Typical Application of DA9224-A  
Figure 13 shows a typical use case of DA9224-A for the simultaneous supply of a CPU and a GPU  
rail. The IC is always enabled because IC_EN is shorted to the battery voltage. The CORE  
application processor enables and disables the CPU/GPU and the DDR individually via dedicated  
ports on DA9224-A.  
7.1 DC-DC Buck Converter  
DA9223-A is a four-phase 16 A high efficiency synchronous step-down DVC regulator, operating at a  
high frequency of typically 3 MHz. It supplies an output voltage of typically 1.0 V for a CPU rail,  
configurable in the range 0.3 1.57 V, with high accuracy in steps of 10 mV.  
DA9224-A contains two buck converters, Buck A and Buck B, each capable of delivering 8 A.  
To improve the accuracy of the delivered voltage, each buck converter can support a differential se  
nsing of the configured voltage directly at the point of load via dedicated positive and negative sense  
pins.  
Both Buck A and Buck B have two voltage registers each. One defines the normal output voltage,  
while the other offers an alternative retention voltage. In this way different application power modes  
can easily be supported. The voltage selection can be operated either via GPI or via control interface  
to guarantee the maximum flexibility according to the specific host processor status in the  
application.  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
21 of 60  
© 2021 Dialog Semiconductor  
 
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
When a buck is enabled, its output voltage is monitored and a power-good signal indicates that the  
buck output voltage has reached a level higher than the VTH(PG) threshold. The power-good is lost  
when the voltage drops below VTH(PG) - VHYS(PG), which is the level at which the signal is de-  
asserted. The power good signaling should not be used in conjunction with fast start up rates,  
configured in BUCKx_UP_CTRL register fields and can be individually masked during DVC  
transitions using the PGA_DVC_MASK and PGB_DVC_MASK bits. For each of the buck converters  
the status of the power-good indicator can be read back via I2C from the PWRGOOD_A and  
PWRGOOD_B status bits. It can be also individually assigned to either GPIO2 or GPIO3 using  
BUCKA_PG_SEL and BUCKB_PG_SEL. For correct functionality, the GPIO ports need to be  
configured as output. An I2C write in GPIOx_MODE can overwrite the internal configuration so that a  
new update will be automatically done only when the internal power-good indicator changes status.  
The buck converters are capable of supporting DVC transitions that occur:  
When they are active and the selected A-voltage or B-voltage is updated to a new target value.  
When the voltage selection is changed from the A-voltage to the B-voltage (or B-voltage to the  
A-voltage) using VBUCKA_SEL and VBUCKB_SEL.  
The DVC controller operates in Pulse Width Modulation (PWM) mode with synchronous rectification.  
When the host processor changes the output voltage, the voltage transition of each buck converter  
can be individually signaled with a READY signal routed to either GPIO2 or GPIO3. The port has to  
be configured as GPO and selected for the functionality via READYA_CONF or READYB_CONF. In  
contrast to the power-good signal, the READY only informs the host processor about the completion  
of the digital DVC ramp without confirming that the target voltage has actually been reached.  
The slew rate of the DVC transition is individually programmed for each buck converter at 10mV per  
(4, 2, 1 or 0.5 µs) via control bit SLEW_RATE_A and SLEW_RATE_B.  
The typical supply current in PWM mode is in the order of 17 mA per phase (quiescent current and  
charge/discharge current) and drops to <1 µA when the buck is turned off.  
When the buck is disabled, a pull-down resistor (typically 150 Ω) for each phase is activated  
depending on the value stored in register bits BUCKA_PD_DIS and BUCKB_PD_DIS. Phases  
disabled using PHASE_SEL_A and PHASE_SEL_B will not have any pull-down. The pull-down  
resistor is always disabled at all phases when DA9223-A and DA9224-A are OFF.  
7.1.1  
Switching Frequency  
The switching frequency is chosen to be high enough to allow the use of a small 0.22 µH inductor  
(see a complete list of coils in the Application Information, Section 9). The buck switching frequency  
can be tuned using register bit OSC_TUNE. The internal 6 MHz oscillator frequency is tuned in steps  
of 180 kHz. This impacts the buck converter frequency in steps of 90 kHz and helps to mitigate  
possible disturbances to other HF systems in the application.  
7.1.2  
Operation Modes and Phase Selection  
The buck converters can operate in synchronous PWM mode and PFM mode. The operating mode is  
selected using register bits BUCKA_MODE and BUCKB_MODE.  
An automatic phase shedding can be enabled for each buck converter in PWM mode via  
EF PH_SH_EN_A \h \* MERGEFORMAT PH_SH_EN_A, PH_SH_EN_B, thereby automatically  
reducing or increasing the number of active phases depending on the output load current. For  
DA9224-A the phase shedding will automatically change between 1-phase and 2-phase operation at  
a typical current of 2.0 A. For DA9223-A the phase shedding will automatically change between 1-  
phase and 4-phase operation at a typical current of 2.5 A. The PHASE_SEL_A and PHASE_SEL_B  
register fields limit the maximum number of active phases under any conditions.  
If the automatic operation mode is selected on BUCKA_MODE or BUCKB_MODE, the buck  
converters will automatically change between synchronous PWM mode and PFM depending on the  
load current. This improves the efficiency of the converters across the whole range of output load  
currents.  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
22 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
7.1.3  
Output Voltage Selection  
The switching converter can be configured using either a 2-WIRE or a 4-WIRE interface. For security  
reasons, the re-programming of registers that can cause damage when wrongly programmed (for  
example, the voltage settings) can be disabled by asserting the control V_LOCK. When V_LOCK is  
asserted, reprogramming the registers 0xD0 to 0x14F from control interfaces is disabled.  
For each buck converter two output voltages can be pre-configured inside registers VBUCKA_A and  
VBUCKB_A, and registers VBUCKA_B and VBUCKB_B. The output voltage can be selected by  
either toggling register bits VBUCKA_SEL and VBUCKB_SEL or by re-programming the selected  
voltage control register. Both changes will result in ramped voltage transitions, during which the  
READY signal is asserted. After being enabled, the buck converter will by default use the register  
settings in VBUCKA_A and VBUCKB_A unless the output voltage selection is configured via the GPI  
port.  
If “00” has been selected in BUCKA_MODE or BUCKB_MODE, A-/B- voltage selection registers  
VBUCKx_x control the operation of the PWM and PFM modes.  
Regardless of the values programmed in the VBUCKx_A and VBUCKx_B registers, the registers  
VBUCKA_MAX, VBUCKB_MAX will individually limit the maximum output voltage that can be set for  
each of the buck converters.  
The buck converter provides an optional hardware enable/disable via selectable GPI, and configured  
via control register bits BUCKA_GPI and BUCKB_GPI. A change of the output voltage controlled by  
the state of a GPI is enabled via control register bits VBUCKA_GPI and VBUCKB_GPI. A rising or  
falling edge at the related GPI, DA9223-A and DA9224-A will configure the buck converters  
according to the status of the GPI.  
In addition to selecting between the A/B voltages, a track mode can be activated for Buck A to set the  
output voltage. In the DA9223-A, the track mode is applied to the 4-phase buck converter. This  
feature can be enabled on GPI0 via GPI0_PIN. The output voltage will be configured to follow the  
voltage applied at a selected GPI pin. The voltage applied at GPI0 must be in the same range as the  
nominal output voltage selectable for the buck rail (see VBUCKA_A and VBUCKA_B registers). In  
Track Mode, only single ended remote sensing is possible.  
In Track Mode, the content of the VBUCKA_SEL bit is ignored, as well as VBUCKA_A and  
VBUCKA_B bits. They will become active again once the voltage track mode is disabled. The GPI0  
does not generate any event in this case.  
Figure 14: Concept of Control of the Buck’s Output Voltage  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
23 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
7.1.4  
Soft Start Up  
To limit in-rush current from VSYS, the buck converters can perform a soft-start after being enabled.  
The start-up behavior is a compromise between acceptable inrush current from the battery and  
turn-on time. In DA9223-A and DA9224-A different ramp times can be individually configured for  
each buck converter on register BUCKA_UP_CTRL and BUCKB_UP_CTRL. Rates higher than 20  
mV/µs may produce overshoot during the start-up phase, so they should be considered carefully. It is  
also recommended to place a decoupling capacitor on the feedback lines if slow ramp-up slew rate;  
slower than 2.5 mV/µs is used.  
A ramped power-down can be selected on register bits BUCKA_DOWN_CTRL and  
BUCKB_DOWN_CTRL. When no ramp is selected, the output node will only be discharged by the  
pull-down resistor, if enabled via BUCKA_PD_DIS and BUCKB_PD_DIS.  
7.1.5  
Current Limit  
The integrated current limit is meant to protect DA9223-A and DA9224-A power stages and the  
external coil from excessive current. The bucks’ current limit should be configured to be at least 40%  
higher than the required maximum continuous output current.  
When reaching the current limit, each buck converter generates an event and an interrupt to the host  
processor unless the interrupt has been masked using the OCx_MASK controls. These OCA_MASK  
and OCB_MASK control bits can be used to mask the generation of over-current events during DVC  
transitions. An extra masking time as defined in OCx_MASK will be automatically added to the DVC  
interval after the DVC has finished in order to ensure that the possible high current levels needed for  
DVC do not influence the event generation.  
7.1.6  
Variable VOUT above 1.57 V  
The whole product family is also available with an adjustable output voltage up to 4.3V. A resistive  
divider from VOUT to FBAN (or FBBN) can be used to set the output voltage higher than 1.57 V, see  
Figure 15.  
The value of the output voltage VOUT is set by the selection of the resistive divider shown in  
equation 1. The total resistance of the divider resistors (R1+R2) should be less than 40 k.  
푅1  
푉푂푈푇 = (1 + ) ∙ 푉푅퐸퐹  
푅2  
Equation 1  
Figure 15: Resistive Divider from VOUT to FBAN  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
24 of 60  
© 2021 Dialog Semiconductor  
 
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
For example, to program the output voltage VOUT to 1.8 V, with VREF set to 1.2 V, suggest 10 kΩ  
on R1 and 20 kΩ on R2.  
Note 1 The resistors need to be properly selected since the output voltage accuracy will be directly affected  
by any errors on the resistors. The voltage across FBAP and FBAN (VREF) is guaranteed, but not the  
output voltage accuracy.  
Note 2 For best accuracy and tracking R1 = R2 and VREF is adjusted to be 1/2 x Vout.  
Note 3 Capacitor C1 is used to provide feed forward control to improve transient response. The value of C1  
should be between 1 nF and 10 nF.  
CAUTION  
The followings are important notes that need to be considered before using resistive divider on DA9223-A  
and DA9224-A:  
1. Please contact your region's Dialog representative when adopting the resistive divider technique. Dialog  
need to prepare a special OTP because incorrect OTP settings may result in a different output voltage  
than expected.  
