SLG46811V [DIALOG]

GreenPAK Programmable Mixed-Signal Matrix;
SLG46811V
型号: SLG46811V
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

GreenPAK Programmable Mixed-Signal Matrix

文件: 总171页 (文件大小:2916K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
General Description  
The SLG46811 provides a small, low power component for commonly used Mixed-Signal functions. The user creates their  
circuit design by programming the one time programmable (OTP) Non-Volatile Memory (NVM) to configure the interconnect  
logic, the IO Pins, and the macrocells of the SLG46811. This highly versatile device allows a wide variety of Mixed-Signal  
functions to be designed within a very small, low power single integrated circuit.  
Key Features  
Multichannel Sampling Analog Comparator (MS ACMP)  
Two Oscillators (OSC)  
Sampling up to Four Analog Channels  
Selectable Voltage Reference for Each Channel  
Different Sampling Scenarios  
Selectable 2.048 kHz or 10 kHz Oscillator  
25 MHz Oscillator  
Analog Temperature Sensor  
Power-On Reset (POR) with CRC  
Read Back Protection (Read Lock)  
Power Supply  
Synchronous or Asynchronous Result Appearance  
Integrated Voltage References (Vref)  
Twelve Combination Function Macrocells  
Two 2-Bit LUT or DFF/LATCH Macrocells  
One Selectable Programmable Pattern Generator or 2-  
bit LUT  
Four 3-Bit LUT or DFF/LATCH with Set/Reset  
Four Selectable DFF/LATCH or 3-bit LUTs or Shift  
Registers  
2.3 V ≤ VDD ≤ 5.5 V  
Operating Temperature Range: -40 °C to 85 °C  
RoHS Compliant/Halogen-Free  
Available Package  
12-pin STQFN: 1.6 mm x 1.6 mm x 0.55 mm, 0.4 mm  
pitch  
One 4-Bit LUT or DFF/LATCH with Set/Reset Macro-  
cell  
Six Multi-Function Macrocells  
Five Selectable DFF/LATCH or 3-bit LUTs + 8-bit  
Delay/Counters  
One Selectable DFF/LATCH or 3-bit LUTs + 8-bit  
Delay/Counter/FSM  
Extended Pattern Generator  
Up to 8 Parallel Outputs  
92 bytes Pattern Stored in the NVM  
Serial Communications  
I2C Protocol Interface  
Programmable Delay with Edge Detector Output  
Deglitch Filter or Edge Detector  
Applications  
Notebook and Tablet PCs  
Smartphones and Fitness Bands  
Personal Computers and Servers  
PC Peripherals  
Consumer Electronics  
Data Communications Equipment  
Handheld and Portable Electronics  
Datasheet  
14-Apr-2021  
Revision 3.0  
1 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Contents  
General Description.................................................................................................................................................................1  
Key Features.............................................................................................................................................................................1  
Applications..............................................................................................................................................................................1  
1 Block Diagram ......................................................................................................................................................................7  
2 Pinout ....................................................................................................................................................................................8  
2.1 Pin Configuration - STQFN- 12 ..............................................................................................................................8  
3 Characteristics ...................................................................................................................................................................11  
3.1 Absolute Maximum Ratings .................................................................................................................................11  
3.2 Electrostatic Discharge Ratings ...........................................................................................................................11  
3.3 Recommended Operating Conditions .................................................................................................................11  
3.4 Electrical Characteristics ......................................................................................................................................12  
3.5 I2C Pins Electrical Characteristics ........................................................................................................................14  
3.6 Macrocells Current Consumption .........................................................................................................................17  
3.7 Timing Characteristics ..........................................................................................................................................17  
3.8 Counter/Delay Characteristics .............................................................................................................................19  
3.9 Oscillator Characteristics .....................................................................................................................................20  
3.10 MS ACMP Characteristics ..................................................................................................................................20  
3.11 Analog Temperature Sensor Characteristics .....................................................................................................23  
4 User Programmability ........................................................................................................................................................24  
5 IO Pins .................................................................................................................................................................................25  
5.1 GPIO Pins ............................................................................................................................................................25  
5.2 GPI Pins ...............................................................................................................................................................25  
5.3 Pull-Up/Down Resistors .......................................................................................................................................25  
5.4 Fast Pull-up/down during Power-up .....................................................................................................................25  
5.5 GPI Structure .......................................................................................................................................................25  
5.6 GPIO with I2C Mode IO Structure ........................................................................................................................26  
5.7 Matrix OE IO Structure .........................................................................................................................................27  
5.8 Register OE IO Structure .....................................................................................................................................28  
5.9 IO Typical Performance .......................................................................................................................................29  
6 Connection Matrix ..............................................................................................................................................................32  
6.1 Matrix Input Table ...............................................................................................................................................33  
6.2 Matrix Output Table ..............................................................................................................................................35  
6.3 Connection Matrix Virtual Inputs ..........................................................................................................................37  
6.4 Connection Matrix Virtual Outputs .......................................................................................................................38  
7 Combination Function Macrocells ....................................................................................................................................39  
7.1 2-Bit LUT or D Flip-Flop Macrocells .....................................................................................................................39  
7.2 2-bit LUT or Programmable Pattern Generator ....................................................................................................41  
7.3 3-Bit LUT or D Flip-Flop with Set/Reset Macrocells Or Shift Register Macrocells ...............................................42  
7.4 3-Bit LUT or D Flip-Flop with Set/Reset Macrocells .............................................................................................50  
7.5 4-Bit LUT or D Flip-Flop with Set/Reset Macrocell ...............................................................................................52  
8 Multi-Function Macrocells .................................................................................................................................................55  
8.1 3-Bit LUT or DFF/Latch with 8-Bit Counter/Delay Macrocells ..............................................................................55  
8.2 CNT/DLY Timing Diagrams ..................................................................................................................................64  
8.3 FSM Timing Diagrams .........................................................................................................................................71  
9 Multichannel Sampling Analog Comparator ....................................................................................................................72  
9.1 Multichannel Sampling ACMP Block Diagram .....................................................................................................73  
9.2 MS ACMP Timing Diagrams ................................................................................................................................74  
9.3 ACMP Typical Performance .................................................................................................................................76  
10 Programmable Delay/Edge Detector ..............................................................................................................................79  
10.1 Programmable Delay Timing Diagram - Edge Detector OUTPUT .....................................................................79  
11 Additional Logic Function. Deglitch Filter .....................................................................................................................80  
12 Voltage Reference ............................................................................................................................................................81  
12.1 Voltage Reference Overview .............................................................................................................................81  
12.2 Vref Selection Table ...........................................................................................................................................81  
13 Clocking ............................................................................................................................................................................82  
Datasheet  
14-Apr-2021  
Revision 3.0  
2 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
13.1 OSC General description ...................................................................................................................................82  
13.2 Oscillator0 (2.048 kHz/10 kHz) ..........................................................................................................................83  
13.3 Oscillator1 (25 MHz) ..........................................................................................................................................83  
13.4 CNT/DLY Clock Scheme ....................................................................................................................................84  
13.5 External Clocking ...............................................................................................................................................84  
13.6 Oscillators Power-On Delay ...............................................................................................................................84  
13.7 Oscillators Accuracy ...........................................................................................................................................87  
13.8 Oscillators Settling Time ....................................................................................................................................89  
13.9 Oscillators Current Consumption .......................................................................................................................90  
14 Power-On Reset ................................................................................................................................................................92  
14.1 General Operation ..............................................................................................................................................92  
14.2 POR Sequence ..................................................................................................................................................93  
14.3 Macrocells Output States During POR Sequence .............................................................................................93  
15 I2C Serial Communications Macrocell ............................................................................................................................96  
15.1 I2C Serial Communications Macrocell Overview ................................................................................................96  
15.2 I2C Serial Communications Device Addressing .................................................................................................96  
15.3 I2C Serial General Timing ..................................................................................................................................97  
15.4 I2C Serial Communications Commands .............................................................................................................97  
15.5 I2C Serial Command Register Map ..................................................................................................................101  
15.6 I2C Additional Options ......................................................................................................................................102  
16 Extended Pattern Generator ..........................................................................................................................................104  
17 Analog Temperature Sensor .........................................................................................................................................105  
18 Register Definitions .......................................................................................................................................................107  
18.1 Register Map ....................................................................................................................................................107  
19 Package Top Marking Definitions .................................................................................................................................162  
19.1 STQFN 12L 1.6 mm x 1.6 mm 0.4P FC, before February 1, 2021 ..................................................................162  
19.2 STQFN 12L 1.6 mm x 1.6 mm 0.4P FC, after February 1, 2021 .....................................................................162  
20 Package Information ......................................................................................................................................................163  
20.1 Package outlines FOR STQFN 12L 1.6 mm x 1.6 mm x 0.55 mm 0.4P FC Package .....................................163  
20.2 Moisture Sensitivity Level .................................................................................................................................164  
20.3 Soldering Information .......................................................................................................................................164  
21 Ordering Information .....................................................................................................................................................164  
21.1 Tape and Reel Specifications ..........................................................................................................................164  
21.2 Carrier Tape Drawing and Dimensions ............................................................................................................164  
22 Layout Guidelines ..........................................................................................................................................................166  
22.1 STQFN 12L 1.6 mm x 1.6 mm x 0.55 mm 0.4P FC Package ..........................................................................166  
Glossary................................................................................................................................................................................167  
Revision History...................................................................................................................................................................170  
Datasheet  
14-Apr-2021  
Revision 3.0  
3 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Figures  
Figure 1: Block Diagram.............................................................................................................................................................7  
Figure 2: Steps to Create a Custom GreenPAK Device...........................................................................................................24  
Figure 3: GPI Structure Diagram..............................................................................................................................................25  
Figure 4: GPIO with I2C Mode IO Structure Diagram...............................................................................................................26  
Figure 5: Matrix OE IO Structure Diagram...............................................................................................................................27  
Figure 6: Register OE IO Structure Diagram............................................................................................................................28  
Figure 7: Typical High Level Output Current vs. High Level Output Voltage at T = 25 °C.......................................................29  
Figure 8: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C, Full Range......................29  
Figure 9: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C .........................................30  
Figure 10: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C, Full Range....................30  
Figure 11: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C .......................................31  
Figure 12: Connection Matrix...................................................................................................................................................32  
Figure 13: Connection Matrix Usage Example.........................................................................................................................32  
Figure 14: 2-bit LUT0 or DFF0.................................................................................................................................................39  
Figure 15: 2-bit LUT1 or DFF1.................................................................................................................................................40  
Figure 16: 2-bit LUT2 or PGen.................................................................................................................................................41  
Figure 17: PGen Timing Diagram.............................................................................................................................................42  
Figure 18: 3-bit LUT4 or DFF6 or Shift Register 0 ...................................................................................................................43  
Figure 19: 3-bit LUT5 or DFF7 or Shift Register 1 ...................................................................................................................44  
Figure 20: 3-bit LUT6 or DFF8 or Shift Register 2 ...................................................................................................................44  
Figure 21: 3-bit LUT7 or DFF9 or Shift Register 3 ...................................................................................................................45  
Figure 22: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation.............................................................................45  
Figure 23: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nReset Option, DFF Initial Value: 1 ...................46  
Figure 24: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nReset Option, DFF Initial Value: 1, Case 1......46  
Figure 25: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nReset Option, DFF Initial Value: 1, Case 2......47  
Figure 26: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nSet Option, DFF Initial Value: 0 .......................47  
Figure 27: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nSet Option, DFF Initial Value: 0, Case 1..........48  
Figure 28: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nSet Option, DFF Initial Value: 0, Case 2..........48  
Figure 29: 3-bit LUT0 or DFF2.................................................................................................................................................50  
Figure 30: 3-bit LUT1 or DFF3.................................................................................................................................................51  
Figure 31: 3-bit LUT2 or DFF4.................................................................................................................................................51  
Figure 32: 3-bit LUT3 or DFF5.................................................................................................................................................52  
Figure 33: 4-bit LUT0 or DFF16...............................................................................................................................................53  
Figure 34: Possible Connections Inside Multi-Function Macrocell...........................................................................................55  
Figure 35: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT8/DFF10, CNT/DLY0/FSM)...........................................56  
Figure 36: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT9/DFF11, CNT/DLY1) ...................................................57  
Figure 37: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT10/DFF12, CNT/DLY2) .................................................58  
Figure 38: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT11/DFF13, CNT/DLY3) .................................................59  
Figure 39: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT12/DFF14, CNT/DLY4) .................................................60  
Figure 40: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT13/DFF15, CNT/DLY5) .................................................61  
Figure 41: Delay Mode Timing Diagram, Edge Select: Both, Counter Data: 3 ........................................................................64  
Figure 42: Delay Mode Timing Diagram for Different Edge Select Modes...............................................................................65  
Figure 43: Counter Mode Timing Diagram without Two DFFs Synced Up ..............................................................................65  
Figure 44: Counter Mode Timing Diagram with Two DFFs Synced Up ...................................................................................66  
Figure 45: One-Shot Function Timing Diagram........................................................................................................................67  
Figure 46: Frequency Detection Mode Timing Diagram...........................................................................................................68  
Figure 47: Edge Detection Mode Timing Diagram...................................................................................................................69  
Figure 48: Delayed Edge Detection Mode Timing Diagram.....................................................................................................70  
Figure 49: Counter Value, Counter Data = 3............................................................................................................................71  
Figure 50: CNT/FSM Mode Timing Diagram (Set Rising Edge Mode, Oscillator Is Forced On, UP = 1) for CNT Data = 3 ....71  
Figure 51: Multichannel Sampling ACMP Block Diagram ........................................................................................................73  
Figure 52: Timing Diagrams for MS ACMP. Edge Sensitive Mode. OSC0 and BG are Forced On.........................................74  
Figure 53: Timing Diagrams for MS ACMP. Level Sensitive Mode. OSC0 and BG are Forced On.........................................74  
Figure 54: Timing Diagrams for MS ACMP. Level Sensitive Mode. OSC0 is in Auto Power On Mode. BG is Forced On ......75  
Figure 55: Typical Propagation Delay vs. Vref for MS ACMP at T = 25 °C, Gain = 1, Hysteresis = 0, Regular Mode ............76  
Datasheet  
14-Apr-2021  
Revision 3.0  
4 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Figure 56: MS ACMP Power-On Delay vs. VDD, Regular Mode ..............................................................................................76  
Figure 57: MS ACMP Power-On Delay vs. VDD, Sampling Mode, T = -40 °C to 85 °C ...........................................................77  
Figure 58: MS ACMP Input Offset Voltage vs. Vref at T = -40 °C to 85 °C..............................................................................77  
Figure 59: Current Consumption vs. VDD for Regular Mode, External Vref, VIN+ = VDD, VIN- = GND .....................................78  
Figure 60: Current Consumption vs. VDD for Sampling Mode, 4 Channels, VIN+ = 2048 mV, VIN- = 32 mV, Clock = 10 kHz .78  
Figure 61: Programmable Delay ..............................................................................................................................................79  
Figure 62: Edge Detector Output .............................................................................................................................................79  
Figure 63: Deglitch Filter/Edge Detector Simplified Structure..................................................................................................80  
Figure 64: Oscillator0 Block Diagram.......................................................................................................................................83  
Figure 65: Oscillator1 Block Diagram.......................................................................................................................................83  
Figure 66: Clock Scheme.........................................................................................................................................................84  
Figure 67: Oscillator Startup Diagram......................................................................................................................................85  
Figure 68: Oscillator0 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC0 = 2.048 kHz/10 kHz .....................................85  
Figure 69: Oscillator1 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC1 = 25 MHz .....................................................86  
Figure 70: Oscillator0 Frequency vs. Temperature, OSC0 = 2.048 kHz..................................................................................87  
Figure 71: Oscillator0 Frequency vs. Temperature, OSC0 = 10 kHz.......................................................................................87  
Figure 72: Oscillator1 Frequency vs. Temperature, OSC1 = 25 MHz......................................................................................88  
Figure 73: Oscillators Total Error vs. Temperature..................................................................................................................88  
Figure 74: Oscillator0 Settling Time, VDD = 3.3 V, T = 25 °C, OSC0 = 2.048 kHz...................................................................89  
Figure 75: Oscillator0 Settling Time, VDD = 3.3 V, T = 25 °C, OSC0 = 10 kHz........................................................................89  
Figure 76: Oscillator1 Settling Time, VDD = 3.3 V, T = 25 °C, OSC1 = 25 MHz (Normal Start)...............................................90  
Figure 77: OSC0 Current Consumption vs. VDD (All Pre-Dividers), OSC0 = 2.048 kHz..........................................................90  
Figure 78: OSC0 Current Consumption vs. VDD (All Pre-Dividers), OSC0 = 10 kHz...............................................................91  
Figure 79: OSC1 Current Consumption vs. VDD, T = -40 °C to 85 °C, OSC1 = 25 MHz .........................................................91  
Figure 80: POR Sequence.......................................................................................................................................................93  
Figure 81: Internal Macrocell States During POR Sequence...................................................................................................94  
Figure 82: Power-Down............................................................................................................................................................95  
Figure 83: Basic Command Structure......................................................................................................................................97  
Figure 84: I2C General Timing Characteristics.........................................................................................................................97  
Figure 85: Byte Write Command, R/W = 0...............................................................................................................................98  
Figure 86: Sequential Write Command....................................................................................................................................98  
Figure 87: Current Address Read Command, R/W = 1............................................................................................................99  
Figure 88: Random Read Command .......................................................................................................................................99  
