SLG46585 [DIALOG]

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine, LDOs, and DC/DC Converter;
SLG46585
型号: SLG46585
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine, LDOs, and DC/DC Converter

文件: 总210页 (文件大小:4742K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
General Description  
The SLG46585 is a small, low power component commonly used to integrate Mixed-Signal functions under control of an  
asynchronous state machine. The user creates the circuit design by programming the one time Non-Volatile Memory (NVM) to  
configure the interconnect logic, the IO Pins, and the macrocells of the SLG46585. In addition, the device contains one 1 A DC/  
DC buck converter operating from 1 MHz to 2 MHz and four 150 mA configurable LDOs. This highly versatile device allows a  
wide variety of functions and control logic to be designed within a very small, low power monolithic integrated circuit.  
Serial Communications  
I2C Slave Protocol Interface  
Programmable Delay with Edge Detector Output  
Additional Logic Functions  
Key Features  
Four Analog Comparators  
Voltage Reference for Analog Comparators  
Analog Temperature Sensor  
2 Deglitch Filters with Edge Detectors  
Fifteen Combination Function Macrocells  
Two Oscillators  
Three Selectable DFF/LATCH or 2-bit LUTs  
Six Selectable DFF/LATCH or 3-bit LUTs  
One Selectable Pipe Delay or Ripple Counter, or 3-bit  
LUT  
Configurable 25 kHz/2 MHz  
1.73 kHz Low Power Oscillator  
Eight Byte RAM + OTP User Memory  
RAM with I2C interface  
Five 8-bit Delays/Counters or 3-bit LUTs  
User Defined Initial Values Transferred from OTP  
Combinatorial Logic  
One 4-bit LUT with Two Outputs  
Programmable Asynchronous State Machine  
Power-On Reset  
Highly Versatile Macrocells  
Read Back Protection (Read Lock)  
2.5 V to 5.5 V Supply  
Operating Temperature Range: -40 °C to 85 °C  
RoHS Compliant/Halogen-Free  
29-pin MSTQFN: 3 mm x 3 mm x 0.55 mm, 0.4 mm pitch  
Eight States  
Flexible Input Logic from State Transitions  
Real Time Clock Binary Counter  
Four Tri-Mode 150 mA LDO Regulators  
High Power Mode (HP Mode): 150 mA Output  
Low Power Mode (LP Mode): 100 µA Output  
Power Switch Mode: Acts like a Load Switch  
1 A Synchronous Constant-on-Time DC/DC Step Down  
Converter  
Applications  
Personal Computers and Servers  
PC Peripherals  
Consumer Electronics  
Data Communications Equipment  
Handheld and Portable Electronics  
Smartphones and Fitness Bands  
Notebook and Tablet PCs  
Power Management Switches  
Power Sequencing with Complex Analog Control  
Power Plane Component Size Reduction Project  
LED Driver  
Haptic Motor Driver  
Datasheet  
18-Sep-2019  
Revision 3.3  
1 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Contents  
General Description.................................................................................................................................................................1  
Key Features.............................................................................................................................................................................1  
Applications .............................................................................................................................................................................1  
1 Block Diagram ....................................................................................................................................................................10  
2 Pinout ..................................................................................................................................................................................11  
2.1 Pin Configuration - MSTQFN- 29L ......................................................................................................................11  
3 Characteristics ...................................................................................................................................................................15  
3.1 Absolute Maximum Ratings .................................................................................................................................15  
3.2 Electrostatic Discharge Ratings ...........................................................................................................................15  
3.3 Recommended Operating Conditions .................................................................................................................15  
3.4 Electrical Characteristics ......................................................................................................................................15  
3.5 Timing Characteristics ..........................................................................................................................................27  
3.6 OSC Characteristics .............................................................................................................................................30  
3.7 Analog Comparator Characteristics .....................................................................................................................32  
3.8 Low Drop Out “LDO” Regulator Electrical Characteristics ...................................................................................34  
3.9 DC/DC Converter Electrical Characteristics .........................................................................................................36  
4 User Programmability ........................................................................................................................................................38  
5 IO Pins .................................................................................................................................................................................39  
5.1 Input Modes .........................................................................................................................................................39  
5.2 Output Modes .......................................................................................................................................................40  
5.3 Pull-Up/Down Resistors .......................................................................................................................................40  
5.4 IO Register Settings .............................................................................................................................................40  
5.5 GPI Structure .......................................................................................................................................................44  
5.6 Matrix OE IO Structure .........................................................................................................................................45  
5.7 IO Structure ..........................................................................................................................................................47  
6 Connection Matrix ..............................................................................................................................................................48  
6.1 Matrix Input Table ...............................................................................................................................................49  
6.2 Matrix Output Table .............................................................................................................................................51  
6.3 Connection Matrix Virtual Inputs ..........................................................................................................................54  
6.4 Connection Matrix Virtual Outputs .......................................................................................................................54  
7 Combination Function Macrocells ....................................................................................................................................55  
7.1 2-Bit LUT or D Flip-Flop Macrocells .....................................................................................................................55  
7.2 3-Bit LUT or D Flip-Flop with Set/Reset Macrocells .............................................................................................59  
7.3 3-Bit LUT or Pipe Delay/Ripple Counter Macrocell ..............................................................................................67  
7.4 3-Bit LUT or 8-Bit Counter/Delay Macrocells .......................................................................................................71  
7.5 CNT/DLY Timing Diagrams ..................................................................................................................................80  
7.6 Wake and Sleep Controller ..................................................................................................................................87  
8 Combinatorial Logic ...........................................................................................................................................................89  
8.1 4-bit LUT with Two Outputs ..................................................................................................................................89  
9 Analog Comparators ..........................................................................................................................................................91  
9.1 ACMP0 Block Diagram and Register Settings .....................................................................................................92  
9.2 ACMP1 Block Diagram and Register Settings .....................................................................................................94  
9.3 ACMP2 Block Diagram and Register Settings .....................................................................................................96  
9.4 ACMP3 Block Diagram and Register Settings .....................................................................................................98  
9.5 ACMPs Typical Performance .............................................................................................................................100  
10 Pipe Delay .......................................................................................................................................................................101  
11 Programmable Delay/Edge Detector ............................................................................................................................101  
11.1 Programmable Delay Timing Diagram - Edge Detector Output ......................................................................101  
12 Additional Logic Functions ...........................................................................................................................................103  
12.1 Deglitch Filter/Edge Detector ...........................................................................................................................103  
13 RTC Binary Counter .......................................................................................................................................................104  
13.1 RTC Binary Counter Shadow Buffer ................................................................................................................105  
14 Voltage Reference ..........................................................................................................................................................106  
14.1 Voltage Reference Overview ...........................................................................................................................106  
14.2 Vref Selection Table ........................................................................................................................................106  
15 Analog Temperature Sensor .........................................................................................................................................107  
Datasheet  
18-Sep-2019  
Revision 3.3  
2 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
16 Clocking ..........................................................................................................................................................................109  
16.1 OSC General Description .................................................................................................................................109  
16.2 Low Power OSC (1.73 kHz) .............................................................................................................................109  
16.3 Configurable OSC(25 kHz/2MHz) ....................................................................................................................110  
16.4 Oscillator Power-On Delay ...............................................................................................................................110  
16.5 Oscillator Accuracy ..........................................................................................................................................113  
17 Power-On Reset ..............................................................................................................................................................115  
17.1 General Operation ............................................................................................................................................115  
17.2 POR Sequence ................................................................................................................................................116  
17.3 Macrocells Output States During POR Sequence ...........................................................................................116  
17.4 External Reset ..................................................................................................................................................118  
18 Asynchronous State Machine Macrocell .....................................................................................................................122  
18.1 ASM Macrocell Overview .................................................................................................................................122  
18.2 ASM Inputs .......................................................................................................................................................123  
18.3 ASM Outputs ....................................................................................................................................................125  
18.4 Basic ASM Timing ............................................................................................................................................127  
18.5 Asynchronous State Machines vs. Synchronous State Machines ...................................................................127  
18.6 ASM Power Consideration ...............................................................................................................................127  
18.7 ASM Logical vs. Physical Design .....................................................................................................................128  
18.8 ASM Special Case Timing Considerations ......................................................................................................128  
19 I2C Serial Communications Macrocell .........................................................................................................................133  
19.1 I2C Serial Communications Macrocell Overview .............................................................................................133  
19.2 I2C Serial Communications Device Addressing ...............................................................................................133  
19.3 I2C Serial General Timing ................................................................................................................................134  
19.4 I2C Serial Communications Commands ..........................................................................................................134  
19.5 I2C Serial Command Register Map .................................................................................................................138  
20 Low Dropout Regulators ...............................................................................................................................................141  
20.1 LDO Regulator Description ..............................................................................................................................141  
20.2 Over-Current Limit and Short-Circuit Detection ...............................................................................................146  
20.3 LDO Efficiency .................................................................................................................................................146  
20.4 LDO Thermal Considerations ...........................................................................................................................146  
20.5 Soft Start Function (SS) ...................................................................................................................................147  
20.6 ACMPs: Under Voltage Lockout Capability, Power Good ................................................................................147  
20.7 Regulator Stability Considerations ...................................................................................................................148  
20.8 LDO Regulator Cold Start up ...........................................................................................................................148  
20.9 LDO Regulator Hot Start up .............................................................................................................................148  
20.10 Discharge Resistors .......................................................................................................................................148  
20.11 Typical Application Circuit ..............................................................................................................................148  
20.12 Typical Application Performance ....................................................................................................................149  
21 1 A Synchronous DC/DC Step Down Converter ..........................................................................................................152  
21.1 DC/DC Buck Converter Description .................................................................................................................152  
21.2 Synchronous DC/DC Step Down Converter Block Diagram ............................................................................152  
21.3 Typical Application Circuit ................................................................................................................................152  
21.4 DC/DC Buck Converter Pinout Description ......................................................................................................153  
21.5 Configurable Parameters .................................................................................................................................153  
21.6 Output Voltage Selection .................................................................................................................................154  
21.7 Switching Frequency Selection ........................................................................................................................154  
21.8 Over-Current Protection Level Selection ..........................................................................................................154  
21.9 DC/DC Thermal Shutdown ...............................................................................................................................155  
21.10 DC/DC Under Voltage Lockout ......................................................................................................................155  
21.11 Fault Signals ..................................................................................................................................................155  
21.12 DC/DC Soft Start ............................................................................................................................................155  
21.13 Constant-On-Time ..........................................................................................................................................155  
21.14 DC/DC Continuous Conduction Mode (CCM) ................................................................................................156  
21.15 DC/DC Discontinuous Conduction Mode (DCM) ...........................................................................................156  
21.16 DC/DC Power Dissipation ..............................................................................................................................156  
21.17 Layout Consideration .....................................................................................................................................158  
Datasheet  
18-Sep-2019  
Revision 3.3  
3 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
21.18 Typical Performance Characteristics .............................................................................................................166  
22 Register Definitions .......................................................................................................................................................171  
22.1 Register Map ....................................................................................................................................................171  
23 Package Top Marking System Definition .....................................................................................................................201  
23.1 MSTQFN 29L 3 mm x 3 mm x 0.55 mm 0.4P Package ...................................................................................201  
24 Package Information ......................................................................................................................................................202  
24.1 Package Outlines for MSTQFN 29L 3 mm x 3 mm 0.4P FC Package .............................................................202  
24.2 MSTQFN Handling ...........................................................................................................................................203  
24.3 Soldering Information .......................................................................................................................................203  
25 Ordering Information .....................................................................................................................................................203  
25.1 Tape and Reel Specifications ..........................................................................................................................203  
25.2 Carrier Tape Drawing and Dimensions ..........................................................................................................203  
26 Layout Guidelines ..........................................................................................................................................................205  
26.1 MSTQFN 29L 3 mm x 3 mm x 0.55 mm 0.4P Package ...................................................................................205  
Glossary................................................................................................................................................................................206  
Revision History...................................................................................................................................................................209  
Datasheet  
18-Sep-2019  
Revision 3.3  
4 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Figures  
Figure 1: Block Diagram...........................................................................................................................................................10  
Figure 2: Steps to Create a Custom GreenPAK Device...........................................................................................................38  
Figure 3: IO3 GPI Structure Diagram.......................................................................................................................................44  
Figure 4: Matrix OE IO Structure Diagram...............................................................................................................................45  
Figure 5: Matrix OE IO Structure Diagram...............................................................................................................................46  
Figure 6: IO Structure Diagram................................................................................................................................................47  
Figure 7: Connection Matrix.....................................................................................................................................................48  
Figure 8: Connection Matrix Example......................................................................................................................................48  
Figure 9: 2-bit LUT0 or DFF0...................................................................................................................................................55  
Figure 10: 2-bit LUT1 or DFF1.................................................................................................................................................56  
Figure 11: 2-bit LUT2 or DFF2.................................................................................................................................................56  
Figure 12: DFF Polarity Operations..........................................................................................................................................59  
Figure 13: 3-bit LUT0 or DFF3.................................................................................................................................................60  
Figure 14: 3-bit LUT1 or DFF4.................................................................................................................................................60  
Figure 15: 3-bit LUT2 or DFF5.................................................................................................................................................61  
Figure 16: 3-bit LUT3 or DFF6.................................................................................................................................................61  
Figure 17: 3-bit LUT4 or DFF7.................................................................................................................................................62  
Figure 18: 3-bit LUT5 or DFF8.................................................................................................................................................62  
Figure 19: DFF Polarity Operations with nReset......................................................................................................................66  
Figure 20: DFF Polarity Operations with nSet..........................................................................................................................67  
Figure 21: 3-bit LUT11/Pipe Delay/Ripple Counter..................................................................................................................69  
Figure 22: Example: Ripple Counter Functionality...................................................................................................................70  
Figure 23: 3-bit LUT6 or CNT/DLY0.........................................................................................................................................72  
Figure 24: 3-bit LUT7 or CNT/DLY1.........................................................................................................................................73  
Figure 25: 3-bit LUT8 or CNT/DLY2.........................................................................................................................................73  
Figure 26: 3-bit LUT9 or CNT/DLY3.........................................................................................................................................74  
Figure 27: 3-bit LUT10 or CNT/DLY4.......................................................................................................................................74  
Figure 28: Delay Mode Timing Diagram...................................................................................................................................80  
Figure 29: Counter Mode Timing Diagram with Reset Signal..................................................................................................80  
Figure 30: Counter Mode Timing Diagram with SET Signal (only for DLY/CNT0)...................................................................81  
Figure 31: One-Shot Function Timing Diagram........................................................................................................................82  
Figure 32: Frequency Detection Mode Timing Diagram...........................................................................................................83  
Figure 33: Edge Detection Mode Timing Diagram (Except DLY/CNT0) ..................................................................................84  
Figure 34: Delay Mode Timing Diagram (Except DLY/CNT0)..................................................................................................85  
Figure 35: Delay Mode Timing Diagram...................................................................................................................................86  
Figure 36: Wake/Sleep Controller............................................................................................................................................87  
Figure 37: Wake/Sleep Timing Diagram ..................................................................................................................................88  
Figure 38: 4-bit LUT0 with Two Outputs...................................................................................................................................89  
Figure 39: ACMP0 Block Diagram ...........................................................................................................................................92  
Figure 40: ACMP1 Block Diagram ...........................................................................................................................................94  
Figure 41: ACMP2 Block Diagram ...........................................................................................................................................96  
Figure 42: ACMP3 Block Diagram ...........................................................................................................................................98  
Figure 43: ACMPs Power-On Delay vs. VDD..........................................................................................................................................................100  
Figure 44: Programmable Delay ............................................................................................................................................101  
Figure 45: Edge Detector Output ...........................................................................................................................................101  
Figure 46: Deglitch Filter/Edge Detector................................................................................................................................103  
Figure 47: RTC Counter Macrocell.........................................................................................................................................104  
Figure 48: RTC Counter Shadow Buffer Bits .........................................................................................................................105  
Figure 49: Analog Temperature Sensor Structure Diagram...................................................................................................108  
Figure 50: Low Power Oscillator Block Diagram....................................................................................................................109  
Figure 51: Configurable OSC Block Diagram.........................................................................................................................110  
Figure 52: Oscillator Startup Diagram....................................................................................................................................110  
Figure 53: Oscillator Maximum Power-On Delay vs. VDD, T = +25 °C, OSC0 = 2 MHz .......................................................111  
Figure 54: Oscillator Maximum Power-On Delay vs. VDD at T = 25 °C, OSC0 = 25 kHz......................................................112  
Figure 55: Oscillator Maximum Power-On Delay vs. VDD at T = 25 °C, OSC1 = 1.73 kHz...................................................112  
Figure 56: Oscillator Frequency vs. Temperature, OSC0 = 2 MHz........................................................................................113  
Datasheet  
18-Sep-2019  
Revision 3.3  
5 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Figure 57: Oscillator Frequency vs. Temperature, OSC0 = 25 kHz ....................................................................................... 113  
Figure 58: Oscillator Frequency vs. Temperature, OSC1 = 1.73 kHz .................................................................................... 114  
Figure 59: POR Sequence.....................................................................................................................................................116  
Figure 60: Internal Macrocell States during POR Sequence..................................................................................................117  
Figure 61: Power-Down..........................................................................................................................................................118  
Figure 62: External Reset Sequence (Level Sensitive)..........................................................................................................119  
Figure 63: External Reset Sequence (Rising Edge Detect)...................................................................................................120  
Figure 64: External Reset Sequence (Falling Edge Detect)...................................................................................................121  
Figure 65: Asynchronous State Machine State Transitions ...................................................................................................122  
Figure 66: Asynchronous State Machine ...............................................................................................................................123  
Figure 67: Asynchronous State Machine Inputs.....................................................................................................................124  
Figure 68: Rising Edge State Transition Selection (for Each State X)...................................................................................124  
Figure 69: Maximum 3 State Transitions into Given State.....................................................................................................125  
Figure 70: Maximum 7 State Transitions out of a Given State...............................................................................................125  
Figure 71: Connection Matrix Output RAM ............................................................................................................................126  
Figure 72: State Transition.....................................................................................................................................................127  
Figure 73: State Transition Timing.........................................................................................................................................127  
Figure 74: State Transition.....................................................................................................................................................127  
Figure 75: State Transition Timing and Power Consumption.................................................................................................128  
Figure 76: State Transition.....................................................................................................................................................128  
Figure 77: State Transition Pulse Input Timing......................................................................................................................129  
Figure 78: State Transition - Competing Inputs......................................................................................................................129  
Figure 79: State Transition Timing - Competing Inputs Indeterminate...................................................................................129  
Figure 80: State Transition Timing - Competing Inputs Determinable ...................................................................................130  
Figure 81: State Transition - Sequential.................................................................................................................................130  
Figure 82: State Transition - Sequential Timing.....................................................................................................................130  
Figure 83: State Transition - Closed Cycling..........................................................................................................................131  
Figure 84: State Transition - Closed Cycling Timing..............................................................................................................131  
Figure 85: State Transition - Rising Edge Transition..............................................................................................................131  
Figure 86: State Transition - Rising Edge Transition Timing..................................................................................................132  
Figure 87: Basic Command Structure....................................................................................................................................134  
Figure 88: I2C General Timing Characteristics ......................................................................................................................134  
Figure 89: Byte Write Command, R/W = 0.............................................................................................................................135  
Figure 90: Sequential Write Command, R/W = 0...................................................................................................................135  
Figure 91: Current Address Read Command, R/W = 1..........................................................................................................136  
Figure 92: Random Read Command .....................................................................................................................................136  
Figure 93: Sequential Read Command..................................................................................................................................137  
Figure 94: Reset Command Timing .......................................................................................................................................140  
Figure 95: LDO0 Regulator Block Diagram............................................................................................................................141  
Figure 96: LDO1 Regulator Block Diagram............................................................................................................................142  
Figure 97: LDO2 Regulator Block Diagram............................................................................................................................143  
Figure 98: LDO3 Regulator Block Diagram............................................................................................................................144  
Figure 99: LDO Typical Application Circuit.............................................................................................................................148  
Figure 100: LDO Load Regulation, HIGH POWER Mode, T = 25 °C, VDD = 5 V, VOUT = 4.35 V........................................149  
Figure 101: LDO Load Regulation, LOW POWER Mode, T = 25 °C, VDD = 5 V, VOUT = 4.35 V.........................................149  
Figure 102: LDO Dropout Voltage vs. VIN .............................................................................................................................150  
Figure 103: LDO High Power Mode VOUT vs. VIN, T = 25 °C, VDD = 5 V ............................................................................150  
Figure 104: LDO P-Channel ON Resistance RDSon vs. VIN, Power Switch Mode, T = 25 °C .............................................151  
Figure 105: DC/DC Block Diagram ........................................................................................................................................152  
Figure 106: DC/DC Typical Application Circuit.......................................................................................................................153  
Figure 107: DC/DC Recommended PCB Layout...................................................................................................................157  
Figure 108: DC/DC Converter Current Loops........................................................................................................................158  
Figure 109: DC/DC Converter AC and DC Loops..................................................................................................................159  
Figure 110: AC Loop..............................................................................................................................................................160  
Figure 111: DC Switch and Inductor ......................................................................................................................................160  
Figure 112: DC Switch and Inductor ......................................................................................................................................161  
Figure 113: LDO_VIN and LDO_VOUT Current Flow............................................................................................................162  
Datasheet  
18-Sep-2019  
Revision 3.3  
6 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Figure 114: LDO Decoupling..................................................................................................................................................162  
Figure 115: LDO_AGND Layout.............................................................................................................................................163  
Figure 116: Ground Source for LDO and Buck......................................................................................................................164  
Figure 117: SLG46585 Ground Layout..................................................................................................................................165  
Figure 118: Digital Signals PCB Recommendation................................................................................................................166  