2. The voltage difference between input voltage and output voltage needs to be:  
above 1.2 V, VIN-VOUT > 1.2 V.  
3. The total resistance (R1+R2) is less than 40 k.  
4. It is recommended that the device is operated in PWM mode only.  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
25 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
7.2 Ports Description  
This section describes the functionality of each input / output port.  
7.2.1  
VDDIO  
VDDIO is an independent IO supply rail input to DA9223-A and DA9224-A that can be assigned to  
the power manager interface and to the GPIOs (see control PM_IF_V and GPI_V). The rail  
assignment determines the IO voltage levels and logical thresholds (see also the Digital I/O  
Characteristics in Table 7).  
An integrated under voltage lockout circuit for the VDDIO prevents internal errors by disabling the I2C  
communication when the voltage drops below VULO_IO. In that case the buck converters are also  
disabled and cannot be re-enabled (even via input port) until the VDDIO under-voltage condition has  
been resolved. At the exit of the VDDIO under voltage condition an event E_UVLO_IO is generated  
and the nIRQ line is driven active if the event is not masked.  
The VDDIO under-voltage circuit monitors voltages relative to a nominal voltage of 1.8V. If a different  
rail voltage is being used, the under-voltage circuit can be disabled via UVLO_IO_DIS.  
Note that the maximum speed at 4-WIRE interface is only available if the selected supply rail is  
greater than 1.6 V.  
7.2.2  
IC_EN  
IC_EN is a general enable signal for DA9223-A and DA9224-A turning on and off the internal circuitry  
(for example, the reference, the digital core, etc.). Correct control of this port has a direct impact on  
the quiescent current of the whole application. A low level of IC_EN allows the device to reach the  
minimum quiescent current. The voltage at this pin is continuously sensed by a dedicated analogue  
circuit.  
The host processor can begin to start communication with DA9223-A and DA9224-A through the  
Control Interface and, for example to turn on the buck converters, a delay time of tEN after assertion  
of the IC_EN pin. If the bucks are enabled via OTP (see BUCKA_EN and BUCKB_EN controls), they  
will start up automatically after assertion of IC_EN.  
The IC_EN activation threshold is defined with a built-in hysteresis to avoid glitching transitions that  
take place with unstable rising or falling edges.  
7.2.3  
nIRQ  
The nIRQ port indicates that an interrupt-causing event has occurred and that the event/status  
information is available in the related registers. The nIRQ is an output signal that can either be  
push-pull or open drain (selected via IRQ_TYPE). If an active high IRQ signal is required, it can be  
achieved by asserting control IRQ_LEVEL (recommended for push-pull mode).  
Examples of this type of information can be critical temperature and voltage, fault conditions, status  
changes at GPI ports, and so forth. The event registers hold information about the events that have  
occurred. Events are triggered by a status change at the monitored signals. When an event bit is set,  
the nIRQ signal is asserted unless this interrupt is masked by a bit in the IRQ mask register. The  
nIRQ will not be released until all event registers with asserted bits have been read and cleared. New  
events that occur during reading an event register are held until the event register has been cleared,  
ensuring that the host processor does not miss them.  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
26 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
7.2.4  
GPIO Extender  
DA9223-A and DA9224-A include a GPIO extender that offers up to five 5 V-tolerant general purpose  
input/output ports. Each port is controlled via registers from the host processor.  
The GPIO3 and GPI4 ports are pin-shared with the 4-WIRE Control Interface. For instance, if  
GPIO3_PIN = 01, GPI4_PIN = 01 (Interface selected), the GPIO3 and GPI4 ports will be exclusively  
dedicated to output and chip-select signaling for 4-WIRE purposes. If the alternative function is  
selected, all GPIOs configuration as per registers 0x58 to 0x5A and 0x145 will be ignored.  
GPIs are supplied from the internal rail VDDCORE or VDDIO (selected via GPI_V) and can be  
configured to be active high or active low (selected via GPIOx_TYPE). The input signals can be  
debounced or immediately change the state of the assigned status register GPIx to high or low,  
according to the setting of GPIOx_MODE. The debouncing time is configurable via control  
DEBOUNCE (10 ms default).  
Whenever the status has changed to its configured active state (edge sensitive), the assigned event  
register is set and the nIRQ signal is asserted (unless this nIRQ is masked, see also Figure 16).  
Whenever DA9223-A and DA9224-A is enabled and enters ON mode (also when enabled changing  
the setting of GPIOx_PIN) the GPI status bits are initiated towards their configured passive state.  
This ensures that already active signals are detected, and that they create an event immediately after  
the GPI comparators are enabled.  
The buck enable signal (BUCKx_EN) can be controlled directly via a GPI, if so configured in the  
BUCKA_GPI and BUCKB_GPI registers. If it is required that GPI ports do not generate an event  
when configured for the HW control of the switching regulator, the relative mask bit should be set.  
GPIs can alternatively be selected to toggle the VBUCKA_SEL and VBUCKB_SEL from rising and  
falling edges at these inputs. Apart from changing the regulator output voltage this also provides  
hardware control of the regulator mode (normal/low power mode) from the settings of BUCKA_SL_A,  
BUCKA_SL_B, BUCKB_SL_A, and BUCKB_SL_B (enabled if BUCKA_MODE or BUCKB_MODE =  
‘00’).  
All GPI ports have the additional option of activating a 100 kΩ pull-down resistor via GPIOx_PUPD,  
which ensures a well-defined level in case the input is not actively driven.  
If enabled via ADDR_SEL_CONF, the I2C address selection can be assigned to a specific GPI. An  
active voltage level at the selected GPI configures the slave address of DA9223-A and DA9224-A to  
IF_BASE_ADDR1 while a passive voltage level configures the slave address to IF_BASE_ADDR2. If  
no GPI is selected then the IF_BASE_ADDR1 is automatically used.  
If defined as an output, GPIOs can be configured to be open-drain or push-pull. If configured as  
push-pull, the supply rail is VDDIO. By disabling the internal 120 kΩ pull-up resistor in open-drain  
mode, the GPO can also be supplied from an external rail. The output state will be assigned as  
configured by the GPIO register bit GPIOx_MODE.  
A specific power-good port for each of the buck converters can be configured via BUCKA_PG_SEL  
and BUCKB_PG_SEL. The respective port must be configured as GPO for correct operation. If  
assigned to the same GPO, it is necessary that the power-good indicators for Buck A and Buck B are  
both active (supply voltages in range) to assert the overall power-good. The signal will be released  
as soon as one of the single power-good signals is not active (that is, at least one supply is out of  
range).  
The power good signaling should not be used in conjunction with fast start up rates, configured in  
BUCKx_UP_CTRL register fields.  
Once enabled via RELOAD_FUNC_EN the GPI0 can be used as input port to operate a partial OTP  
download. When the input level is changed to active, the registers 0x5D, 0x5E, 0xD1 to 0xDA are  
updated to their OTP default. This allows a complete buck re-configuration that resets all the  
changes done to those registers previously (soft reset). If the buck should be kept on during the soft  
reset, the OTP values for the enable bits should be asserted because they are also part of the re-  
load.  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
27 of 60  
© 2021 Dialog Semiconductor  
 
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Whenever the GPIO unit is off (POR or OFF Mode) all ports are configured as open drain active high  
(pass device switched off, high impedance state). When leaving POR the pull-up or pull-down  
resistors will be configured from register GPIOx_PUPD.  
Interrupt mask:  
M_GPI0  
Track Mode  
Input  
Reference  
Buffer  
GPI0_TYPE:  
Active high/low  
Buck  
GPI0_MODE:  
Debounce on/off  
Status register  
GPI0  
Event register  
Debounce  
GPI  
NOR  
E_GPI0  
Reset  
Rising or  
Falling edge  
GPI0_PIN  
GPI0_PUPD  
nIRQ  
Reserved  
NOR  
Reserved  
Event register write  
150 kΩ  
Regulator  
configure  
BUCK_ EN  
...  
VBUCK_SEL  
VDD_IO  
4-WIRE  
SO  
Interrupt mask:  
M_GPI3  
GPIO3_TYPE:  
Active high/low  
GPIO3_MODE:  
Debounce on/off  
Interface  
Status register  
GPI3  
Event register  
Debounce  
GPI  
NOR  
E_GPI3  
Reset  
Rising or  
Falling edge  
GPIO3_PIN  
GPIO3_PUPD  
VDD_IO  
Event register write  
GPIO3_PUPD  
150 kΩ  
100 kΩ  
GPO (Open drain)  
READY_EN  
READY signal  
asserted during  
DVC  
VDD_IO  
GPO3_MODE:  
0 or 1  
GPO (Push-pull)  
Figure 16: GPIO Principle of Operation (Example Paths)  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
28 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
7.3 Operating Modes  
7.3.1  
ON Mode  
DA9223-A and DA9224-A are in ON Mode when the IC_EN port is higher than EN_ON and the  
supply voltage is higher than VTH(UVLO)(VDD). Once enabled, the host processor can start the  
communication with DA9223-A and DA9224-A via Control Interface after the tEN delay needed for  
internal circuit start up.  
If BUCKA_EN or BUCKB_EN is asserted when DA9223-A and DA9224-A are in ON Mode the power  
up of the related buck converter is initiated. If the bucks are controlled via GPI, the level of the  
controlling ports is checked when entering ON mode, so that an active level will immediately have  
effect on the buck. If BUCKA_EN or BUCKB_EN are not asserted and all controlling GPI ports are  
inactive, the buck converter will stay off with the output pull-down resistor enabled/disabled according  
to the setting of BUCKA_PD_DIS and BUCKB_PD_DIS.  
7.3.2  
OFF Mode  
DA9223-A and DA9224-A are in OFF Mode when the IC_EN port is lower than EN_OFF. In OFF  
Mode, the bucks are always disabled and the output pull-down resistors are disabled independently  
of BUCKA_PD_DIS and BUCKB_PD_DIS. All I/O ports of DA9223-A and DA9224-A are configured  
as high impedance.  
7.4 Control Interfaces  
All the features of DA9223-A and DA9224-A can be controlled by SW through a serial control  
interfaces. The communication is selectable to be either a 2-WIRE (I2C compliant) or a 4-WIRE  
connection (SPI compliant) via control IF_TYPE, which will be selected during the initial OTP read. If  
4-WIRE is selected, the GPIO3 and GPI4 are automatically configured as interface pins. Data is  
shifted into or out of DA9223-A and DA9224-A under the control of the host processor, which also  
provides the serial clock. In a normal application case the interface is only configured once from OTP  
values, which are loaded during the initial start-up of DA9223-A and DA9224-A.  