Figure 89: Sequential Read Command..................................................................................................................................100  
Figure 90: Reset Command Timing .......................................................................................................................................100  
Figure 91: Example of I2C Byte Write Bit Masking.................................................................................................................103  
Figure 92: I2C General Block Diagram...................................................................................................................................104  
Figure 93: Analog Temperature Sensor Structure Diagram...................................................................................................105  
Figure 94: TS Output vs. Temperature, VDD = 2.3 V to 5.5 V................................................................................................106  
Datasheet  
14-Apr-2021  
Revision 3.0  
5 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Tables  
Table 1: Functional Pin Description............................................................................................................................................8  
Table 2: Pin Type Definitions ...................................................................................................................................................10  
Table 3: Absolute Maximum Ratings........................................................................................................................................11  
Table 4: Electrostatic Discharge Ratings .................................................................................................................................11  
Table 5: Recommended Operating Conditions........................................................................................................................11  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted ..............................................................12  
Table 7: EC of SDA and SCL Pins, DI Mode, at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted ..........14  
Table 8: EC of SDA and SCL Pins, DILV Mode, at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted......15  
Table 9: I2C Bus Timing Characteristics, DI Mode, at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted..15  
Table 10: I2C Bus Timing Characteristics, DILV Mode, at T = -40°C to +85°C, VDD = 2.3V to 5.5V Unless Otherwise Noted16  
Table 11: Typical Current Estimated for Each Macrocell at T = -40 °C to +85 °C ...................................................................17  
Table 12: Typical Delay Estimated for Each Macrocell at T = 25 °C........................................................................................17  
Table 13: Programmable Delay Expected Delays and Widths (Typical) at T = 25 °C .............................................................19  
Table 14: Typical Filter Rejection Pulse Width at T = 25 °C ....................................................................................................19  
Table 15: Typical Counter/Delay Offset at T = 25 °C...............................................................................................................19  
Table 16: Oscillators Frequency Limits, VDD = 2.3 V to 5.5 V..................................................................................................20  
Table 17: Oscillators Power-On Delay at T = -40 °C to +85 °C, OSC Power Setting: "Auto Power-On".................................20  
Table 18: MS ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted .........................20  
Table 19: Temperature Sensor Output vs Temperature at VDD = 2.3 V to 5.5 V.....................................................................23  
Table 20: Matrix Input Table.....................................................................................................................................................33  
Table 21: Matrix Output Table..................................................................................................................................................35  
Table 22: Connection Matrix Virtual Inputs ..............................................................................................................................37  
Table 23: 2-bit LUT2_0 to 2-bit LUT2_1 Truth Table ...............................................................................................................40  
Table 24: 2-bit LUT Standard Digital Functions .......................................................................................................................40  
Table 25: 2-bit LUT2_2 Truth Table.........................................................................................................................................42  
Table 26: 2-bit LUT Standard Digital Functions .......................................................................................................................42  
Table 27: 3-bit LUT3_0 to 3-bit LUT3_9 Truth Table ...............................................................................................................49  
Table 28: 3-bit LUT Standard Digital Functions .......................................................................................................................49  
Table 29: 4-bit LUT0 Truth Table.............................................................................................................................................53  
Table 30: 4-bit LUT Standard Digital Functions .......................................................................................................................54  
Table 31: 3-bit LUT8 Truth Table.............................................................................................................................................62  
Table 32: 3-bit LUT9 Truth Table.............................................................................................................................................62  
Table 33: 3-bit LUT10 Truth Table...........................................................................................................................................62  
Table 34: 3-bit LUT11 Truth Table...........................................................................................................................................62  
Table 35: 3-bit LUT12 Truth Table...........................................................................................................................................62  
Table 36: 3-bit LUT13 Truth Table...........................................................................................................................................62  
Table 37: Recommended MS ACMP Clock Frequencies ........................................................................................................72  
Table 38: Vref Selection Table.................................................................................................................................................81  
Table 39: Oscillator Control Input Modes.................................................................................................................................82  
Table 40: Oscillator Operation Mode Configuration Settings...................................................................................................82  
Table 41: Read/Write Protection Options...............................................................................................................................101  
Table 42: Register Map..........................................................................................................................................................107  
Table 43: MSL Classification..................................................................................................................................................164  
Datasheet  
14-Apr-2021  
Revision 3.0  
6 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
1
Block Diagram  
GPI  
VDD  
GPIO8  
Multichannel  
Sampling ACMP  
Combination Function Macrocells  
GPIO4  
GPIO5  
GPIO6  
6
in  
1
3-bit  
LUT3_0  
or DFF2  
2-bit  
2-bit  
2-bit  
LUT2_2  
or PGen  
GPIO0  
GPIO7  
MS_ACMP IN3  
GPIO7  
I2C_SCL  
LUT2_0  
or DFF0  
LUT2_1  
or DFF1  
V
DD  
Temp  
ACMP0H  
3-bit  
LUT3_2  
or DFF4  
3-bit  
LUT3_3  
or DFF5  
4-bit  
LUT4_0  
or DFF16  
3-bit  
LUT3_1  
or DFF3  
Config.  
Vref  
3-bit  
3-bit  
3-bit  
3-bit  
LUT3_4  
LUT3_5  
LUT3_6  
LUT3_7  
Sampling Engine  
or DFF6 or  
Shift_Reg0  
or DFF7 or  
Shift_Reg1  
or DFF8 or  
Shift_Reg2  
or DFF9 or  
Shift_Reg3  
GPIO1  
GPIO6  
MS_ACMP IN2  
I2C_SDA  
Oscillators  
Multi-Function Macrocells  
2.048 kHz/  
10 kHz  
25 MHz  
3-bit  
LUT3_8 /  
DFF10+8bit  
CNT/DLY0/  
FSM  
3-bit  
3-bit  
LUT3_10 /  
DFF12+8bit  
CNT/DLY2  
LUT3_9 /  
DFF11+8bit  
CNT/DLY1  
2
I C Serial  
Filter with Edge  
Detect  
POR with CRC  
Communication  
3-bit  
3-bit  
3-bit  
LUT3_11 /  
DFF13+8bit  
CNT/DLY3  
LUT3_12 /  
DFF14+8bit  
CNT/DLY4  
LUT3_13 /  
DFF15+8bit  
CNT/DLY5  
Extended Pattern  
Generator  
Programmable  
Delay  
Temperature  
Sensor  
GPIO5  
MS_ACMP IN1  
GPIO2  
GPIO3  
Ext_Vref  
GPIO4  
MS_ACMP IN0  
GND  
Figure 1: Block Diagram  
Datasheet  
14-Apr-2021  
Revision 3.0  
7 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
2
Pinout  
2.1 PIN CONFIGURATION - STQFN- 12  
Pin # Pin Name Pin Functions  
1
2
VDD  
Power Supply  
GPI  
GPI, SLA_0, EXT_CLK_OSC0  
GPIO, I2C SCL  
GPIO, I2C SDA  
3
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GND  
4
5
GPIO with OE  
6
GPIO with OE, SLA_1, EXT_Vref  
Ground  
7
12 11  
GPIO6  
GPIO5  
GPIO4  
GND  
VDD  
1
8
GPIO4  
GPIO5  
GPIO6  
GPIO, SLA_2, MS ACMP input 0  
GPIO, MS ACMP input 1  
GPIO, MS ACMP input 2  
10  
9
GPI  
GPIO0  
GPIO1  
2
3
4
9
8
7
10  
GPIO with OE, MS ACMP input 3, SLA_3,  
EXT_CLK_OSC1  
11  
12  
GPIO7  
GPIO8  
GPIO with OE  
5
6
Legend:  
OE: Output Enable  
MS ACMP input: Multichannel Sample ACMP Positive Input  
I2C SCL: I2C Clock Input  
I2C SDA: I2C Data Input/Output  
EXT_CLKx: External Clock Input  
SLA: Slave Address  
STQFN-12  
(Top View)  
Table 1: Functional Pin Description  
STQFN  
12 Pin # Name  
Pin  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
1
2
VDD  
VDD  
Power Supply  
--  
--  
Digital Input  
without Schmitt Trigger  
--  
GPI  
General Purpose Input  
Digital Input  
with Schmitt Trigger  
--  
--  
--  
GPI  
Low Voltage Digital Input  
Slave  
Address 0  
--  
External Clock  
of OSC0  
External Clock Connection  
--  
--  
Digital Input  
without Schmitt Trigger  
Open-Drain NMOS  
(3.2x)  
General Purpose IO  
with OE (Note 1)  
GPIO  
Digital Input  
with Schmitt Trigger  
3
GPIO0  
Low Voltage Digital Input  
--  
--  
--  
Digital Input  
without Schmitt Trigger  
I2C SCL  
I2C Serial Clock  
Low Voltage Digital Input  
Datasheet  
14-Apr-2021  
Revision 3.0  
8 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 1: Functional Pin Description (Continued)  
STQFN  
12 Pin # Name  
Pin  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
Digital Input  
without Schmitt Trigger  
Open-Drain NMOS  
(3.2x)  
GPIO  
I2C SDA  
GPIO  
General Purpose IO  
Digital Input  
with Schmitt Trigger  
4
5
GPIO1  
GPIO2  
Low Voltage Digital Input  
Digital Input  
without Schmitt Trigger  
--  
I2C Serial Data  
Low Voltage Digital Input  
--  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
Low Voltage Digital Input  
--  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
GPIO  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
6
7
GPIO3  
GND  
Low Voltage Digital Input  
Analog  
--  
--  
EXT_Vref  
ACMP Inverting Input  
Power Supply  
Slave  
Address 1  
--  
--  
GND  
--  
--  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x) (2x)  
GPIO  
General Purpose IO  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
8
GPIO4  
Low Voltage Digital Input  
--  
Positive Input 0 of  
MS ACMP  
MS_ACMP In0  
Analog  
--  
Slave  
Address 2  
--  
--  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x) (2x)  
GPIO  
General Purpose IO  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
9
GPIO5  
GPIO6  
Low Voltage Digital Input  
--  
Positive Input 1 of  
MS ACMP  
MS ACMP In1  
GPIO  
Analog  
--  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
10  
Low Voltage Digital Input  
--  
Positive Input 2 of  
MS ACMP  
MS ACMP In2  
Analog  
--  
Datasheet  
14-Apr-2021  
Revision 3.0  
9 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 1: Functional Pin Description (Continued)  
STQFN  
12 Pin # Name  
Pin  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
GPIO  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
Low Voltage Digital Input  
--  
11  
GPIO7  
Positive Input 3 of  
MS ACMP  
MS ACMP In 3  
Analog  
--  
Slave  
Address 3  
--  
--  
--  
External Clock  
of OSC1  
External Clock Connection  
--  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
12  
GPIO8  
GPIO  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
Low Voltage Digital Input  
--  
Note 1 General Purpose IO's with OE can be used to implement bidirectional signals under user control via Connection Matrix  
to OE signal in IO structure or as a 3-state output.  
Table 2: Pin Type Definitions  
Pin Type  
VDD  
Description  
Power Supply  
GPI  
General Purpose Input  
General Purpose Input/Output  
Ground  
GPIO  
GND  
Datasheet  
14-Apr-2021  
Revision 3.0  
10 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
3
Characteristics  
3.1 ABSOLUTE MAXIMUM RATINGS  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational  
sections of the specification are not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect  
device reliability.  
Table 3: Absolute Maximum Ratings  
Parameter  
Supply Voltage on VDD relative to GND  
DC Input Voltage  
Min  
Max  
Unit  
V
-0.3  
7
GND - 0.5 V VDD + 0.5 V  
V
Maximum Average or DC Current  
(Through VDD or GND pin)  
--  
90  
mA  
mA  
Push-Pull 1x  
--  
--  
11  
16  
Push-Pull 2x  
OD 1x  
Maximum Average or DC Current  
(Through pin)  
--  
11  
OD 2x  
--  
21  
Current at Input Pin  
-1.0  
--  
1.0  
1000  
150  
150  
mA  
nA  
°C  
Input Leakage Current (Absolute Value)  
Storage Temperature Range  
Junction Temperature  
-65  
--  
°C  
Moisture Sensitive Level  
1
3.2 ELECTROSTATIC DISCHARGE RATINGS  
Table 4: Electrostatic Discharge Ratings  
Parameter  
Min  
2000  
1300  
Max  
--  
Unit  
V
ESD Protection (Human Body Model)  
ESD Protection (Charged Device Model)  
--  
V
3.3 RECOMMENDED OPERATING CONDITIONS  
Table 5: Recommended Operating Conditions  
Parameter  
Condition  
Min  
2.3  
-40  
Max  
5.5  
85  
Unit  
V
Supply Voltage (VDD  
)
Operating Temperature  
°C  
Maximal Voltage Applied to any PIN in High  
Impedance State  
VDD+  
0.3  
--  
V
Capacitor Value at VDD  
0.1  
0
--  
µF  
Analog Input Common Mode Range  
Allowable Input Voltage atAnalog Pins  
VDD  
V
Datasheet  
14-Apr-2021  
Revision 3.0  
11 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
3.4 ELECTRICAL CHARACTERISTICS  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
0.7x  
VDD  
VDD  
0.3  
+
Logic Input (Note 1)  
--  
V
Logic InputwithSchmittTrigger (Positive  
VIH  
HIGH-Level Input Voltage  
0.8x  
VDD  
VDD  
0.3  
+
Going Threshold Voltage min = 0.4xVDD  
,
--  
V
max = 0.7xVDD  
)
Low-Level Logic Input (Note 1)  
1.25  
--  
--  
--  
V
V
GND-  
0.3  
0.3x  
VDD  
Logic Input (Note 1)  
Logic Input with Schmitt Trigger  
(Negative Going Threshold Voltage min  
GND-  
0.4  
0.2x  
VDD  
VIL  
LOW-Level Input Voltage  
--  
V
= 0.3xVDD, max = 0.6xVDD  
)
GND-  
0.5  
Low-Level Logic Input (Note 1)  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0.5  
--  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Push-Pull, 1x Drive,  
VDD = 2.5 V ± 8 %, IOH = 1 mA  
2.18  
2.68  
4.16  
2.24  
2.83  
4.33  
--  
Push-Pull, 1x Drive,  
--  
V
DD = 3.3 V ± 10 %, IOH = 3 mA  
Push-Pull, 1x Drive,  
VDD = 5.0 V ± 10 %, IOH = 5 mA  
--  
VOH  
HIGH-Level Output Voltage  
Push-Pull, 2x Drive,  
VDD = 2.5 V ± 8 %, IOH = 1 mA  
--  
Push-Pull, 2x Drive,  
--  
V
DD = 3.3 V ± 10 %, IOH = 3 mA  
Push-Pull, 2x Drive,  
VDD = 5.0 V ± 10 %, IOH = 5 mA  
--  
Push-Pull, 1x Drive,  
VDD = 2.5 V ± 8 %, IOL= 1 mA  
0.092  
0.227  
0.283  
0.045  
0.111  
0.140  
0.036  
0.089  
Push-Pull, 1x Drive,  
--  
V
DD = 3.3 V ± 10 %, IOL = 3 mA  
Push-Pull, 1x Drive,  
VDD = 5.0 V ± 10 %, IOL= 5 mA  
--  
Push-Pull, 2x Drive,  
VDD = 2.5 V ± 8 %, IOL = 1 mA  
--  
VOL  
LOW-Level Output Voltage  
Push-Pull, 2x Drive,  
VDD = 3.3 V ± 10 %, IOL= 3 mA  
--  
Push-Pull, 2x Drive,  
VDD = 5.0 V ± 10 %, IOL = 5 mA  
--  
NMOS OD, 1x Drive,  
VDD = 2.5 V ± 8 %, IOL = 1 mA  
--  
NMOS OD, 1x Drive,  
VDD = 3.3 V ± 10 %, IOL = 3 mA  
--  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
12 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted (Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
NMOS OD, 1x Drive,  
VDD = 5.0 V ± 10 %, IOL = 5 mA  
--  
--  
0.112  
V
NMOS OD, 2x Drive,  
VDD = 2.5 V ± 8 %, IOL = 1 mA  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0.018  
V
VOL  
LOW-Level Output Voltage  
NMOS OD, 2x Drive,  
VDD = 3.3 V ± 10 %, IOL = 3 mA  
--  
0.046  
0.059  
--  
V
NMOS OD, 2x Drive,  
VDD = 5.0 V ± 10 %, IOL = 5 mA  
--  
V
Push-Pull, 1x Drive,  
VDD = 2.5 V ± 8 %, VOH = VDD - 0.2  
1.520  
5.125  
19.589  
3.008  
10.106  
37.960  
1.483  
4.622  
6.250  
2.965  
9.228  
12.443  
3.676  
11.438  
15.397  
7.285  
22.589  
30.030  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Push-Pull, 1x Drive,  
VDD = 3.3 V ± 10 %, VOH = 2.4 V  
--  
Push-Pull, 1x Drive,  
VDD = 5.0 V ± 10 %, VOH = 2.4 V  
--  
HIGH-Level Output Pulse  
Current (Note 2)  
IOH  
Push-Pull, 2x Drive,  
--  
V
DD = 2.5 V ± 8 %, VOH = VDD - 0.2  
Push-Pull, 2x Drive,  
VDD = 3.3 V ± 10 %, VOH = 2.4 V  
--  
Push-Pull, 2x Drive,  
VDD = 5.0 V ± 10 %, VOH = 2.4 V  
--  
Push-Pull, 1x Drive,  
--  
V
DD = 2.5 V ± 8 %, VOL = 0.15 V  
Push-Pull, 1x Drive,  
VDD = 3.3 V ± 10 %, VOL = 0.4 V  
--  
Push-Pull, 1x Drive,  
VDD = 5.0 V ± 10 %, VOL = 0.4 V  
--  
Push-Pull, 2x Drive,  
--  
V
DD = 2.5 V ± 8 %, VOL = 0.15 V  
Push-Pull, 2x Drive,  
VDD = 3.3 V ± 10 %, VOL = 0.4 V  
--  
Push-Pull, 2x Drive,  
VDD = 5.0 V ± 10 %, VOL = 0.4 V  
--  
LOW-Level Output Pulse  
Current (Note 2)  
IOL  
NMOS OD, 1x Drive,  
VDD = 2.5 V ± 8 %, VOL = 0.15 V  
--  
NMOS OD, 1x Drive,  
VDD = 3.3 V ± 10 %, VOL = 0.4 V  
--  
NMOS OD, 1x Drive,  
VDD = 5.0 V ± 10 %, VOL = 0.4 V  
--  
NMOS OD, 2x Drive,  
VDD = 2.5 V ± 8 %, VOL = 0.15 V  
--  
NMOS OD, 2x Drive,  
VDD = 3.3 V ± 10 %, VOL = 0.4 V  
--  
NMOS OD, 2x Drive,  
VDD = 5.0 V ± 10 %, VOL = 0.4 V  
--  
TRAMP =1 V/µs ,  
From VDD rising past PONTHR  
TSU  
Startup Time  
--  
1.85  
1.86  
3.42  
2.17  
ms  
V
PONTHR  
Power-On Threshold  
VDD Level Required to Start Up the Chip  
1.55  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
13 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 6: EC at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted (Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
VDD Level Required to Switch Off the  
Chip  
POFFTHR Power-Off Threshold  
1.06  
1.34  
1.62  
V
1 M for Pull-up: VIN = GND;  
for Pull-down: VIN = VDD  
0.86  
83.30  
7.01  
1.03  
1.33  
MΩ  
kΩ  
Pull-up or Pull-down  
Resistance  
100 k for Pull-up: VIN = GND  
for Pull-down: VIN = VDD  
RPULL  
105.20 133.81  
10 k For Pull-up: VIN = GND  
for Pull-down: VIN = VDD  
9.62  
2.4  
13.28  
kΩ  
CIN  
Input Capacitance  
T = 25 °C  
pF  
Note 1 No hysteresis.  
Note 2 DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.  
3.5 I2C PINS ELECTRICAL CHARACTERISTICS  
Table 7: EC of SDA and SCL Pins, DI Mode, at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Fast-Mode  
Fast-Mode Plus  
Parameter Description  
Condition  
Unit  
Min  
Max  
Min  
Max  
LOW-level Input  
Voltage  
VIL  
-0.5  
0.3xVDD  
-0.5  
0.3xVDD  
V
V
HIGH-level Input  
Voltage  
VIH  
0.7xVDD  
5.5  
--  
0.7xVDD  
5.5  
--  
Hysteresis of  
Schmitt Trigger  
Inputs  
VHYS  
VOL1  
VOL2  
0.05xVDD  
0.05xVDD  
V
V
V
(Open-Drain or open  
collector) at 3 mAsink current  
LOW-Level Output  
Voltage 1  
0
0
0.4  
0
0
0.4  
V
DD > 2 V  
(Open-Drain or open  
collector) at 2 mAsink current  
LOW-Level Output  
Voltage 2  
0.2xVDD  
0.2xVDD  
V
DD ≤ 2 V  
VOL = 0.4 V, VDD = 2.3 V  
VOL = 0.4 V, VDD = 3.3 V  
VOL = 0.4 V, VDD = 4.5 V  
VOL= 0.6 V, VDD = 5.5 V  
3
3
3
6
--  
--  
--  
--  
20  
20  
20  
--  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
LOW-Level Output  
Current  
IOL  
Output Fall Time  
from VIHmin to  
VILmax  
14x  
(VDD/5.5V)  
10x  
(VDD/5.5V)  
tof  
250  
120  
ns  
(Note 1)  
Digital Input (SDA)  
Digital Input (SCL)  
50  
50  
--  
--  
50  
50  
--  
--  
ns  
ns  
Input Filter Spike  
Suppression  
tSP  
Input Current each  
IO Pin  
Ii  
0.1xVDD < VI < 0.9xVDDmax  
-10  
+10  
-10  
+10  
µA  
Capacitance for  
each IO Pin  
Ci  
--  
10  
--  
10  
pF  
Note 1 Does not meet standard I2C specifications: tof = 20x(VDD/5.5V) (min).  
Note 2 For Fast-mode Plus SDA pin must be configured as NMOS 3.2x Open-Drain, see register [613] in section 18.  
Datasheet  
14-Apr-2021  
Revision 3.0  
14 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 8: EC of SDA and SCL Pins, DILV Mode, at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Fast-Mode  
Parameter Description  
Condition  
Unit  
Min  
Max  
LOW-level Input Voltage  
(Note 1)  
VIL  
VIH  
--  
0.7  
V
V
V
V
V
HIGH-level Input Voltage  
(Note 1)  
1.25  
--  
--  
Hysteresis of Schmitt Trigger  
Inputs  
VHYS  
VOL1  
VOL2  
0.05xVDD  
(Open-Drain or open collector) at 3 mA sink  
current, VDD > 2 V  
LOW-Level Output Voltage 1  
LOW-Level Output Voltage 2  
0
0
0.4  
(Open-Drain or open collector) at 2 mA sink  
current, VDD ≤ 2 V  
0.2xVDD  
V
OL = 0.4 V, VDD = 2.3 V  
3
3
3
6
--  
--  
--  
--  
mA  
mA  
mA  
mA  
VOL = 0.4 V, VDD = 3.3 V  
VOL = 0.4 V, VDD = 4.5 V  
VOL= 0.6 V, VDD = 5.5 V  
IOL  
LOW-Level Output Current  
Output Fall Time from VIHmin to  
VILmax (Note 1)  
14x  
(VDD/5.5V)  
tof  
250  
ns  
Digital Input LOW Voltage (SDA)  
Digital Input LOW Voltage (SCL)  
0.1xVDD < VI < 0.9xVDDmax  
50  
50  
-10  
--  
--  
--  
ns  
ns  
µA  
pF  
Input Filter Spike Suppression  
(SCL, SDA)  
tSP  
Ii  
Input Current each IO Pin  
+10  
10  
Ci  
Capacitance for each IO Pin  
Note 1 Does not meet standard I2C specifications: VIL = 0.3xVDD (max); VIH = 0.7xVDD (min); tof = 20x(VDD/5.5V) (min).  
Table 9: I2C Bus Timing Characteristics, DI Mode, at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Speed  
Parameter Description  
Condition  
400 kHz  
1 MHz  
Unit  
Min  
Max  
400  
--  
Min  
Max  
1000  
--  
FSCL  
tLOW  
tHIGH  
Clock Frequency, SCL  
--  
--  
kHz  
ns  
Clock Pulse Width Low  
Clock Pulse Width High  
1300  
600  
500  
260  
--  
--  
ns  
Bus Free Time between Stop and  
Start  
tBUF  
1300  
--  
500  
--  
ns  
tHD_STA  
tSU_STA  
tHD_DAT  
tSU_DAT  
tR  
Start Hold Time  
600  
600  
0
--  
--  
260  
260  
0
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Start Set-up Time  
Data Hold Time  
--  
--  
Data Set-up Time  
Inputs Rise Time  
Inputs Fall Time  
100  
--  
--  
50  
--  
--  
300  
300  
--  
120  
120  
--  
tF  
--  
--  
tSU_STO  
tVD_ACK  
tVD_DAT  
Stop Set-up Time  
Data Out Hold Time  
Clock Low to Data Out Valid  
600  
50  
--  
260  
50  
--  
--  
--  
900  
450  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
15 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 9: I2C Bus Timing Characteristics, DI Mode, at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Speed  
Parameter Description  
Condition  
400 kHz  
Min Max  
1 MHz  
Min Max  
Unit  
Note 1 Timing diagram can be found in the Figure 84.  
Note 2 Please follow official I2C spec UM10204.  
Table 10: I2C Bus Timing Characteristics, DILV Mode, at T = -40°C to +85°C, VDD = 2.3V to 5.5V Unless Otherwise Noted  
Speed  
Parameter Description  
Condition  
400 kHz  
Unit  
Min  
--  
Max  
400  
--  
FSCL  
tLOW  
Clock Frequency, SCL  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Pulse Width Low  
Clock Pulse Width High  
Bus Free Time between Stop and Start  
Start Hold Time  
1300  
600  
1300  
600  
600  
264  
382  
--  
tHIGH  
--  
tBUF  
--  
tHD_STA  
tSU_STA  
tHD_DAT  
tSU_DAT  
tR  
--  
Start Set-up Time  
--  
Data Hold Time (Note 1)  
Data Set-up Time (Note 1)  
Inputs Rise Time  
--  
--  
300  
300  
--  
tF  
Inputs Fall Time  
--  
tSU_STO  
tVD_ACK  
tVD_DAT  
Stop Set-up Time  
600  
50  
Data Out Hold Time  
--  
Clock Low to Data Out Valid  
--  
900  
Note 1 Does not meet standard I2C specifications: tHD_DAT = 0 ns, tSU_DAT = 100 ns.  
Note 2 Please follow official I2C spec UM10204.  
Note 3 When SCL Input is in Low-Level Logic mode max frequency is 400 kHz.  
Note 4 Timing diagram can be found in the Figure 84.  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
16 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
3.6 MACROCELLS CURRENT CONSUMPTION  
Table 11: Typical Current Estimated for Each Macrocell at T = -40 °C to +85 °C  
Parameter  
Description Note  
PDET+I2C  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V  
Unit  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
0.06  
0.38  
0.08  
0.41  
0.13  
0.49  
PDET+BG+I2C  
Temperature Sensor Output  
OSC2 25 MHz, Pre-divider = 1  
OSC2 25 MHz, Pre-divider = 4  
OSC2 25 MHz, Pre-divider = 8  
OSC0 2.048 kHz, Pre-divider = 1  
OSC0 2.048 kHz, Pre-divider = 4  
OSC0 2.048 kHz, Pre-divider = 8  
OSC0 10 kHz, Pre-divider = 1  
OSC0 10 kHz, Pre-divider = 4  
OSC0 10 kHz, Pre-divider = 8  
15.06  
82.44  
45.97  
39.62  
0.33  
15.14  
106.46  
57.00  
48.35  
0.36  
15.48  
162.02  
83.21  
69.35  
0.44  
0.33  
0.36  
0.44  
0.33  
0.36  
0.44  
0.45  
0.49  
0.60  
0.44  
0.48  
0.57  
0.44  
0.47  
0.56  
IDD  
Current  
MS ACMP in regular mode  
(Vref Source - External  
VIN+ = 0 V,  
14.44  
21.56  
35.40  
14.83  
21.97  
36.11  
15.95  
23.21  
38.18  
µA  
µA  
µA  
VIN- = 32 mV), level sensitive  
MS ACMP in regular mode  
(Vref Source Internal  
V
IN+ = 0 V; VIN- = 32 mV), level sensitive  
MS ACMP in regular mode  
(Vref Source Internal  
V
IN+ = 1 M Pull-up  
VIN- = 32 mV), level sensitive  
MSACMPin continuous sampling mode,  
four channels,  
VIN+ = 2.048 mV, VIN- = 32 mV,  
10 kHz oscillator clock (average con-  
sumption), level sensitive  
35.78  
36.47  
38.57  
µA  
3.7 TIMING CHARACTERISTICS  
Table 12: Typical Delay Estimated for Each Macrocell at T = 25 °C  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5 V  
Note  
Parameter Description  
Unit  
Rising Falling Rising Falling Rising Falling  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Digital Input to PP 1x  
Digital Input to PP 2x  
31  
30  
32  
32  
32  
270  
31  
30  
--  
22  
21  
22  
24  
--  
24  
23  
24  
178  
22  
22  
--  
17  
16  
17  
19  
--  
18  
17  
18  
104  
17  
16  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Digital Input with Schmitt Trigger to PP 1x 31  
Low Voltage Digital Input to PP 1x  
Digital input to NMOS 1x  
Digital input to NMOS 2x  
Output enable from Pin, OE Hi-Z to 1  
Output enable from Pin, OE Hi-Z to 0  
1x3 State Hi-Z to 1  
33  
--  
--  
--  
--  
28  
--  
20  
--  
15  
--  
27  
--  
20  
--  
15  
--  
28  
--  
20  
--  
15  
--  
1x3 State Hi-Z to 0  
27  
--  
20  
--  
15  
--  
2x3 State Hi-Z to 1  
27  
19  
15  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
17 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 12: Typical Delay Estimated for Each Macrocell at T = 25 °C (Continued)  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5 V  
Note  
Parameter Description  
Unit  
Rising Falling Rising Falling Rising Falling  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tw  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Width  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
2x3 State Hi-Z to 0  
LATCH Q  
--  
15  
16  
23  
23  
23  
23  
21  
22  
21  
21  
13  
19  
18  
70  
26  
18  
212  
230  
15  
16  
--  
26  
16  
16  
24  
25  
24  
24  
23  
22  
22  
22  
13  
21  
20  
71  
25  
18  
212  
232  
17  
17  
23  
--  
--  
12  
11  
16  
17  
16  
16  
15  
15  
14  
16  
10  
15  
13  
49  
19  
13  
157  
169  
11  
12  
--  
19  
11  
12  
18  
18  
17  
18  
16  
17  
16  
15  
10  
14  
14  
50  
18  
13  
157  
170  
13  
13  
17  
--  
--  
8
14  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LATCH nQ  
9
8
LATCH nRESET High Q  
LATCH nRESET High nQ  
LATCH nRESET Low Q  
LATCH nRESET Low nQ  
LATCH nSET High Q  
LATCH nSET High nQ  
LATCH nSET Low Q  
LATCH nSET Low nQ  
2-bit LUT  
12  
12  
12  
12  
11  
11  
10  
11  
7
12  
12  
12  
12  
11  
11  
11  
11  
7
3-bit LUT  
11  
9
10  
10  
32  
13  
9
4-bit LUT  
Shift Register Transition  
Shift Register Reset  
Edge detect  
32  
13  
9
Edge detect  
113  
122  
8
114  
122  
9
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
Edge detect Delayed  
DFF Q  
DFF nQ  
8
9
DFF nRESET High Q  
DFF nRESET High nQ  
DFF nRESET Low Q  
DFF nRESET Low nQ  
DFF nSET High Q  
DFF nSET High nQ  
DFF nSET Low Q  
DFF nSET Low nQ  
СNT/DLY  
--  
12  
--  
22  
--  
16  
--  
11  
--  
23  
--  
16  
--  
12  
--  
22  
22  
--  
15  
16  
--  
11  
11  
--  
--  
--  
--  
23  
--  
17  
--  
12  
--  
22  
--  
15  
--  
11  
--  
23  
79  
16  
19  
--  
17  
70  
12  
14  
--  
12  
70  
9
81  
18  
--  
59  
14  
--  
43  
9
PGen CLK  
PGen nRESET Z to 0  
PGen nRESET Z to 1  
Extended PGen CLK  
Extended PGen nRESET Z to 0  
Extended PGen nRESET Z to 1  
Filter Q, nQ  
--  
10  
--  
18  
488  
--  
13  
487  
--  
9
488  
67  
--  
487  
48  
--  
493  
--  
495  
35  
--  
68  
122  
48  
93  
33  
68  
125  
95  
69  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
18 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 13: Programmable Delay Expected Delays and Widths (Typical) at T = 25 °C  
Parameter  
tw  
Description  
Note  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V Unit  
Pulse Width, 1 cell mode: (any) edge detect, edge detect output  
Pulse Width, 2 cell mode: (any) edge detect, edge detect output  
Pulse Width, 3 cell mode: (any) edge detect, edge detect output  
Pulse Width, 4 cell mode: (any) edge detect, edge detect output  
216  
427  
638  
850  
18  
160  
316  
471  
627  
13  
115  
228  
341  
453  
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tw  
tw  
tw  
time1  
time1  
time1  
time1  
time2  
time2  
time2  
time2  
Delay, 1 cell  
Delay, 2 cell  
Delay, 3 cell  
Delay, 4 cell  
Delay, 1 cell  
Delay, 2 cell  
Delay, 3 cell  
Delay, 4 cell  
mode: (any) edge detect, edge detect output  
mode: (any) edge detect, edge detect output  
mode: (any) edge detect, edge detect output  
mode: (any) edge detect, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
18  
13  
9
18  
13  
9
18  
13  
9
234  
446  
656  
866  
172  
328  
483  
639  
124  
237  
350  
461  
Table 14: Typical Filter Rejection Pulse Width at T = 25 °C  
Parameter  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V  
< 63 < 49 < 37  
Unit  
Filtered Pulse Width, tblock  
ns  
3.8 COUNTER/DELAY CHARACTERISTICS  
Table 15: Typical Counter/Delay Offset at T = 25 °C  
RC OSC  
Parameter  
RC OSC Power VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V  
Unit  
Freq  
25 MHz  
2.048 kHz  
10 kHz  
Power-On time  
Power-On time  