Figure 119: Efficiency vs. Output Current ..............................................................................................................................166  
Figure 120: Output Voltage vs. Load Current.........................................................................................................................167  
Figure 121: Load Transient Response...................................................................................................................................167  
Figure 122: VIN Power Up without Load................................................................................................................................168  
Figure 123: VIN Power Up with 400 mA Load........................................................................................................................168  
Figure 124: VIN Power Up with 1A Load................................................................................................................................169  
Figure 125: Low IQ Current vs. Input Voltage........................................................................................................................169  
Figure 126: Output Ripple vs. IOUT = 100 mA ......................................................................................................................170  
Figure 127: Output Ripple vs. IOUT = 1 A .............................................................................................................................170  
Datasheet  
18-Sep-2019  
Revision 3.3  
7 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Tables  
Table 1: Functional Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 2: Pin Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 3: Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 4: Electrostatic Discharge Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 5: Recommended Operating Conditions for SLG46585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.5 V to 5.5 V Unless Otherwise Noted . . . . . . . . . . . . . . . . . . . . 15  
Table 7: EC of the I2C Pins at T = -40 °C to +85 °C, VDD = 2.5 V to 5.5 V Unless Otherwise Noted. . . . . . . . . . . . . 24  
Table 8: I2C Pins Timing Characteristics at T = -40 °C to +85 °C, VDD = 2.5 V to 5.5 V Unless Otherwise Noted . . . . . . 25  
Table 9: Asynchronous State Machine EC at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 10: Typical Current Estimated for Each Macrocell at T = -40 °C to +85 °C . . . . . . . . . . . . . . . . . . . . . . 26  
Table 11: Typical Delay Estimated for Each Macrocell at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 12: Typical Propagations Delays and Pulse Widths at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 13: Typical Filter Rejection Pulse Width at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 14: Typical Counter/Delay Offset Measurements at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 15: 25 kHz RC OSC0 Frequency Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 16: 25 kHz RC OSC0 Frequency Error (Error Calculated Relative to Nominal Value) . . . . . . . . . . . . . . . . . 30  
Table 17: 2 MHz RC OSC0 Frequency Limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 18: 2 MHz RC OSC0 Frequency Error (Error Calculated Relative to Nominal Value) . . . . . . . . . . . . . . . . . 30  
Table 19: 1.73 kHz RC OSC1 Frequency Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 20: 1.73 kHz RC OSC1 Frequency Error (Error Calculated Relative to Nominal Value) . . . . . . . . . . . . . . . . 31  
Table 21: Oscillators Power-On Delay at T = 25 °C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 22: OSC Power-On Delay, at T = 25 °C, Fast Start-up Time Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 23: Analog Comparator EC at T = -40 °C to +85 °C, VDD = 2.5 V to 5.5 V Unless Otherwise Noted . . . . . . . . . 32  
Table 24: LDO Current Consumption at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 25: LDO Regulator Thermal Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 26: LDO HP MODE EC at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 27: LDO LP MODE EC at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 28: LDO Power Switch Mode EC at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 29: DC/DC Converter EC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 30: IO0 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 31: IO1 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 32: IO2 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 33: IO3 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 34: SCL Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 35: SDA Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 36: IO4 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 37: IO5 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 38: IO6 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 39: Matrix Input Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 40: Matrix Output Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 41: Connection Matrix Virtual Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 42: 2-bit LUT0 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 43: 2-bit LUT1 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 44: 2-bit LUT2 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 45: 2-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 46: DFF0 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 47: DFF1 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 48: DFF2 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 49: 3-bit LUT0 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 50: 3-bit LUT1 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 51: 3-bit LUT2 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 52: 3-bit LUT3 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 53: 3-bit LUT4 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 54: 3-bit LUT5 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 55: 3-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 56: DFF3 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 57: DFF4 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 58: DFF5 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 59: DFF6 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 60: DFF7 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 61: DFF8 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Datasheet  
18-Sep-2019  
Revision 3.3  
8 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 62: 3-bit LUT11 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Table 63: Pipe Delay Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Table 64: 3-bit LUT6 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 65: 3-bit LUT7 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 66: 3-bit LUT8 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 67: 3-bit LUT9 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 68: 3-bit LUT10 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 69: 3-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Table 70: CNT/DLY0 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Table 71: CNT/DLY1 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Table 72: CNT/DLY2 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Table 73: CNT/DLY3 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Table 74: CNT/DLY4 Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Table 75: DLY/CNT Polarity Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Table 76: 4-bit LUT0 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Table 77: 4-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Table 78: Gain Divider Input Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Table 79: ACMP0 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Table 80: ACMP1 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Table 81: ACMP2 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Table 82: ACMP3 Register Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Table 83: Programmable Delay Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Table 84: Deglitch Filter Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Table 85: Shadow Buffer Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Table 86: Vref Selection Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Table 87: Temperature Sensor Voltage for VDD = 2.5 V to 5.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Table 88: Oscillator Operation Mode Configuration Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Table 89: External Reset Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Table 90: ASM Editor - Connection Matrix Output RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Table 91: Read/Write Protection Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Table 92: RAM Array Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Table 93: LDO Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Table 94: LDO0 Ramp Rate Selection Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Table 95: LDO1 Ramp Rate Selection Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Table 96: LDO2 Ramp Rate Selection Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Table 97: LDO3 Ramp Rate Selection Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Table 98: DC/DC Output Voltage Bit Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Table 99: DC/DC Switching Frequency Bit Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Table 100: DC/DC Current Limit Bit Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Table 101: DC/DC Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Table 102: DC/DC Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Table 103: Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Datasheet  
18-Sep-2019  
Revision 3.3  
9 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
1
Block Diagram  
IO3  
DC_CCM  
DC_VIN  
DC_INT  
DC_SW  
DC_VOSNS  
IO0  
Combination Function  
Macrocells  
1 A  
150 mA  
LDO3  
DC/DC Converter  
AGND0  
LDO3_VOUT  
LDO2/3_VIN  
LDO2_VOUT  
LDO1_VOUT  
LDO0/1_VIN  
LDO0_VOUT  
2-bit  
LUT2_0  
or DFF0  
2-bit  
LUT2_1  
or DFF1  
Additional Logic Functions  
ACMP0  
IO5  
FILTER_0  
with Edge Detect  
FILTER_1  
2-bit  
LUT2_2  
or DFF2  
3-bit  
LUT3_0  
or DFF3  
with Edge Detect  
3-bit  
LUT3_2  
or DFF5  
3bit  
LUT3_1  
or DFF4  
Oscillators  
25kHz/2 MHz  
1.73 kHz  
IO6  
150 mA  
LDO2  
ACMP1  
3-bit  
LUT3_4  
or DFF7  
3-bit  
LUT3_3  
or DFF6  
Programmable  
Delay with  
Edge Detector  
RTC  
CNT  
POR  
3-bit  
LUT3_6 or  
CNT/DLY0  
3-bit  
LUT3_5  
or DFF8  
150 mA  
LDO1  
GND  
ACMP2  
Analog  
Temperature  
Sensor  
Asynchronous  
State Machine  
8 states  
3-bit  
LUT3_7 or  
CNT/DLY1  
3-bit  
LUT3_8 or  
CNT/DLY2  
IO1  
I2C Serial  
Communication  
3-bit  
LUT3_10or  
CNT/DLY4  
3-bit  
LUT3_9 or  
CNT/DLY3  
4-bit  
LUT4x2_0  
ACMP3  
3-bit  
LUT3_11 or  
Pipe Delay/  
Ripple CNT  
150 mA  
LDO0  
8 Byte RAM +  
OTP Memory  
Internal  
Vref  
AGND1  
IO4  
PGND  
PGND  
IO2  
VDD  
SCL  
SDA  
Figure 1: Block Diagram  
Datasheet  
18-Sep-2019  
Revision 3.3  
10 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
2
Pinout  
2.1 PIN CONFIGURATION - MSTQFN- 29L  
Pin #  
1
Signal Name  
Pin Functions  
AGND0 (Note 3) Analog Ground for LDOs  
2
IO5  
IO6  
GPIO/ACMP2+  
25  
IO0  
3
GPIO with OE (Note 1)/ACMP3+  
Ground  
26  
27  
28  
29  
DC_CCM  
NC  
IO3  
4
GND (Note 3)  
IO1  
5
GPIO/ACMP0+  
6
AGND1 (Note 3) Analog Ground for DC/DC Converter  
LDO1_VOUT  
7
DC_INT  
NC (Note 2)  
NC (Note 2)  
DC_VOSNS  
DC_SW  
Interrupt Output  
No Connect  
8
1
2
3
4
5
6
7
19  
18  
17  
16  
15  
AGND0  
IO5  
IO4  
24 23 22 21 20  
29  
9
No Connect  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
Input Sense Pin  
Switch Output  
SDA  
SCL  
IO6  
PGND (Note 3) DC/DC Power Ground  
PGND (Note 3) DC/DC Power Ground  
25  
28  
GND  
VDD  
DC_VIN (Note 4) Power Supply Input for DC/DC Converter  
IO2  
GPIO with OE (Note 1)/ACMP1+  
Power Supply  
IO1  
IO2  
VDD (Note 4)  
SCL  
26  
8
27  
10  
I2C_SCL  
14  
12  
AGND1  
DC_INT  
DC_VIN  
PGND  
11  
SDA  
I2C_SDA  
9
13  
IO4  
GPIO with OE (Note 1)/EXT_Vref  
LDO0 Output Voltage  
LDO0/LDO1 Input Voltage  
LDO2 Output Voltage  
LDO2/LDO3 Input Voltage  
LDO3 Output Voltage  
GPIO with OE (Note 1)/EXT_CLK  
CCM Output Indicator  
No Connect  
LDO0_VOUT  
LDO0/1_VIN  
LDO2_VOUT  
LDO2/3_VIN  
LDO3_VOUT  
IO0  
MSTQFN-29  
(Top View)  
DC_CCM  
NC (Note 2)  
IO3  
GPI  
LDO1_VOUT  
LDO1 Output Voltage  
Note 1 General Purpose IO's with OE can be used to implement bidirec-  
tional signals under user control via Connection Matrix to OE signal in  
IO structure.  
Note 2 Manufacture test pin, do not connect.  
Note 3 All GND, AGND0, AGND1, and PGND pins must be connected  
together externally.  
Note 4 DC_VIN and VDD pins must be connected together externally.  
Table 1: Functional Pin Description  
STQFN  
29L Pin #  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
Analog ground for LDO. All GND, AGND0, AGND1, and PGND pins must be connected together  
externally.  
1
AGND0  
DigitalInputwithoutSchmitt  
Push-Pull (1x) (2x)  
Trigger  
General Purpose IO  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
IO5  
2
IO5  
Low Voltage  
Digital Input  
Open-Drain PMOS  
(1x) (2x)  
Analog Comparator 2  
Positive Input  
ACMP2+  
Analog  
--  
Datasheet  
18-Sep-2019  
Revision 3.3  
11 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 1: Functional Pin Description (Continued)  
STQFN  
29L Pin #  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
IO6  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
3
4
IO6  
Low Voltage Digital Input  
--  
Analog Comparator 3  
Positive Input  
ACMP3+  
Analog  
--  
GND  
Logic Ground. All GND, AGND0, AGND1, and PGND pins must be connected together externally.  
Digital Input without  
Push-Pull (1x) (2x)  
Schmitt Trigger  
General Purpose IO  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
IO1  
5
IO1  
Open-Drain PMOS  
(1x) (2x)  
Low Voltage Digital Input  
Analog  
Analog Comparator 0  
Positive Input  
ACMP0+  
--  
Analog ground for internal control circuit. Connect this pin to Power GND plane on PCB. All GND,  
AGND0, AGND1, and PGND pins must be connected together externally  
6
7
AGND1  
DC_INT  
DC/DC Converter Interrupt Output. INT is an Open-Drain, asserted logic high digital output that be-  
comes asserted within TINT(HIGH) when an over-current condition has been detected at the output.  
INT becomes deasserted within TINT(LOW) when the over-current condition no longer persists.  
8
9
NC  
NC  
Manufacture test pin, do not connect  
Manufacture test pin, do not connect  
10  
DC_VOSNS DC/DC Converter Input sense pin for output voltage  
DC/DC Converter Switch Output. Connect this pin to an external, low DCR inductor – seeApplications  
Information for additional details  
11  
12  
13  
DC_SW  
DC/DC Converter Power ground. Connect this pin to Power GND plane. All GND, AGND0, AGND1,  
and PGND pins must be connected together externally  
PGND  
DC/DC Converter Power ground. Connect this pin to Power GND plane. All GND, AGND0, AGND1,  
and PGND pins must be connected together externally  
PGND  
DC/DC Converter Supply input. Connect a 10 µF (or larger) low ESR capacitor from this pin to Power  
GND plane. Capacitors used at VIN should be rated at 10 V or higher. DC_VIN and VDD pins must be  
connected together externally.  
14  
DC_VIN  
IO2  
Digital Input without  
Push-Pull (1x) (2x)  
Schmitt Trigger  
General Purpose IO  
with OE (Note 1)  
IO2  
Digital Input  
Open-Drain NMOS  
(1x) (2x)  
with Schmitt Trigger  
15  
Low Voltage Digital Input  
--  
Analog Comparator 1  
Positive Input  
ACMP1+  
Analog  
--  
Datasheet  
18-Sep-2019  
Revision 3.3  
12 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 1: Functional Pin Description (Continued)  
STQFN  
29L Pin #  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
VDD  
Power Supply  
--  
--  
Analog Comparator 0  
Positive Input  
ACMP0+  
Analog  
--  
Analog Comparator 0  
Negative Input  
ACMP0-  
ACMP1-  
ACMP2-  
ACMP3-  
SCL  
Analog  
Analog  
Analog  
Analog  
--  
--  
--  
--  
--  
16  
VDD  
Analog Comparator 1  
Negative Input  
Analog Comparator 2  
Negative Input  
Analog Comparator 3  
Negative Input  
Digital Input without  
Schmitt Trigger  
I2C Serial Clock  
17  
18  
SCL  
SDA  
Digital Input  
with Schmitt Trigger  
SCL  
SCL  
SDA  
I2C Serial Clock  
I2C Serial Clock  
I2C Serial Data  
--  
Low Voltage Digital Input  
--  
Digital Input without  
Schmitt Trigger  
Open-Drain NMOS  
Digital Input  
with Schmitt Trigger  
SDA  
SDA  
I2C Serial Data  
I2C Serial Data  
--  
Low Voltage Digital Input  
--  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
IO4  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
19  
IO4  
Low Voltage Digital Input  
--  
--  
--  
--  
All Analog Comparators  
Negative Input  
EXT_Vref  
LDO0_VOUT  
ACMP3+  
Analog  
--  
LDO0 Output Voltage  
20  
21  
22  
LDO0_VOUT  
LDO0/1_VIN  
LDO2_VOUT  
Analog Comparator 3  
Positive Input  
Analog  
LDO0/LDO1 Input  
Voltage  
LDO0/1_VIN  
--  
--  
Analog Comparator 0  
Positive Input  
ACMP0+  
LDO2_VOUT  
ACMP3+  
Analog  
--  
--  
--  
--  
LDO2 Output Voltage  
Analog Comparator 3  
Positive Input  
Analog  
LDO2/LDO3 Input  
Voltage  
LDO2/3_VIN  
--  
--  
23  
24  
LDO2/3_VIN  
LDO3_VOUT  
Analog Comparator 1  
Positive Input  
ACMP1+  
Analog  
--  
--  
--  
LDO3_VOUT  
LDO3 Output Voltage  
Datasheet  
18-Sep-2019  
Revision 3.3  
13 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 1: Functional Pin Description (Continued)  
STQFN  
29L Pin #  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
Low Voltage Digital Input  
--  
25  
IO0  
IO0  
Digital Input without  
Schmitt Trigger  
--  
EXT_CLK  
Digital Input  
with Schmitt Trigger  
--  
--  
Low Voltage Digital Input  
DC/DC Converter Continuous Conduction Mode Indicator Output. CCM is anOpen-Drain digitaloutput  
thatbecomes LowwithinTCCM(Low) whentheloadingconditions ontheoutput of theconverter switches  
into continuous conduction mode(ccm). The CCM output continues to toggle when the converter is in  
non-ccm mode.  
26  
27  
DC_CCM  
NC  
Manufacture test pin, do not connect  
Digital Input without  
--  
Schmitt Trigger  
28  
29  
IO3  
IO3  
General Purpose Input  
LDO1 Output Voltage  
Digital Input  
with Schmitt Trigger  
--  
Low Voltage Digital Input  
--  
--  
--  
LDO1_VOUT  
LDO1_VOUT  
Note 1 General Purpose IO's with OE can be used to implement bidirectional signals under user control via Connection Matrix  
to OE signal in IO structure.  
Table 2: Pin Type Definitions  
Pin Type  
AGND0  
AGND1  
IO  
Description  
Analog Ground for LDO  
Analog Ground for DC/DC Converter  
Input/Output  
GND  
Ground  
NC  
No Connect  
DC_INT  
DC_VOSNS  
DC_SW  
DC_VIN  
DC_CCM  
PGND  
DC/DC Converter Interrupt Output  
DC/DC Converter Input Sense Pin for Output Voltage  
DC/DC Converter Switch Output  
DC/DC Converter Supply Input  
DC/DC Converter Continuous Conduction Mode Indicator Output  
DC/DC Converter Power Ground  
Power Supply  
VDD  
SCL  
I2C Serial Clock  
SDA  
I2C Serial Data  
LDO_VIN  
LDO_VOUT  
LDO Input Voltage  
LDO Output Voltage  
Datasheet  
18-Sep-2019  
Revision 3.3  
14 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
3
Characteristics  
3.1 ABSOLUTE MAXIMUM RATINGS  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational  
sections of the specification are not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect  
device reliability.  
Table 3: Absolute Maximum Ratings  
Parameter  
Supply Voltage on VDD relative to GND  
DC Input Voltage  
Condition  
Min  
Max  
Unit  
V
-0.3  
7
GND - 0.5 V VDD + 0.5 V  
V
--  
TJ = 85 °C  
TJ = 110 °C  
TJ = 85 °C  
TJ = 110 °C  
73  
mA  
mA  
mA  
mA  
Maximum Average or DC  
Current Through VDD Pin (Per chip side)  
(Note 1)  
--  
35  
--  
152  
Maximum Average or DC  
Current ThroughGNDPin(Per chipside)  
(Note 1)  
--  
72  
Current at Input Pin  
Input leakage (Absolute Value)  
Storage Temperature Range  
Junction Temperature  
-1.0  
--  
1.0  
1000  
150  
mA  
nA  
°C  
-65  
--  
150  
°C  
Moisture Sensitivity Level  
1
Note 1 The GreenPAK’s power rails are divided in two sides. IOs 0, 1, 2, 3, 4, and 5 are connected to one side, IO 6, SCL, and  
SDA to another.  
3.2 ELECTROSTATIC DISCHARGE RATINGS  
Table 4: Electrostatic Discharge Ratings  
Parameter  
Min  
2000  
1300  
Max  
--  
Unit  
V
ESD Protection (Human Body Model)  
ESD Protection (Charged Device Model)  
--  
V
3.3 RECOMMENDED OPERATING CONDITIONS  
Table 5: Recommended Operating Conditions for SLG46585  
Parameter  
Condition  
Min  
2.5  
-40  
Max  
5.5  
85  
Unit  
V
Supply Voltage (VDD  
)
Operating Temperature  
°C  
Maximal Voltage Applied to any PIN in High  
Impedance State  
VDD+  
0.3  
--  
0.1  
0
V
µF  
V
Capacitor Value at VDD  
--  
Allowable Input Voltage at Analog  
Pins  
Analog Input Voltage HIGH-Level  
VDD  
3.4 ELECTRICAL CHARACTERISTICS  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.5 V to 5.5 V Unless Otherwise Noted  
Parameter Description Condition  
Min  
Typ  
3.3  
Max  
Unit  
VDD  
Supply Voltage (Note 1)  
2.5  
5.5  
V
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
15 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.5 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
VPP  
Programming Voltage  
7.25  
7.50  
7.75  
V
Analog Input Common Mode  
Range  
VAIR  
Negative ACMP Input  
0
--  
--  
--  
--  
--  
--  
--  
1.2  
V
V
V
V
V
V
V
0.7x  
VDD  
VDD  
+
Logic Input (Note 2)  
0.3  
0.8x  
VDD  
VDD  
+
VIH  
HIGH-Level Input Voltage  
LOW-Level Input Voltage  
Logic Input with Schmitt Trigger  
Low-Level Logic Input (Note 2)  
Logic Input (Note 2)  
0.3  
VDD  
+
1.25  
0.3  
GND-  
0.3  
0.3x  
VDD  
GND-  
0.3  
0.2x  
VDD  
VIL  
Logic Input with Schmitt Trigger  
Low-Level Logic Input (Note 2)  
GND-  
0.3  
0.5  
VDD = 2.5 V +/- 8%  
VDD = 3.3 V +/- 10%  
VDD = 5 V +/- 10%  
0.4  
0.5  
0.7  
0.6  
0.7  
1.0  
0.8  
0.9  
1.2  
V
V
V
Schmitt Trigger Hysteresis  
Voltage  
VHYS  
Datasheet  
18-Sep-2019  
Revision 3.3  
16 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.5 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, 1x Drive, IOH = 1 mA,  
2.39  
--  
--  
V
VDD = 2.5 V (Note 3)  
Push-Pull, 1x Drive, IOH = 1 mA,  
2.60  
2.72  
3.04  
3.36  
4.16  
4.69  
5.20  
2.44  
2.65  
2.86  
3.17  
3.48  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
V
V
V
V
V
V
V
V
V
V
V
V
VDD = 2.7 V (Note 3)  
Push-Pull, 1x Drive, IOH = 3 mA,  
VDD = 3 V (Note 3)  
Push-Pull, 1x Drive, IOH = 3 mA,  
VDD = 3.3 V (Note 3)  
Push-Pull, 1x Drive, IOH = 3 mA,  
VDD = 3.6 V (Note 3)  
Push-Pull, 1x Drive, IOH = 5 mA,  
VDD = 4.5 V (Note 3)  
VOH  
HIGH-Level Output Voltage  
Push-Pull, 1x Drive, IOH = 5 mA,  
VDD = 5 V (Note 3)  
Push-Pull, 1x Drive, IOH = 5 mA,  
VDD = 5.5 V (Note 3)  
Push-Pull, 2x Drive, IOH = 1 mA,  
V
DD = 2.5 V (Note 3)  
Push-Pull, 2x Drive, IOH = 1 mA,  
DD = 2.7 V (Note 3)  
V
Push-Pull, 2x Drive, IOH = 3 mA,  
VDD = 3 V (Note 3)  
Push-Pull, 2x Drive, IOH = 3 mA,  
VDD = 3.3 V (Note 3)  
Push-Pull, 2x Drive, IOH = 3 mA,  
VDD = 3.6 V (Note 3)  
Datasheet  
18-Sep-2019  
Revision 3.3  
17 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.5 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, 2x Drive, IOH = 5 mA,  
4.32  
--  
--  
V
VDD = 4.5 V (Note 3)  
Push-Pull, 2x Drive, IOH = 5 mA,  
4.83  
5.34  
2.39  
2.60  
2.72  
3.05  
3.36  
4.16  
4.69  
5.21  
2.44  
2.65  
2.86  
3.17  
3.48  
4.32  
4.83  
5.34  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VDD = 5 V (Note 3)  
Push-Pull, 2x Drive, IOH = 5 mA,  
VDD = 5.5 V (Note 3)  
PMOS OD, 1x Drive, IOH = 1 mA,  
VDD = 2.5 V (Note 3)  
PMOS OD, 1x Drive, IOH = 1 mA,  
VDD = 2.7 V (Note 3)  
PMOS OD, 1x Drive, IOH = 3 mA,  
VDD = 3 V (Note 3)  
PMOS OD, 1x Drive, IOH = 3 mA,  
VDD = 3.3 V (Note 3)  
PMOS OD, 1x Drive, IOH = 3 mA,  
VDD = 3.6 V (Note 3)  
PMOS OD, 1x Drive, IOH = 5 mA,  
V
DD = 4.5 V (Note 3)  
PMOS OD, 1x Drive, IOH = 5 mA,  
DD = 5 V м  
VOH  
HIGH-Level Output Voltage  
V
PMOS OD, 1x Drive, IOH = 5 mA,  
VDD = 5.5 V (Note 3)  
PMOS OD, 2x Drive, IOH=1 mA,  
VDD = 2.5 V (Note 3)  
PMOS OD, 2x Drive, IOH=1 mA,  
VDD = 2.7 V (Note 3)  
PMOS OD, 2x Drive, IOH = 3 mA,  
VDD = 3 V (Note 3)  
PMOS OD, 2x Drive, IOH = 3 mA,  
VDD = 3.3 V (Note 3)  
PMOS OD, 2x Drive, IOH = 3 mA,  
VDD = 3.6 V (Note 3)  
PMOS OD, 2x Drive, IOH = 5 mA,  
VDD = 4.5 V (Note 3)  
PMOS OD, 2x Drive, IOH = 5 mA,  
VDD = 5 V (Note 3)  
PMOS OD, 2x Drive, IOH = 5 mA,  
VDD = 5.5 V (Note 3)  
Datasheet  
18-Sep-2019  
Revision 3.3  
18 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.5 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, 1x Drive, IOL =1 mA,  
--  
--  
0.10  
V
VDD = 2.5 V (Note 3)  
Push-Pull, 1x Drive, IOL =1 mA,  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0.09  
0.26  
0.24  
0.22  
0.33  
0.31  
0.29  
0.05  
0.05  
0.13  
0.12  
0.11  
0.16  
0.15  
0.15  
0.05  
0.05  
0.13  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VDD = 2.7 V (Note 3)  
Push-Pull, 1x Drive, IOL = 3 mA,  
VDD = 3 V (Note 3)  
Push-Pull, 1x Drive, IOL =3 mA,  
VDD = 3.3 V (Note 3)  
Push-Pull, 1x Drive, IOL = 3 mA,  
VDD = 3.6 V (Note 3)  
Push-Pull, 1x Drive, IOL = 5 mA,  
VDD = 4.5 V (Note 3)  
Push-Pull, 1x Drive, IOL = 5 mA,  
VDD = 5 V (Note 3)  
Push-Pull, 1x Drive, IOL = 5 mA,  
VDD = 5.5 V (Note 3)  
Push-Pull, 2x Drive, IOL = 1 mA,  
V
DD = 2.5 V (Note 3)  
Push-Pull, 2x Drive, IOL = 1 mA,  
DD = 2.7 V (Note 3)  
LOW-Level Output Voltage  
VOL  
V
Push-Pull, 2x Drive, IOL = 3 mA,  
VDD = 3 V (Note 3)  
Push-Pull, 2x Drive, IOL = 3 mA,  
VDD = 3.3 V (Note 3)  
Push-Pull, 2x Drive, IOL = 3 mA,  
VDD = 3.6 V (Note 3)  
Push-Pull, 2x Drive, IOL = 5 mA,  
VDD = 4.5 V (Note 3)  
Push-Pull, 2x Drive, IOL = 5 mA,  
VDD = 5 V (Note 3)  
Push-Pull, 2x Drive, IOL = 5 mA,  
VDD = 5.5 V (Note 3)  
NMOS OD, 1x Drive, IOL=1 mA,  
VDD = 2.5 V (Note 3)  
NMOS OD, 1x Drive, IOL= 1 mA,  
VDD = 2.7 V (Note 3)  
NMOS OD, 1x Drive, IOL= 3 mA,  
VDD = 3 V (Note 3)  
Datasheet  
18-Sep-2019  
Revision 3.3  
19 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.5 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
NMOS OD, 1x Drive, IOL= 3 mA,  
--  
--  
0.12  
V
VDD = 3.3 V (Note 3)  
NMOS OD, 1x Drive, IOL=3 mA,  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0.11  
0.17  
0.16  
0.16  
0.03  
0.03  
0.08  
0.07  
0.07  
0.12  
0.12  
0.11  
V
V
V
V
V
V
V
V
V
V
V
V
VDD = 3.6 V (Note 3)  
NMOS OD, 1x Drive, IOL= 5 mA,  
VDD = 4.5 V (Note 3)  
NMOS OD, 1x Drive, IOL=5 mA,  
VDD = 5 V (Note 3)  
NMOS OD, 1x Drive, IOL=5 mA,  
VDD = 5.5 V (Note 3)  
NMOS OD, 2x Drive, IOL=1 mA,  
VDD = 2.5 V (Note 3)  
NMOS OD, 2x Drive, IOL=1 mA,  
VOL  
LOW-Level Output Voltage  
VDD = 2.7 V (Note 3)  
NMOS OD, 2x Drive, IOL= 3 mA,  
VDD = 3 V (Note 3)  
NMOS OD, 2x Drive, IOL= 3 mA,  
V
DD = 3.3 V (Note 3)  
NMOS OD, 2x Drive, IOL= 3 mA,  
DD = 3.6 V (Note 3)  
V
NMOS OD, 2x Drive, IOL= 5 mA,  
VDD = 4.5 V (Note 3)  
NMOS OD, 2x Drive, IOL= 5 mA,  
VDD = 5 V (Note 3)  
NMOS OD, 2x Drive, IOL= 5 mA,  
VDD = 5.5 V (Note 3)  
Push-Pull, 1x Drive,  
VOH = VDD - 0.2  
1.81  
1.97  
--  
--  
--  
--  
mA  
mA  
VDD = 2.5 V (Note 3)  
Push-Pull, 1x Drive,  
V
OH = VDD - 0.2  
VDD = 2.7 V (Note 3)  
Push-Pull, 1x Drive,  
VOH = 2.4 V, VDD = 3 V (Note 3)  
HIGH-Level Output Current  
IOH  
5.78  
8.76  
--  
--  
--  
--  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
Push-Pull, 1x Drive,  
VOH = 2.4 V, VDD = 3.3 V (Note 3)  
Push-Pull, 1x Drive,  
VOH = 2.4 V, VDD = 3.6 V (Note 3)  
11.75  
20.77  
Push-Pull, 1x Drive,  
VOH = 2.4 V, VDD = 4.5 V (Note 3)  
Datasheet  
18-Sep-2019  
Revision 3.3  
20 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.5 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, 1x Drive,  
VOH = 2.4 V, VDD = 5 V (Note 3)  
25.45  
--  
--  
mA  
Push-Pull, 1x Drive,  
VOH = 2.4V, VDD = 5.5 V (Note 3)  
29.65  
3.48  
--  
--  
--  
--  
mA  
mA  
Push-Pull, 2x Drive,  
V
OH = VDD - 0.2  
VDD = 2.5 V (Note 3)  
Push-Pull, 2x Drive,  
V
OH = VDD - 0.2  
3.77  
--  
--  
mA  
VDD = 2.7 V (Note 3)  
Push-Pull, 2x Drive,  
VOH = 2.4 V, VDD = 3 V (Note 3)  
11.05  
16.74  
22.44  
39.54  
48.25  
55.92  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
mA  
mA  
Push-Pull, 2x Drive,  
VOH = 2.4 V, VDD = 3.3 V (Note 3)  
Push-Pull, 2x Drive,  
VOH = 2.4 V, VDD = 3.6 V (Note 3)  
Push-Pull, 2x Drive,  
VOH = 2.4 V, VDD = 4.5 V (Note 3)  
Push-Pull, 2x Drive,  
VOH = 2.4 V, VDD = 5 V (Note 3)  
IOH  
HIGH-Level Output Current  
Push-Pull, 2x Drive,  
VOH = 2.4 V, VDD = 5.5 V (Note 3)  
PMOS OD, 1x Drive,  
VOH = VDD - 0.2  
1.81  
1.97  
--  
--  
--  
--  
mA  
mA  
VDD = 2.5 V (Note 3)  
PMOS OD, 1x Drive,  
VOH = VDD - 0.2  
VDD = 2.7 V (Note 3)  
PMOS OD, 1x Drive,  
5.79  
8.76  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
mA  
mA  
V
OH = 2.4 V, VDD = 3 V (Note 3)  
PMOS OD, 1x Drive,  
VOH = 2.4 V, VDD = 3.3 V (Note 3)  
PMOS OD, 1x Drive,  
VOH = 2.4 V, VDD = 3.6 V (Note 3)  
11.76  
20.78  
25.45  
29.65  
PMOS OD, 1x Drive,  
VOH = 2.4 V, VDD = 4.5V (Note 3)  
PMOS OD, 1x Drive,  
VOH = 2.4 V, VDD = 5V (Note 3)  
PMOS OD, 1x Drive,  
VOH = 2.4 V, VDD = 5.5 V (Note 3)  
Datasheet  
18-Sep-2019  
Revision 3.3  
21 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.5 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
PMOS OD, 2x Drive,  
VOH = VDD - 0.2  
3.47  
--  
--  
mA  
VDD = 2.5 V (Note 3)  
PMOS OD, 2x Drive,  
V
OH = VDD - 0.2  
3.76  
--  
--  
mA  
VDD = 2.7 V (Note 3)  
PMOS OD, 2x Drive,  
11.05  
16.73  
22.46  
39.54  
48.25  
55.92  
1.52  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
V
OH = 2.4V, VDD = 3 V (Note 3)  
PMOS OD, 2x Drive,  
VOH = 2.4 V, VDD = 3.3 V (Note 3)  
IOH  
HIGH-Level Output Current  
PMOS OD, 2x Drive,  
VOH = 2.4 V, VDD = 3.6 V (Note 3)  
PMOS OD, 2x Drive,  
VOH = 2.4 V, VDD = 4.5 V (Note 3)  
PMOS OD, 2x Drive,  
VOH = 2.4 V, VDD = 5 V (Note 3)  
PMOS OD, 2x Drive,  
VOH = 2.4 V, VDD = 5.5 V (Note 3)  
Push-Pull, 1x Drive, VOL = 0.15 V  
VDD = 2.5 V (Note 3)  
Push-Pull, 1x Drive, VOL = 0.15 V  
1.63  
4.45  
4.82  
5.16  
6.02  
6.40  
6.74  
3.05  
3.26  
8.87  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VDD = 2.7 V (Note 3)  
Push-Pull, 1x Drive, VOL = 0.4 V  
VDD = 3 V (Note 3)  
Push-Pull, 1x Drive, VOL = 0.4 V  
VDD = 3.3 V (Note 3)  
Push-Pull, 1x Drive, VOL = 0.4 V  
VDD = 3.6 V (Note 3)  
Push-Pull, 1x Drive, VOL = 0.4 V  
IOL  
LOW-Level Output Current  
VDD = 4.5 V (Note 3)  
Push-Pull, 1x Drive, VOL = 0.4 V  
VDD = 5 V (Note 3)  
Push-Pull, 1x Drive, VOL = 0.4 V  
VDD = 5.5 V (Note 3)  
Push-Pull, 2x Drive, VOL = 0.15 V  
VDD = 2.5 V (Note 3)  
Push-Pull, 2x Drive, VOL = 0.15 V  
VDD = 2.7 V (Note 3)  
Push-Pull, 2x Drive, VOL = 0.4 V  
VDD = 3 V (Note 3)  
Datasheet  
18-Sep-2019  
Revision 3.3  
22 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.5 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, 2x Drive, VOL = 0.4 V  
9.58  
--  
--  
mA  
VDD = 3.3 V (Note 3)  
Push-Pull, 2x Drive, VOL = 0.4 V  
10.23  
11.82  
12.52  
13.11  
3.03  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VDD = 3.6 V (Note 3)  
Push-Pull, 2x Drive, VOL = 0.4 V  
VDD = 4.5 V (Note 3)  
Push-Pull, 2x Drive, VOL= 0.4 V  
VDD = 5 V (Note 3)  
Push-Pull, 2x Drive, VOL = 0.4 V  
VDD = 5.5 V (Note 3)  
NMOS OD, 1x Drive, VOL = 0.15 V  
VDD = 2.5 V (Note 3)  
NMOS OD, 1x Drive, VOL = 0.15 V  
3.24  
VDD = 2.7 V (Note 3)  
NMOS OD, 1x Drive, VOL = 0.4 V  
8.83  
VDD = 3 V (Note 3)  
NMOS OD, 1x Drive, VOL = 0.4 V  
9.54  
V
DD = 3.3 V (Note 3)  
NMOS OD, 1x Drive, VOL = 0.4 V  
DD = 3.6 V (Note 3)  
IOL  
LOW-Level Output Current  
10.17  
11.75  
12.38  
12.82  
5.59  
V
NMOS OD, 1x Drive, VOL = 0.4 V  
VDD = 4.5 V (Note 3)  
NMOS OD, 1x Drive, VOL = 0.4 V  
VDD = 5 V (Note 3)  
NMOS OD, 1x Drive, VOL = 0.4 V  
VDD = 5.5 V (Note 3)  
NMOS OD, 2x Drive, VOL = 0.15 V  
VDD = 2.5 V (Note 3)  
NMOS OD, 2x Drive, VOL = 0.15 V  
5.76  
VDD = 2.7 V (Note 3)  
NMOS OD, 2x Drive, VOL = 0.4 V  
16.1  
VDD = 3 V (Note 3)  
NMOS OD, 2x Drive, VOL = 0.4 V  
16.6  
VDD = 3.3 V (Note 3)  
NMOS OD, 2x Drive, VOL = 0.4 V  
16.95  
VDD = 3.6 V (Note 3)  
Datasheet  
18-Sep-2019  
Revision 3.3  
23 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.5 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
NMOS OD, 2x Drive, VOL = 0.4 V  
17.64  
--  
--  
mA  
VDD = 4.5 V (Note 3)  
NMOS OD, 2x Drive, VOL = 0.4 V  
IOL  
LOW-Level Output Current  
17.34  
18.36  
--  
--  
--  
--  
mA  
mA  
VDD = 5 V (Note 3)  
NMOS OD, 2x Drive, VOL = 0.4 V  
VDD = 5.5 V (Note 3)  
TSU  
Startup Time  
From VDD rising past PONTHR  
--  
1.3  
--  
ms  
V
PONTHR  
Power-On Threshold  
VDD Level Required to Start Up the Chip  
1.34  
1.55  
1.74  
VDD Level Required to Switch Off the  
Chip  
POFFTHR Power-Off Threshold  
1.05  
1.25  
1.45  
V
1 M Pull-up  
748  
85  
8
1039  
105  
11  
1378  
130  
14  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
pF  
RPUP  
Pull-up Resistance  
100 k Pull-up  
10 k Pull-up  
1 M Pull-down  
100 k Pull-down  
10 k Pull-down  
855  
85  
8
1046  
105  
11  
1333  
131  
14  
RPDWN  
Pull-down Resistance  
Input Capacitance  
CIN  
--  
4
--  
Minimum Pulse Width for the RTC‘s  
Clock Input  
TPW_RTC RTC Clock Pulse Width  
1
--  
--  
µs  
Note 1 DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.  
Note 2 No hysteresis.  
Note 3 The GreenPAK’s power rails are divided in two sides. IOs 0, 1, 2, 3, 4, and 5 are connected to one side, IO 6, SCL, and  
SDA to another.  
Table 7: EC of the I2C Pins at T = -40 °C to +85 °C, VDD = 2.5 V to 5.5 V Unless Otherwise Noted  
Fast-Mode  
Fast-Mode Plus  
Parameter Description  
Condition  
Unit  
Min  
Max  
Min  
Max  
LOW-level Input  
Voltage  
VIL  
-0.5  
0.3xVDD  
-0.5  
0.3xVDD  
V
V
V
HIGH-level Input  
Voltage  
VIH  
0.7xVDD  
0.05xVDD  
5.5  
--  
0.7xVDD  
5.5  
--  
HysteresisofSchmitt  
VHYS  
0.05xVDD  
Trigger Inputs  
(Open-Drain or open  
collector) at 3mA sink  
current  
LOW-Level Output  
Voltage 1  
VOL1  
0
0
0.4  
0
0
0.4  
V
V
VDD > 2 V  
(Open-Drain or open  
collector) at 2 mA sink  
current  
LOW-Level Output  
Voltage 2  
VOL2  
0.2xVDD  
0.2xVDD  
V
DD ≤ 2 V  
Datasheet  
18-Sep-2019  
Revision 3.3  
24 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 7: EC of the I2C Pins at T = -40 °C to +85 °C, VDD = 2.5 V to 5.5 V Unless Otherwise Noted(Continued)  
Fast-Mode  
Fast-Mode Plus  
Parameter Description  
Condition  
Unit  
Min  
Max  
--  
Min  
12.6  
16.1  
17.6  
--  
Max  
--  
VOL = 0.4 V, VDD = 2.5 V  
VOL = 0.4 V, VDD = 3.0 V  
VOL = 0.4 V, VDD = 4.5 V  
VOL = 0.6 V  
3
3
3
6
mA  
mA  
mA  
mA  
--  
--  
LOW-Level Output  
IOL  
Current (Note 1)  
--  
--  
--  
--  
Output Fall Time  
from VIHmin to VILmax  
(Note 1)  
14x  
(VDD/5.5 V)  
10x  
(VDD/5.5 V)  
tof  
250  
50  
120  
50  
ns  
ns  
Pulse Width of  
Spikes that must be  
suppressed by the  
Input Filter  
tSP  
0
0
Input Current each  
IO Pin  
Ii  
0.1xVDD < VI < 0.9xVDDmax  
-10  
--  
+10  
10  
-10  
--  
+10  
10  
µs  
Capacitance for  
each IO Pin  
Ci  
pF  
Note 1 Does not meet standard I2C specifications: tof = 20x(VDD/5.5 V) (min); For Fast-mode Plus IOL = 20 mA (min) at  
VOL = 0.4 V.  
Note 2 For Fast-mode Plus SDA pin must be configured as NMOS 2x Open-Drain, see Table 34.  
Table 8: I2C Pins Timing Characteristics at T = -40 °C to +85 °C, VDD = 2.5 V to 5.5 V Unless Otherwise Noted  
Fast-Mode  
Fast-Mode  
Plus  
Parameter Description  
Condition  
Unit  
Min  
--  
Max  
400  
--  
Min  
--  
Max  
1000  
--  
FSCL  
tLOW  
tHIGH  
Clock Frequency, SCL  
kHz  
ns  
Clock Pulse Width Low  
Clock Pulse Width High  
1300  
600  
--  
500  
260  
--  
--  
--  
ns  
V
DD = 2.5 V  
95  
168  
157  
156  
450  
Input Filter Spike Suppression  
(SCL, SDA)  
tI  
VDD = 3.3 V  
VDD = 5.0 V  
--  
95  
--  
ns  
--  
111  
900  
--  
tAA  
Clock Low to Data Out Valid  
--  
--  
ns  
ns  
Bus Free Time between Stop and  
Start  
tBUF  
1300  
--  
500  
--  
tHD_STA  
tSU_STA  
tHD_DAT  
tSU_DAT  
tR  
Start Hold Time  
Start Set-up Time  
Data Hold Time  
Data Set-up Time  
Inputs Rise Time  
Inputs Fall Time  
Stop Set-up Time  
Data Out Hold Time  
600  
600  
0
--  
--  
260  
260  
0
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
--  
--  
100  
--  
--  
50  
--  
--  
300  
300  
--  
120  
120  
--  
tF  
--  
--  
tSU_STD  
tDH  
600  
50  
260  
50  
--  
--  
Note 1 Timing diagram can be found in the Figure 88.  
Datasheet  
18-Sep-2019  
Revision 3.3  
25 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 9: Asynchronous State Machine EC at T = 25 °C  
Parameter Description  
Condition  
Min  
82  
57  
40  
--  
Typ  
--  
Max  
108  
74  
49  
89  
61  
39  
--  
Unit  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5.0 V  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5.0 V  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5.0 V  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5.0 V  
Asynchronous State Machine  
Output Delay Time  
tst_out_delay  
--  
ns  
--  
--  
Asynchronous State Machine  
Output Transition Time  
tst_out  
--  
--  
ns  
ns  
ns  
--  
--  
12  
9
--  
Asynchronous State Machine  
Input Pulse Acceptance Time  
tst_pulse  
--  
--  
6
--  
--  
--  
--  
13  
9
Asynchronous State Machine  
Input Compete Time  
tst_comp  
--  
--  
--  
--  
6
Table 10: Typical Current Estimated for Each Macrocell at T = -40 °C to +85 °C  
Parameter  
Description Note  
Chip Quiescent (POR, BG auto Power-On)  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V  
Unit  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
0.06  
12.85  
0.28  
0.08  
14.07  
0.35  
0.13  
17.15  
0.61  
BG Force On  
LP OSC (1.73 kHz)  
Configurable OSC (25 kHz), pre-divider = 1  
Configurable OSC (25 kHz), pre-divider = 8  
Configurable OSC (2 MHz), pre-divider = 1  
Configurable OSC (2 MHz), pre-divider = 8  
5.12  
5.32  
6.14  
4.98  
5.13  
5.83  
34.66  
22.23  
42.18  
25.26  
61.05  
34.01  
Real Time Clock (RTC), RTC Clocked by  
Counter Divider Clock (see Note)  
0.18  
0.24  
0.40  
µA  
IDD  
Current  
1st ACMP used with LB enabled  
1st ACMP used (includes Vref)  
Each additional ACMP add  
53.22  
56.50  
3.35  
66.93  
71.99  
62.94  
40  
46.60  
49.89  
3.35  
60.47  
65.37  
56.38  
47  
56.37  
59.65  
3.35  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
ACMP0 or ACMP1 used with Input Buffer  
ACMP1 used with 100 µA enabled  
ACMP2 used with Temp Sensor  
Push-Pull 1x + 4 pF @ 2 MHz  
Push-Pull 1x + 4 pF @ 25 kHz  
70.59  
75.13  
66.26  
106  
4.5  
5
16  
Note 1 The RTC current measurements were taken with an external 32.768 kHz clock with the GPIO current consumption  
extracted.  
Datasheet  
18-Sep-2019  
Revision 3.3  
26 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
3.5 TIMING CHARACTERISTICS  
Table 11: Typical Delay Estimated for Each Macrocell at T = 25 °C  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5.0 V  
Unit  
Parameter Description Condition  
rising falling rising falling rising falling  
tpd  
tpd  
Delay  
Delay  
Digital Input to PP 1x  
Digital Input to PP 2x  
26  
25  
28  
27  
19  
18  
20  
19  
14  
13  
14  
14  
ns  
ns  
Digital Input with Schmitt Trigger to  
PP 1x  
tpd  
Delay  
25  
27  
18  
20  
13  
14  
ns  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Width  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Low Voltage Digital Input to PP 1x  
Digital input to NMOS 1x  
Digital input to NMOS 2x  
Digital input to PMOS 1x  
Digital input to PMOS 2x  
Output enable from pin, OE Hi-Z to 1  
Output enable from pin, OE Hi-Z to 0  
1x3 State Hi-Z to 1  
33  
--  
307  
46  
42  
--  
25  
--  
207  
31  
28  
--  
19  
--  
131  
20  
18  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
--  
--  
--  
26  
25  
28  
--  
19  
18  
20  
--  
14  
13  
15  
--  
--  
--  
--  
--  
-
-
27  
--  
20  
--  
14  
--  
28  
--  
20  
--  
15  
--  
1x3 State Hi-Z to 0  
27  
--  
20  
--  
14  
--  
2x3 State Hi-Z to 1  
27  
--  
20  
--  
14  
--  
2x3 State Hi-Z to 0  
26  
54  
39  
38  
38  
36  
--  
19  
38  
28  
27  
27  
25  
--  
14  
27  
20  
19  
19  
18  
--  
CNT/DLY Counter Mode  
CNT/DLY Freq. Detect  
CNT/DLY One Shot  
54  
39  
38  
36  
36  
40  
19  
20  
20  
21  
21  
22  
17  
20  
18  
27  
214  
182  
21  
29  
29  
21  
26  
31  
25  
24  
38  
28  
27  
26  
26  
28  
14  
14  
15  
15  
15  
16  
13  
14  
13  
19  
158  
136  
15  
21  
21  
15  
19  
23  
18  
17  
27  
20  
19  
18  
18  
20  
10  
10  
11  
11  
10  
11  
9
CNT/DLY Delay Mode  
CNT/DLY Edge Detect  
CNT/DLY High Level Reset  
LATCH Q  
20  
20  
21  
21  
22  
22  
17  
20  
18  
27  
212  
182  
20  
25  
31  
20  
26  
26  
48  
54  
14  
14  
15  
15  
15  
15  
12  
14  
12  
19  
156  
136  
14  
18  
22  
15  
19  
19  
34  
39  
9
LATCH nQ  
10  
10  
11  
11  
10  
8
LATCH nRESET Q  
LATCH nRESET nQ  
LATCH nSET Q  
LATCH nSET nQ  
LUT2bit  
LUT3bit  
10  
9
9
LUT4bit  
8
EDGE DETECT  
13  
117  
101  
11  
15  
15  
11  
13  
16  
13  
12  
13  
115  
101  
10  
13  
16  
10  
13  
14  
25  
28  
EDGE DETECT Delayed  
EDGE DETECT  
Ripple CLK DOWN CNT Q0  
Ripple CLK DOWN CNT Q1  
Ripple CLK DOWN CNT Q2  
Ripple CLK UP CNT Q0  
Ripple CLK UP CNT Q1  
Ripple CLK UP CNT Q2  
Ripple nRESET DOWN CNT Q0  
Ripple nRESET DOWN CNT Q1  
Datasheet  
18-Sep-2019  
Revision 3.3  
27 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 11: Typical Delay Estimated for Each Macrocell at T = 25 °C(Continued)  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5.0 V  
Unit  
Parameter Description Condition  
rising falling rising falling rising falling  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Ripple nRESET DOWN CNT Q2  
Ripple nRESET UP CNT Q0  
Ripple nRESET UP CNT Q1  
Ripple nRESET UP CNT Q2  
DFF Q  
24  
25  
24  
25  
19  
20  
--  
54  
48  
52  
57  
20  
19  
21  
--  
17  
18  
17  
18  
13  
14  
--  
39  
34  
38  
41  
14  
14  
15  
--  
13  
13  
12  
13  
10  
10  
--  
28  
25  
27  
30  
10  
10  
10  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DFF nQ  
DFF nRESET Q  
DFF nRESET nQ  
DFF nSET Q  
21  
21  
--  
15  
15  
--  
11  
11  
--  
--  
--  
--  
DFF nSET nQ  
22  
23  
26  
112  
15  
17  
19  
77  
10  
12  
13  
50  
Pipe Delay Out  
24  
25  
111  
17  
18  
77  
13  
13  
50  
Pipe Delay nRESET Out  
Filter  
ACMP (100 mV overdrive,  
low bandwidth disabled,  
input gain = 1, IN- = 600 mV)  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
0.49  
1.26  
3.89  
0.45  
1.16  
3.55  
0.42  
1.17  
3.82  
0.38  
1.08  
3.48  
0.40  
1.14  
3.78  
0.36  
1.06  
3.44  
µs  
µs  
µs  
ACMP (10 mV overdrive,  
low bandwidth disabled, input gain =  
1,  
IN- = 600 mV)  
ACMP (100 mV overdrive,  
low bandwidth enabled, input gain =  
1, IN- = 600 mV)  
ACMP (10 mV overdrive,  
low bandwidth enabled, input gain =  
1, IN- = 600 mV)  
tpd  
tw  
Delay  
Width  
10.04 10.82  
79 78  
9.88  
55  
10.76  
55  
9.77  
35  
10.68  
35  
µs  
filter (min transmitted)  
ns  
Table 12: Typical Propagations Delays and Pulse Widths at T = 25 °C  
Parameter Description  
Note  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V  
Unit  
Pulse Width,  
tw  
mode: (any)edge detect, edge detect output  
185  
373  
561  
748  
137  
277  
417  
556  
101  
205  
308  
411  
ns  
ns  
ns  
ns  
1 cell  
Pulse Width,  
tw  
mode: (any)edge detect, edge detect output  
mode: (any)edge detect, edge detect output  
mode: (any)edge detect, edge detect output  
2 cell  
Pulse Width,  
tw  
3 cell  
Pulse Width,  
tw  
4 cell  
time1  
time1  
time1  
time1  
time2  
Delay, 1 cell  
Delay, 2 cell  
Delay, 3 cell  
Delay, 4 cell  
Delay, 1 cell  
mode: (any)edge detect, edge detect output  
mode: (any)edge detect, edge detect output  
mode: (any)edge detect, edge detect output  