DA9223-A and DA9224-A react only on read/write commands where the transmitted register address  
(using the actual page bits as a MSB address range extensions) is within 0x50 to 0x67, 0xD0 to DF,  
0x140 to 0x14F and (read only) 0x200 to 0x27F. Host access to registers outside these ranges will  
be ignored. This means there will be no acknowledge after receiving the register address in 2-WIRE  
Mode, and SO stays HI-Z in 4-WIRE Mode. During debug and production modes write access is  
available to page 4 (0x200 to 0x27F). DA9223-A and DA9224-A react only on write commands  
where the transmitted register address is 0x00, 0x80, 0x100 to0x106. The host processor must read  
the content of those registers before writing, thereby changing only the bit fields that are not marked  
as reserved (the content of the read back comes from the compatible PMIC, for example DA9063).  
If the STAND_ALONE bit is asserted (OTP bit), DA9223-A and DA9224-A also react to read  
commands.  
7.4.1  
4-WIRE Communication  
In 4-WIRE Mode the interface uses a chip-select line (nCS/nSS), a clock line (SK), data input (SI)  
and data output line (SO).  
The DA9223-A and DA9224-A register map is split into four pages that each contain up to 128  
registers. The register at address zero on each page is used as a page control register. The default  
active page after turn-on includes registers 0x50 to 0x6F. Writing to the page control register  
changes the active page for all subsequent read/write operations unless an automatic return to page  
0 was selected by asserting bit REVERT. Unless the REVERT bit was asserted after modifying the  
active page, it is recommended to read back the page control register to ensure that future data  
exchange is accessing the intended registers.  
All registers outside the DA9223-A and DA9224-A range are write only, that is, the DA9223-A and  
DA9224-A will not answer to a read command and the data bus is tri-state (they are implicitly  
directed to DA9063). In particular the information contained in registers 0x105 and 0x106 is used by  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
29 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
DA9223-A and DA9224-A to configure the control interface. They must be the same as the main  
PMIC (DA9063), so that a write to those registers configures both the main PMIC and DA9223-A and  
DA9224-A at the same time. The default OTP settings also need to be identical for a correct  
operation of the system.  
The 4-WIRE interface features a half-duplex operation, that is, data can be transmitted and received  
within a single 16-bit frame at enhanced clock speed (up to 14 MHz). It operates at the clock  
frequencies provided by the host.  
VDDIO  
VDDIO  
VDDIO  
SK  
Host  
processor  
VDDIO  
SK  
SI  
SO  
SI  
PMIC  
(slave)  
Host  
processor  
VDDIO  
SK  
SI Peripheral  
device  
nCS/nSS  
nCS/nSS  
SCL  
SDA  
SO  
nCS/nSS  
PMIC  
VDDIO  
SK  
4-WIRE interface  
2-WIRE interface  
SCL  
SDA  
Slave device  
SI  
SO  
Peripheral  
device  
nCS/nSS  
Figure 17: Schematic of 4-WIRE and 2-WIRE Power Manager Bus  
A transmission begins when initiated by the host. Reading and writing is accomplished by the use of  
an 8-bit command, which is sent by the host prior to the exchanged 8-bit data. The byte from the host  
begins shifting in on the SI pin under the control of the serial clock SK provided from the host. The  
first seven bits specify the register address (0x01 to 0x07) that will be written or read by the host. The  
register address is automatically decoded after receiving the seventh address bit. The command  
word ends with an R/W bit, which together with the control bit R/W_POL specifies the direction of the  
following data exchange. During register writing the host continues sending out data during the  
following eight SK clocks. For reading, the host stops transmitting and the 8-bit register is clocked out  
of DA9223-A and DA9224-A during the consecutive eight SK clocks of the frame. Address and data  
are transmitted with MSB first. The polarity (active state) of nCS is defined by control bit nCS_POL.  
nCS resets the interface when inactive and it has to be released between successive cycles.  
The SO output from DA9223-A and DA9224-A is normally in high-impedance state and active only  
during the second half of read cycles. A pull-up or pull-down resistor may be needed at the SO line if  
a floating logic signal can cause unintended current consumption inside other circuits.  
Table 10: 4-WIRE Clock Configurations  
Configurations  
CPHA Clock  
Polarity  
CPOL Clock  
Output Data is Updated at SK  
Edge  
Input Data is Registered at SK  
Edge  
Phase  
0 (idle low)  
0 (idle low)  
1 (idle high)  
1 (idle high)  
0
1
0
1
Falling  
Rising  
Rising  
Falling  
Rising  
Falling  
Falling  
Rising  
DA9223-A and DA9224-A’s 4-WIRE interface offers two further configuration bits. Clock polarity  
(CPOL) and clock phase (CPHA) define when the interface will latch the serial data bits. CPOL  
determines whether SK idles high (CPOL = 1) or low (CPOL = 0). CPHA determines on which SK  
edge data is shifted in and out. With CPOL = 0 and CPHA = 0, DA9223-A and DA9224-A latch data  
on the SK rising edge. If the CPHA is set to 1 the data is latched on the SK falling edge. CPOL and  
CPHA states allow four different combinations of clock polarity and phase. Each setting is  
incompatible with the other three. The host and DA9223-A and DA9224-A must be set to the same  
CPOL and CPHA states to communicate with each other.  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
30 of 60  
© 2021 Dialog Semiconductor  
 
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
4-WIRE WRITE  
nCS  
SK  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/Wn  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SI  
SO  
4-WIRE READ  
nCS  
SK  
SI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/Wn  
HI-Z  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SO  
latch data  
Figure 18: 4-WIRE Host Write and Read Timing (nCS_POL = ‘0’, CPOL = ‘0’, CPHA = ‘0’)  
4-WIRE WRITE  
nCS  
SK  
SI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/Wn  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SO  
4-WIRE READ  
nCS  
SK  
SI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/Wn  
HI-Z  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SO  
latch data  
Figure 19: 4-WIRE Host Write and Read Timing (nCS_POL= ‘0’, CPOL = ‘0’, CPHA = ‘1’)  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
31 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
4-WIRE WRITE  
nCS  
SK  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/Wn  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SI  
SO  
4-WIRE READ  
nCS  
SK  
SI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/Wn  
HI-Z  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SO  
latch data  
Figure 20: 4-WIRE Host Write and Read Timing (nCS_POL = ‘0’, CPOL = ‘1’, CPHA = ‘0’)  
4-WIRE WRITE  
nCS  
SK  
SI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/Wn  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SO  
4-WIRE READ  
nCS  
SK  
SI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/Wn  
HI-Z  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SO  
latch data  
Figure 21: 4-WIRE Host Write and Read Timing (nCS_POL = ‘0’, CPOL = ‘1’, CPHA = ‘1’)  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
32 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Table 11: 4-WIRE Interface Summary  
Parameters  
nCS  
Chip select  
SI Serial input data  
SO Serial output data  
SK  
Master out Slave in  
Master in Slave out  
Transmission clock  
Signal Lines  
Interface  
Push-pull with tristate  
Selected from VDDIO  
Effective read/write data  
Half-duplex  
Supply voltage  
Data rate  
1.6 V to 3.3 V  
Up to 7 Mbps  
MSB first  
Transmission  
16 bit cycles  
CPOL  
7-bit address, 1 bit read/write, 8-bit data  
Clock polarity  
Configuration  
CPHA  
Clock phase  
nCS_POL  
nCS is active low/high  
Note that reading the same register at high clock rates directly after writing it does not guarantee a  
correct value. It is recommended to keep a delay of one frame until re-accessing a register that has  
just been written (for example, by writing/reading another register address in between).  
7.4.2  
2-WIRE Communication  
The IF_TYPE bit in the INTERFACE2 register can be used to configure the DA9223-A and DA9224-  
A control interface as a 2-WIRE serial data interface. In this case the GPIO3 and GPI4 are free for  
regular input/output functions. DA9223-A and DA9224-A has a configurable device write address  
(default: 0xD0) and a configurable device read address (default: 0xD1). See control  
IF_BASE_ADDR1 for details of configurable addresses. The ADDR_SEL_CONF bit is used to  
configure the device address as IF_BASE_ADDR1 or IF_BASE_ADDR2 depending on the voltage  
level applied at a configurable GPI port (see Section 7.2.4).  
The SK port functions as the 2-WIRE clock and the SI port carries all the power manager  
bi-directional 2-WIRE data. The 2-WIRE interface is open-drain supporting multiple devices on a  
single line. The bus lines have to be pulled HIGH by external pull-up resistors (in the 2 kΩ to 20 kΩ  
range). The attached devices only drive the bus lines LOW by connecting them to ground. As a result  
two devices cannot conflict if they drive the bus simultaneously. In standard/fast mode the highest  
frequency of the bus is 400 kHz. The exact frequency can be determined by the application and does  
not have any relation to the DA9223-A and DA9224-A internal clock signals. DA9223-A and DA9224-  
A will follow the host clock speed within the described limitations, and does not initiate any clock  
arbitration or slow down. An automatic interface reset can be triggered using control 2WIRE_TO if  
the clock signal stops to toggle for more than 35 ms.  
The interface supports operation compatible to Standard, Fast, Fast-Plus and High Speed mode of  
the I2C-bus specification Rev 4. Operation in high speed mode at 3.4 MHz requires mode changing in  
order to set spike suppression and slope control characteristics to be compatible with the I2C-bus  
specification. The high speed mode can be enabled on a transfer by transfer basis by sending the  
master code (0000 1XXX) at the beginning of the transfer. DA9223-A and DA9224-A do not make  
use of clock stretching, and deliver read data without additional delay up to 3.4 MHz.  
Alternatively, PM_IF_HSM configures the interface to use high speed mode continuously. In this  
case, the master code is not required at the beginning of every transfer. This reduces the  
communication overhead on the bus but limits the slaves attachable to the bus to compatible  
devices.  
The communication on the 2-WIRE bus always takes place between two devices, one acting as the  
master and the other as the slave. The DA9223-A and DA9224-A will only operate as a SLAVE.  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
33 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
In contrast to the 4-WIRE mode, the 2-WIRE interface has direct access to two pages of the register  
map (up to 256 addresses). The register at address zero on each page is used as a page control  
register (with the 2-WIRE bus ignoring the LSB of control REG_PAGE). Writing to the page control  
register changes the active page for all subsequent read/write operations unless an automatic return  
to page 0 was selected by asserting control REVERT. Unless REVERT was asserted after modifying  
the active page, it is recommended to read back the page control register to ensure that future data  
exchange is accessing the intended registers.  
In 2-WIRE operation DA9223-A and DA9224-A offer an alternative way to access register page 2  
and page 3. It removes the need for preceding page selection writes by incrementing the device  
write/read address by one (default 0xD2/0xD3) for any direct access of page 2 and page 3 (page 0  
and 1 access requires the basic write/read device address with the MSB of REG_PAGE to be ‘0’).  