Power-On time  
auto  
auto  
auto  
0.055  
695  
0.04  
575  
575  
0.025  
480  
µs  
µs  
µs  
695  
480  
Stabilized  
Clk  
Frequency Settling Time  
Frequency Settling Time  
Frequency Settling Time  
25 MHz  
2.048 kHz  
10 kHz  
auto  
auto  
auto  
10  
1
10  
1
10  
1
Stabilized  
Clk  
Stabilized  
Clk  
5
5
5
Variable (CLK period)  
Variable (CLK period)  
Variable (CLK period)  
25 MHz  
2.048 kHz  
10 kHz  
forced  
forced  
forced  
0-40  
0-488  
0-100  
0-40  
0-488  
0-100  
0-40  
0-488  
0-100  
ns  
µs  
µs  
25 MHz/  
2.048 kHz/  
10 kHz  
Typical Propagation Delay  
(non-delayed edge)  
either  
35  
25  
18  
ns  
Datasheet  
14-Apr-2021  
Revision 3.0  
19 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
3.9 OSCILLATOR CHARACTERISTICS  
Table 16: Oscillators Frequency Limits, VDD = 2.3 V to 5.5 V  
Temperature Range  
+25 °C  
-40 °C to +85 °C  
Parameter  
Minimum  
Value, kHz  
Maximum  
Value, kHz  
Minimum  
Value, kHz  
Maximum  
Value, kHz  
Error, %  
Error, %  
+1.6  
-1.6  
+1.6  
-1.6  
+1.6  
-1.6  
+2.5  
-7.2  
+1.6  
-5.4  
+1.6  
-4.0  
2.048 kHz OSC0  
10 kHz OSC0  
2.015  
9.84  
2.081  
10.16  
25400  
1.900  
2.099  
10.16  
25400  
9.46  
25 MHz OSC1  
24600  
24000  
3.9.1 OSC Power-On Delay  
Table 17: Oscillators Power-On Delay at T = -40 °C to +85 °C, OSC Power Setting: "Auto Power-On"  
OSC1 25 MHz  
Start with Delay  
Power Sup-  
ply Range  
(VDD), V  
OSC0 2.048 kHz  
OSC0 10 kHz  
OSC1 25 MHz  
Typical  
Maximum  
Value, µs  
Typical  
Maximum  
Value, µs  
Typical  
Maximum  
Value, ns  
Typical  
Maximum  
Value, ns  
Value, µs  
Value, µs  
Value, ns  
Value, ns  
2.30  
3.30  
4.00  
5.00  
5.50  
725  
1098  
815  
714  
623  
581  
725  
1101  
816  
716  
624  
582  
60  
37  
31  
26  
24  
77  
51  
44  
38  
41  
150  
163  
159  
160  
161  
161  
577  
577  
142  
528  
528  
141  
483  
483  
140  
459  
459  
140  
3.10 MS ACMP CHARACTERISTICS  
Table 18: MS ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Parame-  
ter  
Description  
Note  
Condition  
Min  
0
Typ  
--  
Max  
Unit  
V
Positive Input  
Negative Input  
VDD  
VDD  
MS ACMP Input  
Voltage Range  
VACMP  
0
--  
V
MS ACMP Vhys = 0 mV,  
Gain = 1,  
Vref = 32 mV to 2016 mV  
(regular mode)  
-6.7  
-4.3  
-0.6  
1.1  
5.2  
7.2  
mV  
mV  
MS ACMP Input  
Offset  
Voffset  
MS ACMP Vhys = 0 mV,  
Gain = 1,  
Vref = 32 mV to 2016 mV  
(sampling mode)  
VDD = 2.3 V  
VDD = 3.3 V  
VDD = 5.5 V  
--  
--  
--  
1.5  
1.5  
1.5  
6.0  
6.0  
6.0  
nA  
nA  
nA  
ACMP Input  
Leakage  
ILKG  
VIN = VDD  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
20 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 18: MS ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted (Continued)  
Parame-  
ter  
Description  
Note  
Condition  
Min  
Typ  
Max  
Unit  
MS ACMP Power-On  
delay (regular mode)  
--  
--  
70.8  
µs  
MS ACMP Power-On  
delay (sampling mode),  
OSC0 = 10 kHz  
Bandgap: Forced On,  
OSC0: Forced On  
--  
--  
--  
--  
--  
--  
--  
--  
0.56  
2.66  
1.23  
2.59  
ms  
ms  
ms  
ms  
MS ACMP Power-On  
delay (sampling mode),  
OSC0 = 10 kHz  
Bandgap: Auto-On,  
OSC0: Auto-On  
tstart  
ACMP Startup Time  
MS ACMP Power-On  
delay (sampling mode),  
OSC0 = 10 kHz  
Bandgap: Forced On,  
OSC0: Auto-On  
MS ACMP Power-On  
delay (sampling mode),  
OSC0 = 10 kHz  
Bandgap: Auto-On,  
OSC0: Forced On  
VHYS = 32 mV (sampling  
T = 25 °C  
T = 25 °C  
23.36  
55.62  
55.01  
30.22  
61.57  
62.16  
34.83  
65.58  
66.64  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mode) (Note 2)  
VHYS = 64 mV (regular  
mode)  
VHYS = 64 mV (sampling  
mode)  
VHYS = 192 mV (regular  
mode)  
182.69 189.56 193.88  
182.08 190.14 195.22  
T = 25 °C  
VHYS = 192 mV (sampling  
mode)  
Built-in Hysteresis  
VHYS  
(Note 1)  
VHYS = 32 mV (sampling  
21.08  
52.29  
52.24  
30.22  
61.57  
62.16  
37.44  
67.63  
69.77  
mode) (Note 2)  
VHYS = 64 mV (regular  
mode)  
VHYS = 64 mV (sampling  
mode)  
VHYS = 192 mV (regular  
mode)  
178.95 189.56 195.75  
179.54 190.14 198.71  
VHYS = 192 mV (sampling  
mode)  
Gain = 1x  
--  
10  
1.9  
1.9  
1.9  
--  
GΩ  
MΩ  
MΩ  
MΩ  
Gain = 0.5x  
Gain = 0.33x  
Gain = 0.25x  
1.6  
1.6  
1.6  
2.4  
2.4  
2.4  
Series Input  
Resistance  
Rsin  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
21 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 18: MS ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted (Continued)  
Parame-  
ter  
Description  
Note  
Condition  
Min  
Typ  
Max  
Unit  
Gain = 1,  
Low to High  
0.35  
1.05  
4.01  
µs  
Vref = 32 mV to 2016 mV,  
Overdrive = 10 mV,  
regular mode  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
0.53  
0.56  
0.69  
1.18  
2.23  
0.23  
1.45  
1.05  
1.45  
1.50  
2.49  
0.34  
3.30  
2.49  
2.42  
1.75  
2.84  
0.48  
µs  
µs  
µs  
µs  
µs  
µs  
Gain = 1, T = 25 °C,  
Vref = 32 mV to 2016 mV,  
Overdrive = 10 mV,  
regular mode  
Gain = 0.25, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 10 mV,  
regular mode  
Propagation Delay,  
Response Time  
PROP  
Gain = 1, T = 25 °C,  
Vref = 32 mV to 2016 mV,  
Overdrive = 100 mV,  
High to Low  
0.27  
0.39  
0.65  
µs  
regular mode  
Gain = 0.25, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 100 mV,  
regular mode  
Low to High  
High to Low  
0.46  
1.33  
0.56  
1.48  
0.65  
1.70  
µs  
µs  
G = 1  
1
1
1
G = 0.5  
G = 0.33  
G = 0.25  
0.498  
0.332  
0.249  
-0.43  
-0.82  
0.500  
0.334  
0.251  
-0.10  
-0.10  
0.503  
0.337  
0.253  
0.21  
G
Gain error  
T = 25 °C  
%
%
Vref Accuracy,  
Vref = 2016 mV  
Vref  
0.24  
Note 1 VIL = Vin - VHYS, VIH = Vin.  
Note 2 Available only in Sampling mode.  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
22 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
3.11 ANALOG TEMPERATURE SENSOR CHARACTERISTICS  
Temperature Sensor typical nonlinearity ±0.57 % at VDD = 2.3 V to 5.5 V.  
Table 19: Temperature Sensor Output vs Temperature at VDD = 2.3 V to 5.5 V  
TS OUT, V  
T, °C  
Error, %  
Min  
Typ  
Max  
1.997  
1.951  
1.906  
1.861  
1.814  
1.769  
1.722  
1.699  
1.675  
1.628  
1.579  
1.531  
1.482  
1.433  
1.409  
1.384  
1.335  
1.285  
1.235  
1.210  
1.185  
2.008  
1.963  
1.918  
1.872  
1.826  
1.779  
1.733  
1.710  
1.686  
1.639  
1.591  
1.543  
1.494  
1.446  
1.421  
1.397  
1.347  
1.298  
1.249  
1.224  
1.200  
2.023  
1.979  
1.933  
1.886  
1.840  
1.792  
1.745  
1.722  
1.698  
1.651  
1.603  
1.555  
1.507  
1.458  
1.433  
1.409  
1.359  
1.310  
1.260  
1.236  
1.211  
-40 °C  
-30 °C  
-20 °C  
-10 °C  
0 °C  
±0.75  
±0.82  
±0.78  
±0.75  
±0.77  
±0.73  
±0.69  
±0.70  
±0.71  
±0.73  
±0.75  
±0.78  
±0.87  
±0.90  
±0.84  
±0.93  
±0.89  
±1.00  
±1.12  
±1.14  
±1.25  
10 °C  
20 °C  
25 °C  
30 °C  
40 °C  
50 °C  
60 °C  
70 °C  
80 °C  
85 °C  
90 °C  
100 °C  
110 °C  
120 °C  
125 °C  
130 °C  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
23 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
4
User Programmability  
The SLG46811 is a user programmable device with one time programmable (OTP) memory elements that are able to configure  
the connection matrix and macrocells. A programming development kit allows the user the ability to create initial devices. Once  
the design is finalized, the programming code (.gpx file) is forwarded to Dialog Semiconductor to integrate into a production  
process.  
Product  
Definition  
E-mail Product Idea, Definition, Drawing or  
Customer creates their own design in  
Schematic to  
GreenPAK Designer  
CMBUGreenPAK@diasemi.com  
Dialog Semiconductor Applications  
Engineer will review design specifications  
with customer  
Customer verifies GreenPAK in system  
design  
GreenPAK Design  
approved  
Samples, Design and Characterization  
Report send to customer  
GreenPAK Design  
approved  
Customers verifies GreenPAK design  
GreenPAK Design  
approved in system test  
Custom GreenPAK part enters production  
Figure 2: Steps to Create a Custom GreenPAK Device  
Datasheet  
14-Apr-2021  
Revision 3.0  
24 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
5
IO Pins  
The SLG46811 has a total of 9 GPIO and 1 GPI Pins which can function as either a user defined Input or Output.  
5.1 GPIO PINS  
Pins from GPIO0 to GPIO8 serve as General Purpose IO Pins. Input function of GPIO shared with I2C virtual inputs. See Section  
6.1.  
5.2 GPI PINS  
GPI serves as a General Purpose Input Pin.  
5.3 PULL-UP/DOWN RESISTORS  
All IO Pins have the option for user selectable resistors connected to the input structure. The selectable values on these resistors  
are 10 k, 100 kΩ, and 1 M. The internal resistors can be configured as either Pull-up or Pull-downs.  
5.4 FAST PULL-UP/DOWN DURING POWER-UP  
During power-up, IO Pull-up/down resistance will switch to 2.6 kinitially and then it will switch to normal setting value. This  
function is enabled by register [594].  
5.5 GPI STRUCTURE  
5.5.1 GPI Structure (for GPI)  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1, OE=0  
01: Digital In with Schmitt Trigger, smt_en = 1, OE = 0  
10: Low Voltage Digital In mode, lv_en = 1, OE = 0  
11: Reserved  
WOSMT_EN  
SMT_EN  
OE  
OE  
Schmitt  
Trigger Input  
Digital IN  
Note 1: OE cannot be selected by user  
Note 2: OE is Matrix output, Digital In is Matrix input  
Low Voltage  
Input  
LV_EN  
OE  
Floating  
PAD  
s0  
s1  
s2  
s3  
VDD  
s1  
s0  
900 kΩ  
90 kΩ  
10 kΩ  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
Pull-up_EN  
10: 100 kΩ  
11: 1 MΩ  
Figure 3: GPI Structure Diagram  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
25 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
5.6 GPIO WITH I2C MODE IO STRUCTURE  
5.6.1 GPIO with I2C Mode Structure (for GPIO0 and GPIO1)  
Input Mode [1:0]  
00: Digital Input without Schmitt Trigger  
01: Reserved  
10: Low Voltage Digital Input  
11: Reserved  
Non-Schmitt  
Trigger Input  
register [606]=1: Open-Drain NMOS for GPIO0  
register [613]=1: Open-Drain NMOS for GPIO1  
WOSMT_EN  
OE  
Digital IN  
Low Voltage  
Input  
Note 1: OE cannot be selected by user and is controlled by register.  
Digital In is Matrix input.  
Note 2: GPIO0 and GPIO1 do not support Push-Pull and PMOS  
Open-Drain modes.  
Note 3: It is possible to apply an input voltage higher than VDD to  
GPIO0 and GPIO1. However, this voltage should not exceed 5.5 V.  
Note 4: Can be varied over PVT, for reference only.  
LV_EN  
OE  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
172 Ω  
(Note 4)  
s1  
s0  
900 kΩ  
90 kΩ  
10 kΩ  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
Pull-up_EN  
10: 100 kΩ  
11: 1 MΩ  
Digital OUT  
OE  
OD 3.2x_en  
PAD  
Figure 4: GPIO with I2C Mode IO Structure Diagram  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
26 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
5.7 MATRIX OE IO STRUCTURE  
5.7.1 Matrix OE IO Structure (for GPIO2, GPIO3, GPIO7, GPIO8)  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
01: Digital In with Schmitt Trigger, smt_en = 1  
10: Low Voltage Digital In mode, lv_en = 1  
11: analog IO mode  
WOSMT_EN  
SMT_EN  
Schmitt  
Trigger Input  
Digital IN  
Output Mode [1:0]  
00: Push-Pull 1x mode, pp1x_en = 1  
01: Push-Pull 2x mode, pp2x_en = 1, pp1x_en = 1  
10: NMOS 1x Open-Drain mode, od1x_en = 1  
11: NMOS 2x Open-Drain mode, od2x_en = 1, od1x_en = 1  
Low Voltage  
Input  
Note 1: Digital Out and OE are Matrix Output, Digital In is Matrix Input  
Note 2: Can be varied over PVT, for reference only.  
LV_EN  
Analog IO  
Floating  
s0  
VDD  
s1  
s2  
s3  
s1  
s0  
172 Ω  
(Note 2)  
900 kΩ  
Res_sel  
[1:0]  
90 kΩ  
10 kΩ  
VDD  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
Digital OUT  
Digital OUT  
OE  
OE  
OD1x_EN  
PP1x_EN  
VDD  
PAD  
VDD  
Digital OUT  
Digital OUT  
OE  
OE  
OD2x_EN  
PP2x_EN  
Figure 5: Matrix OE IO Structure Diagram  
Datasheet  
14-Apr-2021  
Revision 3.0  
27 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
5.8 REGISTER OE IO STRUCTURE  
5.8.1 Register OE IO Structure (for GPIO4, GPIO5, GPIO6)  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
01: Digital In with Schmitt Trigger, smt_en = 1  
10: Low Voltage Digital In mode, lv_en = 1  
11: Analog IO mode  
WOSMT_EN  
SMT_EN  
Schmitt  
Trigger Input  
Digital IN  
Output Mode [1:0]  
00: Push-Pull 1x mode, pp1x_en = 1  
01: Push-Pull 2x mode, pp2x_en = 1, pp1x_en = 1  
10: NMOS 1x Open-Drain mode, od1x_en = 1  
11: NMOS 2x Open-Drain mode, od2x_en = 1, od1x_en = 1  
Low Voltage  
Input  
Note 1: Digital Out is Matrix Output, Digital In is Matrix Input. OE is register  
bit  
Note 2: Can be varied over PVT, for reference only.  
LV_EN  
Analog IO  
Floating  
s0  
VDD  
s1  
s2  
s3  
s1  
s0  
172 Ω  
(Note 2)  
900 kΩ  
Res_sel  
[1:0]  
90 kΩ  
10 kΩ  
VDD  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
Digital OUT  
Digital OUT  
OE  
OE  
OD1x_EN  
PP1x_EN  
VDD  
PAD  
VDD  
Digital OUT  
Digital OUT  
OE  
OE  
OD2x_EN  
PP2x_EN  
Figure 6: Register OE IO Structure Diagram  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
28 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
5.9 IO TYPICAL PERFORMANCE  
Figure 7: Typical High Level Output Current vs. High Level Output Voltage at T = 25 °C  
80  
70  
60  
50  
40  
30  
20  
10  
0
Open Drain 1x @ VDD = 5 V  
Open Drain 1x @ VDD = 3.3 V  
Open Drain 1x @ VDD = 2.5 V  
Push-Pull 1x @ VDD = 5 V  
Push-Pull 1x @ VDD = 3.3 V  
Push-Pull 1x @ VDD = 2.5 V  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
VOL (V)  
Figure 8: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C, Full Range  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
29 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
30  
Open Drain 1x @ VDD = 5 V  
25  
Open Drain 1x @ VDD = 3.3 V  
Open Drain 1x @ VDD = 2.5 V  
Push-Pull 1x @ VDD = 5 V  
20  
15  
10  
5
Push-Pull 1x @ VDD = 3.3 V  
Push-Pull 1x @ VDD = 2.5 V  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
VOL (V)  
Figure 9: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C  
140  
130  
120  
110  
100  
90  
Open Drain 2x @ VDD = 5 V  
Open Drain 2x @ VDD = 3.3 V  
Open Drain 2x @ VDD = 2.5 V  
Push-Pull 2x @ VDD = 5 V  
Push-Pull 2x @ VDD = 3.3 V  
Push-Pull 2x @ VDD = 2.5 V  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
VOL (V)  
Figure 10: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C, Full Range  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
30 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
50  
45  
Open Drain 2x @ VDD = 5 V  
Open Drain 2x @ VDD = 3.3 V  
40  
Open Drain 2x @ VDD = 2.5 V  
Push-Pull 2x @ VDD = 5 V  
35  
Push-Pull 2x @ VDD = 3.3 V  
Push-Pull 2x @ VDD = 2.5 V  
30  
25  
20  
15  
10  
5
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
VOL (V)  
Figure 11: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C  
Datasheet  
14-Apr-2021  
Revision 3.0  
31 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
6
Connection Matrix  
The Connection Matrix in the SLG46811 is used to create the internal routing for internal functional macrocells of the device once  
it is programmed. The registers are programmed from the one time programmable (OTP) NVM cell during Test Mode Operation.  
The output of each functional macrocell within the SLG46811 has a specific digital bit code assigned to it that is either set to active  
“High” or inactive “Low”, based on the design that is created. Once the 1200 register bits within the SLG46811 are programmed  
a fully custom circuit will be created.  
The Connection Matrix has 53 inputs and 72 outputs. Each of the 53 inputs to the Connection Matrix is hard-wired to the digital  
output of a particular source macrocell, including IO pins, LUTs, analog comparators, other digital resources, such as VDD and  
GND. The input to a digital macrocell uses a 6-bit register to select one of these 53 input lines.  
For a complete list of the SLG46811’s register table, see Section 18.  
Matrix Input Signal  
N
Functions  
GND  
0
1
2
3
LUT2_0/DFF0 output  
LUT2_1/DFF1 output  
LUT2_3/PGen output  
POR  
VDD  
51  
52  
Matrix Inputs  
0
1
2
71  
N
Registers  
registers [5:0]  
IN0 of LUT2_0 or  
registers [11:6]  
IN1 of LUT2_0 or  
registers [17:12]  
registers [431:426]  
Extended Pattern  
Generator nReset  
IN0 of LUT2_1 or  
Clock Input of DFF1  
Function  
Clock Input of DFF0 Data Input of DFF0  
Matrix Outputs  
Figure 12: Connection Matrix  
Function  
Connection Matrix  
GPIO7  
GPIO6  
LUT  
GPIO6  
GPIO7  
GPIO8  
LUT  
GPIO8  
Figure 13: Connection Matrix Usage Example  
Datasheet  
14-Apr-2021  
Revision 3.0  
32 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
6.1 MATRIX INPUT TABLE  
Table 20: Matrix Input Table  
Matrix Decode  
Matrix Input  
Matrix Input Signal Function  
Number  
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
GND  
LUT2_0/DFF0 output  
2
LUT2_1/DFF1 output  
3
LUT2_3/PGen output  
4
LUT3_0/DFF2 output  
5
LUT3_1/DFF3 output  
6
LUT3_2/DFF4 output  
7
LUT3_3/DFF5 output  
8
LUT3_4/DFF6 output/Shift_Reg0 output  
LUT3_5/DFF7 output/Shift_Reg1 output  
LUT3_6/DFF8 output/Shift_Reg2 output  
LUT3_7/DFF9 output/Shift_Reg3 output  
CNT0 output  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
MLT0_LUT3_8/DFF10_OUT  
CNT1 output  
MLT1_LUT3_9/DFF11_OUT  
CNT2 output  
MLT2_LUT3_10/DFF12_OUT  
CNT3 output  
MLT3_LUT3_11/DFF13_OUT  
CNT4 output  
MLT4_LUT3_12/DFF14_OUT  
CNT5 output  
MLT5_LUT3_13/DFF15_OUT  
I2C_virtual_0 Input, Extended Pattern Generator Output 0  
I2C_virtual_1 Input, Extended Pattern Generator Output 1  
I2C_virtual_2 Input, Extended Pattern Generator Output 2  
I2C_virtual_3 Input, Extended Pattern Generator Output 3  
I2C_virtual_4 Input, Extended Pattern Generator Output 4  
I2C_virtual_5 Input, Extended Pattern Generator Output 5  
25  
26  
27  
28  
29  
30  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
0
1
1
0
0
1
1
0
1
0
1
0
I2C_virtual_6 Input, GPIO0 digital input, Extended Pattern  
Generator Output 6 or SCL  
I2C_virtual_7 Input, GPIO1 digital input, Extended Pattern  
Generator Output 7 or SDA  
31  
32  
0
1
1
0
1
0
1
0
1
0
1
0
GPIO2 Digital Input or I2C_virtual_8 Input  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
33 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 20: Matrix Input Table (Continued)  
Matrix Decode  
Matrix Input  
Matrix Input Signal Function  
Number  
5
1
1
1
1
1
1
4
0
0
0
0
0
0
3
0
0
0
0
0
0
2
0
0
0
1
1
1
1
0
1
1
0
0
1
0
1
0
1
0
1
0
GPIO3 Digital Input or I2C_virtual_9 Input  
33  
GPIO4 Digital Input or I2C_virtual_10 Input  
34  
GPIO5 Digital Input or I2C_virtual_11 Input  
35  
GPIO6 Digital Input or I2C_virtual_12 Input  
36  
GPIO7 Digital Input or I2C_virtual_13 Input  
37  
GPIO8 Digital Input or I2C_virtual_14 Input  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
LUT4_0/DFF16 output  
GPI Digital Input  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Programmable Delay Edge Detect Output  
Edge Detect Filter Output  
Oscillator0 output 0  
Oscillator1 output  
MS ACMP Output 0  
MS ACMP Output 1  
MS ACMP Output 2  
MS ACMP Output 3  
Oscillator0 output 1  
MS ASMP Data Ready Signal  
POR  
VDD  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
34 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
6.2 MATRIX OUTPUT TABLE  
Table 21: Matrix Output Table  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
[5:0]  
IN0 of LUT2_0 or Clock Input of DFF0  
0
[11:6]  
IN1 of LUT2_0 or Data Input of DFF0  
1
[17:12]  
IN0 of LUT2_1 or Clock Input of DFF1  
2
[23:18]  
IN1 of LUT2_1 or Data Input of DFF1  
3
[29:24]  
IN0 of LUT2_2 or Clock Input of PGen  
4
[35:30]  
IN1 of LUT2_2 or nRST of PGen  
5
[41:36]  
IN0 of LUT3_0 or CLK Input of DFF2  
6
[47:42]  
IN1 of LUT3_0 or Data of DFF2  
7
[53:48]  
IN2 of LUT3_0 or nRST (nSET) of DFF2  
8
[59:54]  
IN0 of LUT3_1 or CLK Input of DFF3  
9
[65:60]  
IN1 of LUT3_1 or Data of DFF3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
[71:66]  
IN2 of LUT3_1 or nRST (nSET) of DFF3  
[77:72]  
IN0 of LUT3_2 or CLK Input of DFF4  
[83:78]  
IN1 of LUT3_2 or Data of DFF4  
[89:84]  
IN2 of LUT3_2 or nRST (nSET) of DFF4  
[95:90]  
IN0 of LUT3_3 or CLK Input of DFF5  
[101:96]  
[107:102]  
[113:108]  
[119:114]  
[125:120]  
[131:126]  
[137:132]  
[143:138]  
[149:144]  
[155:150]  
[161:156]  
[167:162]  
[173:168]  
[179:174]  
IN1 of LUT3_3 or Data of DFF5  
IN2 of LUT3_3 or nRST (nSET) of DFF5  
IN0 of LUT3_4 or CLK Input of DFF6 or Clock Input of Shift_Reg0  
IN1 of LUT3_4 or Data of DFF6 or Data Input of Shift_Reg0  
IN2 of LUT3_4 or nRST (nSET) of DFF6 or nRST (nSET) of Shift_Reg0  
IN0 of LUT3_5 or CLK Input of DFF7 or Clock Input of Shift_Reg1  
IN1 of LUT3_5 or Data of DFF7 or Data Input of Shift_Reg1  
IN2 of LUT3_5 or nRST (nSET) of DFF7 or nRST (nSET) of Shift_Reg1  
IN0 of LUT3_6 or CLK Input of DFF8 or Clock Input of Shift_Reg2  
IN1 of LUT3_6 or Data of DFF8 or Data Input of Shift_Reg2  
IN2 of LUT3_6 or nRST (nSET) of DFF8 or nRST (nSET) of Shift_Reg2  
IN0 of LUT3_7 or CLK Input of DFF9 or Clock Input of Shift_Reg3  
IN1 of LUT3_7 or Data of DFF9 or Data Input of Shift_Reg3  
IN2 of LUT3_7 or nRST (nSET) of DFF9 or nRST (nSET) of Shift_Reg3  
IN0 of LUT3_8 or CLK Input of DFF10 Delay0 Input (or Counter0 nRST Input) Up input  
of FSM  
[185:180]  
[191:186]  
[197:192]  
IN1 of LUT3_8 or nRST (nSET) of DFF10 Delay0 Input (or Counter0 nRST Input) or  
DLY/CNT/FSM External CLK input  
31  
32  
IN2 of LUT3_8 or Data of DFF10 Delay0 Input (or Counter0 nRST Input) or FSM  
Reset/Set input  
Datasheet  
14-Apr-2021  
Revision 3.0  
35 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 21: Matrix Output Table (Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
[203:198]  
[209:204]  
[215:210]  
[221:216]  
[227:222]  
[233:228]  
[239:234]  
[245:240]  
[251:246]  
[257:252]  
[263:258]  
[269:264]  
[275:270]  
[281:276]  
[287:282]  
[293:288]  
[299:294]  
[305:300]  
[311:306]  
[317:312]  
[323:318]  
[329:324]  
[335:330]  
[341:336]  
[347:342]  
[353:348]  
[359:354]  
[365:360]  
[371:366]  
[377:372]  
[383:378]  
[389:384]  
[395:390]  
[401:396]  
[407:402]  
[413:408]  
[419:414]  
IN0 of LUT3_9 or CLK Input of DFF11 Delay1 Input (or Counter1 nRST Input)  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
IN1 of LUT3_9 or nRST (nSET) of DFF11 Delay1 Input (or Counter1 nRST Input)  
IN2 of LUT3_9 or Data of DFF11 Delay1 Input (or Counter1 nRST Input)  
IN0 of LUT3_10 or CLK Input of DFF12 Delay2 Input (or Counter1 nRST Input)  
IN1 of LUT3_10 or nRST (nSET) of DFF12 Delay2 Input (or Counter1 nRST Input)  
IN2 of LUT3_10 or Data of DFF12 Delay2 Input (or Counter2 nRST Input)  
IN0 of LUT3_11 or CLK Input of DFF13 Delay3 Input (or Counter3 nRST Input)  
IN1 of LUT3_11 or nRST (nSET) of DFF13 Delay3 Input (or Counter3 nRST Input)  
IN2 of LUT3_11 or Data of DFF13 Delay3 Input (or Counter3 nRST Input)  
IN0 of LUT3_12 or CLK Input of DFF14 Delay4 Input (or Counter4 nRST Input)  
IN1 of LUT3_12 or nRST (nSET) of DFF14 Delay4 Input (or Counter4 nRST Input)  
IN2 of LUT3_12 or Data of DFF14 Delay4 Input (or Counter4 nRST Input)  
IN0 of LUT3_13 or CLK Input of DFF15 Delay5 Input (or Counter5 nRST Input)  
IN1 of LUT3_13 or nRST (nSET) of DFF15 Delay5 Input (or Counter5 nRST Input)  
IN2 of LUT3_13 or Data of DFF15 Delay5 Input (or Counter5 nRST Input)  
IN0 of LUT4_0 or CLK Input of DFF16  
IN1 of LUT4_0 or Data of DFF16  
IN2 of LUT4_0 or nRST (nSET) of DFF16  
IN3 of LUT4_0  
Programmable Delay/Edge Detect Input  
Filter/Edge Detect Input  
GPIO0 Digital Output  
GPIO1 Digital Output  
GPIO2, Digital Output  
GPIO2, Digital Output OE  
GPIO3, Digital Output  
GPIO3, Digital Output OE  
GPIO4 Digital Output  
GPIO5 Digital Output  
GPIO6 Digital Output  
GPIO7 Digital Output  
GPIO7 Digital Output OE  
GPIO8 Digital Output  
GPIO8 Digital Output OE  
MS ACMP Enable Input  
Reset of MS ACMP DFFs  
OSC Enable  
Datasheet  
14-Apr-2021  
Revision 3.0  
36 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 21: Matrix Output Table (Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
[425:420]  
[431:426]  
Extended Pattern Generator Clock  
Extended Pattern Generator nReset  
70  
71  
Note 1 For each Address, the two most significant bits are unused.  
6.3 CONNECTION MATRIX VIRTUAL INPUTS  
As mentioned previously, the Connection Matrix inputs come from the outputs of various digital macrocells on the device. Fifteen  
of the Connection Matrix inputs have the special characteristic that the state of these signal lines comes from a corresponding  
data bit written as a register value via I2C. This gives the user the ability to write data via the serial channel, and have this  
information translated to the inputs of other macrocells through Connection Matrix. The I2C address for reading and writing these  
register values is byte 0x39, 0x3A<6:0>.  
An I2C write command to these register bits will set the signal values going into the Connection Matrix to the desired state. A read  
command to these register bits will read either the original data values coming from the NVM memory bits (that were loaded during  
the initial device startup), or the values from a previous write command (if that has happened).  
Connection Matrix Virtual Inputs are shared with input function of GPIO and Pattern Generator input.  
If the virtual input mode is selected, an I2C write command to these register bits will set the signal values going into the Connection  
Matrix to the desired state. A read command to these register bits will read either the original data values coming from the NVM  
memory bits (that were loaded during the initial device startup), or the values from a previous write command (if that has hap-  
pened). The I2C disable/enable registers [1078:1072] and [1184] select whether the Connection Matrix input comes from the Pin  
input or from the I2C virtual input. All I2C virtual inputs with shared functions are listed below:  
Select Pattern Generator 0 or Virtual Input 0  
Select Pattern Generator 1 or Virtual Input 1  
Select Pattern Generator 2 or Virtual Input 2  
Select Pattern Generator 3 or Virtual Input 3  
Select Pattern Generator 4 or Virtual Input 4  
Select Pattern Generator 5 or Virtual Input 5  
Select Pattern Generator 6 or Virtual Input 6 or GPI (GPIO0)  
Select Pattern Generator 7 or Virtual Input 7 or GPI (GPIO1)  
Select Virtual Input 8 or GPI (GPIO2)  
Select Virtual Input 9 or GPI (GPIO3)  
Select Virtual Input 10 or GPI (GPIO4)  
Select Virtual Input 11 or GPI (GPIO5)  
Select Virtual Input 12 or GPI (GPIO6)  
Select Virtual Input 13 or GPI (GPIO7)  
Select Virtual Input 14 or GPI (GPIO8)  
See Table for Connection Matrix Virtual Inputs.  
Table 22: Connection Matrix Virtual Inputs  
Matrix Input  
Number  
Register Bit  
Addresses (d)  
Matrix Input Signal Function  
Extended Pattern Generator 0  
or I2C_virtual_0 Input  
24  
25  
26  
[456]  
[457]  
[458]  
Extended Pattern Generator 1  
or I2C_virtual_1 Input  
Extended Pattern Generator 2  
or I2C_virtual_2 Input  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
37 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 22: Connection Matrix Virtual Inputs (Continued)  
Matrix Input  
Number  
Register Bit  
Addresses (d)  
Matrix Input Signal Function  
Extended Pattern Generator 3  
or I2C_virtual_3 Input  
27  
[459]  
[460]  
[461]  
[462]  
[463]  
Extended Pattern Generator 4  
or I2C_virtual_4 Input  
28  
29  
30  
31  
Extended Pattern Generator 5  
or I2C_virtual_5 Input  
Extended Pattern Generator 6  
or I2C_virtual_6 Input or GPI (GPIO0)  
Extended Pattern Generator 7  
or I2C_virtual_7 Input or GPI (GPIO1)  
32  
33  
34  
35  
36  
37  
38  
GPI (GPIO2) or I2C_virtual_8 Input  
GPI (GPIO3) or I2C_virtual_9 Input  
GPI (GPIO4) or I2C_virtual_10 Input  
GPI (GPIO5) or I2C_virtual_11 Input  
GPI (GPIO6) or I2C_virtual_12 Input  
GPI (GPIO7) or I2C_virtual_13 Input  
GPI (GPIO8) or I2C_virtual_14 Input  
[464]  
[465]  
[466]  
[467]  
[468]  
[469]  
[470]  
6.4 CONNECTION MATRIX VIRTUAL OUTPUTS  
The digital outputs of the various macrocells are routed to the Connection Matrix to enable interconnections to the inputs of other  
macrocells in the device. At the same time, it is possible to read the state of each of the macrocell outputs as a register value via  
I2C. This option, called Connection Matrix Virtual Outputs, allows the user to remotely read the values of each macrocell output.  
The I2C addresses for reading these register values are bytes 0x36 (053) to 0x3C (060) (except for registers [470:456]). Write  
commands to these same register values will be ignored (with the exception of the Virtual Input register bits at registers [470:456]).  
Datasheet  
14-Apr-2021  
Revision 3.0  
38 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
7
Combination Function Macrocells  
The SLG46811 has 12 combination function macrocells that can serve more than one logic or timing function. In each case, they  
can serve as a Look Up Table (LUT), or as another logic or timing function. See the list below for the functions that can be  
implemented in these macrocells.  
Two macrocells that can serve as either 2-bit LUT or as D Flip-Flop  
One macrocell that can serve as either 2-bit LUT or as Programmable Pattern Generator (PGen)  
Four macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset Input  
Four macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset Input or as Shift Register  
One macrocell that can serve as either 4-bit LUT or as D Flip-Flop with Set/Reset Input  
Inputs/Outputs for the 12 combination function macrocells are configured from the connection matrix with specific logic functions  
being defined by the state of configuration bits.  
When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined  
function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).  
7.1 2-BIT LUT OR D FLIP-FLOP MACROCELLS  
There is one macrocell that can serve as either 2-bit LUT or as D Flip-Flop. When used to implement LUT functions, the 2-bit LUT  
takes in two input signals from the connection matrix and produce a single output, which goes back into the connection matrix.  
When used to implement D Flip-Flop function, the two input signals from the connection matrix go to the data (D) and clock (CLK)  
inputs for the Flip-Flop, with the output going back to the connection matrix.  
The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:  
DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change  
LATCH: when CLK is Low, then Q = D; otherwise Q remains its previous value (input D has no effect on the output, when CLK is  
High).  
register [1019] DFF or Latch Select  
IN1  
register [1018] Output Select (Q or nQ)  
S0  
From Connection Matrix Output [1]  
register [1017] DFF Initial Polarity Select  
OUT  
2-bit LUT0  
0: 2-bit LUT0 IN1  
1: DFF0 Data  
S1  
IN0  
LUT Truth  
Table  
To Connection Matrix  
Input [0]  
S0  
S1  
4-bits NVM  
registers [1019:1016]  
0: 2-bit LUT0 Out  
1: DFF0 Out  
DFF/Latch  
Registers  
D
From Connection Matrix  
Output [0]  
S0  
S1  
Q/nQ  
DFF0  
0: 2-bit LUT0 IN0  
1: DFF0 CLK  
CLK  
1-bit NVM  
register [1024]  
Figure 14: 2-bit LUT0 or DFF0  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
39 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
register [1023] DFF or Latch Select  
register [1022] Output Select (Q or nQ)  
register [1021] DFF Initial Polarity Select  
IN1  
S0  
From Connection Matrix Output [3]  
OUT  
2-bit LUT1  
0: 2-bit LUT1 IN1  
1: DFF1 Data  
S1  
IN0  
LUT Truth  
Table  
To Connection Matrix  
S0  
Input [1]  
4-bits NVM  