mode: (any)edge detect, edge detect output  
mode: both edge delay, edge detect output  
28  
28  
20  
20  
15  
15  
ns  
ns  
ns  
ns  
ns  
28  
20  
15  
28  
20  
15  
218  
161  
119  
Datasheet  
18-Sep-2019  
Revision 3.3  
28 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 12: Typical Propagations Delays and Pulse Widths at T = 25 °C(Continued)  
Parameter Description  
Note  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V  
Unit  
ns  
time2  
time2  
time2  
Delay, 2 cell  
Delay, 3 cell  
Delay, 4 cell  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
405  
593  
780  
300  
440  
579  
222  
325  
427  
ns  
ns  
Table 13: Typical Filter Rejection Pulse Width at T = 25 °C  
Parameter  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V  
< 75 < 55 < 35  
Unit  
Filtered Pulse Width  
ns  
Table 14: Typical Counter/Delay Offset Measurements at T = 25 °C  
RC OSC  
Parameter  
RC OSC Power VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V  
Unit  
Freq  
offset  
25 kHz  
auto  
auto  
16  
1
2.5  
0.6  
2.5  
0.4  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ms  
ns  
offset  
2 MHz  
offset  
1.73 kHz  
25 kHz  
auto  
247  
16  
232  
14  
198  
12  
frequency settling time  
frequency settling time  
frequency settling time  
variable (CLK period)  
variable (CLK period)  
variable (CLK period)  
tpd (non-delayed edge)  
auto  
2 MHz  
auto  
14  
14  
14  
1.73 kHz  
25 kHz  
auto  
250  
0-40  
0-0.5  
0-0.5  
25  
200  
0-40  
0-0.5  
0-0.5  
14  
150  
0-40  
0-0.5  
0-0.5  
10  
forced  
forced  
forced  
either  
2 MHz  
1.73 kHz  
25kHz/2MHz  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
29 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
3.6 OSC CHARACTERISTICS  
Table 15: 25 kHz RC OSC0 Frequency Limits  
Temperature Range  
Power Supply Range  
(VDD), V  
+25 °C  
Minimum  
0 °C to +85 °C  
-40 °C to +85 °C  
Maximum  
Value, kHz  
Minimum  
Maximum  
Value, kHz  
Minimum  
Maximum  
Value, kHz  
Value, kHz  
Value, kHz  
Value, kHz  
2.5 V ±8%  
3.3 V ±10%  
5 V ±10%  
24.705  
25.342  
25.289  
25.801  
25.334  
25.801  
23.724  
25.932  
25.932  
26.249  
25.932  
26.249  
23.357  
26.888  
26.836  
26.987  
26.879  
26.987  
24.710  
23.690  
23.334  
24.650  
23.661  
23.376  
2.5 V to 4.5 V  
2.5 V to 5.5 V  
24.650  
23.659  
23.334  
24.650  
23.659  
23.335  
Table 16: 25 kHz RC OSC0 Frequency Error (Error Calculated Relative to Nominal Value)  
Temperature Range  
Power Supply Range  
(VDD), V  
+25 °C  
0 °C to +85 °C  
-40 °C to +85 °C  
Error (% at  
Error (% at  
Maximum)  
Error (% at  
Error (% at  
Maximum)  
Error (% at  
Minimum)  
Error (% at  
Maximum)  
Minimum)  
-1.18%  
-1.16%  
-1.40%  
-1.40%  
-1.40%  
Minimum)  
-5.10%  
-5.24%  
-5.36%  
-5.36%  
-5.36%  
2.5 V ±8%  
3.3 V ±10%  
5 V ±10%  
1.37%  
1.16%  
3.20%  
1.34%  
3.20%  
3.73%  
3.73%  
5.00%  
3.73%  
5.00%  
-6.57%  
-6.66%  
-6.50%  
-6.66%  
-6.66%  
7.55%  
7.34%  
7.95%  
7.52%  
7.95%  
2.5 V to 4.5 V  
2.5 V to 5.5 V  
Table 17: 2 MHz RC OSC0 Frequency Limits  
Temperature Range  
0 °C to +85 °C  
Power Supply Range  
(VDD), V  
+25 °C  
-40 °C to +85 °C  
Minimum  
Maximum  
Minimum  
Maximum  
Minimum  
Maximum  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
2.5 V ±8%  
3.3 V ±10%  
5 V ±10%  
1.916  
1.967  
1.947  
1.935  
1.935  
2.082  
2.032  
2.262  
2.066  
2.262  
1.859  
2.128  
2.082  
2.268  
2.117  
2.268  
1.859  
1.828  
1.820  
1.814  
1.814  
2.128  
2.125  
2.268  
2.125  
2.268  
1.908  
1.897  
2.5 V to 4.5 V  
2.5 V to 5.5 V  
1.873  
1.873  
Table 18: 2 MHz RC OSC0 Frequency Error (Error Calculated Relative to Nominal Value)  
Temperature Range  
Power Supply Range  
(VDD), V  
+25 °C  
Error (% at  
0 °C to +85 °C  
-40 °C to +85 °C  
Error (% at  
Maximum)  
Error (% at  
Error (% at  
Maximum)  
Error (% at  
Minimum)  
Error (% at  
Maximum)  
Minimum)  
Minimum)  
2.5 V ±8%  
-4.22%  
4.09%  
-7.06%  
6.40%  
-7.06%  
6.40%  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
30 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 18: 2 MHz RC OSC0 Frequency Error (Error Calculated Relative to Nominal Value)(Continued)  
Temperature Range  
Power Supply Range  
(VDD), V  
+25 °C  
Error (% at  
0 °C to +85 °C  
-40 °C to +85 °C  
Error (% at  
Maximum)  
Error (% at  
Error (% at  
Maximum)  
Error (% at  
Error (% at  
Maximum)  
Minimum)  
-1.64%  
-2.67%  
-3.26%  
-3.26%  
Minimum)  
-4.62%  
-5.14%  
-6.37%  
-6.37%  
Minimum)  
-8.62%  
-9.01%  
-9.31%  
-9.31%  
3.3 V ±10%  
5 V ±10%  
1.60%  
13.09%  
3.31%  
4.10%  
13.39%  
5.84%  
6.24%  
13.39%  
6.24%  
2.5 V to 4.5 V  
2.5 V to 5.5 V  
13.09%  
13.39%  
13.39%  
Table 19: 1.73 kHz RC OSC1 Frequency Limits  
Temperature Range  
0 °C to +85 °C  
Power Supply Range  
(VDD), V  
+25 °C  
-40 °C to +85 °C  
Minimum  
Maximum  
Minimum  
Maximum  
Minimum  
Maximum  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
Value, MHz  
2.5 V ±8%  
3.3 V ±10%  
5 V ±10%  
1.390  
2.017  
2.011  
2.034  
2.016  
2.034  
1.330  
2.020  
2.017  
2.037  
2.019  
2.037  
1.180  
1.125  
1.099  
1.099  
1.099  
2.022  
2.021  
2.037  
2.022  
2.037  
1.339  
1.276  
1.318  
1.255  
2.5 V to 4.5 V  
2.5 to 5.5 V  
1.318  
1.255  
1.318  
1.255  
Table 20: 1.73 kHz RC OSC1 Frequency Error (Error Calculated Relative to Nominal Value)  
Temperature Range  
Power Supply Range  
(VDD), V  
+25 °C  
0 °C to +85 °C  
-40 °C to +85 °C  
Error (% at  
Error (% at  
Maximum)  
Error (% at  
Error (% at  
Maximum)  
Error (% at  
Minimum)  
Error (% at  
Maximum)  
Minimum)  
-19.65%  
-22.57%  
-23.79%  
-23.79%  
-23.79%  
Minimum)  
-23.12%  
-26.21%  
-27.44%  
-27.44%  
-27.44%  
2.5 V ±8%  
3.3 V ±10%  
5 V ±10%  
16.58%  
16.23%  
17.54%  
16.51%  
17.54%  
16.77%  
16.58%  
17.73%  
16.73%  
17.73%  
-31.75%  
-34.93%  
-36.47%  
-36.47%  
-36.47%  
16.85%  
16.85%  
17.73%  
16.85%  
17.73%  
2.5 V to 4.5 V  
2.5 V to 5.5 V  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
31 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
3.6.1 OSC Power-On Delay  
Note: DLY/CNT Counter Data = 100, RC OSC Power Setting: "Auto Power-On", RC OSC Clock to Matrix Input: "Enable"  
Table 21: Oscillators Power-On Delay at T = 25 °C  
RC OSC0 2 MHz  
RC OSC0 25 kHz  
RC OSC1 1.73 kHz  
Power Supply  
Range  
Typical  
Value, ns  
Maximum  
Value, ns  
Typical  
Maximum  
Value, µs  
Typical  
Maximum  
Value, µs  
(VDD) V  
Value, µs  
14.35  
13.76  
12.94  
9.67  
Value, µs  
222.53  
217.52  
210.43  
203.51  
196.79  
183.73  
177.64  
169.40  
165.60  
2.50  
2.70  
3.00  
3.30  
3.60  
4.20  
4.50  
5.00  
5.50  
619  
905  
813  
709  
638  
582  
510  
484  
454  
428  
17.57  
16.98  
16.61  
36.51  
19.46  
2.70  
296.85  
293.04  
287.82  
283.89  
280.17  
272.25  
267.27  
258.96  
248.45  
563  
500  
454  
419  
1.82  
370  
1.79  
352  
1.89  
2.94  
328  
2.09  
3.28  
309  
2.21  
3.45  
Table 22: OSC Power-On Delay, at T = 25 °C, Fast Start-up Time Mode  
RC OSC0 2 MHz  
Power Supply  
RC OSC1 25 kHz  
Range  
Typical  
Value, ns  
Maximum  
Value, ns  
Typical  
Maximum  
(VDD) V  
Value, µs  
20.61  
20.58  
20.52  
20.49  
20.46  
20.39  
20.32  
20.20  
19.97  
Value, µs  
22.61  
22.47  
22.43  
22.28  
22.42  
22.20  
22.12  
21.83  
21.33  
2.50  
2.70  
3.00  
3.30  
3.60  
4.20  
4.50  
5.00  
5.50  
216  
197  
178  
166  
158  
150  
147  
142  
138  
313  
286  
254  
234  
222  
209  
207  
201  
194  
3.7 ANALOG COMPARATOR CHARACTERISTICS  
Table 23: Analog Comparator EC at T = -40 °C to +85 °C, VDD = 2.5 V to 5.5 V Unless Otherwise Noted  
Parameter  
Description  
Note  
Conditions  
Min  
Typ  
Max  
Unit  
Positive Input set to  
GPIO or VDD  
0
--  
VDD  
V
ACMP Input Voltage  
Range  
VACMP  
Positive Input set to  
LDO VIN  
VDD  
0.4  
-
0
0
--  
--  
V
V
Negative Input  
1.2  
Datasheet  
18-Sep-2019  
Revision 3.3  
32 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 23: Analog Comparator EC at T = -40 °C to +85 °C, VDD = 2.5 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter  
Description  
Note  
Conditions  
Min  
Typ  
Max  
Unit  
Low Bandwidth -  
Enable, Vhys = 0 mV,  
Gain = 1,  
Vref = 50 mV to 1200  
mV  
T = 25 °C  
-9.0  
--  
9.4  
mV  
-12.3  
-12.6  
-9.2  
--  
--  
--  
12.8  
8.0  
mV  
mV  
mV  
µs  
ACMP Input Offset  
Voltage  
Voffset  
Low Bandwidth -  
Disable, Vhys = 0 mV,  
Gain =1,  
Vref = 50 mV to 1200  
mV  
T = 25 °C  
T = 25 °C  
--  
9.9  
ACMP Power-On  
delay, Minimal required  
wake time for the  
“Wake and Sleep  
function”  
140  
143  
667  
1369  
tstart  
ACMP Start Time  
--  
µs  
LB - Enabled,  
T = 25 °C  
3.48  
14.6  
--  
--  
--  
--  
--  
--  
38.4  
36.7  
mV  
mV  
mV  
mV  
mV  
mV  
VHYS = 25 mV  
VIL = Vin - VHYS/2  
LB - Disabled,  
T = 25 °C  
V
IH = Vin + VHYS/2  
LB - Enabled,  
T = 25 °C  
43.9  
57.1  
V
HYS = 50 mV  
VIL = Vin - VHYS  
VIH = VHYS  
LB - Disabled,  
T = 25 °C  
44.1  
53.7  
LB - Enabled,  
T = 25 °C  
194.0  
194.4  
206.8  
203.3  
VHYS = 200 mV  
V
IL = Vin - VHYS  
VHYS  
Built-in Hysteresis  
LB - Disabled,  
T = 25 °C  
VIH = VHYS  
V
HYS = 25 mV  
LB - Enabled  
LB - Disabled  
LB - Enabled  
LB - Disabled  
LB - Enabled  
LB - Disabled  
0.0  
2.4  
--  
--  
--  
--  
--  
--  
41.1  
41.4  
mV  
mV  
mV  
mV  
mV  
mV  
VIL = Vin - VHYS/2  
V
V
VIL = Vin - VHYS  
VIH = VHYS  
IH = Vin + VHYS/2  
HYS = 50 mV  
37.7  
43.6  
187.5  
192.4  
64.9  
55.4  
VHYS = 200 mV  
VIL = Vin - VHYS  
VIH = VHYS  
214.0  
205.1  
Gain = 1x  
--  
--  
--  
--  
100.0  
1.0  
--  
--  
--  
--  
ΜΩ  
ΜΩ  
ΜΩ  
ΜΩ  
Gain = 0.5x  
Gain = 0.33x  
Gain = 0.25x  
Series Input  
Resistance  
Rsin  
0.8  
1.0  
Datasheet  
18-Sep-2019  
Revision 3.3  
33 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 23: Analog Comparator EC at T = -40 °C to +85 °C, VDD = 2.5 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter  
Description  
Note  
Conditions  
Min  
Typ  
Max  
Unit  
Low Bandwidth -  
Enable, Gain = 1,  
Overdrive =10 mV  
Low to High  
--  
11.2  
51.9  
µs  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
--  
--  
--  
--  
--  
--  
--  
12.2  
1.0  
1.0  
4.8  
4.4  
0.4  
0.4  
58  
4.2  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Low Bandwidth -  
Disable, Gain = 1,  
Overdrive =10 mV  
Propagation Delay,  
Response Time  
3.7  
PROP  
Low Bandwidth -  
Enable, Gain = 1,  
Overdrive =100 mV  
22.8  
22.4  
2.2  
for ACMP0 to ACMP3  
Low Bandwidth -  
Disable, Gain = 1,  
Overdrive =100 mV  
0.7  
G = 1  
--  
1
--  
--  
--  
--  
Gain error (including  
threshold and internal  
Vref error)  
G = 0.5  
G = 0.33  
G = 0.25  
-0.81%  
-1.33%  
-1.43%  
0.76%  
1.4%  
1.63%  
G
3.8 LOW DROP OUT “LDO” REGULATOR ELECTRICAL CHARACTERISTICS  
All four LDO regulators within SLG46585 have the same electrical specification. Some circuits are common to all LDOs and so  
the current consumption varies depending on the number of Active LDOs. Each LDO has three modes – HP MODE is a typical  
150 mA LDO regulator mode, and LP MODE is an ultra-low current regulator mode. The LDO also has an LDO Power Switch  
Mode when the LDO MOSFET simply turns into a load switch passing VIN to VOUT.  
Table 24: LDO Current Consumption at T = 25 °C  
Parameter Description  
Condition  
Min  
--  
Typ  
32  
48  
64  
80  
2
Max  
--  
Unit  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
One LDO Regulator in HP Mode  
Two LDO Regulators in HP Mode  
Three LDO Regulators in HP Mode  
Four LDO Regulators in HP Mode  
One LDO Regulator in LP Mode  
Two LDO Regulators in LP Mode  
Three LDO Regulators in LP Mode  
Four LDO Regulators in LP Mode  
--  
--  
IQ  
Quiescent Current  
--  
--  
--  
--  
--  
--  
--  
3
--  
IQ  
Quiescent Current  
--  
4
--  
--  
5
--  
Note 1 Typ means under VDD = VIN = 3.3 V, VOUT = 2.0 V, no load.  
Table 25: LDO Regulator Thermal Limitations  
Parameter Description  
Condition  
Min  
--  
Typ  
--  
Max  
0.6  
Unit  
W
TC = 85 °C  
ICTL  
Thermal Limitation  
TC = 70 °C  
--  
--  
0.8  
W
Max Watt per LDO (Note 1)  
--  
--  
0.5  
W
Thermal Shutdown (Note 2)  
115  
90  
125  
100  
135  
110  
°C  
°C  
Shutdown  
Thermal Shutdown Recovery  
Note 1 Max Watt LDO multiplied by number of LDOs can easily exceed the Max Watt for the total IC package.  
Note 2 Lower Thermal shutdown levels may be achieved by using the temperature sensor and comparator.  
Datasheet  
18-Sep-2019  
Revision 3.3  
34 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 26: LDO HP MODE EC at T = 25 °C  
Parameter  
IOUT  
Description  
Condition  
Min  
--  
Typ  
--  
Max  
150  
VDD  
300  
+3  
Unit  
mA  
V
Output Current Rating  
Voltage Input  
per LDO  
VIN  
2.5  
--  
--  
VDO  
Voltage Dropout  
250  
--  
mV  
%
over PVT of VOUT > 1.5 V  
over PVT of VOUT ≤ 1.5 V  
10 Hz to 100 kHz  
-3  
Output Voltage Accuracy  
(Note 1)  
VOUT  
-60  
--  
--  
+60  
--  
mV  
µV  
eN  
Noise Voltage (rms)  
75  
Power Supply Rejection Ratio 100 Hz to 100 kHz  
(Note 2)  
PSRR  
--  
--  
50  
50  
--  
--  
dB  
dB  
LDO0 to LDO1 regulation perturba-  
tion, and LDO2 to LDO3 perturbation  
at 0 to 150 mA at 1 kHz at 1.8 V VOUT  
CTRR  
Crosstalk Rejection Ratio  
VLINE  
VLOAD  
VTC  
Line Regulation  
VOUT + 0.5 V < VIN ≤ 5.5 V  
1 mA < IOUT < 150 mA  
-1%  
--  
--  
--  
+1%  
0.3  
--  
%/V  
Load Regulation  
mV/mA  
ppm/C  
VOUT Temp Coefficient  
--  
100  
External Input Capacitance  
(Note 2)  
per LDO  
CIN  
2
2
--  
--  
--  
--  
µF  
µF  
External Output Capacitance per LDO  
(Note 2)  
COUT  
SS0  
SS1  
SS2  
SS3  
SC  
SS Slew Rate 0  
SS Slew Rate 1  
SS Slew Rate 2  
SS Slew Rate 3  
Short Circuit Protection  
Wait Time  
VOUT = 5% to 95%  
--  
--  
--  
--  
--  
--  
10  
20  
--  
--  
--  
--  
--  
--  
V/ms  
V/ms  
V/ms  
V/ms  
mA  
VOUT = 5% to 95%  
VOUT = 5% to 95%  
VOUT = 5% to 95%  
1.25  
2.50  
189  
500  
tWAIT  
Time from EN = 1 to  
EN = 0, Dis_EN = 1  
V
OUT start rise  
µs  
Output Discharge Pull-down  
Resistance  
RD  
--  
300  
--  
Note1Accuracy specifies all the effects of line regulation (VLINE), load regulation (VLOAD), and temperature coefficient (VTC).  
Note 2 X7R-type and X5R-type capacitors are recommended.  
Table 27: LDO LP MODE EC at T = 25 °C  
Parameter  
IOUT  
Description (Note 2)  
Output Current Rating  
Voltage Input  
Condition  
Min  
--  
Typ  
--  
Max  
100  
VDD  
750  
+10  
Unit  
µA  
V
per LDO  
VIN  
2.5  
--  
--  
VDO  
Voltage Dropout  
500  
--  
mV  
%
VOUT  
Output Voltage Accuracy  
over PVT  
per LDO  
-10  
External Input Capacitance  
(Note 1)  
CIN  
2
2
--  
--  
--  
--  
--  
--  
µF  
µF  
External Output Capacitance per LDO  
(Note 1)  
COUT  
Output Discharge Pull-down  
Resistance  
EN = 0, Dis_EN = 1  
R
300  
D
Datasheet  
18-Sep-2019  
Revision 3.3  
35 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 27: LDO LP MODE EC at T = 25 °C(Continued)  
Parameter  
Description (Note 2)  
Condition  
Min  
Typ  
Max  
Unit  
Note 1 X7R-type and X5R-type capacitors are recommended.  
Note 2 Soft Start and Short Circuit protection circuits are not available in LDO LP MODE.  
Table 28: LDO Power Switch Mode EC at T = 25 °C  
Parameter Description (Note 1)  
Condition  
Min  
--  
Typ  
--  
Max  
150  
VDD  
--  
Unit  
mA  
V
IOUT  
VIN  
Output Current Rating  
Voltage Input  
per LDO  
2.5  
--  
--  
RDSON  
IQ  
MOSFET ON resistance  
Quiescent Current  
P-Channel with VIN at 2.5, per LDO  
No load, per LDO  
1
--  
--  
1
µA  
Note 1 Soft Start and Short Circuit protection circuits are not available in LDO Power Switch Mode.  
3.9 DC/DC CONVERTER ELECTRICAL CHARACTERISTICS  
Table 29: DC/DC Converter EC  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Typical values are at TA = 25 °C  
VIN  
Operating Input Voltage  
2.5  
--  
--  
5.5  
--  
V
when OFF  
0.17  
79  
µA  
µA  
IDD  
Power Supply Current  
when ON, No load  
--  
--  
sel_vo [2:0] = 000;  
VIN = 2.7 to 5.5 V, fSW = 1.5 MHz  
1.16  
1.46  
1.75  
2.41  
2.89  
3.20  
1.20  
1.50  
1.80  
2.50  
3.00  
3.30  
1.24  
1.55  
1.85  
2.58  
3.105  
3.40  
V
V
V
V
V
V
sel_vo [2:0] = 001;  
VIN = 2.7 to 5.5 V, fSW = 1.5 MHz  
sel_vo [2:0] = 010;  
V
IN = 2.7 to 5.5 V, fSW = 1.5 MHz  
VOUT  
Output Voltage  
sel_vo [2:0] = 011;  
VIN = 3.125 to 5.5 V, fSW = 1.5 MHz  
sel_vo [2:0] = 100;  
VIN = 3.75 to 5.5 V, fSW = 1.5 MHz  
sel_vo [2:0] = 101;  
VIN = 4.125 to 5.5 V, fSW = 1.5 MHz  
VRIPPLE  
RDSON_P  
RDSON_N  
ILIMIT  
Output Voltage Ripple  
VIN = 3.3 V; VOUT = 1.2 V; in CCM Mode  
--  
--  
--  
--  
10  
90  
51  
2.5  
--  
--  
--  
--  
mV  
mΩ  
mΩ  
A
HS Switch ON Resistance  
LS Switch ON Resistance  
Current Limit Threshold  
Default sel_ocp[1:0] = 00  
VIN = 5 V, VOUT = 1.2 V;  
ILOAD = 0.5 A; Temp = 27˚C,  
fSW = 1.5 MHz;  
ηEF  
Efficiency  
--  
88  
--  
%
Inductor DCR =10 mΩ  
Default sel_fsw[1:0] = 00  
Default sel_fsw[1:0] = 01  
--  
--  
1.5  
2
--  
--  
MHz  
MHz  
fSW  
TTotal_ON  
TSS  
Switching Frequency  
Total Turn-on Time  
from Enable to DC_VOUT  
--  
--  
0.6  
0.5  
--  
--  
ms  
ms  
Soft Start Time  
Datasheet  
18-Sep-2019  
Revision 3.3  
36 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 29: DC/DC Converter EC(Continued)  
Parameter Description  
Condition  
Min  
--  
Typ  
80  
Max  
--  
Unit  
%
VOUT = 3.3 V, fSW = 1.5 MHz  
VOUT = 3.3 V, fSW = 2.0 MHz  
DCMAX  
Maximum Duty Cycle  
--  
75  
--  
%
DCMIN  
Minimum Duty Cycle  
SW Leakage Current  
--  
20  
--  
%
Set on/off = 0, VIN = 5.5 V, VSW = 0 V  
and 5.5 V  
ISW(LKG)  
--  
0
--  
µA  
TINT(Low)  
TINT(High)  
INT De-assertion Time  
INT Assertion Time  
VIN = 3.3 V, Temp = 27˚C  
VIN = 3.3 V, Temp = 27˚C  
--  
--  
60  
2
--  
--  
ns  
µs  
Thermal Protection  
Restart Threshold  
THERMON  
THERMOFF  
--  
--  
125  
100  
--  
--  
˚C  
˚C  
Thermal Protection  
Shutdown Threshold  
Note1 INTInterruptis anOpen-Drain output. Logic highlevelbecomes asserted withinTINT(HIGH) whenan over-currentcondition  
has been detected. After the over-current event no longer persist the INT becomes de-asserted after TINT(LOW)  
.
Note 2 CCM - Continuous Conduction Mode Indicator Output. CCM is an Open-Drain digital output that becomes Low when  
the load is high and the converter switches to the continuous conduction mode (CCM). The CCM output continues to toggle  
when the converter is in non-CCM mode. Customers might use LP filter to convert the toggling signal to a DC signal, and based  
on DC level to identify the converter operation mode.  
Datasheet  
18-Sep-2019  
Revision 3.3  
37 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
4
User Programmability  
The SLG46585 is a user programmable device with one time programmable (OTP) memory elements that are able to configure  
the connection matrix and macrocells. A programming development kit allows the user the ability to create initial devices. Once  
the design is finalized, the programming code (.gpx file) is forwarded to Dialog Semiconductor to integrate into a production  
process.  
Product  
Definition  
E-mail Product Idea, Definition, Drawing or  
Customer creates their own design in  
Schematic to  
GreenPAK Designer  
CMBUGreenPAK@diasemi.com  
Dialog Semiconductor Applications  
Engineer will review design specifications  
Program Engineering Samples with  
GreenPAK Programmer  
with customer  
Samples, Design and Characterization  
Report send to customer  
Customer verifies GreenPAK in system  
design  
GreenPAK Design  
approved  
GreenPAK Design  
approved  
E-mail .gpx to  
CMBUGreenPAK@diasemi.com  
Customers verifies GreenPAK design  
GreenPAK Design  
Approved in system test  
Custom GreenPAK part enters production  
Figure 2: Steps to Create a Custom GreenPAK Device  
Datasheet  
18-Sep-2019  
Revision 3.3  
38 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
5
IO Pins  
The SLG46585 has a total of 9 multi-function IO pins which can function as either a user defined Input or Output, as well as serving  
as a special function (such as outputting the voltage reference), or serving as a signal for programming of the on-chip Non-Volatile  
Memory (NVM).  
Refer to Section 2 for normal and programming mode pin definitions.  
Normal Mode pin definitions are as follows:  
IO0: General Purpose Input or Output with OE  
IO1 General Purpose Input or Output or Analog Comparator 0(+)  
IO2: General Purpose Input or Output with OE or Analog Comparator 1(+)  
IO3: General Purpose Input  
VDD: VDD Power supply  
SCL: I2C_SCL  
SDA: I2C_SDA  
IO4: General Purpose Input or Output with OE or Analog Comparator (-)  
LDO Pins:  
LDO0 VOUT: LDO0 Output or Analog Comparator 3(+)  
LDO0/1 VIN: LDO0 & LDO1 Input or Analog Comparator 0(+)  
LDO1 VOUT: LDO1 Output  
LDO2 VOUT: LDO2 Output or Analog Comparator 3(+)  
LDO2/3 VIN: LDO2 & LDO3 Input or Analog Comparator 1(+)  
LDO3 VOUT: LDO3 Output  
AGND: LDO Ground  
IO5: General Purpose Input or Output or Analog Comparator 2(+)  
IO6: General Purpose Input or Output with OE or Analog Comparator 3(+)  
GND: Ground  
Programming Mode pin definitions are as follows:  
IO3: VPP Programming voltage  
VDD: VDD Power supply  
SCL: Programming SCL  
SDA: Programming SDA  
IO5: Programming Mode Control  
GND: Ground  
Of the 9 user defined IO pins on the SLG46585, all but one of the pins (IO3) can serve as both digital input and digital output. IO3  
can only serve as a digital input pin with RESET function, which has settings as follows:  
Level polarity:  
Non-inverted  
Inverted  
Reset mode:  
Level sensitive  
Edge triggered  
Edge detection:  
Rising edge  
Falling edge  
5.1 INPUT MODES  
Each IO pin can be configured as a digital input pin with/without Schmitt Trigger and low voltage input. IO1, IO2, IO5, and IO6  
can also be configured to serve as analog inputs to the on-chip comparators. IO4 can also be configured as ACMP reference  
voltage input.  
Datasheet  
18-Sep-2019  
Revision 3.3  
39 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
5.2 OUTPUT MODES  
Pins IO0, IO1, IO2, IO4, IO5, and IO6 can all be configured as digital output pins.  
5.3 PULL-UP/DOWN RESISTORS  
All IO pins have the option for user selectable resistors connected to the input structure. The selectable values on these resistors  
are 10 k, 100 kΩ, and 1 M. In the case of IO3, the resistors are fixed to a Pull-down configuration. In the case of all other IO  
pins, the internal resistors can be configured as either Pull-up or Pull-downs.  
5.4 IO REGISTER SETTINGS  
Table 30: IO0 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO0 Pull-up/down  
Resistor Selection  
[1025]  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO0 Pull-up/down  
Resistor Value  
Selection  
[1027:1026]  
[1029:1028]  
[1031:1030]  
00: Floating  
01: 10 kResistor  
10: 100 kResistor  
11: 1 MResistor  
IO0 Mode Control  
(sig_io0_oe = 0)  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Reserved  
IO0 Mode Control  
(sig_io0_oe = 1)  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
Table 31: IO1 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO1 Driver Strength  
Selection  
[1033]  
0: 1x  
1: 2x  
IO1 Pull-up/down  
Resistor Selection  
[1034]  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO1 Pull-down  
Resistor Value  
Selection  
[1036:1035]  
00: Floating  
01: 10 kResistor  
10: 100 kResistor  
11: 1 MResistor  
IO1 Mode Control  
[1039:1037]  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Analog Input/Output  
100: Push-Pull  
101: Open-Drain NMOS  
110: Open-Drain PMOS  
111: Analog Input and Open-Drain  
Table 32: IO2 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO2 Pull-up/down  
Resistor Selection  
[1057]  
0: Pull-down Resistor  
1: Pull-up Resistor  
Datasheet  
18-Sep-2019  
Revision 3.3  
40 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 32: IO2 Register Settings(Continued)  
Register Bit  
Address  
Signal Function  
Register Definition  
IO2 Pull-up/down  
Resistor Value  
Selection  
[1059:1058]  
00: Floating  
01: 10 kResistor  
10: 100 kResistor  
11: 1 MResistor  
IO2 Mode Control  
(sig_IO2_oe = 0)  
[1061:1060]  
[1063:1062]  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Analog Input/Output  
IO2 Mode Control  
(sig_IO2_oe = 1)  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
Table 33: IO3 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO3 Pull-down  
Resistor Value  
Selection  
[1069:1068]  
00: Floating  
01: 10 kResistor  
10: 100 kResistor  
11: 1 MResistor  
IO3 Mode Control  
[1071:1070]  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Reserved  
IO3 reset level  
polarity selection  
[1304]  
[1305]  
[1306]  
[1307]  
0: Non-inverted  
1: Inverted  
IO3 reset bypass  
selection  
0: Edge selection  
1: Level selection  
IO3 reset edge  
selection  
0: Rising edge  
1: Falling edge  
IO3 reset enable  
0: Disable  
1: Enable  
Table 34: SCL Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
SCL Mode Control  
[1078:1077]  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Reserved  
Table 35: SDA Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
SDADriverStrength  
Selection  
[1081]  
0: 1x  
1: 2x  
Datasheet  
18-Sep-2019  
Revision 3.3  
41 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 35: SDA Register Settings(Continued)  
Register Bit  
Address  
Signal Function  
Register Definition  
SDA Mode Control  
[1086:1085]  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Reserved  
Table 36: IO4 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO4 Pull-up/down  
Resistor Selection  
[1089]  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO4 Pull-up/down  
Resistor Value  
Selection  
[1091:1090]  
[1093:1092]  
[1095:1094]  
00: Floating  
01: 10 kResistor  
10: 100 kResistor  
11: 1 MResistor  
IO4 Mode Control  
(sig_IO4_oe = 0)  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Analog Input/Output  
IO4 Mode Control  
(sig_IO4_oe = 1)  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
Table 37: IO5 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO5 Driver Strength  
Selection  
[1097]  
0: 1x  
1: 2x  
IO5 Pull-up/down  
Resistor Selection  
[1098]  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO5 Pull-up/down  
Resistor Value  
Selection  
[1100:1099]  
00: Floating  
01: 10 kResistor  
10: 100 kResistor  
11: 1 MResistor  
IO5 Mode Control  
[1103:1101]  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Analog Input/Output  
100: Push-Pull  
101: Open-Drain NMOS  
110: Open-Drain PMOS  
111: Analog Input and Open-Drain  
Table 38: IO6 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
IO6 Pull-up/down  
Resistor Selection  
[1105]  
0: Pull-down Resistor  
1: Pull-up Resistor  
Datasheet  
18-Sep-2019  
Revision 3.3  
42 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 38: IO6 Register Settings(Continued)  
Register Bit  
Address  
Signal Function  
Register Definition  
IO6 Pull-up/down  
Resistor Value  
Selection  
[1107:1106]  
00: Floating  
01: 10 kResistor  
10: 100 kResistor  
11: 1 MResistor  
IO6 Mode Control  
(sig_IO6_oe = 0)  
[1109:1108]  
[1111:1110]  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Analog Input/Output  
IO6 Mode Control  
(sig_IO6_oe = 1)  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
Datasheet  
18-Sep-2019  
Revision 3.3  
43 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
5.5 GPI STRUCTURE  
5.5.1 GPI Structure (for IO3)  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1, OE=0  
01: Digital In with Schmitt Trigger, smt_en = 1, OE = 0  
10: Low Voltage Digital In mode, lv_en = 1, OE = 0  
11: Reserved  
10 k  
Note 1: OE cannot be selected by user  
Note 2: OE is GND, Digital In is Matrix input  
90 kΩ  
900 kΩ  
Res_sel[1:0]  
00: floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Non-Schmitt  
Trigger Input  
PAD  
wosmt_en  
OE  
Schmitt Trigger  
Input  
Digital In  
smt_en  
lv_en  
OE  
Low Voltage  
Input  
OE  
Figure 3: IO3 GPI Structure Diagram  
Datasheet  
18-Sep-2019  
Revision 3.3  
44 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
5.6 MATRIX OE IO STRUCTURE  
5.6.1 Matrix OE IO Structure (for IO0, IO2, IO4, IO6)  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
01: Digital In with Schmitt Trigger, smt_en = 1  
10: Low Voltage Digital In mode, lv_en = 1  
11: Analog IO mode  
wosmt_en  
Output Mode [1:0]  
00: Push-Pull 1x mode, pp1x_en = 1  
OE  
01: Push-Pull 2x mode, pp2x_en = 1, pp1x_en = 1  
10: NMOS 1x Open-Drain mode, od1x_en = 1  
11: NMOS 2x Open-Drain mode, od2x_en = 1, od1x_en = 1  
Schmitt Trigger  
Input  
Digital In  
Note: Digital Out and OE are Matrix output, Digital In is Matrix input  
smt_en  
lv_en  
OE  
Low Voltage  
Input  
OE  
Analog IO  
(For IO2, IO4, and IO6 only)  
Digital Out  
Digital Out  
OE  
S1  
S0  
OE  
od1x_en  
10 kΩ  
pp1x_en  
90 kΩ  
pull_up_en  
900 kΩ  
PAD  
Res_sel[1:0]  
00: floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Digital Out  
Digital Out  
OE  
OE  
od2x_en  
pp2x_en  
Figure 4: Matrix OE IO Structure Diagram  
Datasheet  
18-Sep-2019  
Revision 3.3  
45 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
5.6.2 Matrix OE IO Structure (for SCL and SDA)  
Non-Schmitt  
SCL, SDA Mode[1:0]  
Trigger Input  
00: Digital Input without Schmitt Trigger, wosmt_en = 1  
01: Digital Input with Schmitt Trigger, smt_en = 1  
10: Low Voltage Digital Input, lv_en = 1  
11: Reserved  
wosmt_en  
smt_en  
Note 1: Digital Out and OE are Matrix output, Digital In is Matrix input  
Note 2: Output mode is fixed as OD for SDA only  
GND  
GND  
Schmitt Trigger  
Input  
Digital In  
Low Voltage  
Input  
lv_en  
GND  
Analog IO  
Digital Out  
od1x_en  
Only for SDA  
PAD  
Digital Out  
od2x_en  
Only for SDA  
Figure 5: Matrix OE IO Structure Diagram  
Datasheet  
18-Sep-2019  
Revision 3.3  
46 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
5.7 IO STRUCTURE  
5.7.1 IO Structure (for IO1 and IO5)  
Mode [2:0]  
Non-Schmitt  
Trigger Input  
000: Digital In without Schmitt Trigger, wosmt_en = 1, OE = 0  
001: Digital In with Schmitt Trigger, smt_en = 1, OE = 0  
010: Low Voltage Digital In mode, lv_en = 1, OE = 0  
011: analog IO mode  
wosmt_en  
100: Push-Pull mode, pp_en = 1, OE = 1  
101: NMOS Open-Drain mode, odn_en = 1, OE = 1  
OE  
OE  
110: PMOS Open-Drain mode, odp_en = 1, OE = 1  
111: analog IO and NMOS Open-Drain mode, odn_en = 1 and AIO_en=1  
Schmitt Trigger  
Input  
Note 1: OE cannot be selected by user  
Note 2: OE are Matrix output, Digital Out and Digital In is Matrix input  
Digital In  
smt_en  
lv_en  
Low Voltage  
Input  
OE  
Analog IO  
(For IO1 and IO5)  
odp_en  
Digital Out  
Digital Out  
S1  
S0  
OE  
odn_en  
OE  
VDD  
10 kΩ  
pp_en  
pull_up_en  
90 kΩ  
900 kΩ  
PAD  
Res_sel[1:0]  
00: floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
odp_en  
Digital Out  
Digital Out  
OE  
OE  
2x_en  
2x_en  
pp_en  
odn_en  
Figure 6: IO Structure Diagram  
Datasheet  
18-Sep-2019  
Revision 3.3  
47 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
6
Connection Matrix  
The Connection Matrix in the SLG46585 is used to create the internal routing for internal functional macrocells of the device once  
it is programmed. The registers are programmed from the one-time NVM cell during Test Mode Operation. The output of each  
functional macrocell within the SLG46585 has a specific digital bit code assigned to it that is either set to active “High” or inactive  
“Low”, based on the design that is created. Once the 2048 register bits within the SLG46585 are programmed a fully custom  
circuit will be created.  
The Connection Matrix has 64 inputs and 104 outputs. Each of the 64 inputs to the Connection Matrix is hard-wired to the digital  
output of a particular source macrocell, including IO pins, LUTs, analog comparators, other digital resources, such as VDD and  
GND. The input to a digital macrocell uses a 6-bit register to select one of these 64 input lines.  
For a complete list of the SLG46585’s register table, see Section 22  
.
Matrix Input Signal  
N
Functions  
GND  
0
1
2
3
IO0 Digital In  
IO1 Digital In  
IO2 Digital In  
nRST_core (POR)  
VDD  
62  
63  
Matrix Inputs  
0
1
2
104  
N
Registers  
[5:0]  
[13:8]  
[21:16]  
[839:832]  
Matrix OUT:  
ASM-state0-EN0  
Matrix OUT:  
ASM-state0-EN1  
Matrix OUT:  
ASM-state0-EN2  
Function  
Reserved  
Matrix Outputs  
Figure 7: Connection Matrix  
Function  
Connection Matrix  
IO1  
IO0  
LUT  
IO0  
IO1  
IO2  
LUT  
IO2  
Figure 8: Connection Matrix Example  
Datasheet  
18-Sep-2019  
Revision 3.3  
48 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
6.1 MATRIX INPUT TABLE  
Table 39: Matrix Input Table  
Matrix Decode  
Matrix Input  
Matrix Input Signal Function  
Number  
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GND  
IO0 Digital Input  
2
IO1 Digital Input  
3
Synchronous DC/DC Step Down Converter Fault  
GND  
4
5
IO2 Digital Input  
6
LUT2_0/DFF0 Output  
7
LUT2_1/DFF1 Output  
8
LUT2_2/DFF2 Output  
9
LUT3_0/DFF3 Output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
LUT3_1/DFF4 Output  
LUT3_2/DFF5 Output  
LUT3_3/DFF6 Output  
LUT3_4/DFF7 Output  
LUT3_6/CNT_DLY0(8bit) Output  
LUT3_7/CNT_DLY1(8bit) Output  
LUT3_8/CNT_DLY2(8bit) Output  
LUT3_9/CNT_DLY3(8bit) Output  
LUT3_10/CNT_DLY4(8bit) Output  
LUT3_11/Pipe Delay (1st stage) Output/Ripple CNT Output0  
LUT3_5/DFF8 Output  
LUT4X2_0 Output0  
LUT4X2_0 Output1  
RTC CNT 1 second Output  
RTC DCOMP Output  
Pipe Delay Output0/Ripple CNT Output1  
Pipe Delay Output1/Ripple CNT Output2  
Internal OSC Post-Divided by 1/2/3/4/8/12/24/64 Output (25KHz/  
2MHz)  
27  
28  
Internal OSC Post-Divided by 1/2/3/4/8/12/24/64 Output (25KHz/  
2MHz)  
0
1
1
1
0
0
29  
30  
31  
32  
33  
34  
35  
36  
LPOSC Output  
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
0
0
0
0
0
1
1
1
0
0
0
0
1
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
Filter0/Edge Detect0 Output  
Filter1/Edge Detect1 Output  
I2C_virtual_0 Input  
I2C_virtual_1 Input  
I2C_virtual_2 Input  
I2C_virtual_3 Input  
I2C_virtual_4 Input  
Datasheet  
18-Sep-2019  
Revision 3.3  
49 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 39: Matrix Input Table(Continued)  
Matrix Decode  
Matrix Input  
Matrix Input Signal Function  
Number  
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
I2C_virtual_5 Input  
I2C_virtual_6 Input  
I2C_virtual_7 Input  
ASM-stateX-dout0  
ASM-stateX-dout1  
ASM-stateX-dout2  
ASM-stateX-dout3  
ASM-stateX-dout4  
ASM-stateX-dout5  
ASM-stateX-dout6  
ASM-stateX-dout7  
BG_OK Output  
LDO0 nFault  
LDO1 nFault  
LDO2 nFault  
LDO3 nFault  
IO3 Digital Input (GPI)  
IO4 Digital Input  
IO5 Digital Input  
IO6 Digital Input  
ACMP_0 Output  
ACMP_1 Output  
ACMP_2 Output  
ACMP_3 Output  
Programmable Delay with Edge Detector Output  
nRST_core (POR) as matrix input  
VDD  
Datasheet  
18-Sep-2019  
Revision 3.3  
50 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
6.2 MATRIX OUTPUT TABLE  
Table 40: Matrix Output Table  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
7:0  
Matrix OUT: ASM-state0-EN0  
0
15:8  
Matrix OUT: ASM-state0-EN1  
1
23:16  
Matrix OUT: ASM-state0-EN2  
2
31:24  
Matrix OUT: ASM-state1-EN0  
3
39:32  
Matrix OUT: ASM-state1-EN1  
4
47:40  
Matrix OUT: ASM-state1-EN2  
5
55:48  
Matrix OUT: ASM-state2-EN0  
6
63:56  
Matrix OUT: ASM-state2-EN1  
7
71:64  
Matrix OUT: ASM-state2-EN2  
8
79:72  
Matrix OUT: ASM-state3-EN0  
9
87:80  
Matrix OUT: ASM-state3-EN1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
95:88  
Matrix OUT: ASM-state3-EN2  
103:96  
111:104  
119:112  
127:120  
135:128  
143:136  
151:144  
159:152  
167:160  
175:168  
183:176  
191:184  
199:192  
207:200  
215:208  
223:216  
231:224  
239:232  
247:240  
255:248  
263:256  
271:264  
279:272  
287:280  
295:288  
303:296  
Matrix OUT: ASM-state4-EN0  
Matrix OUT: ASM-state4-EN1  
Matrix OUT: ASM-state4-EN2  
Matrix OUT: ASM-state5-EN0  
Matrix OUT: ASM-state5-EN1  
Matrix OUT: ASM-state5-EN2  
Matrix OUT: ASM-state6-EN0  
Matrix OUT: ASM-state6-EN1  
Matrix OUT: ASM-state6-EN2  
Matrix OUT: ASM-state7-EN0  
Matrix OUT: ASM-state7-EN1  
Matrix OUT: ASM-state7-EN2  
Matrix OUT: ASM-state-nRST  
Matrix OUT: IN0 of LUT3_6 or Delay0 Input (or Counter0 RST Input)  
Matrix OUT: IN1 of LUT3_6 or External Clock Input of Delay0 (or Counter0)  
Matrix OUT: IN2 of LUT3_6  
Matrix OUT: IN0 of LUT3_7 or Delay1 Input (or Counter1 RST Input)  
Matrix OUT: IN1 of LUT3_7 or External Clock Input of Delay1 (or Counter1)  
Matrix OUT: IN2 of LUT3_7  
Matrix OUT: IN0 of LUT3_8 or Delay2 Input (or Counter2 RST Input)  
Matrix OUT: IN1 of LUT3_8 or External Clock Input of Delay2 (or Counter2)  
Matrix OUT: IN2 of LUT3_8  
Matrix OUT: IN0 of LUT3_9 or Delay3 Input (or Counter3 RST Input)  
Matrix OUT: IN1 of LUT3_9 or External Clock Input of Delay3 (or Counter3)  
Matrix OUT: IN2 of LUT3_9  
Matrix OUT: IN0 of LUT3_10 or Delay4 Input (or Counter4 RST Input)  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
51 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 40: Matrix Output Table(Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
311:304  
319:312  
327:320  
335:328  
343:336  
351:344  
359:352  
367:360  
375:368  
383:376  
391:384  
399:392  
407:400  
415:408  
423:416  
431:424  
439:432  
447:440  
455:448  
463:456  
471:464  
479:472  
487:480  
495:488  
503:496  
511:504  
519:512  
527:520  
535:528  
543:536  
551:544  
559:552  
567:560  
575:568  
583:576  
591:584  
599:592  
607:600  
615:608  
Matrix OUT: IN1 of LUT3_10 or External Clock Input of Delay4 (or Counter4)  
Matrix OUT: IN2 of LUT3_10  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
Matrix OUT: IO0 Digital Output Source  
Matrix OUT: IO0 Output Enable  
Matrix OUT: IO1 Digital Output Source  
Reserved  
Reserved  
Matrix OUT: IO2 Digital Output Source  
Matrix OUT: IO2 Output Enable  
Matrix OUT: IO4 Digital Output Source  
Matrix OUT: IO4 Output Enable  
Matrix OUT: IO5 Digital Output Source  
Matrix OUT: IO6 Digital Output Source  
Matrix OUT: IO6 Output Enable  
Matrix OUT: ACMP0 PWR UP  
Matrix OUT: ACMP1 PWR UP  
Matrix OUT: ACMP2 PWR UP  
Matrix OUT: ACMP3 PWR UP  
Matrix OUT: Input of Filter_0 with fixed time edge detector  
Matrix OUT: Input of Filter_1 with fixed time edge detector  
Matrix OUT: Input of Programmable Delay & Edge Detector  
Matrix OUT: OSC 25KHz/2MHz PD (Power-Down)  
Matrix OUT: LPOSC PD (Power-Down)  
Matrix OUT: IN0 of LUT2_0 or Clock Input of DFF0  
Matrix OUT: IN1 of LUT2_0 or Data Input of DFF0  
Matrix OUT: IN0 of LUT2_1 or Clock Input of DFF1  
Matrix OUT: IN1 of LUT2_1 or Data Input of DFF1  
Matrix OUT: IN0 of LUT2_2 or Clock Input of DFF2  
Matrix OUT: IN1 of LUT2_2 or Data Input of DFF2  
Matrix OUT: IN0 of LUT3_0 or Clock Input of DFF3  
Matrix OUT: IN1 of LUT3_0 or Data Input of DFF3  
Matrix OUT: IN2 of LUT3_0 or nRST (nSET) of DFF3  
Matrix OUT: IN0 of LUT3_1 or Clock Input of DFF4  
Matrix OUT: IN1 of LUT3_1 or Data Input of DFF4  
Matrix OUT: IN2 of LUT3_1 or nRST (nSET) of DFF4  
Matrix OUT: IN0 of LUT3_2 or Clock Input of DFF5  
Matrix OUT: IN1 of LUT3_2 or Data Input of DFF5  
Matrix OUT: IN2 of LUT3_2 or nRST (nSET) of DFF5  
Matrix OUT: IN0 of LUT3_3 or Clock Input of DFF6  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
52 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 40: Matrix Output Table(Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
623:616  
631:624  
639:632  
647:640  
655:648  
Matrix OUT: IN1 of LUT3_3 or Data Input of DFF6  
Matrix OUT: IN2 of LUT3_3 or nRST (nSET) of DFF6  
Matrix OUT: IN0 of LUT3_4 or Clock Input of DFF7  
Matrix OUT: IN1 of LUT3_4 or Data Input of DFF7  
Matrix OUT: IN2 of LUT3_4 or nRST (nSET) of DFF7  
77  
78  
79  
80  
81  
Matrix OUT: IN0 of LUT3_11 or Input of Pipe Delay or Up/Down selection of Ripple  
Counter  
663:656  
82  
671:664  
679:672  
687:680  
695:688  
703:696  
711:704  
719:712  
727:720  
735:728  
Matrix OUT: IN1 of LUT3_11 or nRST of Pipe Delay or nRST of Ripple Counter  
Matrix OUT: IN2 of LUT3_11 or Clock of Pipe Delay or Clock of Ripple Counter  
Matrix OUT: IN0 of LUT3_5 or Clock Input of DFF8  
Matrix OUT: IN1 of LUT3_5 or Data Input of DFF8  
Matrix OUT: IN2 of LUT3_5 or nRST (nSET) of DFF8  
Matrix OUT: IN0 of LUT4X2_0  
83  
84  
85  
86  
87  
88  
89  
90  
91  
Matrix OUT: IN1 of LUT4X2_0  
Matrix OUT: IN2 of LUT4X2_0  
Matrix OUT: IN3 of LUT4X2_0  
Matrix OUT: LDO LP Mode Enable  
for LDO0/1/2/3  
743:736  
751:744  
92  
93  
Matrix OUT:  
LDO0_EN  
759:752  
767:760  
775:768  
Matrix OUT: LDO1_EN  
Matrix OUT: LDO2_EN  
Matrix OUT: LDO3_EN  
94  
95  
96  
Matrix OUT:  
LDO0 2nd VOUT Selection Enable  
783:776  
97  
791:784  
799:792  
807:800  
815:808  
823:816  
831:824  
839:832  
Matrix OUT: LDO1 2nd VOUT Selection Enable  
Matrix OUT: LDO2 2nd VOUT Selection Enable  
Matrix OUT: LDO3 2nd VOUT Selection Enable  
Matrix OUT: RTC Clock  
98  
99  
100  
101  
102  
103  
104  
Matrix OUT: RTC Trigger signal to read/write RTC CNT values  
Matrix OUT: ON/OFF command for Synchronous DC/DC Step Down Converter  
Reserved  
Note 1 For each Address, the two most significant bits are unused.  
Datasheet  
18-Sep-2019  
Revision 3.3  
53 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
6.3 CONNECTION MATRIX VIRTUAL INPUTS  
As mentioned previously, the Connection Matrix inputs come from the outputs of various digital macrocells on the device. Eight  
of the Connection Matrix inputs have the special characteristic that the state of these signal lines comes from a corresponding  
data bit written as a register value via I2C. This gives the user the ability to write data via the serial channel, and have this  
information translated into signals that can be driven into the Connection Matrix and from the Connection Matrix to the digital  
inputs of other macrocells on the device. The I2C address for reading and writing these register values is at 0xF4 (0244).  
Eight Connection Matrix Virtual Inputs are dedicated to this virtual input function. An I2C write command to these register bits will  
set the signal values going into the Connection Matrix to the desired state. A read command to these register bits will read either  
the original data values coming from the NVM memory bits (that were loaded during the initial device startup), or the values from  
a previous write command (if that has happened).  
See Table 41 for Connection Matrix Virtual Inputs.  
Table 41: Connection Matrix Virtual Inputs  
Matrix Input  
Number  
Register Bit  
Addresses (d)  
Matrix Input Signal Function  
32  
33  
34  
35  
36  
37  
38  
39  
I2C_virtual_0 Input  
I2C_virtual_1 Input  
I2C_virtual_2 Input  
I2C_virtual_3 Input  
I2C_virtual_4 Input  
I2C_virtual_5 Input  
I2C_virtual_6 Input  
I2C_virtual_7 Input  
[1952]  
[1953]  
[1954]  
[1955]  
[1956]  
[1957]  
[1958]  
[1959]  
6.4 CONNECTION MATRIX VIRTUAL OUTPUTS  
The digital outputs of the various macrocells are routed to the Connection Matrix to enable interconnections to the inputs of other  
macrocells in the device. At the same time, it is possible to read the state of each of the macrocell outputs as a register value via  
I2C. This option, called Connection Matrix Virtual Outputs, allows the user to remotely read the values of each macrocell output.  
The I2C addresses for reading these register values are 0x70 (0112) to 0x71 (0113). Write commands to these same register  
values will be ignored (with the exception of the Virtual Input register bits at 0xF4 (0244)).  
Datasheet  
18-Sep-2019  
Revision 3.3  
54 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
7
Combination Function Macrocells  
The SLG46585 has 15 combination function macrocells that can serve more than one logic or timing function. In each case, they  
can serve as a Look Up Table (LUT), or as another logic or timing function. See the list below for the functions that can be  
implemented in these macrocells.  
Three macrocells that can serve as either 2-bit LUTs or as D Flip-Flops  
Six macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset Input  