7.4.3  
Details of the 2-WIRE Control Bus Protocol  
All data is transmitted across the 2-WIRE bus in groups of eight bits. To send a bit the SDA line is  
driven towards the intended state while the SCL is LOW (a low on SDA indicates a zero bit). Once  
the SDA has settled, the SCL line is brought HIGH and then LOW. This pulse on SCL clocks the  
SDA bit into the receivers shift register.  
A two-byte serial protocol is used containing one byte for address and one byte data. Data and  
address transfer are transmitted MSB first for both read and write operations. All transmissions begin  
with the START condition from the master while the bus is in IDLE state (the bus is free). It is initiated  
by a high to low transition on the SDA line while the SCL is in the high state (a STOP condition is  
indicated by a low to high transition on the SDA line while the SCL is in the high state).  
SCL  
SDA  
Figure 22: Timing of 2-WIRE START and STOP Condition  
The 2-WIRE bus is monitored by DA9223-A and DA9224-A for a valid SLAVE address whenever the  
interface is enabled. It responds immediately when it receives its own slave address. The  
acknowledge is done by pulling the SDA line low during the following clock cycle (white blocks  
marked with ‘A’ in Figure 23 to Figure 27).  
The protocol for a register write from master to slave consists of a start condition, a slave address  
with read/write bit and the 8-bit register address followed by eight bits of data terminated by a STOP  
condition. DA9223-A and DA9224-A respond to all bytes with Acknowledge. This is illustrated in  
Figure 23.  
P
S
SLAVEadr  
7-bits  
W
A
REGadr  
8-bits  
A
DATA  
8-bits  
A
1-bit  
Master to Slave  
Slave to Master  
S = START condition  
P = STOP condition  
A = Acknowledge (low)  
W = Write (low)  
Figure 23: 2-WIRE Byte Write (SDA Line)  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
34 of 60  
© 2021 Dialog Semiconductor  
 
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
When the host reads data from a register it first has to write to DA9223-A and DA9224-A with the  
target register address and then read from DA9223-A and DA9224-A with a Repeated START or  
alternatively a second START condition. After receiving the data, the host sends No Acknowledge  
and terminates the transmission with a STOP condition. This is illustrated in Figure 24.  
A*  
P
S
SLAVEadr W A REGadr A Sr SLAVEadr  
R
A
DATA  
8-bits  
1-bit  
7-bits 1-bit  
8-bits  
7-bits  
S
SLAVEadr W A REGadr  
A
P
S
SLAVEadr  
R
A
DATA  
8-bits  
A*  
P
7-bits 1-bit  
8-bits  
7-bits 1-bit  
Master to Slave  
Slave to Master  
S = START condition  
Sr = Repeated START condition  
P = STOP condition  
A = Acknowledge (low)  
A* = No Acknowledge  
W = Write (low)  
R = Read (high)  
Figure 24: Examples of 2-WIRE Byte Read (SDA Line)  
Consecutive (page) read out mode is initiated from the master by sending an Acknowledge instead of  
Not acknowledge after receipt of the data word. The 2-WIRE control block then increments the  
address pointer to the next 2-WIRE address and sends the data to the master. This enables an  
unlimited read of data bytes until the master sends a Not acknowledge directly after the receipt of  
data, followed by a subsequent STOP condition. If a non-existent 2-WIRE address is read out, the  
DA9223-A and DA9224-A will return code zero. This is illustrated in Figure 25.  
A*  
P
S
SLAVEadr  
W
A
REGadr  
8-bits  
A
Sr SLAVEadr  
R
A
DATA  
8-bits  
A
DATA  
8-bits  
A
DATA  
8-bits  
7-bits  
1 bit  
7-bits 1-bit  
S
SLAVEadr  
W
A
REGadr  
A
P
S
SLAVEadr  
R
A
DATA  
8-bits  
A
DATA  
8-bits  
A*  
P
7-bits  
8-bits  
7-bits 1-bit  
1-bit  
Master to Slave  
Slave to Master  
A
S = START condition  
= Acknowledge (low)  
Sr = Repeat START condition  
P = STOP condition  
A* = No Acknowledge  
W = Write (low)  
R = Read (high)  
Figure 25: Examples of 2-WIRE Page Read (SDA Line)  
Note that the slave address after the Repeated START condition must be the same as the previous  
slave address.  
Consecutive (page) write mode is supported if the Master sends several data bytes following a slave  
register address. The 2-WIRE control block then increments the address pointer to the next 2-WIRE  
address, stores the received data and sends an Acknowledge until the master sends the STOP  
condition. This is illustrated in Figure 26.  
S
SLAVEadr  
W
A
REGadr  
8-bits  
A
DATA  
A
DATA  
8-bits  
A
DATA  
8-bits  
A
……….  
Repeated writes  
A
P
7-bits 1 bit  
8-bits 1-bit  
Master to Slave  
Slave to Master  
A
S = START condition  
= Acknowledge (low)  
Sr = Repeat START condition  
P = STOP condition  
A* = No Acknowledge  
W = Write (low)  
R = Read (high)  
Figure 26: 2-WIRE Page Write (SDA Line)  
Via control WRITE_MODE an alternate write mode can be configured. Register addresses and data  
are sent in alternation like in Figure 27 to support host repeated write operations that access several  
non-consecutive registers. Data will be stored at the previously received register address.  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
35 of 60  
© 2021 Dialog Semiconductor  
 
 
 
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
An update of WRITE_MODE cannot be done without interruption within a transmission frame. Thus,  
if not previously selected or not set as OTP default, the activation of Repeated Write must be done  
with a regular write on WRITE_MODE followed by a stop condition. The next frame after a start  
condition can be written in Repeated Write.  
S
SLAVEadr  
W
A
REGadr  
8-bits  
A
DATA  
A
REGadr  
8-bits  
A
DATA  
8-bits  
A
……….  
Repeated writes  
A
P
7-bits 1 bit  
8-bits 1-bit  
Master to Slave  
Slave to Master  
A
S = START condition  
= Acknowledge (low)  
Sr = Repeat START condition  
P = STOP condition  
A* = No Acknowledge  
W = Write (low)  
R = Read (high)  
Figure 27: 2-WIRE Repeated Write (SDA Line)  
If a new START or STOP condition occurs within a message, the bus will return to IDLE-mode.  
7.5 Internal Temperature Supervision  
To protect DA9223-A and DA9224-A from damage due to excessive power dissipation, the internal  
temperature is continuously monitored. There are three temperature thresholds:  
Table 12: Over-Temperature Thresholds  
Typical  
Temperature  
Setting  
Temperature  
Threshold  
Interrupt Event  
Status Bit  
Masking Bit  
TEMP_WARN  
TEMP_CRIT  
TEMP_POR  
125 °C  
140 °C  
150 °C  
E_TEMP_WARN  
E_TEMP_CRIT  
TEMP_WARN  
TEMP_CRIT  
M_TEMP_WARN  
M_TEMP_CRIT  
When the junction temperature reaches the TEMP_WARN threshold, DA9223-A and DA9224-A will  
assert the bit TEMP_WARN and will generate the event E_TEMP_WARN. If not masked using bit  
M_TEMP_WARN, the output port nIRQ will be asserted. The status bit TEMP_WARN will remain  
asserted as long as the junction temperature remains higher than TEMP_WARN.  
When the junction temperature increases further to TEMP_CRIT, DA9223-A and DA9224-A will  
immediately disable the buck converter, assert the bit TEMP_CRIT, and will generate the event  
E_TEMP_CRIT. If not masked via bit M_TEMP_CRIT, the output port nIRQ will be asserted. The  
status bit TEMP_CRIT will remain asserted as long as the junction temperature remains higher than  
TEMP_CRIT. The buck converter will be kept disabled as long as the junction temperature is above  
TEMP_CRIT. It will not be automatically re-enabled even after the temperature drops below the valid  
threshold (even if the controlling GPI is asserted). A direct write into BUCKA_EN or BUCKB_EN, or a  
toggling of the controlling GPI, is needed to enable the buck converter.  