registers [1023:1020]  
S1  
0: 2-bit LUT1 Out  
1: DFF1 Out  
DFF/Latch  
Registers  
D
From Connection Matrix  
Output [2]  
S0  
S1  
Q/nQ  
DFF1  
0: 2-bit LUT1 IN0  
1: DFF1 CLK  
CLK  
1-bit NVM  
register [1025]  
Figure 15: 2-bit LUT1 or DFF1  
7.1.1 2-Bit LUT or D Flip-Flop Macrocell Used as 2-Bit LUT  
This macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:  
2-Bit LUT0 is defined by register [1019:1016]  
2-Bit LUT1 is defined by register [1023:1020]  
Table 23: 2-bit LUT2_0 to 2-bit LUT2_1 Truth Table  
IN1  
0
IN0  
0
OUT LUT0  
OUT LUT1  
Register [1016]  
Register [1017]  
Register [1018]  
Register [1019]  
Register [1020]  
Register [1021]  
Register [1022]  
Register [1023]  
LSB  
0
1
1
0
1
1
MSB  
Table 24 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the 2-bit LUT logic cells.  
Table 24: 2-bit LUT Standard Digital Functions  
Function  
AND-2  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-2  
OR-2  
NOR-2  
XOR-2  
XNOR-2  
Datasheet  
14-Apr-2021  
Revision 3.0  
40 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
7.2 2-BIT LUT OR PROGRAMMABLE PATTERN GENERATOR  
The SLG46811 has one combination function macrocell that can serve as a logic or timing function. This macrocell can serve as  
a Look Up Table (LUT), or Programmable Pattern Generator (PGen).  
When used to implement LUT functions, the 2-bit LUT takes in two input signals from the connection matrix and produces a single  
output, which goes back into the connection matrix. When used as a LUT to implement combinatorial logic functions, the outputs  
of the LUT can be configured to any user defined function, including the following standard digital logic devices (AND, NAND,  
OR, NOR, XOR, XNOR). The user can also define the combinatorial relationship between inputs and outputs to be any selectable  
function.  
It is possible to define the RST level for the PGen macrocell. There are both high level reset (RST) and a low level reset (nRST)  
options available which are selected by register [1027]. When operating as a Programmable Pattern Generator, the output of the  
macrocell will clock out a sequence of two to sixteen bits that are user selectable in their bit values, and user selectable in the  
number of bits (up to sixteen) that are output before the pattern repeats.  
From Connection Matrix Output [4]  
From Connection Matrix Output [5]  
In0  
In1  
OUT  
2-bit LUT2  
LUT Truth  
Table  
To Connection Matrix Input [3]  
S0  
S1  
registers [1031:1028]  
0: 2-bit LUT2 OUT  
1: PGen OUT  
Pattern  
Size  
nRST/RST  
CLK  
PGen  
OUT  
PGen  
Data  
register [1026]  
registers [1047:1032]  
Figure 16: 2-bit LUT2 or PGen  
Datasheet  
14-Apr-2021  
Revision 3.0  
41 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
V
DD  
t
t
nRST  
CLK  
1
2
6
8
16 17  
0
3
4
5
7
9
11  
10  
14 15  
12 13  
t
t
OUT  
D6  
D7  
D5  
D10  
D8  
D4  
D3  
D2  
D1  
D15  
D11  
D9  
D0  
D0  
D15  
D14  
D13  
D12  
D0  
Figure 17: PGen Timing Diagram  
Table 25: 2-bit LUT2_2 Truth Table  
IN1  
0
IN0  
0
OUT  
register [1028]  
register [1029]  
register [1030]  
register [1031]  
LSB  
0
1
1
0
1
1
MSB  
This macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:  
2-Bit LUT2_2 is defined by registers [1031:1028]  
Table 26 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the 2-bit LUT logic cells.  
Table 26: 2-bit LUT Standard Digital Functions  
Function  
AND-2  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-2  
OR-2  
NOR-2  
XOR-2  
XNOR-2  
7.3 3-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELLS OR SHIFT REGISTER MACROCELLS  
There are four macrocells that can serve as 3-bit LUT or as DFF/LATCH or as Shift Register. It is also possible to define the active  
level (Q or nQ) for the macrocell’s output by registers [958], [974], [990], [1006]. DFF/Shift Register or LUT are selected by  
registers [951:948]. When used to implement LUT functions, the 3-bit LUT takes in three input signals from the connection matrix  
and produce a single output, which goes back into the connection matrix.  
Datasheet  
14-Apr-2021  
Revision 3.0  
42 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
When used to implement Shift Register, the three input signals from the connection matrix go to the data (D_IN), clock (CLK),  
and Set/Reset (nSET/nRST) inputs for the Shift Register, with the output going back to the connection matrix. It is possible to  
define the active level for the reset/set input of Shift Register macrocell which is selected by registers [955], [971], [987], [1003].  
The input data (D_IN) writes into LSB. The Shift Register length (up to 8 bits/memory cells) is selected by registers [954:952],  
registers [970:968], registers [986:984], and registers [1002:1000]. Shift register length = 1 (corresponding registers = 0) means  
that DFF/LATCH function is selected. Please note that D and CLK inputs of the Shift Register should remain unchanged while  
the I2C master is reading data from the Shift Register. Otherwise, the I2C master can read the wrong data. Signals at D and CLK  
inputs of the Shift Register will be ignored while I2C master is writing a new data to the Shift Register macrocell. Also, note that  
the reset input of the Shift Register has higher priority to the Shift Register than the I2C write routine.  
When used to implement D Flip-Flop/LATCH function, the three input signals from the connection matrix go to the data (D_IN),  
clock (CLK), and Set/Reset (nSET/nRST) inputs for the Flip-Flop/LATCH, with the output going back to the connection matrix. It  
is possible to define the active level for the reset/set input (nSET/nRST_sel which is selected by registers [956], [972], [988],  
[1004]) of DFF/LATCH macrocell. LATCH or DFF configuration is selected by registers [959], [975], [991], [1007].  
The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:  
DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change.  
LATCH: when CLK is Low, then Q = D; otherwise Q remains its previous value (input D has no effect on the output, when CLK  
is High).  
Special care must be taken when writing new data to bytes 78h, 7Ah, 7Ch, 7Eh via I2C. If LUT/DFF/LATCH/Shift_Register  
macrocells configured as DFF or LATCH, writing new data to LSB of bytes 78h, 7Ah, 7Ch, 7Eh can change the current state of  
DFF (LATCH).  
It's allowed to read data from the Shift Register. Note that CLK signal of the Shift Register should be low when getting access to  
the Shift Register macrocell via I2C.  
LUT IN1  
DFF data in  
ShRg data in  
From Connectinon  
Matrix Output [19]  
8 memory cells  
S1  
S0  
D_in  
CLK  
LUT IN0  
DFF CLK  
ShRg CLK  
From Connectinon  
Matrix Output [18]  
S1  
S0  
From Connectinon  
Matrix Output [20]  
LUT IN2  
DFF nSet/nRST  
ShRg nSet/nRST  
S0  
S1  
nSET/nRST  
SET/RST  
LATCH/DFF_sel  
nSET/nRST_sel Out[7:0]  
SET/RST_act_level  
8
3-bit LUT  
[7]  
[0]  
111  
To Connection Matrix  
Input [8]  
.
.
.
S0  
3
3
S1  
LUT config  
000  
S0  
S1  
ShRg/LUT_sel  
1-bit NVM  
ShRg_  
length  
[2:0]  
3
7
4
nQ/Q_sel  
7-bit NVM  
Figure 18: 3-bit LUT4 or DFF6 or Shift Register 0  
Datasheet  
14-Apr-2021  
Revision 3.0  
43 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
LUT IN1  
DFF data in  
ShRg data in  
From Connectinon  
Matrix Output [22]  
8 memory cells  
S1  
S0  
D_in  
CLK  
LUT IN0  
DFF CLK  
ShRg CLK  
From Connectinon  
Matrix Output [21]  
S1  
S0  
From Connectinon  
Matrix Output [23]  
LUT IN2  
DFF nSet/nRST  
ShRg nSet/nRST  
S0  
S1  
nSET/nRST  
SET/RST  
LATCH/DFF_sel  
nSET/nRST_sel Out[7:0]  
SET/RST_act_level  
8
3-bit LUT  
[7]  
[0]  
111  
To Connection Matrix  
Input [9]  
S0  
.
.
.
3
3
S1  
LUT config  
000  
S0  
S1  
ShRg/LUT_sel  
1-bit NVM  
ShRg_  
length  
[2:0]  
3
7
4
nQ/Q_sel  
7-bit NVM  
Figure 19: 3-bit LUT5 or DFF7 or Shift Register 1  
LUT IN1  
DFF data in  
ShRg data in  
From Connectinon  
Matrix Output [25]  
8 memory cells  
S1  
S0  
D_in  
CLK  
LUT IN0  
DFF CLK  
ShRg CLK  
From Connectinon  
Matrix Output [24]  
S1  
S0  
From Connectinon  
Matrix Output [26]  
LUT IN2  
DFF nSet/nRST  
ShRg nSet/nRST  
S0  
S1  
nSET/nRST  
SET/RST  
LATCH/DFF_sel  
nSET/nRST_sel Out[7:0]  
SET/RST_act_level  
8
3-bit LUT  
[7]  
[0]  
111  
To Connection Matrix  
Input [10]  
S0  
.
.
.
3
3
S1  
LUT config  
000  
S0  
S1  
ShRg/LUT_sel  
1-bit NVM  
ShRg_  
length  
[2:0]  
3
7
4
nQ/Q_sel  
7-bit NVM  
Figure 20: 3-bit LUT6 or DFF8 or Shift Register 2  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
44 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
LUT IN1  
DFF data in  
ShRg data in  
From Connectinon  
Matrix Output [28]  
8 memory cells  
S1  
S0  
D_in  
CLK  
LUT IN0  
DFF CLK  
ShRg CLK  
From Connectinon  
Matrix Output [27]  
S1  
S0  
From Connectinon  
Matrix Output [29]  
LUT IN2  
DFF nSet/nRST  
ShRg nSet/nRST  
S0  
S1  
nSET/nRST  
SET/RST  
nSET/nRST_sel Out[7:0]  
SET/RST_act_level LATCH/DFF_sel  
8
3-bit LUT  
[7]  
[0]  
To Connection Matrix  
Input [11]  
S0  
111  
.
.
.
3
3
S1  
LUT config  
000  
S0  
S1  
ShRg/LUT_sel  
1-bit NVM  
ShRg_  
length  
[2:0]  
3
7
4
nQ/Q_sel  
7-bit NVM  
Figure 21: 3-bit LUT7 or DFF9 or Shift Register 3  
Inital Value is loaded from NVM to Shift Register  
VDD  
Data  
CLK  
POR  
ShReg_Out[7:0]  
Initial Value 10011011 (x9B)  
00110111 01101111 11011110 10111100 01111000 11110000 11100000 11000001 10000011 00000111 00001111  
(Internal Signal)  
Q=ShReg_Out[0]  
(see note 1)  
Q=ShReg_Out[7]  
(see note 2)  
MSB  
LSB  
x9  
xB  
Initial Value is transmitted (x9B)  
Input Data are transmitted  
Note1 :Macrocell is configured as DFF  
Note2 : Macrocell is configured as 8-bit Shift Register  
Figure 22: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
45 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Inital Value is loaded from NVM to Shift Register  
VDD  
Data  
CLK  
POR  
ShReg_Out[7:0]  
(Internal Signal)  
Initial Value 10011011 (x9B)  
00000010 00000101 00001010 00010100 00101000 01010000 10100000  
00000000  
00000000 00000001  
nReset  
(see note 1)  
Q=ShReg_Out[0]  
(see note 2)  
Q=ShReg_Out[7]  
(see note 3)  
8 Clk pulses  
Note1 : DFF Setting “Initial Value: 1”  
Note2 : Macrocell is configured as DFF  
Note3 : Macrocell is configured as 8-bits  
Figure 23: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nReset Option, DFF Initial Value: 1  
Inital Value is loaded from NVM to Shift Register  
VDD  
Data  
CLK  
POR  
ShReg_Out[7:0]  
(Internal Signal)  
Initial Value 10011011  
00000010 00000101  
00000001  
00000000  
00000001 00000011 00000111  
00000000  
nReset  
(see note 1)  
Q=ShReg_Out[0]  
(see note 2)  
Q=ShReg_Out[7]  
(see note 3)  
Note1 : DFF Setting “Initial Value: 1”  
Note2 : Macrocell is configured as DFF  
Note3 : Macrocell is configured as 8-bits  
Figure 24: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nReset Option, DFF Initial Value: 1, Case 1  
Datasheet  
14-Apr-2021  
Revision 3.0  
46 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Inital Value is loaded from NVM to Shift Register  
VDD  
Data  
CLK  
POR  
ShReg_Out[7:0]  
(Internal Signal)  
nReset  
Initial Value 00011011  
11011110 10111101  
00000000  
00000001 00000011 00000111  
00110111 01101111  
(see note 1)  
Q=ShReg_Out[0]  
(see note 2)  
Q=ShReg_Out[7]  
(see note 3)  
Note1 : DFF Setting “Initial Value: 1”  
Note2 : Macrocell is configured as DFF  
Note3 : Macrocell is configured as 8-bits  
Figure 25: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nReset Option, DFF Initial Value: 1, Case 2  
Inital Value is loaded from NVM to Shift Register  
VDD  
Data  
CLK  
POR  
ShReg_Out[7:0]  
Initial Value 00011010 (x1A)  
11111100 11111001 11110010 11100100 11001000 10010000 00100000 11111111 11111111  
11111111 11111110  
(Internal Signal)  
nSet  
(see note 1)  
Q=ShReg_Out[0]  
(see note 2)  
Q=ShReg_Out[7]  
(see note 3)  
8 Clk pulses  
Note1 : DFF Setting “Initial Value: 0”  
Note2 : Macrocell is configured as DFF  
Note3 : Macrocell is configured as 8-bits  
Figure 26: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nSet Option, DFF Initial Value: 0  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
47 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Inital Value is loaded from NVM to Shift Register  
VDD  
Data  
CLK  
POR  
ShReg_Out[7:0]  
(Internal Signal)  
Initial Value 00011010  
11111111  
11111100 11111001  
11111111  
11111110 11111100 11111000  
11111110  
nSet  
(see note 1)  
Q=ShReg_Out[0]  
(see note 2)  
Q=ShReg_Out[7]  
(see note 3)  
Note1 : DFF Setting “Initial Value: 0”  
Note2 : Macrocell is configured as DFF  
Note3 : Macrocell is configured as 8-bits  
Figure 27: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nSet Option, DFF Initial Value: 0, Case 1  
Inital Value is loaded from NVM to Shift Register  
VDD  
Data  
CLK  
POR  
ShReg_Out[7:0]  
(Internal Signal)  
Initial Value 10011010  
00110101  
11010100 10101001  
11111111  
11111110 11111100 11111000  
01101010  
nSet  
(see note 1)  
Q=ShReg_Out[0]  
(see note 2)  
Q=ShReg_Out[7]  
(see note 3)  
Note1 : DFF Setting “Initial Value: 0”  
Note2 : Macrocell is configured as DFF  
Note3 : Macrocell is configured as 8-bits  
Figure 28: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nSet Option, DFF Initial Value: 0, Case 2  
7.3.1 3-Bit LUT or D Flip-Flop Macrocells Used as 3-Bit LUTs  
Each macrocell, when programmed for a LUT function, uses an 8-bit register to define their output function:  
Datasheet  
14-Apr-2021  
Revision 3.0  
48 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
3-Bit LUT3_0 is defined by registers [895:888]  
3-Bit LUT3_1 is defined by registers [903:896]  
3-Bit LUT3_2 is defined by registers [911:904]  
3-Bit LUT3_3 is defined by registers [919:912]  
3-Bit LUT3_4 is defined by registers [967:960]  
3-Bit LUT3_5 is defined by registers [983:976]  
3-Bit LUT3_6 is defined by registers [999:992]  
3-Bit LUT3_7 is defined by registers [1015:1008]  
Table 27: 3-bit LUT3_0 to 3-bit LUT3_9 Truth Table  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
register  
[888]  
register  
[896]  
register  
[904]  
register  
[912]  
register  
[960]  
register  
[976]  
register  
[992]  
register  
[1008]  
LSB  
register  
[889]  
register  
[897]  
register  
[905]  
register  
[913]  
register  
[961]  
register  
[977]  
register  
[993]  
register  
[1009]  
register  
[890]  
register  
[898]  
register  
[906]  
register  
[914]  
register  
[962]  
register  
[978]  
register  
[994]  
register  
[1010]  
register  
[891]  
register  
[899]  
register  
[907]  
register  
[915]  
register  
[963]  
register  
[979]  
register  
[995]  
register  
[1011]  
register  
[892]  
register  
[900]  
register  
[908]  
register  
[916]  
register  
[964]  
register  
[980]  
register  
[996]  
register  
[1012]  
register  
[893]  
register  
[901]  
register  
[909]  
register  
[917]  
register  
[965]  
register  
[981]  
register  
[997]  
register  
[1013]  
register  
[894]  
register  
[902]  
register  
[910]  
register  
[918]  
register  
[966]  
register  
[982]  
register  
[998]  
register  
[1014]  
register  
[895]  
register  
[903]  
register  
[911]  
register  
[919]  
register  
[967]  
register  
[983]  
register  
[999]  
register  
[1015]  
MSB  
Table 28 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the four 3-bit LUT logic cells.  
Table 28: 3-bit LUT Standard Digital Functions  
Function  
AND-3  
MSB  
LSB  
1
0
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-3  
OR-3  
NOR-3  
XOR-3  
XNOR-3  
Datasheet  
14-Apr-2021  
Revision 3.0  
49 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
7.4 3-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELLS  
There are 4 macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset inputs. When used to implement  
LUT functions, the 3-bit LUTs each take in three input signals from the connection matrix and produce a single output, which  
goes back into the connection matrix. When used to implement D Flip-Flop function, the three input signals from the connection  
matrix go to the data (D) and clock (CLK), and Reset/Set (nRST/nSET) inputs for the Flip-Flop, with the output going back to the  
connection matrix. It is possible to define the active level for the reset/set input of DFF/LATCH macrocell. There are both active  
high level Reset/Set (RST/SET) and active low level Reset/Set (nRST/nSET) options available which are selected by register  
[890].  
DFF2 operation will flow the functional description below:  
If register [892] = 0, and the CLK is rising edge triggered, then Q = D, otherwise Q will not change.  
If register [892] = 1, then data from D is written into the DFF by the rising edge on CLK and output to Q by the falling edge on  
CLK.  
register [895] DFF or Latch Select  
register [894] Output Select (Q or nQ)  
register [893] DFF Initial Polarity Select  
register [892] Q1 or Q2 Select  
register [891] DFF nRST or nSET Select  
register [890] Active level selection for RST/  
SET  
IN2  
IN1  
From Connection  
Matrix Output [8]  
S0  
S1  
OUT  
3-bit LUT0  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [7]  
To Connection Matrix  
S0  
S1  
Input [4]  
S0  
S1  
8-bits NVM  
registers [895:888]  
From Connection  
Matrix Output [6]  
S0  
S1  
DFF/Latch  
Registers  
0
1
Q/nQ  
DFF  
DFF  
D
D
Q
D
Q
nRST/  
nSET  
nRST/  
CL  
nSET  
CL  
nRST/nSET  
CLK  
register [892]  
1-bit NVM  
register [920]  
Figure 29: 3-bit LUT0 or DFF2  
Datasheet  
14-Apr-2021  
Revision 3.0  
50 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
register [903] DFF or Latch Select  
register [902] Output Select (Q or nQ)  
register [901] DFF Initial Polarity Select  
register [900] DFF nRST or nSET Select  
register [899] Active level selection for RST/  
SET  
IN2  
IN1  
From Connection  
Matrix Output [11]  
S0  
S1  
OUT  
3-bit LUT1  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [10]  
To Connection Matrix  
S0  
S1  
Input [5]  
S0  
8-bits NVM  
registers [903:896]  
S1  
DFF/Latch  
Registers  
D
From Connection  
Matrix Output [9]  
S0  
S1  
nRST/nSET DFF3  
Q/nQ  
RST/SET  
CLK  
1-bit NVM  
register [921]  
Figure 30: 3-bit LUT1 or DFF3  
register [911] DFF or Latch Select  
register [910] Output Select (Q or nQ)  
register [909] DFF Initial Polarity Select  
register [908] DFF nRST or nSET Select  
register [907] Active level selection for RST/  
SET  
IN2  
From Connection  
Matrix Output [14]  
S0  
S1  
IN1  
IN0  
OUT  
3-bit LUT2  
LUT Truth  
Table  
From Connection  
Matrix Output [13]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [6]  
8-bits NVM  
registers [911:904]  
DFF/Latch  
Registers  
D
From Connection  
Matrix Output [12]  
S0  
S1  
nRST/nSET DFF4  
RST/SET  
Q/nQ  
CLK  
1-bit NVM  
register [922]  
Figure 31: 3-bit LUT2 or DFF4  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
51 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
register [919] DFF or Latch Select  
register [918] Output Select (Q or nQ)  
register [917] DFF Initial Polarity Select  
register [916] DFF nRST or nSET Select  
register [915] Active level selection for RST/  
SET  
IN2  
IN1  
From Connection  
Matrix Output [17]  
S0  
S1  
OUT  
3-bit LUT3  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [16]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [9]  
8-bits NVM  
registers [919:912]  
DFF  
Registers  
D
From Connection  
Matrix Output [15]  
S0  
S1  
nRST/nSET  
RST/SET  
DFF5  
Q/nQ  
CLK  
1-bit NVM  
register [923]  
Figure 32: 3-bit LUT3 or DFF5  
7.5 4-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELL  
There is one macrocell that can serve as either a 4-bit LUT or as a D Flip-Flop with Set/Reset inputs. When used to implement  
LUT functions, the 4-bit LUT takes in four input signals from the connection matrix and produce a single output, which goes back  
into the connection matrix. When used to implement D Flip-Flop function, the input signals from the connection matrix go to the  
data (D) and clock (CLK), and Reset/Set (nRST/nSET) inputs for the Flip-Flop, with the output going back to the connection matrix  
If register [943] = 0, and the CLK is rising edge triggered, then Q = D, otherwise Q will not change.  
If register [943] = 1, then data from D is written into the DFF by the rising edge on CLK and output to Q by the falling edge on  
CLK.  
It is possible to define the active level for the reset/set input of DFF/LATCH macrocell. There are both active high level reset/set  
(RST/SET) and active low level reset/set (nRST/nSET) options available which are selected by register [938].  
Datasheet  
14-Apr-2021  
Revision 3.0  
52 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
From Connection  
register [943] DFF or Latch Select  
S0  
S1  
Matrix Output [51]  
register [942] Output Select (Q or nQ)  
register [941] DFF Initial Polarity Select  
register [940] Q1 or Q2 Select  
register [939] DFF nRST or nSET Select  
register [938] Active level selection for RST/SET  
IN3  
IN2  
IN1  
From Connection  
Matrix Output [50]  
S0  
S1  
OUT  
4-bit LUT0  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [49]  
To Connection Matrix  
S0  
S1  
Input [39]  
S0  
16-bits NVM  
registers [943:928]  
S1  
DFF/Latch  
Registers  
D
From Connection  
Matrix Output [48]  
S0  
S1  
nRST/nSET DFF16  
RST/SET  
Q/nQ  
Q1/Q2  
CLK  
Select  
register [940]  
1-bit NVM  
register [927]  
Figure 33: 4-bit LUT0 or DFF16  
7.5.1 4-Bit LUT Macrocell Used as 4-Bit LUT  
Table 29: 4-bit LUT0 Truth Table  
IN3  
0
IN2  
0
IN1  
0
IN0  
0
OUT  
register [928]  
register [929]  
register [930]  
register [931]  
register [932]  
register [933]  
register [934]  
register [935]  
register [936]  
register [937]  
register [938]  
register [939]  
register [940]  
register [941]  
register [942]  
register [943]  
LSB  
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
MSB  
Datasheet  
14-Apr-2021  
Revision 3.0  
53 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
This macrocell, when programmed for a LUT function, uses a 16-bit register to define their output function:  
4-Bit LUT0 is defined by registers [943:928]  
Table 30: 4-bit LUT Standard Digital Functions  
Function  
AND-4  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-4  
OR-4  
NOR-4  
XOR-4  
XNOR-4  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
54 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
8
Multi-Function Macrocells  
The SLG46811 has 6 Multi-Function macrocells that can serve more than one logic or timing function. In each case, they can  
serve as a LUT, DFF with flexible settings, or as CNT/DLY with multiple modes such as One Shot, Frequency Detect, Edge Detect,  
and others. Also, the macrocell is capable to combine those functions: LUT/DFF connected to CNT/DLY or CNT/DLY connected  
to LUT/DFF, see Figure 34.  
See the list below for the functions that can be implemented in these macrocells:  
Five macrocells that can serve as 3-bit LUTs/D Flip-Flops and as 8-Bit Counter/Delays  
One macrocell that can serve as a 3-bit LUT/D Flip-Flop and as 8-Bit Counter/Delay/FSM  
To Connection Matrix  
To Connection Matrix  
From Connection  
Matrix  
To Connection  
Matrix  
From Connection  
Matrix  
To Connection  
Matrix  
LUT  
or  
DFF  
LUT  
or  
DFF  
CNT/DLY  
CNT/DLY  
Figure 34: Possible Connections Inside Multi-Function Macrocell  
Inputs/Outputs for the 6 Multi-Function function macrocells are configured from the connection matrix with specific logic functions  
being defined by the state of NVM bits.  
When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined  
function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).  
8.1 3-BIT LUT OR DFF/LATCH WITH 8-BIT COUNTER/DELAY MACROCELLS  
There are five macrocells that can serve as 3-bit LUTs/D Flip-Flops and as 8-Bit Counter/Delays.  
When used to implement LUT functions, the 3-bit LUTs each take in three input signals from the connection matrix and produce  
a single output, which goes back into the connection matrix or can be connected to CNT/DLY's input.  
When used to implement D Flip-Flop function, the three input signals from the connection matrix go to the data (D), clock (CLK),  
and Set/Reset (nRST/nSET) inputs of the Flip-Flop, with the output going back to the connection matrix or to the CNT/DLY's input.  
When used to implement Counter/Delays, each macrocell has a dedicated matrix input connection. For flexibility, each of these  
macrocells has a large selection of internal and external clock sources, as well as the option to chain from the output of the  
previous (N-1) CNT/DLY macrocell, to implement longer count/delay circuits. These macrocells can also operate in a One-Shot  
mode, which will generate an output pulse of user-defined width. They can also operate in a Frequency Detection or Edge  
Detection mode.  
Counter/Delay macrocell has an initial value, which define its initial value after GPAK is powered up. It is possible to select initial  
Low or initial High, as well as initial value defined by a Delay In signal.  
For example, in case initial LOW option is used, the rising edge delay will start operation.  
For timing diagrams refer to sections 7.1 and 8.2.  
Note: After two DFF – counters initialize with counter data = 0 after POR.  
Initial state = 1 – counters initialize with counter data = 0 after POR.  
Initial state = 0 And After two DFF is bypass – counters initialize with counter data after POR.  
Datasheet  
14-Apr-2021  
Revision 3.0  
55 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
CNT/DLY0/FSM macrocell has an optional Finite State Machine (FSM) function. There is one additional Up/Down matrix input in  
FSM mode.  
8.1.1 3-Bit LUT or 8-Bit CNT/DLY Block Diagrams  
register [799] DFF or Latch Select  
register [798] Output Select (Q or  
From Connection  
Matrix Output [32]  
nQ)  
register [797] (nRST or nSET) from  
matrix Output  
register [796] DFF Initial Polarity  
Select  
IN2  
IN1  
IN0  
S0  
S1  
3-bit LUT8  
S0  
S1  
OUT  
LUT Truth  
Table  
From Connection  
Matrix Output [31]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [13]  
8-bits NVM  
registers [799:792]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [30]  
S0  
S1  
S0  
S1  
nRST/nSET  
CLK  
DFF/  
Latch10  
Q/nQ  
register [676]  
LUT/DFF Sel  
registers [807:800]  
registers [675:672]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [12]  
0
S0  
OUT  
CNT/DLY0  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
UP  
0
S3  
Config  
Data  
registers [691:677]  
0
S0  
S1  
Figure 35: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT8/DFF10, CNT/DLY0/FSM)  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
56 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
register [815] DFF or Latch Select  
register [814] Output Select (Q or  
nQ)  
From Connection  
Matrix Output [35]  
register [813] (nRST or nSET) from  
matrix Output  
IN2  
IN1  
IN0  
S0  
3-bit LUT9  
S0  
register [812] DFF Initial Polarity  
Select  
OUT  
S1  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [34]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [15]  
8-bits NVM  
registers [815:808]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [33]  
S0  
S1  
S0  
S1  
DFF/  
Latch11  
nRST/nSET  
CLK  
Q/nQ  
register [700]  
LUT/DFF Sel  
registers [823:816]  
registers [699:696]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [14]  
0
S0  
OUT  
CNT/DLY1  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [710:701]  
Figure 36: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT9/DFF11, CNT/DLY1)  
Datasheet  
14-Apr-2021  
Revision 3.0  
57 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
register [831] DFF or Latch Select  
register [830] Output Select (Q or  
nQ)  
From Connection  
Matrix Output [38]  
register [829] (nRST or nSET) from  
matrix Output  
IN2  
IN1  
IN0  
S0  
3-bit LUT10  
S0  
register [828] DFF Initial Polarity  
Select  
OUT  
S1  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [37]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [17]  
8-bits NVM  
registers [831:824]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [36]  
S0  
S1  
S0  
S1  
DFF/  
Latch12  
nRST/nSET  
Q/nQ  
CLK  
register [716]  
LUT/DFF Sel  
registers [839:832]  
registers [715:712]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [16]  
0
S0  
OUT  
CNT/DLY2  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [729:717]  
Figure 37: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT10/DFF12, CNT/DLY2)  
Datasheet  
14-Apr-2021  
Revision 3.0  
58 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
register [847] DFF or Latch Select  
register [846] Output Select (Q or  
nQ)  
register [845] (nRST or nSET) from  
matrix Output  
register [844] DFF Initial Polarity  
Select  
From Connection  
Matrix Output [41]  
IN2  
IN1  
IN0  
S0  
3-bit LUT11  
S0  
OUT  
S1  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [40]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [19]  
8-bits NVM  
registers [847:840]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [39]  
S0  
S1  
S0  
S1  
nRST/nSET DFF/  
Q/nQ  
Latch13  
CLK  
register [740]  
LUT/DFF Sel  
registers [855:848]  
registers [739:736]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [18]  
0
S0  
OUT  
CNT/DLY3  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [735:731], [748:741]  
Figure 38: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT11/DFF13, CNT/DLY3)  
Datasheet  
14-Apr-2021  
Revision 3.0  
59 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
register [863] DFF or Latch Select  
register [862] Output Select (Q or  
nQ)  
register [861] (nRST or nSET) from  
matrix Output  
register [860] DFF Initial Polarity  
Select  
From Connection  
Matrix Output [44]  
IN2  
IN1  
IN0  
S0  
3-bit LUT12  
S0  
OUT  
S1  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [43]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [21]  
8-bits NVM  
registers [863:856]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [43]  
S0  
S1  
S0  
S1  
DFF/  
Latch14  
nRST/nSET  
Q/nQ  
CLK  
register [756]  
LUT/DFF Sel  
registers [755:752]  
Mode Sel  
registers [871:864]  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [20]  
0
S0  
OUT  
CNT/DLY4  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [751:749], [766:757]  
Figure 39: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT12/DFF14, CNT/DLY4)  
Datasheet  
14-Apr-2021  
Revision 3.0  
60 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
register [879] DFF or Latch Select  
register [878] Output Select (Q or  
nQ)  
From Connection  
Matrix Output [47]  
register [877] (nRST or nSET) from  
matrix Output  
IN2  
IN1  
IN0  
S0  
3-bit LUT13  
S0  
register [876] DFF Initial Polarity  
Select  
OUT  
S1  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [46]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [23]  
8-bits NVM  
registers [879:872]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [45]  
S0  
S1  
S0  
S1  
DFF/  
Latch15  
nRST/nSET  
Q/nQ  
CLK  
register [772]  
LUT/DFF Sel  
registers [887:880]  
registers [771:768]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [22]  
0
S0  
OUT  
CNT/DLY5  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [785:773]  
Figure 40: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT13/DFF15, CNT/DLY5)  
As shown in Figure 35 - Figure 40 there is a possibility to use LUT/DFF and CNT/DLY simultaneously.  
Note: It is not possible to use LUT and DFF at once, one of these macrocells must be selected.  
Case 1. LUT/DFF in front of CNT/DLY. Three input signals from the connection matrix go to previously selected LUT or DFF's  
inputs and produce a single output which goes to a CND/DLY input. In its turn Counter/Delay's output goes back to the matrix.  
Case 2. CNT/DLY in front of LUT/DFF. Two input signals from the connection matrix go to CND/DLY's inputs (IN and CLK). Its  
output signal can be connected to any input of previously selected LUT or DFF, after which the signal goes back to the matrix.  
Case 3. Single LUT/DFF or CNT/DLY. Also, it is possible to use a standalone LUT/DFF or CNT/DLY. In this case, all inputs  
and output of the macrocell are connected to the matrix.  
Datasheet  
14-Apr-2021  
Revision 3.0  
61 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
8.1.2 3-Bit LUT or CNT/DLYs Used as 3-Bit LUTs  
Table 31: 3-bit LUT8 Truth Table  
Table 34: 3-bit LUT11 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [792]  
register [793]  
register [794]  
register [795]  
register [796]  
register [797]  
register [798]  
register [799]  
LSB  
register [840]  
register [841]  
register [842]  
register [843]  
register [844]  
register [845]  
register [846]  
register [847]  
LSB  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 32: 3-bit LUT9 Truth Table  
Table 35: 3-bit LUT12 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [808]  
register [809]  
register [810]  
register [811]  
register [812]  
register [813]  
register [814]  
register [815]  
register [856]  
register [857]  
register [858]  
register [859]  
register [860]  
register [861]  
register [862]  
register [863]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 33: 3-bit LUT10 Truth Table  
Table 36: 3-bit LUT13 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [824]  
register [825]  
register [826]  
register [827]  
register [828]  
register [829]  
register [830]  
register [831]  
register [872]  
register [873]  
register [874]  
register [875]  
register [876]  
register [877]  
register [878]  
register [879]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
1
1
1
MSB  
Datasheet  
14-Apr-2021  
Revision 3.0  
62 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-Bit LUT8 is defined by registers [799:792]  
3-Bit LUT9 is defined by registers [815:808]  
3-Bit LUT10 is defined by registers [831:824]  
3-Bit LUT11 is defined by registers [847:840]  
3-Bit LUT12 is defined by registers [863:856]  
3-Bit LUT13 is defined by registers [879:872]  
Optional Finite State Machine (FSM) function. There are two additional matrix inputs for Up and Keep to support FSM functionality.  
This macrocell can also operate in a one-shot mode, which will generate an output pulse of user-defined width.  
This macrocell can also operate in a frequency detection or edge detection mode.  
Datasheet  
14-Apr-2021  
Revision 3.0  
63 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
8.2 CNT/DLY TIMING DIAGRAMS  
8.2.1 Delay Mode CNT/DLY0 to CNT/DLY5  
Delay In  
Asynchronous delay variable  
Asynchronous delay variable  
OSC: force power-on  
(always running)  
Delay Output  
delay = period x (counter data + 1) + variable  
variable is from 0 to 1 clock period  
delay = period x (counter data + 1) + variable  
variable is from 0 to 1 clock period  
Delay In  
offset  
offset  
OSC: auto power-on  
(powers up from delay in)  
Delay Output  
delay = offset + period x (counter data + 1)  
See offset in table 11  
delay = offset + period x (counter data + 1)  
See offset in table 11  
Figure 41: Delay Mode Timing Diagram, Edge Select: Both, Counter Data: 3  
The macrocell shifts the respective edge to a set time and restarts by appropriate edge. It works as a filter, if the input signal is  
shorter than the delay time.  
Datasheet  
14-Apr-2021  
Revision 3.0  
64 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Delay time  
Delay Function  
Rising Edge Detection  
Delay Function  
Falling Edge Detection  
t
t
Delay Function  
Both Edge Detection  
Figure 42: Delay Mode Timing Diagram for Different Edge Select Modes  
8.2.2 Count Mode (Count Data: 3), Counter Reset (Rising Edge Detect) CNT/DLY0 to CNT/DLY5  
RESET_IN  
CLK  
Counter OUT  
4 CLK period pulse  
Count start in first rising edge CLK  
Figure 43: Counter Mode Timing Diagram without Two DFFs Synced Up  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
65 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
.
RESET_IN  
CLK  
Counter OUT  
4 CLK period pulse  
Count start in 0 CLK after reset  
Figure 44: Counter Mode Timing Diagram with Two DFFs Synced Up  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
66 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
8.2.3 One-Shot Mode CNT/DLY0 to CNT/DLY5  
This macrocell will generate a pulse whenever a selected edge is detected on its input. Register bits set the edge selection. The  
pulse width determines by counter data and clock selection properties. The output pulse polarity (non-inverted or inverted) is  
selected by register bit. Any incoming edges will be ignored during the pulse width generation. The following diagram shows one-  
shot function for non-inverted output.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
Delay time  
One-Shot Function  
Rising Edge Detection  
t
One-Shot Function  
Falling Edge Detection  
t
One-Shot Function  
Both Edge Detection  
t
Figure 45: One-Shot Function Timing Diagram  
This macrocell generates a high level pulse with a set width (defined by counter data) when detecting the respective edge. It does  
not restart while pulse is high.  
8.2.4 Frequency Detection Mode CNT/DLY0 to CNT/DLY5  
Rising Edge: The output goes high if the time between two successive edges is less than the delay. The output goes low if the  
second rising edge has not come after the last rising edge in specified time.  
Falling Edge: The output goes high if the time between two falling edges is less than the set time. The output goes low if the  
second falling edge has not come after the last falling edge in specified time.  
Both Edge: The output goes high if the time between the rising and falling edges is less than the set time, which is equivalent to  
the length of the pulse. The output goes low if after the last rising/falling edge and specified time, the second edge has not come.  
Datasheet  
14-Apr-2021  
Revision 3.0  
67 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Delay time  
Frequency Detector Function  
Rising Edge Detection  
Frequency Detector Function  
Falling Edge Detection  
t
t
Frequency Detector Function  
Both Edge Detection  
Figure 46: Frequency Detection Mode Timing Diagram  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
68 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
8.2.5 Edge Detection Mode CNT/DLY1 to CNT/DLY5  
The macrocell generates high level short pulse when detecting the respective edge. See Figure 47.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Edge Detector Function  
Rising Edge Detection  
Edge Detector Function  
Falling Edge Detection  
t
t
Edge Detector Function  
Both Edge Detection  
Figure 47: Edge Detection Mode Timing Diagram  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
69 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
8.2.6 Delayed Edge Detection Mode CNT/DLY0 to CNT/DLY5  
In Delayed Edge Detection Mode, High level short pulses are generated on the macrocell output after the configured delay time,  
if the corresponding edge was detected on the input.  
If the input signal is changed during the set delay time, the pulse will not be generated. See Figure 48.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Delay time  
Delayed Edge Detector Function  
Rising Edge Detection  
Delayed Edge Detector Function  
Falling Edge Detection  
t
t
Delayed Edge Detector Function  
Both Edge Detection  
Figure 48: Delayed Edge Detection Mode Timing Diagram  
Datasheet  
14-Apr-2021  
Revision 3.0  
70 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
8.2.7 Difference in Counter Value for Counter, Delay, One-Shot, and Frequency Detect Modes  
There is a difference in counter value for Counter and Delay/One-Shot/Frequency Detect modes. The counter value is shifted for  
two rising edges of the clock signal in Delay/One-Shot/Frequency Detect modes compared to Counter mode. See Figure 49:  
One-Shot/Freq. SET/Delay IN  
CLK  
CNT Out  
3
2
1
0
0
3
CNT Data  
2
DLY Out  
3
3
2
Delay Data  
1
3
3
3
One-Shot Out  
One-Shot Data  
3
3
2
3
1
3
3
Figure 49: Counter Value, Counter Data = 3  
8.3 FSM TIMING DIAGRAMS  
The behavior of FSM macrocell with low level at Up input is the same as the behavior of other multifunction macrocells in  
corresponding modes (Counter, Delay, One Shot, Freq. Detector, Delayed Edge Detector).  
Reset In  
Clk  
3
4
5
3
4
5
5
6
7
Internal Counter  
Q
253  
254  
255  
3
4
Figure 50: CNT/FSM Mode Timing Diagram (Set Rising Edge Mode, Oscillator Is Forced On, UP = 1) for CNT Data = 3  
Datasheet  
14-Apr-2021  
Revision 3.0  
71 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
9
Multichannel Sampling Analog Comparator  
The SLG46811 has one multichannel sampling ACMP that can make periodical samples of up to four input channels and latch  
the results at four outputs. The input sources for MS ACMP can be GPIO4, GPIO5, GPIO6, GPIO7, VDD, Temperature sensor.  
User can select any number of channels to be sampled from one up to four, for example, Channel0, Channel2 and Channel3.  
Note that the channels are sampled in fixed order from 0 to 3rd. Each channel has separate configurable voltage reference and  
hysteresis. Vref range is from 32 mV to 2016 mV with 32 mV step in sampling mode and from 64 mV to 2016 mV with 32 mV step  
in regular mode. Hysteresis options are: no hysteresis, 32 mV (available only in sampling mode), 64 mV, 192 mV.  
Non-inverting input of MS ACMP has the input divider that can be configured for each channel separately. The options for the  
divider are: Vin, Vin / 2, Vin / 3, Vin / 4.  
MS ACMP uses internal oscillator0 to switch between channels, change Vref and latch the results. Clock from the oscillator0 can  
be divided by 2, 4, or 8 inside the MS ACMP. If "Auto power on" setting of oscillator is selected, High voltage level (or rising edge,  
depending on setting) on Enable input starts the internal oscillator. Please use MS ACMP clock frequencies from Table 37 when  
interfacing the sensor with high output impedance with SLG46811.  
Table 37: Recommended MS ACMP Clock Frequencies  
Parameter  
Range 1  
< 1  
Range 2  
1 to 2  
≤ 5  
Range 3  
2 to 4  
Range 4  
4 to 6  
Range 5  
> 6  
Unit  
MΩ  
Sensor Output Resistance  
MS ACMP Clock Frequency  
≤ 10  
≤ 2.5  
≤ 1.25  
≤ 0.5  
kHz  
User can select the way the results appear at the outputs of MS ACMP. In asynchronous mode (register [499] = 0) results appear  
continuously after each channel is sampled. In synchronous mode (register [499] = 1) results at the output appear simultaneously  
after the last selected channel was sampled. The signal Sync data ready (matrix input [50]) generates a pulse of 100 ns appro-  
ximate width when the sequence of selected channels was sampled.  
Basic modes for MS ACMP are the next:  
Regular mode, register [497] = 0. In this mode MS ACMP operates as conventional ACMP. One selected channel is mea-  
sured continuously when logic level at Enable input is High  
Sampling mode, register [497] = 1. Enable input is level sensitive, register [498] = 0. In this mode MS ACMP changes sam-  
pled channels and latches the result every pulse at Clk input while Enable input is High. When Enable becomes Low level MS  
ACMP finishes sampling the sequence and goes power down.  
Sampling mode, register [497] = 1. Enable input is edge sensitive, register [498] = 1. In this mode, when rising edge comes at  
Enable input, MS ACMP samples selected channels (up to four) every rising edge at Clk input and goes power down until the  
next pulse at Enable input.  
User can select the way the results appear at the outputs of MS ACMP. In asynchronous mode (register [499] = 0) results appear  
continuously after each channel is sampled. In synchronous mode (register [499] = 1) results at the output appear simultaneously  
after the last selected channel was sampled.  
Datasheet  
14-Apr-2021  
Revision 3.0  
72 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
9.1 MULTICHANNEL SAMPLING ACMP BLOCK DIAGRAM  
Input MUX  
Divider  
GPIO4  
GPIO5  
ACMP LAT RST accessible selection  
Register [515]  
Register [514]  
/1  
/2  
/3  
/4  
Register [513]  
Register [512]  
GPIO6  
VDD  
VDD En Register[500]  
Div. sel. MUX  
2
ACMP  
Div1  
Registers[529:528]  
Matrix IN  
(OUT0)  
GPIO7  
Div2  
Temp. sensor  
2
2
Registers[537:536]  
Div3  
Registers[545:544]  
2
PwrUp  
Temp. sensor En  
RegIster [501]  
Matrix IN  
(OUT1)  
RST  
Matrix Output [68]  
Div4  
Registers[553:552]  
DFFs  
2
Matrix IN  
(OUT2)  
2
Matrix IN  
(OUT03)  
OSC0  
Vref sel. MUX  
Vref/Hys  
Channel  
00  
01  
OSC0/2  
6
6
OSC0/4  
OSC0/8  
Vref1 Registers [535:530]  
10  
11  
Sampling  
Engine  
Vref2 Registers [543:538]  
Vref3 Registers [551:546]  
6
CLK  
En  
PwrUp  
Registers [517:516]  
6
6
Sync Data Ready  
Matrix Input [50]  
Enable  
Matrix Output [67]  
Data ready  
Vref and  
hysteresis  
control  
Vref4 Registers [559:554]  
Async/Sync  
Register[499]  
Level/Edge  
sensitive enable  
Register [498]  
2
2
Hys1 Registers[521:520]  
Hys2 Registers[523:522]  
Hys3 Registers[525:524]  
2
Regular/Sampling mode  
Register [497]  
2
2
Hys4 Registers[527:526]  
6
Hys sel. MUX  
Define the number of sampling channels,  
NUM<1:0>  
Registers [503:502]  
Vref MUX  
Ext. Vref  
111111  
111110  
2016 mV  
1984 mV  
Define positive input channel on  
1st sampling Registers [505:504]  
2nd sampling Registers [507:506]  
3rd sampling Registers [509:508]  
4th sampling Registers [511:510]  
64 mV  
32 mV  
000001  
000000  
Figure 51: Multichannel Sampling ACMP Block Diagram  
Datasheet  
14-Apr-2021  
Revision 3.0  
73 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
9.2 MS ACMP TIMING DIAGRAMS  
.
Assumption: All DFF OUTs are configuresed as resetable by ACMPDFF_RST  
This will be effective at both edge & level sensitive mode  
ACMPDFF_RSTB(Matrix OUT)  
ACMP_EN [Matrix OUT]  
VREFGEN/ACMP ON  
OSC0 clk  
T1 = VREFGEN & ACMP settling time  
T1  
Sampling OK  
Sampling CLK  
T2=0.5~1.5 cycle of sampling CLK  
T2  
T3  
01  
00  
01  
10  
11  
00  
Pos./Neg. Channel Selection  
ACMP_OUT  
T4  
ACMP0/1/2/3 ready  
ACMP0 OUT [Async, Matrix IN]  
ACMP1 OUT [Async, Matrix IN]  
ACMP2 OUT [Async, Matrix IN]  
ACMP3 OUT [Async, Matrix IN]  
Sync Ready [ Matrix IN]  
T5  
Sync Ready will be generated always regardless of  
sync or async mode  
T5 100 ns  
ACMP1/2/3/4 OUT [Sync, Matrix IN]  
Figure 52: Timing Diagrams for MS ACMP. Edge Sensitive Mode. OSC0 and BG are Forced On  
.
ACMP_EN [Matrix OUT]  
Assumption: LPBG is forced ON  
VREFGEN/ACMP ON  
OSC0 clk  
T1 = VREFGEN & ACMP settling time  
T1  
Sampling OK  
T2=0.5~1.5 cycle of sampling CLK  
T2  
Sampling CLK  
T3  
0 0  
00  
01  
10  
11  
00  
01  
10  
11  
Pos./Neg. Channel Selection  
ACMP_OUT  
T4  
ACMP0/1/2/3 ready  
ACMP0 OUT [Async, Matrix IN]  
ACMP1 OUT [Async, Matrix IN]  
ACMP2 OUT [Async, Matrix IN]  
ACMP3 OUT [Async, Matrix IN]  
Sync Ready [ Matrix IN]  
T5  
T5  
T5 100 ns  
T5 100 ns  
Sync Ready will be generated always regardless of sync or async mode  
ACMP1/2/3/4 OUT [Sync, Matrix IN]  
Figure 53: Timing Diagrams for MS ACMP. Level Sensitive Mode. OSC0 and BG are Forced On  
Datasheet  
14-Apr-2021  
Revision 3.0  
74 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
.
ACMP_EN [Matrix OUT]  
VREFGEN/ACMP ON  
T2=OSC0 enabling time  
T2  
OSC0 clk  
T1 = VREFGEN & ACMP  
settling time  
T1  
Sampling OK  
Sampling CLK  
T3  
0 0  
00  
01  
10  
11  
00  
01  
10  
11  
Pos./Neg. Channel Selection  
ACMP_
T4  
ACMP0/1/2/3 ready  
ACMP0 OUT [Async, Matrix IN]  
ACMP1 OUT [Async, Matrix IN]  
ACMP2 OUT [Async, Matrix IN]  
ACMP3 OUT [Async, Matrix IN]  
Sync Ready [ Matrix IN]  
T5  
T5  
T5 100 ns  
T5 100 ns  
Sync Ready will be generated always regardless of sync or async mode  
ACMP1/2/3/4 OUT [Sync, Matrix IN]  
Figure 54: Timing Diagrams for MS ACMP. Level Sensitive Mode. OSC0 is in Auto Power On Mode. BG is Forced On  
Datasheet  
14-Apr-2021  
Revision 3.0  
75 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
9.3 ACMP TYPICAL PERFORMANCE  
1.8  
1.6  
1.4  
1.2  
1
High To Low, Overdrive = 10 mV  
0.8  
0.6  
0.4  
0.2  
0
Low to High, Overdrive = 10 mV  
High To Low, Overdrive = 100 mV  
Low to High, Overdrive = 100 mV  
32  
480  
1024  
1504  
2016  
Vref (mV)  
Figure 55: Typical Propagation Delay vs. Vref for MS ACMP at T = 25 °C, Gain = 1, Hysteresis = 0, Regular Mode  
55  
T = -40 °C  
T = 25 °C  
50  
T = 85 °C  
45  
40  
35  
30  
25  
20  
2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
VDD (V)  
Figure 56: MS ACMP Power-On Delay vs. VDD, Regular Mode  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
76 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
2.4  
2.2  
2
Bandgap: Auto-On, OSC0: Auto-On  
Bandgap: Auto-On, OSC0: Forced  
Bandgap: Forced, OSC0: Auto-On  
Bandgap: Forced, OSC0: Forced  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
VDD (V)  
Figure 57: MS ACMP Power-On Delay vs. VDD, Sampling Mode, T = -40 °C to 85 °C  
6
4
2
0
Upper Limit  
Lower Limit  
-2  
-4  
-6  
-8  
32  
480  
1024  
1504  
2016  
Vref (mV)  
Figure 58: MS ACMP Input Offset Voltage vs. Vref at T = -40 °C to 85 °C  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
77 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
45  
T = 85 °C  
T = 25 °C  
40  
35  
30  
25  
20  
T = -40 °C  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
VDD (V)  
Figure 59: Current Consumption vs. VDD for Regular Mode, External Vref, VIN+ = VDD, VIN- = GND  
50  
T = 85 °C  
T = 25 °C  
45  
40  
35  
30  
25  
T = -40 °C  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
VDD (V)  
Figure 60: Current Consumption vs. VDD for Sampling Mode, 4 Channels, VIN+ = 2048 mV, VIN- = 32 mV, Clock = 10 kHz  
Datasheet  
14-Apr-2021  
Revision 3.0  
78 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
10 Programmable Delay/Edge Detector  
The SLG46811 has a programmable time delay logic cell that can generate a delay that is selectable from one of four timings  
(time2) configured in the GreenPAK Designer. The programmable time delay cell can generate one of four different delay patterns,  
rising edge detection, falling edge detection, both edge detection, and both edge delay. These four patterns can be further  
modified with the addition of delayed edge detection, which adds an extra unit of delay, as well as glitch rejection during the delay  
period. See Figure 62 for further information.  
Note: The input signal must be longer than the delay, otherwise it will be filtered out.  
registers [1053:1052]  
Delay Value Selection  
registers [1051:1050]  
Edge Mode Selection  
To Connection  
Matrix Input [41]  
Programmable  
From Connection Matrix Output [52]  
IN  
OUT  
Delay  
Figure 61: Programmable Delay  
10.1 PROGRAMMABLE DELAY TIMING DIAGRAM - EDGE DETECTOR OUTPUT  
width  
width  
IN  
time1  
Rising Edge Detector  
time1  
Falling Edge Detector  
Edge Detector  
Output  
Both Edge Detector  
Both Edge Delay  
time2  
time2  
time1 is a fixed value  
time2 delay value is selected via register  
Figure 62: Edge Detector Output  
Please refer to Table 12.  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
79 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
11 Additional Logic Function. Deglitch Filter  
The SLG46811 has one Deglitch Filter macrocell with inverter function that is connected directly to the Connection Matrix inputs  
and outputs. The filter pass the input signal for pulse width > tpass (at typical temperature 25 °C. See Table 14).  
In addition, this macrocell can be configured as an Edge Detector, with the following settings:  
Rising Edge Detector  
Falling Edge Detector  
Both Edge Detector  
Both Edge Delay  
Filter  
R
From Connection Matrix  
Output [53]  
0
1
C
0
1
To Connection Matrix  
Input [42]  
Edge  
Detector  
Logic  
register [1048]  
registers [1051:1050]  
register [1049]  
Figure 63: Deglitch Filter/Edge Detector Simplified Structure  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
80 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
12 Voltage Reference  
12.1 VOLTAGE REFERENCE OVERVIEW  
The SLG46811 has a Voltage Reference (Vref) macrocell to provide references to the Multichannel Sampling Analog Comparator.  
See Table 38 for the available selections for Multichannel Sampling Analog Comparator.  
12.2 VREF SELECTION TABLE  
Table 38: Vref Selection Table  
SEL[5:0]  
0
Vref  
0.032  
0.064  
0.096  
0.128  
0.16  
SEL[5:0]  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
Vref  
1.056  
1.088  
1.12  
1
2
3
1.152  
1.184  
1.216  
1.248  
1.28  
4
5
0.192  
0.224  
0.256  
0.288  
0.32  
6
7
8
1.312  
1.344  
1.376  
1.408  
1.44  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0.352  
0.384  
0.416  
0.448  
0.48  
1.472  
1.504  
1.536  
1.568  
1.6  
0.512  
0.544  
0.576  
0.608  
0.64  
1.632  
1.664  
1.696  
1.728  
1.76  
0.672  
0.704  
0.736  
0.768  
0.8  
1.792  
1.824  
1.856  
1.888  
1.92  
0.832  
0.864  
0.896  
0.928  
0.96  
1.952  
1.984  
2.016  
External  
0.992  
1.024  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
81 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
13 Clocking  
13.1 OSC GENERAL DESCRIPTION  
The SLG46811 has two internal oscillators to support a variety of applications:  
Oscillator0 (2.048 kHz or 10 kHz optional selection)  
Oscillator1 (25 MHz).  
The Oscillator0 can operate in one of two modes (2.048 kHz or 10 kHz) selected by register [581]. There are two divider stages  
for each oscillator that gives the user flexibility for introducing clock signals to connection matrix, as well as various other macro-  
cells. The pre-divider (first stage) for Oscillator0 is clock /1, /2, /4 or /8. The pre-divider (first stage) for Oscillator1 is clock /1, /2,  
/4, /8, /12, /24, /48. The second stage divider has an input of frequency from the pre-divider, and outputs one of eight different  
frequencies divided by /1, /2, /3, /4, /8, /12, /24 or /64 on Connection Matrix Input lines [43], [49]. Please see Figure 64, Figure 65  
and Figure 66 for more details on the SLG46811 clock scheme.  
Oscillator1 (25 MHz) has an additional function of 100 ns delayed startup, which can be enabled/disabled by register [592]. This  
function is recommended to use when analog blocks are used along with the Oscillator.  
The Matrix Power-down/Force On function allows switching off or force on the oscillators using an external pin (see Table 39).  
The Matrix Power-down/Force On (Connection Matrix Output [579]) signal has the highest priority.  
Table 39: Oscillator Control Input Modes  
Registers [567:566]  
Description  
OSC0 (2kHz/10kHz): Controlled by register [578]  
OSC1 (25MHz): Controlled by register [568]  
b00  
OSC0 (2kHz/10kHz): Controlled by Matrix Output  
OSC1 (25MHz): Controlled by register [568]  
b01  
b10  
b11  
OSC0 (2kHz/10kHz): Controlled by register [578]  
OSC1 (25MHz): Controlled by Matrix Output  
OSC0 (2kHz/10kHz): Controlled by Matrix Output  
OSC1 (25MHz): Controlled by Matrix Output  
The OSC operates according to the Table 40:  
Table 40: Oscillator Operation Mode Configuration Settings  
OSC Enable  
Signal from  
CNT/DLY  
Register:  
OSC  
Operation  
Mode  
Signal From  
Connection  
Matrix  
Register: Auto  
Power-On or  
Force On  
External Clock  
Selection  
Power-Down  
or Force On by  
Matrix Input  
POR  
Macrocells  
0
1
X
1
X
X
X
X
X
X
X
X
OFF  
Internal OSC is  
OFF, logic is ON  
1
1
1
0
0
0
1
1
0
0
1
X
X
1
X
X
X
OFF  
ON  
ON  
ON  
X
CNT/DLY  
requires OSC  
1
1
0
0
0
0
X
X
0
0
CNT/DLY  
doesnotrequire  
OSC  
OFF  
Note 1 The OSC will run only when any macrocell that uses OSC is powered on.  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
82 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
13.2 OSCILLATOR0 (2.048 KHZ/10 KHZ)  
From Connection Matrix  
Output [69]  
PWR DOWN/Force On  
to CNT/DLYs Clock Scheme  
2.048 kHz Pre-divider Clock  
Matrix Output control Register [579]  
OSC Power Mode  
Register [578]  
PWR DOWN/  
FORCE ON  
Registers [583:582]  
OSC0  
(2.048 kHz /  
10 kHz)  
Auto Power On  
Force Power On  
OUT  
0
1
0
1
DIV /1 /2 /4 /8  
Predivider  
0
1
2
3
Ext. Clock  
/2  
/3  
2.048/10 kHz Selection  
Register [581]  
OSC0 Matrix Out0 Enable Register [587]  
To Connection Matrix  
Ext. CLK Sel Register [580]  
/4  
OUT0  
Input [43]  
/8  
4
5
6
7
To Connection Matrix  
Input [49]  
OUT1  
/12  
/24  
/64  
OSC0 Matrix Out1 Enable Register [591]  
Registers [586:584]  
Registers [590:588]  
Second Stage  
Divider  
Figure 64: Oscillator0 Block Diagram  
13.3 OSCILLATOR1 (25 MHZ)  
From Connection Matrix  
Output [69]  
PWR DOWN/Force On  
To CNT/DLYs Clock Scheme  
25 MHz Pre-divider Clock  
Matrix Output Control Register [569]  
OSC Power Mode  
Register [568]  
PWR DOWN/  
FORCE ON  
Registers [574:572]  
OSC1  
(25 MHz)  
Auto Power On  
Force Power On  
OUT  
0
1
0
1
DIV /1 /2 /4 /8 /  
12 /24 /48  
Startup delay  
0
1
2
3
4
5
6
7
Register [592]  
/2  
/3  
Predivider  
Ext. Clock  
OSC1 Matrix Out Enable Register [571]  
Ext. CLK Sel Register [570]  
/4  
To Connection Matrix  
Input [44]  
/8  
/12  
/24  
/64  
Registers [577:575]  
Second Stage  
Divider  
Figure 65: Oscillator1 Block Diagram  
Datasheet  
14-Apr-2021  
Revision 3.0  
83 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
13.4 CNT/DLY CLOCK SCHEME  
Each CNT/DLY within Multi-Function macrocell has its own additional clock divider connected to oscillators pre-divider. Available  
dividers are:  
OSC0/1, OSC0/8, OSC0/12, OSC0/24, OSC0/64, OSC0/512, OSC0/4096  
OSC1/1, OSC1/4, OSC1/8, OSC1/64, OSC1/512  
registers [686:683] for CNT0,  
registers [710:707] for CNT1,  
registers [726:723] for CNT2,  
registers [748:745] for CNT3,  
registers [766:763] for CNT4,  
registers [782:779] for CNT5  
0
1
from 25 MHz  
Pre-divided clock  
/4  
/8  
2
3
4
5
6
7
8
/64  
/512  
CNT/DLY/  
ONESHOT/  
FREQ_DET/  
from 2.048/10 kHz  
Pre-divided clock  
/8  
/12  
DLY_EDGE_DET  
/24  
/64  
9
CNT overflow  
/512  
/4096  
10  
11  
12  
13  
14  
15  
CNT (x-1) overflow  
from Connection Matrix out  
(separate for each CNT/DLY macrocell)  
reserved  
reserved  
CNT0/CNT1/CNT2/CNT3/  
CNT4/CNT5  
Figure 66: Clock Scheme  
13.5 EXTERNAL CLOCKING  
The SLG46811 supports several ways to use an external, higher accuracy clock as a reference source for internal operations.  
13.5.1 GPI Source for Oscillator0 (2.048kHz/10 kHz)  
When register [580] is set to 1, an external clocking signal on GPI will be routed in place of the internal oscillator derived 2.048  
kHz clock source. See Figure 64. The low and high limits for external frequency that can be selected are 0 MHz and 10 MHz.  
13.5.2 GPIO Source for Oscillator1 (25 MHz)  
When register [570] is set to 1, an external clocking signal on GPIO7 will be routed in place of the internal oscillator derived 25  
MHz clock source. See Figure 65. The external frequency range is 0 MHz to 20 MHz at VDD = 2.3 V, 30 MHz at VDD = 3.3 V, 50  
MHz at VDD = 5.0 V.  
13.6 OSCILLATORS POWER-ON DELAY  
When OSC power mode is "Auto Power-On" "OSC enable" signal appears when any macrocell that uses OSC is powered on  
(see Figure 67). The values of Power-On Delay are in Table 17.  
Datasheet  
14-Apr-2021  
Revision 3.0  
84 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
OSC enable  
Power-On  
Delay  
CLK  
Figure 67: Oscillator Startup Diagram  
Note 1 OSC power mode: “Auto Power-On”.  
Note 2 “OSC enable” signal appears when any macrocell that uses OSC is powered on.  
1 100  
1 000  
900  
800  
700  
600  
500  
2.3  
3.3  
4.0  
5.0  
5.5  
VDD (V)  
Figure 68: Oscillator0 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC0 = 2.048 kHz/10 kHz  
Datasheet  
14-Apr-2021  
Revision 3.0  
85 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
180  
160  
140  
120  
100  
80  
Start with Delay  
Normal Start  
60  
40  
20  
0
2.3  
3.3  
4.0  
5.0  
5.5  
VDD (V)  
Figure 69: Oscillator1 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC1 = 25 MHz  
Datasheet  
14-Apr-2021  
Revision 3.0  
86 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
13.7 OSCILLATORS ACCURACY  
Note: OSC power setting: Force Power-On; Clock to matrix input - enable; Bandgap: turn on by register - enable.  
2.15  
2.1  
2.05  
2
Fmax @ VDD = 2.3 V to 5.0 V  
Ftyp @ VDD = 3.3 V  
1.95  
1.9  
Fmin @ VDD = 2.3 V to 5.0 V  
T (°C)  
Figure 70: Oscillator0 Frequency vs. Temperature, OSC0 = 2.048 kHz  
10.4  
10.2  
10  
9.8  
9.6  
9.4  
Fmax @ VDD = 2.3 V to 5.0 V  
Ftyp @ VDD = 3.3 V  
Fmin @ VDD = 2.3 V to 5.0 V  
T (°C)  
Figure 71: Oscillator0 Frequency vs. Temperature, OSC0 = 10 kHz  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
87 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
26  
25.5  
25  
24.5  
Fmax @ VDD = 5.0 V  
24  
23.5  
23  
Fmax @ VDD = 3.3 V  
Fmax @ VDD = 2.3 V  
Ftyp @ VDD = 3.3V  
Fmin @ VDD = 5.0 V  
Fmin @ VDD = 3.3 V  
Fmin @ VDD = 2.3 V  
T (°C)  
Figure 72: Oscillator1 Frequency vs. Temperature, OSC1 = 25 MHz  
8
10 kHz Total Error @ VDD = 2.3 V to 5.5 V  
25 MHz Total Error @ VDD = 2.3 V to 5.5 V  
2.048 kHz Total Error @ VDD = 2.3 V to 5.5 V  
7
6
5
4
3
2
1
0
T (°C)  
Figure 73: Oscillators Total Error vs. Temperature  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
88 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Note: For more information see Section 3.9.  
13.8 OSCILLATORS SETTLING TIME  
580  
570  
560  
550  
540  
530  
520  
510  
500  
490  
480  
0
1
2
3
4
5
Period  
Figure 74: Oscillator0 Settling Time, VDD = 3.3 V, T = 25 °C, OSC0 = 2.048 kHz  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
1
2
3
4
5
Period  
Figure 75: Oscillator0 Settling Time, VDD = 3.3 V, T = 25 °C, OSC0 = 10 kHz  
Datasheet  
14-Apr-2021  
Revision 3.0  
89 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
55  
50  
45  
40  
35  
30  
25  
20  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Period  
Figure 76: Oscillator1 Settling Time, VDD = 3.3 V, T = 25 °C, OSC1 = 25 MHz (Normal Start)  
13.9 OSCILLATORS CURRENT CONSUMPTION  
750  
700  
650  
600  
550  
500  
450  
400  
T = 85 °C  
T = -40 °C  
T = 25 °C  
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
Figure 77: OSC0 Current Consumption vs. VDD (All Pre-Dividers), OSC0 = 2.048 kHz  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
90 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
600  
T = 85 °C  
550  
T = 25 °C  
T = -40 °C  
500  
450  
400  
350  
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
Figure 78: OSC0 Current Consumption vs. VDD (All Pre-Dividers), OSC0 = 10 kHz  
170  
150  
130  
110  
90  
Pre-Divider = 1  
Pre-Divider = 4  
Pre-Divider = 8  
70  
50  
30  
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
Figure 79: OSC1 Current Consumption vs. VDD, T = -40 °C to 85 °C, OSC1 = 25 MHz  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
91 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
14 Power-On Reset  
The SLG46811 has a Power-On Reset (POR) macrocell to ensure correct device initialization and operation of all macrocells in  
the device. The purpose of the POR circuit is to have consistent behavior and predictable results when the VDD power is first  
ramping to the device, and also while the VDD is falling during power-down. To accomplish this goal, the POR drives a defined  
sequence of internal events that trigger changes to the states of different macrocells inside the device, and finally to the state of  
the IOs.  
14.1 GENERAL OPERATION  
The SLG46811 is guaranteed to be powered down and non-operational when the VDD voltage (voltage on PIN1) is less than  
Power-Off Threshold (see in Table 6), but not less than -0.6 V. Another essential condition for the chip to be powered down is that  
no voltage higher (Note) than the VDD voltage is applied to any other PIN. For example, if VDD voltage is 0.3 V, applying a voltage  
higher than 0.3 V to any other PIN is incorrect, and can lead to incorrect or unexpected device behavior.  
Note: There is a 0.6 V margin due to forward drop voltage of the ESD protection diodes.  
To start the POR sequence in the SLG46811, the voltage applied on the VDD should be higher than the Power-On threshold  
(Note). The full operational VDD range for the SLG46811 is 2.3 V to 5.5 V. This means that the VDD voltage must ramp up to the  
operational voltage value, but the POR sequence will start earlier, as soon as the VDD voltage rises to the Power-On threshold.  
After the POR sequence has started, the SLG46811 will have a typical period of time to go through all the steps in the sequence  
(noted in the datasheet for that device), and will be ready and completely operational after the POR sequence is complete.  
Note: The Power-On threshold is defined in Table 6.  
To power down the chip the VDD voltage should be lower than the operational and to guarantee that chip is powered down it  
should be less than Power-Off Threshold.  
All PINs are in high impedance state when the chip is powered down and while the POR sequence is taking place. The last step  
in the POR sequence releases the IO structures from the high impedance state, at which time the device is operational. The pin  
configuration at this point in time is defined by the design programmed into the chip. Also, as it was mentioned before, the voltage  
on PINs can’t be bigger than the VDD, this rule also applies to the case when the chip is powered on.  
Datasheet  
14-Apr-2021  
Revision 3.0  
92 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
14.2 POR SEQUENCE  
The POR system generates a sequence of signals that enable certain macrocells. The sequence is shown in Figure 80.  
VDD  
t
t
t
t
t
t
t
t
POR_NVM  
(reset for NVM)  
NVM_ready_out  
POR_GPI  
(reset for input enable)  
POR_LUT  
(reset for LUT/FILTER/EPG)  
POR_CORE  
(reset for DLY/OSC/DFF/LATCH/  
Pipe DLY/MS ACMP/Shift Register/  
Edge Detector in Filter)  
POR_OUT  
(generate low to high to matrix)  
POR_GPO  
(reset for output enable)  
Figure 80: POR Sequence  
As can be seen from Figure 80 after the VDD has start ramping up and crosses the Power-On threshold, first, the on-chip NVM  
memory is reset. Next, the chip reads the data from NVM, and transfers this information to a CMOS LATCH that serves to  
configure each macrocell, and the Connection Matrix which routes signals between macrocells. The third stage causes the reset  
of the input pins, and then to enable them. After that, the LUTs are reset and become active. After LUTs the Delay cells, OSCs,  
DFFs, LATCHES, and Pipe Delay are initialized. Only after all macrocells are initialized internal POR signal (POR macrocell  
output) goes from LOW to HIGH. The last portion of the device to be initialized are the output pins, which transition from high  
impedance to active at this point.  
The typical time that takes to complete the POR sequence varies by device type in the GreenPAK family. It also depends on many  
environmental factors, such as: slew rate, VDD value, temperature, and even will vary from chip to chip (process influence).  
14.3 MACROCELLS OUTPUT STATES DURING POR SEQUENCE  
To have a full picture of SLG46811 operation during powering and POR sequence, review the overview the macrocell output  
states during the POR sequence (Figure 81 describes the output signals states).  
First, before the NVM has been reset, all macrocells have their output set to logic LOW (except the output pins which are in high  
impedance state). On the next step, some of the macrocells start initialization: input pins output state becomes LOW; LUTs also  
output LOW. Only P_DLY macrocell configured as edge detector becomes active at this time. After that input pins are enabled.  
Datasheet  
14-Apr-2021  
Revision 3.0  
93 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Next, only LUTs are configured. Next, all other macrocells are initialized. After macrocells are initialized, internal POR matrix signal  
switches from LOW to HIGH. The last are output pins that become active and determined by the input signals.  
VDD  
Guaranteed HIGH before POR_GPI  
Unpredictable  
t
VDD _out  
to matrix  
t
t
Input PIN _out  
to matrix  
Unpredictable  
Unpredictable  
Unpredictable  
Unpredictable  
Unpredictable  
Determined by External Signal  
Determined by Input signals  
LUT/FILTER/EPG_out  
to matrix  
Determined by input signals  
OUT = IN without Delay  
t
t
t
t
t
t
Programmable Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
Determined by initial state  
DFF/LATCH/MS ACMP/  
Shift Register/Edge Detec-  
tor in Filter_out to matrix  
Determined by Input signals  
Determined by input signals  
OUT = IN without Delay  
Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
POR_out  
to matrix  
Unpredictable  
Ext. GPO  
Tri-state  
Determined by input signals  
Output State Unpredictable  
Figure 81: Internal Macrocell States During POR Sequence  
14.3.1 Initialization  
All internal macrocells by default have initial low level. Starting from indicated power-up time of 1.84 V (typical), macrocells in  
SLG46811 are powered on while forced to the reset state. All outputs are in Hi-Z and chip starts loading data from NVM. Then  
the reset signal is released for internal macrocells and they start to initialize according to the following sequence:  
1. Input pins, ACMP, Pull-up/down.  
2. LUTs.  
3. DFFs, Delays/Counters.  
4. POR output to matrix.  
5. Output pin corresponds to the internal logic.  
The POR signal going high indicates the mentioned power-up sequence is complete.  
Note: The maximum voltage applied to any pin should not be higher than the VDD level. There are ESD Diodes between pin  
→VDD and pin → GND on each pin. So, if the input signal applied to pin is higher than VDD, then current will sink through the  
diode to VDD. Exceeding VDD results in leakage current on the input pin, and VDD will be pulled up, following the voltage on the  
input pin.There is no effect from input pin when input voltage is applied at the same time as VDD  
.
Datasheet  
14-Apr-2021  
Revision 3.0  
94 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
14.3.2 Power-Down  
VDD (V)  
POR OUT  
PONTHR  
Time  
POFFTHR  
Not guaranteed output state  
Figure 82: Power-Down  
During Power-down, macrocells in SLG46811 are powered off after VDD falling down below Power-Off Threshold. Please note  
that during a slow rampdown, outputs can possibly switch state during this time.  
Datasheet  
14-Apr-2021  
Revision 3.0  
95 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
2
15 I C Serial Communications Macrocell  
15.1 I2C SERIAL COMMUNICATIONS MACROCELL OVERVIEW  
In the standard use case for the GreenPAK devices, the configuration choices made by the user are stored as bit settings in the  
Non-Volatile Memory (NVM), and this information is transferred at startup time to volatile RAM registers that enable the configu-  
ration of the macrocells. Other RAM registers in the device are responsible for setting the connections in the Connection Matrix  
to route signals in the manner most appropriate for the user’s application.  
The I2C Serial Communications Macrocell in this device allows an I2C bus Master to read and write this information via a serial  
channel directly to the RAM registers, allowing the remote re-configuration of macrocells, and remote changes to signal chains  
within the device.  
An I2C bus Master is also able read and write other register bits that are not associated with NVM memory. As an example, the  
input lines to the Connection Matrix can be read as digital register bits. These are the signal outputs of each of the macrocells in  
the device, giving an I2C bus Master the capability to remotely read the current value of any macrocell.  
The user has the flexibility to control read access and write access via registers bits registers [1119:1117]. See Section 15.5 for  
more details on I2C read/write memory protection.  
15.2 I2C SERIAL COMMUNICATIONS DEVICE ADDRESSING  
Each command to the I2C Serial Communications macrocell begins with a Control Byte. The bits inside this Control Byte are  
shown in Figure 83. After the Start bit, the first four bits are a control code. Each bit in a control code can be sourced independently  
from the register or by value defined externally GPI0, GPIO2, GPIO4, and GPIO5. The LSB of the control code is defined by the  
value of GPI0, while the MSB is defined by the value of GPIO5. The address source (either register bit or PIN) for each bit in the  
control code is defined by registers [1179:1176]. This gives the user flexibility on the chip level addressing of this device and other  
devices on the same I2C bus. The Block Address is the next three bits (A10, A9, A8), which will define the most significant bits  
in the addressing of the data to be read or written by the command. The last bit in the Control Byte is the R/W bit, which selects  
whether a read command or write command is requested, with a “1” selecting for a Read command, and a “0” selecting for a Write  
command. This Control Byte will be followed by an Acknowledge bit (ACK), which is sent by this device to indicate successful  
communication of the Control Byte data.  
In the I2C-bus specification and user manual, there are two groups of eight addresses (0000 xxx and 1111 xxx) that are reserved  
for the special functions, such as a system General Call address. If the user of this device choses to set the Control Code to either  
“1111” or “0000” in a system with other slave device, please consult the I2C-bus specification and user manual to understand the  
addressing and implementation of these special functions, to insure reliable operation.  
In the read and write command address structure, there are a total of 11 bits of addressing, each pointing to a unique byte of  
information, resulting in a total address space of 2K bytes. Of this 2K byte address space, the valid addresses accessible to the  
I2C Macrocell on the SLG46811 are in the range from 0 (0x00) to 255 (0xFF). The MSB address bits (A10, A9, and A8) will be  
“0” for all commands to the SLG46811.  
With the exception of the Current Address Read command, all commands will have the Control Byte followed by the Word  
Address. Figure 83 shows this basic command structure.  
Datasheet  
14-Apr-2021  
Revision 3.0  
96 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Start  
bit  
Acknowledge  
bit  
Control Byte  
Word Address  
A
10  
A
9
A
8
A
7
A
0
S
X
X
X
X
R/W ACK  
Control  
Code  
Block  
Address  
Not used, set to  
0
Read/Write bit  
(1 = Read, 0 = Write)  
Figure 83: Basic Command Structure  
15.3 I2C SERIAL GENERAL TIMING  
General timing characteristics for the I2C Serial Communications macrocell are shown in Figure 84. Timing specifications can be  
found in the AC Characteristics section.  
tHIGH  
tF  
tR  
tLOW  
SCL  
tSU STA  
tHD DAT  
tHD STA  
tSU DAT  
tSU STO  
SDA IN  
tDH  
tBUF  
tVD ACK  
ACK 1-bit  
SDA OUT  
DATA 8-bit  
Figure 84: I2C General Timing Characteristics  
15.4 I2C SERIAL COMMUNICATIONS COMMANDS  
15.4.1 Byte Write Command  
Following the Start condition from the Master, the Control Code [4 bits], the Block Address [3 bits], and the R/W bit (set to “0”),  
are placed onto the I2C bus by the Master. After the SLG46811 sends an Acknowledge bit (ACK), the next byte transmitted by  
the Master is the Word Address. The Block Address (A10, A9, A8), combined with the Word Address (A7 through A0), together  
set the internal address pointer in the SLG46811, where the data byte is to be written. After the SLG46811 sends another  
Acknowledge bit, the Master will transmit the data byte to be written into the addressed memory location. The SLG46811 again  
provides an Acknowledge bit and then the Master generates a Stop condition. The internal write cycle for the data will take place  
at the time that the SLG46811 generates the Acknowledge bit.  
It is possible to latch all IOs during I2C write command, register [1113] = 1 - Enable. It means that IOs will remain their state until  
the write command is done.  
Datasheet  
14-Apr-2021  
Revision 3.0  
97 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Acknowledge  
bit  
Acknowledge  
bit  
Start  
bit  
Acknowledge  
bit  
Bus Activity  
Control Byte  
Word Address  
Data  
A
10  
A
9
A
8
A
7
A
0
D
7
D
0
S
X
X
X
X
W
ACK  
ACK  
ACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, set to  
0
R/W bit = 0  
Figure 85: Byte Write Command, R/W = 0  
15.4.2 Sequential Write Command  
The write Control Byte, Word Address and the first data byte are transmitted to the SLG46811 in the same way as in a Byte Write  
command. However, instead of generating a Stop condition, the Bus Master continues to transmit data bytes to the SLG46811.  
Each subsequent data byte will increment the internal address counter, and will be written into the next higher byte in the command  
addressing. As in the case of the Byte Write command, the internal write cycle will take place at the time that the SLG46811  
generates the Acknowledge bit.  
Acknowledge  
Acknowledge  
bit  
Start  
bit  
bit  
Bus Activity  
Data (n + 1)  
Data (n + x)  
Control Byte  
Word Address (n)  
Data (n)  
A
10  
A
9
A
8
ACK  
ACK  
P
SDA LINE  
S
X
X
X
X
W
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, set  
to 0  
Write bit  
Figure 86: Sequential Write Command  
15.4.3 Current Address Read Command  
The Current Address Read Command reads from the current pointer address location. The address pointer is incremented at the  
first STOP bit following any write control byte. For example, if a Sequential Read command (which contains a write control byte)  
reads data up to address n, the address pointer would get incremented to n + 1 upon the STOP of that command. Subsequently,  
a Current Address Read that follows would start reading data at n + 1. The Current Address Read Command contains the Control  
Byte sent by the Master, with the R/W bit = “1”. The SLG46811 will issue an Acknowledge bit, and then transmit eight data bits  
for the requested byte. The Master will not issue an Acknowledge bit, and follow immediately with a Stop condition.  
Datasheet  
14-Apr-2021  
Revision 3.0  
98 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Start  
bit  
Acknowledge  
bit  
Stop  
bit  
Bus Activity  
Control Byte  
Data (n)  
A
10  
A
9
A
8
S
X
X
X
X
R
ACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
No ACK  
bit  
Not used, set to 0  
R/W bit = 1  
Figure 87: Current Address Read Command, R/W = 1  
15.4.4 Random Read Command  
The Random Read command starts with a Control Byte (with R/W bit set to “0”, indicating a write command) and Word Address  
to set the internal byte address, followed by a Start bit, and then the Control Byte for the read (exactly the same as the Byte Write  
command). The Start bit in the middle of the command will halt the decoding of a Write command, but will set the internal address  
counter in preparation for the second half of the command. After the Start bit, the Bus Master issues a second control byte with  
the R/W bit set to “1”, after which the SLG46811 issues an Acknowledge bit, followed by the requested eight data bits.  
Acknowledge  
Stop  
bit  
Start  
bit  
bit  
Bus Activity  
Data (n)  
Control Byte  
Word Address (n)  
Control Byte  
A
10  
A
9
A
8
A
10  
A
9
A
8
S
ACK  
X
X
X
X
R ACK  
P
SDA LINE  
S
X
X
X
X
W
ACK  
Control  
Code  
Block  
Address  
Control  
Code  
Block  
Address  
No ACK  
bit  
Not used, set to 0  
Write bit  
Read bit  
Figure 88: Random Read Command  
Datasheet  
14-Apr-2021  
Revision 3.0  
99 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
15.4.5 Sequential Read Command  
The Sequential Read command is initiated in the same way as a Random Read command, except that once the SLG46811  
transmits the first data byte, the Bus Master issues an Acknowledge bit as opposed to a Stop condition in a random read. The  
Bus Master can continue reading sequential bytes of data, and will terminate the command with a Stop condition.  
Acknowledge  
Start  
bit  
bit  
Bus Activity  
Data (n + 2)  
Data (n + x)  
Control Byte  
Data (n)  
Data (n + 1)  
A
10  
A
9
A
8
ACK  
P
SDA LINE  
S
X
X
X
X
R
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
No ACK  
bit  
Read bit  
Figure 89: Sequential Read Command  
15.4.6 I2C Serial Reset Command  
If I2C serial communication is established with the device, it is possible to reset the device to initial power up conditions, including  
configuration of all macrocells, and all connections provided by the Connection Matrix. This is implemented by setting  
register [1112] I2C reset bit to “1”, which causes the device to re-enable the Power-On Reset (POR) sequence, including the reload  
of all register data from NVM. During the POR sequence, the outputs of the device will be in tri-state. After the reset has taken  
place, the contents of register [1112] will be set to “0” automatically. The Figure 90 illustrates the sequence of events for this reset  
function.  
Acknowledge  
bit  
Acknowledge  
bit  
Start  
bit  
Acknowledge  
bit  
Bus Activity  
Control Byte  
Word Address  
Data  
A
10  
A
9
A
8
A
7
A
0
D
7
D
0
S
X
X
X
X
W
ACK  
ACK  
ACK  
SDA LINE  
P
Internal Reset bit  
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, set  
to 0  
Write bit  
by I2C Stop Signal  
Reset-bit register output  
DFF output gated by stop signal  
Internal POR for core only  
Figure 90: Reset Command Timing  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
100 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
15.5 I2C SERIAL COMMAND REGISTER MAP  
There are seven read/write protect modes for the design sequence from being corrupted or copied. See Table 40 for details.  
Table 41: Read/Write Protection Options  
Protection Modes Configuration  
Partly  
Partly  
Lock  
Partly  
Lock  
Lock  
Read/  
Write  
Lock  
Read2/  
Write  
Lock  
Read  
Lock  
Write  
Register Ad-  
Configurations  
Unlocked  
dress  
Read1  
Read2  
(Mode 0) (Mode1) (Mode2) (Mode3) (Mode4) (Mode5) (Mode 6)  
I2C Byte Write Bit Masking  
(section 15.6.1)  
I2C Serial Reset Command  
(section 15.4.6)  
Outputs Latching During I2C  
Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
W
R
R
R
-
8C  
R/W  
R/W  
R
R
8B, b'0  
8B, b'1  
Connection Matrix Virtual  
Inputs  
R/W  
R/W  
R/W  
R/W  
R/W  
W
R/W  
W
R/W  
W
W
W
R
R
R
-
-
-
39; 3A, b'6~0  
3D~83, 85, 86  
0~35  
(section 6.3)  
Configuration Bits for All  
Macrocells  
(IO Pins, ACMPs,  
Combination Function  
Macrocells, etc.)  
-
-
Macrocells Inputs  
Configuration (Connection  
Matrix Outputs, section 6.2)  
W
Protection Mode Enable  
Protection Mode Selection  
R
R
R
R
R
R
R
R
R
R
R
R
R
8B, b'3  
R/W  
8B, b'7~5  
Macrocells Output Values  
(Connection Matrix Inputs,  
section 6.1)  
36~38; 3A,b'7;  
3B; 3C,'b4~0  
R
R
R
R
R
R
R
R
-
R
R
-
I2C Control Code  
(section 15.2)  
R
R
93, b'3~0  
Pin Slave Address Select  
I2C Disable/Enable  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
93, b'7~4  
94, b'0  
Programming  
disable  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
94, b'1  
94, b'2  
Code Compare Enable  
R/W  
W
R
Allow Read and Write Data  
Allow Write Data Only  
Allow Read Data Only  
-
The Data is protected for Read and Write  
Datasheet  
14-Apr-2021  
Revision 3.0  
101 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
It is possible to read some data from macrocells, such as connection matrix, Shift Registers State, and connection matrix virtual  
inputs. The I2C write will not have any impact on data in case data comes from macrocell output, except Connection Matrix Virtual  
Inputs. The silicon identification service bits allows identifying silicon family, its revision, and others.  
See Section 18 for detailed information on all registers.  
15.6 I2C ADDITIONAL OPTIONS  
When Output latching during I2C write, register [1113] = 1 allows all PINs output value to be latched until I2C write is done. It will  
protect the output change due to configuration process during I2C write in case multiple register bytes are changed. Inputs and  
internal macrocells retain their status during I2C write.  
If the user sets GPIO0 and GPIO1 function to a selection other than SDA and SCL, all access via I2C will be disabled.  
Note: Any write commands that come to the device via I2C that are not blocked, based on the protection bits, will change the  
contents of the RAM register bits that mirror the NVM bits. These write commands will not change the NVM bits themselves, and  
a POR event will restore the register bits to original programmed contents of the NVM.  
See Section 18 for detailed information on all registers.  
Datasheet  
14-Apr-2021  
Revision 3.0  
102 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
15.6.1 I2C Byte Write Bit Masking  
The I2C macrocell inside SLG46811 supports masking of individual bits within a byte that is written to the RAM memory space.  
This function is supported across the entire RAM memory space. To implement this function, the user performs a Byte Write  
Command (see Section 15.4.1 for details) on the I2C Byte Write Mask Register (address 0F6H) with the desired bit mask pattern.  
This sets a bit mask pattern for the target memory location that will take effect on the next Byte Write Command to this register  
byte. Any bit in the mask that is set to “1” in the I2C Byte Write Mask Register will mask the effect of changing that particular bit  
in the target register, during the next Byte Write Command. The contents of the I2C Byte Write Mask Register are reset (set to  
00h) after valid Byte Write Command. If the next command received by the device is not a Byte Write Command, the effect of the  
bit masking function will be aborted, and the I2C Byte Write Mask Register will be reset with no effect. Figure 91 shows an example  
of this function.  
User Actions  
Byte Write Command, Address = 8Ch, Data = 11110000b [sets mask bits]  
Byte Write Command, Address = 74h, Data = 10101010b [writes data with mask]  
Memory Address 74h (original contents)  
Mask to choose bit from new  
write command  
1
1
1
1
0
0
1
1
0
0
0
0
Mask to choose bit from  
original register contents  
Memory Address 74h (new data in write command)  
0 1  
1
0
1
0
Bit from new write command  
Memory Address 8Ch (mask register)  
1
1
1
0
0
0
Bit from original register  
contents  
Memory Address 74h (new contents after write command)  
1
1
0
0
1
0
1
0
Figure 91: Example of I2C Byte Write Bit Masking  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
103 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
16 Extended Pattern Generator  
SLG46811 has an ability to read the data from the part of NVM and to set this data to the matrix inputs. This is done with help of  
Extended Pattern Generator that shares its output with I2C virtual inputs. Figure 92 shows I2C General block diagram with  
shared outputs. Registers [1078:1064] define I2C block configuration as Virtual Inputs or Pattern Generator, or GPI.  
I2C  
Pat Gen 0 or Virt.input 0  
Pat Gen 1 or Virt.input 1  
nReset  
Pat Gen 2 or Virt.input 2  
Pattern  
Pat Gen 3 or Virt.input 3  
Pat Gen 4 or Virt.input 4  
Pat Gen 5 or Virt.input 5  
Pat Gen 6 or Virt.input 6 or GPI (GPIO0)  
Pat Gen 7 or Virt.input 7 or GPI (GPIO1)  
Clk  
Generator  
or  
Virtual input  
SDA  
SCL  
GPI (GPIO2) or Virt.input 8  
GPI (GPIO3) or Virt.input 9  
GPI (GPIO4) or Virt.input 10  
GPI (GPIO5) or Virt.input 11  
GPI (GPIO6) or Virt.input 12  
GPI (GPIO7) or Virt.input 13  
GPI (GPIO8) or Virt.input 14  
GPI  
or  
Virtual input  
Figure 92: I2C General Block Diagram  
Initial value of Extended Pattern Generator is defined by registers [495:488]. This value appears at the output of the macrocell  
after power up event and after applying low level at nReset input.  
Every rising edge at Clk input generator loads byte from the NVM and this data appears at Pattern Generator outputs. The  
internal NVM pointer increases by 1. At the next rising edge new data from the next NVM byte will be loaded. The range of the  
data for the Extended Pattern Generator is 92 bytes from the NVM bit [1280] to the NVM bit [2015]. User can select the behavior  
of the Generator when the internal pointer reaches the last address of the NVM:  
If register [564] = 0, the internal counter will overflow.  
If register [564] = 1, the internal counter will stop when reaching the last byte of the NVM.  
The maximum allowable speed of the EPG is 1 MHz.  
The minimum duration of the clock pulse low and high level is 100 ns.  
Low level at nReset input sets NVM pointer to the beginning and loads the initial value to the outputs.  
User can select any of Pattern Generator outputs to operate as Virtual Inputs.  
Datasheet  
14-Apr-2021  
Revision 3.0  
104 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
17 Analog Temperature Sensor  
The SLG46811 has an Analog Temperature sensor (TS) with an output voltage linearly-proportional to the Centigrade tempera-  
ture. TS output can be selected as a source of MS ACMP channel. The TS is rated to operate over a -40°C to 85°C temperature  
range. The error in the whole temperature range does not exceed 5.96 %. For more detail refer to section 3.11.  
The equation below calculates the typical analog voltage passed from the TS to the ACMPs' IN+ source input for VDD = 2.3 V to  
5.5 V . It is important to note that there will be a chip to chip variation of about ±2 °C.  
VT = -4.8xT + 1825.2  
where:  
TS (mV) - TS Output Voltage.  
V
T (°C) - Temperature  
Temperature hysteresis can be setup by enabling the GreenPAK's internal ACMP hysteresis.  
TS  
From MS ACMP  
VDD  
TS Power Up  
To MS ACMP  
input  
Analog  
Signal  
OUT  
Processing  
Figure 93: Analog Temperature Sensor Structure Diagram  
Datasheet  
14-Apr-2021  
Revision 3.0  
105 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
2.1  
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
T (°C)  
Figure 94: TS Output vs. Temperature, VDD = 2.3 V to 5.5 V  
Datasheet  
14-Apr-2021  
Revision 3.0  
106 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
18 Register Definitions  
18.1 REGISTER MAP  
Table 42: Register Map  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
Matrix Output  
0
1
2
OUT0:  
IN0 of LUT2_0 or Clock Input of DFF0  
3
4
0
5
6
LUT2_0 & DFF0  
7
8
OUT1:  
IN1 of LUT2_0 or Data Input of DFF0  
9
10  
11  
12  
1
13  
14  
15  
16  
17  
18  
OUT2:  
IN0 of LUT2_1 or Clock Input of DFF1  
LUT2_1 & DFF1  
19  
20  
2
OUT3:  
IN1 of LUT2_1 or Data Input of DFF1  
21  
22  
23  
24  
25  
26  
OUT4:  
IN0 of LUT2_2 or Clock Input of PGen  
27  
3
28  
29  
30  
31  
32  
LUT2_2 & PGen  
OUT5:  
IN1 of LUT2_2 or RSTB of PGen  
33  
34  
4
35  
Datasheet  
14-Apr-2021  
Revision 3.0  
107 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
Byte  
4
OUT6:  
IN0 of LUT3_0 or CLK Input of DFF2  
5
6
7
8
OUT7:  
LUT3_0 & DFF2  
IN1 of LUT3_0 or Data of DFF2  
OUT8:  
IN2 of LUT3_0 or RSTB (SETB) of DFF2  
OUT9:  
IN0 of LUT3_1 or CLK Input of DFF3  
OUT10:  
IN1 of LUT3_1 or Data of DFF3  
LUT3_1 & DFF3  
OUT11:  
IN2 of LUT3_1 or RSTB (SETB) of DFF3  
Datasheet  
14-Apr-2021  
Revision 3.0  
108 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
72  
Byte  
73  
74  
OUT12:  
IN0 of LUT3_2 or CLK Input of DFF4  
75  
76  
9
77  
78  
79  
80  
81  
OUT13:  
IN1 of LUT3_2 or Data of DFF4  
LUT3_2 & DFF4  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
A
B
C
D
E
OUT14:  
IN2 of LUT3_2 or RSTB (SETB) of DFF4  
OUT15:  
IN0 of LUT3_3 or CLK Input of DFF5  
OUT16:  
IN1 of LUT3_3 or Data of DFF5  
LUT3_3 & DFF5  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
OUT17:  
IN2 of LUT3_3 or RSTB (SETB) of DFF5  
OUT18:  
IN0 of LUT3_4 or CLK Input of DFF6 or CLK input of SR0  
LUT3_4 & DFF6 & SR0  
OUT19:  
IN1 of LUT3_4 or Data Input of DFF6 or Data Input of SR0  
Datasheet  
14-Apr-2021  
Revision 3.0  
109 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
OUT20:  
LUT3_4 & DFF6 & SR0  
IN2 of LUT3_4 or RSTB (SETB) of DFF6 or RSTB(SETB)  
input of SR0  
F
OUT21:  
IN0 of LUT3_5 or CLK Input of DFF7 or CLK input of SR1  
10  
11  
12  
13  
14  
OUT22:  
LUT3_5 & DFF7 & SR1  
IN1 of LUT3_5 or Data of DFF7 or Data Input of SR1  
OUT23:  
IN2 of LUT3_5 or RSTB (SETB) of DFF7 or RSTB(SETB)  
input of SR1  
OUT24:  
IN0 of LUT3_6 or CLK Input of DFF8 or CLK input of SR2  
OUT25:  
LUT3_6 & DFF8 & SR2  
IN1 of LUT3_6 or Data of DFF8 or Data Input of SR2  
OUT26:  
IN2 of LUT3_6 or RSTB (SETB) of DFF8 or RSTB(SETB)  
input of SR2  
OUT27:  
LUT3_7 & DFF9 & SR3  
IN0 of LUT3_7 or CLK Input of DFF9 or CLK input of SR3  
Datasheet  
14-Apr-2021  
Revision 3.0  
110 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
OUT28:  
IN1 of LUT3_7 or Data of DFF9 or Data Input of SR3  
15  
LUT3_7 & DFF9 & SR3  
OUT29:  
IN2 of LUT3_7 or RSTB (SETB) of DFF9 or RSTB(SETB)  
input of SR3  
16  
17  
18  
19  
1A  
OUT30:  
IN0 of LUT3_8 or CLK Input of DFF10  
Delay0 Input (or Counter5 RSTB Input)  
OUT31:  
Multi_function0  
IN1 of LUT3_8 or RSTB (SETB) of DFF10  
Delay0 Input (or Counter5 RSTB Input)  
OUT32:  
IN2 of LUT3_8 or Data of DFF10  
Delay0 Input (or Counter5 RSTB Input)  
OUT33:  
IN0 of LUT3_9 or CLK Input of DFF111  
Delay1 Input (or Counter1 RSTB Input)  
OUT34:  
Multi_function1  
IN1 of LUT3_9 or RSTB (SETB) of DFF11  
Delay1 Input (or Counter1 RSTB Input)  
OUT35:  
IN2 of LUT3_9 or Data of DFF11  
Delay1 Input (or Counter1 RSTB Input)  
Datasheet  
14-Apr-2021  
Revision 3.0  
111 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
OUT36:  
IN0 of LUT3_10 or CLK Input of DFF12  
Delay2 Input (or Counter2 RSTB Input)  
1B  
OUT37:  
Multi_function2  
IN1 of LUT3_10 or RSTB (SETB) of DFF12  
Delay2 Input (or Counter2 RSTB Input)  
1C  
1D  
1E  
1F  
20  
OUT38:  
IN2 of LUT3_10 or Data of DFF12  
Delay2 Input (or Counter2 RSTB Input)  
OUT39:  
IN0 of LUT3_11 or CLK Input of DFF13  
Delay3 Input (or Counter3 RSTB Input)  
OUT40:  
Multi_function3  
IN1 of LUT3_11 or RSTB (SETB) of DFF13  
Delay3 Input (or Counter3 RSTB Input)  
OUT41:  
IN2 of LUT3_11 or Data of DFF13  
Delay3 Input (or Counter3 RSTB Input)  
OUT42:  
IN0 of LUT3_12 or CLK Input of DFF14  
Delay4 Input (or Counter5 RSTB Input)  
Multi_function4  
OUT43:  
IN1 of LUT3_12 or RSTB (SETB) of DFF14  
Delay4 Input (or Counter5 RSTB Input)  
Datasheet  
14-Apr-2021  
Revision 3.0  
112 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
OUT44:  
Multi_function4  
IN2 of LUT3_12 or Data of DFF14  
Delay4 Input (or Counter5 RSTB Input)  
21  
OUT45:  
IN0 of LUT3_13 or CLK Input of DFF15  
Delay5 Input (or Counter5 RSTB Input)  
22  
23  
24  
25  
26  
OUT46:  
Multi_function5  
IN1 of LUT3_13 or RSTB (SETB) of DFF15  
Delay5 Input (or Counter5 RSTB Input)  
OUT47:  
IN2 of LUT3_13 or Data of DFF15  
Delay5 Input (or Counter5 RSTB Input)  
OUT48:  
IN0 of LUT4_0 or CLK Input of DFF16  
OUT49:  
IN1 of LUT4_0 or Data of DFF16  
LUT4_0_DFF16  
OUT50:  
IN2 of LUT4_0 or RSTB (SETB) of DFF16  
OUT51:  
IN3 of LUT4_0  
Datasheet  
14-Apr-2021  
Revision 3.0  
113 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
OUT52:  
Programmable Delay  
Programmable Delay/Edge Detect Input  
27  
OUT53:  
Filter/Edge Detect Input  
Filter/Edge Detect  
28  
29  
2A  
2B  
2C  
OUT54:  
GPIO0 DOUT  
GPIO0  
OUT55:  
GPIO1 DOUT  
GPIO1  
OUT56:  
GPIO2 DOUT  
GPIO2  
OUT57:  
GPIO2 DOUT OE  
OUT58:  
GPIO3 DOUT  
GPIO3  
OUT59:  
GPIO3 DOUT OE  
Datasheet  
14-Apr-2021  
Revision 3.0  
114 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
OUT60:  
GPIO4  
GPIO4 DOUT  
2D  
OUT61:  
GPIO5 DOUT  
GPIO5  
GPIO6  
2E  
2F  
30  
31  
32  
OUT62:  
GPIO6 DOUT  
OUT63:  
GPIO7 DOUT  
GPIO7  
OUT64:  
GPIO7 DOUT OE  
OUT65:  
GPIO8 DOUT  
GPIO8  
OUT66:  
GPIO8 DOUT OE  
OUT67:  
EN of MS ACMP  
MS ACMP  
Datasheet  
14-Apr-2021  
Revision 3.0  
115 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
OUT68:  
MS ACMP  
RSTB of ACMP LATs  
33  
OUT69:  
Oscillator Enable/Disable Input  
OSC0/1  
34  
35  
36  
37  
38  
OUT70:  
Clock of Pattern Generator  
EPG  
(Embedded Input Pattern Generator)  
OUT71:  
RESETB of Pattern Generator  
Matrix Input 0  
Matrix Input 1  
Matrix Input 2  
Matrix Input 3  
Matrix Input 4  
Matrix Input 5  
Matrix Input 6  
Matrix Input 7  
Matrix Input 8  
Matrix Input 9  
Matrix Input 10  
Matrix Input 11  
Matrix Input 12  
Matrix Input 13  
Matrix Input 14  
Matrix Input 15  
Matrix Input 16  
Matrix Input 17  
Matrix Input 18  
Matrix Input 19  
Matrix Input 20  
Matrix Input 21  
Matrix Input 22  
Matrix Input 23  
GND  
LUT2_0/DFF0 output  
LUT2_1/DFF1 output  
LUT2_2/PGen output  
LUT3_0/DFF2 output  
LUT3_1/DFF3 output  
LUT3_2/DFF4 output  
LUT3_3/DFF5 output  
LUT3_4/DFF6/SR0 output  
LUT3_5/DFF7/SR1 output  
LUT3_6/DFF8/SR2 output  
LUT3_7/DFF9/SR3 output  
CNT0 output  
MLT0_LUT3_8/DFF10_OUT  
CNT1 output  
MLT1_LUT3_9/DFF11_OUT  
CNT2 output  
MLT2_LUT3_10/DFF12_OUT  
CNT3 output  
MLT3_LUT3_11/DFF13_OUT  
CNT4 output  
MLT4_LUT3_12/DFF14_OUT  
CNT5 output  
MLT5_LUT3_13/DFF15_OUT  
Datasheet  
14-Apr-2021  
Revision 3.0  
116 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
Virtual_0 Input  
Virtual_1 Input  
Virtual_2 Input  
Virtual_3 Input  
Virtual_4 Input  
Virtual_5 Input  
Virtual_6 Input  
Virtual_7 Input  
Virtual_8 Input  
Virtual_9 Input  
Virtual_10 Input  
Virtual_11 Input  
Virtual_12 Input  
Virtual_13 Input  
Virtual_14 Input  
Matrix Input 39  
Matrix Input 40  
Matrix Input 41  
Matrix Input 42  
Matrix Input 43  
Matrix Input 44  
Matrix Input 45  
Matrix Input 46  
Matrix Input 47  
Matrix Input 48  
Matrix Input 49  
Matrix Input 50  
Matrix Input 51  
Matrix Input 52  
Reserved  
I2C_virtual_0 Input data value  
I2C_virtual_1 Input data value  
I2C_virtual_2_Input data value  
I2C_virtual_3_input data value  
I2C_virtual_4 Input data value  
I2C_virtual_5 Input data value  
I2C_virtual_6 Input data value  
I2C_virtual_7 Input data value  
I2C_virtual_8 Input data value  
I2C_virtual_9 Input data value  
I2C_virtual_10 Input data value  
I2C_virtual_11 Input data value  
I2C_virtual_12 Input data value  
I2C_virtual_13 Input data value  
I2C_virtual_14 Input data value  
LUT4_0/DFF16 output  
GPI Digital Input  
progdly_edgedet output  
edgedet_filter output  
OSC0 output 0  
OSC1 output  
ACMP0 Output  
ACMP1 Output  
ACMP2 Output  
ACMP3 Output  
OSC0 output 1  
39  
3A  
3B  
3C  
3D  
ACMP sync mode ready  
Reset_core_matrix  
VDD  
Reserved  
Reserved  
EPG  
Initial Value at POR & EPG RESETB  
(Extended Pattern Generator)  
MS ACMP  
Datasheet  
14-Apr-2021  
Revision 3.0  
117 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0: always on,  
496  
497  
498  
499  
500  
Bandgap power down control  
Sampling enable  
Edge enable  
1: power down if no function enable it (ACMP, Vref, TS)  
0: regular mode,  
1: multi-channel sampling mode  
0: level sensitive mode,  
1: edge sensitive mode  
0: ACMPs out async,  
1: ACMPs out sync  
Sync enable  
3E  
VDD inputenable(ACMPpositiveinputselected 0: disable,  
as VDD 1: enable  
Temp sensor enable (ACMP positive input se- 0: disable,  
)
501  
502  
lected as TS)  
1: enable  
00: 1 channel,  
01: 2 channels,  
10: 3 channels,  
11: 4 channels  
Define the number of sampling  
channels, NUM[1:0]  
503  
504  
505  
506  
00: APIO0,  
Define positive input channel on 1st sampling, 01: APIO1,  
CHS0[1:0]  
10: APIO2 (or VDD decided by register [500]),  
11: APIO3 (or TS decided by register [501])  
00: APIO0,  
Define positive input channel on 2nd sampling, 01: APIO1,  
CHS1[1:0] 10: APIO2 (or VDD decided by register [500]),  
11: APIO3 (or TS decided by register [501])  
00: APIO0,  
Define positive input channel on 3rd sampling, 01: APIO1,  
CHS2[1:0] 10: APIO2 (or VDD decided by register [500]),  
507  
508  
509  
3F  
11: APIO3 (or TS decided by register [501])  
510  
511  
00: APIO0,  
Define positive input channel on 4th sampling, 01: APIO1,  
CHS3[1:0]  
10: APIO2 (or VDD decided by register [500]),  
11: APIO3 (or TS decided by register [501])  
0: not accessible,  
1: accessible  
0: not accessible,  
1: accessible  
0: not accessible,  
1: accessible  
0: not accessible,  
1: accessible  
00: div1,  
01: div2,  
10: div4,  
11:div8  
512  
513  
514  
ACMP LAT0 RST accessible selection  
ACMP LAT1 RST accessible selection  
ACMP LAT2 RST accessible selection  
ACMP LAT3 RST accessible selection  
40  
515  
516  
Sampling CK selection  
517  
518  
519  
Reserved  
Reserved  
Datasheet  
14-Apr-2021  
Revision 3.0  
118 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
ACMP0 hysteresis  
ACMP1 hysteresis  
ACMP2 hysteresis  
Register Bit Definition  
Register  
Bit  
Byte  
520  
00: 0 mV,  
01: 32 mV,  
10: 64mV;  
11: 192 mV  
521  
522  
523  
524  
00: 0 mV,  
01: 32 mV,  
10: 64 mV,  
11: 192 mV  
41  
00: 0 mV,  
01: 32 mV,  
10: 64 mV,  
11: 192 mV  
525  
526  
527  
528  
00: 0mV,  
01: 32 mV,  
10: 64 mV,  
11: 192 mV  
ACMP3 hysteresis  
ACMP Gain Divider Select:  
00: 1x;  
ACMP0 Gain Divider  
01: 0.5x;  
529  
10: 0.33x;  
11: 0.25x  
530  
531  
532  
533  
534  
535  
536  
42  
ACMP Vref Select:  
ACMP0 Vref  
000000: 32 mV ~ 111110: 2.016 V/step = 32 mV;  
111111: External Vref  
ACMP Gain Divider Select:  
00: 1x;  
ACMP1 Gain Divider  
ACMP1 Vref  
01: 0.5x;  
10: 0.33x;  
11: 0.25x  
537  
538  
539  
540  
541  
542  
543  
544  
43  
ACMP Vref Select:  
000000: 32 mV ~ 111110: 2.016 V/ step = 32 mV;  
111112: External Vref  
ACMP Gain Divider Select:  
00: 1x;  
ACMP2 Gain Divider  
ACMP2 Vref  
01: 0.5x;  
10: 0.33x;  
11: 0.25x  
545  
546  
547  
548  
549  
550  
551  
44  
ACMP Vref Select:  
000000: 32 mV ~ 111110: 2.016 V/ step = 32 mV;  
111111: External Vref  
Datasheet  
14-Apr-2021  
Revision 3.0  
119 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
552  
ACMP Gain Divider Select:  
00: 1x;  
ACMP3 Gain Divider  
01: 0.5x;  
553  
10: 0.33x;  
11: 0.25x  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
45  
ACMP Vref Select:  
ACMP3 Vref  
000000: 32 mV ~ 111110: 2.016 V/ step = 32 mV;  
111111: External Vref  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
EPG CNT overflow/keep selection  
0: overflow to A0,  
1: keep at FB  
46  
EPG  
564  
565  
Reserved  
Reserved  
OSC0/1  
566  
567  
00: OSC0 (2kHz/10kHz): Controlled by register  
OSC1 (25MHz): Controlled by register  
01: OSC0 (2kHz/10kHz): Controlled by Matrix Output  
OSC1 (25MHz): Controlled by register  
10: OSC0 (2kHz/10kHz): Controlled by register  
OSC1 (25MHz): Controlled by Matrix Output  
11: OSC0 (2kHz/10kHz): Controlled by Matrix Output  
OSC1 (25MHz): Controlled by Matrix Output  
Oscillator Enable/Disable Input Selection from  
Matrix Output  
46  
Datasheet  
14-Apr-2021  
Revision 3.0  
120 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0: auto on by delay cells,  
1: always on  
0: matrix down,  
1: matrix on  
0: internal OSC1,  
1: external clock from GPIO7  
568  
569  
570  
571  
OSC1 turn on by register  
Matrix power down or on select  
External clock source enable  
Output enable to matrix in 44  
47  
0: disable,  
1: enable  
572  
573  
574  
575  
576  
577  
000: /1, 001: /2, 010: /4, 011: /8, 100: /12, 101: /24, 110: /48,  
111: N/A  
Pre-divider ratio control  
000: /1, 001:/2, 010:/3, 011: /4, 100: /8, 101: /12, 110: /24, 111:  
/64  
Output mux control to matrix in 44  
0: auto on by delay cells  
1: always on  
0: matrix down,  
1: matrix on  
0: internal OSC0,  
1: external clock from GPI  
0: 2.048 kHz,  
1: 10 kHz  
00: div 1;  
01: div 2;  
10: div 4;  
11: div 8  
578  
579  
580  
OSC0 turn on by register  
Matrix power down or on select  
External clock source enable  
OSC0 frequency selection  
48  
581  
582  
Pre-divider ratio control  
583  
584  
585  
586  
000: /1, 001:/2, 010:/3, 011: /4, 100: /8, 101: /12, 110: /24, 111:  
/64  
Output mux control to matrix in 43  
Output enable to matrix in 43  
0: disable,  
1: enable  
587  
49  
588  
589  
590  
000: /1, 001:/2, 010:/3, 011: /4, 100: /8, 101: /12, 110: /24, 111:  
/64  
OSC0 2nd output mux control to matrix in 49  
2nd output enable to matrix in 49  
0: disable,  
1: enable  
591  
0: enable,  
1: disable  
Reserved  
0: disable,  
1: enable  
592  
593  
594  
OSC1 startup delay with 100 ns  
Reserved  
4A  
IO fast Pull-up/down enable  
GPI  
595  
596  
597  
598  
00: digital without Schmitt Trigger,  
01: digital with Schmitt Trigger,  
10: low voltage digital in,  
11: Reserved  
00: floating,  
01: 10K,  
10: 100K,  
11: 1M  
Input mode configuration  
4A  
Pull-up/down resistance selection  
Pull-up/down selection  
0: Pull-down,  
1: Pull-up  
599  
GPIO0  
Datasheet  
14-Apr-2021  
Revision 3.0  
121 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
600  
00: digital without Schmitt Trigger,  
01: digital with Schmitt Trigger,  
10: low voltage digital in,  
11: reserved  
Input mode configuration  
601  
602  
603  
Pull-up/down resistance selection  
00: floating, 01: 10K, 10: 100K, 11: 1M  
4B  
0: Pull-down,  
1: Pull-up  
0: I2C fast mode +,  
1: I2C standard/fast mode  
604  
605  
Pull-up/down selection  
I2C mode selection  
0: disable,  
1: enable (3.2x)  
606  
607  
Open-drain output enable (3.2x drivability)  
Reserved  
GPIO1  
608  
609  
00: digital without Schmitt Trigger,  
01: digital with Schmitt Trigger,  
10: low voltage digital in,  
11: reserved  
Input mode configuration  
610  
611  
Pull-up/down resistance selection  
00: floating, 01: 10K, 10: 100K, 11: 1M  
4C  
0: Pull-down,  
1: Pull-up  
0: disable,  
1: enable (3.2x)  
612  
613  
Pull-up/down selection  
Open-drain output enable (3.2x drivability)  
614  
615  
Reserved  
Reserved  
GPIO2  
616  
617  
618  
619  
00: digital without Schmitt Trigger,  
01: digital with Schmitt Trigger,  
10: low voltage digital in,  
11: reserved  
00: Push-Pull 1x,  
01: Push-Pull 2x,  
10: 1x Open-Drain,  
11: 2x Open-Drain  
Input mode configuration  
Output mode configuration  
4D  
620  
621  
Pull-up/down resistance selection  
00: floating, 01: 10K, 10: 100K, 11: 1M  
0: Pull-down,  
1: Pull-up  
622  
623  
Pull-up/down selection  
Reserved  
GPIO3  
624  
625  
626  
627  
00: digital without Schmitt Trigger,  
01: digital with Schmitt Trigger,  
10: low voltage digital in,  
11: analog IO  
00: Push-Pull 1x,  
01: Push-Pull 2x,  
10: 1x Open-Drain,  
11: 2x Open-Drain  
Input mode configuration  
Output mode configuration  
4E  
628  
629  
Pull-up/down resistance selection  
00: floating, 01: 10K, 10: 100K, 11: 1M  
0: Pull-down,  
1: Pull-up  
630  
631  
Pull-up/down selection  
Reserved  
Datasheet  
14-Apr-2021  
Revision 3.0  
122 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
GPIO4  
632  
633  
634  
635  
00: digital without Schmitt Trigger,  
01: digital with Schmitt Trigger,  
10: low voltage digital in,  
11: analog IO  
00: Push-Pull 1x,  
01: Push-Pull 2x,  
10: 1x Open-Drain,  
11: 2x Open-Drain  
Input mode configuration  
Output mode configuration  
4F  
636  
637  
Pull-up/down resistance selection  
00: floating, 01: 10K, 10: 100K, 11: 1M  
0: Pull-down,  
1: Pull-up  
0: input,  
1: output  
638  
639  
Pull-up/down selection  
Input mode/output mode selection  
GPIO5  
640  
641  
642  
643  
00: digital without Schmitt Trigger,  
01: digital with Schmitt Trigger,  
10: low voltage digital in,  
11: analog IO  
00: Push-Pull 1x,  
01: Push-Pull 2x,  
10: 1x Open-Drain,  
11: 2x Open-Drain  
Input mode configuration  
Output mode configuration  
50  
644  
645  
Pull-up/down resistance selection  
00: floating, 01: 10K, 10: 100K, 11: 1M  
0: Pull-down,  
1: Pull-up  
0: input,  
1: output  
646  
647  
Pull-up/down selection  
Input mode/output mode selection  
GPIO6  
648  
649  
650  
651  
00: digital without Schmitt Trigger,  
01: digital with Schmitt Trigger,  
10: low voltage digital in,  
11: analog IO  
00: Push-Pull 1x,  
01: Push-Pull 2x,  
10: 1x Open-Drain,  
11: 2x Open-Drain  
Input mode configuration  
Output mode configuration  
51  
652  
653  
Pull-up/down resistance selection  
00: floating, 01: 10K, 10: 100K, 11: 1M  
0: Pull-down,  
1: Pull-up  
0: input,  
1: output  
654  
655  
Pull-up/down selection  
Input mode/output mode Selection  
GPIO7  
656  
657  
658  
659  
00: digital without Schmitt Trigger,  
01: digital with Schmitt Trigger,  
10: low voltage digital in,  
11: analog IO  
00: Push-Pull 1x,  
01: Push-Pull 2x,  
10: 1x Open-Drain,  
11: 2x Open-Drain  
Input mode configuration  
Output mode configuration  
52  
Datasheet  
14-Apr-2021  
Revision 3.0  
123 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
660  
661  
Pull-up/down resistance selection  
00: floating, 01: 10K, 10: 100K, 11: 1M  
0: Pull-down,  
1: Pull-up  
0: disable,  
1: enable  
52  
662  
663  
Pull-up/down selection  
Analog input enable for ACMP3 IP  
GPIO8  
664  
665  
666  
00: digital without Schmitt Trigger,  
01: digital with Schmitt Trigger,  
10: low voltage digital in,  
11: Reserved  
00: Push-Pull 1x,  
01: Push-Pull 2x,  
10: 1x Open-Drain,  
11: 2x Open-Drain  
Input mode configuration  
Output mode configuration  
667  
53  
668  
669  
Pull-up/down resistance selection  
00: floating, 01: 10K, 10: 100K, 11: 1M  
0: Pull-down,  
1: Pull-up  
670  
671  
Pull-up/down selection  
Reserved  
00000: Matrix A - In2; Matrix B - In1;  
Matrix C - In0  
(DLY_IN - LOW)  
Single 3-bit LUT  
10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DLY_IN - LOW)  
00001: Matrix A- DLY_IN (CNT); Matrix B - EXT_CLK (CNT);  
Matrix C - NC  
(DLY_OUT connected to LUT/DFF)  
Single DFF w RST and SET  
Single CNT/DLY  
00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0  
(DLY_OUT connected to In2)  
CNT/DLY → LUT  
10010: Matrix A - DLY_IN; Matrix B - nSET/nRST;  
Matrix C - CLK  
(DLY_OUT connected to D)  
CNT/DLY → DFF  
54  
676:672  
00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0  
(DLY_OUT connected to In1)  
10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK  
(DLY_OUT connected to nSET/nRST)  
CNT/DLY → LUT  
CNT/DLY → DFF  
01010: Matrix A - In2; Matrix B - In1;  
Matrix C - DLY_IN  
(DLY_OUT connected to In0)  
CNT/DLY → LUT  
11010: MatrixA- D; Matrix B - nSET/nRST; Matrix C - DLY_IN  
(DLY_OUT connected to CLK)  
00011: Matrix A - In2; Matrix B - In1; Matrix C - In0  
(LUT_OUT connected to DLY_IN)  
10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
CNT/DLY → DFF  
LUT → CNT/DLY  
DFF → CNT/DLY  
Datasheet  
14-Apr-2021  
Revision 3.0  
124 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
677  
678  
679  
0000: both edge Delay;  
0001: falling edge delay;  
0010: rising edge delay:  
0011: both edge One Shot;  
0100: falling edge One Shot;  
0101: rising edge One Shot;  
0110: both edge freq detect;  
0111: falling edge freq detect;  
1000: rising edge freq detect;  
1001: both edge detect;  
54  
CNT0 function and edge mode selection  
680  
1010: falling edge detect;  
1011: rising edge detect;  
1100: both edge reset cnt;  
1101: falling edge reset cnt;  
1110: rising edge reset cnt;  
1111: high level reset cnt  
681  
682  
00: bypass the initial;  
01: initial 0;  
CNT0 initial value selection  
10: initial 1;  
11: initial 1  
55  
683  
684  
685  
Clock source sel [3:0]  
0000: OSC1(25MHz);  
0001: OSC1/4;  
0010: OSC1/8;  
0011: OSC1/64;  
0100: OSC1/512;  
0101: OSC0(2K/10KHz);  
0110: OSC0/8;  
DLY/CNT0 Clock Source Select  
0111: OSC0/12;  
686  
1000: OSC0/24;  
1001: OSC0/64;  
1010: OSC0/512;  
1011: OSC0/4096  
1100: CNT4_END;  
1101: External;  
0: Default Output,  
1: Inverted Output  
0: bypass;  
1: after two DFF  
687  
688  
CNT0 output pol selection  
CNT0 CNT mode SYNC selection  
0: normal;  
689  
690  
CNT0 DLY EDET FUNCTION Selection  
CNT0 SET/RST Selection  
1: DLY function edge detection (registers [679:677] = 0000/  
0001/0010)  
0: Reset to 0 (High CNT output at CNT reset),  
1: Set to data (Low CNT output at CNT reset)  
0: bypass;  
691  
692  
693  
FSM0 UP signal SYCN selection  
Reserved  
1: after two DFF  
56  
0: Default Output,  
1: Inverted Output  
CNT1 output pol selection  
0: bypass;  
694  
695  
CNT1 CNT mode SYNC selection  
1: after two DFF  
0: normal;  
CNT1 DLY EDET FUNCTION Selection  
1: DLY function edge detection (register [703:701] = 0000/  
0001/0010)  
Datasheet  
14-Apr-2021  
Revision 3.0  
125 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
00000: Matrix A - In2; Matrix B - In1;  
Matrix C - In0  
(DLY_IN - LOW)  
Single 3-bit LUT  
10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DLY_IN - LOW)  
00001: Matrix A- DLY_IN (CNT); Matrix B - EXT_CLK (CNT);  
Matrix C - NC  
(DLY_OUT connected to LUT/DFF)  
Single DFF w RST and SET  
Single CNT/DLY  
00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0  
(DLY_OUT connected to In2)  
CNT/DLY → LUT  
10010: Matrix A - DLY_IN; Matrix B - nSET/nRST;  
Matrix C - CLK  
(DLY_OUT connected to D)  
CNT/DLY → DFF  
700:696  
00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0  
(DLY_OUT connected to In1)  
10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK  
(DLY_OUT connected to nSET/nRST)  
CNT/DLY → LUT  
CNT/DLY → DFF  
57  
01010: Matrix A - In2; Matrix B - In1;  
Matrix C - DLY_IN  
(DLY_OUT connected to In0)  
CNT/DLY → LUT  
11010: MatrixA- D; Matrix B - nSET/nRST; Matrix C - DLY_IN  
(DLY_OUT connected to CLK)  
00011: Matrix A - In2; Matrix B - In1; Matrix C - In0  
(LUT_OUT connected to DLY_IN)  
10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
CNT/DLY → DFF  
LUT → CNT/DLY  
DFF → CNT/DLY  
701  
702  
703  
0000: both edge Delay;  
0001: falling edge delay;  
0010: rising edge delay:  
0011: both edge One Shot;  
0100: falling edge One Shot;  
0101: rising edge One Shot;  
0110: both edge freq detect;  
0111: falling edge freq detect;  
1000: rising edge freq detect;  
1001: both edge detect;  
1010: falling edge detect;  
1011: rising edge detect;  
1100: both edge reset cnt;  
1101: falling edge reset cnt;  
1110: rising edge reset cnt;  
1111: high level reset cnt  
CNT1 function and edge mode selection  
704  
58  
705  
706  
00: bypass the initial;  
01: initial 0;  
10: initial 1;  
CNT1 initial value selection  
11: initial 1  
Datasheet  
14-Apr-2021  
Revision 3.0  
126 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
707  
708  
709  
Clock source sel [3:0]  
0000: OSC1(25MHz);  
0001: OSC1/4;  
0010: OSC1/8;  
0011: OSC1/64;  
0100: OSC1/512;  
0101: OSC0(2K/10KHz);  
0110: OSC0/8;  
DLY/CNT1 Clock Source Select  
58  
0111: OSC0/12;  
710  
711  
1000: OSC0/24;  
1001: OSC0/64;  
1010: OSC0/512;  
1011: OSC0/4096  
1100: CNT4_END;  
1101: External;  
Reserved  
00000: Matrix A - In2; Matrix B - In1;  
Matrix C - In0  
(DLY_IN - LOW)  
Single 3-bit LUT  
10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DLY_IN - LOW)  
00001: Matrix A- DLY_IN (CNT); Matrix B - EXT_CLK (CNT);  
Matrix C - NC  
(DLY_OUT connected to LUT/DFF)  
Single DFF w RST and SET  
Single CNT/DLY  
00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0  
(DLY_OUT connected to In2)  
CNT/DLY → LUT  
10010: Matrix A - DLY_IN; Matrix B - nSET/nRST;  
Matrix C - CLK  
(DLY_OUT connected to D)  
CNT/DLY → DFF  
59  
716:712  
00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0  
(DLY_OUT connected to In1)  
10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK  
(DLY_OUT connected to nSET/nRST)  
CNT/DLY → LUT  
CNT/DLY → DFF  
01010: Matrix A - In2; Matrix B - In1;  
Matrix C - DLY_IN  
(DLY_OUT connected to In0)  
CNT/DLY → LUT  
11010: MatrixA- D; Matrix B - nSET/nRST; Matrix C - DLY_IN  
(DLY_OUT connected to CLK)  
00011: Matrix A - In2; Matrix B - In1; Matrix C - In0  
(LUT_OUT connected to DLY_IN)  
10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
CNT/DLY → DFF  
LUT → CNT/DLY  
DFF → CNT/DLY  
Datasheet  
14-Apr-2021  
Revision 3.0  
127 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
717  
718  
719  
0000: both edge Delay;  
0001: falling edge delay;  
0010: rising edge delay:  
0011: both edge One Shot;  
0100: falling edge One Shot;  
0101: rising edge One Shot;  
0110: both edge freq detect;  
0111: falling edge freq detect;  
1000: rising edge freq detect;  
1001: both edge detect;  
1010: falling edge detect;  
1011: rising edge detect;  
1100: both edge reset cnt;  
1101: falling edge reset cnt;  
1110: rising edge reset cnt;  
1111: high level reset cnt  
59  
CNT2 function and edge mode selection  
720  
721  
722  
00: bypass the initial;  
01: initial 0;  
10: initial 1;  
CNT2 initial value selection  
11: initial 1  
5A  
723  
724  
725  
Clock source sel [3:0]  
0000: OSC1(25MHz);  
0001: OSC1/4;  
0010: OSC1/8;  
0011: OSC1/64;  
0100: OSC1/512;  
0101: OSC0(2K/10KHz);  
0110: OSC0/8;  
DLY/CNT2 Clock Source Select  
0111: OSC0/12;  
726  
1000: OSC0/24;  
1001: OSC0/64;  
1010: OSC0/512;  
1011: OSC0/4096;  
1100: CNT4_END;  
1101:External;  
0: Default Output,  
1: Inverted Output  
0: bypass;  
1: after two DFF  
727  
728  
CNT2 output pol selection  
CNT2 CNT mode SYNC selection  
0: normal;  
729  
CNT2 DLY EDET FUNCTION Selection  
1: DLY function edge detection (register [719:717] = 0000/  
0001/0010)  
730  
731  
Reserved  
0: Default Output,  
1: Inverted Output  
CNT3 output pol selection  
5B  
0: bypass;  
1: after two DFF  
732  
CNT3 CNT mode SYNC selection  
0: normal;  
733  
734  
735  
CNT3 DLY EDET FUNCTION Selection  
1: DLY function edge detection (registers [743:742] = 0000/  
0001/0010)  
00: bypass the initial;  
01: initial 0;  
10: initial 1;  
CNT3 initial value selection  
11: initial 1  
Datasheet  
14-Apr-2021  
Revision 3.0  
128 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
00000: Matrix A - In2; Matrix B - In1;  
Matrix C - In0  
(DLY_IN - LOW)  
Single 3-bit LUT  
10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DLY_IN - LOW)  
00001: Matrix A- DLY_IN (CNT); Matrix B - EXT_CLK (CNT);  
Matrix C - NC  
(DLY_OUT connected to LUT/DFF)  
Single DFF w RST and SET  
Single CNT/DLY  
00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0  
(DLY_OUT connected to In2)  
CNT/DLY → LUT  
10010: Matrix A - DLY_IN; Matrix B - nSET/nRST;  
Matrix C - CLK  
(DLY_OUT connected to D)  
CNT/DLY → DFF  
740:736  
00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0  
(DLY_OUT connected to In1)  
10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK  
(DLY_OUT connected to nSET/nRST)  
CNT/DLY → LUT  
CNT/DLY → DFF  
5C  
01010: Matrix A - In2; Matrix B - In1;  
Matrix C - DLY_IN  
(DLY_OUT connected to In0)  
CNT/DLY → LUT  
11010: MatrixA- D; Matrix B - nSET/nRST; Matrix C - DLY_IN  
(DLY_OUT connected to CLK)  
00011: Matrix A - In2; Matrix B - In1; Matrix C - In0  
(LUT_OUT connected to DLY_IN)  
10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
CNT/DLY → DFF  
LUT → CNT/DLY  
DFF → CNT/DLY  
741  
742  
743  
0000: both edge Delay;  
0001: falling edge delay;  
0010: rising edge delay:  
0011: both edge One Shot;  
0100: falling edge One Shot;  
0101: rising edge One Shot;  
0110: both edge freq detect;  
0111: falling edge freq detect;  
1000: rising edge freq detect;  
1001: both edge detect;  
CNT3 function and edge mode selection  
5D  
744  
1010: falling edge detect;  
1011: rising edge detect;  
1100: both edge reset cnt;  
1101: falling edge reset cnt;  
1110: rising edge reset cnt;  
1111: high level reset cnt  
Datasheet  
14-Apr-2021  
Revision 3.0  
129 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
745  
746  
747  
Clock source sel [3:0]  
0000: OSC1(25MHz);  
0001: OSC1/4;  
0010: OSC1/8;  
0011: OSC1/64;  
0100: OSC1/512;  
0101: OSC0 (2K/10KHz);  
0110: OSC0/8;  
DLY/CNT3 Clock Source Select  
0111: OSC0/12;  
748  
1000: OSC0/24;  
1001: OSC0/64;  
1010: OSC0/512;  
1011: OSC0/4096  
1100: CNT4_END;  
1101:External;  
5D  
0: Default Output,  
1: Inverted Output  
0: bypass;  
1: after two DFF  
749  
750  
CNT4 output pol selection  
CNT4 CNT mode SYNC selection  
0: normal;  
751  
CNT4 DLY EDET FUNCTION Selection  
1: DLY function edge detection (registers [759:757] = 0000/  
0001/0010)  
00000: Matrix A - In2; Matrix B - In1;  
Matrix C - In0  
(DLY_IN - LOW)  
Single 3-bit LUT  
10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DLY_IN - LOW)  
00001: Matrix A- DLY_IN (CNT); Matrix B - EXT_CLK (CNT);  
Matrix C - NC  
(DLY_OUT connected to LUT/DFF)  
Single DFF w RST and SET  
Single CNT/DLY  
00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0  
(DLY_OUT connected to In2)  
CNT/DLY → LUT  
10010: Matrix A - DLY_IN; Matrix B - nSET/nRST;  
Matrix C - CLK  
(DLY_OUT connected to D)  
CNT/DLY → DFF  
5E  
756:752  
00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0  
(DLY_OUT connected to In1)  
10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK  
(DLY_OUT connected to nSET/nRST)  
CNT/DLY → LUT  
CNT/DLY → DFF  
01010: Matrix A - In2; Matrix B - In1;  
Matrix C - DLY_IN  
(DLY_OUT connected to In0)  
CNT/DLY → LUT  
11010: MatrixA- D; Matrix B - nSET/nRST; Matrix C - DLY_IN  
(DLY_OUT connected to CLK)  
00011: Matrix A - In2; Matrix B - In1; Matrix C - In0  
(LUT_OUT connected to DLY_IN)  
10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
CNT/DLY → DFF  
LUT → CNT/DLY  
DFF → CNT/DLY  
Datasheet  
14-Apr-2021  
Revision 3.0  
130 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
757  
758  
759  
0000: both edge Delay;  
0001: falling edge delay;  
0010: rising edge delay:  
0011: both edge One Shot;  
0100: falling edge One Shot;  
0101: rising edge One Shot;  
0110: both edge freq detect;  
0111: falling edge freq detect;  
1000: rising edge freq detect;  
1001: both edge detect;  
1010: falling edge detect;  
1011: rising edge detect;  
1100: both edge reset cnt;  
1101: falling edge reset cnt;  
1110: rising edge reset cnt;  
1111: high level reset cnt  
5E  
CNT4 function and edge mode selection  
760  
761  
762  
00: bypass the initial;  
01: initial 0;  
10: initial 1;  
CNT4 initial value selection  
5F  
11: initial 1  
763  
764  
765  
Clock source sel [3:0]  
0000: OSC1(25MHz);  
0001: OSC1/4;  
0010: OSC1/8;  
0011: OSC1/64;  
0100: OSC1/512;  
0101: OSC0(2K/10KHz);  
0110: OSC0/8;  
DLY/CNT4 Clock Source Select  
0111: OSC0/12;  
766  
767  
1000: OSC0/24;  
1001: OSC0/64;  
1010: OSC0/512;  
1011: OSC0/4096  
1100: CNT4_END;  
1101: External;  
Reserved  
00000: Matrix A - In2; Matrix B - In1;  
Matrix C - In0  
(DLY_IN - LOW)  
Single 3-bit LUT  
10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DLY_IN - LOW)  
00001: Matrix A- DLY_IN (CNT); Matrix B - EXT_CLK (CNT);  
Matrix C - NC  
(DLY_OUT connected to LUT/DFF)  
Single DFF w RST and SET  
Single CNT/DLY  
60  
772:768  
00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0  
(DLY_OUT connected to In2)  
CNT/DLY → LUT  
10010: Matrix A - DLY_IN; Matrix B - nSET/nRST;  
Matrix C - CLK  
(DLY_OUT connected to D)  
CNT/DLY → DFF  
00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0  
(DLY_OUT connected to In1)  
10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK  
(DLY_OUT connected to nSET/nRST)  
CNT/DLY → LUT  
CNT/DLY → DFF  
Datasheet  
14-Apr-2021  
Revision 3.0  
131 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
01010: Matrix A - In2; Matrix B - In1;  
Matrix C - DLY_IN  
(DLY_OUT connected to In0)  
CNT/DLY → LUT  
11010: MatrixA- D; Matrix B - nSET/nRST; Matrix C - DLY_IN  
(DLY_OUT connected to CLK)  
00011: Matrix A - In2; Matrix B - In1; Matrix C - In0  
(LUT_OUT connected to DLY_IN)  
10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
CNT/DLY → DFF  
LUT → CNT/DLY  
DFF → CNT/DLY  
772:768  
60  
773  
774  
775  
0000: both edge Delay;  
0001: falling edge delay;  
0010: rising edge delay:  
0011: both edge One Shot;  
0100: falling edge One Shot;  
0101: rising edge One Shot;  
0110: both edge freq detect;  
0111: falling edge freq detect;  
1000: rising edge freq detect;  
1001: both edge detect;  
CNT5 function and edge mode selection  
776  
1010: falling edge detect;  
1011: rising edge detect;  
1100: both edge reset cnt;  
1101: falling edge reset cnt;  
1110: rising edge reset cnt;  
1111: high level reset cnt  
777  
778  
00: bypass the initial;  
01: initial 0;  
CNT5 initial value selection  
10: initial 1;  
11: initial 1  
61  
779  
780  
781  
Clock source sel [3:0]  
0000: OSC1(25MHz);  
0001: OSC1/4;  
0010: OSC1/8;  
0011: OSC1/64;  
0100: OSC1/512;  
0101: OSC0 (2K/10KHz);  
0110: OSC0/8;  
DLY/CNT5 Clock Source Select  
0111: OSC0/12;  
782  
1000: OSC0/24;  
1001: OSC0/64;  
1010: OSC0/512;  
1011: OSC0/4096  
1100: CNT4_END;  
1101:External;  
0: Default Output,  
1: Inverted Output  
0: bypass;  
1: after two DFF  
783  
784  
CNT5 output pol selection  
CNT5 CNT mode SYNC selection  
0: normal;  
785  
CNT5 DLY EDET FUNCTION Selection  
1: DLY function edge detection (registers [775:773] = 0000/  
0001/0010)  
786  
787  
788  
789  
790  
791  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
62  
Datasheet  
14-Apr-2021  
Revision 3.0  
132 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
792  
793  
794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
[7]:LUT3_8 [7]/DFF10 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_8 [6]/DFF10 Output Select  
0: Q output, 1: QB output  
63  
Multi0_LUT3_8_DFF10 setting  
[5]:LUT3_8 [5]/DFF10  
0: RSTB from Matrix Output, 1: SETB from Matrix Output  
[4]:LUT3_8 [4]/DFF10 Initial Polarity Select  
0: Low, 1: High  
[3:0]:LUT3_8 [3:0]  
64  
65  
66  
67  
68  
REG_CNT0_D[7:0]  
Data[7:0]  
[7]:LUT3_9 [7]/DFF11 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_9 [6]/DFF11 Output Select  
0: Q output, 1: QB output  
Multi1_LUT3_9_DFF11 setting  
[5]:LUT3_9 [5]/DFF11  
0: RSTB from Matrix Output, 1: SETB from Matrix Output  
[4]:LUT3_9 [4]/DFF11 Initial Polarity Select  
0: Low, 1: High  
[3:0]:LUT3_9 [3:0]  
REG_CNT1_D[7:0]  
Data[7:0]  
[7]:LUT3_10 [7]/DFF12 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_10 [6]/DFF12 Output Select  
0: Q output, 1: QB output  
Multi2_LUT3_10_DFF12 setting  
[5]:LUT3_10 [5]/DFF12  
0: RSTB from Matrix Output, 1: SETB from Matrix Output  
[4]:LUT3_10 [4]/DFF12 Initial Polarity Select  
0: Low, 1: High  
[3:0]:LUT3_10 [3:0]  
REG_CNT2_D[7:0]  
Data[7:0]  
Datasheet  
14-Apr-2021  
Revision 3.0  
133 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
880  
881  
882  
883  
884  
885  
886  
887  
[7]:LUT3_11 [7]/DFF13 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_11 [6]/DFF13 Output Select  
0: Q output, 1: QB output  
69  
Multi3_LUT3_11_DFF13 setting  
[5]:LUT3_11 [5]/DFF13  
0: RSTB from Matrix Output, 1: SETB from Matrix Output  
[4]:LUT3_11 [4]/DFF13 Initial Polarity Select  
0: Low, 1: High  
[3:0]:LUT3_11 [3:0]  
6A  
6B  
6C  
6D  
6E  
REG_CNT3_D[7:0]  
Data [7:0]  
[7]:LUT3_12 [7]/DFF14 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_12 [6]/DFF14 Output Select  
0: Q output, 1: QB output  
Multi4_LUT3_12_DFF14 setting  
[5]:LUT3_12 [5]/DFF14  
0: RSTB from Matrix Output, 1: SETB from Matrix Output  
[4]:LUT3_12 [4]/DFF14 Initial Polarity Select  
0: Low, 1: High  
[3:0]:LUT3_12 [3:0]  
REG_CNT4_D[7:0]  
Data [7:0]  
[7]:LUT3_13 [7]/DFF15 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_13 [6]/DFF15 Output Select  
0: Q output, 1: QB output  
Multi5_LUT3_13_DFF15 setting  
[5]:LUT3_13 [5]/DFF15  
0: RSTB from Matrix Output, 1: SETB from Matrix Output  
[4]:LUT3_13 [4]/DFF15 Initial Polarity Select  
0: Low, 1: High  
[3:0]:LUT3_13 [3:0]  
REG_CNT5_D[7:0]  
Data[7:0]  
Datasheet  
14-Apr-2021  
Revision 3.0  
134 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
888  
889  
890  
891  
892  
893  
894  
[7]:LUT3_0 [7]/DFF2 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_0 [6]/DFF2 Output Select  
0: Q output, 1: QB output  
[5]:LUT3_0 [5]/DFF2 Initial Polarity Select  
0: Low, 1: High  
6F  
LUT3_0_DFF2 setting  
[4]:LUT3_0 [4]/DFF2 stage selection  
0: Q of first DFF; 1: Q of second DFF  
[3]:LUT3_0 [3]/DFF2  
0: RSTB from Matrix Output, 1: SETB from Matrix Output  
[2]:LUT3_0 [2]/DFF2 Active level selection for RST/SET  
0: Active low level reset/set, 1: Active high level reset/set  
[1:0]: LUT3_0 [1:0]  
895  
896  
897  
898  
899  
900  
901  
902  
[7]:LUT3_1 [7]/DFF3 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_1 [6]/DFF3 Output Select  
0: Q output, 1: QB output  
[5]:LUT3_1 [5]/DFF3 Initial Polarity Select  
0: Low, 1: High  
70  
71  
72  
LUT3_1_DFF3 setting  
LUT3_2_DFF4 setting  
LUT3_3_DFF5 setting  
[4]:LUT3_1 [4]/DFF3  
0: RSTB from Matrix Output, 1: SETB from Matrix Output  
[3]:LUT3_1 [3]/DFF3 Active level selection for RST/SET  
0: Active low level reset/set, 1: Active high level reset/set  
[2:0]: LUT3_1 [2:0]  
903  
904  
905  
906  
907  
908  
909  
910  
[7]:LUT3_2 [7]/DFF4 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_2 [6]/DFF4 Output Select  
0: Q output, 1: QB output  
[5]:LUT3_2 [5]/DFF4 Initial Polarity Select  
0: Low, 1: High  
[4]:LUT3_2 [4]/DFF4  
0: RSTB from Matrix Output, 1: SETB from Matrix Output  
[3]:LUT3_2 [3]/DFF4 Active level selection for RST/SET  
0: Active low level reset/set, 1: Active high level reset/set  
[2:0]: LUT3_2 [2:0]  
[7]:LUT3_3 [7]/DFF5 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_3 [6]/DFF5 Output Select  
0: Q output, 1: QB output  
[5]:LUT3_3 [5]/DFF5 Initial Polarity Select  
0: Low, 1: High  
[4]:LUT3_3 [4]/DFF5  
0: RSTB from Matrix Output, 1: SETB from Matrix Output  
[3]:LUT3_3 [3]/DFF5 Active level selection for RST/SET  
0: Active low level reset/set, 1: Active high level reset/set  
[2:0]: LUT3_3 [2:0]  
0: LUT3_0,  
1: DFF2  
0: LUT3_1,  
1: DFF3  
0: LUT3_2,  
1: DFF4  
0: LUT3_3,  
1: DFF5  
911  
912  
913  
914  
915  
916  
917  
918  
919  
920  
LUT3_0 or DFF2 Select  
LUT3_1 or DFF3 Select  
LUT3_2 or DFF4 Select  
LUT3_3 or DFF5 Select  
921  
922  
923  
73  
924  
925  
926  
Reserved  
Reserved  
Reserved  
0: LUT4_0,  
1: DFF16  
927  
LUT4_0 or DFF16 Select  
Datasheet  
14-Apr-2021  
Revision 3.0  
135 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
[15]:LUT4_0 [15]/DFF16 or LATCH Select  
0: DFF function, 1: LATCH function  
[14]:LUT4_0 [14]/DFF16 Output Select  
0: Q output, 1: QB output  
74  
[13]:LUT4_0 [13]/DFF16 Initial Polarity Select  
0: Low, 1: High  
LUT4_0_DFF16 setting  
[12]:LUT4_0 [12]/DFF16 stage selection  
0: Q of first DFF; 1 Q of second DFF  
[11]:LUT4_0 [11]/DFF16  
0: RSTB from Matrix Output, 1: SETB from Matrix Output  
[10]:LUT4_0 [10]/DFF16 Active level selection for RST/SET  
0: Active low level reset/set, 1: Active high level reset/set  
[9:0]: LUT4_0 [9:0]  
75  
Reserved  
Reserved  
Reserved  
Reserved  
0: LUT3_4  
948  
949  
950  
951  
LUT3_4 or DFF6/LATCH6/SR0 selection  
LUT3_5 or DFF7/LATCH7/SR1 selection  
LUT3_6 or DFF8/LATCH8/SR2 selection  
LUT3_7 or DFF9/LATCH9/SR3 selection  
1: DFF6/LATCH6/SR0  
76  
0: LUT3_5  
1: DFF7/LATCH7/SR1  
0: LUT3_6  
1: DFF8/LATCH8/SR2  
0: LUT3_7  
1: DFF9/LATCH9/SR3  
952  
953  
954  
955  
956  
957  
958  
[7]:DFF or LATCH Select  
0: DFF function,  
1: LATCH function  
[6]:DFF/LATCH/SR/Output polarity select  
0: non-inverted output,  
1: inverted output  
[5] Reserved  
[4]:DFF/LATCH/SR RSTB or SETB selection  
0: RSTB from Matrix Output,  
1: SETB from Matrix Output  
[3]:DFF/LATCH/SR Active level selection for RST/SET  
0: Active low level reset/set,  
1: Active high level reset/set  
[2:0] SR Output Select  
77  
DFF6/SR0 setting  
000: DFF/1st SR output,  
001: 2nd SR output  
959  
010: 3rd SR output,  
011: 4th SR output  
100: 5th SR output,  
101: 6th SR output  
110: 7th SR output,  
111: 8th SR output  
Datasheet  
14-Apr-2021  
Revision 3.0  
136 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971  
972  
973  
974  
[7:1]:LUT [7:1] or SR initial value[7:1]  
[0]:LUT [0] or SR initial value [0]  
(= DFF/LATCH Initial polarity select)  
0: Low, 1: High  
78  
LUT3_4/DFF6/SR0 setting  
[7]:DFF or LATCH Select  
0: DFF function,  
1: LATCH function  
[6]:DFF/LATCH/SR/Output polarity select  
0: non-inverted output,  
1: inverted output  
[5] Reserved  
[4]:DFF/LATCH/SR RSTB or SETB selection  
0: RSTB from Matrix Output,  
1: SETB from Matrix Output  
[3]:DFF/LATCH/SR Active level selection for RST/SET  
0: Active low level reset/set,  
1: Active high level reset/set  
[2:0] SR Output Select  
79  
DFF7/SR1 setting  
000: DFF/1st SR output,  
001: 2nd SR output  
975  
010: 3rd SR output,  
011: 4th SR output  
100: 5th SR output,  
101: 6th SR output  
110: 7th SR output,  
111: 8th SR output  
976  
977  
978  
979  
980  
981  
982  
983  
[7:1]:LUT [7:1] or SR initial value[7:1]  
[0]:LUT [0] or SR initial value [0]  
(= DFF/LATCH Initial polarity select)  
0: Low, 1: High  
7A  
LUT3_5/DFF7/SR1 setting  
Datasheet  
14-Apr-2021  
Revision 3.0  
137 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
984  
985  
986  
987  
988  
989  
990  
[7]: DFF or LATCH Select  
0: DFF function,  
1: LATCH function  
[6]:DFF/LATCH/SR/Output polarity select  
0: non-inverted output,  
1: inverted output  
[5] Reserved  
[4]:DFF/LATCH/SR RSTB or SETB selection  
0: RSTB from Matrix Output,  
1: SETB from Matrix Output  
[3]:DFF/LATCH/SR Active level selection for RST/SET  
0: Active low level reset/set,  
1: Active high level reset/set  
[2:0] SR Output Select  
7B  
DFF8/SR2 setting  
000: DFF/1st SR output,  
001: 2nd SR output  
991  
010: 3rd SR output,  
011: 4th SR output  
100: 5th SR output,  
101: 6th SR output  
110: 7th SR output,  
111: 8th SR output  
992  
993  
994  
995  
996  
997  
[7:1]:LUT [7:1] or SR initial value[7:1]  
[0]:LUT [0] or SR initial value [0]  
(= DFF/LATCH Initial polarity select)  
0: Low, 1: High  
7C  
LUT3_6/DFF8/SR2 setting  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
[7]:DFF or LATCH Select  
0: DFF function,  
1: LATCH function  
[6]:DFF/LATCH/SR/Output polarity select  
0: non-inverted output,  
1: inverted output  
[5] Reserved  
[4]:DFF/LATCH/SR RSTB or SETB selection  
0: RSTB from Matrix Output,  
1: SETB from Matrix Output  
[3]:DFF/LATCH/SR Active level selection for RST/SET  
0: Active low level reset/set,  
1: Active high level reset/set  
[2:0] SR Output Select  
7D  
DFF9/SR3 setting  
000: DFF/1st SR output,  
001: 2nd SR output  
1007  
010: 3rd SR output,  
011: 4th SR output  
100: 5th SR output,  
101: 6th SR output  
110: 7th SR output,  
111: 8th SR output  
Datasheet  
14-Apr-2021  
Revision 3.0  
138 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1008  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
[7:1]:LUT [7:1] or SR initial value[7:1]  
[0]:LUT [0] or SR initial value [0]  
(= DFF/LATCH Initial polarity select)  
0: Low, 1: High  
7E  
LUT3_7/DFF9/SR3 setting  
[3]:LUT2_0 [3]/DFF0 or LATCH Select  
0: DFF function, 1: LATCH function  
[2]:LUT2_0 [2]/DFF0 Output Select  
0: Q output, 1: QB output  
[1]:LUT2_0 [1]/DFF0 Initial Polarity Select  
0: Low, 1: High  
[0]:LUT2_0 [0]  
[3]:LUT2_1 [3]/DFF1 or LATCH Select  
0: DFF function, 1: LATCH function  
[2]:LUT2_1 [2]/DFF1 Output Select  
0: Q output, 1: QB output  
[1]:LUT2_1 [1]/DFF1 Initial Polarity Select  
0: Low, 1: High  
[0]:LUT2_1 [0]  
LUT2_0/DFF0 setting  
LUT2_1/DFF1 setting  
1019  
7F  
1020  
1021  
1022  
1023  
0: LUT2_0,  
1: DFF0  
0: LUT2_1,  
1: DFF1  
0: LUT2_3,  
1: PGen  
1024  
1025  
1026  
1027  
LUT2_0 or DFF0 Select  
LUT2_1 or DFF1 Select  
LUT2_2 or PGen Select  
80  
Active level selection for RST/SET for LUT2_2 0: Active low level reset/set,  
or PGen  
1: Active high level reset/set  
1028  
1029  
LUT2_2[3:0] or PGen BIT  
NUMBER[3:0]  
LUT2_2_VAL or PGEN_BIT_NUMBER  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
81  
PGen data  
PGen Data [15:0]  
82  
Datasheet  
14-Apr-2021  
Revision 3.0  
139 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0, filter,  
1048  
Filter or Edge Detector Selection  
Output Polarity Select  
1, edge det  
0: output non-invert,  
1: output invert  
00: Rising Edges Det  
01: Falling Edge Det  
10: Both Edge Det  
11: Both Edge DLY  
1049  
1050  
Select the edge mode  
1051  
1052  
1053  
1054  
1055  
83  
00: 125 ns,  
Delay Value Select for Programmable Delay & 01: 250 ns,  
Edge Detector  
10: 375 ns,  
11: 500 ns  
00: Rising Edge Detector,  
Select the Edge Mode of Programmable Delay 01: Falling Edge Detector,  
& Edge Detector  
10: Both Edge Detector,  
11: Both Edge Delay  
1056  
1057  
1058  
1059  
1060  
1061  
1062  
1063  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
84  
Reserved  
Reserved  
Matrix Virtual Data  
0: matrix in 24 select Pat Gen 0  
1064  
1065  
1066  
1067  
1068  
1069  
Pat Gen 0/I2C_virtual input [0] select  
1: matrix in 24 select I2C_virtual Input [0]  
Pat Gen 1/I2C_virtual input [1] digital  
input select  
Pat Gen 2/I2C_virtual input [2] digital  
input select  
Pat Gen 3/I2C_virtual input [3] digital  
input select  
Pat Gen 4/I2C_virtual input [4] digital  
input select  
0: matrix in 25 select Pat Gen 1  
1: matrix in 25 select I2C_virtual Input [1]  
0: matrix in 26 select Pat Gen 2  
1: matrix in 26 select I2C_virtual Input [2]  
0: matrix in 27 select Pat Gen 3  
1: matrix in 27 select I2C_virtual Input [3]  
0: matrix in 28 select Pat Gen 4  
85  
1: matrix in 28 select I2C_virtual Input [4]  
Pat Gen 5/I2C_virtual input [5] digital  
input select  
0: matrix in 28 select Pat Gen 5  
1: matrix in 29 select I2C_virtual Input [5]  
0: matrix in 30 select Pat Gen 6  
1: matrix in 30 select I2C_virtual Input [6] or GPIO0  
(at non-i2c mode)  
0: matrix in 31 select Pat Gen 7  
1: matrix in 31 select I2C_virtual Input [7] or GPIO1  
(at non-i2c mode)  
Pat Gen 6/I2C_virtual input [6] digital  
input select  
1070  
1071  
Pat Gen 7/I2C_virtual input [7] digital input se-  
lect  
Datasheet  
14-Apr-2021  
Revision 3.0  
140 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0: matrix in 32 select GPIO2 digital input (GPIO2)  
1: matrix in 32 select I2C_virtual Input [8]  
0: matrix in 33 select GPIO3 digital input (GPIO3)  
1: matrix in 33 select I2C_virtual Input [9]  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
GPIO2/I2C_virtual input [8] select  
GPIO3 /I2C_virtual input [9] digital input select  
GPIO4/I2C_virtual input [10] digital input select  
GPIO5/I2C_virtual input [11] digital input select  
GPIO6/I2C_virtual input [12] digital input select  
GPIO7/I2C_virtual input [13] digital input select  
GPIO8/I2C_virtual input [14] digital input select  
0: matrix in 34 select GPIO4 digital input (GPIO4)  
1: matrix in 34 select I2C_virtual Input [10]  
0: matrix in 35 select GPIO5 digital input (GPIO5)  
1: matrix in 35 select I2C_virtual Input [11]  
0: matrix in 36 select GPIO6 digital input (GPIO6)  
1: matrix in 36 select I2C_virtual Input [12]  
0: matrix in 37 select GPIO7 digital input (GPIO7)  
1: matrix in 37 select I2C_virtual Input [13]  
86  
0: matrix in 38 select GPIO8 digital input (GPIO8)  
1: matrix in 38 select I2C_virtual Input [14]  
1079  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1110  
1111  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
87  
88  
89  
8A  
Datasheet  
14-Apr-2021  
Revision 3.0  
141 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
I2C reset bit with reloading NVM into Data reg- 0: Keep existing condition,  
1112  
1113  
ister (soft reset)  
1: Reset execution  
0: Disable,  
1: Enable  
IO Latching Enable During I2C Write Interface  
1114  
1115  
1116  
1117  
1118  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1130  
1131  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
8B  
1: mask,  
0: overwrite  
8C  
I2C write mask bits  
Reserved  
Reserved  
Reserved  
Reserved  
8D  
0: partial OTP read (A0 to FB)  
1: all OTP read (00 to FF)  
1132  
Testmode EPG  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1150  
1151  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
8E  
8F  
Datasheet  
14-Apr-2021  
Revision 3.0  
142 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
90  
91  
92  
I2C slave address  
0: from register [1176],  
1: from GPI  
0: from register [1177],  
1: from GPIO3  
0: from register [1178],  
1: from GPIO4  
0: from register [1179],  
1: from GPIO7  
1180  
1181  
1182  
1183  
Slave address selection bit0  
Slave address selection bit1  
Slave address selection bit2  
Slave address selection bit3  
93  
0: I2C operation enable; matrix in 26(27) select  
I2C_virtual_0(1) Input  
1184  
I2C operation disable bit  
1: I2C operation disable; matrix in 26(27) select  
GPIO3(4) digital input  
1185  
1186  
1187  
1188  
1189  
1190  
1191  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
94  
Datasheet  
14-Apr-2021  
Revision 3.0  
143 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
95  
96  
97  
98  
99  
9A  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Datasheet  
14-Apr-2021  
Revision 3.0  
144 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
9B  
9C  
9D  
9E  
9F  
A0  
EPG Data Byte 0  
Datasheet  
14-Apr-2021  
Revision 3.0  
145 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1288  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1298  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
A1  
EPG Data Byte 1  
A2  
A3  
A4  
A5  
A6  
EPG Data Byte 2  
EPG Data Byte 3  
EPG Data Byte 4  
EPG Data Byte 5  
EPG Data Byte 6  
Datasheet  
14-Apr-2021  
Revision 3.0  
146 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1336  
1337  
1338  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1380  
1381  
1382  
1383  
A7  
EPG Data Byte 7  
A8  
A9  
AA  
AB  
AC  
EPG Data Byte 8  
EPG Data Byte 9  
EPG Data Byte 10  
EPG Data Byte 11  
EPG Data Byte 12  
Datasheet  
14-Apr-2021  
Revision 3.0  
147 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1384  
1385  
1386  
1387  
1388  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1398  
1399  
1400  
1401  
1402  
1403  
1404  
1405  
1406  
1407  
1408  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1430  
1431  
AD  
EPG Data Byte 13  
AE  
AF  
B0  
B1  
B2  
EPG Data Byte 14  
EPG Data Byte 15  
EPG Data Byte 16  
EPG Data Byte 17  
EPG Data Byte 18  
Datasheet  
14-Apr-2021  
Revision 3.0  
148 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457  
1458  
1459  
1460  
1461  
1462  
1463  
1464  
1465  
1466  
1467  
1468  
1469  
1470  
1471  
1472  
1473  
1474  
1475  
1476  
1477  
1478  
1479  
B3  
EPG Data Byte 19  
B4  
B5  
B6  
B7  
B8  
EPG Data Byte 20  
EPG Data Byte 21  
EPG Data Byte 22  
EPG Data Byte 23  
EPG Data Byte 24  
Datasheet  
14-Apr-2021  
Revision 3.0  
149 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1480  
1481  
1482  
1483  
1484  
1485  
1486  
1487  
1488  
1489  
1490  
1491  
1492  
1493  
1494  
1495  
1496  
1497  
1498  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1510  
1511  
1512  
1513  
1514  
1515  
1516  
1517  
1518  
1519  
1520  
1521  
1522  
1523  
1524  
1525  
1526  
1527  
B9  
EPG Data Byte 25  
BA  
BB  
BC  
BD  
BE  
EPG Data Byte 26  
EPG Data Byte 27  
EPG Data Byte 28  
EPG Data Byte 29  
EPG Data Byte 30  
Datasheet  
14-Apr-2021  
Revision 3.0  
150 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1528  
1529  
1530  
1531  
1532  
1533  
1534  
1535  
1536  
1537  
1538  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547  
1548  
1549  
1550  
1551  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1560  
1561  
1562  
1563  
1564  
1565  
1566  
1567  
1568  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
BF  
EPG Data Byte 31  
C0  
C1  
C2  
C3  
C4  
EPG Data Byte 32  
EPG Data Byte 33  
EPG Data Byte 34  
EPG Data Byte 35  
EPG Data Byte 36  
Datasheet  
14-Apr-2021  
Revision 3.0  
151 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1576  
1577  
1578  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619  
1620  
1621  
1622  
1623  
C5  
EPG Data Byte 37  
C6  
C7  
C8  
C9  
CA  
EPG Data Byte 38  
EPG Data Byte 39  
EPG Data Byte 40  
EPG Data Byte 41  
EPG Data Byte 42  
Datasheet  
14-Apr-2021  
Revision 3.0  
152 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1624  
1625  
1626  
1627  
1628  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1660  
1661  
1662  
1663  
1664  
1665  
1666  
1667  
1668  
1669  
1670  
1671  
CB  
EPG Data Byte 43  
CC  
CD  
CE  
CF  
D0  
EPG Data Byte 44  
EPG Data Byte 45  
EPG Data Byte 46  
EPG Data Byte 47  
EPG Data Byte 48  
Datasheet  
14-Apr-2021  
Revision 3.0  
153 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1672  
1673  
1674  
1675  
1676  
1677  
1678  
1679  
1680  
1681  
1682  
1683  
1684  
1685  
1686  
1687  
1688  
1689  
1690  
1691  
1692  
1693  
1694  
1695  
1696  
1697  
1698  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
D1  
EPG Data Byte 49  
D2  
D3  
D4  
D5  
D6  
EPG Data Byte 50  
EPG Data Byte 51  
EPG Data Byte 52  
EPG Data Byte 53  
EPG Data Byte 54  
Datasheet  
14-Apr-2021  
Revision 3.0  
154 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727  
1728  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
D7  
EPG Data Byte 55  
D8  
D9  
DA  
DB  
DC  
EPG Data Byte 56  
EPG Data Byte 57  
EPG Data Byte 58  
EPG Data Byte 59  
EPG Data Byte 60  
Datasheet  
14-Apr-2021  
Revision 3.0  
155 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1768  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1780  
1781  
1782  
1783  
1784  
1785  
1786  
1787  
1788  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1796  
1797  
1798  
1799  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
1808  
1809  
1810  
1811  
1812  
1813  
1814  
1815  
DD  
EPG Data Byte 61  
DE  
DF  
E0  
E1  
E2  
EPG Data Byte 62  
EPG Data Byte 63  
EPG Data Byte 64  
EPG Data Byte 65  
EPG Data Byte 66  
Datasheet  
14-Apr-2021  
Revision 3.0  
156 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1816  
1817  
1818  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829  
1830  
1831  
1832  
1833  
1834  
1835  
1836  
1837  
1838  
1839  
1840  
1841  
1842  
1843  
1844  
1845  
1846  
1847  
1848  
1849  
1850  
1851  
1852  
1853  
1854  
1855  
1856  
1857  
1858  
1859  
1860  
1861  
1862  
1863  
E3  
EPG Data Byte 67  
E4  
E5  
E6  
E7  
E8  
EPG Data Byte 68  
EPG Data Byte 69  
EPG Data Byte 70  
EPG Data Byte 71  
EPG Data Byte 72  
Datasheet  
14-Apr-2021  
Revision 3.0  
157 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1864  
1865  
1866  
1867  
1868  
1869  
1870  
1871  
1872  
1873  
1874  
1875  
1876  
1877  
1878  
1879  
1880  
1881  
1882  
1883  
1884  
1885  
1886  
1887  
1888  
1889  
1890  
1891  
1892  
1893  
1894  
1895  
1896  
1897  
1898  
1899  
1900  
1901  
1902  
1903  
1904  
1905  
1906  
1907  
1908  
1909  
1910  
1911  
E9  
EPG Data Byte 73  
EA  
EB  
EC  
ED  
EE  
EPG Data Byte 74  
EPG Data Byte 75  
EPG Data Byte 76  
EPG Data Byte 77  
EPG Data Byte 78  
Datasheet  
14-Apr-2021  
Revision 3.0  
158 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1912  
1913  
1914  
1915  
1916  
1917  
1918  
1919  
1920  
1921  
1922  
1923  
1924  
1925  
1926  
1927  
1928  
1929  
1930  
1931  
1932  
1933  
1934  
1935  
1936  
1937  
1938  
1939  
1940  
1941  
1942  
1943  
1944  
1945  
1946  
1947  
1948  
1949  
1950  
1951  
1952  
1953  
EF  
EPG Data Byte 79  
F0  
F1  
F2  
F3  
EPG Data Byte 80  
EPG Data Byte 81  
EPG Data Byte 82  
EPG Data Byte 83  
1954  
1955  
1956  
1957  
1958  
1959  
F4  
EPG Data Byte 84  
Datasheet  
14-Apr-2021  
Revision 3.0  
159 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1960  
1961  
1962  
1963  
1964  
1965  
1966  
1967  
1968  
1969  
1970  
1971  
1972  
1973  
1974  
1975  
1976  
1977  
1978  
1979  
1980  
1981  
1982  
1983  
1984  
1985  
1986  
1987  
1988  
1989  
1990  
1991  
1992  
1993  
1994  
1995  
1996  
1997  
1998  
1999  
2000  
2001  
2002  
2003  
2004  
2005  
2006  
2007  
F5  
EPG Data Byte 85  
F6  
F7  
F8  
F9  
FA  
EPG Data Byte 86  
EPG Data Byte 87  
EPG Data Byte 88  
EPG Data Byte 89  
EPG Data Byte 90  
Datasheet  
14-Apr-2021  
Revision 3.0  
160 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Table 42: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
2008  
2009  
2010  
2011  
2012  
2013  
2014  
2015  
2016  
2017  
2018  
2019  
2020  
2021  
2022  
2023  
2024  
2025  
2026  
2027  
2028  
2029  
2030  
2031  
2032  
2033  
2034  
2035  
2036  
2037  
2038  
2039  
2040  
2041  
2042  
2043  
2044  
2045  
2046  
2047  
FB  
EPG Data Byte 91  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
FC  
FD  
FE  
FF  
NVM CRC Remainder  
NVM CRC Remainder  
NVM CRC Remainder  
Datasheet  
14-Apr-2021  
Revision 3.0  
161 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
19 Package Top Marking Definitions  
19.1 STQFN 12L 1.6 MM X 1.6 MM 0.4P FC, BEFORE FEBRUARY 1, 2021  
Part Code + Assembly  
PPA  
WWR  
Date Code + Revision C  
Serial Number Code  
Pin 1 Identifier  
NN  
19.2 STQFN 12L 1.6 MM X 1.6 MM 0.4P FC, AFTER FEBRUARY 1, 2021  
Part Code  
PPP  
WWR  
Date Code + Revision C  
Serial Number Code  
Pin 1 Identifier  
NN  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
162 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
20 Package Information  
20.1 PACKAGE OUTLINES FOR STQFN 12L 1.6 MM X 1.6 MM X 0.55 MM 0.4P FC PACKAGE  
JEDEC MO-220  
Bottom View  
Top View  
Side View  
Controlling dimensions: mm  
Notes:  
1. All dimensions are in millimeters.  
2. Dimension “b” applies to metalized terminal and is  
measured between 0.15 mm and 0.30 mm from the  
terminal tip. If the terminal has the optional radius on the  
other end of the terminal, the dimension “b” should not  
be measured in that radius area.  
3. Bilateral coplanarity zone applies to the exposed heat  
sink slug as well as the terminals.  
“A1” max lead coplanarity 0.05 mm  
Standard tolerance: ±0.05  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
163 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
20.2 MOISTURE SENSITIVITY LEVEL  
The Moisture Sensitivity Level (MSL) is an indicator for the maximum allowable time period (floor lifetime) in which a moisture  
sensitive plastic device, once removed from the dry bag, can be exposed to an environment with a specified maximum  
temperature and a maximum relative humidity before the solder reflow process. The MSL classification is defined in Table 43.  
For detailed information on MSL levels refer to the IPC/JEDEC standard J-STD-020, which can be downloaded from:  
http://www.jedec.org.  
The <PACKAGE_NAME> package is qualified for MSL <n>.  
Table 43: MSL Classification  
MSL Level  
Floor Lifetime  
72 hours  
168 hours  
4 weeks  
Conditions  
MSL 4  
MSL 3  
MSL 2A  
MSL 2  
MSL 1  
30 °C / 60 % RH  
30 °C / 60 % RH  
30 °C / 60 % RH  
30 °C / 60 % RH  
30 °C / 85 % RH  
1 year  
Unlimited  
20.3 SOLDERING INFORMATION  
Refer to the IPC/JEDEC standard J-STD-020 for relevant soldering information. This document can be downloaded from http://  
www.jedec.org.  
21 Ordering Information  
Part Number  
SLG46811V  
Type  
12-pin STQFN  
SLG46811VTR  
12-pin STQFN - Tape and Reel (3k units)  
21.1 TAPE AND REEL SPECIFICATIONS  
Max Units  
Leader (min)  
Length  
Trailer (min)  
Nominal  
# of  
Pins  
Reel &  
Hub Size  
(mm)  
Tape Part  
Width Pitch  
(mm) (mm)  
Package Type  
Package Size  
(mm)  
Length  
(mm)  
per Reel per Box  
Pockets  
Pockets  
(mm)  
STQFN 12L  
1.6 mm x 1.6mm x  
0.55 mm  
12  
1.6x1.6x0.55  
3000  
3000  
178/60  
100  
400  
100  
400  
8
4
0.4P FC Green  
21.2 CARRIER TAPE DRAWING AND DIMENSIONS  
Index Hole Index Hole  
PocketBTMPocketBTM Pocket Index Hole Pocket Index Hole  
to Tape  
Edge  
to Pocket Tape Width  
Center  
(mm)  
Length  
(mm)  
Width  
(mm)  
Depth  
(mm)  
Pitch  
(mm)  
Pitch Diameter  
(mm)  
Package Type  
(mm)  
(mm)  
(mm)  
A0  
B0  
K0  
P0  
P1  
D0  
E
F
W
STQFN 12L  
1.6 mm x 1.6mm x  
0.55 mm  
1.9  
2.3  
0.76  
4
4
1.5  
1.75  
3.5  
8
0.4P FC Green  
Datasheet  
14-Apr-2021  
Revision 3.0  
164 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
Maximum Units  
Index hole to  
Index hole to  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
165 of 171  
CFR0011-120-00  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
22 Layout Guidelines  
22.1 STQFN 12L 1.6 MM X 1.6 MM X 0.55 MM 0.4P FC PACKAGE  
Datasheet  
14-Apr-2021  
Revision 3.0  
166 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Glossary  
A
ACK  
Acknowledge bit  
ACMP  
Analog Comparator  
B
BG  
Bandgap  
C
CLK  
CMO  
Clock  
Connection matrix output  
D
DFF  
DLY  
D Flip-Flop  
Delay  
E
EPG  
ESD  
EV  
Extended Pattern Generator  
Electrostatic discharge  
End Value  
F
FSM  
Finite State Machine  
G
GPI  
GPIO  
GPO  
General Purpose Input  
General Purpose Input/Output  
General Purpose Output  
I
IN  
IO  
Input  
Input/Output  
L
LPF  
LSB  
LUT  
LV  
Low Pass Filter  
Least Significant Bit  
Look Up Table  
Low Voltage  
Datasheet  
14-Apr-2021  
Revision 3.0  
167 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
M
MS ACMP  
MSB  
Multichannel Sampling Analog Comparator  
Most Significant Bit  
MUX  
Multiplexer  
N
NPR  
nRST  
NVM  
Non-Volatile Memory Read/Write/Erase Protection  
Reset  
Non-Volatile Memory  
O
OD  
Open-Drain  
OE  
Output Enable  
Oscillator  
OSC  
OTP  
OUT  
One Time Programmable  
Output  
P
PD  
Power-down  
PGen  
POR  
PP  
Pattern Generator  
Power-On Reset  
Push-Pull  
PWR  
P DLY  
Power  
Programmable Delay  
R
R/W  
Read/Write  
S
SCL  
SDA  
SLA  
SMT  
SV  
I2C Clock Input  
I2C Data Input/Output  
Slave Address  
With Schmitt Trigger  
nSET Value  
T
TS  
Temperature Sensor  
Datasheet  
14-Apr-2021  
Revision 3.0  
168 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
V
Vref  
Voltage Reference  
W
WOSMT  
Without Schmitt Trigger  
Datasheet  
14-Apr-2021  
Revision 3.0  
169 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Revision History  
Revision  
Date  
Description  
3.0  
14-Apr-2021  
Final version  
Datasheet  
14-Apr-2021  
Revision 3.0  
170 of 171  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46811  
GreenPAK Programmable Mixed-Signal Matrix  
Status Definitions  
Revision Datasheet Status  
Product Status  
Definition  
1.<n>  
Target  
Development  
This datasheet contains the design specifications for product development.  
Specifications may change in any manner without notice.  
2.<n>  
Preliminary  
Qualification  
Production  
This datasheet contains the specifications and preliminary characterization  
data for products in pre-production. Specifications may be changed at any  
time without notice in order to improve the design.  
3.<n>  
4.<n>  
Final  
This datasheet contains the final specifications for products in volume  
production. The specifications may be changed at any time in order to  
improve the design, manufacturing and supply. Major specification  
changes are communicated via Customer Product Notifications. Datasheet  
changes are communicated via www.dialog-semiconductor.com.  
Obsolete  
Archived  
This datasheet contains the specifications for discontinued products. The  
information is provided for reference only.  
Disclaimer  
Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or warranted  
to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product (or  
associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers  
accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion  
and/or use is at the customer's own risk.  
Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or implied, as  
to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any  
information source outside of Dialog Semiconductor.  
Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the design of  
the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device, Dialog Semiconductor  
reserves the right to change the information published in this document, including, without limitation, the specification and the design of the related semiconductor products,  
software and applications, in accordance with its standard automotive change notification process.  
Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty  
that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing,  
such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.  
Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such  
license must be separately sought by customer with Dialog Semiconductor.  
All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions  
of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.  
Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are  
the property of their respective owners.  
© 2021 Dialog Semiconductor. All rights reserved.  
RoHS Compliance  
Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction  
of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Hong Kong  
Dialog Semiconductor Hong Kong  
Phone: +852 2607 4271  
China (Shenzhen)  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Korea  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5769 5100  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
The Netherlands  
Taiwan  
184  
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
Datasheet  
14-Apr-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
171 of 171  
CFR0011-120-00  

相关型号:

SLG46811VTR

GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46827-A

Auto Grade GreenPAK Programmable Mixed-Signal Matrix with In-System Debug
DIALOG

SLG46827-AG

Auto Grade GreenPAK Programmable Mixed-Signal Matrix with In-System Debug
DIALOG

SLG46827-AGTR

Auto Grade GreenPAK Programmable Mixed-Signal Matrix with In-System Debug
DIALOG

SLG46855

GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46855-A

Auto Grade GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46855-AP

Auto Grade GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46855-APTR

Auto Grade GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46855V

GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46855VTR

GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46857-A

Automotive GreenPAK™ Programmable Mixed-signal Matrix
RENESAS

SLG46857-A

Auto Grade GreenPAK Programmable Mixed-Signal Matrix
DIALOG