One macrocell that can serve as either 3-bit LUT or as Pipe Delay or as a Ripple Counter  
Five macrocells that can serve as either 3-bit LUTs or as 8-Bit Counter/Delays  
Inputs/Outputs for the 15 combination function macrocells are configured from the connection matrix with specific logic functions  
being defined by the state of NVM bits.  
When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined  
function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).  
7.1 2-BIT LUT OR D FLIP-FLOP MACROCELLS  
There are three macrocells that can serve as either 2-bit LUTs or as D Flip-Flops. When used to implement LUT functions, the  
2-bit LUTs each take in two input signals from the connection matrix and produce a single output, which goes back into the  
connection matrix. When used to implement D Flip-Flop function, the two input signals from the connection matrix go to the data  
(D) and clock (CLK) inputs for the Flip-Flop, with the output going back to the connection matrix.  
The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:  
DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change  
LATCH: if CLK = 0, then Q = D  
register [1151] DFF or LATCH Select  
register [1150] Output Select (Q or nQ)  
register [1149] DFF Initial Polarity Select  
IN1  
S0  
From Connection Matrix Output [62]  
OUT  
2-bit LUT0  
0: 2-bit LUT0 IN1  
1: DFF0 Data  
S1  
IN0  
LUT Truth  
Table  
To Connection Matrix  
S0  
Input [6]  
4-bits NVM  
registers [1151:1148]  
0: 2-bit LUT0 OUT  
1: DFF0 OUT  
S1  
DFF  
Registers  
D
S0  
S1  
From Connection Matrix Output [61]  
Q/nQ  
DFF0  
0: 2-bit LUT0 IN0  
1: DFF0 CLK  
CLK  
1-bit NVM  
register [1135]  
Figure 9: 2-bit LUT0 or DFF0  
Datasheet  
18-Sep-2019  
Revision 3.3  
55 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
register [1147] DFF or LATCH Select  
register [1146] Output Select (Q or nQ)  
register [1145] DFF Initial Polarity Select  
IN1  
S0  
From Connection Matrix Output [64]  
OUT  
2-bit LUT1  
0: 2-bit LUT1 IN1  
1: DFF1 Data  
S1  
IN0  
LUT Truth  
Table  
To Connection Matrix  
S0  
Input [7]  
4-bits NVM  
registers [1147:1144]  
0: 2-bit LUT1 OUT  
1: DFF1 OUT  
S1  
DFF  
Registers  
D
S0  
S1  
From Connection Matrix Output [63]  
Q/nQ  
DFF1  
0: 2-bit LUT1 IN0  
1: DFF1 clk  
CLK  
1-bit NVM  
register [1134]  
Figure 10: 2-bit LUT1 or DFF1  
register [1159] DFF or LATCH Select  
register [1158] Output Select (Q or nQ)  
register [1157] DFF Initial Polarity Select  
IN1  
S0  
S1  
From Connection Matrix Output [66]  
OUT  
2-bit LUT2  
0: 2-bit LUT2 IN1  
1: DFF2 Data  
IN0  
LUT Truth  
Table  
To Connection Matrix  
S0  
Input [8]  
4-bits NVM  
registers [1159:1156]  
0: 2-bit LUT2 OUT  
1: DFF2 OUT  
S1  
DFF  
Registers  
D
S0  
From Connection Matrix Output [65]  
Q/nQ  
DFF2  
0: 2-bit LUT2 IN0  
1: DFF2 clk  
S1  
CLK  
1-bit NVM  
register [1133]  
Figure 11: 2-bit LUT2 or DFF2  
Datasheet  
18-Sep-2019  
Revision 3.3  
56 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
7.1.1 2-Bit LUT or D Flip-Flop Macrocell Used as 2-Bit LUT  
Table 42: 2-bit LUT0 Truth Table  
Table 44: 2-bit LUT2 Truth Table  
IN1  
0
IN0  
0
OUT  
IN1  
0
IN0  
0
OUT  
register [1148]  
register [1149]  
register [1150]  
register [1151]  
LSB  
register [1156]  
register [1157]  
register [1158]  
register [1159]  
LSB  
0
1
0
1
1
0
1
0
1
1
MSB  
1
1
MSB  
Table 43: 2-bit LUT1 Truth Table  
IN1  
0
IN0  
0
OUT  
register [1144]  
register [1145]  
register [1146]  
register [1147]  
LSB  
0
1
1
0
1
1
MSB  
Each macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:  
2-Bit LUT0 is defined by registers [1151:1148]  
2-Bit LUT1 is defined by registers [1147:1144]  
2-Bit LUT2 is defined by registers [1159:1156]  
Table 45 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the three 2-bit LUT logic cells.  
Table 45: 2-bit LUT Standard Digital Functions  
Function  
AND-2  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-2  
OR-2  
NOR-2  
XOR-2  
XNOR-2  
7.1.2 2-Bit LUT or D Flip-Flop Macrocells Used as D Flip-Flop Register Settings  
Table 46: DFF0 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
LUT2_0 or DFF0  
Select  
[1135]  
0: LUT2_0  
1: DFF0  
DFF0 Initial Polarity  
Select  
[1149]  
[1150]  
[1151]  
0: Low  
1: High  
DFF0 Output Select  
0: Q output  
1: nQ output  
DFF0 or LATCH  
Select  
0: DFF function  
1: LATCH function  
Datasheet  
18-Sep-2019  
Revision 3.3  
57 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 47: DFF1 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT2_1 or DFF1  
Select  
[1134]  
0: LUT2_1  
1: DFF1  
DFF1 Initial Polarity  
Select  
[1145]  
[1146]  
[1147]  
0: Low  
1: High  
DFF1 Output Select  
0: Q output  
1: nQ output  
DFF1 or LATCH  
Select  
0: DFF function  
1: LATCH function  
Table 48: DFF2 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT2_2 or DFF2  
Select  
[1133]  
0: LUT2_2  
1: DFF2  
DFF2 Initial Polarity  
Select  
[1157]  
[1158]  
[1159]  
0: Low  
1: High  
DFF2 Output Select  
0: Q output  
1: nQ output  
DFF2 or LATCH  
Select  
0: DFF function  
1: LATCH function  
Datasheet  
18-Sep-2019  
Revision 3.3  
58 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
7.1.3 Initial Polarity Operations  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
Q
Initial Polarity: Low  
Q
Figure 12: DFF Polarity Operations  
7.2 3-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELLS  
There are six macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset inputs. When used to implement  
LUT functions, the 3-bit LUTs each take in three input signals from the connection matrix and produce a single output, which goes  
back into the connection matrix. When used to implement D Flip-Flop function, the three input signals from the connection matrix  
go to the data (D) and clock (CLK), and Reset/Set (nRST/nSET) inputs for the Flip-Flop, with the output going back to the  
connection matrix.  
DFF3 has a user selectable option to allow the macrocell output to either come from the Q/nQ output of one D Flip-Flop, or two  
D Flip-Flops in series, with the first D Flip-Flop triggering on the rising clock edge, and the second D Flip-Flop triggering on the  
falling clock edge.  
Datasheet  
18-Sep-2019  
Revision 3.3  
59 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
register [1167] DFF or LATCH Select  
register [1166] Output Select (Q or nQ)  
register [1165] DFF nRST or nSET Select  
register [1164] DFF Initial Polarity Select  
IN2  
From Connection  
Matrix Output [69]  
S0  
IN1  
IN0  
OUT  
3-bit LUT0  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [68]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [9]  
8-bits NVM  
registers [1167:1160]  
register [1431]  
DFF3  
nRST/nSET  
From Connection  
Matrix Output [67]  
S0  
S1  
D
Q/nQ  
Q
D
D
Q
CLK  
register [1166]  
register [1431] Selects output from one or two DFF  
1-bit NVM  
register [1132]  
Figure 13: 3-bit LUT0 or DFF3  
register [1175] DFF or LATCH Select  
register [1174] Output Select (Q or nQ)  
register [1173] DFF nRST or nSET Select  
register [1172] DFF Initial Polarity Select  
IN2  
From Connection  
Matrix Output [72]  
S0  
S1  
IN1  
OUT  
3-bit LUT1  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [71]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [10]  
8-bits NVM  
registers [1175:1168]  
DFF  
Registers  
D
From Connection  
Matrix Output [70]  
S0  
S1  
nRST/nSET  
CLK  
DFF4  
Q/nQ  
1-bit NVM  
register [1131]  
Figure 14: 3-bit LUT1 or DFF4  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
60 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
register [1183] DFF or LATCH Select  
register [1182] Output Select (Q or nQ)  
register [1181] DFF nRST or nSET Select  
register [1180] DFF Initial Polarity Select  
IN2  
From Connection  
Matrix Output [75]  
S0  
S1  
IN1  
IN0  
OUT  
3-bit LUT2  
LUT Truth  
Table  
From Connection  
Matrix Output [74]  
To Connection Matrix  
S0  
S1  
S0  
Input [11]  
8-bits NVM  
registers [1183:1176]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [73]  
S0  
S1  
nRST/nSET  
CLK  
DFF5  
Q/nQ  
1-bit NVM  
register [1130]  
Figure 15: 3-bit LUT2 or DFF5  
register [1191] DFF or LATCH Select  
register [1190] Output Select (Q or nQ)  
register [1189] DFF nRST or nSET Select  
register [1188] DFF Initial Polarity Select  
IN2  
From Connection  
Matrix Output [78]  
S0  
S1  
IN1  
OUT  
3-bit LUT3  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [77]  
To Connection Matrix  
S0  
S1  
Input [12]  
S0  
8-bits NVM  
registers [1191:1184]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [76]  
S0  
S1  
nRST/nSET  
CLK  
DFF6  
Q/nQ  
1-bit NVM  
register [1129]  
Figure 16: 3-bit LUT3 or DFF6  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
61 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
register [1199] DFF or LATCH Select  
register [1198] Output Select (Q or nQ)  
register [1197] DFF nRST or nSET Select  
register [1196] DFF Initial Polarity Select  
IN2  
From Connection  
Matrix Output [81]  
S0  
S1  
IN1  
IN0  
OUT  
3-bit LUT4  
LUT Truth  
Table  
From Connection  
Matrix Output [80]  
To Connection Matrix  
S0  
S1  
S0  
Input [13]  
8-bits NVM  
registers [1199:1192]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [79]  
S0  
S1  
nRST/nSET  
CLK  
DFF7  
Q/nQ  
1-bit NVM  
register [1128]  
Figure 17: 3-bit LUT4 or DFF7  
register [1207] DFF or LATCH Select  
register [1206] Output Select (Q or nQ)  
register [1205] DFF nRST or nSET Select  
register [1204] DFF Initial Polarity Select  
IN2  
From Connection  
Matrix Output [87]  
S0  
S1  
IN1  
OUT  
3-bit LUT5  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [86]  
To Connection Matrix  
S0  
S1  
S0  
Input [20]  
8-bits NVM  
registers [1207:1200]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [85]  
S0  
S1  
nRST/nSET  
CLK  
DFF8  
Q/nQ  
1-bit NVM  
register [1138]  
Figure 18: 3-bit LUT5 or DFF8  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
62 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
7.2.1 3-Bit LUT or D Flip-Flop Macrocells Used as 3-Bit LUT  
Table 49: 3-bit LUT0 Truth Table  
Table 52: 3-bit LUT3 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1160]  
register [1161]  
register [1162]  
register [1163]  
register [1164]  
register [1165]  
register [1166]  
register [1167]  
LSB  
register [1184]  
register [1185]  
register [1186]  
register [1187]  
register [1188]  
register [1189]  
register [1190]  
register [1191]  
LSB  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 50: 3-bit LUT1 Truth Table  
Table 53: 3-bit LUT4 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1168]  
register [1169]  
register [1170]  
register [1171]  
register [1172]  
register [1173]  
register [1174]  
register [1175]  
register [1192]  
register [1193]  
register [1194]  
register [1195]  
register [1196]  
register [1197]  
register [1198]  
register [1199]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 51: 3-bit LUT2 Truth Table  
Table 54: 3-bit LUT5 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1176]  
register [1177]  
register [1178]  
register [1179]  
register [1180]  
register [1181]  
register [1182]  
register [1183]  
register [1200]  
register [1201]  
register [1202]  
register [1203]  
register [1204]  
register [1205]  
register [1206]  
register [1207]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
1
1
1
MSB  
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-Bit LUT0 is defined by registers [1167:1160]  
3-Bit LUT1 is defined by registers [1175:1168]  
3-Bit LUT2 is defined by registers [1183:1176]  
3-Bit LUT3 is defined by registers [1191:1184]  
3-Bit LUT4 is defined by registers [1199:1192]  
3-Bit LUT5 is defined by registers [1207:1200]  
Datasheet  
18-Sep-2019  
Revision 3.3  
63 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 55 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the six 3-bit LUT logic cells.  
Table 55: 3-bit LUT Standard Digital Functions  
Function  
AND-3  
MSB  
LSB  
1
0
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-3  
OR-3  
NOR-3  
XOR-3  
XNOR-3  
7.2.2 3-BIT LUT OR D FLIP-FLOP MACROCELLS USED AS D FLIP-FLOP REGISTER SETTINGS  
Table 56: DFF3 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
LUT3_0 or DFF3  
Select  
[1132]  
0: LUT3_0  
1: DFF3  
DFF3 Initial Polarity  
Select  
[1164]  
[1165]  
[1166]  
[1167]  
0: Low  
1: High  
DFF3 nRST/nSET  
Select  
0: nRST from matrix out  
1: nSET from matrix out  
DFF3 Output Select  
0: Q output  
1: nQ output  
DFF3 or LATCH  
Select  
0: DFF function  
1: LATCH function  
Table 57: DFF4 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT3_1 or DFF4  
Select  
[1131]  
0: LUT3_1  
1: DFF4  
DFF4 Initial Polarity  
Select  
[1172]  
[1173]  
[1174]  
[1175]  
0: Low  
1: High  
DFF4 nRST/nSET  
Select  
0: nRST from matrix out  
1: nSET from matrix out  
DFF4 Output Select  
0: Q output  
1: nQ output  
DFF4 or LATCH  
Select  
0: DFF function  
1: LATCH function  
Datasheet  
18-Sep-2019  
Revision 3.3  
64 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 58: DFF5 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT3_2 or DFF5  
Select  
[1130]  
0: LUT3_2  
1: DFF5  
DFF5 Initial Polarity  
Select  
[1180]  
[1181]  
[1182]  
[1183]  
0: Low  
1: High  
DFF5 nRST/nSET  
Select  
0: nRST from matrix out  
1: nSET from matrix out  
DFF5 Output Select  
0: Q output  
1: nQ output  
DFF5 or LATCH  
Select  
0: DFF function  
1: LATCH function  
Table 59: DFF6 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT3_3 or DFF6  
Select  
[1129]  
0: LUT3_3  
1: DFF6  
DFF6 Initial Polarity  
Select  
[1188]  
[1189]  
[1190]  
[1191]  
0: Low  
1: High  
DFF6 nRST/nSET  
Select  
0: nRST from matrix out  
1: nSET from matrix out  
DFF6 Output Select  
0: Q output  
1: nQ output  
DFF6 or LATCH  
Select  
0: DFF function  
1: LATCH function  
Table 60: DFF7 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT3_4 or DFF7  
Select  
[1128]  
0: LUT3_4  
1: DFF7  
DFF7 Initial Polarity  
Select  
[1196]  
[1197]  
[1198]  
[1199]  
0: Low  
1: High  
DFF7 nRST/nSET  
Select  
0: nRST from matrix out  
1: nSET from matrix out  
DFF7 Output Select  
0: Q output  
1: nQ output  
DFF7 or LATCH  
Select  
0: DFF function  
1: LATCH function  
Table 61: DFF8 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT3_5 or DFF8  
Select  
[1138]  
0: LUT3_5  
1: DFF8  
DFF8 Initial Polarity  
Select  
[1204]  
0: Low  
1: High  
Datasheet  
18-Sep-2019  
Revision 3.3  
65 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 61: DFF8 Register Settings(Continued)  
Register Bit  
Address  
Signal Function  
Register Definition  
DFF8 nRST/nSET  
Select  
[1205]  
0: nRST from matrix out  
1: nSET from matrix out  
DFF8 Output Select  
[1206]  
[1207]  
0: Q output  
1: nQ output  
DFF8 or LATCH  
Select  
0: DFF function  
1: LATCH function  
7.2.3 Initial Polarity Operations  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
nReset (Case 1)  
Q with nReset (Case 1)  
nReset (Case 2)  
Q with nReset (Case 2)  
Initial Polarity: Low  
nReset (Case 1)  
Q with nReset (Case 1)  
nReset (Case 2)  
Q with nReset (Case 2)  
Figure 19: DFF Polarity Operations with nReset  
Datasheet  
18-Sep-2019  
Revision 3.3  
66 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
nSet (Case 1)  
Q with nSet (Case 1)  
nSet (Case 2)  
Q with nSet (Case 2)  
Initial Polarity: Low  
nSet (Case 1)  
Q with nSet (Case 1)  
nSet (Case 2)  
Q with nSet (Case 2)  
Figure 20: DFF Polarity Operations with nSet  
7.3 3-BIT LUT OR PIPE DELAY/RIPPLE COUNTER MACROCELL  
There is one macrocell that can serve as either a 3-bit LUT or as a Pipe Delay/Ripple Counter.  
When used to implement LUT functions, the 3-bit LUT takes in three input signals from the connection matrix and produces a  
single output, which goes back into the connection matrix.  
When used as a Pipe Delay, there are three inputs signals from the matrix, Input (IN), Clock (CLK), and Reset (RST). The Pipe  
Delay cell is built from 16 D Flip-Flop logic cells that provide the three delay options, two of which are user selectable. The DFF  
cells are tied in series where the output (Q) of each delay cell goes to the next DFF cell input (IN). Both of the two outputs (OUT0  
and OUT1) provide user selectable options for 1 – 16 stages of delay. There are delay output points for each set of the OUT0 and  
OUT1 outputs to a 16-input MUX that is controlled by registers [1227:1224] for OUT0 and registers [1231:1228] for OUT1. The  
16-input MUX is used to select the amount of delay.  
Datasheet  
18-Sep-2019  
Revision 3.3  
67 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
The overall time of the delay is based on the clock used in the SLG46585 design. Each DFF cell has a time delay of the inverse  
of the clock time (either external clock or the RC Oscillator within the SLG46585). The sum of the number of DFF cells used will  
be the total time delay of the Pipe Delay logic cell. OUT1 Output can be inverted (as selected by register [1239]).  
In the Ripple Counter mode there are 3 options for setting, which use 7 bits. There are 3 bits to set nSET value (SV) in range  
from 0 to 7. It is a value, which will be set into the Ripple Counter outputs when nSET input goes LOW. End value (EV) will use  
3 bits for setting outputs code, which will be last code in the cycle. After reaching the EV, the Ripple Counter goes to the first code  
by the rising edge on CLK input. The Functionality mode option uses 1 bit. This setting defines how exactly Ripple Counter will  
operate.  
We can select one of the functionality modes by the register: RANGE or FULL. If the RANGE option is selected, the count starts  
from SV. If UP input is LOW the count goes down: SV→EV→EV-1 to SV+1→SV and others. (if SV is smaller than EV) or SV→SV-1  
to EV+1→EV→SV (if SV is bigger than EV). If UP input is HIGH, count starts from SV up to EV and others.  
In the FULL range configuration the Ripple Counter functions as follows. If UP input is LOW, the count starts from SV and goes  
down to 0. Then current counter value jumps to EV and goes down to 0 etc.  
If UP input is HIGH, count goes up starting from SV. Then current counter value jumps to 0 and counts up to EV etc. Please see  
Ripple counter functionality example in Figure 22.  
Every step is executed by the rising edge on CLK input.  
Datasheet  
18-Sep-2019  
Revision 3.3  
68 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
registers [1231:1224]  
From Connection  
Matrix Output [82]  
IN0  
From Connection  
Matrix Output [83]  
IN1  
IN2  
OUT  
3-bit LUT11  
From Connection  
Matrix Output [84]  
registers [1231:1228]  
Pipe Delay  
register [1239]  
0
0
1
OUT2  
OUT1  
To Connection  
Matrix Input [26]  
1
register [1238]  
From Connection  
Matrix Output [82]  
IN  
From Connection  
Matrix Output [83]  
nRST  
16 Flip-Flops  
0
1
OUT1  
From Connection  
Matrix Output [84]  
CLK  
To Connection  
Matrix Input [25]  
register [1238]  
OUT0  
0
OUT0  
To Connection  
Matrix Input [19]  
0
1
1
registers [1227:1224]  
register [1238]  
Ripple Counter  
3 Flip-Flops  
UP  
From Connection  
Matrix Output [82]  
UP/DOWN  
Control  
OUT0  
D
Q
DFF1  
CLK  
From Connection  
Matrix Output [84]  
clk  
nQ  
nSET  
From Connection  
Matrix Output [83]  
SET  
OUT1  
OUT2  
Control  
D
Q
DFF2  
clk  
nQ  
Mode & SET/END  
Value Control  
D
Q
DFF3  
nQ  
clk  
registers [1231:1224]  
Figure 21: 3-bit LUT11/Pipe Delay/Ripple Counter  
Datasheet  
18-Sep-2019  
Revision 3.3  
69 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Figure 22: Example: Ripple Counter Functionality  
7.3.1 3-Bit LUT or Pipe Delay Macrocells Used as 3-Bit LUT  
Table 62: 3-bit LUT11 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1224]  
register [1225]  
register [1226]  
register [1227]  
register [1228]  
register [1229]  
register [1230]  
register [1231]  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Datasheet  
18-Sep-2019  
Revision 3.3  
70 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-Bit LUT11 is defined by registers [1231:1224]  
7.3.2 3-Bit LUT or Pipe Delay Macrocells Used as Pipe Delay Register Settings  
Table 63: Pipe Delay Register Settings  
Register Bit Ad-  
Signal Function  
OUT0 select  
dress  
[1227:1224]  
[1231:1228]  
[1237]  
Register Definition  
OUT1 select  
PipeDelayorRipple  
Counter select  
0: Pipe Delay  
1: Ripple Counter  
LUT3_11 or Pipe  
Delay Output select  
[1238]  
[1239]  
0: LUT3_11  
1: Pipe Delay/Ripple Counter by register [1237]  
Pipe delay OUT1  
Polarity Select Bit  
0: Non-inverted  
1: Inverted  
7.4 3-BIT LUT OR 8-BIT COUNTER/DELAY MACROCELLS  
There are five macrocells that can serve as either 3-bit LUTs or as Counter/Delays. When used to implement LUT function, the  
3-bit LUT takes in three input signals from the connection matrix and produces a single output, which goes back into the  
connection matrix. When used to implement 8-Bit Counter/Delay function, two of the three input signals from the connection matrix  
go to the external clock (EXT_CLK) and reset (DLY_IN/CNT Reset) for the counter/delay, with the output going back to the  
connection matrix.  
These macrocells can also operate in a one-shot mode, which will generate an output pulse of user-defined width.  
These macrocells can also operate in a frequency detection or edge detection mode.  
Two of the five macrocells can have their active count value read via I2C (CNT2 and CNT4). See Section 19.5.2 for further  
details.  
Datasheet  
18-Sep-2019  
Revision 3.3  
71 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
7.4.1 3-Bit LUT or 8-Bit CNT/DLY Block Diagrams  
From Connection  
Matrix Output [27]  
S0  
IN2  
S1  
3-bit LUT6  
IN1  
IN0  
From Connection  
Matrix Output [26]  
S0  
S1  
OUT  
LUT Truth  
Table  
To Connection  
Matrix Input [14]  
S0  
S1  
8-bits NVM  
registers [1543:1536]  
CNT  
Data  
CLK  
From Connection  
Matrix Output [25]  
S0  
S1  
OUT  
CNT/DLY0  
DLY_IN/CNT Reset  
1-bit NVM  
register [1143]  
Figure 23: 3-bit LUT6 or CNT/DLY0  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
72 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
From Connection  
Matrix Output [30]  
S0  
IN2  
S1  
3-bit LUT7  
IN1  
IN0  
From Connection  
Matrix Output [29]  
S0  
S1  
OUT  
LUT Truth  
Table  
To Connection  
Matrix Input [15]  
S0  
S1  
8-bits NVM  
registers [1551:1544]  
CNT  
Data  
CLK  
From Connection  
Matrix Output [28]  
S0  
S1  
OUT  
CNT/DLY1  
DLY_IN/CNT Reset  
1-bit NVM  
register [1142]  
Figure 24: 3-bit LUT7 or CNT/DLY1  
From Connection  
Matrix Output [33]  
S0  
S1  
IN2  
3-bit LUT8  
IN1  
From Connection  
Matrix Output [32]  
S0  
S1  
OUT  
IN0  
LUT Truth  
Table  
To Connection  
Matrix Input [16]  
S0  
S1  
8-bits NVM  
registers [1559:1552]  
CNT  
Data  
CLK  
From Connection  
Matrix Output [31]  
S0  
S1  
OUT  
CNT/DLY2  
DLY_IN/CNT Reset  
1-bit NVM  
register [1141]  
Figure 25: 3-bit LUT8 or CNT/DLY2  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
73 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
From Connection  
Matrix Output [36]  
S0  
IN2  
S1  
3-bit LUT9  
IN1  
IN0  
From Connection  
Matrix Output [35]  
S0  
S1  
OUT  
LUT Truth  
Table  
To Connection  
Matrix Input [17]  
S0  
S1  
8-bits NVM  
registers [1567:1560]  
CNT  
Data  
CLK  
From Connection  
Matrix Output [34]  
S0  
S1  
OUT  
CNT/DLY3  
DLY_IN/CNT Reset  
1-bit NVM  
register [1140]  
Figure 26: 3-bit LUT9 or CNT/DLY3  
From Connection  
Matrix Output [39]  
S0  
S1  
IN2  
3-bit LUT10  
IN1  
From Connection  
Matrix Output [38]  
S0  
S1  
OUT  
IN0  
LUT Truth  
Table  
To Connection  
Matrix Input [18]  
S0  
S1  
8-bits NVM  
registers [1575:1568]  
CNT  
Data  
CLK  
From Connection  
Matrix Output [37]  
S0  
S1  
OUT  
CNT/DLY4  
DLY_IN/CNT Reset  
1-bit NVM  
register [1139]  
Figure 27: 3-bit LUT10 or CNT/DLY4  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
74 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
7.4.2 3-Bit LUT or CNT/DLYs Used as 3-Bit LUTs  
Table 64: 3-bit LUT6 Truth Table  
Table 67: 3-bit LUT9 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1536]  
register [1537]  
register [1538]  
register [1539]  
register [1540]  
register [1541]  
register [1542]  
register [1543]  
register [1560]  
register [1561]  
register [1562]  
register [1563]  
register [1564]  
register [1565]  
register [1566]  
register [1567]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
1
1
1
Table 65: 3-bit LUT7 Truth Table  
Table 68: 3-bit LUT10 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1544]  
register [1545]  
register [1546]  
register [1547]  
register [1548]  
register [1549]  
register [1550]  
register [1551]  
register [1568]  
register [1569]  
register [1570]  
register [1571]  
register [1572]  
register [1573]  
register [1574]  
register [1575]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
1
1
1
Table 66: 3-bit LUT8 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1552]  
register [1553]  
register [1554]  
register [1555]  
register [1556]  
register [1557]  
register [1558]  
register [1559]  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-Bit LUT6 is defined by registers [1543:1536]  
3-Bit LUT7 is defined by registers [1551:1544]  
3-Bit LUT8 is defined by registers [1559:1552]  
3-Bit LUT9 is defined by registers [1567:1560]  
3-Bit LUT10 is defined by registers [1575:1568]  
Datasheet  
18-Sep-2019  
Revision 3.3  
75 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 69 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the six 3-bit LUT logic cells.  
Table 69: 3-bit LUT Standard Digital Functions  
Function  
AND-3  
MSB  
LSB  
1
0
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-3  
OR-3  
NOR-3  
XOR-3  
XNOR-3  
7.4.3 3-Bit LUT or 8-Bit Counter/Delay Macrocells Used as 8-Bit Counter/Delay Register Settings  
Table 70: CNT/DLY0 Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
LUT3_6 or  
Counter0 Select  
[1143]  
0: LUT3_6  
1: Counter0  
Delay0 Mode Select  
or asynchronous  
counter reset  
[1241:1240]  
[1244:1242]  
00: on both falling and rising edges (for delay & counter reset)  
01: on falling edge only (for delay & counter reset)  
10: on rising edge only (for delay & counter reset)  
11: no delay on either falling or rising edges/high level reset  
Counter/delay0  
Clock Source Select  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
101: LPOSC  
110: External Clock  
111: Counter4 Overflow  
CNT0‘s Q are Set to  
data or Reset to 0s  
Selection (8 bits)  
[1245]  
0: Reset to 0s  
1: Set to data (Register [1543:1536])  
Counter/delay0  
Mode Selection  
[1247:1246]  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
Counter/delay0  
Control Data  
[1543:1536]  
1 – 256 (delay time = (counter control data +1)/freq)  
Table 71: CNT/DLY1 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT3_7 or  
Counter1 Select  
[1142]  
0: LUT3_7  
1: Counter1  
Delay1 Mode Select  
or asynchronous  
counter reset  
[1249:1248]  
00: on both falling and rising edges (for delay & counter reset)  
01: on falling edge only (for delay & counter reset)  
10: on rising edge only (for delay & counter reset)  
11: no delay on either falling or rising edges/high level reset  
Datasheet  
18-Sep-2019  
Revision 3.3  
76 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 71: CNT/DLY1 Register Settings(Continued)  
Register Bit  
Address  
Signal Function  
Register Definition  
Counter/delay1  
Clock Source Select  
[1252:1250]  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
101: LPOSC  
110: External Clock  
111: Counter0 Overflow  
Counter/delay1  
Output Selection for  
Counter mode  
[1253]  
[1236]  
0: Default Output  
1: Edge Detector Output  
Counter/delay1  
Delayed Edge  
Output Selection  
0: Default Output from register [1253]  
1: Delayed Edge Detect  
Counter/delay1  
Mode Selection  
[1255:1254]  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
Counter/delay1  
Control Data  
[1551:1544]  
1 – 256 (delay time = (counter control data +1)/freq)  
Table 72: CNT/DLY2 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT3_8 or  
Counter2 Select  
[1141]  
0: LUT3_8  
1: Counter2  
Delay2 Mode Select  
or asynchronous  
counter reset  
[1257:1256]  
[1260:1258]  
00: on both falling and rising edges (for delay & counter reset)  
01: on falling edge only (for delay & counter reset)  
10: on rising edge only (for delay & counter reset)  
11: no delay on either falling or rising edges/high level reset  
Counter/delay2  
Clock Source Select  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
101: LPOSC  
110: External Clock  
111: Counter1 Overflow  
Counter/delay2  
Output Selection for  
Counter mode  
[1261]  
[1235]  
0: Default Output  
1: Edge Detector Output  
Counter/delay2  
Delayed Edge  
Output Selection  
0: Default Output from register [1261]  
1: Delayed Edge Detect  
Counter/delay2  
Mode Selection  
[1263:1262]  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
Counter/delay2  
Control Data  
[1559:1552]  
1 – 256 (delay time = (counter control data +1)/freq)  
Datasheet  
18-Sep-2019  
Revision 3.3  
77 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 73: CNT/DLY3 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT3_9 or  
Counter3 Select  
[1140]  
0: LUT3_9  
1: Counter3  
Delay3 Mode Select  
or asynchronous  
counter reset  
[1265:1264]  
[1268:1266]  
00: on both falling and rising edges (for delay & counter reset)  
01: on falling edge only (for delay & counter reset)  
10: on rising edge only (for delay & counter reset)  
11: no delay on either falling or rising edges/high level reset  
Counter/delay3  
Clock Source Select  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
101: LPOSC  
110: External Clock  
111: Counter2 Overflow  
Counter/delay3  
Output Selection for  
Counter mode  
[1269]  
[1234]  
0: Default Output  
1: Edge Detector Output  
Counter/delay3  
Delayed Edge  
Output Selection  
0: Default Output from register [1269]  
1: Delayed Edge Detect  
Counter/delay3  
Mode Selection  
[1271:1270]  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
Counter/delay3  
Control Data  
[1567:1560]  
1 – 256 (delay time = (counter control data +1)/freq)  
Table 74: CNT/DLY4 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
LUT3_10 or  
Counter4 Select  
[1139]  
0: LUT3_10  
1: Counter4  
Delay4 Mode Select  
or asynchronous  
counter reset  
[1273:1272]  
[1276:1274]  
00: on both falling and rising edges (for delay & counter reset)  
01: on falling edge only (for delay & counter reset)  
10: on rising edge only (for delay & counter reset)  
11: no delay on either falling or rising edges/high level reset  
Counter/delay4  
Clock Source Select  
000: Internal OSC clock  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
101: LPOSC  
110: External Clock  
111: Counter1 Overflow  
Counter/delay4  
Output Selection for  
Counter mode  
[1277]  
[1233]  
0: Default Output  
1: Edge Detector Output  
Counter/delay4  
Delayed Edge  
Output Selection  
0: Default Output from register [1277]  
1: Delayed Edge Detect  
Datasheet  
18-Sep-2019  
Revision 3.3  
78 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 74: CNT/DLY4 Register Settings(Continued)  
Register Bit  
Address  
Signal Function  
Register Definition  
Counter/delay4  
Mode Selection  
[1279:1278]  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
11: Counter mode  
Counter/delay4  
Control Data  
[1575:1568]  
1 – 256 (delay time = (counter control data +1)/freq)  
Table 75: DLY/CNT Polarity Select  
Register Bit  
Signal Function  
Address  
Register Definition  
Select thepolarity of  
DLY/CNT0’s output  
[1287]  
0: Default Output  
1: Inverted Output  
Select thepolarity of  
DLY/CNT1’s output  
[1286]  
[1285]  
[1284]  
[1283]  
0: Default Output  
1: Inverted Output  
Select thepolarity of  
DLY/CNT2’s output  
0: Default Output  
1: Inverted Output  
Select thepolarity of  
DLY/CNT3’s output  
0: Default Output  
1: Inverted Output  
Select thepolarity of  
DLY/CNT4’s output  
0: Default Output  
1: Inverted Output  
Datasheet  
18-Sep-2019  
Revision 3.3  
79 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
7.5 CNT/DLY TIMING DIAGRAMS  
7.5.1 Delay Mode (Edge Select: Both, Counter Data:3)  
delay_in  
Asynchronous delay variable  
Asynchronous delay variable  
RC osc: force Power-On  
(always running)  
Delay output  
delay = period x (counter data + 1) + variable  
variable is from 0 to 1 clock period  
delay = period x (counter data + 1) + variable  
variable is from 0 to 1 clock period  
delay_in  
offset  
offset  
RC osc: auto Power-On  
(powers up from delay in)  
Delay output  
delay = offset + period x (counter data + 1)  
offset = approx. 4-22 µs at room temp.  
delay = offset + period x (counter data + 1)  
offset = approx. 4-22 µs at room temp.  
Figure 28: Delay Mode Timing Diagram  
7.5.2 Count Mode (Count Data:3), Counter Reset (Rising Edge Detect Reset by Reset_In Input)  
RESET_IN  
CLK  
Counter OUT  
4 clk period pulse  
Count start in 2 CLK + variable after reset  
Figure 29: Counter Mode Timing Diagram with Reset Signal  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
80 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
7.5.3 Count Mode (Count Data:3), Counter Set (Rising Edge Detect Set by Set_In Input)  
SET_IN  
CLK  
Counter OUT  
4 CLK period pulse  
Figure 30: Counter Mode Timing Diagram with SET Signal (only for DLY/CNT0)  
7.5.4 One-Shot Mode  
This macrocell will generate a pulse whenever a selected edge is detected on its input. Register bits set the edge selection. The  
pulse width determines by counter data and clock selection properties. The output pulse polarity (non-inverted or inverted) is  
selected by register bit. There is also an option to ignore or detect selected edge during pulse is outputting. The following diagram  
is showing one-shot function for non-inverted output.  
Datasheet  
18-Sep-2019  
Revision 3.3  
81 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Delay time  
One-Shot Function  
Rising Edge Detection  
One-Shot Function  
Falling Edge Detection  
t
t
One-Shot Function  
Both Edge Detection  
Figure 31: One-Shot Function Timing Diagram  
This macrocell generates a high level pulse with a set width (defined by counter data and clock selection properties) when  
detecting the respective edge. It does not restart while pulse is high.  
Datasheet  
18-Sep-2019  
Revision 3.3  
82 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
7.5.5 Frequency Detection Mode  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Delay time  
Frequency Detector Function  
Rising Edge Detection  
Frequency Detector Function  
Falling Edge Detection  
t
t
Frequency Detector Function  
Both Edge Detection  
Figure 32: Frequency Detection Mode Timing Diagram  
Rising Edge: The output goes high if the time between two successive rising edges is less than the set time. The output goes low  
if the second rising edge has not come after the last rising edge in specified time.  
Falling Edge: The output goes high if the time between two successive falling edges is less than the set time. The output goes  
low if the second falling edge has not come after the last falling edge in specified time.  
Both Edge: The output goes high if the time between the rising and falling edges is less than the set time, which is equivalent to  
the length of the pulse. The output goes low if after the last rising/falling edge and specified time, the second edge has not come.  
Datasheet  
18-Sep-2019  
Revision 3.3  
83 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
7.5.6 Edge Detection Mode  
The macrocell generates high level short pulse when detecting the respective edge. See Table 12.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Edge Detector Function  
Rising Edge Detection  
Edge Detector Function  
Falling Edge Detection  
t
t
Edge Detector Function  
Both Edge Detection  
Figure 33: Edge Detection Mode Timing Diagram (Except DLY/CNT0)  
Datasheet  
18-Sep-2019  
Revision 3.3  
84 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
7.5.7 Delayed Edge Detection Mode  
In Delayed Edge Detection Mode, High level short pulses are generated on the macrocell output after the configured delay time  
if the corresponding edge was detected on the input.  
If the input signal is changed during the set delay time, the pulse will not be generated. See Figure 34.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
Delay time  
Delay Function  
Rising Edge Detection  
t
Delay Function  
Falling Edge Detection  
t
Delay Function  
Both Edge Detection  
t
Figure 34: Delay Mode Timing Diagram (Except DLY/CNT0)  
Datasheet  
18-Sep-2019  
Revision 3.3  
85 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
7.5.8 Delay Mode  
The macrocell shifts the respective edge to a set time and restarts by appropriate edge. It works as a filter if the input signal is  
shorter than the delay time.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
Delay time  
Delay Function  
Rising Edge Detection  
t
Delay Function  
Falling Edge Detection  
t
Delay Function  
Both Edge Detection  
t
Figure 35: Delay Mode Timing Diagram  
Datasheet  
18-Sep-2019  
Revision 3.3  
86 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
7.6 WAKE AND SLEEP CONTROLLER  
The SLG46585 has a Wake and Sleep function for all ACMPs. The macrocell CNT/DLY0 can be reconfigured for this purpose  
registers [1247:1246] = 11 and register [1447] = 1. The WS serves for power saving, it allows to switch on and off selected ACMPs  
on selected bit of 8-bit counter.  
Power Control  
From Connection Matrix Output[59] for configurable 25 kHz/2 MHz OSC  
or From Connection Matrix Output[60] for 1.73 kHz Low Power Osc.  
WS Controller  
OSC  
CNT0_out  
cnt_end  
CNT  
ck  
To Connection Matrix Input [14]  
000:/1  
001:/4  
010:/12  
011:/24  
100:/64  
CK_OSC  
Analog Control Block  
ACMP WS EN [3:0]  
registers [1445:1442]  
4
4
1 us  
delay  
bg/regulator  
pdb  
From Connection  
Matrix Output [55:52]  
WS_out  
WS_PD  
WS_PD  
(from OSC PD)  
ACMPs_PD  
WS_out  
WS_PD to W&S out  
state selection  
registers [1244:1242]  
WS clock freq. selection  
registers [1543:1536]  
WS ratio control data  
ACMPs  
register [1446]  
Wake Sleep Output State when WS  
OSC is powered down  
(if DLY/CNT0 Mode Selection is "11")  
ACMP0..3 OUT  
4
+
-
0
1
4
To Connection  
Matrix Input  
[60:57]  
ACMPs_PD  
WS_out  
nRST  
BG/Analog_Good  
Note: WS_PD is High at WS OSC  
(1.73 kHz Low Power OSC) powered  
Figure 36: Wake/Sleep Controller  
Datasheet  
18-Sep-2019  
Revision 3.3  
87 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
ACMP_PD is High  
through the Connection  
Matrix  
CNT_out (to CM)  
1 us  
ACMP output is latched,  
and BG/Analog is powered off  
WS_out  
(internal signal)  
BG/Analog_Good  
(internal signal)  
BG/Analog ON Start  
Sleep Mode  
Normal ACMP  
Operation  
Sleep Mode (maintains latched ACMP output  
BG/Analog  
stabilization time*  
Note: * Refer to Electrical Spec (ACMP Start Time)  
Figure 37: Wake/Sleep Timing Diagram  
To use any ACMP under WS controller the following settings must be done:  
ACMP Power Up Input from matrix = 1 (for each ACMP separately).  
CNT/DLY0 must be set to Wake and Sleep Controller function (for all ACMPs).  
Register WS => enable (for each ACMP separately).  
CNT/DLY0 set/reset input = 0 (for all ACMPs).  
For the OSC, any oscillator with any pre-divider can be used. The user can select a period of time while the ACMPs are sleeping  
in a range of 1 - 255 clock cycles. Before they are sent to sleep their outputs are latched so the ACMPs remain their state (High  
or Low) while sleeping. When the WS signal is High, it takes a BG time (refer to electrical spec) to turn the ACMPs on. The wake  
time must be longer than BG/Analog Power-On time.  
Note: If 25 kHz/2 MHz Oscillator is used for WS, the 1.73 kHz Low Power OSC must be set to Force Power-On.  
WS controller has the following settings:  
Wake and Sleep Output State (High/Low)  
If OSC is powered off (Power-Down option is selected; Power-Down input = 1) and Wake and Sleep Output State = High,  
the ACMP is continuously on  
If OSC is powered off (Power-Down option is selected; Power-Down input = 1) and Wake and Sleep Output State = Low, the  
ACMP is continuously off  
Both cases WS function is turned off  
Counter Data (Range: 1 to 255)  
User can select wake and sleep ratio of the ACMP; counter data = sleep time, one clock = wake time.  
Q mode - defines the state of WS counter data when Set/Reset signal appears  
Reset - when active signal appears, the WS counter will reset to zero and High level signal on its output will turn the ACMPs  
on. When Reset signal goes out, the WS counter will go Low and turn the ACMPs off until the counter counts up to the end  
Set - when active signal appears, the WS counter will stop and Low level signal on its output will turn the ACMPs off. When  
Set signal goes out, the WS counter will go on counting and High level signal will turn the ACMPs on while counter is counting  
up to the end.  
Edge Select defines the edge for Q mode  
High level Set/Reset - switches mode Set/Reset when level is High.  
Note: Q mode operates only in case of "High Level Set/Reset”.  
Datasheet  
18-Sep-2019  
Revision 3.3  
88 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
8
Combinatorial Logic  
8.1 4-BIT LUT WITH TWO OUTPUTS  
There is one 4-bit LUT with two outputs. The device also includes fifteen Combination Function Macrocells that can be used as  
LUTs. For more details please see Section 8.  
Inputs/Outputs for the nine LUTs are configured from the connection matrix with specific logic functions being defined by the  
state of NVM bits. The outputs of the LUTs can be configured to any user defined function, including the following standard  
digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).  
registers [1519:1504]  
From Connection  
Matrix Output [88]  
LUT Truth  
Table for OUT0  
IN0  
From Connection  
Matrix Output [89]  
From Connection  
Matrix Input [21]  
OUT0  
OUT1  
IN1  
IN2  
From Connection  
Matrix Output [90]  
4-bit LUT0  
From Connection  
Matrix Input [22]  
From Connection  
Matrix Output [91]  
IN3  
LUT Truth  
Table for OUT1  
registers [1535:1520]  
Figure 38: 4-bit LUT0 with Two Outputs  
Table 76: 4-bit LUT0 Truth Table  
IN3  
0
IN2  
0
IN1  
0
IN0  
0
OUT0  
OUT1  
register [1504]  
register [1505]  
register [1506]  
register [1507]  
register [1508]  
register [1509]  
register [1510]  
register [1511]  
register [1512]  
register [1513]  
register [1514]  
register [1515]  
register [1516]  
register [1517]  
register [1518]  
register [1519]  
register [1520]  
register [1521]  
register [1522]  
register [1523]  
register [1524]  
register [1525]  
register [1526]  
register [1527]  
register [1528]  
register [1529]  
register [1530]  
register [1531]  
register [1532]  
register [1533]  
register [1534]  
register [1535]  
LSB  
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
MSB  
Datasheet  
18-Sep-2019  
Revision 3.3  
89 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
This macrocell uses a 16-bit register to define their output function. Table 77 shows the register bits for the standard digital logic  
devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created within the 4-bit LUT logic cell.  
4-Bit LUT0 OUT0 is defined by registers [1519:1504]  
4-Bit LUT0 OUT1 is defined by registers [1535:1520]  
Table 77: 4-bit LUT Standard Digital Functions  
Function  
AND-4  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-4  
OR-4  
NOR-4  
XOR-4  
XNOR-4  
Datasheet  
18-Sep-2019  
Revision 3.3  
90 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
9
Analog Comparators  
There are four Analog Comparator (ACMP) macrocells in the SLG46585. In order for the ACMP cells to be used in a GreenPAK  
design, the power up signals (ACMP0 PWR UP, ACMP1 PWR UP, ACMP2 PWR UP, and ACMP3 PWR UP) need to be active.  
By connecting to signals coming from the Connection Matrix, it is possible to have each ACMP be on continuously, off continu-  
ously, or switched on periodically based on a digital signal coming from the Connection Matrix. When ACMP is powered down,  
output is LOW.  
Each of the ACMP cells has a positive input signal that can be provided by a variety of external sources, and can also have a  
selectable gain stage before connection to the analog comparator. Each of the ACMP cells has a negative input signal that is  
either created from an internal Vref or provided by way of the external sources.  
PWR UP = 1 => ACMP is powered up.  
PWR UP = 0 => ACMP is powered down.  
During power-up, the ACMP output will remain low, and then become valid 2 ms (max) after ACMP power up signal goes HIGH.  
If VDD is greater than 2.7 V, then power up time will decrease.  
Vref accuracy is optimized near 1000 mV selection.  
Input bias current < 1 nA (typ). The Gain divider is unbuffered and consists of 1 Mresistors. IN- voltage range: 0 to 1.2 V. Can  
use Vref selection VDD/4 and VDD/3 to maintain this input range.  
Table 78: Gain Divider Input Resistance  
Gain  
x1  
x0.5  
x0.33  
x0.25  
1 MΩ  
Input Resistance  
100 MΩ  
1 MΩ  
0.75 MΩ  
To ensure proper chip startup operation, it is recommended to enable the ACMPs with the POR signal, and not the VDD signal.  
Each of theACMP cells has a selection for the bandwidth of the input signal, which can be used to save power when low bandwidth  
signals are input into the analog comparator.  
Note that power supply control options have influence on Analog macrocells operation.  
Note: Any ACMP powered ON enables the BandGap circuit as well, and an analog voltage will appear on Vref (even when Force  
BandGap is disabled).  
Each cell also has a hysteresis selection, to offer hysteresis of (0, 25, 50, 200) mV. ACMP2 and ACMP3 has additional hysteresis  
options for 100 mV and 150 mV.  
Note: the 25 mV hysteresis option works with either internal or external Vref, while all other options work with internal Vref only.  
The (50, 100, 150, 200) mV hysteresis options are one way hysteresis. This means that actual thresholds will be Vref (high  
threshold) and Vref - hysteresis (low threshold). The ACMP output will retain its output value if the input voltage is within the  
threshold window (between Vref and Vref - hysteresis). The 25 mV hysteresis option threshold levels will be Vref + hysteresis/2  
(high threshold) and Vref - hysteresis/2 (low threshold).  
Hysteresis: Input signal hysteresis options are disable, 25 mV, 50 mV, 200 mV (and additionally 100 mV and 150 mV for ACMP2  
and ACMP3).  
ACMP0 IN+ options are IO1, buffered IO1, VDD, LDO0/1 VIN  
ACMP1 IN+ options are IO2, buffered IO2, ACMP0 IN+, LDO2/3 VIN  
ACMP2 IN+ options are IO5, ACMP0 IN+, Temp. Sensor  
ACMP3 IN+ options are IO6, ACMP2 IN+, LDO0 VOUT and LDO2 VOUT  
Datasheet  
18-Sep-2019  
Revision 3.3  
91 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
9.1 ACMP0 BLOCK DIAGRAM AND REGISTER SETTINGS  
to ACMP1, ACMP2  
register [1631]  
MUX input  
registers [1119:1118]  
LBW  
Selection  
UVLO_0  
Hysteresis  
Selection  
registers [1630:1629]  
VDD (2.5 V to 5.5 V)  
001  
010  
000  
100  
BG_ok  
Selectable  
Gain  
+
-
IO1  
To Connection  
Matrix Input[57]  
L/S  
0
1
Vref  
LDO VIN*(2.5 V to 5.5 V)  
PWR UP  
Latch  
register [1495]; register [1117]; register [1116]  
register [1442]  
IO4: EXT_Vref/2  
IO4: EXT_Vref  
11011  
11010  
11001  
11000  
10111-  
00000  
VDD: ACMP0-/4  
VDD: ACMP0-/3  
From Connection  
Matrix Output [52]  
Internal  
Vref  
registers [1628:1624]  
Note*: See Sections 2.2 to 2.4.  
Figure 39: ACMP0 Block Diagram  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
92 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 79: ACMP0 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
ACMP0 Positive  
Input Source Select  
VDD  
[1116]  
0: Disable  
1: Enable  
Analog Buffer at  
ACMP0 Enable  
(Max. BW 1 MHz)  
[1117]  
0: Disable analog buffer  
1: Enable analog buffer  
ACMP0 Hysteresis  
Enable  
[1119:1118]  
00: Disabled (0 mV)  
01: Enabled (25 mV)  
10: Enabled (50 mV)  
11: Enabled (200 mV)  
(01: for both external & internal Vref; 10 & 11: for only internal Vref; External Vref will  
not have 50 mV & 200 mV hysteresis.)  
ACMP0 Wake &  
Sleep function  
Enable  
[1442]  
[1495]  
0: Disable  
1: Enable  
LDO0/1 VIN  
connection enable  
0: Default ACMP function  
1: Enable UVLO0 function  
to ACMP0  
ACMP0 In Voltage  
Select  
[1628:1624]  
00000: 50 mV  
00010: 150 mV  
00100: 250 mV  
00110: 350 mV  
01000: 450 mV  
01010: 550 mV  
01100: 650 mV  
01110: 750 mV  
10000: 850 mV  
10010: 950 mV  
10100: 1.05 V  
10110: 1.15 V  
00001: 100 mV  
00011: 200 mV  
00101: 300 mV  
00111: 400 mV  
01001: 500 mV  
01011: 600 mV  
01101: 700 mV  
01111: 800 mV  
10001: 900 mV  
10011: 1 V  
10101: 1.1 V  
10111: 1.2 V  
11000: VDD: ACMP0-/3  
11001: VDD: ACMP0-/4  
11010: IO4: EXT_Vref  
11011: IO4: EXT_Vref/2  
ACMP0 Positive  
Input Divider  
[1630:1629]  
[1631]  
00: 1.00x  
01: 0.50x  
10: 0.33x  
11: 0.25x  
ACMP0 Low  
Bandwidth (Max: 1  
0: Off  
1: On  
MHz) Enable  
Datasheet  
18-Sep-2019  
Revision 3.3  
93 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
9.2 ACMP1 BLOCK DIAGRAM AND REGISTER SETTINGS  
1.8 V  
register [1639]  
registers [1115:1114]  
100 µA  
LBW  
Selection  
UVLO_1  
Hysteresis  
Selection  
register [1488]  
registers [1638:1637]  
From ACMP0’s MUX output  
001  
BG_ok  
010  
000  
100  
Selectable  
Gain  
+
-
IO2  
LDO VIN* (2.5 V to 5.5 V)  
To Connection  
Matrix Input[58]  
L/S  
0
1
Vref  
PWR UP  
Latch  
register [1494]; register [1113]; register [1112]  
register [1443]  
IO4: EXT_Vref/2  
IO4: EXT_Vref  
11011  
11010  
11001  
11000  
10111-  
00000  
VDD: ACMP1-/4  
VDD: ACMP1-/3  
From Connection  
Matrix Output [53]  
Internal  
Vref  
registers [1636:1632]  
Note*: See Sections 2.2 to 2.4.  
Figure 40: ACMP1 Block Diagram  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
94 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 80: ACMP1 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
ACMP1 Positive Input  
Source Select -  
[1112]  
0: Disable  
1: Enable  
ACMP0 IN+ Source  
Analog Buffer at  
ACMP1 Enable (Max.  
BW 1 MHz)  
[1113]  
0: Disable analog buffer  
1: Enable analog buffer  
ACMP1 Hysteresis  
Enable  
[1115:1114]  
00: Disabled (0 mV)  
01: Enabled (25 mV)  
10: Enabled (50 mV)  
11: Enabled (200 mV)  
(01: for both external & internal Vref; 10 & 11: for only internal Vref; External Vref  
will not have 50 mV & 200 mV hysteresis.)  
ACMP1 Wake & Sleep  
function Enable  
[1443]  
[1488]  
[1494]  
0: Disable  
1: Enable  
ACMP1 100 uA  
Current Source Enable  
0: Disable  
1: Enable  
LDO2/3 VIN  
connection enable to  
0: Default ACMP function  
1: Enable UVLO1 function  
ACMP1  
ACMP1 In Voltage  
Select  
[1636:1632]  
00000: 50 mV  
00010: 150 mV  
00100: 250 mV  
00110: 350 mV  
01000: 450 mV  
01010: 550 mV  
01100: 650 mV  
01110: 750 mV  
10000: 850 mV  
10010: 950 mV  
10100: 1.05 V  
10110: 1.15 V  
00001: 100 mV  
00011: 200 mV  
00101: 300 mV  
00111: 400 mV  
01001: 500 mV  
01011: 600 mV  
01101: 700 mV  
01111: 800 mV  
10001: 900 mV  
10011: 1 V  
10101: 1.1 V  
10111: 1.2 V  
11000: VDD: ACMP1-/3  
11001: VDD: ACMP1-/4  
11010: IO4: EXT_Vref  
11011: IO4: EXT_Vref/2  
ACMP1 Positive Input  
Divider  
[1638:1637]  
[1639]  
00: 1.00x  
01: 0.50x  
10: 0.33x  
11: 0.25x  
ACMP1 Low  
Bandwidth (Max: 1  
MHz) Enable  
0: Off  
1: On  
Datasheet  
18-Sep-2019  
Revision 3.3  
95 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
9.3 ACMP2 BLOCK DIAGRAM AND REGISTER SETTINGS  
to ACMP3’s MUX input  
register [1647]  
registers [1127:1125]  
LBW  
Selection  
Temp Sensor Out  
Hysteresis  
Selection  
registers [1646:1645]  
IO5  
00  
01  
10  
BG_ok  
From ACMP0’s MUX output  
Selectable  
Gain  
+
-
To Connection  
Matrix Input[59]  
L/S  
0
1
Temp Sensor  
Vref  
PWR UP  
Latch  
register [1493]; register [1124]  
register [1444]  
IO4: EXT_VREF/2  
IO4: EXT_VREF  
11011  
11010  
11001  
11000  
10111-  
00000  
VDD: ACMP2-/4  
0xB2: ACMP2-/3  
From Connection  
Matrix Output [54]  
Internal  
Vref  
registers [1644:1640]  
Figure 41: ACMP2 Block Diagram  
Datasheet  
18-Sep-2019  
Revision 3.3  
96 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 81: ACMP2 Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
ACMP2 Positive Input  
Source Select -  
[1124]  
0: Disable  
1: Enable  
ACMP0 IN+ Source  
ACMP2 Hysteresis  
Enable  
[1127:1125]  
000: 0 mV  
001: 25 mV  
010: 50 mV  
011: 200 mV  
100: Reserved  
101: Reserved  
110: 100 mV  
111: 150 mV  
(001: for both external & internal Vref, 010 & 011 & 110 & 111: for only internal Vref,  
External Vref will not have (50, 100, 150, 200) mV hysteresis.)  
ACMP2 Wake & Sleep  
function Enable  
[1444]  
[1493]  
0: Disable  
1: Enable  
TS output connection  
enable to ACMP2  
0: Default ACMP function  
1: Enable TS function  
ACMP2 In Voltage  
Select  
[1644:1640]  
00000: 50 mV  
00010: 150 mV  
00100: 250 mV  
00110: 350 mV  
01000: 450 mV  
01010: 550 mV  
01100: 650 mV  
01110: 750 mV  
10000: 850 mV  
10010: 950 mV  
10100: 1.05 V  
10110: 1.15 V  
00001: 100 mV  
00011: 200 mV  
00101: 300 mV  
00111: 400 mV  
01001: 500 mV  
01011: 600 mV  
01101: 700 mV  
01111: 800 mV  
10001: 900 mV  
10011: 1 V  
10101: 1.1 V  
10111: 1.2 V  
11000: VDD: ACMP2-/3  
11001: VDD: ACMP2-/4  
11010: IO4: EXT_Vref  
11011: IO4: EXT_Vref/2  
ACMP2 Positive Input  
Divider  
[1646:1645]  
[1647]  
00: 1.00x  
01: 0.50x  
10: 0.33x  
11: 0.25x  
ACMP2 Low  
Bandwidth (Max: 1  
MHz) Enable  
0: Off  
1: On  
Datasheet  
18-Sep-2019  
Revision 3.3  
97 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
9.4 ACMP3 BLOCK DIAGRAM AND REGISTER SETTINGS  
register [1655]  
registers [1123:1121]  
LBW  
Selection  
Hysteresis  
Selection  
registers [1654:1653]  
IO6  
LDO VOUT*  
000  
100  
010  
001  
BG_ok  
Selectable  
Gain  
+
-
LDO VOUT*  
To Connection  
Matrix Input[60]  
L/S  
0
1
From ACMP2’s MUX output  
Vref  
PWR UP  
Latch  
registers [1492:1491], [1120]  
register [1445]  
IO4: EXT_Vref/2  
IO4: EXT_Vref  
11011  
11010  
11001  
11000  
10111-  
00000  
VDD: ACMP3-/4  
VDD: ACMP3-/3  
From Connection  
Matrix Output [55]  
Internal  
Vref  
registers [1652:1648]  
Note*: See Sections 2.2 to 2.4.  
Figure 42: ACMP3 Block Diagram  
Register Definition  
Table 82: ACMP3 Register Settings  
Register Bit  
Signal Function  
Address  
ACMP3 Positive Input  
Source Select -  
[1120]  
0: Disable  
1: Enable  
ACMP2 IN+ Source  
ACMP3 Hysteresis  
Enable  
[1123:1121]  
000: 0 mV  
001: 25 mV  
010: 50 mV  
011: 200 mV  
100: Reserved  
101: Reserved  
110: 100 mV  
111: 150 mV  
(001: for both external & internal Vref, 010 & 011 & 110 & 111: for only internal Vref,  
External Vref will not have (50, 100, 150, 200) mV hysteresis.)  
ACMP3 Wake & Sleep  
function Enable  
[1445]  
[1491]  
0: Disable  
1: Enable  
LDO2 VOUT output  
connection enable to  
ACMP3  
0: Default ACMP function  
1: Enable LDO2 VOUT function  
Datasheet  
18-Sep-2019  
Revision 3.3  
98 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 82: ACMP3 Register Settings(Continued)  
Register Bit  
Address  
Signal Function  
Register Definition  
LDO0 VOUT output  
connection enable to  
ACMP3  
[1492]  
0: Default ACMP function  
1: Enable LDO0 VOUT function  
ACMP3 In Voltage  
Select  
[1652:1648]  
00000: 50 mV  
00010: 150 mV  
00100: 250 mV  
00110: 350 mV  
01000: 450 mV  
01010: 550 mV  
01100: 650 mV  
01110: 750 mV  
10000: 850 mV  
10010: 950 mV  
10100: 1.05 V  
10110: 1.15 V  
00001: 100 mV  
00011: 200 mV  
00101: 300 mV  
00111: 400 mV  
01001: 500 mV  
01011: 600 mV  
01101: 700 mV  
01111: 800 mV  
10001: 900 mV  
10011: 1 V  
10101: 1.1 V  
10111: 1.2 V  
11000: VDD: ACMP3-/3  
11001: VDD: ACMP3-/4  
11010: IO4: EXT_Vref  
11011: IO4: EXT_Vref/2  
ACMP3 Positive Input  
Divider  
[1654:1653]  
[1655]  
00: 1.00x  
01: 0.50x  
10: 0.33x  
11: 0.25x  
ACMP3 Low  
Bandwidth (Max: 1  
0: Off  
1: On  
MHz) Enable  
Datasheet  
18-Sep-2019  
Revision 3.3  
99 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
9.5 ACMPS TYPICAL PERFORMANCE  
Figure 43: ACMPs Power-On Delay vs. VDD  
Datasheet  
18-Sep-2019  
Revision 3.3  
100 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
10 Pipe Delay  
The SLG46585 has a pipe delay logic cell that is shared with the 3-bit LUT11 in one of the Combination Function macrocells. The  
user can select one of these functions to use in a design, but not both. Please see Section 7.3.1 for the description of this  
Combination Function macrocell.  
11 Programmable Delay/Edge Detector  
The SLG46585 has a programmable time delay logic cell available that can generate a delay that is selectable from one of four  
timings (time1) configured in the GreenPAK Designer. The programmable time delay cell can generate one of four different delay  
patterns, rising edge detection, falling edge detection, both edge detection, and both edge delay. These four patterns can be  
further modified with the addition of delayed edge detection, which adds an extra unit of delay as well as glitch rejection during  
the delay period. See Figure 44 for further information.  
Note: The input signal must be longer than the delay, otherwise it will be filtered out.  
registers [1311:1310]  
Delay Value Selection  
registers [1309:1308]  
Edge Mode Selection  
To Connection  
Matrix Input [61]  
Programmable  
From Connection Matrix Output [58]  
IN  
OUT  
Delay  
Figure 44: Programmable Delay  
11.1 PROGRAMMABLE DELAY TIMING DIAGRAM - EDGE DETECTOR OUTPUT  
width  
width  
IN  
time1  
Rising Edge Detector  
time1  
Falling Edge Detector  
Edge Detector  
Output  
Both Edge Detector  
Both Edge Delay  
time2  
time2  
time1 is a fixed value  
time2 delay value is selected via register  
Figure 45: Edge Detector Output  
Please refer to Table 12.  
Datasheet  
18-Sep-2019  
Revision 3.3  
101 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 83: Programmable Delay Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
Select the edge  
mode of  
programmable  
delay & edge  
detector  
[1309:1308]  
00: Rising Edge Detector  
01: Falling Edge Detector  
10: Both Edge Detector  
11: Both Edge Delay  
Delay value select  
for programmable  
delay & edge  
detector  
[1311:1310]  
00: 165 ns  
01: 300 ns  
10: 440 ns  
11: 575 ns  
(VDD = 3.3 V, typical  
condition)  
Datasheet  
18-Sep-2019  
Revision 3.3  
102 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
12 Additional Logic Functions  
The SLG46585 has two additional logic functions that are connected directly to the Connection Matrix inputs and outputs. There  
are two deglitch filters, each with edge detector functions.  
12.1 DEGLITCH FILTER/EDGE DETECTOR  
Filter_0  
R
From Connection Matrix Output [56]  
C
To Connection Matrix  
Input [30]  
Edge  
Detect  
register [1422]  
register [1423]  
Edge Select  
registers [1421:1420]  
Filter_1  
R
From Connection Matrix Output [57]  
C
Edge  
Detect  
To Connection Matrix  
Input [31]  
register [1418]  
Edge Select  
registers [1417:1416]  
register [1419]  
Figure 46: Deglitch Filter/Edge Detector  
Table 84: Deglitch Filter Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
Filter_1/Edge  
Detector_1 Edge  
Select  
[1417:1416]  
00: Rising Edge Detector  
01: Fall Edge Detector  
10: Both Edge Detector  
11: Both Edge Delay  
Filter_1/Edge  
Detector_1 output  
Polarity Select  
[1418]  
[1419]  
0: Filter_1 output  
1: Filter_1 output inverted  
Filter_1 or Edge  
Detector_1 Select  
(Typ. 50 nS  
0: Filter_1  
1: Edge Detector_1  
@VDD=3.3 V)  
Filter_0/Edge  
Detector_0 Edge  
Select  
[1421:1420]  
[1422]  
00: Rising Edge Detector  
01: Fall Edge Detector  
10: Both Edge Detector  
11: Both Edge Delay  
Filter_0/Edge  
0: Filter_0 output  
Detector_0 output  
1: Filter_0 output inverted  
Polarity Select  
Datasheet  
18-Sep-2019  
Revision 3.3  
103 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 84: Deglitch Filter Register Settings(Continued)  
Register Bit  
Address  
Signal Function  
Register Definition  
Filter_0 or Edge  
Detector_0 Select  
(Typ. 70 nS  
[1423]  
0: Filter_0  
1: Edge Detector_0  
@VDD=3.3 V)  
13 RTC Binary Counter  
The SLG46585 includes a 47-bit binary Real Time Counter (RTC) designed to continuously count time. This counter consists of  
three components and can be programmed serially through an I2C serial interface.  
The first component is a 15-bit Counter Divider used to divide the external clock, which generates a high level pulse (with width  
equal to the RTC clock period) to Connection Matrix Input [23] when the counter reaches the end of the count. Since the RTC  
counter is used for time keeping, the most common expected use case is to connect this 15-bit counter divider to a 32.768 kHz  
clock source, in which case the output will be a pulse at 1 second intervals, with high time of ~30.5 µs.  
The second component is the 32-bit Time Counter, which takes its clock input from either the output of the 15-bit counter divider,  
or directly from Connection Matrix Output [101]. If the input clock comes from the 15-bit counter divider, and this counter divider  
is used to count time in seconds (most common use case), then the count value in this 32-bit time counter will be the number of  
seconds elapsed since it was loaded. The contents are read/write accessible via the address range 0x75 to 0x7A. When the  
counter is read, the current time is latched into a shadow buffer register, which is output on the serial data line while the counter  
continues to increment.  
The third component is a 32-bit Alarm Digital Comparator (DCMP). This generates an alarm signal to Connection Matrix Input  
[24] when the time counter value matches the DCMP alarm value, which is set via I2C serial interface. An I2C bus Master is used  
to write to the 32-bit Alarm DCMP register bits in order to define the next wake up time. The 32-bit Alarm DCMP loads its initial  
value from registers [1023:992] at POR, and can be changed at any time by I2C. The Alarm DCMP output is high for one clock  
period of the 32-bit Time Counter.  
I2C Address  
Detector  
RTC Counter  
48-bit Shadow Buffer  
S1  
registers [983:936]  
From Connection  
Matrix Output [102]  
S0  
register [990]  
Direction register [989]  
S0  
32-bit  
TimeCounter  
15-bit  
Counter  
Divider  
From Connection  
Matrix Output [101]  
RTC Clock  
S1  
To Connection Matrix  
Input [23]  
RTC CNT  
DIV Out  
register [991]  
To Connection Matrix  
Input [24]  
RTC  
DCMP Out  
32-bit  
Alarm DCMP  
registers [1023:992]  
Figure 47: RTC Counter Macrocell  
Datasheet  
18-Sep-2019  
Revision 3.3  
104 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
13.1 RTC BINARY COUNTER SHADOW BUFFER  
All reading or writing of data to this macrocell goes through the 48-bit Shadow Buffer. In order to read the current RTC counter  
value through the I2C, the RTC counter value must first be copied to the shadow buffer. The RTC Counter’s value can be copied  
to the 48-bit shadow buffer by either rising edge trigger signal through the Connection Matrix Output [102] or by a trigger signal  
generated by reading the I2C address at 0x75 to 0x7A. The same trigger signals are used to transfer data in the opposite  
direction (from the shadow buffer to RTC counter).  
48-bit Shadow Buffer data  
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 28 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0  
32-bit Time Counter data  
15-bit Counter Divider data  
Unused data  
Figure 48: RTC Counter Shadow Buffer Bits  
Register [990] defines the source of the trigger signal for the copy to shadow buffer, either from the Connection Matrix or from  
the designated I2C address read. The trigger source can be changed though an I2C write command to change this bit setting.  
Register [989] defines the direction of whether RTC Counter data will be copied to 48-bit shadow buffer or the 48-bit shadow  
buffer data will be copied to the RTC Counter. The direction can be changed though an I2C write command to change this bit  
setting.  
13.1.1 RTC Binary Counter Shadow Buffer Operating Modes  
The combined values in register [990] and register [989] provide four modes of operation for the shadow buffer, allowing the user  
to latch the shadow buffer data into the RTC counter, or to latch data the RTC counter data into the shadow buffer, and to choose  
the signal that will latch the data.  
Table 85: Shadow Buffer Register Settings  
Register  
[989]  
Register  
[990]  
Shadow Buffer Operating Modes  
0
0
0
1
RTC data will be latched in the shadow buffer by rising edge on Connection Matrix Output [102].  
RTC data will be latched in the shadow buffer by reading any I2C address in the range 0x75 –  
0x7A. The LATCH signal is activated when the I2C address comparison circuit indicates a match-  
ing address in an incoming command. All bytes of one RTC data sample can be read using  
Sequential Read Command.  
1
1
0
1
Shadow buffer data will be latched in the RTC by rising edge on Connection Matrix Output [102].  
Shadow buffer data willbelatchedintheRTC at the completionof awrite commandtoI2Caddress  
in the range 0x75 to 0x7A. All bytes of one shadow buffer data sample can be written using  
Sequential Write Command.  
Datasheet  
18-Sep-2019  
Revision 3.3  
105 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
14 Voltage Reference  
14.1 VOLTAGE REFERENCE OVERVIEW  
The SLG46585 has a Voltage Reference Macrocell to provide references to the four analog comparators. This macrocell can  
supply a user selection of fixed voltage references, /3 and /4 reference off of the VDD power supply to the device, and externally  
supplied voltage references from IO4. See Table 86 for the available selections for each analog comparator.  
14.2 VREF SELECTION TABLE  
Table 86: Vref Selection Table  
SEL[4:0]  
11011  
11010  
11001  
11000  
10111  
10110  
10101  
10100  
10011  
10010  
10001  
10000  
01111  
01110  
01101  
01100  
01011  
01010  
01001  
01000  
00111  
00110  
00101  
00100  
00011  
00010  
00001  
00000  
ACMP0_VREF  
IO4: EXT_VREF/2  
IO4: EXT_VREF  
ACMP1_VREF  
ACMP2_VREF  
ACMP3_VREF  
IO4: EXT_VREF/2  
IO4: EXT_VREF/2  
IO4: EXT_VREF/2  
IO4: EXT_VREF  
VDD: ACMP1-/4  
VDD: ACMP1-/3  
1.20  
IO4: EXT_VREF  
VDD: ACMP2-/4  
VDD: ACMP2-/3  
1.20  
IO4: EXT_VREF  
VDD: ACMP3-/4  
VDD: ACMP3-/3  
1.20  
V
DD: ACMP0-/4  
VDD: ACMP0-/3  
1.20  
1.15  
1.15  
1.15  
1.15  
1.10  
1.10  
1.10  
1.10  
1.05  
1.05  
1.05  
1.05  
1.00  
1.00  
1.00  
1.00  
0.95  
0.95  
0.95  
0.95  
0.90  
0.90  
0.90  
0.90  
0.85  
0.85  
0.85  
0.85  
0.80  
0.80  
0.80  
0.80  
0.75  
0.75  
0.75  
0.75  
0.70  
0.70  
0.70  
0.70  
0.65  
0.65  
0.65  
0.65  
0.60  
0.60  
0.60  
0.60  
0.55  
0.55  
0.55  
0.55  
0.50  
0.50  
0.50  
0.50  
0.45  
0.45  
0.45  
0.45  
0.40  
0.40  
0.40  
0.40  
0.35  
0.35  
0.35  
0.35  
0.30  
0.30  
0.30  
0.30  
0.25  
0.25  
0.25  
0.25  
0.20  
0.20  
0.20  
0.20  
0.15  
0.15  
0.15  
0.15  
0.10  
0.10  
0.10  
0.10  
0.05  
0.05  
0.05  
0.05  
Note: the ACMP external reference voltage (IN-) is limited by 1.2 V for full power supply range.  
Datasheet  
18-Sep-2019  
Revision 3.3  
106 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
15 Analog Temperature Sensor  
The SLG46585 has an analog temperature sensor (TS) with an output voltage linearly-proportional to Centigrade temperature.  
This feature was designed with a range from 50 °C to 150 °C as a tool to protect the chip from overheating. The TS's operates  
based on the temperature coefficient of a Silicon diode (~-2.1 mV/°C). As the chip temperature increases, the TS's analog output  
voltage decreases.  
If the junction temperature exceeds the thresholds of ACMP2 or ACMP3, the ACMP outputs toggle and can shut down both  
internal and external circuitry. Since most of the GreenPAK's self-heating originates within the LDO regulation circuitry, ACMP2's  
output can lower the chip's junction temperature by disabling the LDOs.  
The equation below calculates the typical analog voltage passed from the TS to the ACMPs' IN+ source input. It is important to  
note that there will be a chip to chip variation of about ±2 °C.  
VTS = -4.935 x T + 1467.03  
where:  
TS (mV) - TS Output Voltage  
V
T (°C) - Temperature  
Temperature hysteresis can be setup by enabling the GreenPAK's internal ACMP hysteresis. Many of the applicable ACMP  
reference voltages are listed in Table 87, but for those that are not, use the previous equation to approximate the temperature level.  
Table 87: Temperature Sensor Voltage for VDD = 2.5 V to 5.5 V  
Vref, mV  
700  
TIL - Typ, °C  
154.84  
144.82  
134.87  
124.87  
114.89  
104.85  
94.75  
TIH - Typ, °C  
155.06  
145.47  
135.61  
125.65  
115.63  
105.56  
95.42  
750  
800  
850  
900  
950  
1000  
1050  
1100  
1150  
1200  
84.64  
85.22  
74.45  
74.98  
64.26  
64.73  
54.01  
54.22  
To enable the TS, set the TS enable register high in the "Temp Sensor" macrocell or the "ACMP2" macrocell's IN+ source settings.  
In addition, the PWR UP matrix connection of ACMP2 or ACMP3 must be set high. See Figure 49 for the TS block diagram when  
used with ACMP2 and ACMP3.  
Datasheet  
18-Sep-2019  
Revision 3.3  
107 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
ACMP2 PWR UP: Matrix Output [54]  
ACMP3 PWR UP: Matrix Output [55]  
TS  
VDD  
En  
ACMP2 Positive Input Source Select - ACMP0 IN+ Source: register [1124]  
TS Output Connection Enable to ACMP2: register [1493]  
ACMP2 PWR UP:  
Matrix Output [54]  
Temp. Sensor_EN  
register [1656]  
LDO Temp.  
Sensor Input  
PWR UP  
+
-
En  
+
-
ACMP IN- Vref:  
registers [1644:1640]  
To Connection  
Matrix Input[59]  
ACMP2 Positive Input Divider  
registers [1646:1645]  
ACMP3 Positive Input Source Select - ACMP2 IN+ Source: register [1120]  
LDO2 VOUT Output Connection Enable to ACMP3: register [1491]  
LDO0 VOUT Output Connection Enable to ACMP3: register [1492]  
ACMP3 PWR UP: Matrix Output [55]  
To Connection  
Matrix Input [60]  
PWR UP  
+
-
ACMP IN- Vref:  
registers [1652:1648]  
ACMP3 Positive Input Divider  
registers [1654:1653]  
Figure 49: Analog Temperature Sensor Structure Diagram  
Note: If ACMP2 or/and ACMP3 is/are used for TS function, IO5 or/and IO6 should not be used as “Analog IO”.  
Datasheet  
18-Sep-2019  
Revision 3.3  
108 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
16 Clocking  
16.1 OSC GENERAL DESCRIPTION  
The SLG46585 has two internal oscillators to support a variety of applications:  
Low Power Oscillator (1.73 kHz)  
Configurable Oscillator (25 kHz or 2 MHz)  
There are two divider stages that give the user flexibility for introducing clock signals to connection matrix, as well as various other  
Macrocells. The pre-divider (first stage) for Configurable Oscillator allows the selection of /1, /2, /4 or /8 to divide down frequency  
from the fundamental. The second stage divider has an input of frequency from the pre-divider, and outputs one of eight different  
frequencies divided by /1, /2, /3, /4, /8, /12, /24 or /64 on Connection Matrix Input lines [27] and [28]. The second stage divider is  
available to the configurable OSC (25 kHz or 2 MHz) only while the Low Power OSC is connected to Connection Matrix Input [29]  
directly after the pre-divider /1, /2, /4 or /16 for LP OSC.  
The Matrix Power-Down/Force On function allows switching off or force on the oscillator using an external pin. The Matrix  
Power-Down/Force On (Connection Matrix Output [59] and [60) signal has the highest priority.The OSC operates according to  
the Table 88.  
Table 88: Oscillator Operation Mode Configuration Settings  
Power-Down/Force ON  
matrix control selection  
registers [1658], [1657]  
OSC POWER MODE  
selection  
registers [1295], [1290]  
From Connection Matrix  
Output [59], [60]  
OSC operation mode  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Auto Power-On (Note 1)  
ON  
OFF  
OFF  
Auto Power-On (Note 1)  
ON  
ON  
ON  
Note 1 The OSC will run only when any macrocell that uses OSC is powered on.  
The SLG46585 has a 25 kHz/2 MHz OSC Fast Start-up option up function controlled by register [1293] (1: Enabled; 0: Disabled).  
It allows the OSC to have faster start up time, less than one OSC cycle when this option is enabled).  
Note: The quiescent current consumption will increase when the OSC Fast Start-up option is enabled.  
16.2 LOW POWER OSC (1.73 KHZ)  
From Connection Matrix  
Output [60]  
PWR DWN/Force ON  
Matrix Output control register [1657]  
OSC Power Mode  
register [1290]  
registers [1289:1288]  
PWR DOWN/  
To Connection Matrix  
Input [29]  
FORCE ON  
Low  
Auto Power-On  
OUT  
DIV /1 /2 /4 /16  
Power  
OSC  
0
Force Power-On  
(1.73 kHz)  
Pre-divider  
1
Figure 50: Low Power Oscillator Block Diagram  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
109 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
16.3 CONFIGURABLE OSC(25 KHZ/2MHZ)  
From Connection Matrix  
Output [59]  
PWR DWN/Force ON  
Matrix Output control register [1658]  
OSC Power Mode  
register [1295]  
Pre-divided Clock  
PWR DOWN/  
FORCE ON  
registers [1292:1291]  
Auto Power-On  
Force Power-On  
Config.  
OSC  
OUT  
0
1
0
1
DIV /1 /2 /4 /8  
0
1
IO0: EXT_CLK  
pre-divider  
/ 2  
/ 3  
register [1294]  
register [1303]  
0: 25 kHz  
1: 2 MHz  
2
3
4
5
6
7
To Connection Matrix  
Input [27]  
Ext. Clk Sel register [1282]  
/ 4  
/ 8  
To Connection Matrix  
Input [28]  
/ 12  
/ 24  
/ 64  
register [1299]  
registers [1298:1296]  
registers [1302:1300]  
Second Stage  
Divider  
Figure 51: Configurable OSC Block Diagram  
16.4 OSCILLATOR POWER-ON DELAY  
OSC enable  
Power-On  
Delay  
CLK  
Figure 52: Oscillator Startup Diagram  
Datasheet  
18-Sep-2019  
Revision 3.3  
110 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Note 1 OSC power mode: "Auto Power-On".  
Note 2 'OSC enable' signal appears when any macrocell that uses OSC is powered on.  
ꢎQ`I:Cꢍꢓꢕ:`ꢕRꢖ]ꢍ#QꢗV  
&:'ꢕꢍꢓꢕ:`ꢕRꢖ]ꢍ#QꢗV  
ꢆꢁꢁ  
ꢅꢁꢁ  
ꢄꢁꢁ  
ꢃꢁꢁ  
ꢂꢁꢁ  
ꢀꢁꢁ  
ꢔꢏꢏꢍ^ꢔ_  
Figure 53: Oscillator Maximum Power-On Delay vs. VDD, T = +25 °C, OSC0 = 2 MHz  
Datasheet  
18-Sep-2019  
Revision 3.3  
111 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
ꢃꢀ  
ꢂꢁ  
ꢂꢀ  
ꢕ:ꢖꢗꢍꢓꢗ:`ꢗRꢘ]ꢍ!QꢙV  
ꢎQ`I:Cꢍꢓꢗ:`ꢗRꢘ]ꢍ!QꢙV  
ꢔꢏꢏꢍ^ꢔ_  
Figure 54: Oscillator Maximum Power-On Delay vs. VDD at T = 25 °C, OSC0 = 25 kHz  
ꢇꢈꢂ  
ꢇꢇꢂ  
ꢇꢀꢂ  
ꢇꢂꢂ  
ꢀꢆꢂ  
ꢀꢅꢂ  
ꢀꢄꢂ  
ꢀꢃꢂ  
ꢀꢁꢂ  
ꢖꢑꢑꢏ^ꢖ_  
Figure 55: Oscillator Maximum Power-On Delay vs. VDD at T = 25 °C, OSC1 = 1.73 kHz  
Datasheet  
18-Sep-2019  
Revision 3.3  
112 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
16.5 OSCILLATOR ACCURACY  
Note 1 OSC power setting: Force Power-On; Clock to matrix input - enable; Bandgap: turn on by register - enable.  
Note 2 For more information see Section 3.6.  
2.13  
2.08  
Fmax @ VDD=2.5 V  
2.03  
Fmax @ VDD=3.3 V  
Fmax @ VDD=5.0 V  
Fmin @ VDD=2.5 V  
Fmin @ VDD=3.3 V  
Fmin @ VDD=5.0 V  
1.98  
1.93  
1.88  
1.83  
T (°C)  
Figure 56: Oscillator Frequency vs. Temperature, OSC0 = 2 MHz  
27  
Fmax @ VDD=2.5 V  
Fmax @ VDD=3.3 V  
Fmax @ VDD=5.0 V  
Fmin @ VDD=2.5 V  
Fmin @ VDD=3.3 V  
Fmin @ VDD=5.0 V  
26.5  
26  
25.5  
25  
24.5  
24  
23.5  
T (°C)  
Figure 57: Oscillator Frequency vs. Temperature, OSC0 = 25 kHz  
Datasheet  
18-Sep-2019  
Revision 3.3  
113 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
2.1  
2
1.9  
1.8  
Fmax @ VDD=2.5 V  
Fmax @ VDD=3.3 V  
1.7  
Fmax @ VDD=5.0 V  
Fmin @ VDD=2.5 V  
1.6  
Fmin @ VDD=3.3 V  
1.5  
1.4  
1.3  
1.2  
1.1  
Fmin @ VDD=5.0 V  
Figure 58: Oscillator Frequency vs. Temperature, OSC1 = 1.73 kHz  
Datasheet  
18-Sep-2019  
Revision 3.3  
114 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
17 Power-On Reset  
The SLG46585 has a Power-On Reset (POR) macrocell to ensure correct device initialization and operation of all macrocells in  
the device. The purpose of the POR circuit is to have consistent behavior and predictable results when the VDD power is first  
ramping to the device, and also while the VDD is falling during Power-down. To accomplish this goal, the POR drives a defined  
sequence of internal events that trigger changes to the states of different macrocells inside the device, and finally to the state of  
the IO pins.  
17.1 GENERAL OPERATION  
The SLG46585 is guaranteed to be powered down and non-operational when the VDD voltage (voltage on VDD pin) is less than  
Power-Off Threshold (see Section 3.4), but not less than -0.6 V. Another essential condition for the chip to be powered down is  
that no voltage higher (see Note) than the VDD voltage is applied to any other PIN. For example, if VDD voltage is 0.3 V, applying  
a voltage higher than 0.3 V to any other PIN is incorrect and can lead to incorrect or unexpected device behavior.  
Note: There is a 0.6 V margin due to forward drop voltage of the ESD protection diodes.  
To start the POR sequence in the SLG46585, the voltage applied on the VDD should be higher than the Power-On threshold  
(Note). The full operational VDD range for the SLG46585 is 2.5 V – 5.5 V. This means that the VDD voltage must ramp up to the  
operational voltage value, but the POR sequence will start earlier, as soon as the VDD voltage rises to the Power-On threshold.  
After the POR sequence has started, the SLG46585 will have a typical period of time to go through all the steps in the sequence  
(noted in the datasheet for that device), and will be ready and completely operational after the POR sequence is complete.  
Note: The Power_ON threshold is defined in Table 6.  
Note: LDOs begin to operate when VDD ≥ 2.5 V.  
To power-down the chip the VDD voltage should be lower than the operational and to guarantee that chip is powered down, it  
should be less than Power-Off Threshold.  
All PINs are in high impedance state when the chip is powered down and while the POR sequence is taking place. The last step  
in the POR sequence releases the IO structures from the high impedance state, at which time the device is operational. The pin  
configuration at this point in time is defined by the design programmed into the chip. Also, as it was mentioned before, the voltage  
on PINs can’t be bigger than the VDD, this rule also applies to the case when the chip is powered on.  
Datasheet  
18-Sep-2019  
Revision 3.3  
115 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
17.2 POR SEQUENCE  
The POR system generates a sequence of signals that enable certain macrocells. The sequence is shown in Figure 59.  
Tsu  
VDD  
t
t
t
t
t
t
t
t
t
POR_NVM  
(reset for NVM)  
NVM_ready_out  
POR_GPI  
(reset for input enable)  
POR_LUT  
(reset for LUT output)  
POR_CORE  
(reset for DLY/RCO/DFF  
/LATCH/Pipe DLY  
POR_OUT  
(generate low to high to matrix)  
POR_GPO  
ASM enable  
(reset for output enable)  
POR_LDO  
Figure 59: POR Sequence  
As can be seen from Figure 59 after the VDD has started ramping up and crossed the Power-On threshold, first, the on-chip NVM  
memory is reset. Next, the chip reads the data from NVM, and transfers this information to a CMOS LATCH that serves to configure  
each macrocell, and the Connection Matrix which routes signals between macrocells. The third stage causes the reset of the input  
pins, and then to enable them. After that, the LUTs are reset and become active. After LUTs, the Delay cells, RC OSC, DFFs,  
Latches, and Pipe Delay are initialized. Only after all macrocells are initialized, internal POR signal (POR macrocell output) goes  
from LOW to HIGH (POR_OUT in Figure 59). The last portion of the device to be initialized is the output pins, which transition  
from high impedance to active at this point. LDOs begin to operate in 500 µs after PINs become active.  
The typical time that takes to complete the POR sequence varies by device type in the GreenPAK family. It also depends on many  
environmental factors, such as: slew rate, VDD value, temperature, and even will vary from chip to chip (process influence).  
17.3 MACROCELLS OUTPUT STATES DURING POR SEQUENCE  
To have a full picture of SLG46585 operation during powering and POR sequence, review the overview of macrocell output states  
during the POR sequence (Figure 60 describes the output signals states).  
Datasheet  
18-Sep-2019  
Revision 3.3  
116 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
First, before the NVM has been reset, all macrocells have their output set to logic LOW (except the output PINs which are in high  
impedance state). Before the NVM is ready, all macrocell outputs are unpredictable (except the output PINs). On the next step,  
some of the macrocells start initialization: input pins output state becomes LOW; LUTs also output LOW. After that input PINs are  
enabled. Next, only LUTs are configured. Next, all other macrocells are initialized. After macrocells are initialized, internal POR  
matrix signal switches from LOW to HIGH. The last are output PINs that become active and determined by the input signals.  
VDD  
Guaranteed HIGH before POR_GPI  
t
VDD_out  
to matrix  
Unpredictable  
t
Input PIN_out  
Unpredictable  
Unpredictable  
Determined by External Signal  
Determined by Input signals  
to matrix  
t
t
LUT_out  
to matrix  
Determined by input signals  
OUT = IN without Delay  
Prog. Edge_Detector_out  
to matrix  
Unpredictable  
Unpredictable  
Unpredictable  
Unpredictable  
Determined by Input signals  
t
t
t
t
t
Determined by initial state  
DFF/LATCH_out  
to matrix  
Determined by Input signals  
Determined by input signals  
OUT = IN without Delay  
Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
POR_out  
to matrix  
Ext. GPO  
Tri-state  
Determined by input signals  
Output State Unpredictable  
Figure 60: Internal Macrocell States during POR Sequence  
17.3.1 Initialization  
All internal macrocells by default have initial low level. Starting from indicated power-up time of 1.15 V - 1.6 V, macrocells are  
powered on while forced to the reset state, All outputs are in Hi-Z and chip starts loading data from NVM. Then the reset signal  
is released for internal macrocells and they start to initialize according to the following sequence:  
1. Input PINs, ACMP, Pull-up/down.  
2. LUTs.  
3. DFFs, Delays/Counters, Pipe Delay.  
4. POR output to matrix.  
5. Output PIN corresponds to the internal logic.  
6. LDOs.  
Note: LDOs begin to operate above 2.5 V.  
Datasheet  
18-Sep-2019  
Revision 3.3  
117 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Note: The maximum voltage applied to any PIN should not be higher than the VDD level. There are ESD Diodes between PIN →  
V
DD and PIN → GND on each PIN. So, if the input signal applied to PIN is higher than VDD, then current will sink through the  
diode to VDD. Exceeding VDD results in leakage current on the input PIN, and VDD will be pulled up, following the voltage on the  
input PIN.There is no effect from input pin when input voltage is applied at the same time as VDD  
.
17.3.2 Power-Down  
VDD (V)  
2 V  
1.6 V  
1.15 V  
1 V  
Time  
Not guaranteed output state  
Figure 61: Power-Down  
During power down, macrocells in SLG46585 are powered off after VDD falling down below Power-Off Threshold. Please note  
that during a slow rampdown, outputs can possibly switch state.  
17.4 EXTERNAL RESET  
The SLG46585 has an optional External Reset function on IO3. It allows to reset the chip while powered on.  
IO3 must be configured as Digital Input registers [1071:1070] and function Reset must be enabled also, register [1307]:  
0 - disabled, 1 - enabled. Unlike POR, External Reset affects only GPI, LUTs, DLY, RC OSC, DFFs, Latches, Pipe Delay, Matrix,  
and GPO. While NVM remains its previous state, see Figure 62 to Figure 64.  
Note that during External Reset the output pin's status will depend on the OE control circuits and current consumption is  
determined by the design.  
Datasheet  
18-Sep-2019  
Revision 3.3  
118 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
External Reset  
Level polarity: Non-Inverted  
t
Level polarity: Inverted  
VDD  
t
t
POR_NVM  
(reset for NVM)  
t
t
t
t
t
t
t
NVM_ready_out  
POR_GPI  
(reset for input enable)  
POR_LUT  
(reset for LUT output)  
POR_CORE  
(reset for DLY/RCO/DFF  
/LATCH/Pipe DLY  
POR_OUT  
(generate low to high to matrix)  
POR_GPO  
(reset for output enable)  
Figure 62: External Reset Sequence (Level Sensitive)  
Datasheet  
18-Sep-2019  
Revision 3.3  
119 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
External Reset  
(
rising edge detect)  
t
t
VDD  
POR_NVM  
(reset for NVM)  
t
NVM_ready_out  
t
POR_GPI  
(reset for input enable)  
t
POR_LUT  
(reset for LUT output)  
t
POR_CORE  
(reset for DLY/RCO/DFF  
/LATCH/Pipe DLY  
t
POR_OUT  
(generate low to high  
t
POR_GPO  
(reset for output en-  
t
Figure 63: External Reset Sequence (Rising Edge Detect)  
Datasheet  
18-Sep-2019  
Revision 3.3  
120 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
External Reset  
(
falling edge detect)  
t
t
VDD  
POR_NVM  
(reset for NVM)  
t
NVM_ready_out  
t
POR_GPI  
(reset for input enable)  
t
POR_LUT  
(reset for LUT output)  
t
POR_CORE  
reset for DLY/RCO/DFF  
/LATCH/Pipe DLY  
t
POR_OUT  
(generate low to high  
t
POR_GPO  
(reset for output en-  
t
Figure 64: External Reset Sequence (Falling Edge Detect)  
Table 89: External Reset Register Settings  
Register Bit  
Signal Function  
Address  
Register Definition  
IO3 Reset level  
polarity selection  
[1304]  
0: Non-inverted  
1: Inverted  
IO3 edge reset  
enable  
[1305]  
[1306]  
[1307]  
0: Edge reset enable (controlled by register [1306])  
1: High level reset  
IO3 rising/falling  
edge reset  
0: Rising  
1: Falling  
IO3 reset function  
0: Disable  
1: Enable  
Datasheet  
18-Sep-2019  
Revision 3.3  
121 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
18 Asynchronous State Machine Macrocell  
18.1 ASM MACROCELL OVERVIEW  
The Asynchronous State Machine (ASM) macrocell is designed to allow the user to create state machines with between 2 to 8  
states. The user has flexibility to define the available states, the available state transitions, and the input signals (a, b, c …) that  
will cause transitions from one state to another state, as shown in Figure 65.  
This macrocell has a total of 25 inputs, as shown in Figure 66, which come from the Connection Matrix outputs. Of these 25 inputs,  
24 are user selectable for driving general state transitions, and 1 is for driving a state transition to an Initial/Reset state. Each of  
the 24 inputs is level sensitive and active high, meaning that a high level input will drive the user selected transition from one state  
to another. Additionally, 8 out of the 24 inputs (one per state) has an option to select whether the input is rising edge sensitive,  
meaning that a rising level input signal will drive the user selected transition from one state to another. The fact that there are 24  
inputs puts the upper bound of 24 possible state transitions total in the user defined state machine design. There is a nReset input  
which will drive an immediate state transition to the user-defined Initial/Reset state when active, shown in red, in Figure 65.  
There are a total of 8 outputs, which go to the Connections Matrix inputs, and from there can be routed to other internal macrocells  
or pins. The 8 outputs are user defined for each of the possible 8 states. This information is held in the Connection Matrix Output  
RAM.  
In using this macrocell, the user must take into consideration the critical timing required on all input and output signals. The timing  
waveforms and timing specifications for this macrocell are all measured relative to the input signals (which come into the macrocell  
on the Connection Matrix outputs) and on the outputs from the macrocell (which are direct connections to Connection Matrix  
inputs). The user must consider any delays from other logic and internal chip connections, including IO delays, to ensure that  
signals are properly processed, and state transitions are deterministic.  
The GPAK Designer development tools support user designs for the ASM macrocell at both the physical level and logic level.  
Figure 65 is a representation of the user design at the logical level, and Figure 66 shows the physical resources inside the  
macrocell. To best utilize this macrocell, the user must develop a logical representation of their desired state machine, as well as  
a physical mapping of the input and outputs required for the desired functionality.  
Off  
a
d
c
Normal  
Speed  
Standby  
Fault  
b
e
f
g
h
High  
Speed  
Figure 65: Asynchronous State Machine State Transitions  
Datasheet  
18-Sep-2019  
Revision 3.3  
122 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Connection Matrix  
Output RAM  
(8x8)  
State Holding  
LATCHES  
State 0  
State 0 In  
State 1 In  
State 2 In  
State 3 In  
State 4 In  
State 5 In  
State 6 In  
State 0  
State 1  
State 2  
State 3  
State 4  
State 5  
State 6  
State 7  
Output Bits (8)  
State 1  
Output Bits (8)  
State 2  
Output Bits (8)  
State 3  
Output Bits (8)  
from  
Connection  
Matrix  
State  
Transition  
Signal  
State 4  
Output Bits (8)  
Routing  
State 5  
Output Bits (8)  
State 6  
Output Bits (8)  
State 7  
Output Bits (8)  
State 7 In  
nReset  
to Connection Matrix  
Figure 66: Asynchronous State Machine  
18.2 ASM INPUTS  
The ASM macrocell has a total of 25 inputs which come from the Connection Matrix outputs. Of these 25 inputs, 24 are user  
selectable for driving general state transitions, and 1 is for driving a state transition to an Initial/Reset state.  
There are a total of 24 inputs to the ASM macrocell for general state transitions, highlighted in red in Figure 67. Each of these  
inputs is level sensitive, and active high. A high level input will trigger a state transition. Additionally, 8 out of the 24 inputs (one  
per state) has an option to select whether the input is rising edge sensitive, meaning that a rising level input signal will drive the  
user selected transition from one state to another, shown in Figure 68.  
These inputs are grouped so that each set of 3 inputs can drive a state transition going into a particular state. As an example,  
there are three inputs that can drive a state transition to State 1. This sets an upper bound on the number of transitions that the  
user can select going into a particular state to be 3, shown in Figure 69.  
There is no limitation on the number of transitions that can be supported coming out of a particular state, the user can select to  
have transitions going from a state to all other states, shown in Figure 70.  
Datasheet  
18-Sep-2019  
Revision 3.3  
123 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
The ASM macrocell also has a nReset input highlighted in blue in Figure 67. This input is level sensitive and active low. An  
active signal on this input will drive an immediate state transition to the user-defined Initial/Reset state. The user can choose  
which state within the ASM Editor inside GPAK Designer is the initial state.  
Connection Matrix  
Output RAM  
(8x8)  
State Holding  
Latches  
State 0  
State 0 In  
State 1 In  
State 2 In  
State 3 In  
State 4 In  
State 5 In  
State 6 In  
State 0  
State 1  
State 2  
State 3  
State 4  
State 5  
State 6  
State 7  
Output Bits (8)  
State 1  
Output Bits (8)  
State 2  
Output Bits (8)  
State 3  
Output Bits (8)  
from  
Connection  
Matrix  
State  
Transition  
Signal  
State 4  
Output Bits (8)  
Routing  
State 5  
Output Bits (8)  
State 6  
Output Bits (8)  
State 7  
Output Bits (8)  
State 7 In  
nReset  
to Connection Matrix  
Figure 67: Asynchronous State Machine Inputs  
State X In  
Rising Edge  
Detection  
Figure 68: Rising Edge State Transition Selection (for Each State X)  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
124 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
State 1  
State 0  
State 3  
State 2  
Figure 69: Maximum 3 State Transitions into Given State  
State 1  
State 7  
State 2  
State 0  
State 6  
State 3  
State5  
State 4  
Figure 70: Maximum 7 State Transitions out of a Given State  
18.3 ASM OUTPUTS  
There are a total of 8 outputs from the ASM macrocell, which go to the Connections Matrix inputs, and from there can be routed  
to other internal macrocells or pins. The 8 outputs are user defined for each of the possible 8 states, this information is held in  
the Connection Matrix Output RAM, shown in Figure 71. The Connection Matrix Output RAM has a total of 64 bits, arranged as  
8 bits per state. The values loaded in each of the 8 bits define the signal level on each of the 8 ASM macrocell outputs.  
The ASM Editor inside the GPAK Designer software allows the user to make their selections for the value of each bit in the  
Connection Matrix Output RAM, which selects the level of the macrocell outputs based on the current state of the ASM macrocell,  
as shown in Figure 66.  
Datasheet  
18-Sep-2019  
Revision 3.3  
125 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Connection Matrix  
Output RAM  
(8x8)  
State Holding  
Latches  
State 0  
State 0 In  
State 1 In  
State 2 In  
State 3 In  
State 4 In  
State 5 In  
State 6 In  
State 0  
State 1  
State 2  
State 3  
State 4  
State 5  
State 6  
State 7  
Output Bits (8)  
State 1  
Output Bits (8)  
State 2  
Output Bits (8)  
State 3  
Output Bits (8)  
from  
Connection  
Matrix  
State  
Transition  
Signal  
State 4  
Output Bits (8)  
Routing  
State 5  
Output Bits (8)  
State 6  
Output Bits (8)  
State 7  
Output Bits (8)  
State 7 In  
nReset  
to Connection Matrix  
Figure 71: Connection Matrix Output RAM  
Table 90: ASM Editor - Connection Matrix Output RAM  
RAM  
Connection Matrix Output RAM  
State name  
State 0  
State 1  
State 2  
State 3  
State 4  
State 5  
State 6  
State 7  
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
Datasheet  
18-Sep-2019  
Revision 3.3  
126 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
18.4 BASIC ASM TIMING  
The basic state transition timing from input on Matrix Connection output to output on Matrix Connection input is shown in  
Figure 72 and Figure 73. The time from a valid input signal to the time that there is a valid change of state and valid signals  
being available on the state outputs is State Machine Output Delay Time (Tst_out_delay). The minimum and maximum values of  
Tst_out_delay define the differential timing between the shortest state transition (input on matrix output and output on matrix input)  
and the longest state transition (input on matrix output and output on matrix input).  
a
State 0  
State 1  
Figure 72: State Transition  
Input  
Signal (a)  
Tst_out_delay  
State  
Outputs  
State 0  
State 1  
Figure 73: State Transition Timing  
18.5 ASYNCHRONOUS STATE MACHINES VS. SYNCHRONOUS STATE MACHINES  
It is important to note that this macrocell is designed for asynchronous operation, which means the following:  
1. No clock source is needed, it reacts only to input signals.  
2. The input signals do not have to be synchronized to each other, the macrocell will react to the earliest valid signal for state  
transition.  
3. This macrocell does not have traditional set-up and hold time specifications which are related to incoming clock, as this  
macrocell has no clock source.  
4. The macrocell only consumes power while in state transition.  
18.6 ASM POWER CONSIDERATION  
A benefit of the asynchronous nature of this macrocell is that it will consume power only during state transitions. Shown in  
Figure 72 and Figure 74, the current consumption of the macrocell will be a fraction of a µA between state transitions, and will  
rise only during state transitions. See Section 3.4 to find average current during state transitions.  
a
State 0  
State 1  
Figure 74: State Transition  
Datasheet  
18-Sep-2019  
Revision 3.3  
127 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Input  
Signal (a)  
Tst_out_delay  
State  
Outputs  
State 0  
State 1  
Average Active ASM Power  
ASM  
Power  
Consumption  
Sub µA Inactive ASM Power Consumption  
Figure 75: State Transition Timing and Power Consumption  
18.7 ASM LOGICAL VS. PHYSICAL DESIGN  
A successful design with the ASM macrocell must include both the logic level design as well as the physical level design. The  
GPAK Designer development software support user designs for the ASM macrocell at both the logic level and physical level. The  
logic level design of the user defined state machine takes place inside the ASM Editor. In the ASM Editor, the user can select and  
name states, define and name allowed state transitions, define the Initial/Reset state, and define the output values for the 8 outputs  
in the Output RAM Matrix. The physical level design takes place in the general GPAK Designer window, and here the user makes  
connections for the sources for ASM input signals, as well as making connections for destinations for ASM output signals.  
18.8 ASM SPECIAL CASE TIMING CONSIDERATIONS  
18.8.1 State Transition Pulse Input Timing  
All inputs to the ASM macrocell are level sensitive. If the input to the state machine macrocell for a state transition is a pulse,  
there is a minimum pulse width on the input to the state machine macrocell (as measured at the matrix input to the macrocell)  
which is guaranteed to result in a state transition shown in Figure 76 and Figure 77. This pulse width is defined by the State  
Machine Input Pulse Acceptance Time (Tst_pulse). If a pulse width that is shorter than Tst_pulse is input to the state machine  
macrocell, it is indeterminate whether the state transition will happen or not. If a pulse that is rejected (invalid due to the pulse  
width being narrower than the guaranteed minimum of Tst_pulse), this will not stop a valid pulse on another state transition input  
that does meet minimum pulse width.  
a
State 0  
State 1  
Figure 76: State Transition  
Datasheet  
18-Sep-2019  
Revision 3.3  
128 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Input  
Signal (a)  
Tst_pulse  
Tst_pulse  
State  
Outputs  
State 0  
State 1  
Tst_out_delay  
Figure 77: State Transition Pulse Input Timing  
18.8.2 ASM State Transition Competing Input Timing  
There will be situations where two input signals can be valid inputs that will drive two different state transitions from a given state.  
In that sense, the two signals are “competing” (signals a and b in Figure 78), and the signal that arrives sooner should drive the  
state transition that will “win”, or drive the state transition. If one signal arrives Tst_comp before the other one, it is guaranteed to  
win, and the state transition that it codes for will be taken, as shown in Figure 79. If the two signals arrive within Tst_comp of each  
other, it will be indeterminate which state transition will win, but one of the transitions will take place as long as the winning signal  
satisfies the pulse width criteria described in the paragraph above, as shown in Figure 80.  
a
b
State 0  
State 1  
State 2  
Figure 78: State Transition - Competing Inputs  
Input  
Signal (a)  
Tst_comp  
Input  
Signal (b)  
Tst_out_delay  
State  
Outputs  
State 0  
State 1 or State 2  
Figure 79: State Transition Timing - Competing Inputs Indeterminate  
Datasheet  
18-Sep-2019  
Revision 3.3  
129 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Input  
Signal (a)  
Tst_comp  
Input  
Signal (b)  
Tst_out_delay  
State  
State 0  
State 1  
Outputs  
Figure 80: State Transition Timing - Competing Inputs Determinable  
18.8.3 ASM State Transition Sequential Timing  
It is possible to have a valid input signal for a transition out from a particular state be active before the state is active. If this is the  
case, the macrocell will only stay in that particular state for Tst_sequential_delay time before making the transition to the next state.  
An example of this sequential behavior is shown in Figure 81 and the associated timing is shown in Figure 82.  
a
b
State 0  
State 1  
State 2  
Figure 81: State Transition - Sequential  
Input  
Signal (a)  
Input  
Signal (b)  
Tst_out_delay  
Tst_out_delay  
State  
Outputs  
State 0  
State 1  
State 2  
Figure 82: State Transition - Sequential Timing  
Datasheet  
18-Sep-2019  
Revision 3.3  
130 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
18.8.4 State Transition Closed Cycling  
It is possible to have a closed cycle of state transitions that will run continuously if there if there are valid inputs that are active at  
the same time. The rate at which the state transitions will take place is determined by Tst_out_delay. The example shown in Figure 83  
involves cycling between two states, but any number of two to eight states can be included in state transition closed cycling of  
this nature. Figure 84 shows the associated timing for closed cycling.  
a
State 0  
State 1  
b
Figure 83: State Transition - Closed Cycling  
Input  
Signal (a)  
Input  
Signal (b)  
Tst_out_delay  
Tst_out_delay  
Tst_out_delay  
State  
Outputs  
State 0  
State 1  
State 0  
State 1  
Figure 84: State Transition - Closed Cycling Timing  
18.8.5 ASM State Transition Using Edge Detector Option  
It is possible to use a rising edge detector option for state transitions. In this case, state transition happens on low to high signal  
transition as shown in Figure 85 and Figure 86.  
a
a
State 0  
State 1  
State 2  
rising edge  
rising edge  
Figure 85: State Transition - Rising Edge Transition  
Datasheet  
18-Sep-2019  
Revision 3.3  
131 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Input  
Signal (a)  
Tst_out_delay  
Tst_out_delay  
State  
Outputs  
State 0  
State 1  
State 2  
Figure 86: State Transition - Rising Edge Transition Timing  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
132 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
2
19 I C Serial Communications Macrocell  
19.1 I2C SERIAL COMMUNICATIONS MACROCELL OVERVIEW  
In the standard use case for the GreenPAK devices, the configuration choices made by the user are stored as bit settings in the  
Non-Volatile Memory (NVM). This information is transferred at startup time to volatile RAM registers that enable the configuration  
of the macrocells. Other RAM registers in the device are responsible for setting the connections in the Connection Matrix to route  
signals in the manner most appropriate for the user’s application.  
The I2C Serial Communications Macrocell in this device allows an I2C bus Master to read and write this information via a serial  
channel directly to the RAM registers, allowing the remote re-configuration of macrocells, and remote changes to signal chains  
within the device.  
An I2C bus Master is also able read and write other register bits that are not associated with NVM memory. As an example, the  
input lines to the Connection Matrix can be read as digital register bits. These are the signal outputs of each of the macrocells in  
the device, giving an I2C bus Master the capability to remotely read the current value of any macrocell.  
The SLG46585 supports both 400 kHz (Fast-mode I2C bus) and 1 MHz (Fast-mode Plus I2C bus) I2C bus interfaces, which is  
selected by register [1868].  
The user has the flexibility to control read access and write access via registers bits register [1832] and register [1871]. See  
Section for more details on I2C read/write memory protection.  
Note: GreenPAK I2C is fully compatible with standard I2C protocol.  
19.2 I2C SERIAL COMMUNICATIONS DEVICE ADDRESSING  
Each command to the I2C Serial Communications macrocell begins with a Control Byte. The bits inside this Control Byte are  
shown in Figure 87. After the Start bit, the first four bits are a control code, which can be set by the user in registers [1867:1864].  
This gives the user flexibility on the chip level addressing of this device and other devices on the same I2C bus. The Block Address  
is the next three bits (A10,A9, A8), which will define the most significant bits in the addressing of the data to be read or written by  
the command. The last bit in the Control Byte is the R/W bit, which selects whether a read command or write command is  
requested, with a “1” selecting for a Read command, and a “0” selecting for a Write command. This Control Byte will be followed  
by an Acknowledge bit (ACK), which is sent by this device to indicate successful communication of the Control Byte data.  
In the I2C-bus specification and user manual, there are two groups of eight addresses (0000 xxx and 1111 xxx) that are reserved  
for the special functions, such as a system General Call address. If the user of this device choses to set the Control Code to either  
“1111” or “0000” in a system with other slave device, please consult the I2C-bus specification and user manual to understand the  
addressing and implementation of these special functions, to ensure reliable operation.  
In the read and write command address structure, there are a total of 11 bits of addressing, each pointing to a unique byte of  
information, resulting in a total address space of 2K bytes. Of this 2K byte address space, the valid addresses accessible to the  
I2C Macrocell on the SLG46585 are in the range from 0 (0x00) to 255 (0xFF). The MSB address bits (A10, A9, and A8) will be  
“0” for all commands to the SLG46585.  
Datasheet  
18-Sep-2019  
Revision 3.3  
133 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
With the exception of the Current Address Read command, all commands will have the Control Byte followed by the Word  
Address. Figure 87 shows this basic command structure.  
Start  
bit  
Acknowledge  
bit  
Control Byte  
Word Address  
A
10  
A
9
A
8
A
7
A
0
S
X
X
X
X
R/W ACK  
Control  
Code  
Block  
Address  
Not used, se  
t to 0  
Read/Write bit  
(1 = Read, 0 = Write)  
Figure 87: Basic Command Structure  
19.3 I2C SERIAL GENERAL TIMING  
General timing characteristics for the I2C Serial Communications macrocell are shown in Figure 88. Timing specifications can be  
found in Section 3.4.  
tHIGH  
tF  
tR  
tLOW  
SCL  
tSU STA  
tHD DAT  
tHD STA  
tSU DAT  
tSU STO  
SDA IN  
tBUF  
tAA  
tDH  
SDA OUT  
Figure 88: I2C General Timing Characteristics  
19.4 I2C SERIAL COMMUNICATIONS COMMANDS  
19.4.1 Byte Write Command  
Following the Start condition from the Master, the Control Code [4 bits], the Block Address [3 bits], and the R/W bit (set to “0”),  
are placed onto the I2C bus by the Master. After the SLG46585 sends an Acknowledge bit (ACK), the next byte transmitted by  
the Master is the Word Address. The Block Address (A10, A9, A8), combined with the Word Address (A7 through A0), together  
set the internal address pointer in the SLG46585, where the data byte is to be written. After the SLG46585 sends another  
Acknowledge bit, the Master will transmit the data byte to be written into the addressed memory location. The SLG46585 again  
Datasheet  
18-Sep-2019  
Revision 3.3  
134 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
provides an Acknowledge bit and then the Master generates a Stop condition. The internal write cycle for the data will take place  
at the time that the SLG46585 generates the Acknowledge bit.  
Acknowledge  
bit  
Acknowledge  
bit  
Start  
bit  
Acknowledge  
bit  
Bus Activity  
Control Byte  
Word Address  
Data  
A
10  
A
9
A
8
A
7
A
0
D
7
D
0
S
X
X
X
X
W
ACK  
ACK  
ACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, set to  
0
R/W bit = 0  
Figure 89: Byte Write Command, R/W = 0  
19.4.2 Sequential Write Command  
The write Control Byte, Word Address and the first data byte are transmitted to the SLG46585 in the same way as in a Byte Write  
command. However, instead of generating a Stop condition, the Master continues to transmit data bytes to the SLG46585. Each  
subsequent data byte will increment the internal address counter, and will be written into the next higher byte in the command  
addressing. As in the case of the Byte Write command, the internal write cycle will take place at the time that the SLG46585  
generates the Acknowledge bit.  
Acknowledge  
Acknowledge  
bit  
Start  
bit  
bit  
Bus Activity  
Data (n + 1)  
Data (n + x)  
Control Byte  
Word Address (n)  
Data (n)  
A
10  
A
8
A
9
ACK  
ACK  
P
SDA LINE  
S
X
X
X
X
W
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, set to  
0
R/W bit = 0  
Figure 90: Sequential Write Command, R/W = 0  
19.4.3 Current Address Read Command  
The Current Address Read Command reads from the current pointer address location. The address pointer is incremented at the  
first STOP bit following any write control byte. For example, if a Write or Random Read (which contains a write control byte) writes  
or reads data up to address n, the address pointer would get incremented to n + 1 upon the STOP of that command. Subsequently,  
Datasheet  
18-Sep-2019  
Revision 3.3  
135 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
a Current Address Read that follows would start reading data at n + 1. The Current Address Read Command contains the Control  
Byte sent by the Master, with the R/W bit = “1”. The SLG46585 will issue an Acknowledge bit, and then transmit eight data bits  
for the requested byte. The Master will not issue an Acknowledge bit, and follow immediately with a Stop condition.  
Start  
bit  
Acknowledge  
bit  
Stop  
bit  
Bus Activity  
Control Byte  
Data (n+1)  
A
10  
A
9
A
8
S
X
X
X
X
R
ACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
No Ack  
bit  
Not used, set to  
0
R/W bit = 1  
Figure 91: Current Address Read Command, R/W = 1  
19.4.4 Random Read Command  
The Random Read command starts with a Control Byte (with R/W bit set to “0”, indicating a write command) and Word Address  
to set the internal byte address, followed by a Start bit, and then the Control Byte for the read (exactly the same as the Byte  
Write command). The Start bit in the middle of the command will halt the decoding of a Write command, but will set the internal  
address counter in preparation for the second half of the command. After the Start bit, the Master issues a second control byte  
with the R/W bit set to “1”, after which the SLG46585 issues an Acknowledge bit, followed by the requested eight data bits.  
.
Acknowledge  
Stop  
bit  
Start  
bit  
bit  
Bus Activity  
Data (n)  
Control Byte  
Word Address (n)  
Control Byte  
A
10  
A
9
A
8
A
10  
A
9
A
8
R
ACK  
P
S
ACK  
X
X
X
X
SDA LINE  
S
X
X
X
X
W
ACK  
Control  
Code  
Block  
Address  
Control  
Code  
R/W bit = 1  
No Ack  
bit  
Not used, se  
t to 0  
R/W bit = 0  
Figure 92: Random Read Command  
19.4.5 Sequential Read Command  
Datasheet  
18-Sep-2019  
Revision 3.3  
136 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
The Sequential Read command is initiated in the same way as a Current Address Read or Random Read command, except that  
once the SLG46585 transmits the first data byte, the Bus Master issues an Acknowledge bit as opposed to a Stop condition in a  
random read. The Master can continue reading sequential bytes of data, and will terminate the command with a Stop condition.  
Acknowledge  
Start  
bit  
bit  
Bus Activity  
Data (n + 2)  
Data (n + x)  
Control Byte  
Data (n)  
Data (n+1)  
A
8
A
10  
A
9
ACK  
P
SDA LINE  
S
X
X
X
X
R
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, set  
to 0  
No Ack  
bit  
R/W bit = 1  
Figure 93: Sequential Read Command  
19.4.6 I2C Serial Command Address Space  
In the read and write command address structure, there are a total of 11 bits of addressing, each pointing to a unique byte of  
information, resulting in a total address space of 2K bytes. Of this 2K byte address space, the valid addresses accessible to the  
I2C Macrocell on the SLG46585 are in the range from 0 (0x00) to 255 (0xFF). The MSB address bits (A10, A9, and A8) will be  
“0” for all commands to the SLG46585.  
Datasheet  
18-Sep-2019  
Revision 3.3  
137 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
19.5 I2C SERIAL COMMAND REGISTER MAP  
There are seven read/write protect modes for the design sequence from being corrupted or copied. See Table 91 for details.  
Table 91: Read/Write Protection Options  
Protection Modes Configuration  
Locked Locked for  
Locked  
Unlocked for read  
bits  
Locked  
for write  
bits  
Locked  
for write  
all bits  
for read  
and write andwriteall  
read bits  
Data  
Output  
From  
Register  
Address  
(HEX)  
bits  
bits  
Configurations  
Register  
[1832]=0  
Register  
[1871]=0  
Register  
[1870]=0  
Register  
[1832]=1  
Register  
[1871]=0  
Register  
[1870]=0  
Register  
[1832]=0  
Register  
[1871]=1  
Register  
[1870]=0  
Register  
[1832]=0  
Register  
[1871]=x  
Register  
[1870]=1  
Register  
[1832]=1  
Register  
[1871]=1  
Register  
[1870]=0  
Register  
[1832]=1  
Register  
[1871]=x  
Register  
[1870]=1  
I2C Serial Reset  
Command  
R/W  
R
R/W  
R
R/W  
R
R
R
R
R/W  
R
R
R
R
Memory  
Memory  
Macrocell  
CF,b’6  
CF,b’7  
F4  
Outputs Latching During  
I2C Write  
Connection Matrix  
Virtual Inputs  
R/W  
R/W  
R/W  
R/W  
Configuration Bits for All  
Macrocells  
(IO Pins, Combination  
Function Macrocells,  
ASM, etc.)  
R/W  
R/W  
W
W
R
R
R
R
-
-
-
-
Memory  
Memory  
80-BF  
Macrocells Inputs  
Configuration  
(Connection Matrix  
00-67  
Outputs)  
6E, D0-E3;  
CF,b’0-b’2;  
C6-CE;  
C0-C4;  
75-7F  
LDO settings, RAM,  
ACMP settings, DLY/  
CNT control data, RTC  
settings  
R/W  
R
R/W  
R
R/W  
R
R
R
R/W  
R
R
R
Macrocells Output  
Values (Connection  
Matrix Inputs)  
F0-F3;  
F5-F7  
Macrocell  
Counter Current Value  
ASM Current State  
R
R
R
R
R
R
R
R
R
R
R
R
Macrocell  
Macrocell  
70-71  
EF  
Silicon Identification  
Service Bits  
R
R
R
R
R
R
Memory  
Memory  
E8  
Pattern ID0/1  
I2C Control Code  
R/W  
R
R/W  
R
R/W  
R
R
R
R/W  
R
R
R
E6, E4  
Memory E9,b’0-b3;  
Protection Read  
Configuration (Register  
[1832])  
R
R
R
R
R
R
R
R
R
R
R
R
Memory E5,b’0  
Protection Write  
Configuration (Register  
[1870],  
Memory E9,b’6-b’7  
Register [1871)  
Datasheet  
18-Sep-2019  
Revision 3.3  
138 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
R/W  
W
R
Allow Read and Write Data  
Allow Write Data Only  
Allow Read Data Only  
-
The Data is protected for Read and Write  
It is possible to read some data from macrocells, such as counter current value, ASM current state, connection matrix, and  
connection matrix virtual inputs. The I2C write does not have any impact on data in case data comes from macrocell output, except  
Connection Matrix Virtual Inputs. The silicon identification service bits allow identifying silicon family, its revision, and others.  
Note: If register [1663] = 1, all outputs are latched while inputs and internal macrocells retain their status during I2C write.  
Note: Any write commands that come to the device via I2C that are not blocked, based on the protection bits, will change the  
contents of the RAM register bits that mirror the NVM bits. These write commands will not change the NVM bits themselves, and  
a POR event will restore the register bits to original programmed contents of the NVM.  
See Section 22 for detailed information on all registers.  
19.5.1 I2C Serial Reset Command  
If I2C serial communication is established with the device, it is possible to reset the device to initial power up conditions, including  
configuration of all macrocells, and all connections provided by the Connection Matrix. This is implemented by setting  
register [1662] I2C reset bit to “1”, which causes the device to re-enable the Power-On Reset (POR) sequence, including the  
reload of all register data from NVM. During the POR sequence, the outputs of the device will be in tri-state. After the reset has  
taken place, the contents of register [1662] will be set to “0” automatically. The timing diagram shown in Figure 94 illustrates the  
sequence of events for this reset function.  
Datasheet  
18-Sep-2019  
Revision 3.3  
139 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Acknowledge  
bit  
Acknowledge  
bit  
Start  
bit  
Acknowledge  
bit  
Bus Activity  
Control Byte  
Word Address  
Data  
A
10  
A
9
A
8
A
7
A
0
D
7
D
0
S
X
X
X
X
W
ACK  
ACK  
ACK  
SDA LINE  
P
Internal Reset bit  
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, set to  
0
Write bit  
by I2C Stop Signal  
Reset-bit register output  
Internal POR  
reloading NVM into Data register  
Reset-bit register (register [1662]) is cleared by reloading NVM into Data register  
1) I2C write with register [1622] = 1 (I2C reset bit with reloading NVM into Data register)  
2) POR go to LOW and reloading NVM into Data register start after “STOP” of I2C  
3) POR go to HIGH after reloading NVM into Data register  
Figure 94: Reset Command Timing  
19.5.2 Reading Counter Data via I2C  
The current count value in the RTC counter and two counters in the device can be read via I2C. The counters that have this  
additional functionality are 8-bit counters CNT2 and CNT4.  
19.5.3 User RAM and OTP Memory Array  
There are eight bytes of RAM memory that can be read and written remotely by I2C commands. The initial contents of this  
memory space can be selected by the user, and this information will be transferred from OTP memory to the RAM memory  
space during the power-up sequence. The lowest order byte in this array (User Configurable RAM/OTP Byte 0) is located at I2C  
address 0xD8, and the highest order byte in this array is located at I2C address 0xDF.  
Table 92: RAM Array Table  
I2C Address  
(hex)  
Highest Bit  
Address  
Lowest Bit  
Address  
Memory Byte  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
1735  
1743  
1751  
1759  
1767  
1775  
1783  
1791  
1728  
1736  
1744  
1752  
1760  
1768  
1776  
1784  
User Configurable RAM/OTP Byte 0  
User Configurable RAM/OTP Byte 1  
User Configurable RAM/OTP Byte 2  
User Configurable RAM/OTP Byte 3  
User Configurable RAM/OTP Byte 4  
User Configurable RAM/OTP Byte 5  
User Configurable RAM/OTP Byte 6  
User Configurable RAM/OTP Byte 7  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
140 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
20 Low Dropout Regulators  
20.1 LDO REGULATOR DESCRIPTION  
The SLG46585 comes with four low dropout regulators each rated at 150 mA. Each LDO regulator has 3 modes which are: HP  
MODE is the standard active mode supporting full 150 mA output; LP MODE is a low power mode with maximum 100 µA; and  
finally Power Switch Mode in which the LDO regulator ceases to regulate and the Regulator MOSFET is turned on as a power  
switch, passing the voltage applied to VIN directly to VOUT.  
The LDO regulators are paired together with LDO0 and LDO1 sharing the same VIN called LDO0/1 VIN, likewise LDO2 and  
LDO3 share the same VIN called LDO2/3 VIN.  
P-Ch MOSFET  
LDO0 VOUT  
LDO0/1 VIN  
Vref Selection  
V1 Value  
300 Ω  
Dis_en  
register [1455]  
registers  
Vref  
[1599:1595]  
-
Vref Selection  
V2 Value  
registers  
[1799:1795]  
+
pd  
Connection Matrix  
Input [49]  
LDO0 nFault  
PWR Switch Mode  
Enable register  
[1452]  
LDO On/Off  
pd  
From Connection Matrix Out [97]  
0: V1 value  
1: V2 value or PWR Switch  
Selection Enable register [1793]  
Start-Up Ramping Slope Selection  
1.25 V/ms, 2.5 V/ms, 10 V/ms or 20 V/ms  
register [1592], register [1453]  
LDO0 Overcurrent & Short-circuit  
Detection Enable register [1454]  
From Connection Matrix Output [92]  
LDO LP Mode Enable register [1794]  
From Connection Matrix Out [93]  
LDO ON/OFF  
0: LDO Off  
1: LDO On  
LDO0 _en register [1792]  
UVLO_0 Out (ACMP0 Out)  
UVLO_0_HW_EN register [1585]  
Temp Sensor Out (ACMP2 Out)  
Temp_Sensor_HW_EN register [1656]  
Figure 95: LDO0 Regulator Block Diagram  
Datasheet  
18-Sep-2019  
Revision 3.3  
141 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
P-Ch MOSFET  
LDO1 VOUT  
LDO0/1 VIN  
Dis_en  
register  
[1451]  
Vref Selection  
V1 Value  
300 Ω  
registers  
Vref  
[1607:1603]  
-
Vref Selection  
V2 Value  
registers  
[1807:1803]  
+
pd  
Connection Matrix  
Input [50]  
LDO1 nFault  
PWR Switch Mode  
Enable register  
[1448]  
LDO On/Off  
From Connection Matrix Out [98]  
0: V1 value  
1: V2 value or PWR Switch  
pd  
Selection Enable register [1801]  
Start-Up Ramping Slope Selection  
1.25 V/ms, 2.5 V/ms, 10 V/ms or 20 V/ms  
register[1600], register[1449]  
LDO1 Overcurrent & Short-circuit  
Detection Enable register [1450]  
From Connection Matrix Output [92]  
LDO LP Mode Enable register [1794]  
From Connection Matrix Out [94]  
LDO ON/OFF  
0: LDO Off  
1: LDO On  
LDO1 _en register [1800]  
UVLO_0 Out (ACMP0 Out)  
UVLO_0_HW_EN register [1585]  
Temp Sensor Out (ACMP2 Out)  
Temp_Sensor_HW_EN register [1656]  
Figure 96: LDO1 Regulator Block Diagram  
Datasheet  
18-Sep-2019  
Revision 3.3  
142 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
P-Ch MOSFET  
LDO2 VOUT  
LDO2/3 VIN  
Vref Selection  
V1 Value  
Dis_en  
register  
[1463]  
300 Ω  
registers  
[1615:1611]  
Vref  
-
Vref Selection  
V2 Value  
registers  
[1815:1811]  
+
pd  
Connection Matrix  
Input [51]  
LDO2 nFault  
PWR Switch Mode  
Enable register  
[1460]  
LDO On/Off  
From Connection Matrix Out [99]  
0: V1 value  
1: V2 value or PWR Switch  
pd  
Selection Enable register [1809]  
Start-Up Ramping Slope Selection  
1.25 V/ms, 2.5 V/ms, 10 V/ms or 20 V/ms  
register [1608], register [1461]  
LDO2 Overcurrent & Short-circuit  
Detection Enable register [1462]  
From Connection Matrix Output [92]  
LDO LP Mode Enable register [1794]  
From Connection Matrix Out [95]  
LDO ON/OFF  
0: LDO Off  
1: LDO On  
LDO2 _en register [1808]  
UVLO_1 Out (ACMP1 Out)  
UVLO_1_HW_EN register [1584]  
Temp Sensor Out (ACMP2 Out)  
Temp_Sensor_HW_EN register [1656]  
Figure 97: LDO2 Regulator Block Diagram  
Datasheet  
18-Sep-2019  
Revision 3.3  
143 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
P-Ch MOSFET  
LDO3 VOUT  
LDO2/3 VIN  
Vref Selection  
V1 Value  
Dis_en  
register  
[1459]  
300 Ω  
registers  
Vref  
[1623:1619]  
-
Vref Selection  
V2 Value  
+
pd  
Connection Matrix  
Input [52]  
registers  
[1823:1819]  
LDO3 nFault  
PWR Switch Mode  
Enable register  
[1456]  
LDO On/Off  
pd  
From Connection Matrix Out [100]  
0: V1 value  
1: V2 value or PWR Switch  
Selection Enable register [1817]  
Start-Up Ramping Slope Selection  
1.25 V/ms, 2.5 V/ms, 10 V/ms or 20 V/ms  
register [1616], register [1457]  
LDO3 Overcurrent & Short-circuit  
Detection Enable register [1458]  
From Connection Matrix Output [92]  
LDO LP Mode Enable register [1794]  
From Connection Matrix Out [96]  
LDO ON/OFF  
0: LDO Off  
1: LDO On  
LDO3 _en register [1816]  
UVLO_1 Out (ACMP1 Out)  
UVLO_1_HW_EN register [1584]  
Temp Sensor Out (ACMP2 Out)  
Temp_Sensor_HW_EN register [1656]  
Figure 98: LDO3 Regulator Block Diagram  
20.1.1 Voltage Selection  
Each LDO has access to 32 voltage levels derived from a bandgap voltage reference.  
It is possible to select two different output voltage levels (V1 and V2) per LDO. The voltage levels can be changed through the  
Connection Matrix, after V1/V2 selection is enabled through the register bit. It is also possible to change the LDO output voltage  
level through the I2C by writing the corresponding LDO output voltage selection number according to Table 93.  
Table 93: LDO Output Voltage Selection  
Selection #  
LDO VOUT (V)  
0.90  
LDO Min VIN (V)  
Min VDD (V)  
2.50  
PW SEL  
000  
0
1
2
3
4
5
2.50  
2.50  
2.50  
2.50  
2.50  
2.50  
1.00  
2.50  
000  
1.05  
2.50  
000  
1.10  
2.50  
000  
1.20  
2.50  
000  
1.25  
2.50  
000  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
144 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 93: LDO Output Voltage Selection (Continued)  
Selection #  
LDO VOUT (V)  
1.35  
1.50  
1.67  
1.80  
1.90  
2.00  
2.10  
2.20  
2.30  
2.40  
2.50  
2.60  
2.70  
2.80  
2.85  
2.90  
3.00  
3.10  
3.20  
3.30  
3.40  
3.50  
3.60  
4.00  
4.10  
4.20  
LDO Min VIN (V)  
2.50  
Min VDD (V)  
2.50  
2.50  
2.50  
2.50  
2.50  
2.50  
2.80  
2.80  
2.80  
2.80  
2.80  
3.00  
3.00  
3.30  
3.30  
3.30  
3.30  
3.60  
3.60  
3.60  
3.90  
3.90  
3.90  
4.40  
4.50  
4.50  
PW SEL  
000  
000  
000  
000  
000  
000  
001  
001  
001  
001  
001  
010  
010  
011  
011  
011  
011  
100  
100  
100  
101  
101  
101  
110  
111  
6
7
2.50  
8
2.50  
9
2.50  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
2.50  
2.50  
2.50  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
3.15  
3.20  
3.30  
3.40  
3.50  
3.60  
3.70  
3.80  
3.90  
4.30  
4.40  
4.50  
111  
Note 1 The combination of VIN, VDD, and VOUT must satisfy the rule: VDD ≥ VIN ≥ VOUT + 0.3 V.  
Note 2 VIN and VDD should not exceed 5.5 V.  
20.1.2 LDO HP Mode Operation  
HP Mode is the standard active LDO mode with a 150 mA per LDO output loading capability. VDD ≥ 2.5 V.  
A high level signal should be applied to Connection Matrix Outputs [93], [94], [95], and [96] together with the register enable bits  
[1792], [1800], [1808], and [1816] to enable LDO0, LDO1, LDO2, and LDO3, respectively. The LDO requires a wait time to enable  
analog circuitry before the LDO output starts to rise with the desired ramping slope selected through the register bits.  
20.1.3 LDO LP Mode Operation  
It is possible to enable ultra-low power LP Mode in which max output loading is 100 µA and quiescent current consumption is  
~2 µA per LDO (without load). LP Mode can be enabled through Connection Matrix Output [92] together with the register enable  
bit <1794> and have an impact for all LDOs enabled in the SLG46585 chip.  
Datasheet  
18-Sep-2019  
Revision 3.3  
145 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
20.1.4 Power Switch Mode Operation  
Each LDO has an additional option to operate in power switch mode. In this case, all LDO related circuitry will be disabled. The  
quiescent current consumption is ~1 µA in power switch mode.  
The power switch option is available in each LDO and can be used instead of the VOUT2 output voltage level selected by the  
following register bits: register [1452] for LDO0, register [1448] for LDO1, register [1460] for LDO2, and register [1456] for LDO3.  
The Power Switch Mode can be selected by applying a high-level signal to the Connection Matrix Output [97], [98], [99], and [100]  
for LDO0, LDO1, LDO2, and LDO3 respectively.  
20.2 OVER-CURRENT LIMIT AND SHORT-CIRCUIT DETECTION  
Each LDO has the option to enable OCL (Over-Current Limit, if the output current rises above 210 mA) and SCD (Short-Circuit  
Detection, if output voltage drops below 0.5 V with the current limited by 20 mA).  
These options are available for the LDO in HP Mode only. The nFAULT signal per LDO will generate a low-level signal to the  
connection matrix input when the over-current limit is detected.  
20.3 LDO EFFICIENCY  
The efficiency of LDO regulators is limited by the quiescent current and input/output voltages as follows:  
IOUT × VOUT  
--------------------------------------------  
(IOUT + IQ) × VIN  
ηEF  
=
× 100  
where:  
ηEF = LDO efficiency, in percents (%)  
IOUT = Output current, in Amps (A)  
VOUT = Output voltage, in Volts (V)  
IQ = Quiescent current, in Amps (A)  
VIN = Input voltage, in Volts (V)  
To have a high efficiency, drop out voltage and quiescent current must be minimized. In addition, the voltage difference between  
input and output must be minimized, since the power dissipation of LDO regulators accounts for efficiency:  
PD = VDO × IOUT  
where:  
PD = Power Dissipation, in Watts (W)  
V
DO = Drop out voltage, in Volts (V)  
IOUT = Output current, in Amps (A)  
The Input/Output voltage difference is an intrinsic factor in determining the efficiency, regardless of the load conditions.  
20.4 LDO THERMAL CONSIDERATIONS  
The thermal limitations must be taken into consideration during regulator design. The SLG46585 is rated at 0.6 W of power  
dissipation at 85 °C ambient and 0.8 W of power dissipation at 70 °C ambient. If a regulator is connected to 5.0 V and then is  
programmed to output 1.8 V, the power dissipation at 150 mA is 0.48 W or almost the entire thermal budget of the SLG46585. In  
this case we recommend putting an external resistor between the application’s power source (battery or wall power) and the  
SLG46585’s LDO VIN to help distribute the thermal load. A 10 Ω, ¼ watt resistor would cut the IC thermal dissipation about in  
half without impacting overall performance. However, because the LDO VIN voltage is shared between two LDOs the resistor  
should be properly selected for the higher of the desired LDO output voltages.  
If it is possible to use the temperature sensor together with ACMP2 to automatically shut down all LDOs if the die temperature  
rises to a predetermined threshold level. The LDOs will automatically restart when the chip has cooled down within the hysteresis  
range forACMP2. Other temperature shut off levels may be achieved by incorporating the temperature sensor intoACMP3’s input.  
Datasheet  
18-Sep-2019  
Revision 3.3  
146 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
20.5 SOFT START FUNCTION (SS)  
Table 94 to Table 97 show the bit settings and slew rate selection options for each LDO.  
Table 94: LDO0 Ramp Rate Selection Table  
Parameter  
SS0  
Description  
SS Slew Rate 0  
SS Slew Rate 1  
SS Slew Rate 2  
SS Slew Rate 3  
Typical Value  
10 V/ms  
register [1453]  
register [1592]  
0
0
1
1
0
1
0
1
SS1  
20 V/ms  
SS2  
1.25 V/ms  
2.50 V/ms  
SS3  
Table 95: LDO1 Ramp Rate Selection Table  
Parameter  
SS0  
Description  
SS Slew Rate 0  
SS Slew Rate 1  
SS Slew Rate 2  
SS Slew Rate 3  
Typical Value  
10 V/ms  
register [1449]  
register [1600]  
0
0
1
1
0
1
0
1
SS1  
20 V/ms  
SS2  
1.25 V/ms  
2.50 V/ms  
SS3  
Table 96: LDO2 Ramp Rate Selection Table  
Parameter  
SS0  
Description  
SS Slew Rate 0  
SS Slew Rate 1  
SS Slew Rate 2  
SS Slew Rate 3  
Typical Value  
10 V/ms  
register [1461]  
register [1608]  
0
0
1
1
0
1
0
1
SS1  
20 V/ms  
SS2  
1.25 V/ms  
2.50 V/ms  
SS3  
Table 97: LDO3 Ramp Rate Selection Table  
Parameter  
SS0  
Description  
SS Slew Rate 0  
SS Slew Rate 1  
SS Slew Rate 2  
SS Slew Rate 3  
Typical Value  
10 V/ms  
register [1457]  
register [1616]  
0
0
1
1
0
1
0
1
SS1  
20 V/ms  
SS2  
1.25 V/ms  
2.50 V/ms  
SS3  
20.6 ACMPS: UNDER VOLTAGE LOCKOUT CAPABILITY, POWER GOOD  
LDO0/1 VIN and LDO2/3 VIN are sensed by ACMP0 and ACMP1 respectively as one of their input options. The sense line can  
be divided by 2, 3, or 4 for the common mode voltage input limitation of ACMP0 and ACMP1. ACMP0 and ACMP1 can be set to  
the customers desired under voltage lockout (UVLO) level. The undervoltage lockout can be set by either hardware connection  
to control the LDO or through the Connection Matrix. The UVLO_0 hardware connection to the LDO can be enabled by  
register [1585] for LDO0 and LDO1, and UVLO_1 by register [1584] for LDO2 and LDO3.  
Note: ACMP0 needs to be properly configured to use UVLO_0 for LDO0 and LDO1. ACMP1 needs to be properly configured to  
use UVLO_1 for LDO2 and LDO3.  
A lockout level below 2.5 V is not useful as the lowest acceptable power supply voltage is 2.5 V.  
ACMP3 has a selectable input from the output of LDO0 or 2 for the purpose of a power good.  
The ACMPs connection to VDD may be reused for the purpose stated above.  
Datasheet  
18-Sep-2019  
Revision 3.3  
147 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
20.7 REGULATOR STABILITY CONSIDERATIONS  
The regulators are only stable in HP MODE when a 2 µF (min) capacitor or greater is attached to each LDOs VOUT. The  
recommended capacitor is a 2 µF (min) X5R capacitor rated for 6 V or greater. The X5R capacitor varies with temperature, DC  
bias voltage, and process; however the SLG46585 LDOs have taken this variance into consideration when recommending the  
2 µF (min) X5R from -40 °C to +85 °C.  
20.8 LDO REGULATOR COLD START UP  
When the SLG46585 VDD goes high, then the fastest that an LDO regulator can begin to power up under the control of the  
SLG46585 is ~2 ms typical, and 3 ms max.  
During this cold start period the P Channel MOSFET gate is 0 V so the MOSFET is automatically turning on if LDO VIN is also  
coming up.  
20.9 LDO REGULATOR HOT START UP  
When the SLG46585 VDD is already high, then the fastest than an LDO regulator can begin to power up is around 500 µs + soft  
start ramping.  
20.10 DISCHARGE RESISTORS  
Each LDO comes with a program selectable 300 discharge resistor. For applications that desire a power rail to be brought to  
near zero during shutdown, then the 300 discharge resistor is useful. For applications that desire to keep remaining charge on  
a VOUT capacitor the discharge resistor should not be selected.  
The discharge resistor is set by register [1455] for LDO0, register [1451] for LDO1, register [1463] for LDO2, and register [1459]  
for LDO3.  
20.11 TYPICAL APPLICATION CIRCUIT  
VDD  
LDO0 VOUT  
LDO0  
C1  
0.1 µF  
Cout0  
4.7 µF  
*
*
*
**  
LDO0/1 VIN  
LDO2/3 VIN  
LDO1 VOUT  
LDO2 VOUT  
LDO1  
LDO2  
Cin0  
10 µF  
Cout1  
4.7 µF  
**  
**  
Cout2  
4.7 µF  
Cin1  
10 µF  
LDO3 VOUT  
AGND  
GND  
LDO3  
Cout3  
4.7 µF  
**  
Note: All internal connections shown inside the SLG46585 are hardwired connections that cannot be changed.  
Note*: Keep decoupling capacitors close to the SLG46585.  
Note**: Keep output capacitors close to the SLG46585. Long distances negatively impact LDO stability.  
Figure 99: LDO Typical Application Circuit  
Datasheet  
18-Sep-2019  
Revision 3.3  
148 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
20.12 TYPICAL APPLICATION PERFORMANCE  
4.342  
4.34  
4.338  
4.336  
4.334  
4.332  
4.33  
4.328  
0.0  
20.0  
40.0  
60.0  
80.0 100.0 120.0 140.0 160.0 180.0 200.0  
OUT (mA)  
I
Figure 100: LDO Load Regulation, HIGH POWER Mode, T = 25 °C, VDD = 5 V, VOUT = 4.35 V  
4.50  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
IOUT (mA)  
Figure 101: LDO Load Regulation, LOW POWER Mode, T = 25 °C, VDD = 5 V, VOUT = 4.35 V  
Datasheet  
18-Sep-2019  
Revision 3.3  
149 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
ꢀ8ꢄ  
ꢀ8ꢃꢁ  
ꢀ8ꢃ  
ꢉQ%ꢋYꢂꢁꢀIꢌ  
ꢉQ%ꢋYꢂꢀꢀIꢌ  
ꢉQ%ꢋYꢁꢀIꢌ  
ꢉQ%ꢋYꢂꢀIꢌ  
ꢀ8ꢂꢁ  
ꢀ8ꢂ  
ꢀ8ꢀꢁ  
ꢃ8ꢁ  
ꢄ8ꢀ  
ꢄ8ꢁ  
ꢅ8ꢀ  
ꢅ8ꢁ  
ꢁ8ꢀ  
ꢉꢊ ^ꢆ_  
Figure 102: LDO Dropout Voltage vs. VIN  
ꢄ8ꢂꢁ  
ꢄ8ꢁꢁ  
ꢃ8ꢂꢁ  
ꢃ8ꢁꢁ  
ꢀ8ꢂꢁ  
ꢀ8ꢁꢁ  
ꢌQ%ꢎYꢇꢂꢁIꢏ  
ꢌQ%ꢎYꢇꢁꢁIꢏ  
ꢌQ%ꢎYꢂꢁIꢏ  
ꢌQ%ꢎYꢇꢁIꢏ  
ꢀ8ꢂ  
ꢀ8ꢅ  
ꢃ8ꢃ  
ꢃ8ꢆ  
ꢄ8ꢇ  
ꢌꢍ ^ꢈ_  
ꢄ8ꢂ  
ꢄ8ꢅ  
ꢂ8ꢃ  
Figure 103: LDO High Power Mode VOUT vs. VIN, T = 25 °C, VDD = 5 V  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
150 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
ꢇ8ꢇꢀ  
ꢇ8ꢀꢀ  
ꢀ8ꢆꢀ  
ꢀ8ꢅꢀ  
ꢀ8ꢄꢀ  
ꢀ8ꢃꢀ  
ꢀ8ꢂꢀ  
ꢀ8ꢁꢀ  
ꢐQ%ꢑYꢈꢀꢀIꢒ  
ꢐQ%ꢑYꢇꢂꢀIꢒ  
ꢐQ%ꢑYꢇꢀꢀIꢒ  
ꢐQ%ꢑYꢂꢀIꢒ  
ꢐQ%ꢑYꢇꢀIꢒ  
ꢈ8ꢂ  
ꢈ8ꢆ  
ꢉ8ꢉ  
ꢉ8ꢄ  
ꢁ8ꢇ  
ꢐꢎ ^ꢏ_  
ꢁ8ꢂ  
ꢁ8ꢆ  
ꢂ8ꢉ  
Figure 104: LDO P-Channel ON Resistance RDSon vs. VIN, Power Switch Mode, T = 25 °C  
Datasheet  
18-Sep-2019  
Revision 3.3  
151 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
21 1 A Synchronous DC/DC Step Down Converter  
21.1 DC/DC BUCK CONVERTER DESCRIPTION  
The SLG46585 has a Synchronous DC/DC Step Down Converter macrocell. The DC/DC is rated for 1 A of current for an input  
voltage range 2.5 V to 5.5 V and has one output voltage that can be regulated at six user selectable steps from 1.2 V to 3.3 V.  
The DC/DC Step Down Converter is classified as a synchronous driver circuit that uses constant-on-time and constant frequency  
pulse modulation technique. The device features DCM and CCM mode with automatic mode switching, and uses an integrated  
internal resistive feedback divider.  
Protection features include Over Current Protection, Thermal Shutdown, Under Voltage Lockout.  
21.2 SYNCHRONOUS DC/DC STEP DOWN CONVERTER BLOCK DIAGRAM  
DC_CCM  
DC_INT  
CCM Det  
CMP  
OCP  
Note: DC_VIN and VDD pins must be connected together externally.  
DC_VIN  
Sw Freq. Sel  
registers  
[1876:1875]  
OCP Prot. Level Sel  
registers [1874:1873]  
DC_Enable  
From Connection Matrix [103]  
VOSNS  
SW  
ON Time  
Gen  
Soft-Start  
Power Good  
DC_SW  
CMP  
PWM  
ASM  
DRV  
DC_Enable  
0.6 V  
+
-
CMP  
XZ  
PGND  
VOSNS  
VOUT  
Setting  
Output Voltage Sel  
registers [1879:1877]  
Figure 105: DC/DC Block Diagram  
21.3 TYPICAL APPLICATION CIRCUIT  
Figure 106 shows the typical application circuit for the Synchronous DC/DC Step Down Converter macrocell, including a  
selection of typical external components.  
Datasheet  
18-Sep-2019  
Revision 3.3  
152 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
L1*  
3.6 V  
1.0 µH  
VIN  
2.5 V  
VOUT @ 1 A  
DC_VIN  
DC_SW  
CIN1  
10 µF  
CIN2  
0.1 µF  
CLOAD1  
4.7 µF  
CLOAD2  
10 µF  
DC_VOSNS  
SLG46585  
* Wurth 744777001  
Taiyo Yuden NR6045T1R0N  
VIN  
R1  
10 kΩ  
1%  
DC_CCM  
R2  
10 kΩ  
1%  
Continuous Conduction  
Mode Indicator  
DC_INT  
Current Fault Interrupt  
Indicator  
AGND  
PGND  
Figure 106: DC/DC Typical Application Circuit  
21.4 DC/DC BUCK CONVERTER PINOUT DESCRIPTION  
ON/OFF command for the Synchronous DC/DC Step Down Converter is a matrix connection [831:824]. Its enable signal is  
edge sensitive. During pin transition from Low to High, the Buck Converter will be enabled. And during transition from High to  
Low, the Buck Converter will be disabled. This pin should never be floating.  
DC_VIN - DC/DC Buck Converter input voltage pin.  
DC_SW - DC/DC Buck Converter Switching Node. The SW is a pulse modulated signal that is connected to the inductor of  
the LC Filter Circuit.  
DC_VOSNS - DC/DC Buck Converter VOUT feedback (sense) input. This pin is connected to the Output Voltage at the load.  
An internal feedback circuit regulates the output voltage by comparing it with an internal reference generated by the  
DC_AGND. No external resistors are required.  
DC_AGND - DC/DC Buck Converter Analog Ground feedback. This pin is connected to the Output Ground at the load. This  
pin is the source for both internal feedback circuit and internal generated reference.  
DC_PGND - DC/DC Buck Converter Power Ground.  
DC_CCM - DC/DC Buck Converter digital output indicates whether the current mode is CCM or DCM.  
DC_INT - DC/DC Buck Converter digital output indicates whether the over-current protection circuit has been activated due to  
an over-current event or a thermal shutdown has occurred. The DC/DC Step Down Converter Fault Signal is routed to Matrix  
Input 3.  
21.5 CONFIGURABLE PARAMETERS  
The DC/DC Converter's output voltage, switching frequency and current limit threshold are configurable. To change the  
configuration in system, use I2C to write the registers and then toggle the ON/OFF Signal.  
Datasheet  
18-Sep-2019  
Revision 3.3  
153 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 98: DC/DC Output Voltage Bit Settings  
Table 100: DC/DC Current Limit Bit Settings  
Output Voltage  
1.2 V  
registers [1879:1877]  
Current Limit  
2.5 A  
registers [1874:1873]  
000  
001  
010  
011  
100  
101  
00  
10  
1.5 V  
2.0 A  
1.8 V  
2.5 V  
3.0 V  
3.3 V  
Table 99: DC/DC Switching Frequency Bit Settings  
Switching Frequency  
1.5 MHz  
registers [1876:1875]  
00  
01  
2.0 MHz  
21.6 OUTPUT VOLTAGE SELECTION  
The Synchronous DC/DC Step Down Converter macrocell supports six user selectable output voltage levels. Register bits  
registers [1879:1877] control this selection.  
The DC/DC VIN operating range is from 2.5 to 5.5. However, the input voltage must be an extra 20 to 25% greater than the  
output voltage due to the maximum duty-cycle limit. The maximum allowable duty cycle at 1.5 MHz is 80% and the maximum  
allowable duty cycle at 2 MHz is 75%. Refer to the Table 101 for the typical input voltage ranges for each selectable output  
voltage.  
Table 101: DC/DC Output Voltage Selection  
Input Voltage, 1.5 MHz  
2.5 V to 5.5 V  
Input Voltage, 2.0 MHz  
2.5 V to 5.5 V  
Output Voltage  
1.2 V  
2.5 V to 5.5 V  
2.5 V to 5.5 V  
1.5 V  
2.5 V to 5.5 V  
2.5 V to 5.5 V  
1.8 V  
3.125 V to 5.5 V  
3.75 V to 5.5 V  
4.125 V to 5.5 V  
3.33 V to 5.5 V  
4.0 V to 5.5 V  
2.5 V  
3.0 V  
4.4 V to 5.5 V  
3.3 V  
21.7 SWITCHING FREQUENCY SELECTION  
The Synchronous DC/DC Step Down Converter macrocell supports two user selectable output switching frequencies 1.5 MHz  
and 2 MHz. Register bits registers [1876:1875] control frequency selection.  
The Switching Frequency Selection affects the allowable input voltage range for each selectable output voltage. Refer to the  
Table 101.  
21.8 OVER-CURRENT PROTECTION LEVEL SELECTION  
The Synchronous DC/DC Step Down Converter macrocell supports two user selectable current levels for the internal Over-Current  
Protection circuitry. Register bits registers [1874:1873] control current level selection, see Table 100. The Over Current Protection  
selections are dividers of the first register selection 00. So each subsequent selection is a ratio of the first current selection.  
Datasheet  
18-Sep-2019  
Revision 3.3  
154 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
The Synchronous DC/DC Step Down Converter macrocell senses the current when the high-side MOSFET is on. If  
an over-current condition occurs, i.e. the inductor current is higher than the user selected level between 2.0 A or 2.5 A (current  
limit), the high-side MOSFET turns off for 2 µs, and the INT/pin will become active. Then the high-side MOSFET turns on again  
if VOUT is lower than the user set voltage. If the inductor current is still higher than the current limit, the high-side MOSFET turns  
off again. This process will repeat.  
The converter has an INT pin which becomes active if an over-current condition occurs. User can feed this INT signal into an  
input pin of the PAK, and then the PAK processes the signal and turn on/off the buck converter. For example, the PAK counts 8  
INT pulses continuously, and then sends an “off” signal to the buck and turns it off. After a 1ms pause (off-time), the PAK sends  
an “on” signal to the buck and turns it on. This is one of many possible solutions how the OCP hiccup handling can be implement-  
ed. Please refer to an application note for more details.  
21.9 DC/DC THERMAL SHUTDOWN  
The Thermal Limit is set at 125 °C with a 25 °C hysteresis. The device must cool down to 100 °C before attempting to restart.  
During thermal shutdown, the converter operation is disabled. The Buck can self-recover without toggling the Enable.  
21.10 DC/DC UNDER VOLTAGE LOCKOUT  
The Under Voltage Lockout is used to protect the converter from operating at an insufficient voltage. When the VIN is High enough  
to reach the UVLO High threshold voltage, the converter will soft start to the selected output voltage if the ON/OFF command is  
already High or transitions from Low to High. When the VIN decreases to its Low threshold voltage, the converter shuts down.  
21.11 FAULT SIGNALS  
The Fault Matrix Connection is an active High signal and signifies when there is a UVLO or a Thermal Shutdown. The output will  
shut off. The DC/DC Buck Converter has a self-recovery capability. In UVLO, the device will recover if the DC_VIN satisfies the  
UVLO condition. In Thermal Shutdown, the device will recover if the temperature drops below the hysteresis value.  
The DC_INT is an active High signal and signifies when there is an Over Current Protection event. The DC/DC Buck Converter  
will need to be powered off and then powered back on through the ON/OFF signal in order to recover from the Over-Current  
event.  
Table 102: DC/DC Output Voltage Selection  
Fault  
UVLO  
OCP  
TS  
Fault Matrix Connection  
DC_INT  
Yes  
--  
--  
Yes  
--  
Yes  
21.12 DC/DC SOFT START  
The DC/DC Soft Start begins after Under Voltage Lockout is satisfied and the Enable is toggled from Low to High. The time  
between Enable and Soft Start will vary based on how fast the bandgap is able to rise. Once the bandgap is settled, the Converter  
will enter the soft start sequence. In the soft-start sequence, the ramp time is 0.5 ms.  
Any DC/DC Step Down Converter comparator outputs are ignored during the soft-start sequence. After soft-start ends, the output  
is compared internally to the reference.  
If the device enters Over Current Protection, there is a minimum Over Current Protection discharge period before which the device  
will begin soft-start again. If the load is not released, the current in the inductor will build and the process repeats.  
21.13 CONSTANT-ON-TIME  
The constant-on-time control topology (COT) provides fast transient response and makes loop stabilization easier. Fault condition  
protection includes current limiting and thermal shutdown. An Open-Drain INT output signals the host when an over-current  
Datasheet  
18-Sep-2019  
Revision 3.3  
155 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
condition is detected and an Open-Drain CCM output signals the host when the converter operates in full continuous conduction  
mode. The typical application circuit requires a minimum number of readily-available standard external components.  
21.14 DC/DC CONTINUOUS CONDUCTION MODE (CCM)  
The DC/DC Step Down Converter automatically switches into CCM when the regulating current exceeds the maximum deliverable  
current in DCM Mode. In Continuous Conduction Mode, the current through the inductor may reach zero for a while before  
charging again.  
In this mode, the DC_CCM pin will be asserted.  
21.15 DC/DC DISCONTINUOUS CONDUCTION MODE (DCM)  
The DC/DC Step Down Converter automatically switches into DCM when the regulating current is below the minimum deliverable  
current in CCM Mode. In Discontinuous Conduction Mode, the current through the inductor may reach zero for a while before  
charging again.  
21.16 DC/DC POWER DISSIPATION  
Power Dissipation is estimated by the use of the efficiency chart for the buck.  
Datasheet  
18-Sep-2019  
Revision 3.3  
156 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Figure 107: DC/DC Recommended PCB Layout  
Datasheet  
18-Sep-2019  
Revision 3.3  
157 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
21.17 LAYOUT CONSIDERATION  
Layout is important to avoid instability and noise coupling which can lead to system failures. DC/DC Converters are highly  
susceptible to instability and noise generated by high-current paths. At higher currents, both the DC/DC Converter and LDO are  
susceptible to thermal self-heating. Proper layout will mitigate, suppress and avoid these undesirable artifacts.  
21.17.1 Current Loops  
Determine the path of current through the DC/DC Converter and the LDO. Blue is the path of current through the power stage  
when the PMOS is enabled. Red is the path of current through the power stage when the NMOS is enabled. Green is the path of  
current through the LDO is enabled. The path of current for the Push-Pull digital signals are supplied by VDD. Keep the digital  
logic bypass capacitor close by (labeled CVDD).  
Figure 108: DC/DC Converter Current Loops  
21.17.2 AC vs DC  
The blue and red lines are both AC because of the switching DC DC converter. While the upper FET is On, current flows along  
the blue line. When the lower FET is On the current flows along the red line. The inductor prevents instantaneous changes in  
current and therefore the red/blue path through the inductor and output capacitors are DC. The green LDO path is always DC  
since there is no switching element.  
Datasheet  
18-Sep-2019  
Revision 3.3  
158 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Figure 109: DC/DC Converter AC and DC Loops  
21.17.3 DC/DC Converter  
AC Loop  
Place the bypass capacitor CIN1 close to Vin and PGND to reduce EMI and voltage spikes caused by V = Ldi/dt. Place vias  
near the capacitors to direct the current flow and ease thermal radiation.  
Datasheet  
18-Sep-2019  
Revision 3.3  
159 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
DC_SW and Inductor  
Rotate the inductor so that the SW node is turned away from the chip in order not to disrupt any other signals and the output  
capacitors are farthest from the AC Loop. Keep the DC_SW trace small in size, do not make the trace larger than it needs  
to be. Keep inductor terminals and other traces separated to avoid coupling noise through stray capacitance.  
Figure 110: AC Loop  
Figure 111: DC Switch and Inductor  
DC_VOSNS and DC_AGND  
DC_VOSNS taps the VOUT close to the output. Place this tap point at the output. DC_AGND should be similarly tapped at  
the output ground side. The purpose of these signals is for feedback loop and to generate a voltage reference. They are not  
intended for large current flow.  
DC_VIN, DC_SW and PGND  
Due to the MSTQFN-29 package pitch size, the thermal bottlenecks occur at the pin leads. The Buck current limit is based  
on the over-current selection. The width of the DC_SW and DC_VIN trace should be wide enough to avoid too much heating.  
General rule of thumb is to allow 2 mm per 1 A. PGND should be fairly large, flat and as continuous as possible. Preferably  
it should have a dedicated ground plane for the PGND and place bias to connect to the common GND.  
Datasheet  
18-Sep-2019  
Revision 3.3  
160 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Figure 112: DC Switch and Inductor  
21.17.4 DC/DC Converter  
LDO_VIN and LDO_VOUT  
For best performance, place input and output capacitors as close as possible. The smaller the capacitor size, the lower the  
voltage rating, but also the lower ESR.  
LDO Stability  
SLG46585 LDO requires very small inductance loops to guarantee stability. The total maximum inductance allowed is 5 nH  
(including packaging). Outside the packaging, the total maximum inductance is 2 nH. This equates to 3 mm. The entire LDO  
loop from LDO_VOUT to LDO_AGND should be no greater than 3 mm. Taking this into consideration, the LDO1_VOUT  
should be pulled out to the side closest to the LDO_AGND to minimize inductance.  
LDO_AGND  
Use another layer and multiple vias to connect all the LDO_AGNDs together. LDO_AGND needs to be wide to help  
dissipate the heat from the LDOs.  
Datasheet  
18-Sep-2019  
Revision 3.3  
161 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Figure 113: LDO_VIN and LDO_VOUT Current Flow  
Figure 114: LDO Decoupling  
Datasheet  
18-Sep-2019  
Revision 3.3  
162 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Figure 115: LDO_AGND Layout  
21.17.5 Digital  
CVDD  
VDD and GND power the digital side of the SLG46585. CVDD is the bypass capacitor (value 0.1 µF). The GND and VDD are  
on opposite ends of the chip. Use a layer underneath to connect the GND pin to the ground on CVDD, which is placed as  
close as possible to VDD pin  
Ground Source  
The Black Circle is the recommended location for connecting ground. It is in the middle, between the LDO and Buck. This is  
called star grounding. When the ground source is placed in a central location, the current comes out like a star keeping the  
ground currents going to the LDO and the Buck separated.  
Datasheet  
18-Sep-2019  
Revision 3.3  
163 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Figure 116: Ground Source for LDO and Buck  
Datasheet  
18-Sep-2019  
Revision 3.3  
164 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Figure 117: SLG46585 Ground Layout  
Digital Signals  
Shown in Teal, the digital signals should be wired on a separate routing layer. Since this device is in an MSP Package, a  
multi-layer layout is unavoidable if all pins are sued. The Pull-up resistors are not shown on DC_INT and DC_CCM to  
signal faults and CCM mode.  
Datasheet  
18-Sep-2019  
Revision 3.3  
165 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Figure 118: Digital Signals PCB Recommendation  
21.18 TYPICAL PERFORMANCE CHARACTERISTICS  
Figure 119: Efficiency vs. Output Current  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
166 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Figure 120: Output Voltage vs. Load Current  
VOUT  
(20mV/Div)  
VIN=5V, VOUT=1.2V  
IOUT= 0.42A to 1A,  
L=1uH  
IOUT  
(415mA/Div)  
Figure 121: Load Transient Response  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
167 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
VIN  
(5V/Div)  
VOUT  
(1V/Div)  
VSW  
(5V/Div)  
IOUT  
(1.25A/Div)  
VIN=5V, VOUT=1.2V  
IOUT= 0A, L=1uH  
Figure 122: VIN Power Up without Load  
VIN  
(5V/Div)  
VOUT  
(1V/Div)  
VSW  
(5V/Div)  
IOUT  
(1.25A/Div)  
VIN=5V, VOUT=1.2V  
IOUT= 400mA, L=1uH  
Figure 123: VIN Power Up with 400 mA Load  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
168 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
VIN  
(5V/Div)  
VOUT  
(1V/Div)  
VSW  
(5V/Div)  
IOUT  
(1.25A/Div)  
VIN=5V, VOUT=1.2V  
IOUT= 1A, L=1uH  
Figure 124: VIN Power Up with 1A Load  
Figure 125: Low IQ Current vs. Input Voltage  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
169 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
VOUT  
(100mV/Div)  
VSW  
(2V/Div)  
VIN=5V, VOUT=1.2V  
IOUT= 100mA, L=1uH  
Figure 126: Output Ripple vs. IOUT = 100 mA  
VOUT  
(20mV/Div)  
VSW  
(5V/Div)  
VIN=5V, VOUT=1.2V  
IOUT= 1A, L=1uH  
Figure 127: Output Ripple vs. IOUT = 1 A  
Datasheet  
CFR0011-120-00  
18-Sep-2019  
Revision 3.3  
170 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
22 Register Definitions  
22.1 REGISTER MAP  
Table 103: Register Map  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
Note: For register [0] to register [1495], I2C Read is valid (assuming register [1832] = 0), I2C Write is valid (assuming  
register [1871] = 0)  
Matrix Output  
5:0  
Matrix OUT: ASM-state0-EN0  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
7:6  
13:8  
Matrix OUT: ASM-state0-EN1  
Reserved  
15:14  
21:16  
Matrix OUT: ASM-state0-EN2  
Reserved  
23:22  
29:24  
Matrix OUT: ASM-state1-EN0  
Reserved  
31:30  
37:32  
Matrix OUT: ASM-state1-EN1  
Reserved  
39:38  
45:40  
Matrix OUT: ASM-state1-EN2  
Reserved  
47:46  
53:48  
Matrix OUT: ASM-state2-EN0  
Reserved  
55:54  
61:56  
Matrix OUT: ASM-state2-EN1  
Reserved  
63:62  
69:64  
Matrix OUT: ASM-state2-EN2  
Reserved  
71:70  
77:72  
Matrix OUT: ASM-state3-EN0  
Reserved  
79:78  
85:80  
Matrix OUT: ASM-state3-EN1  
Reserved  
87:86  
93:88  
Matrix OUT: ASM-state3-EN2  
Reserved  
95:94  
101:96  
103:102  
109:104  
111:110  
117:112  
119:118  
125:120  
127:126  
133:128  
135:134  
141:136  
143:142  
Matrix OUT: ASM-state4-EN0  
Reserved  
Matrix OUT: ASM-state4-EN1  
Reserved  
Matrix OUT: ASM-state4-EN2  
Reserved  
Matrix OUT: ASM-state5-EN0  
Reserved  
Matrix OUT: ASM-state5-EN1  
Reserved  
Matrix OUT: ASM-state5-EN2  
Reserved  
Datasheet  
18-Sep-2019  
Revision 3.3  
171 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
149:144  
151:150  
157:152  
159:158  
165:160  
167:166  
173:168  
175:174  
181:176  
183:182  
189:184  
191:190  
197:192  
199:198  
Matrix OUT: ASM-state6-EN0  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Matrix OUT: ASM-state6-EN1  
Reserved  
Matrix OUT: ASM-state6-EN2  
Reserved  
Matrix OUT: ASM-state7-EN0  
Reserved  
Matrix OUT: ASM-state7-EN1  
Reserved  
Matrix OUT: ASM-state7-EN2  
Reserved  
Matrix OUT: ASM-state-nRST  
Reserved  
Matrix OUT: IN0 of LUT3_6 or Delay0 Input  
(or Counter0 RST Input)  
205:200  
207:206  
213:208  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Reserved  
MatrixOUT:IN1ofLUT3_6orExternalClock  
Input of Delay0 (or Counter0)  
215:214  
221:216  
223:222  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Matrix OUT: IN2 of LUT3_6  
Reserved  
Matrix OUT: IN0 of LUT3_7 or Delay1 Input  
(or Counter1 RST Input)  
229:224  
231:230  
237:232  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Reserved  
MatrixOUT:IN1ofLUT3_7orExternalClock  
Input of Delay1 (or Counter1)  
239:238  
245:240  
247:246  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Matrix OUT: IN2 of LUT3_7  
Reserved  
Matrix OUT: IN0 of LUT3_8 or Delay2 Input  
(or Counter2 RST Input)  
253:248  
255:254  
261:256  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Reserved  
MatrixOUT:IN1ofLUT3_8orExternalClock  
Input of Delay2 (or Counter2)  
263:262  
269:264  
271:270  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Matrix OUT: IN2 of LUT3_8  
Reserved  
Matrix OUT: IN0 of LUT3_9 or Delay3 Input  
(or Counter3 RST Input)  
277:272  
279:278  
285:280  
287:286  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Reserved  
MatrixOUT:IN1ofLUT3_9orExternalClock  
Input of Delay3 (or Counter3)  
Reserved  
Datasheet  
18-Sep-2019  
Revision 3.3  
172 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
293:288  
295:294  
Matrix OUT: IN2 of LUT3_9  
Reserved  
Valid  
Valid  
Valid  
Valid  
Matrix OUT: IN0 of LUT3_10 or Delay4 Input  
(or Counter4 RST Input)  
301:296  
303:302  
309:304  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Reserved  
Matrix OUT: IN1 of LUT3_10 or External  
Clock Input of Delay4 (or Counter4)  
311:310  
317:312  
319:318  
325:320  
327:326  
333:328  
335:334  
341:336  
343:342  
349:344  
351:350  
357:352  
359:358  
365:360  
367:366  
373:368  
375:374  
381:376  
383:382  
389:384  
391:390  
397:392  
399:398  
405:400  
407:406  
413:408  
415:414  
421:416  
423:422  
429:424  
431:430  
437:432  
439:438  
445:440  
447:446  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Matrix OUT: IN2 of LUT3_10  
Reserved  
Matrix OUT: IO0 Digital Output Source  
Reserved  
Matrix OUT: IO0 Output Enable  
Reserved  
Matrix OUT: IO1 Digital Output Source  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Matrix OUT: IO2 Digital Output Source  
Reserved  
Matrix OUT: IO2 Output Enable  
Reserved  
Matrix OUT: IO4 Digital Output Source  
Reserved  
Matrix OUT: IO4 Output Enable  
Reserved  
Matrix OUT: IO5 Digital Output Source  
Reserved  
Matrix OUT: IO6 Digital Output Source  
Reserved  
Matrix OUT: IO6 Output Enable  
Reserved  
Matrix OUT: ACMP0 PWR UP  
Reserved  
Matrix OUT: ACMP1 PWR UP  
Reserved  
Matrix OUT: ACMP2 PWR UP  
Reserved  
Matrix OUT: ACMP3 PWR UP  
Reserved  
Datasheet  
18-Sep-2019  
Revision 3.3  
173 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
Matrix OUT: Input of Filter_0 with fixed time  
edge detector  
453:448  
455:454  
461:456  
463:462  
469:464  
471:470  
477:472  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Reserved  
Matrix OUT: Input of Filter_1 with fixed time  
edge detector  
Reserved  
Matrix OUT: Input of Programmable Delay &  
Edge Detector  
Reserved  
Matrix OUT: OSC 25kHz/2MHz PD  
(Power-Down)  
479:478  
485:480  
487:486  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Matrix OUT: LPOSC PD (Power-Down)  
Reserved  
Matrix OUT: IN0 of LUT2_0 or Clock Input of  
DFF0  
493:488  
495:494  
501:496  
503:502  
509:504  
511:510  
517:512  
519:518  
525:520  
527:526  
533:528  
535:534  
541:536  
543:542  
549:544  
551:550  
557:552  
559:558  
565:560  
567:566  
573:568  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Reserved  
Matrix OUT: IN1 of LUT2_0 or Data Input of  
DFF0  
Reserved  
Matrix OUT: IN0 of LUT2_1 or Clock Input of  
DFF1  
Reserved  
Matrix OUT: IN1 of LUT2_1 or Data Input of  
DFF1  
Reserved  
Matrix OUT: IN0 of LUT2_2 or Clock Input of  
DFF2  
Reserved  
Matrix OUT: IN1 of LUT2_2 or Data Input of  
DFF2  
Reserved  
Matrix OUT: IN0 of LUT3_0 or Clock Input of  
DFF3  
Reserved  
Matrix OUT: IN1 of LUT3_0 or Data Input of  
DFF3  
Reserved  
Matrix OUT: IN2 of LUT3_0 or nRST (nSET)  
of DFF3  
Reserved  
Matrix OUT: IN0 of LUT3_1 or Clock Input of  
DFF4  
Reserved  
Matrix OUT: IN1 of LUT3_1 or Data Input of  
DFF4  
Datasheet  
18-Sep-2019  
Revision 3.3  
174 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
575:574  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Matrix OUT: IN2 of LUT3_1 or nRST (nSET)  
of DFF4  
581:576  
583:582  
589:584  
591:590  
597:592  
599:598  
605:600  
607:606  
613:608  
615:614  
621:616  
623:622  
629:624  
631:630  
637:632  
639:638  
645:640  
647:646  
653:648  
655:654  
Reserved  
Matrix OUT: IN0 of LUT3_2 or Clock Input of  
DFF5  
Reserved  
Matrix OUT: IN1 of LUT3_2 or Data Input of  
DFF5  
Reserved  
Matrix OUT: IN2 of LUT3_2 or nRST (nSET)  
of DFF5  
Reserved  
Matrix OUT: IN0 of LUT3_3 or Clock Input of  
DFF6  
Reserved  
Matrix OUT: IN1 of LUT3_3 or Data Input of  
DFF6  
Reserved  
Matrix OUT: IN2 of LUT3_3 or nRST (nSET)  
of DFF6  
Reserved  
Matrix OUT: IN0 of LUT3_4 or Clock Input of  
DFF7  
Reserved  
Matrix OUT: IN1 of LUT3_4 or Data Input of  
DFF7  
Reserved  
Matrix OUT: IN2 of LUT3_4 or nRST (nSET)  
of DFF7  
Reserved  
Matrix OUT: IN0 of LUT3_11 or Input of Pipe  
661:656  
Delay or Up/Down selection of Ripple Count-  
er  
Valid  
Valid  
663:662  
669:664  
671:670  
677:672  
679:678  
685:680  
687:686  
693:688  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Matrix OUT: IN1 of LUT3_11 or nRSTof Pipe  
Delay or nRST of Ripple Counter  
Reserved  
Matrix OUT: IN2 of LUT3_11 or Clock of Pipe  
Delay or Clock of Ripple Counter  
Reserved  
Matrix OUT: IN0 of LUT3_5 or Clock Input of  
DFF8  
Reserved  
Matrix OUT: IN1 of LUT3_5 or Data Input of  
DFF8  
Datasheet  
18-Sep-2019  
Revision 3.3  
175 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
695:694  
Reserved  
Valid  
Valid  
Matrix OUT: IN2 of LUT3_5 or nRST (nSET)  
of DFF8  
701:696  
Valid  
Valid  
703:702  
709:704  
711:710  
717:712  
719:718  
725:720  
727:726  
733:728  
735:734  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Matrix OUT: IN0 of LUT4x2_0  
Reserved  
Matrix OUT: IN1 of LUT4x2_0  
Reserved  
Matrix OUT: IN2 of LUT4x2_0  
Reserved  
Matrix OUT: IN3 of LUT4x2_0  
Reserved  
Matrix OUT: LDO MODE1 Enable for LDO0/  
1/2/3  
741:736  
Valid  
Valid  
743:742  
749:744  
751:750  
757:752  
759:758  
765:760  
767:766  
773:768  
775:774  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Matrix OUT: LDO0_EN  
Reserved  
Matrix OUT: LDO1_EN  
Reserved  
Matrix OUT: LDO2_EN  
Reserved  
Matrix OUT: LDO3_EN  
Reserved  
Matrix OUT: LDO0 2nd VOUT Selection En-  
able  
781:776  
783:782  
789:784  
791:790  
797:792  
799:798  
805:800  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Reserved  
Matrix OUT: LDO1 2nd VOUT Selection En-  
able  
Reserved  
Matrix OUT: LDO2 2nd VOUT Selection En-  
able  
Reserved  
Matrix OUT: LDO3 2nd VOUT Selection En-  
able  
807:806  
813:808  
815:814  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Matrix OUT: RTC Clock  
Reserved  
Matrix OUT: RTC Trigger signal to read/write  
RTC CNT values  
821:816  
823:822  
829:824  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Reserved  
Matrix OUT: ON/OFF command for Synchro-  
nous DC/DC Step Down Converter  
831:830  
837:832  
Reserved  
Valid  
Valid  
Valid  
Valid  
Matrix OUT: Reserved  
Datasheet  
18-Sep-2019  
Revision 3.3  
176 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
839:838  
845:840  
847:846  
853:848  
855:854  
861:856  
863:862  
869:864  
871:870  
877:872  
879:878  
881:880  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Matrix OUT: Reserved  
Reserved  
Matrix OUT: Reserved  
Reserved  
Matrix OUT: Reserved  
Reserved  
Matrix OUT: Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
LDO2/3 VDD minimum Power Selection for 000: 2.5V, 001: 2.8V, 010: 3.0V, 011: 3.3V,  
LDO3 100: 3.6V, 101: 3.9V, 110: 4.4V, 111: 4.5V  
884:882  
887:885  
Valid  
Valid  
Valid  
Valid  
LDO2/3 VDD minimum Power Selection for 000: 2.5V, 001: 2.8V, 010: 3.0V, 011: 3.3V,  
LDO2  
100: 3.6V, 101: 3.9V, 110: 4.4V, 111: 4.5V  
895:888  
903:896  
911:904  
919:912  
927:920  
935:928  
943:936  
950:944  
951  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Valid  
CNT2 Counted Value for I2C read  
CNT4 Counted Value for I2C read  
Reserved  
Reserved  
Reserved  
Shadow buffer for RTC counter [7:0]  
Shadow buffer for RTC counter [14:8]  
Reserved  
Valid  
Valid  
959:952  
967:960  
975:968  
983:976  
988:984  
Shadow buffer for RTC counter [23:16]  
Shadow buffer for RTC counter [31:24]  
Shadow buffer for RTC counter [39:32]  
Shadow buffer for RTC counter [47:40]  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Shadow buffer data transfer direction selec-  
tion  
989  
990  
991  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Shadow buffer trigger signal selection  
0: From 15-bit counter divider  
1: From RTC clock  
RTC 32-bit time counter clock source  
999:992  
1007:1000  
1015:1008  
1023:1016  
Alarm DCMP [23:16]  
Alarm DCMP [31:24]  
Alarm DCMP [39:32]  
Alarm DCMP [47:40]  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
IO0  
1024  
1025  
Reserved  
Valid  
Valid  
Valid  
Valid  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO0 Pull-up/down Resistor Selection  
Datasheet  
18-Sep-2019  
Revision 3.3  
177 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
00: Floating  
01: 10K  
10: 100K  
1027:1026  
IO0 Pull-up/down Resistor Value Selection  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
11: 1M  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Reserved  
1029:1028  
1031:1030  
IO0 Mode Control (sig_io0_oe = 0)  
IO0 Mode Control (sig_io0_oe = 1)  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
IO1  
1032  
1033  
Reserved  
Valid  
Valid  
Valid  
Valid  
0: 1x  
1: 2x  
IO1 Driver Strength Selection  
0: Pull-down Resistor  
1: Pull-up Resistor  
1034  
IO1 Pull-up/down Resistor Selection  
Valid  
Valid  
Valid  
Valid  
00: Floating  
01: 10K  
10: 100K  
1036:1035  
IO1 Pull-up/down Resistor Value Selection  
11: 1M  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Analog Input/Output  
1039:1037  
IO1 Mode Control  
Valid  
Valid  
100: Push-Pull  
101: Open-Drain NMOS  
110: Open-Drain PMOS  
111: Analog Input & Open-Drain NMOS  
Reserved  
1040  
1041  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
1042  
1044:1043  
1047:1045  
Reserved  
1048  
1049  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
1050  
1052:1051  
1055:1053  
IO2  
1056  
1057  
Reserved  
Valid  
Valid  
Valid  
Valid  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO2 Pull-up/down Resistor Selection  
Datasheet  
18-Sep-2019  
Revision 3.3  
178 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
00: Floating  
01: 10K  
10: 100K  
1059:1058  
IO2 Pull-down Resistor Value Selection  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
11: 1M  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
1061:1060  
1063:1062  
IO2 Mode Control (sig_io2_oe = 0)  
IO2 Mode Control (sig_io2_oe = 1)  
11: Analog Input/Output  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
IO3  
1064  
1065  
Reserved  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
1067:1066  
00: Floating  
01: 10K  
10: 100K  
11: 1M  
1069:1068  
1071:1070  
IO3 Pull-down Resistor Value Selection  
IO3 Mode Control  
Valid  
Valid  
Valid  
Valid  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Reserved  
SCL  
1072  
1073  
Reserved  
Reserved  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
1074  
1076:1075  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Reserved  
1078:1077  
1079  
SCL Mode Control  
Reserved  
Valid  
Valid  
Valid  
Valid  
SDA  
1080  
1081  
Reserved  
Valid  
Valid  
Valid  
Valid  
0: 1x  
1: 2x  
SDA Driver Strength Selection  
1082  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Valid  
1084:1083  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Reserved  
1086:1085  
SDA Mode Control  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
1087  
IO4  
1088  
Reserved  
Datasheet  
18-Sep-2019  
Revision 3.3  
179 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
0: Pull-down Resistor  
1: Pull-up Resistor  
1089  
IO4 Pull-up/down Resistor Selection  
Valid  
Valid  
00: Floating  
01: 10K  
10: 100K  
1091:1090  
1093:1092  
1095:1094  
IO4 Pull-up/down Resistor Value Selection  
IO4 Mode Control (sig_io4_oe = 0)  
IO4 Mode Control (sig_io4_oe = 1)  
Valid  
Valid  
11: 1M  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
Valid  
Valid  
Valid  
Valid  
11: Analog Input/Output  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
IO5  
1096  
1097  
Reserved  
Valid  
Valid  
Valid  
Valid  
0: 1x  
1: 2x  
IO5 Driver Strength Selection  
0: Pull-down Resistor  
1: Pull-up Resistor  
1098  
IO5 Pull-up/down Resistor Selection  
Valid  
Valid  
Valid  
Valid  
00: Floating  
01: 10K  
10: 100K  
1100:1099  
IO5 Pull-up/down Resistor Value Selection  
11: 1M  
000: Digital Input without Schmitt Trigger  
001: Digital Input with Schmitt Trigger  
010: Low Voltage Digital Input  
011: Analog Input/Output  
1103:1101  
IO5 Mode Control  
Valid  
Valid  
100: Push-Pull  
101: Open-Drain NMOS  
110: Open-Drain PMOS  
111: Analog Input & Open-Drain NMOS  
IO6  
1104  
1105  
Reserved  
Valid  
Valid  
Valid  
Valid  
0: Pull-down Resistor  
1: Pull-up Resistor  
IO6 Pull-up/down Resistor Selection  
00: Floating  
01: 10K  
10: 100K  
11: 1M  
1107:1106  
1109:1108  
1111:1110  
IO6 Pull-up/down Resistor Value Selection  
IO6 Mode Control (sig_io6_oe = 0)  
IO6 Mode Control (sig_io6_oe = 1)  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
00: Digital Input without Schmitt Trigger  
01: Digital Input with Schmitt Trigger  
10: Low Voltage Digital Input  
11: Analog Input/Output  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: Open-Drain NMOS 1x  
11: Open-Drain NMOS 2x  
ACMP  
1112  
ACMP1 Positive Input Source Select -  
ACMP0 IN+ Source  
0: Disable  
1: Enable  
Valid  
Valid  
Datasheet  
18-Sep-2019  
Revision 3.3  
180 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
ACMP1 Analog Buffer Enable (Max. BW  
1MHz)  
0: Disable analog buffer  
1: Enable analog buffer  
1113  
Valid  
Valid  
00: 0 mV  
01: 25 mV  
10: 50 mV  
11: 200 mV  
1115:1114  
ACMP1 Hysteresis Enable  
Valid  
Valid  
(01: for both external & internal Vref, 10 &  
11: for only internal Vref, External Vref will  
not have 50 mV & 200 mV hysteresis.)  
0: Disable  
1: Enable  
1116  
1117  
ACMP0 Positive Input Source Select VDD  
Valid  
Valid  
Valid  
Valid  
ACMP0 Analog Buffer Enable (Max. BW  
1MHz)  
0: Disable analog buffer  
1: Enable analog buffer  
00: 0 mV  
01: 25 mV  
10: 50 mV  
1119:1118  
1120  
ACMP0 Hysteresis Enable  
11: 200 mV  
Valid  
Valid  
Valid  
Valid  
(01: for both external & internal Vref, 10 &  
11: for only internal Vref, External Vref will  
not have 50 mV & 200 mV hysteresis.)  
ACMP3 Positive Input Source Select -  
ACMP2 IN+ Source  
0: Disable  
1: Enable  
000: 0 mV  
001: 25 mV  
010: 50 mV  
011: 200 mV  
100: Reserved  
101: Reserved  
110: 100 mV  
111: 150 mV  
(001: for both external & internal Vref, 010  
& 011 & 110 & 111: for only internal Vref,  
External Vref will not have (50, 100, 150,  
200) mV hysteresis.)  
1123:1121  
ACMP3 Hysteresis Enable  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
ACMP2 Positive Input Source Select -  
ACMP0 IN+ Source  
0: Disable  
1: Enable  
1124  
000: 0 mV  
001: 25 mV  
010: 50 mV  
011: 200 mV  
100: Reserved  
101: Reserved  
110: 100 mV  
1127:1125  
ACMP2 Hysteresis Enable  
111: 150 mV  
(001: for both external & internal Vref, 010  
& 011 & 110 & 111: for only internal Vref,  
External Vref will not have (50, 100, 150,  
200) mV hysteresis.)  
LUT  
0: LUT3_4  
1: DFF7 with nRST/nSET  
1128  
1129  
LUT3_4 or DFF7 with nRST/nSET Select  
LUT3_3 or DFF6 with nRST/nSET Select  
Valid  
Valid  
Valid  
Valid  
0: LUT3_3  
1: DFF6 with nRST/nSET  
Datasheet  
18-Sep-2019  
Revision 3.3  
181 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
0: LUT3_2  
1: DFF5 with nRST/nSET  
1130  
LUT3_2 or DFF5 with nRST/nSET Select  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
0: LUT3_1  
1: DFF4 with nRST/nSET  
1131  
1132  
1133  
1134  
1135  
LUT3_1 or DFF4 with nRST/nSET Select  
LUT3_0 or DFF3 with nRST/nSET Select  
0: LUT3_0  
(Two consecutive DFFs if [1431]=1 for ASM) 1: DFF3 with nRST/nSET  
0: LUT2_2  
LUT2_2 or DFF2 Select  
1: DFF2  
0: LUT2_1  
LUT2_1 or DFF1 Select  
1: DFF1  
0: LUT2_0  
LUT2_0 or DFF0 Select  
1: DFF0  
LUT3  
1136  
1137  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Valid  
0: LUT3_5  
LUT3_5 or DFF8 with nRST/nSET Select  
1: DFF8 with nRST/nSET  
1138  
1139  
1140  
1141  
1142  
1143  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
0: LUT3_10  
LUT3_10 or DLY/CNT4(8bits) Select  
1: DLY/CNT4(8bits)  
0: LUT3_9  
LUT3_9 or DLY/CNT3(8bits) Select  
1: DLY/CNT3(8bits)  
0: LUT3_8  
LUT3_8 or DLY/CNT2(8bits) Select  
1: DLY/CNT2(8bits)  
0: LUT3_7  
LUT3_7 or DLY/CNT1(8bits) Select  
1: DLY/CNT1(8bits)  
0: LUT3_6  
LUT3_6 or DLY/CNT0(8bits) Select  
1: DLY/CNT0(8bits)  
LUT2  
1144  
1145  
LUT2_1 [0]  
Valid  
Valid  
Valid  
Valid  
0: Low  
LUT2_1 [1]/DFF1 Initial Polarity Select  
1: High  
0: Q output  
LUT2_1 [2]/DFF1 Output Select  
1: nQ output  
1146  
Valid  
Valid  
0: DFF function  
LUT2_1 [3]/DFF1 or LATCH1 Select  
1: LATCH function  
1147  
1148  
1149  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
LUT2_0 [0]  
0: Low  
LUT2_0 [1]/DFF0 Initial Polarity Select  
1: High  
0: Q output  
LUT2_0 [2]/DFF0 Output Select  
1: nQ output  
1150  
1151  
Valid  
Valid  
Valid  
Valid  
0: DFF function  
LUT2_0 [3]/DFF0 or LATCH0 Select  
1: LATCH function  
1155:1152  
1156  
Reserved  
Valid  
Valid  
Valid  
Valid  
LUT2_2 [0]  
0: Low  
LUT2_2 [1]/DFF2 Initial Polarity Select  
1: High  
1157  
Valid  
Valid  
Datasheet  
18-Sep-2019  
Revision 3.3  
182 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
0: Q output  
1: nQ output  
1158  
LUT2_2 [2]/DFF2 Output Select  
Valid  
Valid  
Valid  
Valid  
0: DFF function  
1: LATCH function  
1159  
LUT2_2 [3]/DFF2 or LATCH2 Select  
LUT3  
1163:1160  
LUT3_0 [3:0]  
Valid  
Valid  
Valid  
Valid  
0: Low  
1: High  
1164  
LUT3_0 [4]/DFF3 Initial Polarity Select  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
1165  
1166  
LUT3_0 [5]/DFF3 nRST or nSET Select  
LUT3_0 [6]/DFF3 Output Select  
Valid  
Valid  
Valid  
Valid  
0: Q output  
1: nQ output  
0: DFF function  
1: LATCH function  
1167  
1171:1168  
1172  
LUT3_0 [7]/DFF3 or LATCH3 Select  
LUT3_1 [3:0]  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
0: Low  
1: High  
LUT3_1 [4]/DFF4 Initial Polarity Select  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
1173  
1174  
LUT3_1 [5]/DFF4 nRST or nSET Select  
LUT3_1 [6]/DFF4 Output Select  
Valid  
Valid  
Valid  
Valid  
0: Q output  
1: nQ output  
0: DFF function  
1: LATCH function  
1175  
1179:1176  
1180  
LUT3_1 [7]/DFF4 or LATCH4 Select  
LUT3_2 [3:0]  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
0: Low  
1: High  
LUT3_2 [4]/DFF5 Initial Polarity Select  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
1181  
1182  
LUT3_2 [5]/DFF5 nRST or nSET Select  
LUT3_2 [6]/DFF5 Output Select  
Valid  
Valid  
Valid  
Valid  
0: Q output  
1: nQ output  
0: DFF function  
1: LATCH function  
1183  
1187:1184  
1188  
LUT3_2 [7]/DFF5 or LATCH5 Select  
LUT3_3 [3:0]  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
0: Low  
1: High  
LUT3_3 [4]/DFF6 Initial Polarity Select  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
1189  
1190  
LUT3_3 [5]/DFF6 nRST or nSET Select  
LUT3_3 [6]/DFF6 Output Select  
Valid  
Valid  
Valid  
Valid  
0: Q output  
1: nQ output  
0: DFF function  
1: LATCH function  
1191  
1195:1192  
1196  
LUT3_3 [7]/DFF6 or LATCH6 Select  
LUT3_4 [3:0]  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
0: Low  
1: High  
LUT3_4 [4]/DFF7 Initial Polarity Select  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
1197  
1198  
LUT3_4 [5]/DFF7 nRST or nSET Select  
LUT3_4 [6]/DFF7 Output Select  
Valid  
Valid  
Valid  
Valid  
0: Q output  
1: nQ output  
Datasheet  
18-Sep-2019  
Revision 3.3  
183 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
0: DFF function  
1: LATCH function  
1199  
1203:1200  
1204  
LUT3_4 [7]/DFF7 or LATCH7 Select  
LUT3_5 [3:0]  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
0: Low  
1: High  
LUT3_5 [4]/DFF8 Initial Polarity Select  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
1205  
1206  
1207  
LUT3_5 [5]/DFF8 nRST or nSET Select  
LUT3_5 [6]/DFF8 Output Select  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
0: Q output  
1: nQ output  
0: DFF function  
1: LATCH function  
LUT3_5 [7]/DFF8 or LATCH8 Select  
Reserved  
1215:1208  
1223:1216  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Invalid  
LUT3 & DLY/CNT  
LUT3_11 [3:0]/Pipe Delay OUT0 Select/Rip-  
ple Counter END[0],nSET[2:0]  
1227:1224  
Valid  
Valid  
LUT3_11 [7:4]/Pipe Delay OUT1 Select/Rip- [1230] for Ripple counter MODE function:  
1231:1228  
1232  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
ple Counter RSVD,MODE,END[2:1]  
0: FULL, 1: RANGE  
Reserved  
0: Default function from [1277]  
1: Delayed edge detect  
1233  
DLY/CNT4 Delayed Edge Output Selection  
DLY/CNT3 Delayed Edge Output Selection  
DLY/CNT2 Delayed Edge Output Selection  
DLY/CNT1 Delayed Edge Output Selection  
Pipe Delay Select or Ripple counter Select  
LUT3_11 or Pipe Delay Select  
0: Default function from [1269]  
1: Delayed edge detect  
1234  
1235  
1236  
1237  
1238  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
0: Default function from [1261]  
1: Delayed edge detect  
0: Default function from [1253]  
1: Delayed edge detect  
0: Pipe Delay  
1: Ripple Counter  
0: LUT3_11  
1: Pipe Delay/Ripple counter by [1237]  
0: Non-Inverted  
1: Inverted  
1239  
Pipe Delay OUT1 Polarity Select  
DLY/CNT0  
00: On both Falling and Rising Edges  
01: on Falling Edge only  
10: on Rising Edge only  
11: No Delay on either Falling or Rising  
Edges/High Level Counter Reset  
DLY0 Edge Select or Asynchronous CNT0  
Reset  
1241:1240  
1244:1242  
Valid  
Valid  
Valid  
Valid  
000: OSC  
001: OSC/4  
010: OSC/12  
011: OSC/24  
DLY/CNT0 Clock Source Select  
100: OSC/64  
101: LPOSC Clock  
110: External Clock  
111: Counter4 Overflow  
Datasheet  
18-Sep-2019  
Revision 3.3  
184 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
CNT0's Q are Set to data or Reset to 0s Se- 0: Reset to 0s  
1245  
Valid  
Valid  
lection (8bits)  
1: Set to data ([1543:1536])  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
1247:1246  
DLY/CNT0 Mode Selection  
Valid  
Valid  
11: Counter mode  
DLY/CNT1  
00: On both Falling and Rising Edges  
01: On Falling Edge only  
10: On Rising Edge only  
11: No Delay on either Falling or Rising  
Edges/High Level Counter Reset  
DLY1 Edge Select or Asynchronous CNT1  
Reset  
1249:1248  
1252:1250  
Valid  
Valid  
Valid  
Valid  
000: OSC  
001: OSC/4  
010: OSC/12  
011: OSC/24  
DLY/CNT1 Clock Source Select  
100: OSC/64  
101: LPOSC Clock  
110: External Clock  
111: Counter0 Overflow  
0: Default Output  
1: Edge Detector Output  
1253  
DLY/CNT1 Output Selection  
DLY/CNT1 Mode Selection  
Valid  
Valid  
Valid  
Valid  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
1255:1254  
11: Counter mode  
DLY/CNT2  
00: On both Falling and Rising Edges  
01: on Falling Edge only  
10: on Rising Edge only  
11: No Delay on either Falling or Rising  
Edges/High Level Counter Reset  
DLY2 Edge Select or Asynchronous CNT2  
Reset  
1257:1256  
1260:1258  
Valid  
Valid  
Valid  
Valid  
000: OSC  
001: OSC/4  
010: OSC/12  
011: OSC/24  
DLY/CNT2 Clock Source Select  
100: OSC/64  
101: LPOSC Clock  
110: External Clock  
111: Counter1 Overflow  
0: Default Output  
1: Edge Detector Output  
1261  
DLY/CNT2 Output Selection  
DLY/CNT2 Mode Selection  
Valid  
Valid  
Valid  
Valid  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
1263:1262  
11: Counter mode  
DLY/CNT3  
00: On both Falling and Rising Edges  
01: On Falling Edge only  
10: On Rising Edge only  
11: No Delay on either Falling or Rising  
Edges/High Level Counter Reset  
DLY3 Edge Select or Asynchronous CNT3  
Reset  
1265:1264  
Valid  
Valid  
Datasheet  
18-Sep-2019  
Revision 3.3  
185 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
000: OSC  
001: OSC/4  
010: OSC/12  
011: OSC/24  
100: OSC/64  
1268:1266  
DLY/CNT3 Clock Source Select  
Valid  
Valid  
101: LPOSC Clock  
110: External Clock  
111: Counter2 Overflow  
0: Default Output  
1: Edge Detector Output  
1269  
DLY/CNT3 Output Selection  
DLY/CNT3 Mode Selection  
Valid  
Valid  
Valid  
Valid  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
1271:1270  
11: Counter mode  
DLY/CNT4  
00: On both Falling and Rising Edges  
01: On Falling Edge only  
10: On Rising Edge only  
11: No Delay on either Falling or Rising  
Edges/High Level Counter Reset  
DLY4 Edge Select or Asynchronous CNT4  
Reset  
1273:1272  
1276:1274  
Valid  
Valid  
Valid  
Valid  
000: OSC  
001: OSC/4  
010: OSC/12  
011: OSC/24  
DLY/CNT4 Clock Source Select  
100: OSC/64  
101: LPOSC Clock  
110: External Clock  
111: Counter3 Overflow  
0: Default Output  
1: Edge Detector Output  
1277  
DLY/CNT4 Output Selection  
DLY/CNT4 Mode Selection  
Valid  
Valid  
Valid  
Valid  
00: Delay mode  
01: One Shot  
10: Freq. Detect  
1279:1278  
11: Counter mode  
Reserved  
1280  
1281  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Valid  
External Clock Source Select instead of  
25kHz/2MHz  
0: Internal Oscillator,  
1: External Clock (EXT_CLK)  
1282  
Valid  
Valid  
DLY/CNT Polarity Select  
0: Default Output  
1: Inverted Output  
1283  
1284  
1285  
1286  
1287  
Select the Polarity of DLY/CNT4's Output  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
0: Default Output  
1: Inverted Output  
Select the Polarity of DLY/CNT3's Output  
Select the Polarity of DLY/CNT2's Output  
Select the Polarity of DLY/CNT1's Output  
Select the Polarity of DLY/CNT0's Output  
0: Default Output  
1: Inverted Output  
0: Default Output  
1: Inverted Output  
0: Default Output  
1: Inverted Output  
Datasheet  
18-Sep-2019  
Revision 3.3  
186 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
OSC  
1289:1288  
1290  
LPOSC Clock Pre-divider  
00: Div1, 01:Div2, 10: Div4, 11: Div16  
Valid  
Valid  
Valid  
Valid  
0: Auto Power-On (if any CNT/DLY use  
LPOSC source)  
Force LPOSC Oscillator ON  
1: Force Power-On  
00: Div1  
01: Div2  
10: Div4  
11: Div8  
1292:1291  
OSC Clock Pre-divider  
Valid  
Valid  
0: Disable  
1: Enable  
1293  
1294  
OSC Fast Start-Up Enable  
Valid  
Valid  
Valid  
Valid  
Oscillator (25kHz: RC-OSC, 2M: RC-OSC) 0: 25 kHz RC-OSC  
Select  
1: 2 MHz RC-OSC  
0:Auto Power-On (if any CNT/DLYuse25K  
source)  
1295  
Force Oscillator ON  
Valid  
Valid  
1: Force Power-On  
000: OSC/1  
001: OSC/2  
010: OSC/3  
011: OSC/4  
100: OSC/8  
101: OSC/12  
110: OSC/24  
111: OSC/64  
Internal OSC 25 kHz Frequency Divider  
Control for matrix input [28]  
1298:1296  
1299  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
OSC Clock 25 kHz to matrix input [28] en- 0: Disable  
able  
1: Enable  
000: OSC/1  
001: OSC/2  
010: OSC/3  
011: OSC/4  
100: OSC/8  
101: OSC/12  
110: OSC/24  
111: OSC/64  
Internal OSC 25 kHz Frequency Divider  
Control for matrix input [27]  
1302:1300  
1303  
OSC Clock 25 kHz to matrix input [27] en- 0: Disable  
able  
1: Enable  
IO3  
0: Non-inverted  
1: Inverted  
1304  
1305  
1306  
1307  
IO3 reset level polarity selection  
IO3 reset bypass selection  
IO3 reset edge selection  
IO3 reset enable  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
0: Edge selection  
1: Level selection  
0: Rising edge  
1: Falling edge  
0: Disable  
1: Enable  
00: Rising Edge Detector  
Select the Edge Mode of Programmable De- 01: Falling Edge Detector  
1309:1308  
Valid  
Valid  
lay & Edge Detector  
10: Both Edge Detector  
11: Both Edge Delay  
Datasheet  
18-Sep-2019  
Revision 3.3  
187 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
00: 165 ns  
Delay Value Select for Programmable Delay 01: 300 ns  
1311:1310  
Valid  
Valid  
& Edge Detector (VDD = 3.3 V, typical)  
10: 440 ns  
11: 575 ns  
ASM  
ASM_reg_init[2:0] for ASM state default set-  
up bits  
1314:1312  
Valid  
Valid  
1319:1315  
1322:1320  
1323  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
ASM_state0_dec8x1_EN1  
Reserved  
1326:1324  
1327  
ASM_state0_dec8x1_EN0  
Reserved  
1330:1328  
1331  
ASM_state1_dec8x1_EN0  
Reserved  
1334:1332  
ASM_state0_dec8x1_EN2  
ASM Rising Edge Detect Enable on EN2 of 0: Disable  
1335  
1338:1336  
1339  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
state0  
1: Enable  
ASM_state1_dec8x1_EN2  
ASM Rising Edge Detect Enable on EN2 of 0: Disable  
state1  
1: Enable  
1342:1340  
1343  
ASM_state1_dec8x1_EN1  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
1346:1344  
1347  
ASM_state2_dec8x1_EN1  
Reserved  
1350:1348  
1351  
ASM_state2_dec8x1_EN0  
Reserved  
1354:1352  
1355  
ASM_state3_dec8x1_EN0  
Reserved  
1358:1356  
ASM_state2_dec8x1_EN2  
ASM Rising Edge Detect Enable on EN2 of 0: Disable  
1359  
1362:1360  
1363  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
state2  
1: Enable  
ASM_state3_dec8x1_EN2  
ASM Rising Edge Detect Enable on EN2 of 0: Disable  
state3  
1: Enable  
1366:1364  
1367  
ASM_state3_dec8x1_EN1  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
1370:1368  
1371  
ASM_state4_dec8x1_EN1  
Reserved  
1374:1372  
1375  
ASM_state4_dec8x1_EN0  
Reserved  
1378:1376  
1379  
ASM_state5_dec8x1_EN0  
Reserved  
1382:1380  
ASM_state4_dec8x1_EN2  
Datasheet  
18-Sep-2019  
Revision 3.3  
188 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
ASM Rising Edge Detect Enable on EN2 of 0: Disable  
1383  
1386:1384  
1387  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
state4  
1: Enable  
ASM_state5_dec8x1_EN2  
ASM Rising Edge Detect Enable on EN2 of 0: Disable  
state5  
1: Enable  
1390:1388  
1391  
ASM_state5_dec8x1_EN1  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
1394:1392  
1395  
ASM_state6_dec8x1_EN1  
Reserved  
1398:1396  
1399  
ASM_state6_dec8x1_EN0  
Reserved  
1402:1400  
1403  
ASM_state7_dec8x1_EN0  
Reserved  
1406:1404  
ASM_state6_dec8x1_EN2  
ASM Rising Edge Detect Enable on EN2 of 0: Disable  
1407  
1410:1408  
1411  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
state6  
1: Enable  
ASM_state7_dec8x1_EN2  
ASM Rising Edge Detect Enable on EN2 of  
state7  
1414:1412  
1415  
ASM_state7_dec8x1_EN1  
Reserved  
Valid  
Valid  
Valid  
Valid  
Filter/Edge Detector  
00: Rising Edge  
01: Falling Edge  
10: Both Edge  
11: Delay  
1417:1416  
Select the edge mode of Edge Detector_1  
Valid  
Valid  
Filter_1/Edge Detector_1 output Polarity Se- 0: Filter_1 output  
1418  
1419  
Valid  
Valid  
Valid  
Valid  
lect  
1: Filter_1 output inverted  
Filter_1 (Typ. 50nS @VDD = 3.3 V) or Edge  
Detector_1 (Typ. 125nS @VDD = 3.3 V) Se-  
lect  
0: Filter_1  
1: Edge Detector_1  
00: Rising Edge  
01: Falling Edge  
10: Both Edge  
11: Delay  
1421:1420  
Select the edge mode of Edge Detector_0  
Valid  
Valid  
Filter_0/Edge Detector_0 output Polarity Se- 0: Filter_0 output  
1422  
1423  
Valid  
Valid  
Valid  
Valid  
lect  
1: Filter_0 output inverted  
Filter_0 (Typ. 70 ns @VDD = 3.3 V) or Edge  
Detector_0 Select (Typ. 125 ns @  
VDD=3.3 V)  
0: Filter_0  
1: Edge Detector_0  
Vref/Bandgap  
1424  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
1426:1425  
1427  
Reserved  
Reserved  
0: Disable  
1: Enable  
1428  
Vref Op Amp Offset Chopper Enable  
Datasheet  
18-Sep-2019  
Revision 3.3  
189 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
Reserved  
0: Disable  
1: Enable  
1429  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
0: 2 MHz  
1: 1 MHz  
1430  
1431  
Reserved  
0: Disable  
1: Enable  
Two consecutive DFFs enable for ASM  
100: CP Auto ON/OFF (Use for  
1.71 V<VDD<5.5 V)  
CP function selection & Power divider (VDD/ X10: CP always OFF (Use for 2.7 V<VDD),  
1434:1432  
Valid  
Valid  
Valid  
3, VDD/4) ON/OFF  
XX1: CP always ON (Use for VDD<2.7 V)  
0XX: Power divider off (if there is no use of  
VDD/3,VDD/4 @ACMP negative in)  
1435  
1436  
Reserved  
Valid  
Valid  
0: Auto-Mode  
1: Enable (if chip is Power-Down, the Band- Valid  
Force Bandgap ON  
gap will Power-Down even if it is Set to 1).  
0: None (Or Programming Enable)  
Valid  
1437  
1438  
1439  
NVM Power-Down  
Reserved  
Valid  
Valid  
Valid  
1: Power-Down (Or Programming Disable)  
Valid  
0: Disable  
1: Enable  
GPIO Quick Charge Enable  
Valid  
Wake/Sleep  
1440  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Valid  
1441  
0: Disable  
1: Enable  
1442  
1443  
1444  
1445  
ACMP0 Wake & Sleep function Enable  
ACMP1 Wake & Sleep function Enable  
ACMP2 Wake & Sleep function Enable  
ACMP3 Wake & Sleep function Enable  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
0: Disable  
1: Enable  
0: Disable  
1: Enable  
0: Disable  
1: Enable  
Wake Sleep Output State When WS Oscilla-  
tor is Power-Down if DLY/CNT0 Mode Selec-  
tion is "11"  
0: Low  
1: High  
1446  
1447  
Valid  
Valid  
Valid  
Wake Sleep Ratio Control Mode Selection if 0: Default Mode  
DLY/CNT0 Mode Selection is "11"  
Valid  
1: Wake Sleep Ratio Control Mode  
LDO  
LDO1 PS_Mode_Gate (LDO1 turn-on/off is 0: LDO Mode Enable  
1448  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
controlled by LDO1_EN matrix output)  
1: Power switch Mode Enable  
LDO1 Start-up Ramping Slope Divide  
Enable  
0: Disable  
1: Enable (Div 8 of 1600])  
1449  
1450  
1451  
1452  
LDO1 Over-current & Short-current  
Detection Enable  
0: Disable  
1: Enable  
0: No discharge resistor  
1: 300 ohm discharge resistor  
LDO1 Discharge resistor Enable  
LDO0 PS_Mode_Gate (LDO0 turn-on/off is 0: LDO Mode Enable  
controlled by LDO0_EN matrix output) 1: Power switch Mode Gate Enable  
Datasheet  
18-Sep-2019  
Revision 3.3  
190 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
LDO0 Start-up Ramping Slope Divide  
Enable  
0: Disable  
1: Enable (Div 8 of [1592])  
1453  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
LDO0 Over-current & Short-current  
Detection Enable  
0: Disable  
1: Enable  
1454  
1455  
1456  
1457  
1458  
1459  
1460  
1461  
1462  
0: No discharge resistor  
1: 300 Ohm discharge resistor  
LDO0 Discharge resistor Enable  
LDO3 PS_Mode_Gate (LDO3 turn-on/off is 0: LDO Mode Enable  
controlled by LDO3_EN matrix output)  
1: Power switch Mode Gate Enable  
LDO3 Start-up Ramping Slope Divide  
Enable  
0: Disable  
1: Enable (Div 8 of [1616])  
LDO3 Over-current & Short-current  
Detection Enable  
0: Disable  
1: Enable  
0: No discharge resistor  
1: 300 discharge resistor  
LDO3 Discharge resistor Enable  
LDO2 PS_Mode_Gate (LDO2 turn-on/off is 0: LDO Mode Enable  
controlled by LDO2_EN matrix output)  
1: Power switch Mode Gate Enable  
LDO2 Start-up Ramping Slope Divide  
Enable  
0: Disable  
1: Enable (Div 8 of [1608])  
LDO2 Over-current & Short-current  
Detection Enable  
0: Disable  
1: Enable  
0: No discharge resistor  
1: 300 discharge resistor  
1463  
LDO2 Discharge resistor Enable  
Reserved  
Valid  
Valid  
Valid  
Valid  
Invalid  
Invalid  
1465:1464  
1467:1466  
Reserved  
1469:1468  
1471:1470  
1479:1472  
1487:1480  
Reserved  
Valid  
Valid  
Valid  
Valid  
Invalid  
Invalid  
Invalid  
Invalid  
Reserved  
Reserved Reserved  
Reserved  
0: Disable  
1: Enable  
1488  
ACMP1 100 µA Current Source Enable  
Valid  
Valid  
1489  
1490  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Valid  
LDO2 VOUT output connection enable to  
ACMP3  
0: Default ACMP function  
1: Enable LDO2 VOUT function  
1491  
1492  
1493  
1494  
1495  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
LDO0 VOUT output connection enable to  
ACMP3  
0: Default ACMP function  
1: Enable LDO0 VOUT function  
0: Default ACMP function  
1: Enable TS function  
TS output connection enable to ACMP2  
LDO2/3 VIN connection enable to ACMP1  
LDO0/1 VIN connection enable to ACMP0  
0: Default ACMP function  
1: Enable UVLO1 function  
0: Default ACMP function  
1: Enable UVLO0 function  
1496  
1497  
1498  
1499  
Reserved  
Reserved  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Datasheet  
18-Sep-2019  
Revision 3.3  
191 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
1503:1500  
1519:1504  
1535:1520  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
LUT4x2_0 Output0 [15:0]  
LUT4x2_0 Output1 [15:0]  
LUT/DLY/CNT Control Data  
1 - 255 (Delay Time = [Counter Control  
Data + 1]/Freq)  
1543:1536  
1551:1544  
1559:1552  
1567:1560  
1575:1568  
LUT3_6 [7:0] or DLY/CNT0 Control Data  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
1 - 255 (Delay Time = [Counter Control  
Data + 1]/Freq)  
LUT3_7 [7:0] or DLY/CNT1 Control Data  
LUT3_8 [7:0] or DLY/CNT2 Control Data  
LUT3_9 [7:0] or DLY/CNT3 Control Data  
LUT3_10 [7:0] or DLY/CNT4 Control Data  
1 - 255 (Delay Time = [Counter Control  
Data + 1]/Freq)  
1 - 255 (Delay Time = [Counter Control  
Data + 1]/Freq)  
1 - 255 (Delay Time = [Counter Control  
Data + 1]/Freq)  
1577:1576  
1579:1578  
1581:1580  
1583:1582  
Reserved  
Reserved  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Valid  
Invalid  
Invalid  
Invalid  
Invalid  
UVLO1_HW_enable (Enable UVLO1 output 0: Disable UVLO1 HW connect  
Hard-Wire connection to LDO2/3) 1: Enable UVLO1 HW connect  
1584  
1585  
Valid  
Valid  
Valid  
Valid  
UVLO0_HW_enable (Enable UVLO0 output 0: Disable UVLO0 HW connect  
Hard-Wire connection to LDO0/1)  
1: Enable UVLO0 HW connect  
000: 2.5 V  
001: 2.8 V  
010: 3.0 V  
LDO0/1 VDD minimum Power Selection for 011: 3.3 V  
1588:1586  
1591:1589  
Valid  
Valid  
Valid  
Valid  
LDO1  
100: 3.6 V  
101: 3.9 V  
110: 4.4 V  
111: 4.5 V  
000: 2.5 V  
001: 2.8 V  
010: 3.0 V  
LDO0/1 VDD minimum Power Selection for 011: 3.3 V  
LDO0  
100: 3.6 V  
101: 3.9 V  
110: 4.4 V  
111: 4.5 V  
0: 10 V/ms  
1: 20 V/ms  
1592  
LDO0 Start-up Ramping Slope Selection  
Reserved  
Valid  
Valid  
Valid  
Valid  
1594:1593  
Datasheet  
18-Sep-2019  
Revision 3.3  
192 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
00000:0.90v, 00001:1.00v, 00010:1.05v,  
00011:1.10v, 00100:1.20v, 00101:1.25v,  
00110:1.35v, 00111:1.50v, 01000:1.67v,  
01001:1.80v, 01010:1.90v, 01011:2.00v,  
01100:2.10v, 01101:2.20v, 01110:2.50v,  
01111:2.50v, 10000:2.50v, 10001:2.60v,  
10010:2.70v, 10011:2.80v, 10100:2.85v,  
10101:2.90v, 10110:3.00v, 10111:3.10v,  
11000:3.20v, 11001:3.30v, 11010:3.40v,  
11011:3.50v, 11100:3.60v, 11101:4.00v,  
11110:4.10v, 11111:4.20v  
1599:1595  
LDO0 Vref Selection  
Valid  
Valid  
0: 10 V/ms  
1: 20 V/ms  
1600  
LDO1 Start-up Ramping Slope Selection  
Reserved  
Valid  
Valid  
Valid  
Valid  
1602:1601  
00000:0.90v, 00001:1.00v, 00010:1.05v,  
00011:1.10v, 00100:1.20v, 00101:1.25v,  
00110:1.35v, 00111:1.50v, 01000:1.67v,  
01001:1.80v, 01010:1.90v, 01011:2.00v,  
01100:2.10v, 01101:2.20v, 01110:2.50v,  
01111:2.50v, 10000:2.50v, 10001:2.60v,  
10010:2.70v, 10011:2.80v, 10100:2.85v,  
10101:2.90v, 10110:3.00v, 10111:3.10v,  
11000:3.20v, 11001:3.30v, 11010:3.40v,  
11011:3.50v, 11100:3.60v, 11101:4.00v,  
11110:4.10v, 11111:4.20v  
1607:1603  
LDO1 Vref Selection  
Valid  
Valid  
0: 10 V/ms  
1: 20 V/ms  
1608  
LDO2 Start-up Ramping Slope Selection  
Reserved  
Valid  
Valid  
Valid  
Valid  
1610:1609  
00000:0.90v, 00001:1.00v, 00010:1.05v,  
00011:1.10v, 00100:1.20v, 00101:1.25v,  
00110:1.35v, 00111:1.50v, 01000:1.67v,  
01001:1.80v, 01010:1.90v, 01011:2.00v,  
01100:2.10v, 01101:2.20v, 01110:2.50v,  
01111:2.50v, 10000:2.50v, 10001:2.60v,  
10010:2.70v, 10011:2.80v, 10100:2.85v,  
10101:2.90v, 10110:3.00v, 10111:3.10v,  
11000:3.20v, 11001:3.30v, 11010:3.40v,  
11011:3.50v, 11100:3.60v, 11101:4.00v,  
11110:4.10v, 11111:4.20v  
1615:1611  
LDO2 Vref Selection  
Valid  
Valid  
0: 10 V/ms  
1: 20 V/ms  
1616  
LDO3 Start-up Ramping Slope Selection  
Reserved  
Valid  
Valid  
Valid  
Valid  
1618:1617  
00000:0.90v, 00001:1.00v, 00010:1.05v,  
00011:1.10v, 00100:1.20v, 00101:1.25v,  
00110:1.35v, 00111:1.50v, 01000:1.67v,  
01001:1.80v, 01010:1.90v, 01011:2.00v,  
01100:2.10v, 01101:2.20v, 01110:2.50v,  
01111:2.50v, 10000:2.50v, 10001:2.60v,  
10010:2.70v, 10011:2.80v, 10100:2.85v,  
10101:2.90v, 10110:3.00v, 10111:3.10v,  
11000:3.20v, 11001:3.30v, 11010:3.40v,  
11011:3.50v, 11100:3.60v, 11101:4.00v,  
11110:4.10v, 11111:4.20v  
1623:1619  
LDO3 Vref Selection  
Valid  
Valid  
Datasheet  
18-Sep-2019  
Revision 3.3  
193 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
ACMP0  
00000: 50 mV  
00010: 150 mV  
00100: 250 mV  
00110: 350 mV  
01000: 450 mV  
01010: 550 mV  
01100: 650 mV  
01110: 750 mV  
10000: 850 mV  
10010: 950 mV  
10100: 1.05 V  
10110: 1.15 V  
00001: 100 mV  
00011: 200 mV  
00101: 300 mV  
00111: 400 mV  
01001: 500 mV  
01011: 600 mV  
01101: 700 mV  
01111: 800 mV  
10001: 900 mV  
10011: 1 V  
1628:1624  
ACMP0- IN Voltage Select  
Valid  
Valid  
10101: 1.1 V  
10111: 1.2 V  
11000: VDD: ACMP0- /3  
11001: VDD: ACMP0- /4  
11010: IO4: EXT_Vref  
11011: IO4: EXT_Vref /2  
00: 1.0x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
1630:1629  
1631  
ACMP0 Positive Input Divider  
Valid  
Valid  
Valid  
Valid  
ACMP0 Low Bandwidth (MAX: 1MHz) En- 0: OFF  
able  
1:ON  
ACMP1  
00000: 50 mV  
00010: 150 mV  
00100: 250 mV  
00110: 350 mV  
01000: 450 mV  
01010: 550 mV  
01100: 650 mV  
01110: 750 mV  
10000: 850 mV  
10010: 950 mV  
10100: 1.05 V  
10110: 1.15 V  
00001: 100 mV  
00011: 200 mV  
00101: 300 mV  
00111: 400 mV  
01001: 500 mV  
01011: 600 mV  
01101: 700 mV  
01111: 800 mV  
10001: 900 mV  
10011: 1 V  
1636:1632  
ACMP1-IN Voltage Select  
Valid  
Valid  
10101: 1.1 V  
10111: 1.2 V  
11000: VDD: ACMP1- /3  
11001: VDD: ACMP1- /4  
11010: IO4: EXT_Vref  
11011: IO4: EXT_Vref /2  
00: 1.0x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
1638:1637  
1639  
ACMP1 Positive Input Divider  
Valid  
Valid  
Valid  
Valid  
ACMP1 Low Bandwidth (MAX: 1MHz) En- 0: OFF  
able  
1: ON  
Datasheet  
18-Sep-2019  
Revision 3.3  
194 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
ACMP2  
00000: 50 mV  
00010: 150 mV  
00100: 250 mV  
00110: 350 mV  
01000: 450 mV  
01010: 550 mV  
01100: 650 mV  
01110: 750 mV  
10000: 850 mV  
10010: 950 mV  
10100: 1.05 V  
10110: 1.15 V  
00001: 100 mV  
00011: 200 mV  
00101: 300 mV  
00111: 400 mV  
01001: 500 mV  
01011: 600 mV  
01101: 700 mV  
01111: 800 mV  
10001: 900 mV  
10011: 1 V  
1644:1640  
ACMP2-IN Voltage Select  
Valid  
Valid  
10101: 1.1 V  
10111: 1.2 V  
11000: VDD: ACMP2- /3  
11001: VDD: ACMP2- /4  
11010: IO4: EXT_Vref  
11011: IO4: EXT_Vref /2  
00: 1.0x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
1646:1645  
1647  
ACMP2 Positive Input Divider  
Valid  
Valid  
Valid  
Valid  
ACMP2 Low Bandwidth (MAX: 1MHz) En- 0: OFF  
able  
1: ON  
ACMP3  
00000: 50 mV  
00010: 150 mV  
00100: 250 mV  
00110: 350 mV  
01000: 450 mV  
01010: 550 mV  
01100: 650 mV  
01110: 750 mV  
10000: 850 mV  
10010: 950 mV  
10100: 1.05 V  
10110: 1.15 V  
00001: 100 mV  
00011: 200 mV  
00101: 300 mV  
00111: 400 mV  
01001: 500 mV  
01011: 600 mV  
01101: 700 mV  
01111: 800 mV  
10001: 900 mV  
10011: 1 V  
1652:1648  
ACMP3-IN Voltage Select  
Valid  
Valid  
10101: 1.1 V  
10111: 1.2 V  
11000: VDD: ACMP3- /3  
11001: VDD: ACMP3- /4  
11010: IO4: EXT_Vref  
11011: IO4: EXT_Vref /2  
00: 1.0x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
1654:1653  
1655  
ACMP3 Positive Input Divider  
Valid  
Valid  
Valid  
Valid  
ACMP3 Low Bandwidth (MAX: 1MHz) En- 0: OFF  
able 1: ON  
Misc.  
TS_HW_enable (Enable Temp sensor out- 0: Disable TS HW connect  
1656  
1657  
Valid  
Valid  
Valid  
Valid  
put Hard-Wire connection to LDO0/1/2/3)  
1: Enable TS HW connect  
Switch from “Matrix OUT: LPOSC PD” to  
“Matrix OUT: LPOSC Force On”  
0: OSC PD  
1: OSC Force On (Matrix Output [60])  
Datasheet  
18-Sep-2019  
Revision 3.3  
195 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
SwitchfromMatrix OUT:OSC25KHz/2MHz  
PD” to “Matrix OUT: OSC 25KHz/2MHz  
Force On”  
0: OSC PD  
1: OSC Force On (Matrix Output [59])  
1658  
Valid  
Valid  
1659  
1660  
1661  
Reserved  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Invalid  
Invalid  
Invalid  
I2C reset bit with reloading NVM into Data 0: Keep existing condition  
register 1: Reset execution  
IO Latching Enable During I2C Write Inter- 0: Disable  
1662  
1663  
Valid  
Valid  
Valid  
Invalid  
face  
1: Enable  
1671:1664  
1679:1672  
1687:1680  
1695:1688  
1703:1696  
1711:1704  
1719:1712  
1727:1720  
1735:1728  
1743:1736  
1751:1744  
1759:1752  
1767:1760  
1775:1768  
1783:1776  
1791:1784  
RAM 8 outputs for ASM-state0  
RAM 8 outputs for ASM-state1  
RAM 8 outputs for ASM-state2  
RAM 8 outputs for ASM-state3  
RAM 8 outputs for ASM-state4  
RAM 8 outputs for ASM-state5  
RAM 8 outputs for ASM-state6  
RAM 8 outputs for ASM-state7  
User configurable RAM/OTP Byte 0  
User configurable RAM/OTP Byte 1  
User configurable RAM/OTP Byte 2  
User configurable RAM/OTP Byte 3  
User configurable RAM/OTP Byte 4  
User configurable RAM/OTP Byte 5  
User configurable RAM/OTP Byte 6  
User configurable RAM/OTP Byte 7  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
LDO0_EN_Gate (By this bit = 1, Matrix Out- 0: Disable  
1792  
1793  
Valid  
Valid  
Valid  
Valid  
put: LDO0_EN will be enabled.)  
1: Enable  
0: Default VOUT selection  
1: Enable 2nd VOUT selection  
LDO0 VOUT_SEL_Gate  
Mode1_EN_Gate (By this bit = 1, Matrix Out- 0: Disable LDO_LP_MODE_EN matrix out-  
put: LDO MODE1_Enable for LDO0/1/2/3 put 1: Enable LDO_LP_MODE_ EN matrix  
1794  
Valid  
Valid  
will be enabled.)  
output  
00000:0.90v, 00001:1.00v, 00010:1.05v,  
00011:1.10v, 00100:1.20v, 00101:1.25v,  
00110:1.35v, 00111:1.50v, 01000:1.67v,  
01001:1.80v, 01010:1.90v, 01011:2.00v,  
01100:2.10v, 01101:2.20v, 01110:2.50v,  
01111:2.50v, 10000:2.50v, 10001:2.60v,  
10010:2.70v, 10011:2.80v, 10100:2.85v,  
10101:2.90v, 10110:3.00v, 10111:3.10v,  
11000:3.20v, 11001:3.30v, 11010:3.40v,  
11011:3.50v, 11100:3.60v, 11101:4.00v,  
11110:4.10v, 11111:4.20v  
1799:1795  
LDO0 2nd Vref Selection  
Valid  
Valid  
Valid  
Valid  
LDO1_EN_Gate (By this bit = 1, Matrix Out- 0: Disable  
put: LDO1_EN will be enabled.) 1: Enable  
1800  
Datasheet  
18-Sep-2019  
Revision 3.3  
196 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
0: Default VOUT selection  
1: Enable 2nd VOUT selection  
1801  
1802  
LDO1 VOUT_SEL_Gate  
Reserved  
Valid  
Valid  
Valid  
Valid  
00000:0.90v, 00001:1.00v, 00010:1.05v,  
00011:1.10v, 00100:1.20v, 00101:1.25v,  
00110:1.35v, 00111:1.50v, 01000:1.67v,  
01001:1.80v, 01010:1.90v, 01011:2.00v,  
01100:2.10v, 01101:2.20v, 01110:2.50v,  
01111:2.50v, 10000:2.50v, 10001:2.60v,  
10010:2.70v, 10011:2.80v, 10100:2.85v,  
10101:2.90v, 10110:3.00v, 10111:3.10v,  
11000:3.20v, 11001:3.30v, 11010:3.40v,  
11011:3.50v, 11100:3.60v, 11101:4.00v,  
11110:4.10v, 11111:4.20v  
1807:1803  
LDO1 2nd Vref Selection  
Valid  
Valid  
LDO2_EN_Gate (By this bit = 1, Matrix Out-  
put: LDO2_EN will be enabled.)  
1808  
0: Disable 1: Enable  
Valid  
Valid  
0: Default VOUT selection  
1: Enable 2nd VOUT selection  
1809  
1810  
LDO2 VOUT_SEL_Gate  
Reserved  
Valid  
Valid  
Valid  
Valid  
00000:0.90v, 00001:1.00v, 00010:1.05v,  
00011:1.10v, 00100:1.20v, 00101:1.25v,  
00110:1.35v, 00111:1.50v, 01000:1.67v,  
01001:1.80v, 01010:1.90v, 01011:2.00v,  
01100:2.10v, 01101:2.20v, 01110:2.50v,  
01111:2.50v, 10000:2.50v, 10001:2.60v,  
10010:2.70v, 10011:2.80v, 10100:2.85v,  
10101:2.90v, 10110:3.00v, 10111:3.10v,  
11000:3.20v, 11001:3.30v, 11010:3.40v,  
11011:3.50v, 11100:3.60v, 11101:4.00v,  
11110:4.10v, 11111:4.20v  
1815:1811  
LDO2 2nd Vref Selection  
Valid  
Valid  
LDO3_EN_Gate (By this bit = 1, Matrix Out- 0: Disable  
1816  
Valid  
Valid  
put: LDO3_EN will be enabled.)  
LDO3 VOUT_SEL_Gate  
Reserved  
1: Enable  
0: Default VOUT selection  
1: Enable 2nd VOUT selection  
1817  
1818  
Valid  
Valid  
Valid  
Valid  
00000:0.90v, 00001:1.00v, 00010:1.05v,  
00011:1.10v, 00100:1.20v, 00101:1.25v,  
00110:1.35v, 00111:1.50v, 01000:1.67v,  
01001:1.80v, 01010:1.90v, 01011:2.00v,  
01100:2.10v, 01101:2.20v, 01110:2.50v,  
01111:2.50v, 10000:2.50v, 10001:2.60v,  
10010:2.70v, 10011:2.80v, 10100:2.85v,  
10101:2.90v, 10110:3.00v, 10111:3.10v,  
11000:3.20v, 11001:3.30v, 11010:3.40v,  
11011:3.50v, 11100:3.60v, 11101:4.00v,  
11110:4.10v, 11111:4.20v  
1823:1819  
LDO3 2nd Vref Selection  
Valid  
Valid  
1831:1824  
1832  
Reserved  
Valid  
Valid  
Valid  
0: Disable (Programmeddata can be read.)  
1: Enable (Programmed data can't be  
read.)  
NVMDataReadDisable(FromNVM):ID[24]  
for BANK0/1/2 only  
Invalid  
Reserved  
1833  
1835:1834  
Datasheet  
Valid  
Valid  
Invalid  
Invalid  
Reserved Reserved  
18-Sep-2019  
Revision 3.3  
197 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
1839:1836  
Reserved  
Valid  
Invalid  
8-bit Pattern ID Byte 0 (From NVM):  
ID[23:16]  
1847:1840  
Valid  
Valid  
1855:1848  
1863:1856  
1867:1864  
Reserved  
Valid  
Valid  
Valid  
Invalid  
Invalid  
Invalid  
Reserved  
I2C Control Code Bit [3:0]  
Value for slave address  
0: Up to 400 kHz  
1: 1 MHz operation  
1868  
1869  
1870  
I2C 1 MHz operation enable  
Reserved  
Valid  
Valid  
Valid  
Invalid  
Invalid  
Invalid  
0: Writable  
1: Non-writable  
BANK0/1/2/3 I2C-write protection bit  
0: Writable  
1: Non-writable  
1871  
1872  
BANK0/1/2 I2C-write protection bit  
Reserved  
Valid  
Invalid  
Invalid  
Invalid  
00: 2.5 A  
10: 2.0 A  
SEL_OCP[1:0] for Synchronous DC/DC  
Step Down Converter control  
1874:1873  
Invalid  
Invalid  
00: 1.5 MHz  
01: 2.0 MHz  
10: Reserved  
11: Reserved  
SEL_FSW[1:0] for Synchronous DC/DC  
Step Down Converter control  
1876:1875  
Invalid  
Invalid  
000: 1.2 V  
001: 1.5 V  
010: 1.8 V  
SEL_VO[2:0] for Synchronous DC/DC Step 011: 2.5 V  
1879:1877  
Invalid  
Invalid  
Down Converter control  
100: 3.0 V  
101: 3.3 V  
110: Reserved  
111: Reserved  
1880  
Reserved  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
1881  
Reserved  
1882  
Reserved  
1887:1883  
1891:1888  
1895:1892  
1899:1896  
1903:1900  
1904  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1905  
Reserved  
1907:1906  
1911:1908  
1919:1912  
Reserved  
Reserved  
ASM State output [7:0]  
Matrix Input  
1920  
Matrix Input 0  
Matrix Input 1  
Matrix Input 2  
VSS  
Valid  
Valid  
Valid  
Invalid  
Invalid  
Invalid  
1921  
IO0 Digital Input  
IO1 Digital Input  
1922  
Datasheet  
18-Sep-2019  
Revision 3.3  
198 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
SynchronousDC/DCStepDownConverter  
Fault B  
1923  
Matrix Input 3  
Valid  
Invalid  
1924  
1925  
1926  
1927  
1928  
1929  
1930  
1931  
1932  
1933  
1934  
1935  
1936  
1937  
1938  
Matrix Input 4  
Matrix Input 5  
Matrix Input 6  
Matrix Input 7  
Matrix Input 8  
Matrix Input 9  
Matrix Input 10  
Matrix Input 11  
Matrix Input 12  
Matrix Input 13  
Matrix Input 14  
Matrix Input 15  
Matrix Input 16  
Matrix Input 17  
Matrix Input 18  
VSS  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
IO2 Digital Input  
LUT2_0/DFF0 Output  
LUT2_1/DFF1 Output  
LUT2_2/DFF2 Output  
LUT3_0/DFF3 Output  
LUT3_1/DFF4 Output  
LUT3_2/DFF5 Output  
LUT3_3/DFF6 Output  
LUT3_4/DFF7 Output  
LUT3_6/CNT_DLY0(8bit) Output  
LUT3_7/CNT_DLY1(8bit) Output  
LUT3_8/CNT_DLY2(8bit) Output  
LUT3_9/CNT_DLY3(8bit) Output  
LUT3_10/CNT_DLY4(8bit) Output  
LUT3_11/Pipe Delay (1st stage) Output/  
Ripple counter Q[0]  
1939  
Matrix Input 19  
Valid  
Invalid  
1940  
1941  
1942  
1943  
1944  
1945  
1946  
Matrix Input 20  
Matrix Input 21  
Matrix Input 22  
Matrix Input 23  
Matrix Input 24  
Matrix Input 25  
Matrix Input 26  
LUT3_5/DFF8 Output  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
LUT4X2 Output0  
LUT4X2 Output1  
RTC CNT 1 second Output  
RTC DCOMP Output  
Pipe Delay Output0/Ripple counter Q[1]  
Pipe Delay Output1/Ripple counter Q[2]  
Internal OSC Post-Divided by 1/2/3/4/8/12/  
24/64 Output (25KHz/2MHz)  
1947  
Matrix Input 27  
Valid  
Invalid  
Internal OSC Post-Divided by 1/2/3/4/8/12/  
24/64 Output (25KHz/2MHz)  
1948  
1949  
Matrix Input 28  
Matrix Input 29  
Valid  
Valid  
Invalid  
Invalid  
LPOSC Output  
1950  
1951  
1952  
1953  
1954  
1955  
1956  
1957  
1958  
1959  
Matrix Input 30  
Matrix Input 31  
Matrix Input 32  
Matrix Input 33  
Matrix Input 34  
Matrix Input 35  
Matrix Input 36  
Matrix Input 37  
Matrix Input 38  
Matrix Input 39  
Filter0/Edge Detect0 Output  
Filter1/Edge Detect1 Output  
I2C_virtual_0 Input  
I2C_virtual_1 Input  
I2C_virtual_2 Input  
I2C_virtual_3 Input  
I2C_virtual_4 Input  
I2C_virtual_5 Input  
I2C_virtual_6 Input  
I2C_virtual_7 Input  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Invalid  
Invalid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Datasheet  
18-Sep-2019  
Revision 3.3  
199 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Table 103: Register Map (Continued)  
I2C Interface  
Register Bit  
Address  
Signal Function  
Register Bit Definition  
I2C Read I2C Write  
1960  
1961  
1962  
1963  
1964  
1965  
1966  
1967  
1968  
1969  
1970  
1971  
1972  
1973  
1974  
1975  
1976  
1977  
1978  
1979  
1980  
Matrix Input 40  
Matrix Input 41  
Matrix Input 42  
Matrix Input 43  
Matrix Input 44  
Matrix Input 45  
Matrix Input 46  
Matrix Input 47  
Matrix Input 48  
Matrix Input 49  
Matrix Input 50  
Matrix Input 51  
Matrix Input 52  
Matrix Input 53  
Matrix Input 54  
Matrix Input 55  
Matrix Input 56  
Matrix Input 57  
Matrix Input 58  
Matrix Input 59  
Matrix Input 60  
RAM_0 Output for ASM-state  
RAM_1 Output for ASM-state  
RAM_2 Output for ASM-state  
RAM_3 Output for ASM-state  
RAM_4 Output for ASM-state  
RAM_5 Output for ASM-state  
RAM_6 Output for ASM-state  
RAM_7 Output for ASM-state  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
LDO0 FAULTB  
LDO1 FAULTB  
LDO2 FAULTB  
LDO3 FAULTB  
IO3 Digital Input (GPI)  
IO4 Digital Input  
IO5 Digital Input  
IO6 Digital Input  
ACMP_0 Output  
ACMP_1 Output  
ACMP_2 Output  
ACMP_3 Output  
Programmable Delay with Edge Detector  
Output  
1981  
Matrix Input 61  
Valid  
Invalid  
1982  
1983  
Matrix Input 62  
Matrix Input 63  
nRST_core as matrix input  
VDD  
Valid  
Valid  
Invalid  
Invalid  
Reserved  
1991:1984  
1999:1992  
2007:2000  
2015:2008  
2023:2016  
2031:2024  
2032  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Invalid  
Invalid  
Invalid  
Valid  
Invalid  
Invalid  
Valid  
Reserved  
2033  
Valid  
2034  
Reserved  
Reserved  
Reserved  
Reserved  
Valid  
2035  
Invalid  
Valid  
2039:2036  
2047:2040  
Valid  
Datasheet  
18-Sep-2019  
Revision 3.3  
200 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
23 Package Top Marking System Definition  
23.1 MSTQFN 29L 3 MM X 3 MM X 0.55 MM 0.4P PACKAGE  
Part Code  
PPPPP  
WWWNN  
Date Code + S/N Code  
Assembly Code  
+ Revision Code  
ARR  
Pin 1 Identifier  
Datasheet  
18-Sep-2019  
Revision 3.3  
201 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
24 Package Information  
24.1 PACKAGE OUTLINES FOR MSTQFN 29L 3 MM X 3 MM 0.4P FC PACKAGE  
JEDEC MO-220, Variation WECE  
Marking View  
BTM View  
Side view  
Datasheet  
18-Sep-2019  
Revision 3.3  
202 of 210  
© 2019 Dialog Semiconductor  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
24.2 MSTQFN HANDLING  
Be sure to handle MSTQFN package only in a clean, ESD-safe environment. Tweezers or vacuum pick-up tools are suitable for  
handling. Do not handle MSTQFN package with fingers as this can contaminate the package pins and interface with solder reflow.  
24.3 SOLDERING INFORMATION  
Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 3.85 mm3 (nominal). More  
information can be found at www.jedec.org.  
25 Ordering Information  
Part Number  
Type  
SLG46585M  
29-Pin MSTQFN  
29-Pin MSTQFN - Tape and Reel (3k units)  
SLG46585MTR  
25.1 TAPE AND REEL SPECIFICATIONS  
Max Units  
per Reel per Box  
Leader (min)  
Length  
Trailer (min)  
Nominal  
Package Size  
(mm)  
Reel &  
Hub Size  
(mm)  
Tape  
Width Pitch  
(mm) (mm)  
Part  
Package # of  
Length  
Type  
Pins  
Pockets  
Pockets  
(mm)  
(mm)  
MSTQFN  
29L 3 mm x  
3 mm 0.4P  
Green  
29  
3 x 3 x 0.55  
5,000  
10,000  
330/100  
42  
336  
42  
336  
12  
8
25.2 CARRIER TAPE DRAWING AND DIMENSIONS  
Pocket  
IndexHole IndexHole  
to Tape to Pocket  
Pocket  
Pocket IndexHole Pocket IndexHole  
Tape  
Width Thickness  
(mm)  
Tape  
BTM  
Length  
(mm)  
BTM Width Depth  
Pitch  
(mm)  
Pitch  
(mm)  
Diameter  
(mm)  
Package  
Type  
Edge  
(mm)  
Center  
(mm)  
(mm)  
(mm)  
(mm)  
A0  
B0  
K0  
P0  
P1  
D0  
E
F
W
T
MSTQFN  
29L 3 mm  
x3 mm  
3.3  
3.3  
0.8  
4
8
1.55  
1.75  
5.5  
12  
0.3  
0.4P Green  
Datasheet  
18-Sep-2019  
Revision 3.3  
203 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Refer to EIA-481 specification  
Note: Orientation in carrier: Pin1 is at upper left corner (Quadrant 1).  
Datasheet  
18-Sep-2019  
Revision 3.3  
204 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
26 Layout Guidelines  
26.1 MSTQFN 29L 3 MM X 3 MM X 0.55 MM 0.4P PACKAGE  
Units: µm  
Units: µm  
Datasheet  
18-Sep-2019  
Revision 3.3  
205 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Glossary  
A
ACK  
Acknowledge bit  
ACMP  
ACMPH  
ACMPL  
AGND  
Analog Comparator  
Analog Comparator High Speed  
Analog Comparator Low Power  
Analog Ground  
B
BG  
BW  
Bandgap  
Bandwidth  
C
CCM  
CLK  
CMO  
CNT  
Continuous Conduction Mode  
Clock  
Connection matrix output  
Counter  
D
DCM  
DCMP  
DFF  
DLY  
Discontinuous Conduction Mode  
Digital Comparator  
D Flip-Flop  
Delay  
E
ESD  
ESR  
EV  
Electrostatic Discharge  
Equivalent Series Resistance  
End Value  
F
FSM  
Finite State Machine  
G
GPI  
GPIO  
GPO  
General Purpose Input  
General Purpose Input/Output  
General Purpose Output  
H
HP  
High Power  
I
IN  
IQ  
IO  
Input  
Quiescent Current  
Input/Output  
Datasheet  
18-Sep-2019  
Revision 3.3  
206 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
L
LBW  
LDO  
LP  
Low Bandwidth  
Low Dropout Regulator  
Low Power  
LPF  
LSB  
LUT  
LV  
Low Pass Filter  
Least Significant Bit  
Look Up Table  
Low Voltage  
M
MSB  
MUX  
Most Significant Bit  
Multiplexer  
N
NPR  
nRST  
NVM  
Non-Volatile Memory Read/Write/Erase Protection  
Reset  
Non-Volatile Memory  
O
OCP  
OD  
Over-Current Protection  
Open-Drain  
OE  
Output Enable  
Oscillator  
OSC  
OTP  
OUT  
one time programmable  
Output  
P
PD  
Power-Down  
Pattern Generator  
Power Ground  
Power-On Reset  
Push-Pull  
PGen  
PGND  
POR  
PP  
PWR  
P DLY  
Power  
Programmable Delay  
R
R/W  
RTC  
Read/Write  
Real Time Clock  
S
SCL  
SDA  
SLA  
SMT  
SS  
I2C Clock Input  
I2C Data Input/Output  
Slave Address  
With Schmitt Trigger  
Soft Start  
Datasheet  
18-Sep-2019  
Revision 3.3  
207 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
SV  
nSET Value  
Switch  
SW  
T
TC  
TS  
Case temperature  
Temperature Sensor  
U
UVLO  
Under Voltage Lockout  
V
VOSNS  
Vref  
DC/DC Converter VOUT feedback (sense) input  
Voltage Reference  
W
WOSMT  
WS  
Without Schmitt Trigger  
Wake and Sleep Controller  
Datasheet  
18-Sep-2019  
Revision 3.3  
208 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Revision History  
Revision  
Date  
Description  
Added graphs in subsection Oscillator Accuracy  
Updated 1.73 kHz OSC Frequency Limits and Errors  
Corrected Low Power Oscillator frequency  
Added section ACMP Typical Performance  
Table Gain Divider Input Resistance added to section Analog Comparators  
Updated according to new template  
3.3  
18-Sept-2018  
Corrected LDO mode name  
Updated according to Dialog’s Writing Guideline  
Fixed typos  
Corrected list of Pins connected to appropriate Power rails  
Fixed typos  
Added new subsection Electrostatic Discharge Ratings  
Added Parameter Short Circuit Protection  
Updated Registers Read/Write Protection Options  
3.2  
15-Mar-2018  
Updated LDO Typical Application Performance  
Updated Oscillator Power-On Delay graphs  
Updated after review  
3.1  
3.0  
17-Dec-2018  
22-Nov-2018  
Added new subsection LDO efficiency  
Final version  
Datasheet  
18-Sep-2019  
Revision 3.3  
209 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  
SLG46585  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine, LDOs, and DC/DC Converter  
Status Definitions  
Revision Datasheet Status  
Product Status  
Definition  
1.<n>  
Target  
Development  
This datasheet contains the design specifications for product development.  
Specifications may change in any manner without notice.  
2.<n>  
Preliminary  
Qualification  
Production  
This datasheet contains the specifications and preliminary characterization  
data for products in pre-production. Specifications may be changed at any  
time without notice in order to improve the design.  
3.<n>  
4.<n>  
Final  
This datasheet contains the final specifications for products in volume  
production. The specifications may be changed at any time in order to  
improve the design, manufacturing and supply. Major specification  
changes are communicated via Customer Product Notifications. Datasheet  
changes are communicated via www.dialog-semiconductor.com.  
Obsolete  
Archived  
This datasheet contains the specifications for discontinued products. The  
information is provided for reference only.  
Disclaimer  
Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or warranted  
to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product (or  
associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers  
accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion  
and/or use is at the customer's own risk.  
Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or implied, as  
to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any  
information source outside of Dialog Semiconductor.  
Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the design of  
the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device, Dialog Semiconductor  
reserves the right to change the information published in this document, including, without limitation, the specification and the design of the related semiconductor products,  
software and applications, in accordance with its standard automotive change notification process.  
Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty  
that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing,  
such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.  
Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such  
license must be separately sought by customer with Dialog Semiconductor.  
All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions  
of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.  
Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are  
the property of their respective owners.  
© 2019 Dialog Semiconductor. All rights reserved.  
RoHS Compliance  
Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction  
of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Hong Kong  
Dialog Semiconductor Hong Kong  
Phone: +852 2607 4271  
China (Shenzhen)  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Korea  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5769 5100  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
The Netherlands  
Taiwan  
210  
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
Datasheet  
18-Sep-2019  
Revision 3.3  
210 of 210  
© 2019 Dialog Semiconductor  
CFR0011-120-00  

相关型号:

SLG46585M

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine, LDOs, and DC/DC Converter
DIALOG

SLG46585MTR

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine, LDOs, and DC/DC Converter
DIALOG

SLG46620-A

Auto Grade GreenPAK Programmable Mixed-signal Matrix
DIALOG

SLG46620-AG

Auto Grade GreenPAK Programmable Mixed-signal Matrix
DIALOG

SLG46620-AGTR

Auto Grade GreenPAK Programmable Mixed-signal Matrix
DIALOG

SLG46722

Personal Computers and Servers
DIALOG

SLG46722V

Personal Computers and Servers
DIALOG

SLG46722VTR

Personal Computers and Servers
DIALOG

SLG46811

GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46811V

GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46811VTR

GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46827-A

Auto Grade GreenPAK Programmable Mixed-Signal Matrix with In-System Debug
DIALOG