Whenever the junction temperature exceeds TEMP_POR, a power on reset to the digital core is  
immediately asserted, which will stops all functionalities of DA9223-A and DA9224-A. This is needed  
to prevent possible permanent damage in the case of a rapid temperature increase.  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
36 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
8
Register Definitions  
8.1 Register Map  
Table 13 displays the register map, where all bits loaded from OTP are marked in bold.  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
37 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Table 13: Register Map  
Addr  
Function  
7
6
5
4
3
2
1
0
Register Page 0  
0x 00  
PAGE_CON  
REVERT  
WRITE_MODE  
Reserved  
Reserved  
Reserved  
REG_PAGE  
0x 50  
0x 51  
0x 52  
0x 53  
0x 54  
0x 55  
0x 56  
0x 58  
0x 59  
0x 5A  
0x 5D  
0x 5E  
STATUS_A  
STATUS_B  
EVENT_A  
EVENT_B  
MASK_A  
Reserved  
RAMP_READY_B  
Reserved  
Reserved  
RAMP_READY_A  
E_UVLO_IO  
Reserved  
Reserved  
OV_CURR_B  
Reserved  
GPI4  
GPI3  
GPI2  
GPI1  
GPI0  
OV_CURR_A  
E_GPI4  
TEMP_CRIT  
E_GPI3  
TEMP_WARN  
E_GPI2  
PWRGOOD_B  
E_GPI1  
PWRGOOD_A  
E_GPI0  
Reserved  
E_OV_CURR_B  
Reserved  
E_OV_CURR_A  
M_GPI4  
E_TEMP_CRIT  
M_GPI3  
E_TEMP_WARN  
M_GPI2  
E_PWRGOODB  
M_GPI1  
E_PWRGOOD_A  
M_GPI0  
Reserved  
M_UVLO_IO  
Reserved  
MASK_B  
Reserved  
M_OV_CURR_B  
M_OV_CURR_A  
M_TEMP_CRIT  
M_TEMP_WARN  
M_PWRGOOD_B  
DEBOUNCING  
M_PWRGOOD_A  
CONTROL_A  
GPI0-1  
V_LOCK  
SLEW_RATE_B  
SLEW_RATE_A  
GPI1_MODE  
GPIO3_MODE  
Reserved  
GPI1_TYPE  
GPIO3_TYPE  
Reserved  
GPI1_PIN  
GPIO3_PIN  
Reserved  
GPI0_MODE  
GPIO2_MODE  
GPI4_MODE  
GPI0_TYPE  
GPIO2_TYPE  
GPI4_TYPE  
GPI0_PIN  
GPIO2_PIN  
GPI4_PIN  
GPIO2-3  
GPI4  
BUCKA_CONT  
BUCKB_CONT  
Reserved  
VBUCKA_GPI  
VBUCKB_GPI  
VBUCKA_SEL  
VBUCKB_SEL  
BUCKA_PD_DIS  
BUCKB_PD_DIS  
BUCKA_GPI  
BUCKB_GPI  
BUCKA_EN  
BUCKB_EN  
Reserved  
Register Page 1  
Reserved  
0x 80  
PAGE_CON  
REVERT  
WRITE_MODE  
Reserved  
Reserved  
REG_PAGE  
0x D0  
0x D1  
0x D2  
0x D3  
0x D5  
0x D6  
0x D7  
0x D8  
0x D9  
0x DA  
BUCK_ILIM  
BUCKA_CONF  
BUCKB_CONF  
BUCK_CONF  
VBUCKA_MAX  
VBUCKB_MAX  
VBUCKA_A  
BUCKB_ILIM  
BUCKA_ILIM  
BUCKA_DOWN_CTRL  
BUCKA_UP_CTRL  
BUCKB_UP_CTRL  
PH_SH_EN_A  
VBUCKA_MAX  
VBUCKB_MAX  
VBUCKA_A  
BUCKA_MODE  
BUCKB_MODE  
PHASE_SEL_A  
BUCKB_DOWN_CTRL  
Reserved  
Reserved  
Reserved  
Reserved  
PH_SH_EN_B  
PHASE_SEL_B  
Reserved  
BUCKA_SL_A  
BUCKA_SL_B  
BUCKB_SL_A  
BUCKB_SL_B  
VBUCKA_B  
VBUCKA_B  
VBUCKB_A  
VBUCKB_A  
VBUCKB_B  
VBUCKB_B  
Register Page 2  
0x 100  
0x 105  
0x 106  
PAGE_CON  
INTERFACE  
INTERFACE2  
REVERT  
WRITE_MODE  
IF_BASE_ADDR1  
Reserved  
Reserved  
PM_IF_V  
Reserved  
R/W_POL  
Reserved  
REG_PAGE  
CPOL  
CPHA  
nCS_POL  
IF_TYPE  
PM_IF_HSM  
PM_IF_FMP  
Reserved  
Reserved  
Reserved  
0x 143  
0x 144  
0x 145  
0x 146  
0x 147  
0x 148  
CONFIG_A  
CONFIG_B  
CONFIG_C  
CONFIG_D  
CONFIG_E  
CONFIG_F  
Reserved  
UVLO_IO_DIS  
Reserved  
Reserved  
PGB_DVC_MASK  
Reserved  
Reserved  
PGA_DVC_MASK  
Reserved  
2WIRE_TO  
GPI4_PUPD  
Reserved  
GPI_V  
Reserved  
IRQ_TYPE  
GPI1_PUPD  
OSC_TUNE  
IRQ_LEVEL  
RELOAD_FUNC_EN  
GPI0_PUPD  
OCB_MASK  
OCA_MASK  
GPIO3_PUPD  
GPIO2_PUPD  
BUCKB_PG_SEL  
BUCKA_PG_SEL  
READYB_CONF  
READYA_CONF  
STAND_ALONE  
Reserved  
Reserved  
Reserved  
Reserved  
IF_BASE_ADDR2  
Reserved  
ADDR_SEL_CONF  
Register Page 4  
Reserved  
0x 200  
PAGE_CON  
REVERT  
WRITE_MODE  
Reserved  
Reserved  
REG_PAGE  
0x 201  
0x 202  
0x 203  
0x 204  
DEVICE_ID  
VARIANT_ID  
CUSTOMER_ID  
CONFIG_ID  
DEV_ID  
MRC  
VRC  
CUST_ID  
CONFIG_REV  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
38 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
8.2 Register Definitions  
8.2.1  
Register Page Control  
Register  
Bit  
Type Label  
Description  
Resets REG_PAGE to 000 after read/write access  
has finished  
7
R/W  
REVERT  
2-WIRE multiple write mode (Note 1)  
0: Page Write Mode  
6
R/W  
R/W  
WRITE_MODE  
(reserved)  
1: Repeated Write Mode  
5:3  
I2C  
0x00  
00x: Selects Register 0x00 to 0xFF  
01x: Selects Register 0x100 to 0x17F  
10x: Selects Register 0x200 to 0x27F  
SPI  
PAGE_CON  
2:0  
R/W  
REG_PAGE  
000: Selects Register 0x00 to 0x7F  
001: Selects Register 0x80 to 0xFF  
010: Selects Register 0x100 to 0x17F  
100: Selects Register 0x200 to 0x27F  
Note 1 Not used for 4-WIRE-IF.  
8.2.2  
Register Page 0  
8.2.2.1  
System Control and Event  
The STATUS registers report the current value of the various signals at the time that it is read out.  
Register  
Bit  
7:5  
4
Type Label  
Description  
R
R
R
R
R
R
(reserved)  
GPI4  
GPI3  
GPI2  
GPI1  
GPI0  
GPI4 level  
GPI3 level  
GPI2 level  
GPI1 level  
GPI0 level  
3
0x50  
STATUS_A  
2
1
0
Register  
Bit  
Type Label  
Description  
De-asserted during Buck A DVC, power up and  
power down  
7
R
R
RAMP_READY_B  
De-asserted during Buck B DVC, power up and  
power down  
6
RAMP_READY_A  
5
4
R
R
OV_CURR_B  
OV_CURR_A  
Asserted as long as the current limit for Buck B is hit  
Asserted as long as the current limit for Buck A is hit  
0x51  
STATUS_B  
Asserted as long as the thermal shutdown threshold  
is reached  
3
2
R
R
TEMP_CRIT  
Asserted as long as the thermal warning threshold is  
reached  
TEMP_WARN  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
39 of 60  
© 2021 Dialog Semiconductor  
 
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Register  
Bit  
Type Label  
Description  
Asserted as long as the Buck B output voltage is in  
range  
1
R
R
PWRGOOD_B  
PWRGOOD_A  
Asserted as long as the Buck A output voltage is in  
range  
0
The EVENT registers hold information about events that have occurred in DA9223-A and DA9224-A.  
Events are triggered by a change in the status register which contains the status of monitored  
signals. When an EVENT bit is set in the event register, the IRQ signal is asserted unless the event  
is masked by a bit in the mask register. The IRQ triggering event register will be cleared from the  
host by writing back its read value. New events occurring during clearing will be delayed before  
they are passed to the event register, ensuring that the host controller does not miss them.  
Register  
Bit  
7
Type Label  
Description  
R
R
R
R
R
R
R
R
(reserved)  
6
E_UVLO_IO  
(reserved)  
E_GPI4  
UVLO_IO caused event  
5
4
GPI4 event according to active state setting  
GPI3 event according to active state setting  
GPI2 event according to active state setting  
GPI1 event according to active state setting  
GPI0 event according to active state setting  
0x52  
EVENT_A  
3
E_GPI3  
2
E_GPI2  
1
E_GPI1  
0
E_GPI0  
Register  
Bit  
7:6  
5
Type Label  
Description  
R
R
R
R
R
R
R
(reserved)  
E_OV_CURR_B  
E_OV_CURR_A  
E_TEMP_CRIT  
E_TEMP_WARN  
E_PWRGOOD_B  
E_PWRGOOD_A  
OV_CURR Buck B caused event  
OV_CURR Buck A caused event  
TEMP_CRIT caused event  
4
0x53  
3
EVENT_B  
2
TEMP_WARN caused event  
1
PWRGOOD loss at Buck B caused event  
PWRGOOD loss at Buck A caused event  
0
Register  
Bit  
7
Type Label  
Description  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
(reserved)  
6
M_UVLO_IO  
(reserved)  
M_GPI4  
Mask UVLO_IO caused nIRQ  
5
4
Mask nIRQ interrupt at GPI4  
Mask nIRQ interrupt at GPI3  
Mask nIRQ interrupt at GPI2  
Mask nIRQ interrupt at GPI1  
Mask nIRQ interrupt at GPI0  
0x54  
MASK_A  
3
M_GPI3  
2
M_GPI2  
1
M_GPI1  
0
M_GPI0  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
40 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Register  
Bit  
7:6  
5
Type Label  
Description  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
(reserved)  
M_OV_CURR_B  
M_OV_CURR_A  
M_TEMP_CRIT  
M_TEMP_WARN  
M_PWRGOOD_B  
M_PWRGOOD_A  
Mask OV_CURR Buck B caused nIRQ and event  
Mask OV_CURR Buck A caused nIRQ and event  
Mask TEMP_CRIT caused nIRQ  
4
0x55  
3
MASK_B  
2
Mask TEMP_WARN caused nIRQ  
1
Mask PWRGOOD Buck B caused nIRQ  
Mask PWRGOOD Buck A caused nIRQ  
0
Register  
Bit  
Type Label  
Description  
0: Allows host writes into registers 0xD0 to 0x14F  
7
R/W  
V_LOCK  
1: Disables register 0xD0 to 0x14F re-  
programming from control interfaces  
Buck B DVC slewing is executed at  
00: 10mV every 4.0 µs  
6:5  
4:3  
R/W  
SLEW_RATE_B  
SLEW_RATE_A  
01: 10mV every 2.0 µs  
10: 10mV every 1.0 µs  
11: 10mV every 0.5 µs  
Buck A DVC slewing is executed at  
00: 10mV every 4.0 µs  
0x56  
R/W  
01: 10mV every 2.0 µs  
CONTROL_A  
10: 10mV every 1.0 µs  
11: 10mV every 0.5 µs  
Input signals debounce time:  
000: no debounce time  
001: 0.1 ms  
010: 1.0 ms  
0:2  
R/W  
DEBOUNCE  
011: 10 ms  
100: 50 ms  
101: 250 ms  
110: 500 ms  
111: 1000 ms  
8.2.2.2  
GPIO Control  
Register  
Bit  
Type Label  
Description  
0: GPI: debouncing off  
1: GPI: debouncing on  
7
R/W  
R/W  
GPI1_MODE  
GPI1_TYPE  
0: GPI: active low  
1: GPI: active high  
6
0x58  
PIN assigned to:  
00: GPI  
GPI0-1  
5:4  
3
R/W  
R/W  
GPI1_PIN  
>00: Reserved  
0: GPI: debouncing off  
1: GPI: debouncing on  
GPI0_MODE  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
41 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Register  
Bit  
Type Label  
Description  
0: GPI: active low  
1: GPI: active high  
2
R/W  
R/W  
GPI0_TYPE  
PIN assigned to:  
00: GPI  
1:0  
GPI0_PIN  
01: Track enable  
1x: Reserved  
Register  
Bit  
Type Label  
Description  
0: GPI: debouncing off  
GPO: Sets output to passive level  
7
R/W  
R/W  
GPIO3_MODE  
1: GPI: debouncing on  
GPO: Sets output to active level  
0: GPI/GPO: active low  
1: GPI/GPO: active high  
6
GPIO3_TYPE  
GPIO3_PIN  
PIN assigned to:  
00: GPI  
5:4  
R/W  
01: Reserved  
10: GPO (Open drain)  
11: GPO (Push-pull)  
0x59  
GPIO2-3  
0: GPI: debouncing off  
GPO: Sets output to passive level  
3
2
R/W  
R/W  
GPIO2_MODE  
GPIO2_TYPE  
1: GPI: debouncing on  
GPO: Sets output to active level  
0: GPI/GPO: active low  
1: GPI/GPO: active high  
PIN assigned to:  
00: GPI  
1:0  
R/W  
GPIO2_PIN  
01: Reserved  
10: GPO (Open drain)  
11: GPO (Push-pull)  
Register  
Bit  
Type Label  
Description  
7:4  
R/W  
R/W  
(reserved)  
0: GPI: debouncing off  
1: GPI: debouncing on  
3
2
GPI4_MODE  
GPI4_TYPE  
0: GPI: active low  
1: GPI: active high  
0x5A  
GPI4  
R/W  
R/W  
PIN assigned to:  
00: GPI  
1:0  
GPI4_PIN  
01: Reserved  
1x: Reserved  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
42 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
8.2.2.3  
Regulators Control  
Register  
Bit  
Type Label  
Description  
7
R/W  
R/W  
(reserved)  
Selects the GPI that specifies the target voltage of  
VBUCKA. This is VBUCKA_A on active to passive  
transition, VBUCKA_B on passive to active  
transition.  
Active high/low is controlled by GPIx_TYPE.  
00: Not controlled by GPIO  
01: GPI1 controlled  
6:5  
VBUCKA_GPI  
10: GPIO2 controlled  
11: GPI4 controlled  
Buck A voltage is selected from (ramping):  
0: VBUCKA_A  
4
3
R/W  
R/W  
VBUCKA_SEL  
0x5D  
1: VBUCKA_B  
BUCKA_CON  
T
0: Enable pull-down resistor of Buck A when the  
buck is disabled  
BUCKA_PD_DIS  
1: Disable pull-down resistor of Buck A when the  
buck is disabled  
GPI enables the Buck A on passive to active state  
transition, disables the Buck A on active to passive  
state transition  
00: Not controlled by GPIO  
01: GPI0 controlled  
2:1  
R/W  
R/W  
BUCKA_GPI  
BUCKA_EN  
10: GPI1 controlled  
11: GPIO3 controlled  
0: Buck A disabled  
1: Buck A enabled  
0
Register  
Bit  
Type Label  
Description  
7
R/W  
R/W  
(reserved)  
Selects the GPI that specifies the target voltage of  
VBUCKB. This is VBUCKB_A on active to passive  
transition, VBUCKB_B on passive to active  
transition.  
Active high/low is controlled by GPIx_TYPE  
00: Not controlled by GPIO  
01: GPI1 controlled  
6:5  
VBUCKB_GPI  
0x5E  
10: GPIO2 controlled  
BUCKB_CON  
T
11: GPI4 controlled  
Buck A voltage is selected from (ramping):  
0: VBUCKB_A  
4
3
R/W  
R/W  
VBUCKB_SEL  
1: VBUCKB_B  
0: Enable pull-down resistor of Buck B when the  
buck is disabled  
BUCKB_PD_DIS  
1: Disable pull-down resistor of Buck B when the  
buck is disabled  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
43 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Register  
Bit  
Type Label  
Description  
GPI enables the Buck B on passive to active state  
transition, disables the Buck B on active to passive  
state transition  
00: Not controlled by GPIO  
01: GPI0 controlled  
2:1  
R/W  
R/W  
BUCKB_GPI  
10: GPI1 controlled  
11: GPIO3 controlled  
0: Buck B disabled  
1: Buck B enabled  
0
BUCKB_EN  
8.2.3  
Register Page 1  
Register  
Bit  
Type Label  
Description  
Resets REG_PAGE to 000 after read/write access  
has finished  
7
R/W  
REVERT  
2-WIRE multiple write mode  
0: Page Write Mode  
6
R/W  
R/W  
WRITE_MODE  
(reserved)  
1: Repeated Write Mode  
5:3  
I2C  
0x80  
00x: Selects Register 0x00 to 0xFF  
01x: Selects Register 0x100 to 0x17F  
10x: Selects Register 0x200 to 0x27F  
SPI  
PAGE_CON  
2:0  
R/W  
REG_PAGE  
000: Selects Register 0x00 to 0x7F  
001: Selects Register 0x80 to 0xFF  
010: Selects Register 0x100 to 0x17F  
100: Selects Register 0x200 to 0x27F  
8.2.3.1  
Regulators Settings  
Register  
Bit  
Type Label  
Description  
Current limit per phase:  
0000: 4000 mA  
0001: 4200 mA  
0010: 4400 mA  
0xD0  
7:4  
R/W  
BUCKB_ILIM  
continuing through…  
1001: 5800 mA  
to…  
BUCK_ILIM  
1110: 6800 mA  
1111: 7000 mA  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
44 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Register  
Bit  
Type Label  
Description  
Current limit per phase:  
0000: 4000 mA  
0001: 4200 mA  
0010: 4400 mA  
3:0  
R/W  
BUCKA_ILIM  
continuing through…  
1001: 5800 mA  
to…  
1110: 6800 mA  
1111: 7000 mA  
Register  
Bit  
Type Label  
Description  
Buck A voltage ramping during power down  
000: 1.25 mV/µs  
001: 2.5 mV/µs  
010: 5 mV/µs  
BUCKA_DOWN_  
CTRL  
7:5  
R/W  
011: 10 mV/µs  
100: 20 mV/µs  
101: 30 mV/µs  
110: 40 mV/µs  
111: Reserved  
Buck A voltage ramping during start up  
000: 1.25 mV/µs  
0xD1  
BUCKA_CON  
F
001: 2.5 mV/µs  
010: 5 mV/µs  
BUCKA_UP_CT  
RL  
4:2  
R/W  
011: 10 mV/µs  
100: 20 mV/µs (Note 1)  
101: 30 mV/µs  
110: 40 mV/µs  
111: target voltage applied immediately (no soft start)  
00: PFM/PWM mode controlled via voltage A and B  
registers  
01: Automatic mode (1-phase)  
10: Buck A always operates in PWM mode  
11: Automatic mode  
1:0  
R/W  
BUCKA_MODE  
Note 1 Settings higher than 20 mV/µs may cause significant overshoot.  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
45 of 60  
© 2021 Dialog Semiconductor  
 
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Register  
Bit  
Type Label  
Description  
Buck B voltage ramping during power down  
000: 1.25 mV/µs  
001: 2.5 mV/µs  
010: 5 mV/µs  
BUCKB_DOWN_  
CTRL  
7:5  
R/W  
011: 10 mV/µs  
100: 20 mV/µs  
101: 30 mV/µs  
110: 40 mV/µs  
111: Reserved  
Buck B voltage ramping during start up  
000: 1.25 mV/µs  
0xD2  
BUCKB_CON  
F
001: 2.5 mV/µs  
010: 5 mV/µs  
BUCKB_UP_CT  
RL  
4:2  
R/W  
011: 10 mV/µs  
100: 20 mV/µs (Note 1)  
101: 30 mV/µs  
110: 40 mV/µs  
111: target voltage applied immediately (no soft start)  
00: PFM/PWM mode controlled via voltage A and B  
registers  
01: Automatic mode (1-phase)  
10: Buck B always operates in PWM mode  
11: Automatic mode  
1:0  
R/W  
BUCKB_MODE  
Note 1 Settings higher than 20mV/µs may cause significant overshoot.  
Register  
Bit  
Type Label  
Description  
7:5  
R/W  
R/W  
(reserved)  
Enable current dependent phase shedding in PWM for  
Buck B  
4
3
PH_SH_EN_B  
PH_SH_EN_A  
Enable current dependent phase shedding in PWM for  
Buck A  
R/W  
R/W  
Phase selection for Buck B in PWM  
0: 1 phase is selected  
2
PHASE_SEL_B  
0xD3  
1: 2 phases are selected  
BUCK_CONF  
Phase selection for Buck A in PWM mode. Settings  
>01 apply only for DA9223-A otherwise the number of  
phases is limited to max 2  
00: 1 phase is selected  
1:0  
R/W  
PHASE_SEL_A  
01: 2 phases are selected  
10: 3 phases are selected (uneven 0/90/180 phase  
shift)  
11: 4 phases are selected  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
46 of 60  
© 2021 Dialog Semiconductor  
 
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Register  
Bit  
Type Label  
R/W (reserved)  
Description  
7
Sets the maximum voltage allowed for Buck A (OTP  
programmed, access only in test mode)  
0000000: 0.30 V  
0000001: 0.31 V  
0000010: 0.32 V  
0xD5  
VBUCKA_MA  
X
6:0  
R
VBUCKA_MAX  
Continuing through…  
1000110: 1.0 V  
to…  
1111101: 1.55 V  
1111110: 1.56 V  
1111111: 1.57 V  
Register  
Bit  
Type Label  
R/W (reserved)  
Description  
7
Sets the maximum voltage allowed for Buck B (OTP  
programmed, access only in test mode)  
0000000: 0.30 V  
0000001: 0.31 V  
0000010: 0.32 V  
0xD6  
VBUCKB_MA  
X
6:0  
R
VBUCKB_MAX  
Continuing through…  
1000110: 1.0 V  
to…  
1111101: 1.55 V  
1111110: 1.56 V  
1111111: 1.57 V  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
47 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Register  
Bit  
Type Label  
Description  
0: Configures Buck A to PWM mode whenever  
selecting A voltage setting  
7
R/W  
BUCKA_SL_A  
1: Configures Buck A to automatic mode whenever  
selecting A voltage setting  
0000000: 0.30 V  
0000001: 0.31 V  
0000010: 0.32 V  
0xD7  
VBUCKA_A  
Continuing through…  
1000110: 1.0 V  
to…  
6:0  
R/W  
VBUCKA_A  
1111101: 1.55 V  
1111110: 1.56 V  
1111111: 1.57 V  
Register  
Bit  
Type Label  
Description  
0: Configures Buck A to PWM mode, whenever  
selecting B voltage setting  
7
R/W  
BUCKA_SL_B  
1: Configures Buck A to automatic mode, whenever  
selecting B voltage setting  
0000000: 0.30 V  
0000001: 0.31 V  
0000010: 0.32 V  
0xD8  
VBUCKA_B  
Continuing through…  
1000110: 1.0 V  
to…  
6:0  
R/W  
VBUCKA_B  
1111101: 1.55 V  
1111110: 1.56 V  
1111111: 1.57 V  
Register  
Bit  
Type Label  
Description  
0: Configures Buck B to PWM mode, whenever  
selecting A voltage setting  
7
R/W  
BUCKB_SL_A  
1: Configures Buck B to automatic mode, whenever  
selecting A voltage setting  
0000000: 0.30 V  
0000001: 0.31 V  
0000010: 0.32 V  
0xD9  
VBUCKB_A  
Continuing through…  
1000110: 1.0 V  
to…  
6:0  
R/W  
VBUCKB_A  
1111101: 1.55 V  
1111110: 1.56 V  
1111111: 1.57 V  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
48 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Register  
Bit  
Type Label  
Description  
0: Configures Buck B to PWM mode, whenever  
selecting B voltage setting  
7
R/W  
BUCKB_SL_B  
1: Configures Buck B to automatic mode, whenever  
selecting B voltage setting  
0000000: 0.30 V  
0000001: 0.31 V  
0000010: 0.32 V  
0xDA  
VBUCKB_B  
Continuing through…  
1000110: 1.0 V  
to…  
6:0  
R/W  
VBUCKB_B  
1111101: 1.55 V  
1111110: 1.56 V  
1111111: 1.57 V  
8.2.4  
Register Page 2  
Register  
Bit  
Type Label  
Description  
Resets REG_PAGE to 000 after read/write access  
has finished  
7
R/W  
REVERT  
2-WIRE multiple write mode  
0: Page Write Mode  
6
R/W  
R/W  
WRITE_MODE  
(reserved)  
1: Repeated Write Mode  
5:3  
I2C  
0x100  
00x: Selects Register 0x00 to 0xFF  
01x: Selects Register 0x100 to 0x17F  
10x: Selects Register 0x200 to 0x27F  
SPI  
PAGE_CON  
2:0  
R/W  
REG_PAGE  
000: Selects Register 0x00 to 0x7F  
001: Selects Register 0x80 to 0xFF  
010: Selects Register 0x100 to 0x17F  
100: Selects Register 0x200 to 0x27F  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
49 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
8.2.4.1  
Interface and OTP Settings (Shared with DA9063)  
Register  
Bit  
Type Label  
Description  
4 MSB of 2-WIRE control interfaces base address  
XXXX0000  
11010000 = 0xD0 write address of PM 2-WIRE  
interface (page 0 and 1)  
11010001 = 0xD1 read address of PM 2-WIRE  
interface (page 0 and 1)  
11010010 = 0xD2 write address of PM-2-WIRE  
interface (page 2 and 3)  
IF_BASE_ADDR  
1
7:4  
R/W  
11010011 = 0xD3 read address of PM-2-WIRE  
interface (page 2 and 3)  
11010101 = 0xD5 read address of PM-2-WIRE  
interface (page 4 and 5)  
Code ‘0000’ is reserved for unprogrammed OTP  
(triggers start-up with hardware default interface  
address)  
0x105  
INTERFACE  
4-WIRE: Read/Write bit polarity  
3
2
1
R/W  
R/W  
R/W  
R/W_POL  
CPHA  
0: Host indicates reading access via R/W bit = ‘0’  
1: Host indicates reading access via R/W bit = ‘1’  
4-WIRE interface clock phase (see Table 10)  
4-WIRE interface clock polarity  
0: SK is low during idle  
CPOL  
1: SK is high during idle  
4-WIRE chip select polarity  
0: nCS is low active  
0
R/W  
nCS_POL  
1: nCS is high active  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
50 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Register  
Bit  
Type Label  
Description  
0: Power manager interface is 4-WIRE. Automatically  
configures GPIO3 and GPI4 as interface signals. The  
GPIO configuration is overruled.  
7
R/W  
IF_TYPE  
1: Power manager interface is 2-WIRE  
Enables continuous high speed mode on 2-WIRE  
interface if asserted (no master code required)  
6
5
R/W  
R/W  
PM_IF_HSM  
PM_IF_FMP  
0x106  
Enables 2-WIRE interface operating with fast mode+  
timings if asserted  
INTERFACE2  
0: Power manager interface in 2-WIRE mode is  
supplied from VDDCORE (4-WIRE always from  
VDDIO)  
4
R/W  
R/W  
PM_IF_V  
(reserved)  
1: Power manager interface in 2-WIRE mode is  
supplied from VDDIO (4-WIRE always from VDDIO)  
0:3  
8.2.4.2  
Application Configuration Settings  
Register  
Bit  
Type Label  
Description  
7:5  
R/W  
R/W  
(reserved)  
Enables automatic reset of 2-WIRE interface if the  
clock stays low for >35 ms  
4
2WIRE_TO  
0: Disabled  
1: Enabled  
GPIs are supplied from:  
0: VDDCORE  
3
2
1
R/W  
R/W  
R/W  
GPI_V  
0x143  
1: VDDIO  
CONFIG_A  
(reserved)  
IRQ_TYPE  
nIRQ output port is:  
0: Push-pull  
1: Open drain (requires external pull-up resistor)  
nIRQ output port is:  
0: Active low  
0
R/W  
IRQ_LEVEL  
1: Active high  
Register  
Bit  
Type Label  
Description  
Disable the UVLO for the VDDIO rail and its  
comparator (suggested for rail voltages different to  
1.8 V and to save quiescent current)  
7
R/W  
UVLO_IO_DIS  
Power-good configuration for Buck B  
0: Power-good signal not masked during DVC  
transitions  
PGB_DVC_MAS  
K
6
5
R/W  
0x144  
1: Power-good signal masked during DVC transitions  
(keep previous status)  
CONFIG_B  
Power-good configuration for Buck A  
0: Power-good signal not masked during DVC  
transitions  
PGA_DVC_MAS  
K
R/W  
1: Power-good signal masked during DVC transitions  
(keep previous status)  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
51 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Register  
Bit  
Type Label  
Description  
Over Current configuration for Buck B  
00: Event generation due to over current hit is always  
active during DVC transitions of the Buck converter  
01: Event generation due to over current hit is masked  
during DVC transitions of the buck converter + 2 µs  
extra masking at the end  
4:3  
R/W  
OCB_MASK  
10: Event generation due to over current hit is masked  
during DVC transitions of the buck converter + 10 µs  
extra masking at the end  
11: Event generation due to over current hit is masked  
during DVC transitions of the buck converter + 50 µs  
extra masking at the end  
Over Current configuration for Buck A  
00: Event generation due to over current hit is always  
active during DVC transitions of the buck converter  
01: Event generation due to over current hit is masked  
during DVC transitions of the buck converter + 2 µs  
extra masking at the end  
2:1  
R/W  
R/W  
OCA_MASK  
10: Event generation due to over current hit is masked  
during DVC transitions of the buck converter + 10 µs  
extra masking at the end  
11: Event generation due to over current hit is masked  
during DVC transitions of the buck converter + 50 µs  
extra masking at the end  
RELOAD_FUNC  
_EN  
Enable the OTP re-load function for GPI0 when  
configured as input port  
0
Register  
Bit  
Type Label  
Description  
7:5  
R/W  
R/W  
(reserved)  
0: GPI: pull-down resistor disabled  
1: GPI: pull-down resistor enabled  
4
3
GPI4_PUPD  
0: GPI: pull-down resistor disabled  
GPO (open drain): pull up resistor disabled  
(external pull-up resistor)  
R/W  
R/W  
GPIO3_PUPD  
1: GPI: pull-down resistor enabled  
GPO (open drain): pull up resistor  
0x145  
0: GPI: pull-down resistor disabled  
GPO (open drain): pull up resistor disabled  
(external pull-up resistor)  
CONFIG_C  
2
GPIO2_PUPD  
1: GPI: pull-down resistor enabled  
GPO (open drain): pull up resistor enabled  
0: GPI: pull-down resistor disabled  
1: GPI: pull-down resistor enabled  
1
0
R/W  
R/W  
GPI1_PUPD  
GPI0_PUPD  
0: GPI: pull-down resistor disabled  
1: GPI: pull-down resistor enabled  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
52 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Register  
Bit  
Type Label  
Description  
Selection of the PG signal for Buck B  
00: none  
7:6  
R/W  
R/W  
R/W  
R/W  
BUCKB_PG_SEL 01: GPO2  
10: GPO3  
11: reserved  
Selection of the PG signal for Buck A  
00: none  
5:4  
3:2  
1:0  
BUCKA_PG_SEL 01: GPO2  
10: GPO3  
11: reserved  
0x146  
CONFIG_D  
Selection of the READY signal for Buck B  
00: none  
READYB_CONF  
READYA_CONF  
01: GPO2  
10: GPO3  
11: reserved  
Selection of the READY signal for Buck A  
00: none  
01: GPO2  
10: GPO3  
11: reserved  
Register  
Bit  
Type Label  
Description  
0: DA9223-A and DA9224-A is used as companion IC  
to DA9063 or DA9063-compliant  
7
R/W  
STAND_ALONE  
1: DA9223-A and DA9224-A is stand alone or as  
companion IC with another PMU not  
DA9063-compliant  
6:5  
4:3  
R/W  
R/W  
(reserved)  
(reserved)  
0x147  
Tune the main 6 MHz oscillator frequency:  
000: no tune  
CONFIG_E  
001: +180 kHz  
010: +360 kHz  
2:0  
R/W  
OSC_TUNE  
011: +540 kHz  
100: +720 kHz  
101: +900 kHz  
110: +1080 kHz  
111: +1260 kHz  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
53 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Register  
Bit  
Type Label  
Description  
If a second I2C address is to be selected on  
ADR_SEL_CONF, this field configures the second  
address.  
4 MSB of 2-WIRE control interfaces base address  
XXXX0000  
11010000 = 0xD0 write address of PM 2-WIRE  
interface (page 0 and 1)  
11010001 = 0xD1 read address of PM 2-WIRE  
interface (page 0 and 1)  
IF_BASE_ADDR  
2
7:4  
R/W  
11010010 = 0xD2 write address of PM-2-WIRE  
interface (page 2 and 3)  
11010011 = 0xD3 read address of PM-2-WIRE  
interface (page 2 and 3)  
0x148  
11010101 = 0xD5 read address of PM-2-WIRE  
interface (page 4 and 5)  
CONFIG_F  
Code ‘0000’ is reserved for unprogrammed OTP  
(triggers start-up with hardware default interface  
address)  
3:2  
1
R
(reserved)  
Selects the GPI for the alternative I2C address  
selection:  
00: none  
01: GPI0  
10: GPI1  
11: GPI4  
ADDR_SEL_CO  
NF  
R/W  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
54 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
8.2.5  
Register Page 4  
Register  
Bit  
Type Label  
Description  
Resets REG_PAGE to 000 after read/write access  
has finished  
7
R/W  
REVERT  
2-WIRE multiple write mode  
0: Page Write Mode  
6
R/W  
R/W  
WRITE_MODE  
(reserved)  
1: Repeated Write Mode  
5:3  
I2C  
0x200  
00x: Selects Register 0x00 to 0xFF  
01x: Selects Register 0x100 to 0x17F  
10x: Selects Register 0x200 to 0x27F  
SPI  
PAGE_CON  
2:0  
R/W  
REG_PAGE  
000: Selects Register 0x00 to 0x7F  
001: Selects Register 0x80 to 0xFF  
010: Selects Register 0x100 to 0x17F  
100: Selects Register 0x200 to 0x27F  
8.2.5.1  
Chip and OTP IDs  
Register  
Bit  
Type Label  
DEV_ID  
Description  
0x201  
7:0  
R
Device ID  
DEVICE_ID  
Register  
Bit  
7:4  
3:0  
Type Label  
Description  
R
R
MRC  
VRC  
Mask Revision Code  
Chip Variant Code  
0x202  
VARIANT_ID  
Register  
Bit  
Type Label  
Description  
0x203  
7:0  
R
CUST_ID  
Customer ID  
CUSTOMER_  
ID  
Register  
Bit  
Type Label  
Description  
0x204  
7:0  
R
CONFIG_REV  
OTP Variant  
CONFIG_ID  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
55 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
9
Application Information  
The following recommended components are examples selected from requirements of a typical  
application.  
9.1 Capacitor Selection  
Ceramic capacitors are used as bypass capacitors at all VDD and output rails. When selecting a  
capacitor, especially for types with high capacitance at smallest physical dimension, the DC bias  
characteristic has to be taken into account.  
Table 14: Recommended Capacitor Types  
Application  
Value  
Size  
Temp Char  
Tol  
V-Rate  
Type  
VOUT  
Murata  
GCM32ER70J476KE19  
47 uF  
1210  
X7R ±15 %  
±10 %  
6.3 V  
output  
bypass  
Murata  
GCM31CR70J226KE23  
22 uF  
10 uF  
10 uF  
1 uF  
1206  
0805  
0805  
0603  
0402  
X7R ±15 %  
X7R ±15 %  
X7R ±15 %  
X7R ±15 %  
X7R ±15 %  
±10 %  
±10 %  
±10 %  
±10 %  
±10 %  
6.3 V  
6.3 V  
10 V  
16 V  
50 V  
Murata  
GCM21BR70J106KE22  
VDDx  
bypass  
Murata  
GCM21BR71A106KE22  
VSYS  
bypass  
Murata  
GCM188R71C105KA64  
VDDIO  
bypass  
Murata  
GCM155R71H104KE02  
100 nF  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
56 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
9.2 Inductor Selection  
Inductors should be selected based upon the following parameters:  
Rated max. current: usually a coil provides two current limits: The Isat specifies the maximum  
current at which the inductance drops by 30 % of the nominal value. The Imax is defined by the  
maximum power dissipation and is applied to the effective current.  
DC resistance: critical for the converter efficiency and should therefore be minimized.  
The typical recommended output inductance is 0.22 µH per phase. Use of larger output  
inductance degrades the load transient performance of the buck converter.  
Table 15: Recommended Inductor Types  
Application  
Value  
Size  
Imax(dc)  
Isat  
Tol  
DC res  
Type  
2.5 mm x  
2.0 mm x  
1.0 mm  
TDK  
BUCK  
0.22 uH  
7.1 A  
8.0 A  
±20%  
12 mΩ TFM252010ALMAR22M  
TAA  
2.5 mm x  
2.0 mm x  
1.2 mm  
TDK  
0.22 uH  
0.24 uH  
0.24 uH  
0.47 uH  
0.47 uH  
0.47 uH  
0.47 uH  
0.47 uH  
0.24 uH  
0.47 uH  
0.24 uH  
0.47 uH  
8.5 A  
7.0 A  
4.8 A  
5.4 A  
5.6 A  
4.7 A  
5.0 A  
3.8 A  
5.0 A  
3.8 A  
5.9 A  
4.7 A  
10 A  
±20%  
±20%  
±20%  
±20%  
±20%  
±20%  
±20%  
±20%  
±20%  
±20%  
±20%  
±20%  
8 mΩ  
TFM252012ALMAR22M  
TAA  
2.0 mm x  
1.6 mm x  
1.0 mm  
TDK  
7.5 A  
5.9 A  
6.5 A  
6.5 A  
6.1 A  
5.8 A  
4.5 A  
7.7 A  
5.5 A  
8.5 A  
6.2 A  
15 mΩ TFM201610ALMAR24M  
TAA  
2.0 mm x  
1.6 mm x  
1.2 mm  
TOKO DFE201612PD-  
R24M  
16 mΩ  
2.5 mm x  
2.0 mm x  
1.0 mm  
TDK  
20 mΩ TFM252010ALMAR47M  
TAA  
2.5 mm x  
2.0 mm x  
1.2 mm  
TDK  
19 mΩ TFM252012ALMAR47M  
TAA  
2.5 mm x  
2.0 mm x  
1.2 mm  
TOKO DFE252012PD-  
R47M  
21 mΩ  
2.0 mm x  
1.6 mm x  
1.0 mm  
TDK  
28 mΩ TFM201610ALMAR47M  
TAA  
2.0 mm x  
1.6 mm x  
1.2 mm  
TOKO DFE201612PD-  
R47M  
26 mΩ  
2.0 mm x  
1.6 mm x  
1.2 mm  
Taiyo Yuden  
16 mΩ  
MEMK2016TR24MV  
2.0 mm x  
1.6 mm x  
1.2 mm  
Taiyo Yuden  
28 mΩ  
MEMK2016TR47MV  
2.5 mm x  
2.0 mm x  
1.2 mm  
Taiyo Yuden  
13 mΩ  
MEMK2520TR24MV  
2.5 mm x  
2.0 mm x  
1.2 mm  
Taiyo Yuden  
21 mΩ  
MEMK2520TR47MV  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
57 of 60  
© 2021 Dialog Semiconductor  
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
10 Package Information  
10.1 Package Outlines  
Figure 28: DA9223-A/24-A 66 TFBGA 0.8 mm Pitch Package Outline Drawing  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
58 of 60  
© 2021 Dialog Semiconductor  
 
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
10.2 Package Marking  
Table 16: Package Marking  
11 Ordering Information  
The ordering number consists of the part number followed by a suffix indicating the packing method.  
For details and availability, please consult Dialog Semiconductor’s website or your local sales  
representative.  
Table 17: Ordering Information  
Package  
Description  
Package  
Outline  
Part Number  
Package  
Comment  
DA9223-xxFT1BB-A  
66 TFBGA  
66 TFBGA  
66 TFBGA  
66 TFBGA  
66 TFBGA  
66 TFBGA  
Tray  
Auto Grade 2  
Auto Grade 2  
Auto Grade 2  
Auto Grade 2  
Auto Grade 2  
Auto Grade 2  
DA9223-xxFT2BB-A, Note 1  
DA9223-xxFTDBB-A  
T&R, 3000pcs  
T&R, 2200pcs  
Tray  
DA9224-xxFT1BB-A  
DA9224-xxFT2BB-A, Note 1  
DA9224-xxFTDBB-A  
T&R, 3000pcs  
T&R, 2200pcs  
Auto Grade 2  
with High Temp screening  
DA9223-xxFT1BB-AT  
66 TFBGA  
66 TFBGA  
66 TFBGA  
66 TFBGA  
66 TFBGA  
66 TFBGA  
Tray  
Figure 28  
Auto Grade 2  
with High Temp screening  
DA9223-xxFT2BB-AT, Note 1  
DA9223-xxFTDBB-AT  
T&R, 3000pcs  
T&R, 2200pcs  
Tray  
Auto Grade 2  
with High Temp screening  
Auto Grade 2  
with High Temp screening  
DA9224-xxFT1BB-AT  
Auto Grade 2  
with High Temp screening  
DA9224-xxFT2BB-AT, Note 1  
DA9224-xxFTDBB-AT  
T&R, 3000pcs  
T&R, 2200pcs  
Auto Grade 2  
with High Temp screening  
Note 1 Large reel sizes are no longer supported, contact sales for further information  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
59 of 60  
© 2021 Dialog Semiconductor  
 
DA9223-A and DA9224-A  
Auto Grade 0.8 mm Pitch Multi-Phase Buck Converter  
Status Definitions  
Revision  
Datasheet Status  
Product Status  
Definition  
This datasheet contains the design specifications for product development.  
Specifications may be changed in any manner without notice.  
1.<n>  
Target  
Development  
This datasheet contains the specifications and preliminary characterization  
data for products in pre-production. Specifications may be changed at any  
time without notice in order to improve the design.  
2.<n>  
3.<n>  
Preliminary  
Qualification  
This datasheet contains the final specifications for products in volume  
production. The specifications may be changed at any time in order to  
improve the design, manufacturing and supply. Major specification changes  
are communicated via Customer Product Notifications. Datasheet changes  
are communicated via www.dialog-semiconductor.com.  
Final  
Production  
Archived  
This datasheet contains the specifications for discontinued products. The  
information is provided for reference only.  
4.<n>  
Obsolete  
Disclaimer  
Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not  
designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications  
where failure or malfunction of a Dialog Semiconductor product (or associated software) can reasonably be expected to result in personal injury,  
death or severe property or environmental damage. Dialog Semiconductor and its suppliers accept no liability for inclusion and/or use of Dialog  
Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion and/or use is at the  
customer’s own risk.  
Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or  
warranties, express or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no  
responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.  
Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the  
specification and the design of the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive  
grade version of the device, Dialog Semiconductor reserves the right to change the information published in this document, including, without  
limitation, the specification and the design of the related semiconductor products, software and applications, in accordance with its standard  
automotive change notification process.  
Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes  
no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further  
testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog  
Semiconductor excludes all liability in this respect.  
Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications  
referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.  
All use of Dialog Semiconductor products, software and applications referred to in this document is subject to Dialog Semiconductor’s Standard  
Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.  
Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service  
names and marks are the property of their respective owners.  
© 2021 Dialog Semiconductor. All rights reserved.  
RoHS Compliance  
Dialog Semiconductor’s suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European  
Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our  
suppliers are available on request.  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Hong Kong  
China (Shenzhen)  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Dialog Semiconductor Hong Kong  
Phone: +852 2607 4271  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Korea  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5769 5100  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
The Netherlands  
Taiwan  
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
Datasheet  
Revision 2.6  
23-Apr-2021  
CFR0011-120-00  
60 of 60  
© 2021 Dialog Semiconductor  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY