SLG46827-AG [DIALOG]

Auto Grade GreenPAK Programmable Mixed-Signal Matrix with In-System Debug;
SLG46827-AG
型号: SLG46827-AG
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

Auto Grade GreenPAK Programmable Mixed-Signal Matrix with In-System Debug

文件: 总180页 (文件大小:2601K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
General Description  
The SLG46827-A provides a small, low power component for commonly used Mixed-Signal functions. The user creates the  
circuit design by programming the multiple time Non-Volatile Memory (NVM) to configure the interconnect logic, the IOs, and  
the macrocells of the SLG46827-A. Dual power supply allows to flexibly interface two independent voltage domains.This  
highly versatile device allows a wide variety of Mixed-Signal functions to be designed within a very small, low power single  
integrated circuit.  
In-System Debug  
Multiple Time Programmable Memory in Development  
Wide Range Power Supply  
Key Features  
Two High Speed General Purpose Rail-to-Rail Analog  
Comparators (ACMPxH)  
Two Low Power General Purpose Rail-to-Rail Analog  
Comparators (ACMPxL)  
2.5 V (±8 %) to 5 V (±10 %) VDD  
1.8 V (±5 %) to 5 V (±10 %) VDD2 (VDD2 ≤ VDD)  
Operating Temperature Range: -40 °C to +105 °C  
RoHS Compliant/Halogen-Free  
Packages Available  
Two Voltage References  
Two Vref Outputs  
Eleven Combination Function Macrocells  
20-pin TSSOP: 6.5 mm x 6.4 mm x 1.2 mm, 0.65 mm  
pitch  
Three Selectable DFF/LATCH or 2-bit LUTs  
One Selectable Programmable Pattern Generator or  
2-bit LUT  
AEC-Q100 Grade 2 Qualified  
Six Selectable DFF/LATCH or 3-bit LUTs  
One Selectable Pipe Delay or Ripple Counter, or  
3-bit LUT  
Eight Multi-Function Macrocells  
Seven Selectable DFF/LATCH or 3-bit LUTs + 8-bit  
Delay/Counters  
One Selectable DFF/LATCH or 4-bit LUT + 16-bit  
Delay/Counter  
Serial Communications  
I2C Protocol Interface  
Programmable Delay with Edge Detector Output  
Deglitch Filter or Edge Detector  
Three Oscillators  
2.048 kHz Oscillator  
2.048 MHz Oscillator  
25 MHz Oscillator  
Analog Temperature Sensor  
Power-On Reset  
Applications  
Car Navigation and Telematics  
In-Car Infotainment/Dashboard  
Automotive Display Clusters  
Advanced Driver Assistance Systems (ADAS)  
Datasheet  
24-Feb-2021  
Revision 3.2  
1 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Contents  
General Description.................................................................................................................................................................1  
Key Features.............................................................................................................................................................................1  
Applications .............................................................................................................................................................................1  
1 Block Diagram ......................................................................................................................................................................7  
2 Pinout ....................................................................................................................................................................................8  
2.1 Pin Configuration - TSSOP-20L .............................................................................................................................8  
3 Characteristics ...................................................................................................................................................................12  
3.1 Absolute Maximum Ratings .................................................................................................................................12  
3.2 Electrostatic Discharge Ratings ...........................................................................................................................12  
3.3 Recommended Operating Conditions ..................................................................................................................12  
3.4 Electrical Characteristics ......................................................................................................................................13  
3.5 Timing Characteristics .........................................................................................................................................21  
3.6 OSC Characteristics .............................................................................................................................................26  
3.7 ACMP Specifications ............................................................................................................................................26  
3.8 Analog Temperature Sensor Characteristics .......................................................................................................30  
4 In-System Debug ................................................................................................................................................................32  
5 IO Pins .................................................................................................................................................................................33  
5.1 IO Pins .................................................................................................................................................................33  
5.2 GPIO Pins ............................................................................................................................................................33  
5.3 GPO Pins .............................................................................................................................................................33  
5.4 GPI Pins ...............................................................................................................................................................33  
5.5 Pull-Up/Down Resistors .......................................................................................................................................33  
5.6 Fast Pull-up/down during Power-up .....................................................................................................................33  
5.7 I2C Mode IO Structure (VDD or VDD2) ...............................................................................................................34  
5.8 Matrix OE IO Structure (VDD or VDD2) ...............................................................................................................35  
5.9 Register OE IO Structure (VDD or VDD2) ...........................................................................................................36  
5.10 Register OE IO Structure (VDD or VDD2) .........................................................................................................37  
5.11 IO Typical Performance ....................................................................................................................................38  
6 Connection Matrix ..............................................................................................................................................................40  
6.1 Matrix Input Table ................................................................................................................................................41  
6.2 Matrix Output Table .............................................................................................................................................42  
6.3 Connection Matrix Virtual Inputs ..........................................................................................................................45  
6.4 Connection Matrix Virtual Outputs .......................................................................................................................46  
7 Combination Function Macrocells ....................................................................................................................................47  
7.1 2-Bit LUT or D Flip-Flop Macrocells .....................................................................................................................47  
7.2 2-bit LUT or Programmable Pattern Generator ....................................................................................................50  
7.3 3-Bit LUT or D Flip-Flop with Set/Reset Macrocells .............................................................................................52  
7.4 3-Bit LUT or Pipe Delay/Ripple Counter Macrocell ..............................................................................................59  
8 Multi-Function Macrocells .................................................................................................................................................64  
8.1 3-Bit LUT or DFF/LATCH with 8-Bit Counter/Delay Macrocells ...........................................................................64  
8.2 CNT/DLY/FSM Timing Diagrams .........................................................................................................................73  
8.3 4-Bit LUT or DFF/LATCH with 16-Bit Counter/Delay Macrocell ...........................................................................82  
8.4 Wake and Sleep Controller ..................................................................................................................................85  
9 Analog Comparators ..........................................................................................................................................................89  
9.1 ACMP0H Block Diagram .....................................................................................................................................90  
9.2 ACMP1H Block Diagram .....................................................................................................................................91  
9.3 ACMP2L Block Diagram .....................................................................................................................................92  
9.4 ACMP3L Block Diagram .....................................................................................................................................93  
9.5 ACMP Typical Performance .................................................................................................................................94  
10 Programmable Delay/Edge Detector ..............................................................................................................................98  
10.1 Programmable Delay Timing Diagram - Edge Detector Output .........................................................................98  
11 Additional Logic Function. Deglitch Filter .....................................................................................................................99  
12 Voltage Reference ..........................................................................................................................................................100  
12.1 Voltage Reference Overview ...........................................................................................................................100  
12.2 Vref Selection Table ........................................................................................................................................100  
12.3 Vref Block Diagram .........................................................................................................................................101  
Datasheet  
24-Feb-2021  
Revision 3.2  
2 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
12.4 Vref Load Regulation .......................................................................................................................................102  
13 Clocking ..........................................................................................................................................................................104  
13.1 Oscillator general description ...........................................................................................................................104  
13.2 Oscillator0 (2.048 kHz) .....................................................................................................................................105  
13.3 Oscillator1 (2.048 MHz) ...................................................................................................................................106  
13.4 Oscillator2 (25 MHz) ........................................................................................................................................107  
13.5 CNT/DLY Clock Scheme ..................................................................................................................................108  
13.6 External Clocking .............................................................................................................................................108  
13.7 Oscillators Power-On Delay .............................................................................................................................109  
13.8 Oscillators Accuracy .........................................................................................................................................111  
14 Power-On Reset ..............................................................................................................................................................114  
14.1 General Operation ............................................................................................................................................114  
14.2 POR Sequence ................................................................................................................................................115  
14.3 Macrocells Output States During POR Sequence ...........................................................................................115  
15 I2C Serial Communications Macrocell ..........................................................................................................................118  
15.1 I2C Serial Communications Macrocell Overview ..............................................................................................118  
15.2 I2C Serial Communications Device Addressing ...............................................................................................118  
15.3 I2C Serial General Timing ................................................................................................................................119  
15.4 I2C Serial Communications Commands ...........................................................................................................119  
15.5 Chip Configuration Data Protection ..................................................................................................................122  
15.6 I2C Serial Command Register Map .................................................................................................................123  
15.7 I2C Additional Options ......................................................................................................................................124  
16 Non-Volatile Memory ......................................................................................................................................................127  
16.1 Serial NVM Write Operations ...........................................................................................................................127  
16.2 Serial NVM Read Operations ...........................................................................................................................129  
16.3 Serial NVM Erase Operations ..........................................................................................................................129  
17 Analog Temperature Sensor .........................................................................................................................................130  
18 Register Definitions .......................................................................................................................................................133  
18.1 Register Map ....................................................................................................................................................133  
19 Package Top Marking System Definition .....................................................................................................................172  
19.1 TSSOP-20 .......................................................................................................................................................172  
20 Package Information ......................................................................................................................................................173  
20.1 Package outlines for TSSOP 20L 173 MIL Green Package ............................................................................173  
20.2 TSSOP Handling ..............................................................................................................................................173  
20.3 Soldering Information .......................................................................................................................................174  
21 Ordering Information .....................................................................................................................................................174  
21.1 Tape and Reel Specifications ..........................................................................................................................174  
21.2 Carrier Tape Drawing and Dimensions ............................................................................................................174  
21.3 TSSOP-20L ......................................................................................................................................................174  
22 Layout Guidelines ..........................................................................................................................................................175  
22.1 TSSOP-20 ........................................................................................................................................................175  
Glossary................................................................................................................................................................................176  
Revision History...................................................................................................................................................................179  
Datasheet  
24-Feb-2021  
Revision 3.2  
3 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Figures  
Figure 1: Block Diagram............................................................................................................................................................ 7  
Figure 2: Steps to Create a Custom GreenPAK Device.......................................................................................................... 32  
Figure 3: IO with I2C Mode IO Structure Diagram................................................................................................................... 34  
Figure 4: Matrix OE IO Structure Diagram.............................................................................................................................. 35  
Figure 5: GPIO Register OE IO Structure Diagram................................................................................................................. 36  
Figure 6: GPIO Register OE IO Structure Diagram................................................................................................................. 37  
Figure 7: Typical High Level Output Current vs. High Level Output Voltage .......................................................................... 38  
Figure 8: Typical Low Level Output Current vs. Low Level Output Voltage (for 1x Drive)...................................................... 38  
Figure 9: Typical Low Level Output Current vs. Low Level Output Voltage (for 2x Drive)...................................................... 39  
Figure 10: Connection Matrix.................................................................................................................................................. 40  
Figure 11: Connection Matrix Example................................................................................................................................... 40  
Figure 12: 2-bit LUT0 or DFF0................................................................................................................................................ 47  
Figure 13: 2-bit LUT1 or DFF1................................................................................................................................................ 48  
Figure 14: 2-bit LUT2 or DFF2................................................................................................................................................ 48  
Figure 15: DFF Polarity Operations......................................................................................................................................... 50  
Figure 16: 2-bit LUT3 or PGen................................................................................................................................................ 51  
Figure 17: PGen Timing Diagram............................................................................................................................................ 51  
Figure 18: 3-bit LUT0 or DFF3................................................................................................................................................ 53  
Figure 19: 3-bit LUT1 or DFF4................................................................................................................................................ 53  
Figure 20: 3-bit LUT2 or DFF5................................................................................................................................................ 54  
Figure 21: 3-bit LUT3 or DFF6................................................................................................................................................ 54  
Figure 22: 3-bit LUT4 or DFF7................................................................................................................................................ 55  
Figure 23: 3-bit LUT5 or DFF8................................................................................................................................................ 55  
Figure 24: DFF Polarity Operations with nReset..................................................................................................................... 58  
Figure 25: DFF Polarity Operations with nSet......................................................................................................................... 59  
Figure 26: 3-bit LUT6/Pipe Delay/Ripple Counter................................................................................................................... 61  
Figure 27: Example: Ripple Counter Functionality.................................................................................................................. 62  
Figure 28: Possible Connections Inside Multi-Function Macrocell.......................................................................................... 64  
Figure 29: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT7/DFF10, CNT/DLY1) .................................................. 65  
Figure 30: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT8/DFF11, CNT/DLY2) .................................................. 66  
Figure 31: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT9/DFF12, CNT/DLY3) .................................................. 67  
Figure 32: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT10/DFF13, CNT/DLY4) ................................................ 68  
Figure 33: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT11/DFF14, CNT/DLY5) ................................................ 69  
Figure 34: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT12/DFF15, CNT/DLY6) ................................................ 70  
Figure 35: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT13/DFF16, CNT/DLY7) ................................................ 71  
Figure 36: Delay Mode Timing Diagram, Edge Select: Both, Counter Data: 3 ....................................................................... 73  
Figure 37: Delay Mode Timing Diagram for Different Edge Select Modes.............................................................................. 74  
Figure 38: Counter Mode Timing Diagram without Two DFFs Synced Up ............................................................................. 74  
Figure 39: Counter Mode Timing Diagram with Two DFFs Synced Up .................................................................................. 75  
Figure 40: One-Shot Function Timing Diagram....................................................................................................................... 76  
Figure 41: Frequency Detection Mode Timing Diagram.......................................................................................................... 77  
Figure 42: Edge Detection Mode Timing Diagram.................................................................................................................. 78  
Figure 43: Delayed Edge Detection Mode Timing Diagram.................................................................................................... 79  
Figure 44: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3.... 80  
Figure 45: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3 ........ 80  
Figure 46: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3.... 81  
Figure 47: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3 ........ 81  
Figure 48: Counter Value, Counter Data = 3........................................................................................................................... 82  
Figure 49: 4-bit LUT0 or CNT/DLY0........................................................................................................................................ 83  
Figure 50: Wake and Sleep Controller.................................................................................................................................... 85  
Figure 51: Wake and Sleep Timing Diagram, Normal Wake Mode, Counter Reset is Used .................................................. 86  
Figure 52: Wake and Sleep Timing Diagram, Short Wake Mode, Counter Reset is Used ..................................................... 86  
Figure 53: Wake and Sleep Timing Diagram, Normal Wake Mode, Counter Set is Used ...................................................... 87  
Figure 54: Wake and Sleep Timing Diagram, Short Wake Mode, Counter Set is Used ......................................................... 87  
Figure 55: ACMP0H Block Diagram........................................................................................................................................ 90  
Figure 56: ACMP1H Block Diagram........................................................................................................................................ 91  
Datasheet  
24-Feb-2021  
Revision 3.2  
4 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Figure 57: ACMP2L Block Diagram ........................................................................................................................................ 92  
Figure 58: ACMP3L Block Diagram ........................................................................................................................................ 93  
Figure 59: Typical Propagation Delay vs. Vref for ACMPxH at T = 25 °C, Gain = 1, Buffer - Disabled, Hysteresis = 0 ......... 94  
Figure 60: Typical Propagation Delay vs. Vref for ACMPxL at T = 25 °C, Gain = 1, Buffer - Disabled, Hysteresis = 0.......... 94  
Figure 61: ACMPxH Power-On Delay vs. VDD ....................................................................................................................................................... 95  
Figure 62: ACMPxL Power-On Delay vs. VDD........................................................................................................................................................ 95  
Figure 63: ACMPxH Input Offset Voltage vs. Vref at T = -40 °C to 105 °C, Input Buffer Disabled......................................... 96  
Figure 64: ACMPxH Input Offset Voltage vs. Vref at T = -40 °C to 105 °C, Input Buffer Enabled.......................................... 96  
Figure 65: ACMPxL Input Offset Voltage vs. Vref at T = -40 °C to 105°C .............................................................................. 97  
Figure 66: ACMP Input Current Source vs. Input Voltage at T = -40 °C to 105 °C, VDD = 3.3 V ............................................ 97  
Figure 67: Programmable Delay ............................................................................................................................................. 98  
Figure 68: Edge Detector Output ............................................................................................................................................ 98  
Figure 69: Deglitch Filter or Edge Detector............................................................................................................................. 99  
Figure 70: Voltage Reference Block Diagram....................................................................................................................... 101  
Figure 71: Typical Load Regulation, Vref = 320 mV, T = -40 °C to +105 °C, Buffer - Enable............................................... 102  
Figure 72: Typical Load Regulation, Vref = 640 mV, T = -40 °C to +105 °C, Buffer - Enable............................................... 102  
Figure 73: Typical Load Regulation, Vref = 1280 mV, T = -40 °C to +105 °C, Buffer - Enable............................................. 103  
Figure 74: Typical Load Regulation, Vref = 2016 mV, T = -40 °C to +105 °C, Buffer - Enable............................................. 103  
Figure 75: Oscillator0 Block Diagram.................................................................................................................................... 105  
Figure 76: Oscillator1 Block Diagram.................................................................................................................................... 106  
Figure 77: Oscillator2 Block Diagram.................................................................................................................................... 107  
Figure 78: Clock Scheme...................................................................................................................................................... 108  
Figure 79: Oscillator Startup Diagram................................................................................................................................... 109  
Figure 80: Oscillator0 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC0 = 2.048 kHz............................................... 109  
Figure 81: Oscillator1 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC1 = 2.048 MHz ............................................. 110  
Figure 82: Oscillator2 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC2 = 25 MHz .................................................. 110  
Figure 83: Oscillator0 Frequency vs. Temperature, OSC0 = 2.048 kHz............................................................................... 111  
Figure 84: Oscillator1 Frequency vs. Temperature, OSC1 = 2.048 MHz.............................................................................. 112  
Figure 85: Oscillator2 Frequency vs. Temperature, OSC2 = 25 MHz................................................................................... 112  
Figure 86: Oscillators Total Error vs. Temperature............................................................................................................... 113  
Figure 87: POR Sequence.................................................................................................................................................... 115  
Figure 88: Internal Macrocell States during POR Sequence................................................................................................. 116  
Figure 89: Power-Down......................................................................................................................................................... 117  
Figure 90: Basic Command Structure................................................................................................................................... 118  
Figure 91: I2C General Timing Characteristics...................................................................................................................... 119  
Figure 92: Byte Write Command, R/W = 0............................................................................................................................ 119  
Figure 93: Sequential Write Command................................................................................................................................. 120  
Figure 94: Current Address Read Command, R/W = 1......................................................................................................... 120  
Figure 95: Random Read Command .................................................................................................................................... 121  
Figure 96: Sequential Read Command................................................................................................................................. 121  
Figure 97: Reset Command Timing ...................................................................................................................................... 122  
Figure 98: Example of I2C Byte Write Bit Masking................................................................................................................ 126  
Figure 99: Page Write Command.......................................................................................................................................... 127  
Figure 100: I2C Block Addressing ......................................................................................................................................... 128  
Figure 101: Analog Temperature Sensor Structure Diagram................................................................................................ 131  
Figure 102: Typical TS Output vs Temperature, VDD = 2.3 V to 5.5 V.................................................................................. 132  
Datasheet  
24-Feb-2021  
Revision 3.2  
5 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Tables  
Table 1: Functional Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 2: Pin Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 3: Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 4: Electrostatic Discharge Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 5: Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 6: EС at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted . . . . . . . . . . . . . . . . . . . . 13  
Table 7: Input Leakage Current at T = -40 °C to +105 °C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 8: EC of the SDA and SCL IO Stages at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted . . . 18  
Table 9: I2C Bus Timing Characteristics at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted . . . . . 19  
Table 10: Typical Current Consumption Estimated for Each Macrocell at T = -40 °C to +105 °C . . . . . . . . . . . . . . 19  
Table 11: Typical Delay Estimated for Each Macrocell at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 12: Programmable Delay Expected Delays and Widths (Typical) at T = 25 °C . . . . . . . . . . . . . . . . . . . . 24  
Table 13: Typical Filter Rejection Pulse Width at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 14: Typical Counter/Delay Offset Measurements at T = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 15: Oscillators Frequency Limits, VDD = 2.3 V to 5.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 16: Oscillators Power-On Delay at T = 25 °C, OSC Power Mode: "Auto Power-On". . . . . . . . . . . . . . . . . . 26  
Table 17: ACMP Specifications at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted . . . . . . . . . . 26  
Table 18: TS Output vs Temperature (Output Range 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 19: TS Output vs Temperature (Output Range 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 20: TS Output Error (Output Range 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 21: TS Output Error (Output Range 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 22: Matrix Input Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 23: Matrix Output Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 24: Connection Matrix Virtual Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 25: 2-bit LUT0 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 26: 2-bit LUT1 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 27: 2-bit LUT2 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 28: 2-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 29: 2-bit LUT1 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 30: 2-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 31: 3-bit LUT0 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 32: 3-bit LUT1 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 33: 3-bit LUT2 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 34: 3-bit LUT3 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 35: 3-bit LUT4 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 36: 3-bit LUT5 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 37: 3-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 38: 3-bit LUT6 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 39: 3-bit LUT7 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 40: 3-bit LUT8 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 41: 3-bit LUT9 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 42: 3-bit LUT10 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 43: 3-bit LUT11 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 44: 3-bit LUT12 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 45: 3-bit LUT13 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 46: 4-bit LUT0 Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Table 47: 4-bit LUT Standard Digital Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Table 48: Vref Selection Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Table 49: Oscillator Operation Mode Configuration Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Table 50: Oscillator Output Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Table 51: RPR Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Table 52: RPR Bit Function Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Table 53: NPR Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Table 54: NPR Bit Function Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Table 55: Read/Write Register Protection Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Table 56: Erase Register Bit format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Table 57: Erase Register Bit Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Table 58: Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Datasheet  
24-Feb-2021  
Revision 3.2  
6 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
1
Block Diagram  
IO11  
ACMP3L  
IO14  
ACMP0H  
IO13  
ACMP1H  
IO12  
ACMP2L  
IO10  
Vref Out0  
VDD  
Multiple Time  
Programmable  
Memory  
I2C Serial  
Communication  
High Speed  
Analog  
In-System  
Debug  
Vref  
Combination Function Macrocells  
IO0  
FILTER  
with Edge  
Detect  
IO9  
Vref Out1  
ACMP0H  
ACMP1H  
2-bit  
2-bit  
2-bit  
2-bit  
LUT2_0  
or DFF0  
LUT2_1  
or DFF1  
LUT2_2  
or DFF2  
LUT2_3  
or PGEN  
IO1  
Temperature  
Sensor  
3bit  
LUT3_0  
or DFF3  
3-bit  
LUT3_1  
or DFF4  
3-bit  
LUT3_2  
or DFF5  
3-bit  
LUT3_3  
or DFF6  
VDD2  
Low Power  
Analog  
Low  
Power  
Vref  
3-bit LUT3_6  
or Pipe Delay  
or Ripple  
CNT  
3-bit  
LUT3_4  
or DFF7  
3-bit  
LUT3_5  
or DFF8  
Programmable  
Delay or Edge  
Detect  
IO2  
IO8  
ACMP2L  
ACMP3L  
Multi-Function Macrocells  
3-bitLUT3_10  
/DFF13+8bit  
CNT/DLY4  
3-bitLUT3_7  
/DFF10+8bit  
CNT/DLY1  
3-bitLUT3_8  
/DFF11+8bit  
CNT/DLY2  
3-bitLUT3_9  
/DFF12+8bit  
CNT/DLY3  
IO3  
IO7  
Oscillators  
POR  
2.048  
kHz  
2.048  
MHz  
25  
MHz  
3-bit  
4-bitLUT4_0  
/DFF9+  
3-bit  
3-bit  
LUT3_11  
LUT3_12  
LUT3_13  
/DFF14+8bit  
CNT/DLY5  
16bit  
/DFF15+8bit  
CNT/DLY6  
/DFF16+8bit  
CNT/DLY7  
CNT/DLY0  
IO4  
GND  
SDA  
IO6  
IO5  
SCL  
Figure 1: Block Diagram  
Datasheet  
24-Feb-2021  
Revision 3.2  
7 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
2
Pinout  
2.1 PIN CONFIGURATION - TSSOP-20L  
Pin # Pin Name Pin Functions  
1
2
IO14  
IO13  
IO12  
IO11  
IO10  
IO9  
GPIO or ACMP0H_IN  
GPIO or ACMP1H_IN  
GPIO or ACMP2L_IN  
GPIO or ACMP3L_IN  
GPIO or Vref_OUT0  
GPIO or Vref_OUT1  
Power Supply  
GPIO  
VDD  
IO0  
IO1  
IO2  
IO3  
IO4  
IO5  
SCL  
SDA  
IO6  
IO14  
IO13  
IO12  
IO11  
IO10  
IO9  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
3
4
3
5
4
6
5
7
VDD2  
IO8  
6
8
VDD2  
7
9
IO7  
GPO  
IO8  
IO7  
GND  
8
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GND  
IO6  
Ground  
9
GPO  
I2C_SDA  
I2C_SCL  
10  
SDA  
SCL  
IO5  
GPIO, SLA_3  
GPIO, SLA_2  
GPIO, SLA_1  
GPIO, SLA_0  
GPIO or Vref IN  
GPIO  
TSSOP-20  
(Top View)  
IO4  
IO3  
IO2  
IO1  
IO0  
VDD  
Power Supply  
Legend:  
ACMPx+: ACMPx Positive Input  
ACMPx-: ACMPx Negative Input  
SCL: I2C Clock Input  
SDA: I2C Data Input/Output  
Vrefx: Voltage Reference Output  
SLA: Slave Address  
Table 1: Functional Pin Description  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Pin #  
Function  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
IO14  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
1
IO14  
Low Voltage Digital Input  
--  
--  
--  
Analog Comparator 0  
Positive Input  
ACMP0H+  
Analog  
--  
EXT_RESET  
--  
Datasheet  
24-Feb-2021  
Revision 3.2  
8 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 1: Functional Pin Description(Continued)  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Pin #  
Function  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
IO13  
ACMP1H+  
IO12  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
2
IO13  
Low Voltage Digital Input  
--  
Analog Comparator 1  
Positive Input  
Analog  
--  
Digital Input without Schmitt Trigger Push-Pull (1x) (2x)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
General Purpose IO  
with OE (Note 1)  
3
4
IO12  
IO11  
Low Voltage  
Digital Input  
--  
--  
Analog Comparator 2  
Positive Input  
ACMP2L+  
IO11  
Analog  
Digital Input without Schmitt Trigger Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
Low Voltage Digital Input  
--  
Analog Comparator 3  
Positive Input  
ACMP3L+  
Analog  
--  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
IO10  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
5
IO10  
Low Voltage Digital Input  
--  
Analog  
--  
Voltage Reference 0  
Output  
Vref0_OUT  
--  
EXT_OSC1_IN  
--  
--  
Digital Input without Schmitt Trigger Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
IO9  
6
IO9  
Low Voltage Digital Input  
--  
Voltage Reference 1  
Output  
Vref1_OUT  
--  
Analog  
I2C_EXPAND_3  
VDD2  
--  
--  
--  
--  
--  
7
8
VDD2  
IO8  
Power Supply  
Digital Input without Schmitt Trigger Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
IO8  
EXT_OSC2_IN  
IO7  
Low Voltage Digital Input  
--  
--  
--  
--  
--  
Push-Pull (1x) (2x)  
General Purpose Out-  
Open-Drain NMOS  
(1x) (2x)  
9
IO7  
--  
put  
--  
--  
--  
--  
10  
GND  
GND  
Ground  
Datasheet  
24-Feb-2021  
Revision 3.2  
9 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 1: Functional Pin Description(Continued)  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Pin #  
Function  
General Purpose Out-  
11  
IO6  
IO6  
--  
Push-Pull (1x) (2x)  
put  
Digital Input without  
Schmitt Trigger  
--  
12  
13  
SDA  
SDA  
I2C Serial Data  
I2C Serial Clock  
Low Voltage Digital Input  
--  
Digital Input without  
Schmitt Trigger  
--  
SCL  
IO5  
SCL  
IO5  
Low Voltage Digital Input  
--  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
14  
EXT_SLA_3  
Low Voltage Digital Input  
--  
--  
--  
I2C_EXPAND_1  
IO4  
--  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
15  
16  
17  
IO4  
IO3  
IO2  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
EXT_SLA_2  
IO3  
Low Voltage Digital Input  
--  
Digital Input without Schmitt Trigger Push-Pull (1x) (2x)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
General Purpose IO  
General Purpose IO  
EXT_SLA_1  
IO2  
Low Voltage  
Digital Input  
--  
Digital Input without Schmitt Trigger Push-Pull (1x) (2x)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
EXT_SLA_0  
Low Voltage  
Digital Input  
--  
Digital Input without  
Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
IO1  
EXT_Vref  
IO0  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
18  
IO1  
Low Voltage Digital Input  
--  
Analog Comparator  
Negative Input  
Analog  
--  
Digital Input without Schmitt Trigger Push-Pull (1x) (2x)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
General Purpose IO  
--  
Low Voltage  
Digital Input  
19  
IO0  
--  
--  
--  
I2C_EXPAND_0  
EXT_OSC0_IN  
--  
External Clock  
Connection  
--  
Datasheet  
24-Feb-2021  
Revision 3.2  
10 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 1: Functional Pin Description(Continued)  
Pin  
Name  
Signal  
Name  
Input  
Options  
Output  
Options  
Pin #  
Function  
VDD  
Power Supply  
--  
--  
Analog Comparator 0  
Positive Input  
ACMP0H+  
Analog  
--  
Analog Comparator 1  
Positive Input  
ACMP1H+  
ACMP2L+  
ACMP3L+  
Analog  
Analog  
Analog  
--  
--  
--  
20  
VDD  
Analog Comparator 2  
Positive Input  
Analog Comparator 3  
Positive Input  
Note 1 General Purpose IO's with OE can be used to implement bidirectional signals under user control via Connection Matrix  
to OE signal in IO structure.  
Table 2: Pin Type Definitions  
Pin Type  
VDD  
Description  
Power Supply  
Input/Output  
I2C Serial Clock  
I2C Serial Data  
Ground  
IO  
SCL  
SDA  
GND  
VDD2  
Power Supply 2  
Datasheet  
24-Feb-2021  
Revision 3.2  
11 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
3
Characteristics  
3.1 ABSOLUTE MAXIMUM RATINGS  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational  
sections of the specification are not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect  
device reliability.  
Table 3: Absolute Maximum Ratings  
Parameter  
Supply Voltage on VDD relative to GND  
DC Input Voltage  
Min  
Max  
Unit  
V
-0.3  
7
GND - 0.5 V VDD + 0.5 V  
V
Maximum Average or DC Current Through VDD Pin  
Maximum Average or DC Current Through VDD2 Pin  
Maximum Average or DC Current Through GND Pin (Per chip side, (Note 1))  
Push-Pull 1x  
--  
--  
90  
90  
mA  
mA  
mA  
--  
100  
15.3  
22.1  
15.5  
23  
--  
Push-Pull 2x  
OD 1x  
--  
Maximum Average or DC Current  
(Through pin)  
mA  
--  
OD 2x  
--  
Current at Input Pin  
-1.0  
--  
1.0  
mA  
nA  
°C  
Input leakage (Absolute Value)  
Storage Temperature Range  
Junction Temperature  
1000  
150  
150  
-65  
--  
°C  
Moisture Sensitivity Level  
1
Note 1 The GreenPAK’s GND rail is divided in two sides. IOs 0 to 6, SCL, SDA are connected to one side and IOs 7 to 14 are  
connected to another side.  
3.2 ELECTROSTATIC DISCHARGE RATINGS  
Table 4: Electrostatic Discharge Ratings  
Parameter  
Min  
2000  
1300  
Max  
--  
Unit  
V
ESD Protection (Human Body Model)  
ESD Protection (Charged Device Model)  
--  
V
3.3 RECOMMENDED OPERATING CONDITIONS  
Table 5: Recommended Operating Conditions  
Parameter  
Condition  
Min  
Max  
Unit  
2.3  
5.5  
V
Supply Voltage (VDD  
)
During NVM Write and Erase  
commands  
2.5  
5.5  
V
Supply Voltage 2 (VDD2  
Operating Temperature  
)
VDD2 ≤ VDD  
1.71  
-40  
5.5  
V
105  
°C  
Maximal VoltageApplied to any PIN in High  
Impedance State  
VDD+0.3  
(Note 1)  
--  
0.1  
0
V
µF  
V
Capacitor Value at VDD  
--  
Allowable Input Voltage at Analog  
Pins  
VDD or VDD2  
(Note 2)  
Analog Input Common Mode Range  
Note 1 IOs 0 to 6, SCL, SDA are powered from VDD and IOs 7 to 14 are powered from VDD2.  
Note 2 VDD for IO1 and VDD2 for IO11 to IO14  
Datasheet  
24-Feb-2021  
Revision 3.2  
12 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
3.4 ELECTRICAL CHARACTERISTICS  
Table 6: EС at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
0.7x  
VDD  
(Note 1)  
VDD+  
0.3  
(Note 1)  
Logic Input  
--  
V
0.8x  
VDD  
(Note 1)  
VDD+  
0.3  
(Note 1)  
HIGH-Level Input Voltage  
(Note 2)  
VIH  
Logic Input with Schmitt Trigger  
Low-Level Logic Input  
Logic Input  
--  
--  
--  
V
V
V
VDD+  
1.25  
0.3  
(Note 1)  
0.3x  
VDD  
(Note 1)  
GND-  
0.3  
LOW-Level Input Voltage  
(Note 2)  
0.2x  
VDD  
(Note 1)  
GND-  
0.3  
VIL  
Logic Input with Schmitt Trigger  
Low-Level Logic Input  
--  
--  
V
V
GND-  
0.3  
0.5  
VDD2 = 1.8 V ± 5 %  
VDD = 2.3 V  
0.195  
0.199  
0.232  
0.283  
0.370  
0.38  
0.559  
0.634  
0.604  
0.641  
0.785  
V
V
V
0.391  
0.422  
0.440  
0.577  
Schmitt Trigger Hysteresis  
Voltage (Note 1)  
VHYS  
VDD = 3.3 V  
VDD = 4.0 V  
VDD = 5.5 V  
V
V
Maximal Voltage Applied to  
any PIN in High Impedance  
State  
VDD+  
VO  
--  
--  
0.3  
(Note 1)  
Push-Pull, 1x Drive, IOH = 1 mA,  
VDD = VDD2 = 2.3 V  
2.167  
3.022  
3.769  
3.600  
5.192  
2.234  
3.161  
3.883  
3.800  
5.340  
--  
2.207  
3.100  
3.831  
3.709  
5.268  
2.254  
3.200  
3.915  
3.854  
5.382  
0.069  
0.154  
--  
V
V
V
V
V
V
V
V
V
V
V
V
Push-Pull, 1x Drive, IOH = 3 mA,  
VDD = VDD2 = 3.3 V  
--  
Push-Pull, 1x Drive, IOH = 3 mA,  
VDD = VDD2 = 4.0 V  
--  
Push-Pull, 1x Drive, IOH = 5 mA,  
VDD = VDD2 = 4.0 V  
--  
--  
Push-Pull, 1x Drive, IOH = 5 mA,  
VDD = VDD2 = 5.5 V  
HIGH-Level Output Voltage  
(Note 1)  
VOH  
Push-Pull, 2x Drive, IOH = 1 mA,  
VDD = VDD2 = 2.3 V  
--  
Push-Pull, 2x Drive, IOH = 3 mA,  
VDD = VDD2 = 3.3 V  
--  
Push-Pull, 2x Drive, IOH = 3 mA,  
VDD = VDD2 = 4.0 V  
--  
Push-Pull, 2x Drive, IOH = 5 mA,  
VDD = VDD2 = 4.0 V  
--  
Push-Pull, 2x Drive, IOH = 5 mA,  
VDD = VDD2 = 5.5 V  
--  
Push-Pull, 1x Drive, IOL= 1 mA,  
VDD = VDD2 = 2.3 V  
0.100  
0.222  
LOW-Level Output Voltage  
(Note 1)  
VOL  
Push-Pull, 1x Drive, IOL = 3 mA,  
VDD = VDD2 = 3.3 V  
--  
Datasheet  
24-Feb-2021  
Revision 3.2  
13 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 6: EС at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, 1x Drive, IOL= 3mA,  
VDD = VDD2 = 4.0 V v  
--  
0.133  
0.192  
V
Push-Pull, 1x Drive, IOL= 5 mA,  
VDD = VDD2 = 4.0 V  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0.226  
0.188  
0.036  
0.079  
0.069  
0.116  
0.099  
0.029  
0.064  
0.056  
0.094  
0.080  
0.015  
0.035  
0.031  
0.052  
0.045  
0.327  
0.268  
0.051  
0.113  
0.099  
0.167  
0.140  
0.041  
0.091  
0.080  
0.135  
0.113  
0.021  
0.050  
0.044  
0.074  
0.064  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Push-Pull, 1x Drive, IOL= 5 mA,  
VDD = VDD2 = 5.5 V  
Push-Pull, 2x Drive, IOL= 1 mA,  
VDD = VDD2 = 2.3 V  
Push-Pull, 2x Drive, IOL= 3 mA,  
VDD = VDD2 = 3.3 V  
Push-Pull, 2x Drive, IOL = 3mA,  
VDD = VDD2 = 4.0 V  
Push-Pull, 2x Drive, IOL = 5 mA,  
VDD = VDD2 = 4.0 V  
Push-Pull, 2x Drive, IOL = 5 mA,  
VDD = VDD2 = 5.5 V  
NMOS OD, 1x Drive, IOL= 1 mA,  
VDD = VDD2 = 2.3 V  
LOW-Level Output Voltage  
(Note 1)  
VOL  
NMOS OD, 1x Drive, IOL = 3 mA,  
VDD = VDD2 = 3.3 V  
NMOS OD, 1x Drive, IOL = 3 mA,  
VDD = VDD2 = 4.0 V  
NMOS OD, 1x Drive, IOL = 5 mA,  
VDD = VDD2 = 4.0 V  
NMOS OD, 1x Drive, IOL = 5 mA,  
VDD = VDD2 = 5.5 V  
NMOS OD, 2x Drive, IOL= 1 mA,  
VDD2 = VDD2 = 2.3 V  
NMOS OD, 2x Drive, IOL = 3 mA,  
VDD = VDD2 = 3.3 V  
NMOS OD, 2x Drive, IOL = 3 mA,  
VDD = VDD2 = 4.0 V  
NMOS OD, 2x Drive, IOL = 5 mA,  
VDD = VDD2 = 4.0 V  
NMOS OD, 2x Drive, IOL = 5 mA,  
VDD = VDD2 = 5.5 V  
Push-Pull, 1x Drive,  
VOH = VDD - 0.2 = VDD2 - 0.2  
VDD = VDD2 = 2.3 V  
Over lifetime at 105 °C (Note 3)  
1.461  
7.920  
2.040  
--  
mA  
Push-Pull, 1x Drive,  
VOH = 2.4 V, VDD = VDD2 = 3.3 V  
10.682  
--  
--  
--  
mA  
mA  
mA  
HIGH-Level Output Current  
(Note 1) (Note 4)  
Push-Pull, 1x Drive,  
VOH = 2.4 V, VDD = VDD2 = 4.0 V  
IOH  
14.321 18.775  
27.466 34.554  
Push-Pull, 1x Drive,  
VOH = 2.4 V, VDD = VDD2 = 5.5 V  
Push-Pull, 2x Drive,  
VOH = VDD - 0.2 = VDD2 - 0.2  
VDD = VDD2 = 2.3 V  
2.678  
3.987  
--  
mA  
Over lifetime at 105 °C (Note 3)  
Datasheet  
24-Feb-2021  
Revision 3.2  
14 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 6: EС at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, 2x Drive,  
VOH = 2.4 V, VDD = VDD2 = 3.3 V  
15.288 20.800  
27.581 36.524  
52.371 66.673  
--  
mA  
HIGH-Level Output Current  
(Note 1) (Note 4)  
Push-Pull, 2x Drive,  
VOH = 2.4 V, VDD = VDD2 = 4.0 V  
IOH  
--  
--  
mA  
mA  
Push-Pull, 2x Drive,  
VOH = 2.4 V, VDD = VDD2 = 5.5 V  
Push-Pull, 1x Drive, VOL = 0.15 V,  
VDD = VDD2 = 2.3 V  
1.413  
2.099  
--  
mA  
Over lifetime at 105 °C (Note 3)  
Push-Pull, 1x Drive, VOL = 0.4 V,  
VDD = VDD2 = 3.3 V  
5.159  
5.989  
7.287  
7.301  
8.514  
--  
--  
--  
mA  
mA  
mA  
Push-Pull, 1x Drive, VOL = 0.4 V,  
V
DD = VDD2 = 4.0 V  
Push-Pull, 1x Drive, VOL = 0.4 V,  
DD = VDD2 = 5.5 V  
Push-Pull, 2x Drive, VOL = 0.15 V,  
DD = VDD2 = 2.3 V  
10.289  
V
V
2.713  
4.065  
--  
mA  
Over lifetime at 105 °C (Note 3)  
Push-Pull, 2x Drive, VOL = 0.4 V,  
VDD = VDD2 = 3.3  
9.964  
14.054  
16.293  
--  
--  
--  
mA  
mA  
mA  
Push-Pull, 2x Drive, VOL = 0.4 V,  
VDD = VDD2 = 4.0  
11.488  
Push-Pull, 2x Drive, VOL = 0.4 V,  
VDD = VDD2 = 5.5  
13.871 19.524  
LOW-Level Output Current  
(Note 1) (Note 4)  
IOL  
NMOS OD, 1x Drive, VOL = 0.15 V,  
VDD = VDD2 = 2.3 V  
3.329  
16.164  
--  
mA  
Over lifetime at 105 °C (Note 3)  
NMOS OD, 1x Drive, VOL = 0.4 V,  
VDD = VDD2 = 3.3 V  
12.336 17.366  
14.199 20.093  
17.070 23.978  
--  
--  
--  
mA  
mA  
mA  
NMOS OD, 1x Drive, VOL = 0.4 V,  
VDD = VDD2 = 4.0 V  
NMOS OD, 1x Drive, VOL = 0.4 V,  
VDD = VDD2 = 5.5 V  
NMOS OD, 2x Drive, VOL = 0.15 V,  
VDD = VDD2 = 2.3 V  
6.483  
9.464  
--  
mA  
Over lifetime at 105 °C (Note 3)  
NMOS OD, 2x Drive, VOL = 0.4 V,  
VDD = VDD2 = 3.3 V  
22.766 32.108  
25.870 36.604  
--  
--  
mA  
mA  
mA  
ms  
NMOS OD, 2x Drive, VOL = 0.4 V,  
VDD = VDD2 = 4.0 V  
NMOS OD, 2x Drive, VOL = 0.4 V,  
VDD = VDD2 = 5.5 V  
30.115  
--  
42.783  
2.082  
--  
From VDD rising past PONTHR  
Tramp = 10ms  
TSU  
Startup Time  
2.745  
TWR  
TER  
NVM Page Write Time  
NVM Page Erase Time  
Power-On Threshold  
VDD = 2.5 V to 5.5 V  
VDD = 2.5 V to 5.5 V  
--  
--  
--  
--  
20  
20  
ms  
ms  
V
PONTHR  
VDD Level Required to Start Up the Chip 1.521  
1.843  
2.117  
VDD Level Required to Switch Off the  
Chip  
POFFTHR Power-Off Threshold  
0.839  
1.242  
1.593  
V
Datasheet  
24-Feb-2021  
Revision 3.2  
15 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 6: EС at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
1 M for Pull-up: VIN = GND;  
for Pull-down: VIN = VDD  
0.860  
1.091  
1.432  
MΩ  
Over lifetime at 105 °C (Note 3)  
100 k for Pull-up: VIN = GND;  
for Pull-down: VIN = VDD  
Over lifetime at 105 °C (Note 3)  
RPULL  
Pull-up Resistance (Note 1)  
90.517 107.62  
133.83  
13.113  
1.384  
kΩ  
kΩ  
MΩ  
kΩ  
10 k For Pull-up: VIN = GND;  
for Pull-down: VIN = VDD  
Over lifetime at 105 °C (Note 3)  
7.196  
0.904  
9.921  
1.091  
1 M for Pull-up: VIN = GND;  
for Pull-down: VIN = VDD  
Over lifetime at 105 °C (Note 3)  
100 k for Pull-up: VIN = GND;  
Pull-down Resistance (Note 1) for Pull-down: VIN = VDD  
Over lifetime at 105 °C (Note 3)  
RPULL  
85.674 107.648 137.865  
10 k For Pull-up: VIN = GND;  
for Pull-down: VIN = VDD  
Over lifetime at 105 °C (Note 3)  
7.130  
1.986  
9.884  
2.330  
13.005  
2.620  
kΩ  
CIN  
Input Capacitance  
pF  
Note 1 The GreenPAK’s power rails are divided in two sides. IOs 0 to 6, SCL, SDA are powered from VDD (one side) and IOs  
7 to 14 are powered from VDD2 (another side).  
Note 2 No hysteresis.  
Note 3 Calculations based on HTOL drift data obtained through AEC-Q100 stress tests.  
Note 4 DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.  
Datasheet  
24-Feb-2021  
Revision 3.2  
16 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 7: Input Leakage Current at T = -40 °C to +105 °C  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
VIN = VDD, VDD = VDD2,  
VDD = 2.3 V to 5.5 V  
--  
0.008  
7.022  
nA  
Logic Input without Schmitt  
Trigger (Floating) Leakage  
(IO0-IO2, IO5, IO8, IO9-IO14)  
VIN = 0 V, VDD = VDD2,  
VDD = 2.3 V to 5.5 V  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0.112  
0.009  
0.016  
0.013  
0.099  
0.004  
0.039  
0.008  
0.111  
0.013  
0.099  
0.004  
0.039  
0.008  
0.111  
0.009  
0.016  
0.013  
0.098  
0.004  
0.039  
0.105  
0.164  
2.452  
9.577  
0.765  
10.868  
2.117  
5.109  
0.918  
6.867  
2.272  
10.724  
2.063  
5.098  
0.917  
6.803  
2.185  
9.250  
0.619  
10.547  
1.953  
5.072  
0.910  
2.243  
4.385  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
VIN = VDD, VDD = VDD2,  
VDD = 2.3 V to 5.5 V  
Logic Input without Schmitt  
Trigger (Floating) Leakage  
(SDA ans SCL Pins)  
VIN = 0 V, VDD = VDD2,  
VDD = 2.3 V to 5.5 V  
V
IN = VDD, VDD = VDD2,  
Logic Input without Schmitt  
Trigger (Floating) Leakage  
(IO3, IO4)  
VDD = 2.3 V to 5.5 V  
VIN = 0 V, VDD = VDD2,  
VDD = 2.3 V to 5.5 V  
VIN = VDD2, VDD2 = 1.8 ± 5%,  
Logic Input without Schmitt  
Trigger (Floating) Leakage  
(IO8, IO9-IO14)  
V
DD = 2.3 V to 5.5 V  
VIN = 0 V, VDD2 = 1.8 ± 5%,  
VDD = 2.3 V to 5.5 V  
VIN = VDD, VDD = VDD2,  
VDD = 2.3 V to 5.5 V  
Logic Input with Schmitt  
Trigger (Floating) Leakage  
(IO0-IO2, IO5, IO8, IO9-IO14)  
VIN = 0 V, VDD = VDD2,  
VDD = 2.3 V to 5.5 V  
VIN = VDD, VDD = VDD2,  
VDD = 2.3 V to 5.5 V  
Logic Input with Schmitt  
Trigger (Floating) Leakage  
(IO3, IO4)  
VIN = 0 V, VDD = VDD2,  
VDD = 2.3 V to 5.5 V  
ILKG  
(Absolute  
Value)  
VIN = VDD2, VDD2 = 1.8 ± 5%,  
Logic Input with Schmitt  
Trigger (Floating) Leakage  
(IO8, IO9-IO14)  
V
DD = 2.3 V to 5.5 V  
VIN = 0 V, VDD2 = 1.8 ± 5%,  
VDD = 2.3 V to 5.5 V  
VIN = VDD, VDD = VDD2,  
VDD = 2.3 V to 5.5 V  
Low-Level Logic Input  
(Floating) Leakage  
(IO0-IO2, IO5, IO8, IO9-IO14)  
VIN = 0 V, VDD = VDD2,  
VDD = 2.3 V to 5.5 V  
VIN = VDD, VDD = VDD2,  
VDD = 2.3 V to 5.5 V  
Low-Level Logic Input Trigger  
(Floating) Leakage  
(SDA ans SCL Pins)  
VIN = 0 V, VDD = VDD2,  
VDD = 2.3 V to 5.5 V  
VIN = VDD, VDD = VDD2,  
VDD = 2.3 V to 5.5 V  
Low-Level Logic Input Trigger  
(Floating) Leakage  
(IO3, IO4)  
VIN = 0 V, VDD = VDD2,  
VDD = 2.3 V to 5.5 V  
VIN = VDD2, VDD2 = 1.8 ± 5%,  
VDD = 2.3 V to 5.5 V  
Low-Level Logic Input Trigger  
(Floating) Leakage  
(IO8, IO9-IO14)  
VIN = 0 V, VDD2 = 1.8 ± 5%,  
VDD = 2.3 V to 5.5 V  
VIN- = 0 V, VDD = 2.3 V to 5.5 V  
Ext.Vref, Gain = 1  
ACMP Input Leakage  
VIN+ = 0 V, VDD = 2.3 V to 5.5 V  
Ext.Vref, Gain = 1  
Datasheet  
24-Feb-2021  
Revision 3.2  
17 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 7: Input Leakage Current at T = -40 °C to +105 °C(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
VIN- = VDD, VDD = 2.3 V  
Ext.Vref, Gain = 1  
--  
0.006  
5.752  
nA  
VIN+ = VDD, VDD = 2.3 V  
Ext.Vref, Gain = 1  
--  
--  
--  
--  
--  
--  
--  
0.007  
0.007  
0.009  
0.008  
0.010  
0.011  
0.014  
7.724  
7.911  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
VIN- = VDD, VDD = 3.3 V  
Ext.Vref, Gain = 1  
VIN+ = VDD, VDD = 3.3 V  
Ext.Vref, Gain = 1  
8.392  
9.441  
8.875  
12.928  
10.705  
ILKG  
(Absolute ACMP Input Leakage  
Value)  
VIN- = VDD, VDD = 4 V  
Ext.Vref, Gain = 1  
VIN+ = VDD, VDD = 4 V  
Ext.Vref, Gain = 1  
VIN- = VDD, VDD = 5.5 V  
Ext.Vref, Gain = 1  
V
IN+ = VDD, VDD = 5.5 V  
Ext.Vref, Gain = 1  
Table 8: EC of the SDA and SCL IO Stages at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Fast-Mode  
Fast-Mode Plus  
Parameter Description  
Condition  
Unit  
Min  
Max  
Min  
Max  
LOW-level Input  
Voltage  
VIL  
-0.5  
0.3xVDD  
-0.5  
0.3xVDD  
V
V
V
HIGH-level Input  
Voltage  
VIH  
0.7xVDD  
0.05xVDD  
5.5  
--  
0.7xVDD  
5.5  
--  
Hysteresis of Schmitt  
VHYS  
0.05xVDD  
Trigger Inputs  
(Open-Drain) at 3mA sink  
current  
LOW-Level Output  
Voltage 1  
VOL1  
0
0
0.4  
0
0
0.4  
V
V
V
DD > 2 V  
(Open-Drain) at 2 mA sink  
current  
VDD ≤ 2 V  
LOW-Level Output  
Voltage 2  
VOL2  
0.2xVDD  
0.2xVDD  
VOL = 0.4 V  
VOL = 0.6 V  
3
6
--  
--  
20  
--  
--  
--  
mA  
mA  
LOW-Level Output  
IOL  
Current (Note 2)  
Output Fall Time from  
VIHmin to VILmax  
(Note 1)  
14x  
(VDD/5.5 V)  
10x  
(VDD/5.5 V)  
tof  
250  
120  
ns  
PIN configured as Digital  
Input  
0
0
50  
2.5  
+10  
10  
0
0
50  
2.5  
+10  
10  
ns  
ns  
µA  
pF  
Input Filter Spike  
Suppression (SCL,  
SDA)  
tSP  
PIN configured as Digital  
Input LOW Voltage (Note 1)  
Input Current each IO  
Pin  
Ii  
0.1xVDD < VI < 0.9xVDDmax  
-10  
-10  
Capacitance for each  
IO Pin  
Ci  
--  
--  
Note 1 Does not meet standard I2C specifications: tof(min) = 20x(VDD/5.5 V); tSP = 50 ns  
Note 2 For Fast-mode Plus SDA pin must be configured as NMOS 2x Open-Drain, see register [769] in Section 18.  
Datasheet  
24-Feb-2021  
Revision 3.2  
18 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 9: I2C Bus Timing Characteristics at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Fast-Mode  
Fast-Mode  
Plus  
Parameter Description  
Condition  
Unit  
Min  
--  
Max  
400  
--  
Min  
--  
Max  
1000  
--  
FSCL  
tLOW  
tHIGH  
Clock Frequency, SCL  
kHz  
ns  
Clock Pulse Width Low  
Clock Pulse Width High  
1300  
600  
500  
260  
--  
--  
ns  
Bus Free Time between Stop and  
Start  
tBUF  
1300  
--  
500  
--  
ns  
tHD_STA  
tSU_STA  
tHD_DAT  
tSU_DAT  
tR  
Start Hold Time  
600  
600  
0
--  
--  
260  
260  
0
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Start Set-up Time  
Data Hold Time  
--  
--  
Data Set-up Time  
Inputs Rise Time  
Inputs Fall Time  
100  
--  
--  
50  
--  
--  
300  
300  
--  
120  
120  
--  
tF  
--  
--  
tSU_STO  
tVD ACK  
tVD DAT  
Stop Set-up Time  
Data valid acknowledge time  
Data valid time  
600  
--  
260  
--  
900  
900  
450  
450  
--  
--  
Note 1 Timing diagram can be found in the Figure 91  
Table 10: Typical Current Consumption Estimated for Each Macrocell at T = -40 °C to +105 °C  
Parameter  
Description Note  
Chip Quiescent Current  
VDD = 2.3 V VDD = 3.3 V VDD = 5.0 V  
Unit  
0.33  
0.24  
0.39  
0.25  
0.48  
0.28  
µA  
µA  
OSC 2.048 kHz Force PWR On  
OSC 2.048 MHz Force PWR On;  
Matrix PWR Down; Pre-Divider = 1;  
Second Divider = 1  
µA  
µA  
µA  
µA  
22.16  
18.37  
17.72  
44.88  
25.29  
19.51  
18.52  
59.09  
31.10  
21.57  
19.93  
85.34  
OSC 2.048 MHz Force PWR On;  
Matrix PWR Down; Pre-Divider = 4;  
Second Divider = 1  
I
Current  
OSC 2.048 MHz Force PWR On;  
Matrix PWR Down; Pre-Divider = 8;  
Second Divider = 1  
OSC 25 MHz Force PWR On;  
Matrix PWR Down; Pre-Divider = 1;  
Second Divider = 1  
Datasheet  
24-Feb-2021  
Revision 3.2  
19 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 10: Typical Current Consumption Estimated for Each Macrocell at T = -40 °C to +105 °C (Continued)  
Parameter  
Description Note  
OSC 25 MHz Force PWR On;  
VDD = 2.3 V VDD = 3.3 V VDD = 5.0 V  
Unit  
µA  
Matrix PWR Down; Pre-Divider = 4;  
Second Divider = 1  
30.68  
28.06  
38.36  
34.54  
53.25  
47.32  
OSC 25 MHz Force PWR On;  
Matrix PWR Down; Pre-Divider = 8;  
Second Divider = 1  
µA  
Temp Sensor; Output Range 2;  
Source: Matrix  
µA  
µA  
14.01  
14.14  
14.06  
14.19  
14.37  
14.50  
Temp Sensor; Output Range 1;  
Source: Matrix  
µA  
µA  
Vref0  
Vref1  
7.04  
0.99  
7.06  
0.99  
7.18  
0.99  
Vref0; Source: ACMP0H; Vref = 32 mV;  
Buffer On  
µA  
µA  
µA  
µA  
10.60  
12.03  
6.35  
10.71  
12.25  
6.42  
11.60  
12.94  
6.76  
Vref0; Source: None; Buffer On  
Vref1; Source: ACMP2L; Vref = 32 mV;  
Buffer On  
Vref1; Source: None; Buffer On  
ACMP0H; 100 uA Dis; Gain: Any;  
IN PIN1; Vref = 32mV  
5.97  
6.03  
6.36  
µA  
20.80  
21.29  
22.39  
ACMP2L; Gain: Any;  
IN PIN3; Vref = 32 mV  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
1.23  
34.43  
1.48  
1.23  
35.34  
1.48  
1.25  
37.44  
1.51  
I
Current  
ACMP0H,1H; 100 uA Dis; Hyst Dis;  
Gain x1; IN PIN1, 2; Vref = 32 mV  
ACMP2L,3L; Hyst Dis; Gain x1;  
IN PIN3, 4; Vref = 32 mV  
ACMP0H; 100 uA Dis; Hyst Dis;  
Gain x1; IN VDD; Vref = 32 mV  
34.41  
24.23  
46.87  
35.75  
1.03  
35.24  
24.72  
48.39  
36.67  
1.10  
37.11  
25.97  
51.82  
38.83  
1.91  
ACMP0H; 100 uA Dis; Hyst Dis;  
Gain x1; IN BUFF PIN1; Vref = 32 mV  
ACMP0H; 100 uA EN; Hyst Dis;  
Gain x1; IN PIN1; Vref = 32 mV  
ACMP0H,1H,2L,3L; Hyst Dis; Gain x1;  
IN PIN1, 2, 3, 4; Vref = 32 mV  
ACMP0H; WS En; Force Sleep Low;  
WT Short; CNT Data = 1  
ACMP0H; WS En; Force Sleep Low;  
WT Short; CNT Data = 10  
0.39  
0.42  
0.59  
ACMP0H; WS En; Force Sleep Low;  
WT Short; CNT Data = 100  
0.27  
0.28  
0.33  
ACMP0H,1H; WS En; Force Sleep Low;  
WT Short; CNT Data = 1  
1.58  
1.68  
2.85  
ACMP0H,1H; WS En; Force Sleep Low;  
WT Short; CNT Data = 10  
0.49  
0.52  
0.76  
Datasheet  
24-Feb-2021  
Revision 3.2  
20 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 10: Typical Current Consumption Estimated for Each Macrocell at T = -40 °C to +105 °C (Continued)  
Parameter  
Description Note  
ACMP0H,1H; WS En; Force Sleep Low;  
VDD = 2.3 V VDD = 3.3 V VDD = 5.0 V  
Unit  
µA  
0.28  
1.83  
0.29  
1.97  
0.35  
3.42  
WT Short; CNT Data = 100  
ACMP0H,1H; IN BUF PIN1,2; WS En;  
Force Sleep Low; WT Short;  
CNT Data = 1  
µA  
µA  
µA  
ACMP0H,1H; IN BUF PIN1,2; WS En;  
Force Sleep Low; WT Short;  
CNT Data = 10  
0.54  
0.28  
0.57  
0.3  
0.87  
0.36  
ACMP0H,1H; IN BUF PIN1,2; WS En;  
Force Sleep Low; WT Short;  
CNT Data = 100  
ACMP0H; WS En; Force Sleep Low;  
WT Normal; CNT Data = 1  
µA  
µA  
µA  
µA  
µA  
µA  
10.76  
2.17  
0.46  
17.66  
3.43  
0.60  
11.23  
2.27  
0.49  
18.50  
3.59  
0.63  
12.58  
2.53  
0.54  
20.63  
4
ACMP0H; WS En; Force Sleep Low;  
WT Normal; CNT Data = 10  
ACMP0H; WS En; Force Sleep Low;  
WT Normal; CNT Data = 100  
I
Current  
ACMP0H,1H; WS En; Force Sleep Low;  
WT Normal; CNT Data = 1  
ACMP0H,1H; WS En; Force Sleep Low;  
WT Normal; CNT Data = 10  
ACMP0H,1H; WS En; Force Sleep Low;  
WT Normal; CNT Data = 100  
0.70  
ACMP0H,1H; IN BUF PIN1,2; WS En;  
Force Sleep Low; WT Normal;  
CNT Data = 1  
µA  
µA  
µA  
21.13  
4.06  
0.67  
22.07  
4.24  
0.70  
24.58  
4.72  
0.78  
ACMP0H,1H; IN BUF PIN1,2; WS En;  
Force Sleep Low; WT Normal;  
CNT Data = 10  
ACMP0H,1H; IN BUF PIN1,2; WS En;  
Force Sleep Low; WT Normal;  
CNT Data = 100  
3.5 TIMING CHARACTERISTICS  
Table 11: Typical Delay Estimated for Each Macrocell at T = 25 °C  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5 V  
Parameter Description Note  
Unit  
Rising Falling Rising Falling Rising Falling  
tpd  
tpd  
Delay  
Delay  
23  
24  
26  
26  
16  
17  
19  
19  
11  
12  
14  
14  
ns  
ns  
Multi-Function DFF Q  
Multi-Function DFF nQ  
Multi-Function DFF nRESET  
Q
Multi-Function DFF nRESET  
nQ  
tpd  
tpd  
Delay  
Delay  
--  
30  
--  
--  
21  
--  
--  
15  
--  
ns  
ns  
27  
18  
13  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
27  
--  
--  
19  
--  
--  
13  
--  
--  
ns  
ns  
ns  
Multi-Function DFF nSET Q  
Multi-Function DFF nSET nQ  
DFF Q  
30  
22  
22  
16  
15  
11  
18  
13  
9
Datasheet  
24-Feb-2021  
Revision 3.2  
21 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 11: Typical Delay Estimated for Each Macrocell at T = 25 °C(Continued)  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5 V  
Parameter Description Note  
Unit  
Rising Falling Rising Falling Rising Falling  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
19  
--  
22  
23  
--  
13  
--  
16  
16  
--  
9
--  
9
11  
11  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DFF nQ  
DFF nRESET Q  
19  
19  
--  
13  
13  
--  
DFF nRESET nQ  
DFF nSET Q  
--  
--  
9
--  
23  
23  
23  
24  
--  
16  
17  
17  
17  
--  
--  
9
11  
12  
12  
12  
--  
DFF nSET nQ  
19  
20  
--  
13  
14  
--  
DFF3 First Q  
10  
--  
9
DFF3 First nQ  
DFF3 First nRESET Q  
DFF3 First nRESET nQ  
DFF3 First nSET Q  
DFF3 First nSET nQ  
DFF3 Second Q  
21  
20  
--  
14  
14  
--  
--  
--  
9
--  
24  
22  
21  
24  
--  
17  
16  
15  
17  
--  
--  
8
12  
11  
11  
12  
--  
18  
19  
--  
12  
13  
--  
8
DFF3 Second nQ  
DFF3 Second nRESET Q  
DFF3 Second nRESET nQ  
DFF3 Second nSET Q  
DFF3 Second nSET nQ  
Multi-Function LATCH Q  
--  
9
20  
20  
--  
14  
13  
--  
--  
--  
9
--  
24  
25  
25  
17  
18  
19  
--  
11  
11  
12  
13  
13  
22  
23  
15  
15  
Multi-Function LATCH nQ  
Multi-Function LATCH  
nRESET Q  
Multi-Function LATCH  
nRESET nQ  
Multi-Function LATCH  
nSET Q  
Multi-Function LATCH  
nSET nQ  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
--  
28  
26  
--  
31  
--  
--  
19  
17  
--  
22  
--  
--  
13  
12  
--  
16  
--  
ns  
ns  
ns  
ns  
--  
--  
--  
29  
21  
15  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
17  
17  
--  
20  
21  
24  
--  
12  
11  
--  
14  
15  
17  
--  
8
7
10  
11  
12  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LATCH Q  
LATCH nQ  
--  
LATCH nRESET Q  
LATCH nRESET nQ  
LATCH nSET Q  
21  
18  
--  
14  
12  
--  
10  
8
--  
--  
--  
22  
21  
22  
25  
--  
15  
15  
16  
18  
--  
--  
11  
10  
11  
12  
--  
LATCH nSET nQ  
18  
18  
--  
13  
12  
--  
9
LATCH3 First Q  
8
LATCH3 First nQ  
--  
LATCH3 First nRESET Q  
LATCH3 First nRESET nQ  
LATCH3 First nSET Q  
LATCH3 First nSET nQ  
LATCH3 Second Q  
LATCH3 Second nQ  
LATCH3 Second nRESET Q  
22  
19  
--  
15  
13  
--  
10  
9
--  
--  
--  
23  
24  
23  
25  
16  
18  
17  
18  
--  
11  
12  
12  
12  
20  
21  
--  
14  
15  
--  
10  
10  
--  
Datasheet  
24-Feb-2021  
Revision 3.2  
22 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 11: Typical Delay Estimated for Each Macrocell at T = 25 °C(Continued)  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5 V  
Parameter Description Note  
Unit  
Rising Falling Rising Falling Rising Falling  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
22  
19  
--  
--  
--  
15  
13  
--  
--  
--  
10  
9
--  
--  
ns  
ns  
ns  
ns  
LATCH3 Second nRESET nQ  
LATCH3 Second nSET Q  
LATCH3 Second nSET nQ  
22  
24  
16  
17  
--  
11  
12  
22  
15  
11  
Multi-Function 3-bit LUT  
Multi-Function 3-bit LUT, CNT  
Delay  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
52  
22  
54  
54  
25  
53  
37  
15  
38  
39  
18  
38  
25  
11  
26  
27  
13  
27  
ns  
ns  
ns  
Multi-Function 4-bit LUT  
Multi-Function 4-bit LUT, CNT  
Delay  
tpd  
tpd  
Delay  
Delay  
17  
16  
17  
17  
11  
11  
12  
12  
8
8
8
9
ns  
ns  
2-bit LUT  
3-bit LUT  
Digital input to Low Voltage to  
PP 1x  
Digital input to with Schmitt  
Trigger to PP 1x  
tpd  
tpd  
Delay  
Delay  
32  
30  
226  
35  
23  
22  
153  
26  
18  
17  
90  
19  
ns  
ns  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
29  
28  
--  
34  
33  
31  
30  
21  
20  
--  
25  
24  
23  
22  
15  
15  
--  
19  
18  
17  
17  
ns  
ns  
ns  
ns  
Digital input to 1xPP  
Digital input to 2xPP  
Digital input to 1xNMOS  
--  
--  
--  
Digital input to 2xNMOS  
Digital input to 1x3-State  
(Z to 0)  
Digital input to 2x3-State  
(Z to 0)  
Digital input to 1x3-State  
(Z to 1)  
Digital input to 2x3-State  
(Z to 1)  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
--  
--  
28  
27  
--  
--  
--  
20  
20  
--  
--  
--  
15  
14  
--  
ns  
ns  
ns  
ns  
30  
29  
22  
21  
16  
16  
--  
--  
--  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tw  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Width  
Delay  
--  
30  
27  
32  
38  
26  
27  
26  
24  
23  
21  
24  
23  
21  
23  
214  
237  
28  
--  
--  
22  
19  
23  
27  
19  
19  
19  
16  
16  
15  
16  
16  
14  
16  
158  
174  
20  
--  
--  
16  
13  
16  
19  
13  
13  
13  
11  
11  
10  
11  
11  
10  
11  
116  
126  
15  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Digital input to 1xOE (Z to 0)  
Digital input to 1xOE (Z to 1)  
Ripple CNT CLK UP Q0  
Ripple CNT CLK UP Q1  
Ripple CNT CLK UP Q2  
Ripple CNT CLK DOWN Q0  
Ripple CNT CLK DOWN Q1  
Ripple CNT CLK DOWN Q2  
Ripple CNT nSET UP Q0  
Ripple CNT nSET UP Q1  
Ripple CNT nSET UP Q2  
Ripple CNT nSET DOWN Q0  
Ripple CNT nSET DOWN Q1  
Ripple CNT nSET DOWN Q2  
Edge detect  
17  
16  
15  
28  
34  
42  
49  
54  
60  
47  
46  
45  
22  
215  
238  
20  
20  
19  
21  
25  
30  
36  
39  
44  
35  
33  
33  
15  
159  
175  
14  
15  
15  
15  
18  
22  
25  
28  
31  
25  
24  
23  
10  
116  
127  
Edge detect  
tpd  
Edge detect Delayed  
Datasheet  
24-Feb-2021  
Revision 3.2  
23 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 11: Typical Delay Estimated for Each Macrocell at T = 25 °C(Continued)  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5 V  
Parameter Description Note  
Unit  
Rising Falling Rising Falling Rising Falling  
tpd  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
Delay  
167  
147  
17  
147  
168  
21  
114  
102  
12  
103  
115  
16  
71  
67  
8
68  
72  
11  
11  
--  
ns  
ns  
ns  
ns  
ns  
Filter Q  
Filter nQ  
PGen CLK  
--  
21  
--  
15  
--  
PGen nRESET (Z to 0)  
19  
--  
13  
--  
9
PGen nRESET (Z to 1)  
Pipe Delay OUT0 Q  
PD number = 1  
tpd  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
Delay  
30  
30  
31  
--  
32  
32  
35  
28  
29  
21  
21  
22  
--  
23  
24  
26  
21  
21  
15  
15  
15  
--  
17  
17  
18  
15  
15  
ns  
ns  
ns  
ns  
ns  
Pipe Delay OUT1 Q  
PD number = 1  
Pipe Delay OUT1 nQ  
PD number = 1  
Pipe Delay OUT0 nRESET Q  
PD number = 1  
Pipe Delay OUT1 nRESET Q  
PD number = 1  
--  
--  
--  
Pipe Delay OUT1  
nRESET nQ  
PD number = 1  
tpd  
Delay  
27  
--  
19  
--  
14  
--  
ns  
Table 12: Programmable Delay Expected Delays and Widths (Typical) at T = 25 °C  
Parameter  
tw  
Description  
Note  
VDD = 2.5 V VDD = 3.3V VDD = 5.0V Unit  
Pulse Width, 1 cell mode: (any) edge detect, edge detect output  
Pulse Width, 2 cell mode: (any) edge detect, edge detect output  
Pulse Width, 3 cell mode: (any) edge detect, edge detect output  
Pulse Width, 4 cell mode: (any) edge detect, edge detect output  
214  
424  
634  
844  
21  
158  
313  
467  
622  
14  
116  
229  
342  
455  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tw  
tw  
tw  
time1  
time1  
time1  
time1  
time2  
time2  
time2  
time2  
Delay, 1 cell  
Delay, 2 cell  
Delay, 3 cell  
Delay, 4 cell  
Delay, 1 cell  
Delay, 2 cell  
Delay, 3 cell  
Delay, 4 cell  
mode: (any) edge detect, edge detect output  
mode: (any) edge detect, edge detect output  
mode: (any) edge detect, edge detect output  
mode: (any) edge detect, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
21  
14  
10  
21  
14  
10  
21  
15  
10  
236  
446  
656  
866  
173  
327  
482  
637  
126  
239  
351  
464  
Table 13: Typical Filter Rejection Pulse Width at T = 25 °C  
Parameter  
VDD = 2.5 V VDD = 3.3V VDD = 5.0V  
< 123 < 84 < 52  
Unit  
Filtered Pulse Width  
ns  
Table 14: Typical Counter/Delay Offset Measurements at T = 25 °C  
Parameter  
OSC Freq  
25 MHz  
OSC Power  
auto  
VDD = 2.5 V VDD = 3.3V VDD = 5.0V  
Unit  
µs  
Power-ON time  
Power-ON time  
0.14  
0.51  
0.14  
0.46  
0.14  
0.41  
2.048 MHz  
auto  
µs  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
24 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 14: Typical Counter/Delay Offset Measurements at T = 25 °C(Continued)  
Parameter  
OSC Freq  
2.048 kHz  
25 MHz  
OSC Power  
auto  
VDD = 2.5 V VDD = 3.3V VDD = 5.0V  
Unit  
µs  
µs  
µs  
µs  
ns  
Power-ON time  
705  
4
604  
4
486  
8
frequency settling time  
frequency settling time  
frequency settling time  
variable (CLK period)  
variable (CLK period)  
variable (CLK period)  
auto  
2.048 MHz  
2.048 kHz  
25 MHz  
auto  
0.3  
0.4  
0.4  
auto  
660  
0-40  
0-0.5  
0-488  
570  
0-40  
0-0.5  
0-488  
480  
0-40  
0-0.5  
0-488  
forced  
forced  
forced  
2.048 MHz  
2.048 kHz  
µs  
µs  
25 MHz/  
2.048 kHz  
tpd (non-delayed edge)  
either  
35  
14  
10  
ns  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
25 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
3.6 OSC CHARACTERISTICS  
3.6.1 OSC Specifications  
Table 15: Oscillators Frequency Limits, VDD = 2.3 V to 5.5 V  
Temperature Range  
+25 °C  
-40 °C to +105 °C  
OSC  
Minimum  
Value, kHz  
Maximum  
Value, kHz  
Minimum  
Value, kHz  
Maximum  
Value, kHz  
Error, %  
Error, %  
-1.51  
+1.95  
-1.72  
+1.80  
-1.83  
2.17  
-10.64  
2.39  
2.048 kHz OSC0  
2.048 MHz OSC1  
25 MHz OSC2  
2.017  
2.088  
1.830  
2.097  
-4.81  
+2.05  
-5.28  
+2.30  
2012.696  
24542.143  
2084.811  
25541.706  
1949.486  
23680.428  
2089.938  
25573.976  
3.6.2 OSC Power-On Delay  
Table 16: Oscillators Power-On Delay at T = 25 °C, OSC Power Mode: "Auto Power-On"  
Oscillator2  
25 MHz  
Oscillator2 25 MHz  
Start with delay  
Oscillator1  
2.048 MHz  
Oscillator0  
2.048 kHz  
Power  
Supply  
Range  
Typical  
Maximum  
Value, ns  
Typical  
Value, ns  
Maximum  
Value, ns  
Typical  
Maximum  
Value, ns  
Typical  
Maximum  
Value, µs  
(VDD), V  
Value, ns  
43.844  
38.807  
30.497  
27.357  
24.944  
22.527  
18.789  
17.591  
Value, ns  
527.828  
505.070  
469.337  
455.916  
445.562  
434.368  
411.165  
406.866  
Value, µs  
755.871  
712.941  
639.114  
608.531  
584.415  
558.844  
511.201  
485.845  
2.3  
2.5  
3.0  
3.3  
3.6  
4.0  
5.0  
5.5  
59.862  
51.244  
40.400  
36.686  
33.393  
30.599  
25.868  
24.709  
145.991  
144.046  
141.900  
141.517  
141.397  
141.366  
141.627  
141.713  
163.927  
162.859  
163.675  
164.780  
165.476  
166.690  
168.998  
169.854  
558.805  
541.510  
511.057  
497.886  
487.231  
475.042  
453.440  
445.683  
1141.833  
1066.115  
930.827  
873.573  
827.475  
777.883  
686.248  
642.574  
3.7 ACMP SPECIFICATIONS  
Table 17: ACMP Specifications at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Parameter Description  
Note  
Condition  
Min  
Typ  
Max  
Unit  
ACMP0H,  
Positive Input  
0
--  
VDD  
V
ACMP1H,ACMP2L,  
ACMP3L  
VACMP  
Negative Input  
0
--  
VDD  
V
Input Voltage Range  
Datasheet  
24-Feb-2021  
Revision 3.2  
26 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 17: ACMP Specifications at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Note  
Condition  
Min  
-8.765  
-8.765  
-7.511  
-7.937  
-5.656  
-5.942  
-4.968  
-5.387  
-3.610  
-4.741  
-4.174  
-4.436  
--  
Typ  
Max  
5.135  
5.212  
4.086  
4.143  
6.200  
6.400  
6.220  
6.295  
9.525  
9.964  
8.894  
9.266  
43.386  
61.280  
Unit  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
µs  
T = 25 °C  
--  
ACMP0H, ACMP1H  
Input Offset Voltage  
--  
Vhys = 0 mV, Gain = 1,  
Vref = 32 mV  
T = 25 °C  
T = 25 °C  
T = 25 °C  
T = 25 °C  
T = 25 °C  
T = 25 °C  
T = 25 °C  
--  
ACMP2L, ACMP3L  
Input Offset Voltage  
--  
--  
ACMP0H, ACMP1H  
Input Offset Voltage  
--  
Vhys = 0 mV, Gain = 1,  
Vref = 1024 mV  
Voffset  
--  
ACMP2L, ACMP3L  
Input Offset Voltage  
--  
--  
--  
ACMP0H, ACMP1H  
Input Offset Voltage  
Vhys = 0 mV, Gain = 1,  
Vref = 2016 mV  
--  
ACMP2L, ACMP3L  
Input Offset Voltage  
--  
25.340  
25.065  
ACMP0H, ACMP1H  
Start Time  
ACMP Power-On delay,  
Minimal required wake  
time for the “Wake and  
Sleep function”  
--  
µs  
tstart  
--  
133.910 267.936  
138.254 358.760  
µs  
ACMP2L, ACMP3L  
Start Time  
--  
µs  
V
HYS = 32 mV  
T = 25 °C  
T = 25 °C  
T = 25 °C  
21.287  
53.756  
182.832  
20.837  
52.266  
181.522  
23.977  
57.066  
184.021  
23.410  
55.246  
183.259  
--  
--  
--  
39.111  
71.486  
mV  
mV  
VHYS = 64 mV  
VHYS = 192 mV  
VHYS = 32 mV  
VHYS = 64 mV  
VHYS = 192 mV  
--  
199.421 mV  
ACMP0H, ACMP1H  
Built-in Hysteresis  
--  
39.552  
71.486  
mV  
mV  
--  
--  
199.621 mV  
VHYS  
V
HYS = 32 mV  
T = 25 °C  
T = 25 °C  
T = 25 °C  
--  
39.375  
72.087  
mV  
mV  
VHYS = 64 mV  
VHYS = 192 mV  
VHYS = 32 mV  
VHYS = 64 mV  
VHYS = 192 mV  
Gain = 1x  
--  
--  
200.268 mV  
ACMP2L, ACMP3L  
Built-in Hysteresis  
--  
39.910  
72.207  
mV  
mV  
--  
--  
200.645 mV  
100.0  
2.0  
2.0  
2.0  
1.622  
--  
--  
MΩ  
MΩ  
MΩ  
MΩ  
µs  
Gain = 0.5x  
--  
Rsin  
Input Resistance  
Gain = 0.33x  
Gain = 0.25x  
--  
--  
--  
--  
Gain = 1,  
Vref=32mVto2016mV,  
Overdrive = 10 mV  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
--  
2.708  
--  
--  
--  
--  
--  
2.319  
0.527  
0.530  
1.521  
1.744  
4.505  
1.179  
0.968  
--  
µs  
µs  
µs  
µs  
µs  
Propagation Delay,  
Response Time  
for ACMP0H,  
ACMP1H  
Gain = 1,  
Vref = 32 mV to 2016 mV,  
Overdrive = 100 mV  
PROP  
Gain = 1, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 10 mV  
--  
Datasheet  
24-Feb-2021  
Revision 3.2  
27 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 17: ACMP Specifications at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Note  
Condition  
Min  
Typ  
Max  
Unit  
Gain = 0.5, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 10 mV  
Low to High  
--  
2.268  
--  
µs  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
2.089  
2.156  
1.979  
2.037  
1.856  
0.567  
0.783  
0.752  
0.700  
0.738  
0.690  
0.715  
0.670  
47.879  
--  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Gain = 0.33, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 10 mV  
--  
--  
Gain = 0.25, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 10 mV  
--  
--  
Propagation Delay,  
Response Time  
for ACMP0H,  
ACMP1H  
Gain = 1, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 100 mV  
--  
PROP  
--  
Gain = 0.5, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 100 mV  
--  
--  
Gain = 0.33, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 100 mV  
--  
--  
--  
Gain = 0.25, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 100 mV  
--  
Gain = 1,  
Vref = 32 mV to 2016 mV,  
Overdrive = 10 mV  
88.052  
54.803 109.606  
Gain = 1,  
Vref = 32 mV to 2016 mV,  
Overdrive = 100 mV  
18.008  
17.701  
70.241  
66.944  
61.681  
52.956  
60.891  
52.603  
61.228  
52.796  
28.322  
41.648  
25.301  
24.212  
25.022  
24.124  
24.937  
24.097  
38.364  
38.578  
Gain = 1, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 10 mV  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Gain = 0.5, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 10 mV  
Gain = 0.33, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 10 mV  
Propagation Delay,  
Response Time  
for ACMP2L,  
PROP  
Gain = 0.25, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 10 mV  
ACMP3L  
Gain = 1, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 100 mV  
Gain = 0.5, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 100 mV  
Gain = 0.33, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 100 mV  
Gain = 0.25, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 100 mV  
Datasheet  
24-Feb-2021  
Revision 3.2  
28 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 17: ACMP Specifications at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Note  
Condition  
Min  
--  
Typ  
1
Max  
--  
Unit  
G = 1  
Gainerror (including  
threshold and  
internal Vref error)  
G = 0.5  
G = 0.33  
G = 0.25  
0.446  
0.302  
0.227  
0.501  
0.335  
0.251  
0.544  
0.363  
0.272  
G
Internal Vref0 error,  
Vref0 =  
VDD = 4.0 V  
T = 25 °C  
-2.465  
--  
0.633  
%
32 mV to 2016 mV  
Vref0 Output error,  
Vref0 =  
224 mV to 2016 mV,  
T = 25 °C,  
-10.319  
-10.923  
--  
--  
--  
--  
3.514  
3.755  
5
%
%
Loading = 1 mA  
Loading = 1 mA  
Buffer Enabled  
Load Resistance =  
pF  
1 MΩ  
Load Resistance =  
--  
--  
--  
--  
--  
--  
--  
--  
10  
40  
pF  
pF  
pF  
pF  
560 kΩ  
Load Resistance =  
100 kΩ  
Vref0 Output  
Capacitance  
Loading  
Load Resistance =  
80  
10 kΩ  
Load Resistance =  
120  
2 kΩ  
Load Resistance =  
1 kΩ,  
Vref = 32 mV to  
1024 mV  
--  
--  
--  
150  
pF  
%
Vref  
Internal Vref1 error,  
Vref1 =  
V
DD = 4.0 V  
T = 25 °C  
-2.855  
1.480  
32 mV to 2016 mV  
Vref1 Output error,  
Vref1 =  
224 mV to 2016 mV,  
Buffer Enabled  
T = 25 °C,  
-11.220  
-12.731  
--  
--  
--  
--  
2.915  
2.720  
15  
%
%
Loading = 1 mA  
Loading = 1 mA  
Load Resistance =  
pF  
1 MΩ  
Load Resistance =  
--  
--  
--  
--  
--  
--  
--  
--  
27  
64  
pF  
pF  
pF  
pF  
560 kΩ  
Load Resistance =  
100 kΩ  
Vref1 Output  
Capacitance  
Loading  
Load Resistance =  
120  
180  
10 kΩ  
Load Resistance =  
2 kΩ  
Load Resistance =  
1 kΩ,  
Vref = 32 mV to  
1024 mV  
--  
--  
210  
pF  
Datasheet  
24-Feb-2021  
Revision 3.2  
29 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 17: ACMP Specifications at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Note  
Condition  
Min  
Typ  
Max  
Unit  
VDD = 2.3 V,  
VIN = VDD - 0.7 V  
22.567 104.679 139.873 µA  
66.853 104.512 126.130 µA  
69.223 109.215 142.554 µA  
Input Current  
Source  
VDD = 3.3 V,  
VIN = VDD - 0.7 V  
Is  
VDD = 5.5 V,  
VIN = VDD - 0.7 V  
3.8 ANALOG TEMPERATURE SENSOR CHARACTERISTICS  
Temperature Sensor typical nonlinearity ±2.74% for output range 1 and ±2.69% for output range 2 at VDD = 3.3 V.  
Table 18: TS Output vs Temperature (Output Range 1)  
VDD = 2.3 V  
Typical, mV  
VDD = 3.3 V  
Typical, mV  
VDD = 5.5 V  
Typical, mV  
T, °C  
Accuracy, %  
±1.59  
±1.64  
±1.63  
±1.55  
±1.58  
±1.57  
±1.63  
±1.56  
±1.71  
±1.73  
±1.89  
±1.84  
±1.85  
±2.23  
±2.03  
±2.00  
±2.07  
Accuracy, %  
±1.52  
±1.58  
±1.61  
±1.54  
±1.59  
±1.59  
±1.54  
±1.58  
±1.6  
Accuracy, %  
±1.49  
±1.57  
±1.55  
±1.56  
±1.73  
±1.74  
±1.70  
±1.71  
±1.71  
±1.71  
±1.85  
±1.79  
±2.00  
±2.43  
±2.08  
±1.96  
±1.98  
-40  
-30  
-20  
-10  
0
997  
975  
952  
930  
907  
884  
861  
851  
837  
814  
790  
767  
743  
719  
694  
671  
659  
995  
973  
950  
928  
905  
882  
860  
849  
836  
812  
789  
765  
741  
717  
693  
669  
657  
995  
973  
951  
929  
905  
882  
860  
849  
836  
813  
789  
766  
741  
717  
693  
670  
658  
10  
20  
25  
30  
40  
±1.75  
±1.78  
±1.85  
±1.89  
±2.30  
±1.89  
±1.98  
±1.06  
50  
60  
70  
80  
90  
100  
105  
Table 19: TS Output vs Temperature (Output Range 2)  
VDD = 2.3 V  
T, °C  
VDD = 3.3 V  
VDD = 5.5 V  
Typical, mV  
1205  
Accuracy, %  
±1.67  
Typical, mV  
1202  
Accuracy, %  
±1.42  
Typical, mV  
1202  
Accuracy, %  
±1.38  
-40  
-30  
-20  
-10  
0
1178  
±2.09  
1175  
±1.44  
1175  
±1.43  
1151  
±2.59  
1148  
±1.51  
1148  
±1.54  
1124  
±2.21  
1121  
±1.49  
1122  
±1.53  
1096  
±1.80  
1094  
±1.50  
1094  
±1.65  
10  
20  
25  
30  
1068  
±1.72  
1066  
±1.59  
1067  
±1.63  
1041  
±1.61  
1039  
±1.52  
1039  
±1.68  
1027  
±1.70  
1025  
±1.62  
1026  
±1.63  
1012  
±1.71  
1010  
±1.66  
1010  
±1.73  
Datasheet  
24-Feb-2021  
Revision 3.2  
30 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 19: TS Output vs Temperature (Output Range 2)(Continued)  
VDD = 2.3 V  
VDD = 3.3 V  
VDD = 5.5 V  
T, °C  
Typical, mV  
Accuracy, %  
±1.71  
Typical, mV  
Accuracy, %  
±1.65  
Typical, mV  
Accuracy, %  
±1.74  
40  
50  
984  
955  
927  
897  
868  
839  
810  
796  
982  
953  
925  
895  
866  
837  
808  
793  
982  
954  
926  
895  
866  
837  
809  
794  
±1.84  
±1.81  
±1.77  
60  
±1.85  
±1.80  
±1.75  
70  
±1.82  
±1.80  
±1.92  
80  
±2.14  
±2.14  
±2.28  
90  
±1.94  
±1.88  
±1.99  
100  
105  
±2.06  
±1.99  
±1.94  
±2.05  
±2.11  
±2.04  
Table 20: TS Output Error (Output Range 1)  
VDD, V  
Error at T  
-40 °C, % -20 °C, %  
0 °C, %  
20 °C, %  
40 °C, %  
1.73  
60 °C, %  
1.84  
80 °C, % 100 °C, % 105 °C, %  
2.30  
3.30  
4.00  
5.50  
1.59  
1.52  
1.48  
1.49  
1.63  
1.61  
1.57  
1.55  
1.58  
1.59  
1.55  
1.73  
1.63  
1.54  
1.50  
1.70  
2.23  
2.30  
2.42  
2.43  
2.00  
1.98  
1.93  
1.96  
2.07  
2.06  
2.00  
1.98  
1.75  
1.85  
1.71  
1.79  
1.71  
1.79  
Table 21: TS Output Error (Output Range 2)  
VDD, V  
Error at T  
40 °C, %  
1.71  
-40 °C, % -20 °C, %  
0 °C, %  
20 °C, %  
1.61  
60 °C, %  
1.85  
80 °C, % 100 °C, % 105 °C, %  
2.30  
3.30  
4.00  
5.50  
1.67  
1.42  
1.46  
1.38  
2.59  
1.51  
1.54  
1.54  
1.80  
1.50  
1.58  
1.65  
2.14  
2.14  
2.22  
2.28  
2.06  
1.99  
2.07  
1.94  
2.05  
2.11  
2.06  
2.04  
1.52  
1.65  
1.80  
1.60  
1.71  
1.76  
1.68  
1.74  
1.75  
Datasheet  
24-Feb-2021  
Revision 3.2  
31 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
4
In-System Debug  
In the development phase, the SLG46827-A is a user programmable device with Multiple-Time-Programmable (MTP) memory  
elements that are able to configure the connection matrix and macrocells. A programming development kit allows the user the  
ability to create initial devices. Once the design is finalized, the programming code (.gpx file) is forwarded to Dialog  
Semiconductor to integrate into a production process. At this point, software write protection will be permanently set and the In-  
System debug feature will no longer be available to the user.  
Product  
Definition  
E-mail Product Idea, Definition, Drawing or  
Customer creates their own design in  
Schematic to  
GreenPAK Designer  
CMBUGreenPAK@diasemi.com  
Dialog Semiconductor Applications  
Engineer will review design specifications  
with customer  
Customer verifies GreenPAK in system  
design  
GreenPAK Design  
approved  
Samples, Design and Characterization  
Report send to customer  
GreenPAK Design  
approved  
Customers verifies GreenPAK design  
GreenPAK Design  
Approved in system test  
Custom GreenPAK part enters production  
Figure 2: Steps to Create a Custom GreenPAK Device  
Datasheet  
24-Feb-2021  
Revision 3.2  
32 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
5
IO Pins  
5.1 IO PINS  
The SLG46827-A has a total of 13 GPIO, 2 GPO, and 2 GPI Pins which can function as either a user defined Input or Output, as  
well as serving as a special function (such as outputting the voltage reference).  
5.2 GPIO PINS  
IO0, IO1, IO2, IO3, IO4, IO5, IO8, IO9, IO10, IO11, IO12, IO13, IO14 serve as General Purpose IO Pins.  
5.3 GPO PINS  
IO6 and IO7 serve as General Purpose Output Pins.  
5.4 GPI PINS  
SCL and SDA serve as General Purpose Input Pins.  
5.5 PULL-UP/DOWN RESISTORS  
All IO Pins have the option of user-selectable resistors that can be connected to the pin structure. The selectable values on these  
resistors are 10 k, 100 kΩ, and 1 M. The internal resistors can be configured as either Pull-up or Pull-downs.  
5.6 FAST PULL-UP/DOWN DURING POWER-UP  
During power-up, IO pull-up/down resistance will switch to 2.6 kinitially and then it will switch to normal setting value. This  
function is enabled by register [768].  
Datasheet  
24-Feb-2021  
Revision 3.2  
33 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
5.7 I2C MODE IO STRUCTURE (VDD OR VDD2  
5.7.1 I2C Mode Structure (for SCL and SDA)  
)
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
01: Reserved  
10: Low Voltage Digital In mode 1, lv_en = 1  
11: Reserved  
VDD  
PAD  
Non-Schmitt  
Trigger Input  
WOSMT_EN  
Digital IN  
VDD  
Low Voltage  
Input 1  
LV_EN  
I2C SDA Signal  
Only used when  
I2C is selected  
not available for direct user control  
Figure 3: IO with I2C Mode IO Structure Diagram  
Datasheet  
24-Feb-2021  
Revision 3.2  
34 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
5.8 MATRIX OE IO STRUCTURE (VDD OR VDD2  
)
5.8.1 Matrix OE IO Structure (for IOs 1, 4, 5 with VDD, and IOs 8, 9, 10, 11, 12, 13, 14 with VDD2  
)
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
01: Digital In with Schmitt Trigger, smt_en = 1  
WOSMT_EN  
Schmitt  
Trigger Input  
10: Low Voltage Digital In mode, lv_en = 1  
11: analog IO mode  
Digital IN  
Output Mode [1:0]  
00: Push-Pull 1x mode, pp1x_en = 1  
01: Push-Pull 2x mode, pp2x_en = 1, pp1x_en = 1  
10: NMOS 1x Open-Drain mode, od1x_en = 1  
11: NMOS 2x Open-Drain mode, od2x_en = 1, od1x_en = 1  
SMT_EN  
LV_EN  
Low Voltage  
Input  
Note 1: Digital Out and OE are Matrix Output, Digital In is Matrix Input  
Note 2: Can be varied over PVT, for reference only.  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
VDD or VDD2  
s1  
s0  
172 Ω  
(Note 2)  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
V
DD or VDD2  
[1:0]  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
Digital OUT  
Digital OUT  
OE  
OE  
OD1x_EN  
PP1x_EN  
VDD or VDD2  
PAD  
VDD or VDD2  
Digital OUT  
Digital OUT  
OE  
OE  
OD2x_EN  
PP2x_EN  
Figure 4: Matrix OE IO Structure Diagram  
Datasheet  
24-Feb-2021  
Revision 3.2  
35 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
5.9 REGISTER OE IO STRUCTURE (VDD OR VDD2  
)
5.9.1 Register OE IO Structure (for IOs 0, 2, 3 with VDD  
)
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1, OE = 0  
01: Digital In with Schmitt Trigger, smt_en = 1, OE = 0  
10: Low Voltage Digital In mode, lv_en = 1, OE = 0  
11: Reserved  
WOSMT_EN  
SMT_EN  
OE  
OE  
Schmitt  
Trigger Input  
Digital IN  
Output Mode [1:0]  
00: Push-Pull 1x mode, pp1x_en = 1, OE = 1  
01: Push-Pull 2x mode, pp2x_en = 1, OE = 1  
10: 1x Open-Drain mode, od1x_en = 1, OE = 1  
11: 2x Open-Drain mode, od2x_en = 1, OE = 1  
Low Voltage  
Input  
Note 1: OE cannot be selected by user and is controlled by register  
Note 2: Can be varied over PVT, for reference only  
LV_EN  
OE  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
VDD  
s1  
s0  
172 Ω  
(Note 2)  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
VDD  
[1:0]  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
Digital OUT  
OE  
Digital OUT  
OE  
1x_en  
odn_en  
1x_en  
pp_en  
VDD  
PAD  
VDD  
Digital OUT  
Digital OUT  
OE  
OE  
2x_en  
pp_en  
2x_en  
odn_en  
Figure 5: GPIO Register OE IO Structure Diagram  
Datasheet  
24-Feb-2021  
Revision 3.2  
36 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
5.10 REGISTER OE IO STRUCTURE (VDD OR VDD2  
)
5.10.1 Register OE IO Structure (for IO 6 with VDD, and IO 7 with VDD2  
)
Mode [2:0]  
000: Reserved  
001: Reserved  
010: Reserved  
011: Reserved  
100: Push-Pull mode, pp_en = 1, OE = 1  
101: NMOS Open-Drain mode, odn_en = 1, OE = 1  
110: PMOS Open-Drain mode, odp_en = 1, OE = 1  
111: analog IO and NMOS Open-Drain mode, odn_en = 1 and aio_en=1  
Floating  
s0  
s1  
s2  
s3  
VDD or VDD2  
Note: OE cannot be selected by user and is controlled by register  
s1  
s0  
VDD or VDD2  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
[1:0]  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
odp_EN  
Digital OUT  
OE  
Digital OUT  
OE  
pp_en  
1x_en  
odn_EN  
VDD or VDD2  
PAD  
VDD or VDD2  
odp_EN  
Digital OUT  
OE  
Digital OUT  
OE  
2x_en  
pp_en  
2x_en  
odn_en  
Figure 6: GPIO Register OE IO Structure Diagram  
Datasheet  
24-Feb-2021  
Revision 3.2  
37 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
5.11 IO TYPICAL PERFORMANCE  
Figure 7: Typical High Level Output Current vs. High Level Output Voltage  
80  
NMOS 1x @ VDD = 5.5 V  
NMOS 1x @ VDD = 4 V  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
NMOS 1x @ VDD = 3.3 V  
NMOS 1x @ VDD = 2.3 V  
Push-Pull 1x @ VDD = 5.5 V  
Push-Pull 1x @ VDD = 4 V  
Push-Pull 1x @ VDD = 3.3 V  
Push-Pull 1x @ VDD = 2.3 V  
0
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
VOL (V)  
Figure 8: Typical Low Level Output Current vs. Low Level Output Voltage (for 1x Drive)  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
38 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
160  
NMOS 2x @ VDD = 5.5 V  
150  
NMOS 2x @ VDD = 4 V  
140  
NMOS 2x @ VDD = 3.3 V  
130  
NMOS 2x @ VDD = 2.3 V  
120  
Push-Pull 2x @ VDD = 5.5 V  
110  
Push-Pull 2x @ VDD = 4 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Push-Pull 2x @ VDD = 3.3 V  
Push-Pull 2x @ VDD = 2.3 V  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
VOL (V)  
Figure 9: Typical Low Level Output Current vs. Low Level Output Voltage (for 2x Drive)  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
39 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
6
Connection Matrix  
The Connection Matrix in the SLG46827-A is used to create the internal routing for internal functional macrocells of  
the device once it is programmed. The registers are programmed from the multiple-time NVM cell during Test Mode  
Operation. The output of each functional macrocell within the SLG46827-A has a specific digital bit code assigned  
to it that is either set to active “High” or inactive “Low”, based on the design that is created. Once the 2048 register  
bits within the SLG46827-A are programmed a fully custom circuit will be created.  
The Connection Matrix has 64 inputs and 96 outputs. Each of the 64 inputs to the Connection Matrix is hard-wired to  
the digital output of a particular source macrocell, including IOs, LUTs, analog comparators, other digital resources,  
such as VDD and GND. The input to a digital macrocell uses a 6-bit register to select one of these 64 input lines.  
For a complete list of the SLG46827-A’s register table, see Section 18.  
Matrix Input Signal  
N
Functions  
GND  
0
1
2
3
IO0 Digital In  
IO1 Digital In  
IO2 Digital In  
62  
63  
POR OUT  
V
DD  
Matrix Inputs  
N
0
1
2
95  
Registers  
registers [5:0]  
registers [11:6]  
registers [17:12]  
registers [575:570]  
Matrix OUT: IN0 of  
LUT2_0 or Clock  
Input of DFF0  
Matrix OUT: IN1 of  
LUT2_0 or Data  
Input of DFF0  
Matrix Out: IN0 of  
LUT2_1 or Clock  
Input of PGen  
Function  
Matrix Output 95  
Matrix Outputs  
Figure 10: Connection Matrix  
Function  
Connection Matrix  
IO13  
IO12  
LUT  
IO12  
IO13  
IO14  
LUT  
IO14  
Figure 11: Connection Matrix Example  
Datasheet  
24-Feb-2021  
Revision 3.2  
40 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
6.1 MATRIX INPUT TABLE  
Table 22: Matrix Input Table  
Matrix Decode  
Matrix Input  
Matrix Input Signal Function  
Number  
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
GND  
1
IO0 Digital Input  
2
IO1 Digital Input  
3
IO2 Digital Input  
4
IO3 Digital Input  
5
IO4 Digital Input  
6
IO5 Digital Input  
7
IO8 Digital Input  
8
IO9 Digital Input  
9
IO10 Digital Input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
IO11 Digital Input  
IO12 Digital Input  
IO13 Digital Input  
IO14 Digital Input  
LUT2_0_DFF0_OUT  
LUT2_1_DFF1_OUT  
LUT2_2_DFF2_OUT  
LUT2_3_PGEN_OUT  
LUT3_0_DFF3_OUT  
LUT3_1_DFF4_OUT  
LUT3_2_DFF5_OUT  
LUT3_3_DFF6_OUT  
LUT3_4_DFF7_OUT  
LUT3_5_DFF8_OUT  
LUT3_6_PIPEDLY_RIPP_CNT_OUT0  
PIPEDLY_RIPP_CNT_OUT1  
RIPP_CNT_OUT2  
EDET_FILTER_OUT  
PROG_DLY_EDET_OUT  
MULTFUNC_8BIT_1: DLY_CNT_OUT  
CKOSC1_MATRIX: OSC1 matrix input  
CKOSC0_MATRIX: OSC0 matrix input  
CKOSC2_MATRIX: OSC2 matrix input  
MULTFUNC_8BIT_2: DLY_CNT_OUT  
MULTFUNC_8BIT_3: DLY_CNT_OUT  
MULTFUNC_8BIT_4: DLY_CNT_OUT  
MULTFUNC_8BIT_5: DLY_CNT_OUT  
MULTFUNC_8BIT_6: DLY_CNT_OUT  
Datasheet  
24-Feb-2021  
Revision 3.2  
41 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 22: Matrix Input Table(Continued)  
Matrix Decode  
Matrix Input  
Matrix Input Signal Function  
Number  
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
MULTFUNC_8BIT_7: DLY_CNT_OUT  
MULTFUNC_16BIT_0: LUT_DFF_OUT  
MULTFUNC_8BIT_1: LUT_DFF_OUT  
MULTFUNC_8BIT_2: LUT_DFF_OUT  
MULTFUNC_8BIT_3: LUT_DFF_OUT  
MULTFUNC_8BIT_4: LUT_DFF_OUT  
MULTFUNC_8BIT_5: LUT_DFF_OUT  
MULTFUNC_8BIT_6: LUT_DFF_OUT  
MULTFUNC_8BIT_7: LUT_DFF_OUT  
MULTFUNC_16BIT_0: DLY_CNT_OUT  
2
I C_virtual_7 Input: register [976]  
2
I C_virtual_6 Input: register [977]  
2
I C_virtual_5 Input: register [978]  
2
I C_virtual_4 Input: register [979]  
2
I C_virtual_3 Input: register [980]  
2
I C_virtual_2 Input: register [981]  
2
I C_virtual_1 Input: register [982]  
2
I C_virtual_0 Input: register [983]  
ACMP0H_OUT  
ACMP1H_OUT  
ACMP2L_OUT  
ACMP3L_OUT  
2nd CKOSC1_MATRIX  
2nd CKOSC0_MATRIX  
POR OUT  
V
DD  
6.2 MATRIX OUTPUT TABLE  
Table 23: Matrix Output Table  
Register Bit  
Address  
Matrix Output  
Number  
Matrix Output Signal Function  
[5:0]  
IN0 of LUT2_0 or Clock Input of DFF0  
IN1 of LUT2_0 or Data Input of DFF0  
IN0 of LUT2_3 or Clock Input of PGen  
IN1 of LUT2_3 or nRST of PGen  
0
1
2
3
4
5
6
7
8
[11:6]  
[17:12]  
[23:18]  
[29:24]  
[35:30]  
[41:36]  
[47:42]  
[53:48]  
IN0 of LUT2_1 or Clock Input of DFF1  
IN1 of LUT2_1 or Data Input of DFF1  
IN0 of LUT2_2 or Clock Input of DFF2  
IN1 of LUT2_2 or Data Input of DFF2  
IN0 of LUT3_0 or Clock Input of DFF3  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
42 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 23: Matrix Output Table(Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
[59:54]  
[65:60]  
IN1 of LUT3_0 or Data Input of DFF3  
IN2 of LUT3_0 or nRST(nSET) of DFF3  
IN0 of LUT3_1 or Clock Input of DFF4  
IN1 of LUT3_1 or Data Input of DFF4  
IN2 of LUT3_1 or nRST(nSET) of DFF4  
IN0 of LUT3_2 or Clock Input of DFF5  
IN1 of LUT3_2 or Data Input of DFF5  
IN2 of LUT3_2 or nRST(nSET) of DFF5  
IN0 of LUT3_3 or Clock Input of DFF6  
IN1 of LUT3_3 or Data Input of DFF6  
IN2 of LUT3_3 or nRST(nSET) of DFF6  
IN0 of LUT3_4 or Clock Input of DFF7  
IN1 of LUT3_4 or Data Input of DFF7  
IN2 of LUT3_4 or nRST(nSET) of DFF7  
IN0 of LUT3_5 or Clock Input of DFF8  
IN1 of LUT3_5 or Data Input of DFF8  
IN2 of LUT3_5 or nRST(nSET) of DFF8  
IN0 of LUT3_6 or Input of Pipe Delay or UP Signal of RIPP CNT  
IN1 of LUT3_6 or nRST of Pipe Delay or STB of RIPP CNT  
IN2 of LUT3_6 or Clock of Pipe Delay_RIPP_CNT  
Reserved  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
[71:66]  
[77:72]  
[83:78]  
[89:84]  
[95:90]  
[101:96]  
[107:102]  
[113:108]  
[119:114]  
[125:120]  
[131:126]  
[137:132]  
[143:138]  
[149:144]  
[155:150]  
[161:156]  
[167:162]  
[173:168]  
[179:174]  
MULTFUNC_16BIT_0: IN0 of LUT4_0 or Clock Input of DFF9;  
Delay0 Input (or Counter0 RST/SET Input)  
[185:180]  
[191:186]  
[197:192]  
[203:198]  
[209:204]  
[215:210]  
[221:216]  
[227:222]  
[233:228]  
[239:234]  
[245:240]  
MULTFUNC_16BIT_0: IN1 of LUT4_0 or nRST of DFF9;  
Delay0 Input (or Counter0 nRST Input) or Delay/Counter0 External Clock Source  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
MULTFUNC_16BIT_0: IN2 of LUT4_0 or nSET of DFF9 or KEEP Input of FSM0 or  
External Clock Input of Delay0 (or Counter0)  
MULTFUNC_16BIT_0: IN3 of LUT4_0 or Data Input of DFF9;  
Delay0 Input (or Counter0 nRST Input) or UP Input of FSM0  
MULTFUNC_8BIT_1: IN0 of LUT3_7 or Clock Input of DFF10;  
Delay1 Input (or Counter1 nRST Input)  
MULTFUNC_8BIT_1: IN1 of LUT3_7 or nRST (nSET) of DFF10;  
Delay1 Input (or Counter1 nRST Input) or Delay/Counter1 External Clock Source  
MULTFUNC_8BIT_1: IN2 of LUT3_7 or Data Input of DFF10;  
Delay1 Input (or Counter1 nRST Input)  
MULTFUNC_8BIT_2: IN0 of LUT3_8 or Clock Input of DFF11;  
Delay2 Input (or Counter2 nRST Input)  
MULTFUNC_8BIT_2: IN1 of LUT3_8 or nRST (nSET) of DFF11;  
Delay2 Input (or Counter2 nRST Input) or Delay/Counter2 External Clock Source  
MULTFUNC_8BIT_2: IN2 of LUT3_8 or Data Input of DFF11;  
Delay2 Input (or Counter2 nRST Input)  
MULTFUNC_8BIT_3: IN0 of LUT3_9 or Clock Input of DFF12;  
Delay3 Input (or Counter3 nRST Input)  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
43 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 23: Matrix Output Table(Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
MULTFUNC_8BIT_3: IN1 of LUT3_9 or nRST (nSET) of DFF12;  
[251:246]  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
Delay3 Input (or Counter3 nRST Input) or Delay/Counter3 External Clock Source  
MULTFUNC_8BIT_3: IN2 of LUT3_9 or Data Input of DFF12;  
Delay3 Input (or Counter3 nRST Input)  
[257:252]  
MULTFUNC_8BIT_4: IN0 of LUT3_10 or Clock Input of DFF13;  
Delay4 Input (or Counter4 nRST Input)  
[263:258]  
MULTFUNC_8BIT_4: IN1 of LUT3_10 or nRST (nSET) of DFF13;  
[269:264]  
Delay4 Input (or Counter4 nRST Input) or Delay/Counter4 External Clock Source  
MULTFUNC_8BIT_4: IN2 of LUT3_10 or Data Input of DFF13;  
Delay4 Input (or Counter4 nRST Input)  
[275:270]  
MULTFUNC_8BIT_5: IN0 of LUT3_11 or Clock Input of DFF14;  
Delay5 Input (or Counter5 nRST Input)  
[281:276]  
MULTFUNC_8BIT_5: IN1 of LUT3_11 or nRST (nSET) of DFF14;  
[287:282]  
Delay5 Input (or Counter5 nRST Input) or Delay/Counter5 External Clock Source  
MULTFUNC_8BIT_5: IN2 of LUT3_11 or Data Input of DFF14;  
Delay5 Input (or Counter5 nRST Input)  
[293:288]  
MULTFUNC_8BIT_6: IN0 of LUT3_12 or Clock Input of DFF15;  
Delay6 Input (or Counter6 nRST Input)  
[299:294]  
MULTFUNC_8BIT_6: IN1 of LUT3_12 or nRST (nSET) of DFF15;  
[305:300]  
Delay6 Input (or Counter6 nRST Input) or Delay/Counter6 External Clock Source  
MULTFUNC_8BIT_6: IN2 of LUT3_12 or Data Input of DFF15;  
Delay6 Input (or Counter6 nRST Input)  
[311:306]  
MULTFUNC_8BIT_7: IN0 of LUT3_13 or Clock Input of DFF16;  
Delay7 Input (or Counter7 nRST Input)  
[317:312]  
MULTFUNC_8BIT_7: IN1 of LUT3_13 or nRST (nSET) of DFF16;  
[323:318]  
Delay7 Input (or Counter7 nRST Input) or Delay/Counter7 External Clock Source  
MULTFUNC_8BIT_7: IN2 of LUT3_13 or Data Input of DFF16;  
Delay7 Input (or Counter7 nRST Input)  
[329:324]  
[335:330]  
[341:336]  
[347:342]  
[353:348]  
[359:354]  
[365:360]  
[371:366]  
[377:372]  
[383:378]  
[389:384]  
[395:390]  
[401:396]  
[407:402]  
[413:408]  
[419:414]  
[425:420]  
Filter/Edge detect input  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
Programmable delay/edge detect input  
OSC2 ENABLE from matrix  
OSC0 ENABLE from matrix  
OSC1 ENABLE matrix  
Temp sensor and Vref PD from matrix  
BG power-down from matrix  
PWR UP of ACMP0H from matrix  
PWR UP of ACMP1H from matrix  
PWR UP of ACMP2L from matrix  
PWR UP of ACMP3L from matrix  
Reserved  
IO0 Digital Output  
IO1 Digital Output  
IO1 Digital Output OE  
IO2 Digital Output  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
44 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 23: Matrix Output Table(Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
[431:426]  
[437:432]  
[443:438]  
[449:444]  
[455:450]  
[461:456]  
[467:462]  
[473:468]  
[479:474]  
[485:480]  
[491:486]  
[497:492]  
[503:498]  
[509:504]  
[515:510]  
[521:516]  
[527:522]  
[533:528]  
[539:534]  
[545:540]  
[551:546]  
[557:552]  
[563:558]  
[569:564]  
[575:570]  
IO3 Digital Output  
IO4 Digital Output  
IO4 Digital Output OE  
IO5 Digital Output  
IO5 Digital Output OE  
IO6 Digital Output  
IO7 Digital Output  
IO8 Digital Output  
IO8 Digital Output OE  
IO9 Digital Output  
IO9 Digital Output OE  
IO10 Digital Output  
IO10 Digital Output OE  
IO11 Digital Output  
IO11 Digital Output OE  
IO12 Digital Output  
IO12 Digital Output OE  
IO13 Digital Output  
IO13 Digital Output OE  
IO14 Digital Output  
IO14 Digital Output OE  
Reserved  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
Reserved  
Matrix OUT 94  
Matrix OUT 95  
Note 1 For each Address, the two most significant bits are unused.  
6.3 CONNECTION MATRIX VIRTUAL INPUTS  
As mentioned previously, the Connection Matrix inputs come from the outputs of various digital macrocells on the  
device. Eight of the Connection Matrix inputs have the special characteristic that the state of these signal lines comes  
from a corresponding data bit written as a register value via I2C. This gives the user the ability to write data via the  
serial channel, and have this information translated into signals that can be driven into the Connection Matrix and  
from the Connection Matrix to the digital inputs of other macrocells on the device. The I2C address for reading and  
writing these register values is at 0x7A (0122).  
An I2C write command to these register bits will set the signal values going into the Connection Matrix to the desired  
state. A read command to these register bits will read either the original data values coming from the NVM memory  
bits (that were loaded during the initial device startup), or the values from a previous write command (if that has  
happened).  
See Table 24.  
Datasheet  
24-Feb-2021  
Revision 3.2  
45 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 24: Connection Matrix Virtual Inputs  
Matrix Input  
Register Bit  
Addresses (d)  
Matrix Input Signal Function  
Number  
2
55  
54  
53  
52  
51  
50  
49  
48  
I C_virtual_0 Input  
[983]  
[982]  
[981]  
[980]  
[979]  
[978]  
[977]  
[976]  
2
I C_virtual_1 Input  
2
I C_virtual_2 Input  
2
I C_virtual_3 Input  
2
I C_virtual_4 Input  
2
I C_virtual_5 Input  
2
I C_virtual_6 Input  
2
I C_virtual_7 Input  
6.4 CONNECTION MATRIX VIRTUAL OUTPUTS  
The digital outputs of the various macrocells are routed to the Connection Matrix to enable interconnections to the inputs of other  
macrocells in the device. At the same time, it is possible to read the state of each of the macrocell outputs as a register value via  
2
I C. This option, called Connection Matrix Virtual Outputs, allows the user to remotely read the values of each macrocell output.  
2
The I C addresses for reading these register values are 0x74 (0116) to 0x7B (0123). Write commands to these same register  
values will be ignored (with the exception of the Virtual Input register bits at 0x7A (0122)).  
Datasheet  
24-Feb-2021  
Revision 3.2  
46 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
7
Combination Function Macrocells  
The SLG46827-A has 11 combination function macrocells that can serve more than one logic or timing function. In each case,  
they can serve as a Look Up Table (LUT), or as another logic or timing function. See the list below for the functions that can be  
implemented in these macrocells.  
.
.
.
.
Three macrocells that can serve as either 2-bit LUT or as D Flip-Flop  
Six macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset Input  
One macrocell that can serve as either 3-bit LUT or as Pipe Delay/Ripple Counter  
One macrocell that can serve as either 2-bit LUT or as Programmable Pattern Generator (PGen)  
Inputs/Outputs for the 11 combination function macrocells are configured from the connection matrix with specific logic functions  
being defined by the state of NVM bits.  
When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined  
function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).  
7.1 2-BIT LUT OR D FLIP-FLOP MACROCELLS  
There are three macrocells that can serve as either 2-bit LUT or as D Flip-Flop. When used to implement LUT functions, the  
2-bit LUT takes in two input signals from the connection matrix and produce a single output, which goes back into the connection  
matrix. When used to implement D Flip-Flop function, the two input signals from the connection matrix go to the data (D) and  
clock (CLK) inputs for the Flip-Flop, with the output going back to the connection matrix.  
The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:  
DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change  
LATCH: when CLK is Low, then Q = D; otherwise Q remains its previous value (input D has no effect on the output, when CLK is  
High).  
register [1155] DFF or Latch Select  
IN1  
register [1154] Output Select (Q or nQ)  
S0  
From Connection Matrix Output [1]  
register [1153] DFF Initial Polarity Select  
OUT  
2-bit LUT0  
0: 2-bit LUT0 IN1  
1: DFF0 Data  
S1  
IN0  
LUT Truth  
Table  
To Connection Matrix  
Input [14]  
S0  
S1  
4-bits NVM  
registers [1155:1152]  
0: 2-bit LUT0 Out  
1: DFF0 Out  
DFF/Latch  
Registers  
D
S0  
S1  
From Connection Matrix Output [0]  
Q/nQ  
DFF0  
0: 2-bit LUT0 IN0  
1: DFF0 CLK  
CLK  
1-bit NVM  
register [1232]  
Figure 12: 2-bit LUT0 or DFF0  
Datasheet  
24-Feb-2021  
Revision 3.2  
47 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
register [1159] DFF or Latch Select  
register [1158] Output Select (Q or nQ)  
register [1157] DFF Initial Polarity Select  
IN1  
S0  
From Connection Matrix Output [5]  
OUT  
2-bit LUT1  
0: 2-bit LUT1 IN1  
1: DFF1 Data  
S1  
IN0  
LUT Truth  
Table  
To Connection Matrix  
S0  
Input [15]  
4-bits NVM  
registers [1159:1156]  
S1  
0: 2-bit LUT1 Out  
1: DFF1 Out  
DFF/Latch  
Registers  
D
S0  
S1  
From Connection Matrix Output [4]  
Q/nQ  
DFF1  
0: 2-bit LUT1 IN0  
1: DFF1 CLK  
CLK  
1-bit NVM  
register [1233]  
Figure 13: 2-bit LUT1 or DFF1  
register [1163] DFF or Latch Select  
register [1162] Output Select (Q or nQ)  
register [1161] DFF Initial Polarity Select  
IN1  
S0  
S1  
From Connection Matrix Output [7]  
OUT  
2-bit LUT2  
0: 2-bit LUT2 IN1  
1: DFF2 Data  
IN0  
LUT Truth  
Table  
To Connection Matrix  
S0  
Input [16]  
4-bits NVM  
registers [1163:1160]  
S1  
0: 2-bit LUT2 Out  
1: DFF2 Out  
DFF/Latch  
Registers  
D
S0  
S1  
From Connection Matrix Output [6]  
Q/nQ  
DFF2  
0: 2-bit LUT2 IN0  
1: DFF2 CLK  
CLK  
1-bit NVM  
register [1234]  
Figure 14: 2-bit LUT2 or DFF2  
Datasheet  
24-Feb-2021  
Revision 3.2  
48 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
7.1.1 2-Bit LUT or D Flip-Flop Macrocell Used as 2-Bit LUT  
Table 25: 2-bit LUT0 Truth Table  
IN1  
0
IN0  
0
OUT  
register [1152]  
register [1153]  
register [1154]  
register [1155]  
LSB  
0
1
1
0
1
1
MSB  
Table 26: 2-bit LUT1 Truth Table  
IN1  
0
IN0  
0
OUT  
register [1156]  
register [1157]  
register [1158]  
register [1159]  
LSB  
0
1
1
0
1
1
MSB  
Table 27: 2-bit LUT2 Truth Table  
IN1  
0
IN0  
0
OUT  
register [1160]  
register [1161]  
register [1162]  
register [1163]  
LSB  
0
1
1
0
1
1
MSB  
This macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:  
2-Bit LUT0 is defined by registers [1155:1152]  
2-Bit LUT1 is defined by registers [1159:1156]  
2-Bit LUT2 is defined by registers [1163:1160]  
Table 28 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the 2-bit LUT logic cells.  
Table 28: 2-bit LUT Standard Digital Functions  
Function  
AND-2  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-2  
OR-2  
NOR-2  
XOR-2  
XNOR-2  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
49 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
7.1.2 Initial Polarity Operations  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
Q with nReset (Case 1)  
Initial Polarity: Low  
Q with nReset (Case 1)  
Figure 15: DFF Polarity Operations  
7.2 2-BIT LUT OR PROGRAMMABLE PATTERN GENERATOR  
The SLG46827-A has one combination function macrocell that can serve as a logic or timing function. This macrocell can serve  
as a Look Up Table (LUT), or Programmable Pattern Generator (PGen).  
When used to implement LUT functions, the 2-bit LUT takes in two input signals from the connection matrix and produces a single  
output, which goes back into the connection matrix. When used as a LUT to implement combinatorial logic functions, the outputs  
of the LUT can be configured to any user defined function, including the following standard digital logic devices (AND, NAND,  
OR, NOR, XOR, XNOR). The user can also define the combinatorial relationship between inputs and outputs to be any selectable  
function.  
When operating as a Programmable Pattern Generator, the output of the macrocell with clock out a sequence of two to sixteen  
bits that are user selectable in their bit values, and user selectable in the number of bits (up to sixteen) that are output before the  
pattern repeats.  
Datasheet  
24-Feb-2021  
Revision 3.2  
50 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
From Connection Matrix Output [2]  
From Connection Matrix Output [3]  
In0  
In1  
OUT  
2-bit LUT3  
LUT Truth  
Table  
To Connection Matrix Input [17]  
S0  
S1  
registers [1183:1168]  
0: 2-bit LUT3 OUT  
1: PGen OUT  
PGen  
Data  
nRST  
CLK  
PGen  
OUT  
Pattern  
size  
register [1235]  
registers [1167:1164]  
Figure 16: 2-bit LUT3 or PGen  
VDD  
t
t
nRST  
CLK  
OUT  
1
2
6
8
16 17  
3
5
7
0
4
9
10 11  
14 15  
12 13  
t
D7  
D6  
D5  
D10  
D8  
D4  
D3  
D2  
D1  
D15  
D0  
D9  
D0  
D15  
D14  
D13  
D12  
D11  
D0  
t
Figure 17: PGen Timing Diagram  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
51 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
7.2.1 2-Bit LUT or PGen Macrocell Used as 2-Bit LUT  
Table 29: 2-bit LUT1 Truth Table  
IN1  
0
IN0  
0
OUT  
register [1164]  
register [1165]  
register [1166]  
register [1167]  
LSB  
0
1
1
0
1
1
MSB  
This macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:  
2-Bit LUT3 is defined by [1167 1164  
:
]
Table 30 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the 2-bit LUT logic cells.  
Table 30: 2-bit LUT Standard Digital Functions  
Function  
AND-2  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-2  
OR-2  
NOR-2  
XOR-2  
XNOR-2  
7.3 3-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELLS  
There are six macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset inputs. When used to implement  
LUT functions, the 3-bit LUTs each take in three input signals from the connection matrix and produce a single output, which goes  
back into the connection matrix. When used to implement D Flip-Flop function, the three input signals from the connection matrix  
go to the data (D) and clock (CLK), and Reset/Set (nRST/nSET) inputs for the Flip-Flop, with the output going back to the  
connection matrix.  
DFF3 operation is described below:  
If register [1237] = 0, and the CLK is rising edge triggered, then Q = D, otherwise Q will not change  
If register [1237] = 1, then data from D is written into the DFF by the rising edge on CLK and output to Q by the falling edge on  
CLK.  
Datasheet  
24-Feb-2021  
Revision 3.2  
52 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
register [1191] DFF or Latch Select  
register [1190] Output Select (Q or nQ)  
register [1189] DFF nRST or nSET Select  
register [1188] DFF Initial Polarity Select  
IN2  
IN1  
From Connection  
Matrix Output [10]  
S0  
S1  
OUT  
3-bit LUT0  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [9]  
To Connection Matrix  
S0  
S1  
Input [18]  
S0  
S1  
8-bits NVM  
registers [1191:1184]  
From Connection  
Matrix Output [8]  
S0  
S1  
DFF/Latch  
Registers  
0
1
Q/nQ  
DFF  
DFF  
D
D
Q
D
Q
nRST/  
nSET  
nRST/  
CL  
nSET  
CL  
nRST/nSET  
CLK  
register [1237]  
1-bit NVM  
register [1236]  
Figure 18: 3-bit LUT0 or DFF3  
register [1199] DFF or Latch Select  
IN2  
From Connection  
Matrix Output [13]  
S0  
S1  
register [1198] Output Select (Q or nQ)  
register [1197] DFF nRST or nSET Select  
register [1196] DFF Initial Polarity Select  
IN1  
OUT  
3-bit LUT1  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [12]  
To Connection Matrix  
S0  
S1  
Input [19]  
S0  
8-bits NVM  
registers [1199:1192]  
S1  
DFF/Latch  
Registers  
D
From Connection  
Matrix Output [11]  
S0  
S1  
nRST/nSET  
CLK  
DFF4  
Q/nQ  
1-bit NVM  
register [1238]  
Figure 19: 3-bit LUT1 or DFF4  
Revision 3.2  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
53 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
register [1207] DFF or Latch Select  
IN2  
From Connection  
S0  
register [1206] Output Select (Q or nQ)  
register [1205] DFF nRST or nSET Select  
register [1204] DFF Initial Polarity Select  
Matrix Output [16]  
IN1  
IN0  
OUT  
3-bit LUT2  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [15]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [20]  
8-bits NVM  
registers [1207:1200]  
DFF/Latch  
Registers  
D
From Connection  
Matrix Output [14]  
S0  
S1  
nRST/nSET  
CLK  
DFF5  
Q/nQ  
1-bit NVM  
register [1239]  
Figure 20: 3-bit LUT2 or DFF5  
register [1215] DFF or Latch Select  
IN2  
From Connection  
Matrix Output [19]  
S0  
S1  
register [1214] Output Select (Q or nQ)  
register [1213] DFF nRST or nSET Select  
register [1212] DFF Initial Polarity Select  
IN1  
OUT  
3-bit LUT3  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [18]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [21]  
8-bits NVM  
registers [1215:1208]  
DFF  
Registers  
D
From Connection  
Matrix Output [17]  
S0  
S1  
nRST/nSET  
CLK  
DFF6  
Q/nQ  
1-bit NVM  
register [1240]  
Figure 21: 3-bit LUT3 or DFF6  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
54 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
register [1223] DFF or Latch Select  
IN2  
IN1  
From Connection  
Matrix Output [22]  
S0  
S1  
register [1222] Output Select (Q or nQ)  
register [1221] DFF nRST or nSET Select  
register [1220] DFF Initial Polarity Select  
OUT  
3-bit LUT4  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [21]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [22]  
8-bits NVM  
registers [1223:1216]  
DFF/Latch  
Registers  
D
From Connection  
Matrix Output [20]  
S0  
S1  
nRST/nSET  
CLK  
DFF7  
Q/nQ  
1-bit NVM  
registers [1241]  
Figure 22: 3-bit LUT4 or DFF7  
register [1231] DFF or Latch Select  
IN2  
From Connection  
Matrix Output [25]  
S0  
S1  
register [1230] Output Select (Q or nQ)  
register [1229] DFF nRST or nSET Select  
register [1228] DFF Initial Polarity Select  
IN1  
OUT  
3-bit LUT5  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [24]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [23]  
8-bits NVM  
registers [1231:1224]  
DFF  
Registers  
D
From Connection  
Matrix Output [23]  
S0  
S1  
nRST/nSET  
CLK  
DFF8  
Q/nQ  
1-bit NVM  
register [1242]  
Figure 23: 3-bit LUT5 or DFF8  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
55 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
7.3.1 3-Bit LUT or D Flip-Flop Macrocells Used as 3-Bit LUTs  
Table 31: 3-bit LUT0 Truth Table  
Table 34: 3-bit LUT3 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1184]  
register [1185]  
register [1186]  
register [1187]  
register [1188]  
register [1189]  
register [1190]  
register [1191]  
LSB  
register [1208]  
register [1209]  
register [1210]  
register [1211]  
register [1212]  
register [1213]  
register [1214]  
register [1215]  
LSB  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 32: 3-bit LUT1 Truth Table  
Table 35: 3-bit LUT4 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1192]  
register [1193]  
register [1194]  
register [1195]  
register [1196]  
register [1197]  
register [1198]  
register [1199]  
register [1216]  
register [1217]  
register [1218]  
register [1219]  
register [1220]  
register [1221]  
register [1222]  
register [1223]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 33: 3-bit LUT2 Truth Table  
Table 36: 3-bit LUT5 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1200]  
register [1201]  
register [1202]  
register [1203]  
register [1204]  
register [1205]  
register [1206]  
register [1207]  
register [1224]  
register [1225]  
register [1226]  
register [1227]  
register [1228]  
register [1229]  
register [1230]  
register [1231]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
1
1
1
MSB  
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-Bit LUT0 is defined by registers [1191:1184]  
3-Bit LUT1 is defined by registers [1199:1192]  
3-Bit LUT2 is defined by registers [1207:1200]  
3-Bit LUT3 is defined by registers [1215:1208]  
3-Bit LUT4 is defined by registers [1223:1216]  
3-Bit LUT5 is defined by registers [1231:1224]  
Datasheet  
24-Feb-2021  
Revision 3.2  
56 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 37 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the four 3-bit LUT logic cells.  
Table 37: 3-bit LUT Standard Digital Functions  
Function  
AND-3  
MSB  
LSB  
1
0
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-3  
OR-3  
NOR-3  
XOR-3  
XNOR-3  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
57 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
7.3.2 Initial Polarity Operations  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
nReset (Case 1)  
Q with nReset (Case 1)  
nReset (Case 2)  
Q with nReset (Case 2)  
Initial Polarity: Low  
nReset (Case 1)  
Q with nReset (Case 1)  
nReset (Case 2)  
Q with nReset (Case 2)  
Figure 24: DFF Polarity Operations with nReset  
Datasheet  
24-Feb-2021  
Revision 3.2  
58 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
nSet (Case 1)  
Q with nSet (Case 1)  
nSet (Case 2)  
Q with nSet (Case 2)  
Initial Polarity: Low  
nSet (Case 1)  
Q with nSet (Case 1)  
nSet (Case 2)  
Q with nSet (Case 2)  
Figure 25: DFF Polarity Operations with nSet  
7.4 3-BIT LUT OR PIPE DELAY/RIPPLE COUNTER MACROCELL  
There is one macrocell that can serve as either a 3-bit LUT or as a Pipe Delay/Ripple Counter.  
When used to implement LUT functions, the 3-bit LUT takes in three input signals from the connection matrix and produces a  
single output, which goes back into the connection matrix.  
When used as a Pipe Delay, there are three inputs signals from the matrix, Input (IN), Clock (CLK), and Reset (nRST). The Pipe  
Delay cell is built from 16 D Flip-Flop logic cells that provide the three delay options, two of which are user selectable. The DFF  
cells are tied in series where the output (Q) of each delay cell goes to the next DFF cell input (IN). Both of the two outputs (OUT0  
and OUT1) provide user selectable options for 1 to 16 stages of delay. There are delay output points for each set of the OUT0  
and OUT1 outputs to a 4-input mux that is controlled by registers [1251:1248] for OUT0 and registers [1255:1252] for OUT1.  
The 4-input mux is used to control the selection of the amount of delay.  
Datasheet  
24-Feb-2021  
Revision 3.2  
59 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
The overall time of the delay is based on the clock used in the SLG46827-A design. Each DFF cell has a time delay of the inverse  
of the clock time (either external clock or the internal Oscillator within the SLG46827-A). The sum of the number of DFF cells used  
will be the total time delay of the Pipe Delay logic cell. OUT1 Output can be inverted (as selected by register [1256]).  
In the Ripple Counter mode, there are 3 options for setting, which use 7 bits. There are 3 bits to set nSET value (SV) in range  
from 0 to 7. It is a value, which will be set into the Ripple Counter outputs when nSET input goes LOW. End value (EV) will use  
3 bits for setting outputs code, which will be last code in the cycle. After reaching the EV, the Ripple Counter goes to the first code  
by the rising edge on CLK input. The Functionality mode option uses 1 bit. This setting defines how exactly Ripple Counter will  
operate.  
The user can select one of the functionality modes by register: RANGE or FULL. If the RANGE option is selected, the count starts  
from SV. If UP input is LOW the count goes down: SV→EV→EV-1 to SV+1→SV, and others (if SV is smaller than EV), or SV→SV-  
1 to EV+1→EV→SV (if SV is bigger than EV). If UP input is HIGH, count starts from SV up to EV, and others.  
In the FULL range configuration the Ripple Counter functions as follows. If UP input is LOW, the count starts from SV and goes  
down to 0. Then current counter value jumps to EV and goes down to 0, and others.  
If UP input is HIGH, count goes up starting from SV. Then current counter value jumps to 0 and counts up to EV, and others. See  
Ripple Counter functionality example in Figure 27.  
Every step is executed by the rising edge on CLK input.  
Datasheet  
24-Feb-2021  
Revision 3.2  
60 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
registers [1255:1248]  
From Connection  
Matrix Output [26]  
IN0  
From Connection  
Matrix Output [27]  
IN1  
IN2  
OUT  
3-bit LUT6  
From Connection  
Matrix Output [28]  
registers [1255:1252]  
Pipe Delay  
register [1256]  
0
1
0
1
OUT2  
OUT1  
To Connection  
Matrix Input[26]  
register [1258]  
From Connection  
Matrix Output [26]  
IN  
From Connection  
Matrix Output [27]  
nRST  
16 Flip-Flops  
0
OUT1  
From Connection  
Matrix Output [28]  
CLK  
To Connection  
Matrix Input [25]  
1
register [1258]  
OUT0  
0
OUT0  
To Connection  
Matrix Input [24]  
0
1
1
registers [1251:1248]  
1 Pipe OUT  
register [1257]  
Ripple Counter  
3 Flip-Flops  
UP  
From Connection  
Matrix Output [26]  
UP/DOWN  
Control  
OUT0  
D
Q
DFF1  
CLK  
From Connection  
Matrix Output [28]  
CL  
nQ  
nSET  
From Connection  
Matrix Output [27]  
SET  
OUT1  
OUT2  
Control  
D
Q
DFF2  
CL  
nQ  
Mode & SET/END  
Value Control  
D
Q
DFF3  
nQ  
CL  
registers [1254:1248]  
Figure 26: 3-bit LUT6/Pipe Delay/Ripple Counter  
Datasheet  
24-Feb-2021  
Revision 3.2  
61 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Figure 27: Example: Ripple Counter Functionality  
7.4.1 3-Bit LUT or Pipe Delay Macrocells Used as 3-Bit LUT  
Table 38: 3-bit LUT6 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1248]  
register [1249]  
register [1250]  
register [1251]  
register [1252]  
register [1253]  
register [1254]  
register [1255]  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Datasheet  
24-Feb-2021  
Revision 3.2  
62 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-Bit LUT6 is defined by registers [1255:1248]  
Datasheet  
24-Feb-2021  
Revision 3.2  
63 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
8
Multi-Function Macrocells  
The SLG46827-A has 8 Multi-Function macrocells that can serve more than one logic or timing function. In each case, they can  
serve as a LUT, DFF with flexible settings, or as CNT/DLY with multiple modes such as One Shot, Frequency Detect, Edge Detect,  
and others. Also, the macrocell is capable to combine those functions: LUT/DFF connected to CNT/DLY or CNT/DLY connected  
to LUT/DFF, see Figure 28.  
See the list below for the functions that can be implemented in these macrocells:  
Seven macrocells that can serve as 3-bit LUTs/D Flip-Flops and as 8-Bit Counter/Delays  
One macrocell that can serve as a 4-bit LUT/D Flip-Flop and as 16-Bit Counter/Delay/FSM  
To Connection Matrix  
To Connection Matrix  
To Connection  
To Connection  
Matrix  
LUT  
or  
DFF  
LUT  
Matrix  
CNT/DLY  
or  
CNT/DLY  
DFF  
Figure 28: Possible Connections Inside Multi-Function Macrocell  
Inputs/Outputs for the 8 Multi-Function macrocells are configured from the connection matrix with specific logic functions being  
defined by the state of NVM bits.  
When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined  
function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).  
8.1 3-BIT LUT OR DFF/LATCH WITH 8-BIT COUNTER/DELAY MACROCELLS  
There are seven macrocells that can serve as 3-bit LUTs/D Flip-Flops and as 8-Bit Counter/Delays.  
When used to implement LUT functions, the 3-bit LUTs each take in three input signals from the connection matrix and produce  
a single output, which goes back into the connection matrix or can be connected to CNT/DLY's input.  
When used to implement D Flip-Flop function, the three input signals from the connection matrix go to the data (D), clock (CLK),  
and Reset/Set (nRST/nSET) inputs of the Flip-Flop, with the output going back to the connection matrix or to the CNT/DLY's input.  
When used to implement Counter/Delays, each macrocell has a dedicated matrix input connection. For flexibility, each of these  
macrocells has a large selection of internal and external clock sources, as well as the option to chain from the output of the  
previous (N-1) CNT/DLY macrocell, to implement longer count/delay circuits. These macrocells can also operate in a One-Shot  
mode, which will generate an output pulse of user-defined width. They can also operate in a Frequency Detection or Edge  
Detection mode.  
Counter/Delay macrocell has an initial value, which define its initial value after GPAK is powered up. It is possible to select initial  
Low or initial High, as well as initial value defined by a Delay In signal.  
For example, in case initial LOW option is used, the rising edge delay will start operation.  
For timing diagrams refer to Section 8.2  
.
Note: After two DFF – counters initialize with counter data = 0 after POR.  
Initial state = 1 – counters initialize with counter data = 0 after POR.  
Initial state = 0 And After two DFF is bypass – counters initialize with counter data after POR.  
Datasheet  
24-Feb-2021  
Revision 3.2  
64 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
2
Three of eight macrocells can have their current count value read via I C (CNT0, CNT2, and CNT4). However, it is possible to  
2
change the counter data (value counter starts operating from) for any macrocell using I C write commands. In this mode, it is  
possible to load count data immediately (after two DFF) or after counter ends counting. See Section 15.7.1 for further details.  
8.1.1 3-Bit LUT or 8-Bit CNT/DLY Block Diagrams  
register [1351] DFF or Latch Select  
register [1350] Output Select (Q or nQ)  
From Connection  
Matrix Output [36]  
register [1349] (nRST or nSET) from  
matrix Output  
IN2  
IN1  
IN0  
register [1348] DFF Initial Polarity Select  
S0  
S1  
3-bit LUT7  
S0  
S1  
OUT  
LUT Truth  
Table  
From Connection  
Matrix Output [35]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [40]  
8-bits NVM  
registers [1351:1344]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [34]  
S0  
S1  
S0  
S1  
nRST/nSET DFF10  
Q/nQ  
CLK  
register [1339]  
LUT/DFF Sel  
registers [1341:1340],  
registers [1338:1337]  
registers [1367:1360]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [29]  
0
S0  
OUT  
CNT/DLY1  
S0  
S1  
S2  
S1  
S2  
S3  
DLY_IN/CNT Reset  
Config  
Data  
0
registers [1359:1352],  
registers [1343:1342], [1368]  
S3  
Figure 29: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT7/DFF10, CNT/DLY1)  
Datasheet  
24-Feb-2021  
Revision 3.2  
65 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
register [1383] DFF or Latch Select  
register [1382] Output Select (Q or nQ)  
register [1381] (nRST or nSET) from  
matrix Output  
From Connection  
Matrix Output [39]  
IN2  
register [1380] DFF Initial Polarity Select  
S0  
S1  
3-bit LUT8  
S0  
S1  
OUT  
IN1  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [38]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [41]  
8-bits NVM  
registers [1383:1376]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [37]  
S0  
S1  
S0  
S1  
nRST/nSET  
CLK  
DFF11 Q/nQ  
register [1394]  
LUT/DFF Sel  
registers [1407:1400]  
registers [1375:1372]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [33]  
0
S0  
OUT  
CNT/DLY2  
S0  
S1  
S2  
S1  
S2  
S3  
DLY_IN/CNT Reset  
Config  
Data  
0
S3  
registers [1395], [1393:1384]  
Figure 30: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT8/DFF11, CNT/DLY2)  
Datasheet  
24-Feb-2021  
Revision 3.2  
66 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
register [1423] DFF or Latch Select  
register [1422] Output Select (Q or nQ)  
register [1421] (nRST or nSET) from  
matrix Output  
From Connection  
Matrix Output [42]  
IN2  
register [1420] DFF Initial Polarity Select  
S0  
S1  
3-bit LUT9  
S0  
S1  
OUT  
IN1  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [41]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [42]  
8-bits NVM  
registers [1423:1416]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [40]  
S0  
S1  
S0  
S1  
nRST/nSET  
CLK  
DFF12  
Q/nQ  
register [1411]  
LUT/DFF Sel  
registers [1413:1412],  
registers [1410:1409]  
registers [1439:1432]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [34]  
0
S0  
OUT  
CNT/DLY3  
S0  
S1  
S2  
S1  
S2  
S3  
DLY_IN/CNT Reset  
Config  
Data  
0
S3  
registers [1440], [1431:1424],  
registers [1415:1414]  
Figure 31: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT9/DFF12, CNT/DLY3)  
Datasheet  
24-Feb-2021  
Revision 3.2  
67 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
register [1455] DFF or Latch Select  
register [1454] Output Select (Q or nQ)  
register [1453] (nRST or nSET) from  
matrix Output  
From Connection  
Matrix Output [45]  
IN2  
register [1452] DFF Initial Polarity Select  
S0  
3-bit LUT10  
S0  
S1  
OUT  
IN1  
IN0  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [44]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [43]  
8-bits NVM  
registers [1455:1448]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [43]  
S0  
S1  
S0  
S1  
nRST/nSET  
CLK  
DFF13  
Q/nQ  
register [1466]  
LUT/DFF Sel  
registers [1479:1472]  
registers [1447:1444]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [35]  
0
S0  
OUT  
CNT/DLY4  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [1467], [1465:1456]  
Figure 32: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT10/DFF13, CNT/DLY4)  
Datasheet  
24-Feb-2021  
Revision 3.2  
68 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
register [1495] DFF or Latch Select  
register [1494] Output Select (Q or nQ)  
register [1493] (nRST or nSET) from  
matrix Output  
From Connection  
Matrix Output [48]  
register [1492] DFF Initial Polarity Select  
IN2  
S0  
3-bit LUT11  
S0  
S1  
OUT  
IN1  
IN0  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [47]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [44]  
8-bits NVM  
registers [1495:1488]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [46]  
S0  
S1  
S0  
S1  
nRST/nSET  
CLK  
DFF14  
Q/nQ  
register [1483]  
LUT/DFF Sel  
registers [1485:1484],  
registers [1482:1481]  
registers [1511:1504]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [36]  
0
S0  
OUT  
CNT/DLY5  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [1512], [1503:1496],  
registers [1487:1486]  
Figure 33: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT11/DFF14, CNT/DLY5)  
Datasheet  
24-Feb-2021  
Revision 3.2  
69 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
register [1527] DFF or Latch Select  
register [1526] Output Select (Q or nQ)  
register [1525] (nRST or nSET) from  
matrix Output  
From Connection  
Matrix Output [51]  
register [1524] DFF Initial Polarity Select  
IN2  
S0  
3-bit LUT12  
S0  
S1  
OUT  
IN1  
IN0  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [50]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [45]  
8-bits NVM  
registers [1527:1520]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [49]  
S0  
S1  
S0  
S1  
nRST/nSET  
CLK  
DFF15  
Q/nQ  
register [1538]  
LUT/DFF Sel  
registers [1551:1544]  
registers [1519:1516]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [37]  
0
S0  
OUT  
CNT/DLY6  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [1539], [1537:1528]  
Figure 34: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT12/DFF15, CNT/DLY6)  
Datasheet  
24-Feb-2021  
Revision 3.2  
70 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
register [1567] DFF or Latch Select  
register [1566] Output Select (Q or nQ)  
register [1565] (nRST or nSET) from  
matrix Output  
From Connection  
Matrix Output [54]  
IN2  
register [1564] DFF Initial Polarity Select  
S0  
3-bit LUT13  
S0  
S1  
OUT  
IN1  
IN0  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [53]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [46]  
8-bits NVM  
registers [1567:1560]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [52]  
S0  
S1  
S0  
S1  
nRST/nSET  
CLK  
DFF16  
Q/nQ  
register [1556]  
LUT/DFF Sel  
registers [1591:1584]  
registers [1555:1552]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [38]  
0
S0  
OUT  
CNT/DLY7  
S0  
S1  
S2  
S1  
S2  
S3  
DLY_IN/CNT Reset  
Config  
Data  
0
S3  
registers [1577:1568], [1557]  
Figure 35: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT13/DFF16, CNT/DLY7)  
As shown in Figures 24 to 30 there is a possibility to use LUT/DFF and CNT/DLY simultaneously.  
Note: It is not possible to use LUT and DFF at once, one of these macrocells must be selected.  
Case 1. LUT/DFF in front of CNT/DLY. Three input signals from the connection matrix go to previously selected LUT or DFF's  
inputs and produce a single output which goes to a CND/DLY input. In its turn Counter/Delay's output goes back to the matrix.  
Case 2. CNT/DLY in front of LUT/DFF. Two input signals from the connection matrix go to CND/DLY's inputs (IN and CLK). Its  
output signal can be connected to any input of previously selected LUT or DFF, after which the signal goes back to the matrix.  
Case 3. Single LUT/DFF or CNT/DLY. Also, it is possible to use a standalone LUT/DFF or CNT/DLY. In this case, all inputs  
and output of the macrocell are connected to the matrix.  
Datasheet  
24-Feb-2021  
Revision 3.2  
71 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
8.1.2 3-Bit LUT or CNT/DLYs Used as 3-Bit LUTs  
Table 39: 3-bit LUT7 Truth Table  
Table 43: 3-bit LUT11 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1344]  
register [1345]  
register [1346]  
register [1347]  
register [1348]  
register [1349]  
register [1350]  
register [1351]  
LSB  
register [1488]  
register [1489]  
register [1490]  
register [1491]  
register [1492]  
register [1493]  
register [1494]  
register [1495]  
LSB  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 40: 3-bit LUT8 Truth Table  
Table 44: 3-bit LUT12 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1376]  
register [1377]  
register [1378]  
register [1379]  
register [1380]  
register [1381]  
register [1382]  
register [1383]  
register [1520]  
register [1521]  
register [1522]  
register [1523]  
register [1524]  
register [1525]  
register [1526]  
register [1527]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 41: 3-bit LUT9 Truth Table  
Table 45: 3-bit LUT13 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1416]  
register [1417]  
register [1418]  
register [1419]  
register [1420]  
register [1421]  
register [1422]  
register [1423]  
register [1560]  
register [1561]  
register [1562]  
register [1563]  
register [1564]  
register [1565]  
register [1566]  
register [1567]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
Table 42: 3-bit LUT10 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1448]  
register [1449]  
register [1450]  
register [1451]  
register [1452]  
register [1453]  
register [1454]  
register [1455]  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
MSB  
Datasheet  
24-Feb-2021  
Revision 3.2  
72 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-Bit LUT7 is defined by registers [1351:1344]  
3-Bit LUT8 is defined by registers [1383:1376]  
3-Bit LUT9 is defined by registers [1423:1416]  
3-Bit LUT10 is defined by registers [1455:1448]  
3-Bit LUT11 is defined by registers [1495:1488]  
3-Bit LUT12 is defined by registers [1527:1520]  
3-Bit LUT13 is defined by registers [1567:1560]  
8.2 CNT/DLY/FSM TIMING DIAGRAMS  
8.2.1 Delay Mode CNT/DLY0 to CNT/DLY7  
Delay In  
Asynchronous delay variable  
Asynchronous delay variable  
OSC: force power-on  
(always running)  
Delay Output  
delay = period x (counter data + 1) + variable  
variable is from 0 to 1 clock period  
delay = period x (counter data + 1) + variable  
variable is from 0 to 1 clock period  
Delay In  
offset  
offset  
OSC: auto power-on  
(powers up from delay in)  
Delay Output  
delay = offset + period x (counter data + 1)  
See offset in table 11  
delay = offset + period x (counter data + 1)  
See offset in table 11  
Figure 36: Delay Mode Timing Diagram, Edge Select: Both, Counter Data: 3  
Datasheet  
24-Feb-2021  
Revision 3.2  
73 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
The macrocell shifts the respective edge to a set time and restarts by appropriate edge. It works as a filter if the input signal is  
shorter than the delay time.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
Delay time  
Delay Function  
Rising Edge Detection  
t
Delay Function  
Falling Edge Detection  
t
Delay Function  
Both Edge Detection  
t
Figure 37: Delay Mode Timing Diagram for Different Edge Select Modes  
8.2.2 Count Mode (Count Data: 3), Counter Reset (Rising Edge Detect) CNT/DLY0 to CNT/DLY7  
RESET_IN  
CLK  
Counter OUT  
4 CLK period pulse  
Count start in first rising edge CLK  
Figure 38: Counter Mode Timing Diagram without Two DFFs Synced Up  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
74 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
RESET_IN  
CLK  
Counter OUT  
4 CLK period pulse  
Count start in 0 CLK after reset  
Figure 39: Counter Mode Timing Diagram with Two DFFs Synced Up  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
75 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
8.2.3 One-Shot Mode CNT/DLY0 to CNT/DLY7  
This macrocell will generate a pulse whenever a selected edge is detected on its input. Register bits set the edge selection. The  
pulse width determines by counter data and clock selection properties.  
The output pulse polarity (non-inverted or inverted) is selected by register bit. Any incoming edges will be ignored during the pulse  
width generation. The following diagram shows one-shot function for non-inverted output.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
Delay time  
One-Shot Function  
Rising Edge Detection  
t
One-Shot Function  
Falling Edge Detection  
t
One-Shot Function  
Both Edge Detection  
t
Figure 40: One-Shot Function Timing Diagram  
This macrocell generates a high level pulse with a set width (defined by counter data) when detecting the respective edge. It does  
not restart while pulse is high.  
8.2.4 Frequency Detection Mode CNT/DLY0 to CNT/DLY7  
Rising Edge: The output goes high if the time between two successive edges is less than the delay. The output goes low if the  
second rising edge has not come after the last rising edge in specified time.  
Falling Edge: The output goes high if the time between two falling edges is less than the set time. The output goes low if the  
second falling edge has not come after the last falling edge in specified time.  
Both Edge: The output goes high if the time between the rising and falling edges is less than the set time, which is equivalent to  
the length of the pulse. The output goes low if after the last rising/falling edge and specified time, the second edge has not come.  
Datasheet  
24-Feb-2021  
Revision 3.2  
76 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Delay time  
Frequency Detector Function  
Rising Edge Detection  
Frequency Detector Function  
Falling Edge Detection  
t
t
Frequency Detector Function  
Both Edge Detection  
Figure 41: Frequency Detection Mode Timing Diagram  
Datasheet  
24-Feb-2021  
Revision 3.2  
77 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
8.2.5 Edge Detection Mode CNT/DLY1 to CNT/DLY7  
The macrocell generates high level short pulse when detecting the respective edge. See Table 12.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Edge Detector Function  
Rising Edge Detection  
Edge Detector Function  
Falling Edge Detection  
t
t
Edge Detector Function  
Both Edge Detection  
Figure 42: Edge Detection Mode Timing Diagram  
Datasheet  
24-Feb-2021  
Revision 3.2  
78 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
8.2.6 Delayed Edge Detection Mode CNT/DLY0 to CNT/DLY7  
In Delayed Edge Detection Mode, High level short pulses are generated on the macrocell output after the configured delay time,  
if the corresponding edge was detected on the input.  
If the input signal is changed during the set delay time, the pulse will not be generated. See Figure 43.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Delay time  
Delayed Edge Detector Function  
Rising Edge Detection  
Delayed Edge Detector Function  
Falling Edge Detection  
t
t
Delayed Edge Detector Function  
Both Edge Detection  
Figure 43: Delayed Edge Detection Mode Timing Diagram  
Datasheet  
24-Feb-2021  
Revision 3.2  
79 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
8.2.7 CNT/FSM Mode CNT/DLY0  
RESET IN  
KEEP  
COUNT END  
CLK  
3
2
1
0
3
2
1
0
3
2
1
3
2
1
0
0
Q
Note: Q = current counter value  
Figure 44: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3  
SET IN  
KEEP  
COUNT END  
CLK  
2
1
0
3
2
1
0
3
3
2
1
2
1
0
3
3
Q
Note: Q = current counter value  
Figure 45: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3  
Datasheet  
24-Feb-2021  
Revision 3.2  
80 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
RESETI N  
KEEP  
COUNT END  
CLK  
65535  
65533 65534  
4
5
5
6
7
8
9
3
3
4
5
1
2
3
4
0
Q
Note: Q = current counter value  
Figure 46: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3  
SET IN  
KEEP  
COUNT END  
CLK  
65533 65534 65535  
8
9
10 11 12  
3
4
5
3
4
5
4
5
6
7
3
Q
Note: Q = current counter value  
Figure 47: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3  
Datasheet  
24-Feb-2021  
Revision 3.2  
81 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
8.2.8 Difference in Counter Value for Counter, Delay, One-Shot, and Frequency Detect Modes  
There is a difference in counter value for Counter and Delay/One-Shot/Frequency Detect modes. The counter value is shifted for  
two rising edges of the clock signal in Delay/One-Shot/Frequency Detect modes compared to Counter mode. See Figure 48.  
One-Shot/Freq. SET/Delay IN  
CLK  
CNT Out  
3
2
1
0
0
3
CNT Data  
2
DLY Out  
3
3
2
Delay Data  
1
3
3
3
One-Shot Out  
One-Shot Data  
3
3
2
3
1
3
3
Figure 48: Counter Value, Counter Data = 3  
8.3 4-BIT LUT OR DFF/LATCH WITH 16-BIT COUNTER/DELAY MACROCELL  
There is one macrocell that can serve as either 4-bit LUT/D Flip-Flop or as 16-bit Counter/Delay.  
When used to implement LUT function, the 4-bit LUT takes in four input signals from the Connection Matrix and produces a single  
output, which goes back into the Connection Matrix or can be connected to CNT/DLY’s input or LUT/DFF’s input.  
When used to implement D Flip-Flop function, the two input signals from the connection matrix go to the data (D) and clock (CLK)  
inputs for the Flip-Flop, with the output going back to the connection matrix.  
When used to implement 16-Bit Counter/Delay function, two of the four input signals from the connection matrix go to the external  
clock (EXT_CLK) and reset (DLY_IN/CNT Reset) for the Counter/Delay, with the output going back to the connection matrix.  
This macrocell has an optional Finite State Machine (FSM) function. There are two additional matrix inputs for Up and Keep to  
support FSM functionality.  
This macrocell can also operate in a one-shot mode, which will generate an output pulse of user-defined width.  
This macrocell can also operate in a frequency detection.  
2
This macrocell can have its active count value read via I C. See Section 15.7.1 for further details.  
Note: After two DFF – counters initialize with counter data = 0 after POR.  
Datasheet  
24-Feb-2021  
Revision 3.2  
82 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Initial state = 1 – counters initialize with counter data = 0 after POR.  
Initial state = 0 And After two DFF is bypass – counters initialize with counter data after POR.  
8.3.1 4-Bit LUT or 16-Bit CNT/DLY Block Diagram  
register [1303] DFF or Latch Select  
register [1302] Output Select (Q or nQ)  
register [1301] DFF Initial Polarity Select  
CMO* [33]  
CMO* [32]  
CMO*[31]  
CMO* [30]  
IN3  
S0  
S1  
S1  
S0  
S0  
S1  
IN2  
IN1  
0
LUT4_0  
S0  
S1  
S0  
S1  
S1  
S0  
0
OUT  
IN0  
LUT Truth  
Table  
S0  
S1  
To Connection  
S0  
S0  
S1  
S1  
S0  
Matrix Input [39]  
registers [1286:1285],  
registers [1281:1280]  
16-bits NVM  
1
registers [1303:1288]  
S1  
DFF  
Registers  
D
S0  
S1  
S0  
S1  
S1  
S0  
nSET  
Q/nQ  
DFF9  
1
nRST  
CLK  
registers [1286:1285]  
LUT/DFF Sel  
register [1282]  
registers [1284:1283],  
registers [1281:1280]  
registers [1335:1320]  
S0  
0
0
S1  
S2  
S3  
CMO* [32]  
CMO* [31]  
S0  
S1  
CNT  
Data  
ext_CLK  
0
S0  
S1  
S2  
S3  
CMO* [33]  
S0  
S1  
S2  
S3  
To Connection  
Matrix Input [47]  
CMO* [32]  
CMO* [31]  
CMO* [30]  
CMO* [31]  
OUT  
CMO*[32]  
CMO* [33]  
CNT/DLY0  
DLY_IN/CNT Reset  
S1  
S0  
registers  
[1284:1283]  
registers  
[1281:1280]  
0
KEEP  
UP  
S1  
S0  
FSM  
Config  
Data  
Note: CMO - Connection Matrix Output  
0
registers [1314:1304],  
register [1287]  
registers [1281:1280]  
Figure 49: 4-bit LUT0 or CNT/DLY0  
Datasheet  
24-Feb-2021  
Revision 3.2  
83 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
8.3.2 4-Bit LUT or 16-Bit Counter/Delay Macrocells Used as 4-Bit LUTs  
Table 46: 4-bit LUT0 Truth Table  
IN3  
0
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1288]  
register [1289]  
register [1290]  
register [1291]  
register [1292]  
register [1293]  
register [1294]  
register [1295]  
register [1296]  
register [1297]  
register [1298]  
register [1299]  
register [1300]  
register [1301]  
register [1302]  
LSB  
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
register [1303] MSB  
This macrocell, when programmed for a LUT function, uses a 16-bit register to define their output function:  
4-Bit LUT0 is defined by registers [1303:1288]  
Table 47: 4-bit LUT Standard Digital Functions  
Function  
AND-4  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-4  
OR-4  
NOR-4  
XOR-4  
XNOR-4  
Datasheet  
24-Feb-2021  
Revision 3.2  
84 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
8.4 WAKE AND SLEEP CONTROLLER  
The SLG46827-A has a Wake and Sleep (WS) function forACMP0H andACMP1H. The macrocell CNT/DLY0 can be reconfigured  
for this purpose registers [1305:1304] = 11 and register [1316] = 1. The WS serves for power saving, it allows to switch on and  
off selected ACMPs on selected bit of 16-bit counter  
.
Power Control  
From Connection Matrix Output [58] for 2 kHz OSC0.  
WS Controller  
OSC0  
CNT0_out  
cnt_end  
CNT  
To Connection Matrix Input [47]  
ck  
CK_OSC  
Divider  
Analog Control Block  
ACMPxH WS EN [1:0]  
register [1078], register [1070]  
2
bg/regulator  
pd  
From Connection  
Matrix Output [63:62]  
WS_out  
WS_PD  
WS_PD  
(from OSC PD)  
ACMPxH_PD  
2
WS_out  
WS_PD to WS out  
state selection register [1315]  
registers [1311:1308]  
WS clock freq. selection  
registers [1335:1320]  
WS ratio control data  
ACMPxH  
register [1079]  
WS mode: normal or short wake  
ACMPxH OUT  
+
-
2
0
1
Note: WS_PD is High at OSC0 power down  
2
To Connection  
Matrix Input  
[57:56]  
ACMPxH_PD  
WS_out  
nRST  
BG/Analog_Good  
Figure 50: Wake and Sleep Controller  
Datasheet  
24-Feb-2021  
Revision 3.2  
85 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
time between Reset goes low  
and 1st WS clock rsing edge  
Force Wake  
CNT_RST  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is latched  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
ACMP Latches Last Data  
Normal ACMP  
Operation  
ACMP follows input  
Sleep Mode  
ACMP Latches New Data  
Normal ACMP  
Sleep Mode  
ACMP Latches  
New Data  
Operation  
ACMP follows input  
BG/Analog  
Startup time*  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.  
Figure 51: Wake and Sleep Timing Diagram, Normal Wake Mode, Counter Reset is Used  
time between Reset goes low  
and 1st WS clock rising edge  
Force Wake  
CNT_RST  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is latched  
Data is latched  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
ACMP Latches Last Data  
Sleep Mode  
ACMP Latches New Data  
Normal ACMP  
Operation for short time  
ACMP follows input  
Sleep Mode  
ACMP Latches  
New Data  
Normal ACMP  
Operation for short time  
ACMP follows input  
BG/Analog  
Startup time*  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.  
Figure 52: Wake and Sleep Timing Diagram, Short Wake Mode, Counter Reset is Used  
Datasheet  
24-Feb-2021  
Revision 3.2  
86 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
time between Reset goes low  
and 1st WS clock rising edge  
Force Sleep  
CNT_SET  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is latched  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
ACMP Latches Last Data  
Normal ACMP  
Operation  
ACMP follows input  
Sleep Mode  
ACMP Latches New Data  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1 us to make sure the data is correct during LATCH.  
Figure 53: Wake and Sleep Timing Diagram, Normal Wake Mode, Counter Set is Used  
time between Reset goes low  
and 1st WS clock rising edge  
Force Sleep  
CNT_RST  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is latched  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
Sleep Mode  
ACMP Latches New Data  
ACMP Latches Last Data  
Normal ACMP  
Operation for short time  
ACMP follows input  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.  
Figure 54: Wake and Sleep Timing Diagram, Short Wake Mode, Counter Set is Used  
Note: If low power BG is powered on/off by WS, the wake time should be longer than 2.1 ms. The BG/analog start up time will  
take maximal 2 ms. If low power BG is always on, OSC0 period is longer than required wake time. The short wake mode can be  
used to reduce the current consumption.  
To use any ACMPxH under WS controller, the following settings must be done:  
ACMPxH Power Up Input from matrix = 1 (for each ACMPxH separately);  
Datasheet  
24-Feb-2021  
Revision 3.2  
87 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
CNT/DLY0 must be set to Wake and Sleep Controller function (for all ACMPxH);  
Register WS → enable (for each ACMPxH separately);  
CNT/DLY0 set/reset input = 0 (for all ACMPxH).  
OSC0 is used to clock WS. The user can select a period of time while the ACMPxH is sleeping in a range of 1 - 65535 clock  
cycles. Before they are sent to sleep, their outputs are latched, so the ACMPs remain their state (High or Low) while sleeping.  
WS controller has the following settings:  
Wake and Sleep Output State (High/Low)  
If OSC is powered off (Power-down option is selected; Power-down input = 1) and Wake and Sleep Output State = High, the  
ACMPxH is continuously on.  
If OSC is powered off (Power-down option is selected; Power-down input = 1) and Wake and Sleep Output State = Low, the  
ACMPxH is continuously off.  
Both cases WS function is turned off.  
Counter Data (Range: 1 to 65535)  
User can select wake and sleep ratio of the ACMP; counter data = sleep time, one clock = wake time.  
Q mode - defines the state of WS counter data when Set/Reset signal appears Reset - when active signal appears, the WS  
counter will reset to zero and High level signal on its output will turn on the ACMPs. When Reset signal goes out, the WS  
counter will go Low and turn off the ACMPxH until the counter counts up to the end. Set - when active signal appears, the WS  
counter will stop and Low level signal on its output will turn off the ACMPxH. When Set signal goes out, the WS counter will go  
on counting and High level signal will turn on the ACMPxH while counter is counting up to the end.  
Note: The OSC0 matrix power-down to control ACMP WS is not supported for short wait time option.  
Edge Select defines the edge for Q mode  
High level Set/Reset - switches mode Set/Reset when level is High  
Note: Q mode operates only in case of "High Level Set/Reset”.  
Wake time selection - time required for wake signal to turn the ACMPxH on  
Normal Wake Time - when WS signal is High, it takes BG/analog start up time to turn the ACMPs on. They will stay on until  
WS signal is Low again. Wake time is one clock period. It should be longer than BG turn on time and minimal required com  
paring time of the ACMP.  
-
Short Wake Time - when WS signal is High, it takes BG/analog start up time to turn the ACMPs on. They will stay on for 1 µs  
and turn off regardless of WS signal. The WS signal width does not matter.  
Keep - pauses counting while Keep = 1  
Up - reverses counting  
If Up = 1, CNT is counting up from user selected value to 65535.  
If Up = 0, CNT is counting down from user selected value to 0.  
Datasheet  
24-Feb-2021  
Revision 3.2  
88 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
9
Analog Comparators  
There are four General Purpose Rail-to-Rail Analog Comparator (ACMP) macrocells in the SLG46827-A. In order for the ACMP  
cells to be used in a GreenPAK design, the power up signals (ACMP0H PWR UP, ACMP1H PWR UP, ACMP2L PWR UP, and  
ACMP3L PWR UP) need to be active. By connecting to signals coming from the Connection Matrix, it is possible to have each  
ACMP be on continuously, off continuously, or switched on periodically based on a digital signal coming from the Connection  
Matrix. When ACMP is powered down, output is low.  
Two of the four General Purpose Rail-to-Rail Analog Comparators are optimized for high speed operation (ACMP0H and  
ACMP1H), and two of the four are optimized for low power operation (ACMP2L and ACMP3L).  
Each of the ACMP cells has a positive input signal that can be provided by a variety of external sources, and can also have a  
selectable gain stage before connection to the analog comparator. Each of the ACMP cells has a negative input signal that is  
either created from an internal Vref or provided by way of the external sources.  
PWR UP = 1 → ACMP is powered up.  
PWR UP = 0 → ACMP is powered down.  
During power-up, the ACMP output will remain LOW, and then become valid 51.4 μs (max), after power up signal goes high for  
ACMP0H and ACMP1H, and become valid 326.6 μs (max), after power up signal goes high for ACMP2L and ACMP3L. Input bias  
current < 1 nA (typ). The Gain divider is unbuffered and consists of 1 MΩ resistors. IN- voltage range: 0 to 2.016 V.  
Each High Speed ACMP (ACMP0H and ACMP1H) has an optional Rail-to-Rail Input Buffer, which can be used along with the  
Gain divider to increase ACMP input resistance. However, Input buffer will increase an input offset voltage.  
Each cell also has a hysteresis selection, to offer hysteresis of (0, 32, 64, 192) mV. The hysteresis option is available when using  
an internal Vref only.  
The ACMP0H has an additional option of connecting an internal 100 μA current source to its positive input, register [1071]. It is  
also possible to connect the 100 μA current source to each next ACMP via an internal analog MUX.  
ACMP0H IN+ options are IO14, V internal 100 μA current source  
D,  
ACMP1H IN+ options are IO13, ACMP0H IN+ MUX output  
ACMP2L IN+ options are IO12, ACMP0H IN+ MUX output, ACMP1H IN+ MUX output  
ACMP3L IN+ options are IO11, ACMP2L IN+ MUX output, Temp Sensor OUT  
Datasheet  
24-Feb-2021  
Revision 3.2  
89 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
9.1 ACMP0H BLOCK DIAGRAM  
to ACMP1H, ACMP2L, ACMP3L’s  
MUX input  
registers [1065:1064]  
Hysteresis  
Selection  
registers [1097:1096]  
ACMP  
Ready  
00  
IO14: ACMP0H(+)  
Selectable  
Gain  
+
-
01  
10  
To Connection  
Matrix Input [56]  
0
1
Internal VDD (2.3V to 5.5 V)  
pdb  
Vref  
Latch  
HighSpeed  
ACMP  
register [1169]; register [1067]  
W/S Control  
register [1070]  
Off after  
1 µs  
Ext. VREF (IO1)  
111111  
From Connection  
Matrix Output [35]  
111110-  
000000  
Internal  
Vref  
registers [1103:1098]  
Figure 55: ACMP0H Block Diagram  
Datasheet  
24-Feb-2021  
Revision 3.2  
90 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
9.2 ACMP1H BLOCK DIAGRAM  
to ACMP2L’s MUX input  
registers [1075:1074]  
Hysteresis  
Selection  
registers [1105:1104]  
ACMP  
Ready  
00  
IO13: ACMP1H(+)  
Selectable  
Gain  
+
-
01  
10  
To Connection  
Matrix Input [57]  
0
1
ACMP0H IN+ MUX Output  
pdb  
Vref  
Latch  
HighSpeed  
ACMP  
register [1072]; register [1076]  
W/S Control  
register [1078]  
Off after  
1 µs  
Ext. VREF (IO1)  
111111  
From Connection  
Matrix Output [35]  
111110-  
000000  
Internal  
Vref  
registers [1111:1106]  
Figure 56: ACMP1H Block Diagram  
Datasheet  
24-Feb-2021  
Revision 3.2  
91 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
9.3 ACMP2L BLOCK DIAGRAM  
registers [1083:1082]  
Hysteresis  
Selection  
registers [1113:1112]  
IO12: ACMP2L(+)  
ACMP  
Ready  
00  
To Connection  
Matrix Input [58]  
from ACMP0H’s MUX output  
Selectable  
Gain  
+
01  
from ACMP1H’s MUX output  
pdb  
10  
Vref  
-
Low Power  
ACMP  
registers [1081:1080]  
Off after  
1 µs  
Ext. VREF (IO1)  
111111  
From Connection  
Matrix Output [37]  
Low  
Power  
Internal  
Vref  
111110-  
000000  
registers [1119:1114]  
Figure 57: ACMP2L Block Diagram  
Datasheet  
24-Feb-2021  
Revision 3.2  
92 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
9.4 ACMP3L BLOCK DIAGRAM  
registers [1089:1088]  
Hysteresis  
Selection  
registers [1121:1120]  
IO11: ACMP3L(+)  
ACMP  
Ready  
00  
To Connection  
Matrix Input [59]  
ACMP2L IN+ MUX Output  
Selectable  
Gain  
+
01  
Temp Sensor  
pdb  
10  
Vref  
-
Low Power  
ACMP  
register [1087]; register [1092]  
Off after  
1 µs  
Ext. VREF (IO1)  
111111  
From Connection  
Matrix Output [38]  
Low  
Power  
Internal  
Vref  
111110-  
000000  
Low Power  
ACMP  
registers [1127:1122]  
Figure 58: ACMP3L Block Diagram  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
93 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
9.5 ACMP TYPICAL PERFORMANCE  
3
2.5  
2
1.5  
High To Low, Overdrive = 10 mV  
Low to High, Overdrive = 10 mV  
High to Low, Overdrive = 100 mV  
Low to High, Overdrive = 100 mV  
1
0.5  
0
0
512  
1024  
1536  
Vref (mV)  
Figure 59: Typical Propagation Delay vs. Vref for ACMPxH at T = 25 °C, Gain = 1, Buffer - Disabled, Hysteresis = 0  
90  
High To Low, Overdrive = 10 mV  
80  
Low to High, Overdrive = 10 mV  
High to Low, Overdrive = 100 mV  
70  
Low to High, Overdrive = 100 mV  
60  
50  
40  
30  
20  
10  
0
0
512  
1024  
1536  
Vref (mV)  
Figure 60: Typical Propagation Delay vs. Vref for ACMPxL at T = 25 °C, Gain = 1, Buffer - Disabled, Hysteresis = 0  
Datasheet  
24-Feb-2021  
Revision 3.2  
94 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
40  
ACMP0 (T = -40 °C)  
ACMP1 (T = -40 °C)  
ACMP0 (T = 25 °C)  
ACMP1 (T = 25 °C)  
ACMP0 (T = 105 °C)  
ACMP1 (T = 105 °C)  
35  
30  
25  
20  
15  
10  
2.3  
2.5  
3
3.3  
3.6  
4
4.5  
5
5.5  
VDD (V)  
Figure 61: ACMPxH Power-On Delay vs. VDD  
ACMP2 (T = -40 °C)  
ACMP3 (T = -40 °C)  
ACMP2 (T = 25 °C)  
ACMP3 (T = 25 °C)  
ACMP2 (T = 105 °C)  
ACMP3 (T = 105 °C)  
210  
190  
170  
150  
130  
110  
90  
70  
2.3  
2.5  
3
3.3  
3.6  
4
4.5  
5
5.5  
VDD (V)  
Figure 62: ACMPxL Power-On Delay vs. VDD  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
95 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
10  
8
6
4
2
0
32  
480  
1024  
1504  
2016  
-2  
-4  
-6  
-8  
Upper Limit  
Lower Limit  
Vref (mV)  
Figure 63: ACMPxH Input Offset Voltage vs. Vref at T = -40 °C to 105 °C, Input Buffer Disabled  
15  
10  
5
0
32  
480  
1024  
1504  
2016  
-5  
-10  
-15  
-20  
Upper Limit  
Lower Limit  
-25  
Vref (mV)  
Figure 64: ACMPxH Input Offset Voltage vs. Vref at T = -40 °C to 105 °C, Input Buffer Enabled  
Datasheet  
24-Feb-2021  
Revision 3.2  
96 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
10  
8
6
4
2
0
32  
480  
1024  
1504  
2016  
-2  
-4  
-6  
-8  
Upper Limit  
Lower Limit  
Vref (mV)  
Figure 65: ACMPxL Input Offset Voltage vs. Vref at T = -40 °C to 105°C  
140  
120  
100  
80  
60  
Max  
40  
Typical  
Min  
20  
0
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
Input Voltage (V)  
Figure 66: ACMP Input Current Source vs. Input Voltage at T = -40 °C to 105 °C, VDD = 3.3 V  
Revision 3.2  
Datasheet  
24-Feb-2021  
97 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
10 Programmable Delay/Edge Detector  
The SLG46827-A has a programmable time delay logic cell available that can generate a delay that is selectable from one of four  
timings (time 2) configured in the GreenPAK Designer. The programmable time delay cell can generate one of four different delay  
patterns, rising edge detection, falling edge detection, both edge detection, and both edge delay. These four patterns can be  
further modified with the addition of delayed edge detection, which adds an extra unit of delay, as well as glitch rejection during  
the delay period. See Figure 68 for further information.  
Note: The input signal must be longer than the delay, otherwise it will be filtered out.  
registers [1262:1261]  
Delay Value Selection  
registers [1260:1259]  
Edge Mode Selection  
To Connection  
Matrix Input [28]  
Programmable  
From Connection Matrix Output [56]  
IN  
OUT  
Delay  
Figure 67: Programmable Delay  
10.1 PROGRAMMABLE DELAY TIMING DIAGRAM - EDGE DETECTOR OUTPUT  
width  
width  
IN  
time1  
Rising Edge Detector  
time1  
Falling Edge Detector  
Edge Detector  
Output  
Both Edge Detector  
Both Edge Delay  
time2  
time2  
time1 is a fixed value  
time2 delay value is selected via register  
Figure 68: Edge Detector Output  
Please refer to Table 12  
.
Datasheet  
24-Feb-2021  
Revision 3.2  
98 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
11 Additional Logic Function. Deglitch Filter  
The SLG46827-A has one Deglitch Filter macrocell with inverter function that is connected directly to the Connection Matrix inputs  
and outputs. In addition, this macrocell can be configured as an Edge Detector, with the following settings:  
Rising Edge Detector  
Falling Edge Detector  
Both Edge Detector  
Both Edge Delay  
Filter  
R
From Connection Matrix  
Output [55]  
0
1
C
0
1
To Connection Matrix  
Input [27]  
Edge  
Detector  
Logic  
registers [1246:1245] register [1243]  
register [1244]  
Figure 69: Deglitch Filter or Edge Detector  
Datasheet  
24-Feb-2021  
Revision 3.2  
99 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
12 Voltage Reference  
12.1 VOLTAGE REFERENCE OVERVIEW  
The SLG46827-A has a Voltage Reference (Vref) Macrocell to provide references to the four analog comparators. This macrocell  
can supply a user selection of fixed voltage references, or temperature sensor output. The macrocell also has the option to output  
reference voltages on IO9 and IO10. See Table 48 for the available selections for each analog comparator. Also, see Figure 70,  
which shows the reference output structure.  
12.2 VREF SELECTION TABLE  
Table 48: Vref Selection Table  
SEL[5:0]  
0
Vref  
0.032  
0.064  
0.096  
0.128  
0.16  
SEL[5:0]  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
Vref  
1.056  
1.088  
1.12  
1
2
3
1.152  
1.184  
1.216  
1.248  
1.28  
4
5
0.192  
0.224  
0.256  
0.288  
0.32  
6
7
8
1.312  
1.344  
1.376  
1.408  
1.44  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0.352  
0.384  
0.416  
0.448  
0.48  
1.472  
1.504  
1.536  
1.568  
1.6  
0.512  
0.544  
0.576  
0.608  
0.64  
1.632  
1.664  
1.696  
1.728  
1.76  
0.672  
0.704  
0.736  
0.768  
0.8  
1.792  
1.824  
1.856  
1.888  
1.92  
0.832  
0.864  
0.896  
0.928  
0.96  
1.952  
1.984  
2.016  
External  
0.992  
1.024  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
100 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
12.3 VREF BLOCK DIAGRAM  
registers [1103:1098]  
External Vref  
(IO1)  
None  
00  
01  
10  
11  
ACMP0H_Vref  
IO10_aio_en  
1
0
OP  
pd  
registers [1111:1106]  
Vref Out_0 (IO10)  
ACMP1H_Vref  
registers [1130:1129]  
register [1137]  
Temp Sensor  
0
1
From Matrix  
Output [60]  
register [1138]  
None  
None  
00  
01  
10  
11  
registers [1119:1114]  
IO9_aio_en  
1
0
OP  
pd  
Vref Out_1 (IO9)  
ACMP2L_Vref  
registers [1127:1122]  
registers [1133:1132]  
ACMP3L_Vref  
register [1139]  
0
From Matrix  
Output [60]  
1
register [1140]  
Figure 70: Voltage Reference Block Diagram  
Datasheet  
24-Feb-2021  
Revision 3.2  
101 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
12.4 VREF LOAD REGULATION  
Note 1 It is not recommended to use Vref connected to external pin without buffer.  
Note 2 Vref buffer performance is not guaranteed at V < 2.7 V.  
DD  
320  
310  
300  
290  
280  
270  
260  
250  
240  
VDD=5.5V  
VDD=3.3V  
VDD=2.3V  
I,UA  
Figure 71: Typical Load Regulation, Vref = 320 mV, T = -40  
°
C to +105  
°C, Buffer - Enable  
650  
640  
630  
620  
610  
600  
590  
580  
570  
560  
VDD=5.5V  
VDD=3.3V  
VDD=2.3V  
I,UA  
Figure 72: Typical Load Regulation, Vref = 640 mV, T = -40 °C to +105 °C, Buffer - Enable  
Datasheet  
24-Feb-2021  
Revision 3.2  
102 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
1290  
1280  
1270  
1260  
1250  
1240  
1230  
1220  
1210  
1200  
VDD=5.5V  
VDD=3.3V  
VDD=2.3V  
I,UA  
Figure 73: Typical Load Regulation, Vref = 1280 mV, T = -40  
°
C to +105  
°
C, Buffer - Enable  
2020  
2010  
2000  
1990  
1980  
1970  
1960  
1950  
1940  
1930  
1920  
1910  
VDD=5.5V  
VDD=3.3V  
VDD=2.3V  
I,UA  
Figure 74: Typical Load Regulation, Vref = 2016 mV, T = -40 °C to +105 °C, Buffer - Enable  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
103 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
13 Clocking  
13.1 OSCILLATOR GENERAL DESCRIPTION  
The SLG46827-A has three internal oscillators to support a variety of applications:  
Oscillator0 (2.048 kHz)  
Oscillator1 (2.048 MHz)  
Oscillator2 (25 MHz)  
There are two divider stages for each oscillator that gives the user flexibility for introducing clock signals to connection matrix, as  
well as various other Macrocells. The pre-divider (first stage) for Oscillator allows the selection of /1, /2, /4 or /8 to divide down  
frequency from the fundamental. The second stage divider has an input of frequency from the pre-divider, and outputs one of  
eight different frequencies divided by /1, /2, /3, /4, /8, /12, /24 or /64 on Connection Matrix Input lines [27], [28], and [29]. Please  
see Figure 78 for more details on the SLG46827-A clock scheme.  
Oscillator2 (25 MHz) has an additional function of 100 ns delayed startup, which can be enabled/disabled by register [1052]. This  
function is recommended to use when analog blocks are used along with the Oscillator.  
The Matrix Power-down/Force On function allows switching off or force on the oscillator using an external pin. The Matrix Power-  
down/Force On (Connection Matrix Output [72], [73], [74]) signal has the highest priority. The OSC operates according to the  
Table 49.  
Table 49: Oscillator Operation Mode Configuration Settings  
OSC Enable  
Signal from  
CNT/DLY  
Register:  
Power-Down  
or Force On by  
Matrix Input  
OSC  
Operation  
Mode  
Signal From  
Connection  
Matrix  
Register: Auto  
Power-On or  
Force On  
External Clock  
Selection  
POR  
Macrocells  
0
1
X
1
X
X
X
X
X
X
X
X
OFF  
Internal OSC is  
OFF, logic is ON  
1
1
1
0
0
0
1
1
0
0
1
X
X
X
1
X
X
X
OFF  
ON  
ON  
ON  
CNT/DLY re  
quires OSC  
-
1
1
0
0
0
0
X
X
0
0
CNT/DLY does  
not require OSC  
OFF  
Note 1 The OSC will run only when any macrocell that uses OSC is powered on.  
Datasheet  
24-Feb-2021  
Revision 3.2  
104 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
13.2 OSCILLATOR0 (2.048 KHZ)  
From Connection Matrix  
Output [58]  
Power-down/Force On  
Matrix Output control [1041]  
OSC Power Mode  
register [1040]  
2.048 kHz Pre-divided Clock  
PD/ FORCE ON  
registers [1044:1043]  
OSC0  
Auto Power-On  
Force Power-On  
(2.048 kHz) OUT  
0
0
1
DIV /1 /2 /4 /8  
0
1
Ext. Clock  
Pre-divider  
1
/ 2  
/ 3  
2
3
4
5
6
7
Ext. CLK Sel register [1042]  
To Connection Matrix  
Input [31]  
/ 4  
OUT0  
/ 8  
OUT1  
To Connection Matrix  
Input [61]  
/ 12  
/ 24  
/ 64  
registers [1047:1045]  
registers [1061:1059]  
Second Stage  
Divider  
Figure 75: Oscillator0 Block Diagram  
Datasheet  
24-Feb-2021  
Revision 3.2  
105 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
13.3 OSCILLATOR1 (2.048 MHZ)  
From Connection Matrix  
Output [59]  
Power-down/Force On  
Matrix Output control [register 1025]  
OSC Power Mode  
register [1024]  
2.048 MHz Pre-divided Clock  
PD/ FORCE ON  
registers [1028:1027]  
OSC1  
Auto Power-On  
Force Power-On  
(2.048 MHz)OUT  
0
0
1
DIV /1 /2 /4 /8  
0
1
Ext. Clock  
Pre-divider  
1
/ 2  
/ 3  
2
3
4
5
6
7
Ext. CLK Sel register [1026]  
To Connection Matrix  
Input [30]  
/ 4  
OUT0  
/ 8  
OUT1  
To Connection Matrix  
Input [60]  
/ 12  
/ 24  
/ 64  
registers [1031:1029]  
registers [1058:1056]  
Second Stage  
Divider  
Figure 76: Oscillator1 Block Diagram  
Datasheet  
24-Feb-2021  
Revision 3.2  
106 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
13.4 OSCILLATOR2 (25 MHZ)  
From Connection Matrix  
Output [57]  
Power-down/Force On  
Matrix Output control register[1033]  
OSC Power Mode  
register [1032]  
25 MHz Pre-divided Clock  
PD/ FORCE ON  
registers [1036:1035]  
OSC2  
(25 MHz)  
Auto Power-On  
Force Power-On  
OUT  
0
0
1
Startup delay  
DIV /1 /2 /4 /8  
0
1
Pre-divider  
register [1052]  
1
/ 2  
/ 3  
Ext. Clock  
2
3
4
5
6
Ext. CLK Sel [1034]  
To Connection Matrix  
Input [32]  
/ 4  
/ 8  
/ 12  
/ 24  
/ 64  
7
registers [1039:1037]  
Second Stage  
Divider  
Figure 77: Oscillator2 Block Diagram  
Datasheet  
24-Feb-2021  
Revision 3.2  
107 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
13.5 CNT/DLY CLOCK SCHEME  
Each CNT/DLY within Multi-Function macrocell has its own additional clock divider connected to oscillators pre-divider. Available  
dividers are:  
OSC0/1, OSC0/8, OSC0/64, OSC0/512, OSC0/4096, OSC0/32768, OSC0/262144  
OSC1/1, OSC1/8, OSC1/64, OSC1/512  
OSC2/1, OSC2/4  
[3:0]  
0
1
25 MHz Pre-divided clock  
Div4  
2
Div8  
3
4
5
6
7
8
CNT/DLY/  
ONESHOT/  
FREQ_DET/  
2.048 MHz Pre-divided clock  
2.048 kHz Pre-divided clock  
Div64  
Div512  
DLY_EDGE_DET  
Div8  
Div64  
CNT overflow  
Div512  
9
Div4096  
Div32768  
Div262144  
10  
11  
12  
13  
14  
15  
CNT (x-1) overflow  
from Connection Matrix Out  
(separate for each CNT/DLY macrocell)  
CNT0/CNT1/CNT2/CNT3/  
CNT4/CNT5/CNT6/CNT7  
Figure 78: Clock Scheme  
13.6 EXTERNAL CLOCKING  
The SLG46827-A supports several ways to use an external, higher accuracy clock as a reference source for internal operations.  
13.6.1 IO0 Source for Oscillator0 (2.048 kHz)  
When register [1042] is set to 1, an external clocking signal on IO0 will be routed in place of the internal oscillator derived  
2.048 kHz clock source. See Figure 75. The high and low limits for frequency that can be selected are 0 MHz and 10 MHz.  
13.6.2 IO10 Source for Oscillator1 (2.048 MHz)  
When register [1026] is set to 1, an external clocking signal on IO10 will be routed in place of the internal oscillator derived  
2.048 MHz clock source. See Figure 76. The high and low limits for frequency that can be selected are 0 MHz and 10 MHz.  
13.6.3 IO8 Source for Oscillator2 (25 MHz)  
When register [1034] is set to 1, an external clocking signal on IO8 will be routed in place of the internal oscillator derived 25 MHz  
clock source. See Figure 77. The external frequency range is 0 MHz to 20 MHz at V = 2.3 V, 0 MHz to 30 MHz at V = 3.3 V,  
DD  
DD  
0 MHz to 50 MHz at V = 5.0 V.  
DD  
Datasheet  
24-Feb-2021  
Revision 3.2  
108 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
13.7 OSCILLATORS POWER-ON DELAY  
OSC enable  
Power-On  
Delay  
CLK  
Figure 79: Oscillator Startup Diagram  
Note 1 OSC power mode: “Auto Power-On”.  
Note 2 “OSC enable” signal appears when any macrocell that uses OSC is powered on.  
1 300  
1 200  
1 100  
1 000  
900  
800  
700  
600  
500  
VDD (V)  
Figure 80: Oscillator0 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC0 = 2.048 kHz  
Datasheet  
24-Feb-2021  
Revision 3.2  
109 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
580  
560  
540  
520  
500  
480  
460  
440  
420  
400  
VDD (V)  
Figure 81: Oscillator1 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC1 = 2.048 MHz  
180  
160  
140  
Start with Delay  
Normal Start  
120  
100  
80  
60  
40  
20  
0
VDD (V)  
Figure 82: Oscillator2 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC2 = 25 MHz  
Datasheet  
24-Feb-2021  
Revision 3.2  
110 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
13.8 OSCILLATORS ACCURACY  
Note: OSC power setting: Force Power-On; Clock to matrix input - enable; Bandgap: turn on by register - enable.  
2.1  
2.05  
2
1.95  
1.9  
Fmax @ VDD = 2.5 V to 5 V  
Ftyp @ VDD = 3.3 V  
Fmin @ VDD = 2.5 V to 5 V  
1.85  
1.8  
T (°C)  
Figure 83: Oscillator0 Frequency vs. Temperature, OSC0 = 2.048 kHz  
Datasheet  
24-Feb-2021  
Revision 3.2  
111 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
2.1  
2.05  
2
Fmax @ VDD = 5 V  
Fmax @ VDD = 3.3 V  
Fmax @ VDD = 2.5 V  
1.95  
Ftyp @ VDD = 3.3 V  
Fmin @ VDD = 5 V  
Fmin @ VDD = 3.3 V  
Fmin @ VDD = 2.5 V  
1.9  
T (°C)  
Figure 84: Oscillator1 Frequency vs. Temperature, OSC1 = 2.048 MHz  
25.8  
25.4  
25  
24.6  
Fmax @ VDD = 5 V  
24.2  
Fmax @ VDD = 3.3 V  
Fmax @ VDD = 2.5 V  
Ftyp @ VDD = 3.3 V  
23.8  
23.4  
Fmin @ VDD = 5 V  
Fmin @ VDD = 3.3 V  
Fmin @ VDD = 2.5 V  
T (°C)  
Figure 85: Oscillator2 Frequency vs. Temperature, OSC2 = 25 MHz  
Note: For more information see Section 3.6.  
Datasheet  
24-Feb-2021  
Revision 3.2  
112 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 50: Oscillator Output Duty Cycle  
Second Stage Divider  
OSC0  
OSC1  
OSC2  
OSC0  
OSC1  
OSC2  
OSC0  
OSC1  
OSC2  
OSC0  
OSC1  
OSC2  
OSC0  
OSC1  
OSC2  
OSC0  
OSC1  
OSC2  
OSC0  
OSC1  
OSC0  
OSC1  
OSC2  
OSC2  
Pre-divider  
1
2
3
4
8
12  
50  
50  
50  
50  
24  
50  
50  
50  
50  
64  
50  
50  
50  
50  
1
2
4
8
50  
50  
50  
50  
60  
50  
50  
50  
50  
50  
50  
50  
33.3  
33.3  
33.3  
33.3  
66  
66  
66  
66  
50  
50  
50  
50  
50  
50  
50  
50  
11  
10  
9
2.048 kHz Total Error @ VDD = 2.3 V to 5.5 V  
25 MHz Total Error @ VDD = 2.3 V to 5.5 V  
2.048 MHz Total Error @ VDD = 2.3 V to 5.5 V  
8
7
6
5
4
3
2
1
T (°C)  
Figure 86: Oscillators Total Error vs. Temperature  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
113 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
14 Power-On Reset  
The SLG46827-A has a Power-On Reset (POR) macrocell to ensure correct device initialization and operation of all macrocells  
in the device. The purpose of the POR circuit is to have consistent behavior and predictable results when the V power is first  
DD  
ramping to the device, and also while the V is falling during power-down. To accomplish this goal, the POR drives a defined  
DD  
sequence of internal events that trigger changes to the states of different macrocells inside the device, and finally to the state of  
the IOs.  
14.1 GENERAL OPERATION  
The SLG46827-A is guaranteed to be powered down and non-operational when the V voltage (voltage on PIN20 for TSSOP  
DD  
package) is less than Power-Off Threshold (see in Table 3.4), but not less than -0.6 V. Another essential condition for the chip to  
be powered down is that no voltage higher (Note) than the V voltage is applied to any other PIN. For example, if V voltage  
DD  
DD  
is 0.3 V, applying a voltage higher than 0.3 V to any other PIN is incorrect, and can lead to incorrect or unexpected device behavior.  
Note: There is a 0.6 V margin due to forward drop voltage of the ESD protection diodes.  
To start the POR sequence in the SLG46827-A, the voltage applied on the V should be higher than the Power-On threshold  
DD  
(Note). The full operational V range for the SLG46827-A is 2.3 V to 5.5 V. This means that the V voltage must ramp up to  
DD  
DD  
the operational voltage value, but the POR sequence will start earlier, as soon as the V voltage rises to the Power-On threshold.  
DD  
After the POR sequence has started, the SLG46827-A will have a typical Startup Time (see in Table 3.4) to go through all the  
steps in the sequence, and will be ready and completely operational after the POR sequence is complete.  
Note: The Power-On threshold is defined in Table 3.4.  
To power down the chip, the V voltage should be lower than the operational and to guarantee that chip is powered down, it  
DD  
should be less than Power-Off Threshold.  
All PINs are in high impedance state when the chip is powered down and while the POR sequence is taking place. The last step  
in the POR sequence releases the IO structures from the high impedance state, at which time the device is operational. The pin  
configuration at this point in time is defined by the design programmed into the chip. Also, as it was mentioned before, the voltage  
on PINs can’t be bigger than the V , this rule also applies to the case when the chip is powered on.  
DD  
Datasheet  
24-Feb-2021  
Revision 3.2  
114 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
14.2 POR SEQUENCE  
The POR system generates a sequence of signals that enable certain macrocells. The sequence is shown in Figure 87.  
VDD  
t
t
t
t
t
t
t
t
POR_NVM  
(reset for NVM)  
NVM_ready_out  
POR_GPI  
(reset for input enable)  
POR_LUT  
(reset for LUT output)  
POR_CORE  
(reset for DLY/OSC/DFF  
/LATCH/Pipe DLY  
POR_OUT  
(generate low to high to matrix)  
POR_GPO  
(reset for output enable)  
Figure 87: POR Sequence  
As can be seen from Figure 87 after the V has started ramping up and crossed the Power-On threshold, first, the on-chip NVM  
DD  
memory is reset. Next, the chip reads the data from NVM, and transfers this information to a CMOS LATCH that serves to configure  
each macrocell, and the Connection Matrix which routes signals between macrocells. The third stage causes the reset of the input  
pins, and then to enable them. After that, the LUTs are reset and become active. After LUTs, the Delay cells, OSCs DFFs,  
LATCHES, and Pipe Delay are initialized. Only after all macrocells are initialized, internal POR signal (POR macrocell output)  
goes from LOW to HIGH (POR_OUT in Figure 87). The last portion of the device to be initialized is the output pins, which transition  
from high impedance to active at this point.  
The typical time that takes to complete the POR sequence varies by device type in the GreenPAK family. It also depends on many  
environmental factors, such as: slew rate, V value, temperature, and even will vary from chip to chip (process influence).  
DD  
14.3 MACROCELLS OUTPUT STATES DURING POR SEQUENCE  
To have a full picture of SLG46827-A operation during powering and POR sequence, refer to Figure 88 which describes the  
macrocell output states during the POR sequence.  
First, before the NVM has been reset, all macrocells have their output set to logic LOW (except the output pins which are in high  
impedance state). On the next step, some of the macrocells start initialization: input pins output state becomes LOW; LUTs also  
output LOW. After that input pins are enabled. Next, only LUTs are configured. Then, all other macrocells are initialized. After  
macrocells are initialized, internal POR matrix signal switches from LOW to HIGH. The last are output pins that become active  
and determined by the input signals.  
Datasheet  
24-Feb-2021  
Revision 3.2  
115 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
VDD  
Guaranteed HIGH before POR_GPI  
t
VDD_out  
to matrix  
t
t
Input PIN _out  
Determined by External Signal  
to matrix  
LUT_out  
to matrix  
Determined by Input signals  
t
Programmable Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
t
Determined by initial state  
DFF/Latch_out  
to matrix  
Determined by Input signals  
Determined by initial value  
settings  
t
t
t
t
Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
POR_out  
to matrix  
Ext. GPO  
Tri-state  
Determined by input signals  
Output State Unpredictable  
Figure 88: Internal Macrocell States during POR Sequence  
14.3.1 Initialization  
All internal macrocells by default have initial low level. Starting from indicated power-up time of 1.52 V to 2.12 V, macrocells in  
SLG46827-A are powered on while forced to the reset state. All outputs are in Hi-Z and chip starts loading data from NVM. Then  
the reset signal is released for internal macrocells and they start to initialize according to the following sequence:  
1. Input pins, Pull-up/down.  
2. LUTs.  
3. DFFs, Delays/Counters, Pipe Delay, OSCs, ACMPs.  
4. POR output to matrix.  
5. Output pin corresponds to the internal logic.  
The Vref output pin driving signal can precede POR output signal going high by 3  
the mentioned power-up sequence is complete.  
µs to 5 µs. The POR signal going high indicates  
Note: The maximum voltage applied to any pin should not be higher than the V level. There are ESD Diodes between pin →  
DD  
V
and pin → GND on each pin. Exceeding V results in leakage current on the input pin, and V will be pulled up, following  
DD DD  
DD  
the voltage on the input pin.  
Datasheet  
24-Feb-2021  
Revision 3.2  
116 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
14.3.2 Power-Down  
VDD (V)  
2 V  
1.59 V  
0.84 V  
1 V Vref Out Signal  
1 V  
Time  
Not guaranteed output state  
Figure 89: Power-Down  
During power-down, macrocells in SLG46827-A are powered off after V falling down below Power-Off Threshold. Please note  
DD  
that during a slow rampdown, outputs can possibly switch state.  
Datasheet  
24-Feb-2021  
Revision 3.2  
117 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
2
15 I C Serial Communications Macrocell  
15.1 I2C SERIAL COMMUNICATIONS MACROCELL OVERVIEW  
In the standard use case for the GreenPAK devices, the configuration choices made by the user are stored as bit settings in the  
Non-Volatile Memory (NVM), and this information is transferred at startup time to volatile RAM registers that enable the configu  
-
ration of the macrocells. Other RAM registers in the device are responsible for setting the connections in the Connection Matrix  
to route signals in the manner most appropriate for the user’s application.  
2
2
The I C Serial Communications Macrocell in this device allows an I C bus Master to read and write this information via a serial  
channel directly to the RAM registers, allowing the remote re-configuration of macrocells, and remote changes to signal chains  
within the device.  
2
An I C bus Master is also able read and write other register bits that are not associated with NVM memory. As an example, the  
input lines to the Connection Matrix can be read as digital register bits. These are the signal outputs of each of the macrocells in  
2
the device, giving an I C bus Master the capability to remotely read the current value of any macrocell.  
The user has the flexibility to control read access and write access via registers bits registers [1795:1792]. See Section 16 for  
2
more details on I C read/write memory protection.  
15.2 I2C SERIAL COMMUNICATIONS DEVICE ADDRESSING  
2
Each command to the I C Serial Communications macrocell begins with a Control Byte. The bits inside this Control Byte are  
shown in Figure 90. After the Start bit, the first four bits are a control code. Each bit in a control code can be sourced independently  
from the register or by value defined externally by IO5, IO4, IO3, and IO2. The LSB of the control code is defined by the value of  
IO2, while the MSB is defined by the value of IO5. The address source (either register bit or PIN) for each bit in the control code  
is defined by registers [1623:1620]. This gives the user flexibility on the chip level addressing of this device and other devices on  
2
the same I C bus.The default control code is 0001. The Block Address is the next three bits (A10, A9, A8), which will define the  
most significant bits in the addressing of the data to be read or written by the command. The last bit in the Control Byte is the R/W  
bit, which selects whether a read command or write command is requested, with a “1” selecting for a Read command, and a “0”  
selecting for a Write command. This Control Byte will be followed by an Acknowledge bit (ACK), which is sent by this device to  
indicate successful communication of the Control Byte data.  
2
In the I C-bus specification and user manual, there are two groups of eight addresses (0000 xxx and 1111 xxx) that are reserved  
for the special functions, such as a system General Call address. If the user of this device choses to set the Control Code to either  
2
“1111” or “0000” in a system with other slave device, please consult the I C-bus specification and user manual to understand the  
addressing and implementation of these special functions, to insure reliable operation.  
In the read and write command address structure, there are a total of 11 bits of addressing, each pointing to a unique byte of  
information, resulting in a total address space of 16K bytes. The valid addresses are shown in the memory map in Figure 100.  
With the exception of the Current Address Read command, all commands will have the Control Byte followed by the Word  
Address.  
Start  
bit  
Acknowledge  
bit  
Control Byte  
Word Address  
A
10  
A
9
A
8
A
7
A
0
S
X
X
X
X
R/W ACK  
Control  
Code  
Block  
Address  
Read/Write bit  
Figure 90: Basic Command Structure  
Datasheet  
24-Feb-2021  
Revision 3.2  
118 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
15.3 I2C SERIAL GENERAL TIMING  
2
General timing characteristics for the I C Serial Communications macrocell are shown in Figure 91. Timing specifications can be  
found in the Section 3.4.  
tHIGH  
tF  
tR  
tLOW  
SCL  
tSU STA  
tHD DAT  
tHD STA  
tSU DAT  
tSU STO  
SDA IN  
tDH  
tBUF  
tVD ACK  
ACK 1-bit  
SDA OUT  
DATA 8-bit  
Figure 91: I2C General Timing Characteristics  
15.4 I2C SERIAL COMMUNICATIONS COMMANDS  
15.4.1 Byte Write Command  
Following the Start condition from the Master, the Control Code [4 bits], the Block Address [3 bits], and the R/W bit (set to “0”) are  
2
placed onto the I C bus by the Master. After the SLG46827-A sends an Acknowledge bit (ACK), the next byte transmitted by the  
Master is the Word Address. The Block Address (A10, A9, A8), combined with the Word Address (A7 through A0), together set  
the internal address pointer in the SLG46827-A, where the data byte is to be written. After the SLG46827-A sends another  
Acknowledge bit, the Master will transmit the data byte to be written into the addressed memory location. The SLG46827-A again  
provides an Acknowledge bit and then the Master generates a Stop condition. The internal write cycle for the data will take place  
at the time that the SLG46827-A generates the Acknowledge bit.  
2
It is possible to latch all IOs during I C write command to the register configuration data (block address A10, A9, A8 = 000),  
register [1602] = 1 - Enable. It means that IOs will remain their state until the write command is done.  
Acknowledge  
bit  
Acknowledge  
bit  
Start  
bit  
Acknowledge  
bit  
Bus Activity  
Control Byte  
Word Address  
Data  
A
10  
A
9
A
8
A
7
A
0
D
7
D
0
S
X
X
X
X
W
ACK  
ACK  
ACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
Stop  
bit  
R/W bit = 0  
Figure 92: Byte Write Command, R/W = 0  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
119 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
15.4.2 Sequential Write Command  
The write Control Byte, Word Address, and the first data byte are transmitted to the SLG46827-A in the same way as in a Byte  
Write command. However, instead of generating a Stop condition, the Bus Master continues to transmit data bytes to the  
SLG46827-A. Each subsequent data byte will increment the internal address counter, and will be written into the next higher byte  
in the command addressing. As in the case of the Byte Write command, the internal write cycle will take place at the time that the  
SLG46827-A generates the Acknowledge bit.  
Acknowledge  
Acknowledge  
bit  
Start  
bit  
bit  
Bus Activity  
Data (n + 1)  
Data (n + x)  
Control Byte  
Word Address (n)  
Data (n)  
A
10  
A
9
A
8
ACK  
ACK  
P
SDA LINE  
S
X
X
X
X
W
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
Write bit  
Figure 93: Sequential Write Command  
15.4.3 Current Address Read Command  
The Current Address Read Command reads from the current pointer address location. The address pointer is incremented at the  
first STOP bit following any write control byte. For example, if a Sequential Read command (which contains a write control byte)  
reads data up to address n, the address pointer would get incremented to n + 1 upon the STOP of that command. Subsequently,  
a Current Address Read that follows would start reading data at n + 1. The Current Address Read Command contains the Control  
Byte sent by the Master, with the R/W bit = “1”. The SLG46827-A will issue an Acknowledge bit, and then transmit eight data bits  
for the requested byte. The Master will not issue an Acknowledge bit, and follow immediately with a Stop condition.  
Start  
bit  
Acknowledge  
bit  
Stop  
bit  
Bus Activity  
Control Byte  
Data (n)  
A
10  
A
9
A
8
S
X
X
X
X
R
ACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
No ACK  
bit  
R/W bit = 1  
Figure 94: Current Address Read Command, R/W = 1  
15.4.4 Random Read Command  
The Random Read command starts with a Control Byte (with R/W bit set to “0”, indicating a write command) and Word Address  
to set the internal byte address, followed by a Start bit, and then the Control Byte for the read (exactly the same as the Byte Write  
command). The Start bit in the middle of the command will halt the decoding of a Write command, but will set the internal address  
counter in preparation for the second half of the command. After the Start bit, the Bus Master issues a second control byte with  
the R/W bit set to “1”, after which the SLG46827-A issues an Acknowledge bit, followed by the requested eight data bits.  
Datasheet  
24-Feb-2021  
Revision 3.2  
120 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Acknowledge  
Stop  
bit  
Start  
bit  
bit  
Bus Activity  
Data (n)  
Control Byte  
Word Address (n)  
Control Byte  
A
10  
A
9
A
8
A
10  
A
9
A
8
S
ACK  
X
X
X
X
R ACK  
P
SDA LINE  
S
X
X
X
X
W
ACK  
Control  
Code  
Block  
Address  
Control  
Code  
Block  
Address  
No ACK  
bit  
Write bit  
Read bit  
Figure 95: Random Read Command  
15.4.5 Sequential Read Command  
The Sequential Read command is initiated in the same way as a Random Read command, except that once the SLG46827-A  
transmits the first data byte, the Bus Master issues an Acknowledge bit as opposed to a Stop condition in a random read. The  
Bus Master can continue reading sequential bytes of data, and will terminate the command with a Stop condition.  
Acknowledge  
Start  
bit  
bit  
Bus Activity  
Data (n + 2)  
Data (n + x)  
Control Byte  
Data (n)  
Data (n + 1)  
A
8
A
10  
A
9
ACK  
P
SDA LINE  
S
X
X
X
X
R
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
No ACK  
bit  
Read bit  
Figure 96: Sequential Read Command  
15.4.6 I2C Serial Reset Command  
2
If I C serial communication is established with the device, it is possible to reset the device to initial power up conditions, including  
configuration of all macrocells, and all connections provided by the Connection Matrix. This is implemented by setting  
2
register [1601] I C reset bit to “1”, which causes the device to re-enable the Power-On Reset (POR) sequence, including the  
reload of all register data from NVM. During the POR sequence, the outputs of the device will be in tri-state. After the reset has  
taken place, the contents of register [1601] will be set to “0” automatically. Figure 97 illustrates the sequence of events for this  
reset function.  
Datasheet  
24-Feb-2021  
Revision 3.2  
121 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Acknowledge  
bit  
Acknowledge  
bit  
Start  
bit  
Acknowledge  
bit  
Bus Activity  
Control Byte  
Word Address  
Data  
A
10  
A
9
A
8
A
7
A
0
D
7
D
0
S
X
X
X
X
W
ACK  
ACK  
ACK  
SDA LINE  
P
Internal Reset bit  
Control  
Code  
Block  
Address  
Stop  
bit  
Write bit  
by I2C Stop Signal  
Reset-bit register output  
DFF output gated by stop signal  
Internal POR for core only  
Figure 97: Reset Command Timing  
15.5 CHIP CONFIGURATION DATA PROTECTION  
The SLG46827-A utilizes a scheme that allows a portion or the entire Register and NVM to be inhibited from being read or  
written/erased. There are two bytes that define the register and NVM access or change. The first byte RPR defines the 2k register  
read and write protection. The second byte NPR defines the 2k NVM data configuration read and write protection. If desired, the  
protection lock bit (PRL) can be set so that protection may no longer be modified, thereby making the current protection scheme  
permanent. The status of the RPR and NPR can be determined by following a Random Read sequence. Changing the state of  
the RPR and NPR is accomplished with a Byte Write sequence with the requirements outlined in this section.  
The RPR register is located on H’E0 address, while NPR is located on H’E1 address.  
The RPR format is shown in Table 51, and the RPR bit functions are included in Table 52.  
Table 51: RPR Format  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
RPR  
RPRB3  
RPRB2  
RPRB1  
RPRB0  
Table 52: RPR Bit Function Description  
Bit  
Name  
2k Register  
Type  
Description  
00: 2k register data is unprotected for write;  
01: 2k register data is partly protected for write; Please refer to the Table 55.  
10: 2k register data is fully protected for write.  
RPRB3  
RPRB2  
RPRB1  
RPRB0  
R/W*  
Write  
Selection  
Bits  
3:2  
R/W*  
R/W*  
R/W*  
2k Register  
Read  
Selection  
00: 2k register data is unprotected for read;  
01: 2k register data is partly protected for read; Please refer to the Table 55.  
10: 2k register data is fully protected for read.  
1:0  
Bits  
* Becomes read only after PRL is high. The content is permanently locked for write and erase after PRL is high.  
Datasheet  
24-Feb-2021  
Revision 3.2  
122 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
The NPR format is shown in Table 53, and the NPR bit functions are included in Table 54.  
Table 53: NPR Format  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
NPR  
Table 54: NPR Bit Function Description  
NPRB1  
NPRB0  
Bit  
Name  
Type  
Description  
NPRB1  
NPRB0  
R/W*  
00: 2k NVM Configuration data is unprotected for read and write/erase;  
01: 2k NVM Configuration data is fully protected for read;  
10: 2k NVM Configuration data is fully protected for write/erase.  
11: 2k NVM Configuration data is fully protected for read and write/erase.  
2k NVM  
Configuration  
Selection Bits  
1:0  
R/W*  
* Becomes read only after PRL is high. The content is permanently locked for write and erase after PRL is high.  
The protection selection bits allow different levels of protection of the register and NVM Memory Array.  
The Protect Lock Bit (PRL) is used to permanently lock (for write and erase) the current state of the RPR and NPR. A Logic 0  
indicates that the protection byte can be modified, whereas a Logic 1 indicates the byte has been locked and can no longer be  
modified.  
In this case it is impossible to erase the whole page E with protection bytes. The PRL is located at E4 address (register [1824]).  
15.6 I2C SERIAL COMMAND REGISTER MAP  
There are nine read/write protect modes for the design sequence from being corrupted or copied. See Table 55 for details.  
Table 55: Read/Write Register Protection Options  
Protection Modes Configuration  
Partly  
Lock  
Read &  
Lock  
Lock  
Read &  
Partly  
Lock  
Partly  
Lock  
Read/  
Write  
Configurations  
Partly  
Lock  
Read  
Partly  
Lock  
Write  
Lock  
Read/  
Write  
Lock  
Read  
Lock  
Write  
Unlock  
Register  
Address  
Test  
Mode  
Write  
Write  
00  
00  
01  
00  
00  
01  
01  
01  
01  
10  
10  
01  
10  
00  
00  
10  
10  
10  
RPR[1:0]  
RPR[3:2]  
2
I C Byte Write Bit  
Masking  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R
R
R
W
W
W
W
W
W
W
W
R
R
R
R
-
-
-
-
-
-
-
-
C9  
C8b'1  
C8b'2  
7A  
(section 15.7.3)  
2
I C Serial Reset  
Command  
(section 15.4.6)  
Outputs Latching  
2
During I C Write  
Connection Matrix  
Virtual Inputs  
(section 6.3)  
Configuration Bits  
for All Macrocells  
(IOs, ACMPs,  
Combination  
R/W  
R/W  
W
W
R
R
-
-
-
-
-
-
W
W
R
R
-
-
-
-
Function  
Macrocells, etc.)  
Macrocells Inputs  
Configuration  
(Connection Matrix  
Outputs)  
00~47  
Datasheet  
24-Feb-2021  
Revision 3.2  
123 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 55: Read/Write Register Protection Options(Continued)  
Protection Modes Configuration  
Partly  
Lock  
Read &  
Lock  
Lock  
Read &  
Partly  
Lock  
Partly  
Lock  
Read/  
Write  
Partly  
Lock  
Read  
Partly  
Lock  
Write  
Lock  
Read/  
Write  
Configurations  
Lock  
Read  
Lock  
Write  
Unlock  
Register  
Address  
Test  
Mode  
Write  
Write  
00  
00  
01  
00  
00  
01  
01  
01  
01  
10  
10  
01  
10  
00  
00  
10  
10  
10  
RPR[1:0]  
RPR[3:2]  
Protection Mode  
Selection  
R/W  
R/W  
R
R
R
R
R/W  
R
R
R
R
E4  
Macrocells Output  
Values (Connection  
Matrix Inputs,  
section  
R
R
R
R
R
-
-
R
-
74~79;7B  
7C~7F  
Counter Current  
Value  
R
R
R
R
R
R
R
R
R
R
-
-
R
R
-
R
R
SiliconIdentification  
Service Bits  
F9b'3~F9  
b'2  
R
R
R
2
I C Control Code  
CAb'3~CA  
b'0  
R/W  
W**  
R/W  
W**  
R
R
R
R
R/W  
W**  
R
R
R
Page Erase byte  
W**  
W**  
W**  
W**  
W**  
W**  
W**  
E3  
R/W  
W
Allow Read and Write Data  
Allow Write Data Only  
W**  
R
Pages that can be erased are defined by NVM write protection  
Allow Read Data Only  
-
The Data is protected for Read and Write  
Note 1 R/W becomes read only if protection mode selection (lock bit) is set to 1.  
Note 2 R/W Readable/writable depend on the "Trim mode enable" bit. If “Trim mode enable” bit value = 1, then trim bits are  
enable.  
It is possible to read some data from macrocells, such as counter current value, connection matrix, and connection matrix virtual  
2
inputs. The I C write will not have any impact on data in case data comes from macrocell output, except Connection Matrix Virtual  
Inputs. The silicon identification service bits allows identifying silicon family, its revision, and others.  
See Section 18 for detailed information on all registers.  
15.7 I2C ADDITIONAL OPTIONS  
2
When Output latching during I C write to the register configuration data (block address A10,A9,A8 = 000), register [1602] = 1  
allows all PINs output value to be latched while register content is changing. It will protect the output change due to configuration  
2
2
process during I C write in case multiple register bytes are changed. Inputs and internal macrocells retain their status during I C  
write.  
See Section 18 for detailed information on all registers.  
15.7.1 Reading Counter Data via I2C  
2
The current count value in three counters in the device can be read via I C. The counters that have this additional functionality  
are 16-bit CNT0, and 8-bit counters CNT2 and CNT4.  
Datasheet  
24-Feb-2021  
Revision 3.2  
124 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
15.7.2 I2C Expander  
2
In addition to the eight Connection Matrix Virtual Inputs, the SLG46827-A chip has four pins which can be used as an I C  
Expander. These four pins are IO0, IO5, IO6, and IO9.  
2
Each of these pins can be used as an I C Expander output or used as a normal pin. Also, each of these four expander outputs  
have initial state settings which are specified in registers [1599:1592].  
15.7.3 I2C Byte Write Bit Masking  
2
The I C macrocell inside SLG46827-A supports masking of individual bits within a byte that is written to the RAM memory space.  
This function is supported across the entire RAM memory space. To implement this function, the user performs a Byte Write  
2
Command (see Section 15.4.1 for details) on the I C Byte Write Mask Register (address 0C9H) with the desired bit mask pattern.  
This sets a bit mask pattern for the target memory location that will take effect on the next Byte Write Command to this register  
2
byte. Any bit in the mask that is set to “1” in the I C Byte Write Mask Register will mask the effect of changing that particular bit  
2
in the target register, during the next Byte Write Command. The contents of the I C Byte Write Mask Register are reset (set to  
00h) after valid Byte Write Command. If the next command received by the device is not a Byte Write Command, the effect of the  
2
bit masking function will be aborted, and the I C Byte Write Mask Register will be reset with no effect. Figure 98 shows an example  
of this function.  
Datasheet  
24-Feb-2021  
Revision 3.2  
125 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
User Actions  
Byte Write Command, Address = C9h, Data = 11110000b [sets mask bits]  
Byte Write Command, Address = 74h, Data = 10101010b [writes data with mask]  
Memory Address 74h (original contents)  
Mask to choose bit from new  
write command  
1
1
1
1
0
0
1
1
0
0
0
0
Mask to choose bit from  
original register contents  
Memory Address 74h (new data in write command)  
0 1  
1
0
1
0
Bit from new write command  
Memory Address C9h (mask register)  
1
1
1
0
0
0
Bit from original register  
contents  
Memory Address 74h (new contents after write command)  
1
1
0
0
1
0
1
0
Figure 98: Example of I2C Byte Write Bit Masking  
Datasheet  
24-Feb-2021  
Revision 3.2  
126 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
16 Non-Volatile Memory  
The SLG46827-A provides 2,048 bits of Serial Electrically Erasable Configuration Register memory that is used for device  
configuration. Write protection settings of the device will be permanently disabled once the GreenPAK design is finalized and  
enters production.  
Key features:  
Low-voltage Operation  
for Read: VCC = 2.3 V to 5.5 V  
for Write: VCC = 2.5 V to 5.5 V  
2
I C-Compatible (2-Wire) Serial Interface  
100 kHz Standard Mode  
400 kHz Fast Mode (FM)  
Low Current Consumption  
Read Current 0.5 mA max  
Page Write Current 3.0 mA max  
Chip Erase Current 3.0 mA max  
Standby Current (1.0 μA max)  
16-byte Page Write Mode  
Self-timed Write/Erase Cycle (20 ms max)  
Reliability  
Endurance: 1,000 write cycles  
Data retention: 10 years at 125 °C  
16.1 SERIAL NVM WRITE OPERATIONS  
Write access to the NVM is possible in development by setting A3, A2, A1, A0 to “0000”, which allows serial write data for a single  
page only. Upon receipt of the proper Control Byte and Word Address bytes, the SLG46827-A will send an ACK. The device will  
then be ready to receive page data, which is 16 sequential writes of 8-bit data words. The SLG46827-A will respond with an ACK  
after each data word is received. The addressing device, such as a bus Master, must then terminate the write operation with a  
Stop condition after all page data is written. At that time the device will enter an internally self-timed write cycle, which will be  
2
completed within t . While the data is being written into the NVM Memory Array, all inputs, outputs, internal logic, and I C access  
WR  
to the Register data will be operational/valid. Please refer to Figure 100 for the SLG46827-A Memory Map.  
2
Note: The 16 programmed bytes should be in the same page. Any I C command that does not meet specific requirements will  
be ignored and NVM will remain unprogrammed.  
Data “1” cannot be re-programmed as data “0” without erasure. Each byte can only be programmed one time without erasure.  
Acknowledge  
Acknowledge  
bit  
Start  
bit  
bit  
Bus Activity  
Data (n + 1)  
Data (n + 15)  
Control Byte  
Word Address (n)  
Data (n)  
A
10  
A
9
A
8
A
7
A
6
A
5
A
4
A
3
A
2
A
1
A
0
ACK  
ACK  
P
SDA LINE  
S
X
X
X
X
W
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
R/W bit  
Figure 99: Page Write Command  
A10 will be ignored during communication to SLG46827-A.  
A9 = 1 will enable access to the NVM.  
Datasheet  
24-Feb-2021  
Revision 3.2  
127 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
A9 = 1 and A8 = 0 corresponds to the 2K bits chip configuration NVM data.  
A3, A2, A1, and A0 should be 0000 for the page write operation.  
In a single page, if the data written to any byte is 00H, the contents of the matching byte in NVM memory will not be altered.  
2
I C Block Address  
Memory Space  
Lowest I2C  
Address = 000h  
2 Kbits Register Data Configuration  
A10 = 0  
A9 = 0  
A9 = 1  
A8 = X  
2 Kbits NVM Data Configuration  
Not Used  
A10 = 0  
A10 = 0  
A10 = 1  
A8 = 0  
A8 = 1  
A8 = X  
A9 = 1  
A9 = X  
Not Used  
Highest I2C  
Address = 7FFh  
Figure 100: I2C Block Addressing  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
128 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
16.2 SERIAL NVM READ OPERATIONS  
There are three read operations:  
Current Address Read  
Random Address Read  
Sequential Read  
Please refer to the Section 15 for more details.  
16.3 SERIAL NVM ERASE OPERATIONS  
The erase scheme allows a 16 byte page in the NVM chip configuration space to be erased by modifying the contents of the Erase  
Register (ERSR). When the ERSE bit is set in the ERSR register, the device will start a self-timed erase cycle which will complete  
in a maximum of t ms.  
ER  
The V pin requires a voltage ranging from 2.5 V to 5.5 V for Programming and Erase operations.  
DD  
Changing the state of the ERSR is accomplished with a Byte Write sequence with the requirements outlined in this section.  
2
2
The ERSR register is located on I C Block Address = 000b, I C Word Address = E3H.  
The ERSR format is shown in Table 56, and the ERSR bit functions are included in Table 57.  
Table 56: Erase Register Bit format  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Page Erase  
Register  
ERSE  
--  
--  
ERSEB4  
ERSEB3  
ERSEB2  
ERSEB1  
ERSEB0  
Table 57: Erase Register Bit Function Description  
Bit  
Name  
Type  
Description  
Erase  
Enable  
Setting b7 bit to "1" will start an internal erase cycle on the page defined  
by ERSEB4-0  
7
ERSE  
W
6
5
4
3
2
1
0
--  
--  
--  
--  
--  
--  
--  
--  
ERSEB4  
ERSEB3  
ERSEB2  
ERSEB1  
ERSEB0  
W
W
W
W
W
Page  
Selection  
for Erase  
Define the page address, which will be erased.  
ERSB4 = 0 corresponds to the Upper 2K NVM used for chip configuration;  
Upon receipt of the proper Device Address and Erase Register Address, the SLG46827-A will send an ACK. The device will then  
be ready to receive Erase Register data. The SLG46827-A will respond with an ACK after Erase Register data word is received.  
The addressing device, such as a bus Master, must then terminate the write operation with a Stop condition. At that time the  
device will enter an internally self-timed erase cycle, which will be completed within t ms. While the data is being written into  
ER  
2
the Memory Array, all inputs, outputs, internal logic, and I C access to the Register data will be operational/valid.  
After the erase has taken place, the contents of ERSE bits will be set to “0” automatically. The internal erase cycle will be triggered  
2
at the time the Stop Bit in the I C command is received.  
Datasheet  
24-Feb-2021  
Revision 3.2  
129 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
17 Analog Temperature Sensor  
The SLG46827-A has an Analog Temperature sensor (TS) with an output voltage linearly-proportional to the Centigrade tempera  
-
ture. The TS cell shares buffer with Vref0, so it is impossible to use both cells simultaneously, its output can be connected directly  
to the IO10 or to the ACPM3_L positive input. Using buffer causes low-output impedance, linear output, and makes interfacing  
to readout or control circuitry especially easy. The TS is rated to operate over a -40 °C to 105 °C temperature range. The error in  
the whole temperature range does not exceed ±0.85 %. TS output voltage variation over V at constant temperature is less than  
DD  
±0.08 %. For more detail refer to Section 3.  
The equation below calculates the typical analog voltage passed from the TS to the ACMPs' IN+ source input. It is important to  
note that there will be a chip to chip variation of about ±2 °C.  
V
= -2.3 x T + 904.5  
= -2.8 x T + 1092.8  
TS1  
V
TS2  
where:  
V
V
(mV) - TS Output Voltage, range 1 (0.62 V to 0.95 V)  
(mV) - TS Output Voltage, range 2 (0.75 V to 1.2 V)  
TS1  
TS2  
T (°C) - Temperature  
Datasheet  
24-Feb-2021  
Revision 3.2  
130 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
register [1094]  
TS  
register [1093]  
0
1
TS_ON  
TS_En  
registers [1130:1129] force to “11” when TS is ON  
From Connection Matrix Output [60]  
VDD  
register [1130]  
register [1129]  
11  
10  
01  
00  
+
-
Vref0  
IO10  
registers [889:888]=11  
register [1135]=1  
ACMP3L in+  
register [1095]  
ACMP1H Vref  
ACMP0H Vref  
none  
0
1
TS_En  
Closed  
Note: In order to use TS, BG must be enabled.  
Figure 101: Analog Temperature Sensor Structure Diagram  
Datasheet  
24-Feb-2021  
Revision 3.2  
131 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
1.2  
1.15  
1.1  
OutputRange  
OutputRangeꢁ  
1.05  
1
0.95  
0.9  
0.85  
0.8  
0.75  
0.7  
T(°C)  
Figure 102: Typical TS Output vs Temperature, VDD = 2.3 V to 5.5 V  
Datasheet  
24-Feb-2021  
Revision 3.2  
132 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
18 Register Definitions  
18.1 REGISTER MAP  
Table 58: Register Map  
Address  
Signal Function  
Register Bit Definition  
Byte  
Matrix Output  
5:0  
Register Bit  
00  
00  
01  
01  
02  
02  
03  
03  
04  
04  
05  
05  
06  
06  
07  
07  
08  
08  
09  
09  
0A  
0A  
0B  
0B  
0C  
0C  
0D  
0D  
0E  
0E  
0F  
0F  
10  
10  
11  
Matrix OUT0  
Matrix OUT1  
IN0 of LUT2_0 or Clock Input of DFF0  
IN1 of LUT2_0 or Data Input of DFF0  
11:6  
17:12  
Matrix OUT2  
IN0 of LUT2_3 or Clock Input of PGen  
23:18  
29:24  
Matrix OUT3  
Matrix OUT4  
IN1 of LUT2_3 or nRST of PGen  
IN0 of LUT2_1 or Clock Input of DFF1  
35:30  
41:36  
Matrix OUT5  
Matrix OUT6  
IN1 of LUT2_1 or Data Input of DFF1  
IN0 of LUT2_2 or Clock Input of DFF2  
47:42  
53:48  
Matrix OUT7  
Matrix OUT8  
IN1 of LUT2_2 or Data Input of DFF2  
IN0 of LUT3_0 or Clock Input of DFF3  
59:54  
65:60  
Matrix OUT9  
Matrix OUT10  
IN1 of LUT3_0 or Data Input of DFF3  
IN2 of LUT3_0 or nRST(nSET) of DFF3  
71:66  
77:72  
Matrix OUT11  
Matrix OUT12  
IN0 of LUT3_1 or Clock Input of DFF4  
IN1 of LUT3_1 or Data Input of DFF4  
83:78  
89:84  
Matrix OUT13  
Matrix OUT14  
IN2 of LUT3_1 or nRST(nSET) of DFF4  
IN0 of LUT3_2 or Clock Input of DFF5  
95:90  
Matrix OUT15  
Matrix OUT16  
IN1 of LUT3_2 or Data Input of DFF5  
IN2 of LUT3_2 or nRST(nSET) of DFF5  
101:96  
107:102  
113:108  
Matrix OUT17  
Matrix OUT18  
IN0 of LUT3_3 or Clock Input of DFF6  
IN1 of LUT3_3 or Data Input of DFF6  
119:114  
125:120  
Matrix OUT19  
Matrix OUT20  
IN2 of LUT3_3 or nRST(nSET) of DFF6  
IN0 of LUT3_4 or Clock Input of DFF7  
131:126  
137:132  
Matrix OUT21  
Matrix OUT22  
IN1 of LUT3_4 or Data Input of DFF7  
IN2 of LUT3_4 or nRST(nSET) of DFF7  
11  
143:138  
149:144  
Matrix OUT23  
Matrix OUT24  
IN0 of LUT3_5 or Clock Input of DFF8  
IN1 of LUT3_5 or Data Input of DFF8  
12  
Datasheet  
24-Feb-2021  
Revision 3.2  
133 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Matrix OUT25  
Matrix OUT26  
Register Bit Definition  
Byte  
12  
13  
13  
14  
14  
15  
15  
16  
16  
Register Bit  
155:150  
IN2 of LUT3_5 or nRST(nSET) of DFF8  
IN0 of LUT3_6 or Input of Pipe Delay or UPSignal of RIPP  
CNT  
161:156  
167:162  
173:168  
Matrix OUT27  
Matrix OUT28  
IN1 of LUT3_6 or nRSTof Pipe Delay or STB of RIPPCNT  
IN2 of LUT3_6 or Clock of Pipe Delay_RIPP_CNT  
179:174  
185:180  
Matrix OUT29  
Matrix OUT30  
Reserved  
MULTFUNC_16BIT_0: IN0 of LUT4_0 or Clock Input of  
DFF9;  
Delay0 Input (or Counter0 nRST/SET Input)  
17  
MULTFUNC_16BIT_0: IN1 of LUT4_0 or nRST of DFF9;  
Delay0Input (or Counter0 nRSTInput) or Delay/Counter0  
External Clock Source  
17  
191:186  
197:192  
Matrix OUT31  
Matrix OUT32  
MULTFUNC_16BIT_0: IN2 of LUT4_0 or nSET of DFF9;  
Delay0Input (or Counter0 nRSTInput) or Delay/Counter0  
External Clock Source or KEEP Input of FSM0  
18  
18  
19  
MULTFUNC_16BIT_0: IN3 of LUT4_0 or Data Input of  
DFF9;  
Delay0 Input (or Counter0 nRST Input) or UP Input of  
FSM0  
203:198  
209:204  
215:210  
Matrix OUT33  
Matrix OUT34  
Matrix OUT35  
19  
1A  
MULTFUNC_8BIT_1: IN0 of LUT3_7 or Clock Input of  
DFF10;  
Delay1 Input (or Counter1 nRST Input)  
MULTFUNC_8BIT_1: IN1 of LUT3_7 or nRST (nSET) of  
DFF10;  
Delay1Input (or Counter1 nRSTInput) or Delay/Counter1  
External Clock Source  
1A  
MULTFUNC_8BIT_1: IN2 of LUT3_7 or Data Input of  
DFF10;  
Delay1 Input (or Counter1 nRST Input)  
1B  
221:216  
227:222  
Matrix OUT36  
Matrix OUT37  
1B  
1C  
1C  
MULTFUNC_8BIT_2: IN0 of LUT3_8 or Clock Input of  
DFF11;  
Delay2 Input (or Counter2 nRST Input)  
MULTFUNC_8BIT_2: IN1 of LUT3_8 or nRST (nSET) of  
DFF11;  
Delay2Input (or Counter2 nRSTInput) or Delay/Counter2  
External Clock Source  
233:228  
Matrix OUT38  
1D  
1D  
MULTFUNC_8BIT_2: IN2 of LUT3_8 or Data Input of  
DFF11;  
Delay2 Input (or Counter2 nRST Input)  
239:234  
245:240  
Matrix OUT39  
Matrix OUT40  
MULTFUNC_8BIT_3: IN0 of LUT3_9 or Clock Input of  
DFF12;  
1E  
Delay3 Input (or Counter3 nRST Input)  
1E  
1F  
MULTFUNC_8BIT_3: IN1 of LUT3_9 or nRST (nSET) of  
DFF12;  
Delay3Input (or Counter3 nRSTInput) or Delay/Counter3  
251:246  
Matrix OUT41  
External Clock Source  
Datasheet  
24-Feb-2021  
Revision 3.2  
134 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
1F  
MULTFUNC_8BIT_3: IN2 of LUT3_9 or Data Input of  
DFF12;  
Delay3 Input (or Counter3 nRST Input)  
257:252  
Matrix OUT42  
20  
MULTFUNC_8BIT_4: IN0 of LUT3_10 or Clock Input of  
DFF13;  
Delay4 Input (or Counter4 nRST Input)  
20  
263:258  
269:264  
Matrix OUT43  
Matrix OUT44  
MULTFUNC_8BIT_4: IN1 of LUT3_10 or nRST (nSET) of  
DFF13;  
Delay4Input (or Counter4 nRSTInput) or Delay/Counter4  
External Clock Source  
21  
21  
22  
22  
23  
MULTFUNC_8BIT_4: IN2 of LUT3_10 or Data Input of  
DFF13;  
Delay4 Input (or Counter4 nRST Input)  
275:270  
281:276  
Matrix OUT45  
Matrix OUT46  
MULTFUNC_8BIT_5: IN0 of LUT3_11 or Clock Input of  
DFF14;  
Delay5 Input (or Counter5 nRST Input)  
MULTFUNC_8BIT_5: IN1 of LUT3_11 or nRST (nSET) of  
DFF14;  
Delay5Input (or Counter5 nRSTInput) or Delay/Counter5  
23  
287:282  
Matrix OUT47  
External Clock Source  
MULTFUNC_8BIT_5: IN2 of LUT3_11 or Data Input of  
DFF14;  
Delay5 Input (or Counter5 nRST Input)  
24  
293:288  
299:294  
Matrix OUT48  
Matrix OUT49  
24  
25  
25  
MULTFUNC_8BIT_6: IN0 of LUT3_12 or Clock Input of  
DFF15;  
Delay6 Input (or Counter6 nRST Input)  
MULTFUNC_8BIT_6: IN1 of LUT3_12 or nRST (nSET) of  
DFF15;  
Delay6Input (or Counter6 nRSTInput) or Delay/Counter6  
External Clock Source  
305:300  
Matrix OUT50  
26  
26  
MULTFUNC_8BIT_6: IN2 of LUT3_12 or Data Input of  
DFF15;  
Delay6 Input (or Counter6 nRST Input)  
311:306  
317:312  
Matrix OUT51  
Matrix OUT52  
MULTFUNC_8BIT_7: IN0 of LUT3_13 or Clock Input of  
DFF16;  
27  
Delay7 Input (or Counter7 nRST Input)  
27  
28  
MULTFUNC_8BIT_7: IN1 of LUT3_13 or nRST (nSET) of  
DFF16;  
Delay7Input (or Counter7 nRSTInput) or Delay/Counter7  
External Clock Source  
323:318  
329:324  
Matrix OUT53  
Matrix OUT54  
28  
29  
MULTFUNC_8BIT_7: IN2 of LUT3_13 or Data Input of  
DFF16;  
Delay7 Input (or Counter7 nRST Input)  
29  
2A  
2A  
2B  
2B  
2C  
2C  
335:330  
341:336  
Matrix OUT55  
Matrix OUT56  
Filter/Edge detect input  
Programmable delay/edge detect input  
347:342  
Matrix OUT57  
OSC2 ENABLE from matrix  
353:348  
359:354  
Matrix OUT58  
Matrix OUT59  
OSC0 ENABLE from matrix  
OSC1 ENABLE from matrix  
Datasheet  
24-Feb-2021  
Revision 3.2  
135 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Matrix OUT60  
Matrix OUT61  
Register Bit Definition  
Byte  
2D  
2D  
2E  
2E  
2F  
2F  
30  
30  
31  
31  
32  
32  
33  
33  
34  
34  
35  
35  
36  
36  
37  
37  
38  
38  
39  
39  
3A  
3A  
3B  
3B  
3C  
3C  
3D  
3D  
3E  
3E  
3F  
3F  
40  
40  
41  
41  
Register Bit  
365:360  
Vref PD from matrix  
371:366  
377:372  
BG power-down from matrix  
Matrix OUT62  
Reserved  
383:378  
389:384  
Matrix OUT63  
Matrix OUT64  
Reserved  
PWR UP of ACMP0L from matrix  
395:390  
401:396  
Matrix OUT65  
Matrix OUT66  
PWR UP of ACMP1L from matrix  
Reserved  
407:402  
413:408  
Matrix OUT67  
Matrix OUT68  
IO0 Digital Output  
IO1 Digital Output  
419:414  
425:420  
Matrix OUT69  
Matrix OUT70  
IO1 Digital Output OE  
IO2 Digital Output  
431:426  
437:432  
Matrix OUT71  
Matrix OUT72  
IO3 Digital Output  
IO4 Digital Output  
443:438  
449:444  
Matrix OUT73  
Matrix OUT74  
IO4 Digital Output OE  
IO5 Digital Output  
455:450  
461:456  
Matrix OUT75  
Matrix OUT76  
IO5 Digital Output OE  
IO6 Digital Output  
467:462  
473:468  
Matrix OUT77  
Matrix OUT78  
IO7 Digital Output  
IO8 Digital Output  
479:474  
485:480  
Matrix OUT79  
Matrix OUT80  
IO8 Digital Output OE  
IO9 Digital Output  
491:486  
497:492  
Matrix OUT81  
Matrix OUT82  
IO9 Digital Output OE  
IO10 Digital Output  
503:498  
509:504  
Matrix OUT83  
Matrix OUT84  
IO10 Digital Output OE  
IO11 Digital Output  
515:510  
Matrix OUT85  
IO11 Digital Output OE  
521:516  
527:522  
Matrix OUT86  
Matrix OUT87  
IO12 Digital Output  
IO12 Digital Output OE  
Datasheet  
24-Feb-2021  
Revision 3.2  
136 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Matrix OUT88  
Matrix OUT89  
Register Bit Definition  
Byte  
42  
42  
43  
43  
44  
44  
45  
45  
46  
46  
47  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
Register Bit  
533:528  
IO13 Digital Output  
539:534  
545:540  
IO13 Digital Output OE  
Matrix OUT90  
IO14 Digital Output  
551:546  
557:552  
Matrix OUT91  
Matrix OUT92  
IO14 Digital Output OE  
Reserved  
563:558  
569:564  
Matrix OUT93  
Matrix OUT94  
Reserved  
Reserved  
Reserved  
575:570  
583:576  
591:584  
599:592  
607:600  
615:608  
623:616  
631:624  
639:632  
647:640  
655:648  
663:656  
671:664  
679:672  
687:680  
695:688  
703:696  
711:704  
719:712  
727:720  
735:728  
743:736  
751:744  
759:752  
767:760  
Matrix OUT95  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
IO Common  
0: disable  
1: enable  
768  
769  
IO fast Pull-up/down enable  
2
60  
0: I C standard/fast mode  
2
I C mode selection  
2
1: I C fast mode+  
775:770  
Reserved  
Datasheet  
CFR0011-120-00  
24-Feb-2021  
Revision 3.2  
137 of 180  
© 2021 Dialog Semiconductor  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
IO0  
Register Bit  
00: digital in without Schmitt Trigger  
01: digital in with Schmitt Trigger  
10: low voltage digital in mode  
11: reserved  
777:776  
IO0 input mode configuration  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
779:778  
IO0 output mode configuration  
IO0 Pull-up/down resistance selection  
61  
00: floating  
01: 10K  
10: 100K  
781:780  
11: 1M  
0: Pull-down  
1: Pull-up  
782  
783  
IO0 Pull-up/down selection  
IO0 output enable  
0: disable  
1: enable  
IO1  
00: digital in without Schmitt Trigger  
01: digital in with Schmitt Trigger  
10: low voltage digital in mode  
11: analog input  
785:784  
787:786  
789:788  
IO1 input mode configuration  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
IO1 output mode configuration  
IO1 Pull-up/down resistance selection  
62  
00: floating  
01: 10K  
10: 100K  
11: 1M  
0: Pull-down  
1: Pull-up  
790  
791  
IO1 Pull-up/down selection  
Reserved  
Reserved  
63  
793:792  
795:794  
797:796  
798  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
799  
IO2  
Datasheet  
24-Feb-2021  
Revision 3.2  
138 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
00: digital in without Schmitt Trigger  
01: digital in with Schmitt Trigger  
10: low voltage digital in mode  
11: reserved  
801:800  
IO2 input mode configuration  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
803:802  
805:804  
IO2 output mode configuration  
64  
00: floating  
01: 10K  
10: 100K  
11: 1M  
IO2 Pull-up/down resistance selection  
0: Pull-down  
1: Pull-up  
806  
807  
IO2 Pull-up/down selection  
IO2 output enable  
0: disable  
1: enable  
IO3  
00: digital in without Schmitt Trigger  
01: digital in with Schmitt Trigger  
10: low voltage digital in mode  
11: reserved  
809:808  
811:810  
813:812  
IO3 input mode configuration  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
IO3 output mode configuration  
IO3 Pull-up/down resistance selection  
65  
00: floating  
01: 10K  
10: 100K  
11: 1M  
0: Pull-down  
1: Pull-up  
814  
815  
IO3 Pull-up/down selection  
IO3 output enable  
0: disable  
1: enable  
IO4  
00: digital in without Schmitt Trigger  
01: digital in with Schmitt Trigger  
10: low voltage digital in mode  
11: reserved  
817:816  
819:818  
821:820  
IO4 input mode configuration  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
IO4 output mode configuration  
IO4 Pull-up/down resistance selection  
66  
00: floating  
01: 10K  
10: 100K  
11: 1M  
0: Pull-down  
1: Pull-up  
822  
823  
IO4 Pull-up/down selection  
Reserved  
IO5  
Datasheet  
24-Feb-2021  
Revision 3.2  
139 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
00: digital in without Schmitt Trigger  
01: digital in with Schmitt Trigger  
10: low voltage digital in mode  
11: reserved  
825:824  
IO5 input mode configuration  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
827:826  
829:828  
IO5 output mode configuration  
67  
00: floating  
01: 10K  
10: 100K  
11: 1M  
IO5 Pull-up/down resistance selection  
0: Pull-down  
1: Pull-up  
830  
831  
IO5 Pull-up/down selection  
Reserved  
SCL  
832  
Reserved  
00: digital in without Schmitt Trigger  
01: Reserved  
10: low voltage digital in mode  
834:833  
SCL input mode configuration  
11: Reserved  
68  
00: floating  
01: Reserved  
10: Reserved  
11: Reserved  
836:835  
SCL Pull-up/down resistance selection  
837  
Reserved  
Reserved  
839:838  
SDA  
840  
Reserved  
00: digital in without Schmitt Trigger  
01: Reserved  
10: low voltage digital in mode  
842:841  
SDA input mode configuration  
11: Reserved  
69  
00: floating  
01: Reserved  
10: Reserved  
11: Reserved  
844:843  
SDA Pull-up/down resistance selection  
845  
Reserved  
Reserved  
847:846  
IO6  
Datasheet  
24-Feb-2021  
Revision 3.2  
140 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
849:848  
Reserved  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
851:850  
853:852  
IO6 output mode configuration  
00: floating  
01: 10K  
10: 100K  
11: 1M  
6A  
IO6 Pull-up/down resistance selection  
0: Pull-down  
1: Pull-up  
854  
855  
IO6 Pull-up/down selection  
IO6 output enable  
0: disable  
1: enable  
IO7  
857:856  
859:858  
Reserved  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
IO7 output mode configuration  
00: floating  
01: 10K  
10: 100K  
6B  
861:860  
IO7 Pull-up/down resistance selection  
11: 1M  
0: Pull-down  
1: Pull-up  
862  
863  
IO7 Pull-up/down selection  
IO7 output enable  
0: disable  
1: enable  
IO8  
00: digital in without Schmitt Trigger  
01: digital in with Schmitt Trigger  
10: low voltage digital in mode  
11: reserved  
865:864  
867:866  
869:868  
IO8 input mode configuration  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
IO8 output mode configuration  
IO8 Pull-up/down resistance selection  
6C  
00: floating  
01: 10K  
10: 100K  
11: 1M  
0: Pull-down  
1: Pull-up  
870  
871  
IO8 Pull-up/down selection  
Reserved  
Reserved  
873:872  
875:874  
877:876  
878  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6D  
879  
Datasheet  
24-Feb-2021  
Revision 3.2  
141 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
IO9  
Register Bit  
00: digital in without Schmitt Trigger  
01: digital in with Schmitt Trigger  
10: low voltage digital in mode  
11: analog output  
881:880  
IO9 input mode configuration  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
883:882  
IO9 output mode configuration  
IO9 Pull-up/down resistance selection  
6E  
IO10  
6F  
00: floating  
01: 10K  
10: 100K  
885:884  
11: 1M  
0: Pull-down  
1: Pull-up  
886  
887  
IO9 Pull-up/down selection  
Reserved  
00: digital in without Schmitt Trigger  
01: digital in with Schmitt Trigger  
10: low voltage digital in mode  
11: analog output  
889:888  
891:890  
893:892  
IO10 input mode configuration  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
IO10 output mode configuration  
IO10 Pull-up/down resistance selection  
00: floating  
01: 10K  
10: 100K  
11: 1M  
0: Pull-down  
1: Pull-up  
894  
895  
IO10 Pull-up/down selection  
Reserved  
IO11  
00: digital in without Schmitt Trigger  
01: digital in with Schmitt Trigger  
10: low voltage digital in mode  
11: analog input  
897:896  
899:898  
901:900  
IO11 input mode configuration  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
IO11 output mode configuration  
IO11 Pull-up/down resistance selection  
70  
00: floating  
01: 10K  
10: 100K  
11: 1M  
0: Pull-down  
1: Pull-up  
902  
903  
IO11 Pull-up/down selection  
Reserved  
IO12  
Datasheet  
24-Feb-2021  
Revision 3.2  
142 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
00: digital in without Schmitt Trigger  
01: digital in with Schmitt Trigger  
10: low voltage digital in mode  
11: analog input  
905:904  
IO12 input mode configuration  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
907:906  
909:908  
IO12 output mode configuration  
71  
00: floating  
01: 10K  
10: 100K  
11: 1M  
IO12 Pull-up/down resistance selection  
0: Pull-down  
1: Pull-up  
910  
911  
IO12 Pull-up/down selection  
Reserved  
IO13  
00: digital in without Schmitt Trigger  
01: digital in with Schmitt Trigger  
10: low voltage digital in mode  
11: analog IO  
913:912  
915:914  
917:916  
IO13 input mode configuration  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
IO13 output mode configuration  
IO13 Pull-up/down resistance selection  
72  
00: floating  
01: 10K  
10: 100K  
11: 1M  
0: Pull-down  
1: Pull-up  
918  
919  
IO13 Pull-up/down selection  
Reserved  
IO14  
00: digital in without Schmitt Trigger  
01: digital in with Schmitt Trigger  
10: low voltage digital in mode  
11: analog input  
921:920  
923:922  
925:924  
IO14 input mode configuration  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
IO14 output mode configuration  
IO14 Pull-up/down resistance selection  
73  
00: floating  
01: 10K  
10: 100K  
11: 1M  
0: Pull-down  
1: Pull-up  
926  
927  
IO14 Pull-up/down selection  
Reserved  
Matrix Input  
Datasheet  
24-Feb-2021  
Revision 3.2  
143 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
Matrix Input 0  
Matrix Input 1  
Matrix Input 2  
Matrix Input 3  
Matrix Input 4  
Matrix Input 5  
Matrix Input 6  
Matrix Input 7  
Matrix Input 8  
Matrix Input 9  
Matrix Input 10  
Matrix Input 11  
Matrix Input 12  
Matrix Input 13  
Matrix Input 14  
Matrix Input 15  
Matrix Input 16  
Matrix Input 17  
Matrix Input 18  
Matrix Input 19  
Matrix Input 20  
Matrix Input 21  
Matrix Input 22  
Matrix Input 23  
Matrix Input 24  
Matrix Input 25  
Matrix Input 26  
Matrix Input 27  
Matrix Input 28  
Matrix Input 29  
Matrix Input 30  
Matrix Input 31  
Matrix Input 32  
Matrix Input 33  
Matrix Input 34  
Matrix Input 35  
Matrix Input 36  
Matrix Input 37  
Matrix Input 38  
Matrix Input 39  
Tie low  
IO0 Digital Input  
IO1 Digital Input  
IO2 Digital Input  
74  
IO3 Digital Input  
IO4 Digital Input  
IO5 Digital Input  
IO8 Digital Input  
IO9 Digital Input  
IO10 Digital Input  
IO11 Digital Input  
IO12 Digital Input  
75  
76  
77  
78  
IO13 Digital Input  
IO14 Digital Input  
LUT2_0_DFF0_OUT  
LUT2_1_DFF1_OUT  
LUT2_2_DFF2_OUT  
LUT2_3_PGEN_OUT  
LUT3_0_DFF3_OUT  
LUT3_1_DFF4_OUT  
LUT3_2_DFF5_OUT  
LUT3_3_DFF6_OUT  
LUT3_4_DFF7_OUT  
LUT3_5_DFF8_OUT  
LUT3_6_PIPEDLY_RIPP_CNT_OUT0  
PIPEDLY_RIPP_CNT_OUT1  
RIPP_CNT_OUT2  
EDET_FILTER_OUT  
PROG_DLY_EDET_OUT  
MULTFUNC_8BIT_1: DLY_CNT_OUT  
CKOSC1_MATRIX: OSC1 matrix input  
CKOSC0_MATRIX: OSC0 matrix input  
CKOSC2_MATRIX: OSC2 matrix input  
MULTFUNC_8BIT_2: DLY_CNT_OUT  
MULTFUNC_8BIT_3: DLY_CNT_OUT  
MULTFUNC_8BIT_4: DLY_CNT_OUT  
MULTFUNC_8BIT_5: DLY_CNT_OUT  
MULTFUNC_8BIT_6: DLY_CNT_OUT  
MULTFUNC_8BIT_7: DLY_CNT_OUT  
MULTFUNC_16BIT_0: LUT_DFF_OUT  
Datasheet  
24-Feb-2021  
Revision 3.2  
144 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
968  
Matrix Input 40  
MULTFUNC_8BIT_1: LUT_DFF_OUT  
MULTFUNC_8BIT_2: LUT_DFF_OUT  
MULTFUNC_8BIT_3: LUT_DFF_OUT  
MULTFUNC_8BIT_4: LUT_DFF_OUT  
MULTFUNC_8BIT_5: LUT_DFF_OUT  
MULTFUNC_8BIT_6: LUT_DFF_OUT  
MULTFUNC_8BIT_7: LUT_DFF_OUT  
MULTFUNC_16BIT_0: DLY_CNT_OUT  
Virtual Input [7]: register [976]  
Virtual Input [6]: register [977]  
Virtual Input [5]: register [978]  
Virtual Input [4]: register [979]  
Virtual Input [3]: register [980]  
Virtual Input [2]: register [981]  
Virtual Input [1]: register [982]  
Virtual Input [0]: register [983]  
ACMP0H OUT  
969  
Matrix Input 41  
970  
Matrix Input 42  
971  
Matrix Input 43  
79  
972  
Matrix Input 44  
973  
Matrix Input 45  
974  
Matrix Input 46  
975  
Matrix Input 47  
976  
Matrix Input 48  
977  
Matrix Input 49  
978  
Matrix Input 50  
979  
Matrix Input 51  
7A  
980  
Matrix Input 52  
981  
Matrix Input 53  
982  
Matrix Input 54  
983  
Matrix Input 55  
984  
Matrix Input 56  
985  
Matrix Input 57  
ACMP1H OUT  
986  
Matrix Input 58  
ACMP0L OUT  
987  
Matrix Input 59  
ACMP1L OUT  
7B  
988  
Matrix Input 60  
2nd CKOSC1_MATRIX  
2nd CKOSC0_MATRIX  
POR CORE  
989  
Matrix Input 61  
990  
Matrix Input 62  
991  
Matrix Input 63  
Tie high  
7C  
7D  
7E  
7F  
999:992  
1007:1000  
1015:1008  
1023:1016  
CNT0(16-bit) Counted Value  
CNT0(16-bit) Counted Value  
CNT2(8-bit) Counted Value  
CNT4(8-bit) Counted Value  
Q[7:0]  
Q[15:8]  
Q[7:0]  
Q[7:0]  
OSC/ACMP  
Datasheet  
24-Feb-2021  
Revision 3.2  
145 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
when matrix output enable/pd control signal = 0:  
0: auto on by delay cells  
1024  
OSC1 turn on by register  
1: always on  
0: matrix down  
1: matrix on  
1025  
1026  
matrix power-down or on select  
external clock source enable  
0: internal OSC1  
1: external clock from IO10  
00: div1  
01: div2  
10: div4  
11: div8  
1028:1027  
post divider ration control  
80  
000: /1  
001: /2  
010: /4  
011: /3  
100: /8  
101: /12  
110: /24  
111: /64  
1031:1029  
1032  
matrix divider ratio control  
OSC2 turn on by register  
when matrix output enable/pd control signal = 0:  
0: auto on by delay cells  
1: always on  
0: matrix down  
1: matrix on  
1033  
1034  
matrix power-down or on select  
external clock source enable  
0: internal OSC2  
1: external clock from IO8  
00: div1  
01: div2  
10: div4  
11: div8  
1036:1035  
post divider ration control  
81  
000: /1  
001: /2  
010: /4  
011: /3  
100: /8  
101: /12  
110: /24  
111: /64  
1039:1037  
matrix divider ratio control  
Datasheet  
24-Feb-2021  
Revision 3.2  
146 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
when matrix output enable/pd control signal = 0:  
0: auto on by delay cells  
1040  
OSC0 turn on by register  
1: always on  
0: matrix down  
1: matrix on  
1041  
1042  
matrix power-down or on select  
external clock source enable  
0: internal OSC0  
1: external clock from IO0  
00: div1  
01: div2  
10: div4  
11: div8  
1044:1043  
post divider ration control  
82  
000: /1  
001: /2  
010: /4  
011: /3  
100: /8  
101: /12  
110: /24  
111: /64  
1047:1045  
matrix divider ratio control  
1048  
1049  
Reserved  
0: disable  
1: enable  
OSC0 matrix out enable  
0: disable  
1: enable  
1050  
1051  
1052  
1053  
OSC1 matrix out enable  
OSC2 matrix out enable  
OSC2 100 ns Startup Delay  
OSC0 2nd matrix out enable  
0: disable  
1: enable  
83  
0: enable  
1: disable  
0: disable  
1: enable  
0: disable  
1: enable  
1054  
1055  
OSC1 2nd matrix out enable  
Reserved  
000: /1  
001: /2  
010: /4  
011: /3  
100: /8  
101: /12  
110: /24  
111: /64  
OSC1 2nd matrix input:  
matrix divider ratio control  
1058:1056  
84  
000: /1  
001: /2  
010: /4  
011: /3  
100: /8  
101: /12  
110: /24  
111: /64  
OSC0 2nd matrix input:  
matrix divider ratio control  
1061:1059  
1063:1062  
Reserved  
Datasheet  
24-Feb-2021  
Revision 3.2  
147 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
00: 0 mV  
01: 32 mV  
10: 64 mV  
11: 192 mV  
[1065:1064]  
ACMP0H hysteresis  
0: disable  
1: enable  
[1066]  
[1067]  
[1068]  
[1069]  
[1070]  
[1071]  
[1072]  
[1073]  
Reserved  
0: disable  
1: enable  
ACMP0H input buffer enable  
Reserved  
85  
0: disable  
1: enable  
0: disable  
1: enable  
ACMP0H input tie to V enable  
DD  
0: disable  
1: enable  
ACMP0H wake/sleep enable  
0: disable  
1: enable  
ACMP0H 100 uA current source enable  
ACMP1H positive input come from  
ACMP0H's input mux output enable  
0: disable  
1: enable  
0: disable  
1: enable  
Reserved  
00: 0 mV  
01: 32 mV  
10: 64 mV  
11: 192 mV  
[1075:1074]  
ACMP1H hysteresis  
86  
0: disable  
1: enable  
[1076]  
[1077]  
[1078]  
[1079]  
[1080]  
[1081]  
ACMP1H input buffer enable  
Reserved  
0: disable  
1: enable  
0: disable  
1: enable  
ACMP1H wake/sleep enable  
ACMP wake/sleep time selection  
0: short time wake/sleep  
1: normal time wake/sleep  
ACMP2L positive input come from  
ACMP0H's input mux output enable  
0: disable  
1: enable  
ACMP2L positive input come from  
ACMP1H's input mux output enable  
0: disable  
1: enable  
00: 0 mV  
01: 32 mV  
10: 64 mV  
11: 192 mV  
[1083:1082]  
[1084]  
ACMP2L hysteresis  
Reserved  
87  
0: disable  
1: enable  
0: disable  
1: enable  
[1085]  
[1086]  
[1087]  
Reserved  
Reserved  
0: disable  
1: enable  
ACMP0H, ACMP1H input buffer WS enable  
Datasheet  
24-Feb-2021  
Revision 3.2  
148 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
00: 0 mV  
01: 32 mV  
10: 64 mV  
11: 192 mV  
[1089:1088]  
ACMP3L hysteresis  
0: disable  
1: enable  
[1090]  
[1091]  
[1092]  
[1093]  
[1094]  
[1095]  
Reserved  
Reserved  
0: disable  
1: enable  
88  
ACMP3L positive input come from  
ACMP2L's input mux output enable  
0: disable  
1: enable  
0: power-down  
1: power-on  
Temp sensor register pd control  
Temp sensor register pd select  
Temp sensor range select  
0: come from register  
1: come from matrix  
0: range 1 (0.62 V to 0.99 V typical)  
1: range 2 (0.75 V to 1.2 V typical)  
00: 1x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
[1097:1096]  
[1103:1098]  
[1105:1104]  
[1111:1106]  
[1113:1112]  
[1119:1114]  
[1121:1120]  
ACMP0H Gain divider  
ACMP0H Vref  
89  
8A  
8B  
ACMP Vref select: 000000: 32 mV ~ 111110: 2.016 V/step  
= 32 mV;  
111111: External Vref  
00: 1x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
ACMP1H Gain divider  
ACMP1H Vref  
ACMP Vref select: 000000: 32 mV ~ 111110: 2.016 V/step  
= 32 mV;  
111111: External Vref  
00: 1x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
ACMP2L Gain divider  
ACMP2L Vref  
ACMP Vref select: 000000: 32 mV ~ 111110: 2.016 V/step  
= 32 mV;  
111111: External Vref  
00: 1x  
01: 0.5x  
10: 0.33x  
11: 0.25x  
ACMP3L Gain divider  
8C  
ACMP Vref select:  
000000: 32 mV ~  
111110: 2.016 V/step = 32 mV;  
111111: External Vref  
[1127:1122]  
ACMP3L Vref  
Datasheet  
24-Feb-2021  
Revision 3.2  
149 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
0: disable  
1: enable  
[1128]  
Vref_OUT0 output OP  
00: None  
01: ACMP0H Vref  
10: ACMP1H Vref  
11: temp sensor  
[1130:1129]  
[1131]  
Vref_OUT0 input selection  
Vref_OUT1 output OP  
Vref_OUT0 input selection  
Reserved  
0: disable  
1: enable  
00: None  
8D  
01: ACMP2L Vref  
10: ACMP3L Vref  
11: Reserved  
[1133:1132]  
[1134]  
0: disable connection from temp sensed voltage (VrefO0)  
to ACMP3L input  
1: enable connection from temp sensed voltage (VrefO0)  
to ACMP3L input  
[1135]  
Tempsensed voltage to ACMP  
[1136]  
[1137]  
Reserved  
0: Vref_OUT0 disable  
1: Vref_OUT0 enable  
Vref_OUT0 PD  
0: enable/disable using Vref_OUT0 PD [1137]  
1: enable/disable using matrix out[60] TS_OSC_PD  
[1138]  
[1139]  
[1140]  
Vref_OUT0 PD selection  
Vref_OUT1 PD  
8E  
8F  
0: Vref_OUT1 disable  
1: Vref_OUT1 enable  
0: enable/disable using Vref_OUT1 PD [1139]  
1: enable/disable using matrix out[60] TS_OSC_pd  
Vref_OUT1 PD selection  
[1143:1141]  
1145:1144  
1151:1146  
Reserved  
Reserved  
Reserved  
Digital Macrocell  
[3]: LUT2_0[3]/DFF0 or LATCH Select  
0: DFF function  
1: LATCH function  
[2]: LUT2_0[2]/DFF0 Output Sel  
0: Q output  
1155:1152  
LUT2_0/DFF0 setting  
1: QB output  
[1]: LUT2_0[1]/DFF0 Initial Polarity Select  
0: Low  
1: High  
[0]: LUT2_0[0]  
90  
[3]: LUT2_1[3]/DFF1 or LATCH Select  
0: DFF function  
1: LATCH function  
[2]: LUT2_1[2]/DFF1 Output Select  
0: Q output  
1159:1156  
LUT2_1/DFF1 setting  
1: QB output  
[1]: LUT2_1[1]/DFF1 Initial Polarity Select  
0: Low  
1: High  
[0]: LUT2_1[0]  
Datasheet  
24-Feb-2021  
Revision 3.2  
150 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
[3]: LUT2_2[3]/DFF2 or LATCH Select  
0: DFF function  
1: LATCH function  
[2]: LUT2_2[2]/DFF2 Output Select  
0: Q output  
1163:1160  
LUT2_2/DFF2 setting  
1: QB output  
91  
[1]: LUT2_2[1]/DFF2 Initial Polarity Select  
0: Low  
1: High  
[0]: LUT2_2[0]  
1167:1164  
1175:1168  
1183:1176  
LUT2_3_VAL or PGEN_data  
PGen data [7:0]  
LUT2_3[3:0] or PGen 4bit counter data[3:0]  
PGen data [7:0]  
92  
93  
PGen data [15:8]  
PGen data [15:8]  
[7]: LUT3_0[7]/DFF3 or LATCH Select  
0: DFF function  
1: LATCH function  
[6]: LUT3_0[6]/DFF3 Output Select  
0: Q output  
1: QB output  
94  
95  
96  
1191:1184  
1199:1192  
1207:1200  
LUT3_0_DFF3 setting  
LUT3_1_DFF4 setting  
LUT3_2_DFF5 setting  
[5]: LUT3_0[5]/DFF3  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
[4]: LUT3_0[4]/DFF3 Initial Polarity Select  
0: Low  
1: High  
[3:0]: LUT3_0[3:0]  
[7]: LUT3_1[7]/DFF4 or LATCH Select  
0: DFF function  
1: LATCH function  
[6]: LUT3_1[6]/DFF4 Output Select  
0: Q output  
1: QB output  
[5]: LUT3_1[5]/DFF4  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
[4]: LUT3_1[4]/DFF4 Initial Polarity Select  
0: Low  
1: High  
[3:0]: LUT3_1[3:0]  
[7]: LUT3_2[7]/DFF5 or LATCH Select  
0: DFF function  
1: LATCH function  
[6]: LUT3_2[6]/DFF5 Output Select  
0: Q output  
1: QB output  
[5]: LUT3_2[5]/DFF5  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
[4]: LUT3_2[4]/DFF5 Initial Polarity Select  
0: Low  
1: High  
[3:0]: LUT3_2[3:0]  
Datasheet  
24-Feb-2021  
Revision 3.2  
151 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
[7]: LUT3_3[7]/DFF6 or LATCH Select  
0: DFF function  
1: LATCH function  
[6]: LUT3_3[6]/DFF6 Output Select  
0: Q output  
1: QB output  
97  
1215:1208  
LUT3_3_DFF6 setting  
[5]: LUT3_3[5]/DFF6  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
[4]: LUT3_3[4]/DFF6 Initial Polarity Select  
0: Low  
1: High  
[3:0]: LUT3_3[3:0]  
[7]: LUT3_4[7]/DFF7 or LATCH Select  
0: DFF function  
1: LATCH function  
[6]: LUT3_4[6]/DFF7 Output Select  
0: Q output  
1: QB output  
98  
1223:1216  
LUT3_4_DFF7 setting  
[5]: LUT3_4[5]/DFF7  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
[4]: LUT3_4[4]/DFF7 Initial Polarity Select  
0: Low  
1: High  
[3:0]: LUT3_4[3:0]  
[7]: LUT3_5[7]/DFF8 or LATCH Select  
0: DFF function  
1: LATCH function  
[6]: LUT3_5[6]/DFF8 Output Select  
0: Q output  
1: QB output  
99  
1231:1224  
LUT3_5_DFF8 setting  
[5]: LUT3_5[5]/DFF8  
0: RSTB from Matrix Output  
1: SETB from Matrix Output  
[4]: LUT3_5[4]/DFF8 Initial Polarity Select  
0: Low  
1: High  
[3:0]: LUT3_5[3:0]  
Datasheet  
24-Feb-2021  
Revision 3.2  
152 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
0: LUT2_0  
1: DFF0  
1232  
LUT2_0 or DFF0 Select  
LUT2_1 or DFF1 Select  
LUT2_2 or DFF2 Select  
LUT2_3 or PGen Select  
LUT3_0 or DFF3 Select  
DFF3_SECONDQ_Sel  
LUT3_1 or DFF4 Select  
LUT3_2 or DFF5 Select  
LUT3_3 or DFF6 Select  
LUT3_4 or DFF7 Select  
LUT3_5 or DFF8 Select  
Filter or Edge Detector selection  
output Polarity Select  
0: LUT2_1  
1: DFF1  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1240  
1241  
1242  
1243  
1244  
0: LUT2_2  
1: DFF2  
0: LUT2_3  
1: PGen  
9A  
0: LUT3_0  
1: DFF3  
0: Q of first DFF  
1: Q of second DFF  
0: LUT3_1  
1: DFF4  
0: LUT3_2  
1: DFF5  
0: LUT3_3  
1: DFF6  
0: LUT3_4  
1: DFF7  
0: LUT3_5  
1: DFF8  
0: filter  
1: edge det  
9B  
0: Filter/edge detect output  
1: Filter/edge detect output inverted  
00: Rising Edge Det  
01: Falling Edge Det  
10: Both Edge Det  
11: Both Edge DLY  
1246:1245  
1247  
Select the edge mode  
Reserved  
[7:4]:LUT3_6[7:4]/REG_S1[3:0]Pipe Delay out1 SEL  
[3:0]:LUT3_6[3:0]/REG_S0[3:0]Pipe Delay out0 SEL  
at RIPP CNT mode:  
bit[1250:1248] is the nSET value  
bit[1253:1251] is the END value  
bit[1254] functional mode:0: full cycle;  
1: ranged cycle  
LUT value or Pipe Delay out SEL or  
nSET/END value  
9C  
1255:1248  
bit[1255] not used  
Datasheet  
24-Feb-2021  
Revision 3.2  
153 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
0: Non-inverted  
1: Inverted  
1256  
Pipe Delay OUT1 Polarity Select  
LUT3_6 or Pipe Delay Select  
PIPE_RIPP_CNT_S  
0: LUT3_6  
1: Pipe Delay or RIPP CNT  
1257  
1258  
0: Pipe delay mode selection  
1: Ripple Counter mode selection  
00: Rising Edge Detector  
01: Falling Edge Detector  
10: Both Edge Detector  
11: Both Edge Delay  
9D  
Select the Edge Mode of Programmable  
Delay & Edge Detector  
1260:1259  
1262:1261  
00: 125ns  
Delay Value Select for Programmable Delay 01: 250ns  
& Edge Detector  
10: 375ns  
11: 500ns  
1263  
1264  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1265  
9E  
9F  
1266  
1271:1267  
1276:1272  
1277  
1278  
1279  
Multifunction  
0000000: Matrix A - In3; Matrix B - In2; Matrix C - In1;  
Matrix D - In0  
Single 4-bit LUT  
(DLY_IN - LOW)  
1286  
0010000: Matrix A - D; Matrix B - nSET; Matrix C - nRST;  
1285  
1282  
1284  
1283  
1281  
1280  
Single DFF w RST and SET  
Single CNT/DLY  
Matrix D - CLK  
(DLY_IN - LOW)  
A0  
0000001: Matrix A - UP (CNT); Matrix B - KEEP (CNT);  
Matrix C - EXT_CLK (CNT); Matrix D - DLY_IN (CNT)  
(DLY_OUT connected to LUT/DFF)  
0000010: Matrix A- DLY_IN; Matrix B - In2; Matrix C - In1;  
Matrix D - In0  
CNT/DLY → LUT  
(DLY_OUT connected to In3)  
Datasheet  
24-Feb-2021  
Revision 3.2  
154 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
0000110: Matrix A - DLY_IN; Matrix B - nSET;  
Matrix C - nRST; Matrix D - CLK  
(DLY_OUT connected to D)  
CNT/DLY → DFF  
0100010: Matrix A - DLY_IN; Matrix B - EXT_CLK (CNT);  
Matrix C - In1; Matrix D - In0  
(DLY_OUT connected to In3; In2 - LOW)  
CNT/DLY → LUT  
CNT/DLY → DFF  
0100110: Matrix A - DLY_IN; Matrix B - EXT_CLK (CNT);  
Matrix C - nRST; Matrix D - CLK  
(DLY_OUT connected to D; nSET - HIGH)  
1000010: Matrix A - DLY_IN; Matrix B - In2;  
Matrix C - EXT_CLK (CNT);  
Matrix D - In0  
CNT/DLY → LUT  
CNT/DLY → DFF  
(DLY_OUT connected to In3; In1 - LOW)  
1000110: Matrix A - DLY_IN; Matrix B - nSET;  
Matrix C - EXT_CLK (CNT);  
Matrix D - CLK  
(DLY_OUT connected to D; nRST - HIGH)  
0001010: Matrix A- In3; Matrix B - DLY_IN; Matrix C - In1;  
Matrix D - In0  
(DLY_OUT connected to In2)  
CNT/DLY → LUT  
CNT/DLY → DFF  
0001110: MatrixA- D; Matrix B - DLY_IN; Matrix C - nRST;  
Matrix D - CLK  
1286  
1285  
1282  
1284  
1283  
1281  
1280  
(DLY_OUT connected to nSET)  
A0  
1001010: Matrix A - In3; Matrix B - DLY_IN;  
Matrix C - EXT_CLK (CNT);  
Matrix D - In0  
CNT/DLY → LUT  
CNT/DLY → DFF  
(DLY_OUT connected to In2; In1 - LOW)  
1001110: Matrix A - D; Matrix B - DLY_IN;  
Matrix C - EXT_CLK (CNT);  
Matrix D - CLK  
(DLY_OUT connected to nSET; nRST - HIGH)  
0010010: Matrix A- In3; Matrix B - In2; Matrix C - DLY_IN;  
Matrix D - In0  
(DLY_OUT connected to In1)  
CNT/DLY → LUT  
CNT/DLY → DFF  
0010110: MatrixA- D; Matrix B - nSET; Matrix C - DLY_IN;  
Matrix D - CLK  
(DLY_OUT connected to nRST)  
0110010: Matrix A - In3; Matrix B - EXT_CLK (CNT);  
Matrix C - DLY_IN;  
Matrix D - In0  
CNT/DLY → LUT  
(DLY_OUT connected to In1; In2 - LOW)  
0110110: Matrix A - D; Matrix B - EXT_CLK (CNT);  
Matrix C - DLY_IN; Matrix D - CLK  
(DLY_OUT connected to nRST; nSET - HIGH)  
CNT/DLY → DFF  
CNT/DLY → LUT  
0011010: Matrix A - In3; Matrix B - In2; Matrix C - In1;  
Matrix D - DLY_IN  
(DLY_OUT connected to In0)  
Datasheet  
24-Feb-2021  
Revision 3.2  
155 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
0011110: Matrix A - D; Matrix B - nSET; Matrix C - nRST;  
Matrix D - DLY_IN  
CNT/DLY → DFF  
(DLY_OUT connected to CLK)  
0111010: Matrix A - In3; Matrix B - EXT_CLK (CNT);  
Matrix C - In1;  
Matrix D - DLY_IN  
CNT/DLY → LUT  
CNT/DLY → DFF  
CNT/DLY → LUT  
(DLY_OUT connected to In0; In2 - LOW)  
0111110: Matrix A - D; Matrix B - EXT_CLK (CNT);  
Matrix C - nRST; Matrix D - DLY_IN  
(DLY_OUT connected to CLK; nSET - HIGH)  
1011010: Matrix A - In3; Matrix B - In2;  
Matrix C - EXT_CLK (CNT);  
Matrix D - DLY_IN  
(DLY_OUT connected to In0; In1 - LOW)  
1011110: Matrix A - D; Matrix B - nSET;  
Matrix C - EXT_CLK (CNT); Matrix D - DLY_IN  
(DLY_OUT connected to CLK; nRST - HIGH)  
1286  
1285  
1282  
1284  
1283  
1281  
1280  
CNT/DLY → DFF  
LUT → CNT/DLY  
DFF → CNT/DLY  
LUT → CNT/DLY  
DFF → CNT/DLY  
LUT → CNT/DLY  
DFF → CNT/DLY  
0000011: Matrix A - In3; Matrix B - In2; Matrix C - In1;  
Matrix D - In0  
(LUT_OUT connected to DLY_IN)  
A0  
0000111: Matrix A - D; Matrix B - nSET; Matrix C - nRST;  
Matrix D - CLK  
(DFF_OUT connected to DLY_IN)  
0100011: Matrix A - In3; Matrix B - EXT_CLK (CNT);  
Matrix C - In1; Matrix D - In0  
(LUT_OUT connected to DLY_IN; In2 - LOW)  
0100111: Matrix A - D; Matrix B - EXT_CLK (CNT);  
Matrix C - nRST; Matrix D - CLK  
(DFF_OUT connected to DLY_IN; nSET - HIGH)  
1000011: Matrix A - In3; Matrix B - In2;  
Matrix C - EXT_CLK (CNT); Matrix D - In0  
(LUT_OUT connected to DLY_IN; In1 - LOW)  
1000111: Matrix A - D; Matrix B - nSET;  
Matrix C - EXT_CLK (CNT); Matrix D - CLK  
(DFF_OUT connected to DLY_IN; nRST - HIGH)  
0: Reset to 0  
1: Set to data  
1287  
FSM0 SET/RST Selection  
LUT4_0_DFF9 setting [7:0]  
A1  
A2  
1295:1288  
[7:0]: LUT4_0[7:0]  
[15]: LUT4_0[15]/DFF or LATCH Select  
0: DFF function; 1: LATCH function  
[14]: LUT4_0[14]/DFF Output Select  
0: Q output; 1: QB output  
[13]: LUT4_0[13]/DFF Initial Polarity Select  
0: Low; 1: High  
1303:1296  
LUT4_0_DFF9 setting [15:8]  
[12:8]: LUT4_0[12:8]  
Datasheet  
24-Feb-2021  
Revision 3.2  
156 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
00: DLY  
01: one shot  
10: frequency det  
11: CNT  
1305:1304  
DLY/CNT0 Mode Selection  
00: both edge  
01: falling edge  
10: rising edge  
11: High Level Reset (only in CNT mode)  
1307:1306  
1311:1308  
DLY/CNT0 edge Mode Selection  
DLY/CNT0 Clock Source Select  
A3  
Clock source SEL [3:0]  
0000: 25M(OSC2); 0001: 25M/4; 0010: 2M(OSC1);  
0011: 2M/8; 0100: 2M/64; 0101: 2M/512; 0110:  
2K(OSC0);  
0111: 2K/8; 1000: 2K/64; 1001: 2K/512; 1010: 2K/4096;  
1011: 2K/32768; 1100: 2K/262144; 1101: CNT_END;  
1110: External; 1111: Not used  
0: Default Output  
1: Inverted Output  
1312  
CNT0 output pol selection  
CNT0 initial value selection  
00: bypass the initial  
01: initial 0  
10: initial 1  
1314:1313  
11: initial 1  
1315  
1316  
Reserved  
Reserved  
A4  
0: bypass  
1: after two DFF  
1317  
1318  
1319  
Keep signal SYNC selection  
0: bypass  
1: after two DFF  
UP signal SYNC selection  
0: normal  
1: DLY function edge detection  
CNT0 DLY EDET FUNCTION Selection  
A5  
A6  
1327:1320  
1335:1328  
REG_CNT0_Data[7:0]  
REG_CNT0_Data[15:8]  
Data[7:0]  
Data[15:8]  
0: bypass  
1: after two DFF  
1336  
CNT0 CNT mode SYNC selection  
00000: Matrix A - In2; Matrix B - In1;  
Matrix C - In0  
(DLY_IN - LOW)  
1339  
1341  
1340  
1338  
1337  
A7  
Single 3-bit LUT  
10000: MatrixA- D; Matrix B - nSET/nRST; Matrix C - CLK  
(DLY_IN - LOW)  
Single DFF w RST and SET  
Datasheet  
24-Feb-2021  
Revision 3.2  
157 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
00001: Matrix A - DLY_IN (CNT); Matrix B - EXT_CLK  
(CNT); Matrix C - NC  
(DLY_OUT connected to LUT/DFF)  
Single CNT/DLY  
CNT/DLY → LUT  
CNT/DLY → DFF  
00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0  
(DLY_OUT connected to In2)  
00110: Matrix A - DLY_IN; Matrix B - nSET/nRST;  
Matrix C - CLK  
(DLY_OUT connected to D)  
01010: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0  
(DLY_OUT connected to In1)  
CNT/DLY → LUT  
CNT/DLY → DFF  
1339  
1341  
1340  
1338  
1337  
01110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK  
(DLY_OUT connected to nSET/nRST)  
10010: Matrix A - In2; Matrix B - In1;  
Matrix C - DLY_IN  
(DLY_OUT connected to In0)  
A7  
CNT/DLY → LUT  
CNT/DLY → DFF  
11010: Matrix A - D; Matrix B - nSET/nRST;  
Matrix C - DLY_IN  
(DLY_OUT connected to CLK)  
00011: Matrix A - In2; Matrix B - In1; Matrix C - In0  
(LUT_OUT connected to DLY_IN)  
LUT → CNT/DLY  
DFF → CNT/DLY  
00111: MatrixA- D; Matrix B - nSET/nRST; Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
00: bypass the initial  
01: initial 0  
10: initial 1  
1343:1342  
1351:1344  
CNT1 initial value selection  
11: initial 1  
[7]: LUT3_7[7]/DFF or LATCH Select  
0: DFF function; 1: LATCH function  
[6]: LUT3_7[6]/DFF Output Select  
0: Q output; 1: QB output  
[5]: LUT3_7[5]/DFF  
A8  
LUT3_7_DFF10 setting  
0: nRST from Matrix Output;  
1: nSET from Matrix Output  
[4]: LUT3_7[4]/DFF Initial Polarity Select  
0:Low; 1: High  
[3:0]: LUT3_7[3:0]  
Clock source SEL [3:0]  
0000: 25M(OSC2); 0001: 25M/4; 0010: 2M(OSC1);  
0011: 2M/8; 0100: 2M/64; 0101: 2M/512; 0110:  
2K(OSC0);  
1355:1352  
DLY/CNT1 Clock Source Select  
0111: 2K/8; 1000: 2K/64; 1001: 2K/512; 1010: 2K/4096;  
1011: 2K/32768; 1100: 2K/262144; 1101: CNT_END;  
1110: External; 1111: Not used  
A9  
AA  
0000: both edge Delay; 0001: falling edge delay;  
0010: rising edge delay; 0011: both edge One Shot;  
0100: falling edge One Shot; 0101: rising edge One Shot;  
0110: both edge freq detect; 0111: falling edge freq detect;  
1000: rising edge freq detect; 1001: both edge detect;  
1010: falling edge detect; 1011: rising edge detect;  
1100: both edge reset CNT; 1101: falling edge reset CNT;  
1110: rising edge reset CNT; 1111: high level reset CNT  
1359:1356  
1367:1360  
CNT1 function and edge mode selection  
REG_CNT1_Data[7:0]  
Data[7:0]  
Datasheet  
24-Feb-2021  
Revision 3.2  
158 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
1368  
0: Default Output  
1: Inverted Output  
CNT1 output pol selection  
Reserved  
1369  
0: bypass  
1: after two DFF  
1370  
CNT1 CNT mode SYNC selection  
0: normal  
1: DLY function edge detection  
AB  
1371  
CNT1 DLY EDET FUNCTION Selection  
Single 3-bit LUT  
00000: Matrix A - In2; Matrix B - In1;  
Matrix C - In0  
(DLY_IN - LOW)  
1394,  
1375:1372  
10000: MatrixA- D; Matrix B - nSET/nRST; Matrix C - CLK  
(DLY_IN - LOW)  
Single DFF w RST and SET  
Single CNT/DLY  
00001: Matrix A - DLY_IN (CNT); Matrix B - EXT_CLK  
(CNT); Matrix C - NC  
(DLY_OUT connected to LUT/DFF)  
00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0  
(DLY_OUT connected to In2)  
CNT/DLY → LUT  
10010: Matrix A - DLY_IN; Matrix B - nSET/nRST;  
Matrix C - CLK  
CNT/DLY → DFF  
(DLY_OUT connected to D)  
00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0  
(DLY_OUT connected to In1)  
CNT/DLY → LUT  
CNT/DLY → DFF  
1394,  
1375:1372  
10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK  
(DLY_OUT connected to nSET/nRST)  
AB  
01010: Matrix A - In2; Matrix B - In1;  
Matrix C - DLY_IN  
(DLY_OUT connected to In0)  
CNT/DLY → LUT  
CNT/DLY → DFF  
11010: Matrix A - D; Matrix B - nSET/nRST;  
Matrix C - DLY_IN  
(DLY_OUT connected to CLK)  
00011: Matrix A - In2; Matrix B - In1; Matrix C - In0  
(LUT_OUT connected to DLY_IN)  
LUT → CNT/DLY  
DFF → CNT/DLY  
10011: MatrixA- D; Matrix B - nSET/nRST; Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
[7]: LUT3_8[7]/DFF or LATCH Select  
0: DFF function; 1: LATCH function  
[6]: LUT3_8[6]/DFF Output Select  
0: Q output; 1: QB output  
[5]: LUT3_8[5]/DFF  
AC  
1383:1376  
LUT3_8_DFF_11 setting  
0: nRST from Matrix Output; 1: nSET from Matrix  
Output  
[4]: LUT3_8[4]/DFF Initial Polarity Select  
0:Low; 1: High  
[3:0]: LUT3_8[3:0]  
Datasheet  
24-Feb-2021  
Revision 3.2  
159 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
Clock source SEL [3:0]  
0000: 25M(OSC2); 0001: 25M/4; 0010: 2M(OSC1);  
0011: 2M/8; 0100: 2M/64; 0101: 2M/512; 0110:  
2K(OSC0);  
1387:1384  
DLY/CNT2 Clock Source Select  
0111: 2K/8; 1000: 2K/64; 1001: 2K/512; 1010: 2K/4096;  
1011: 2K/32768; 1100: 2K/262144; 1101: CNT_END;  
1110: External; 1111: Not used  
AD  
0000: both edge Delay; 0001: falling edge delay;  
0010: rising edge delay; 0011: both edge One Shot;  
0100: falling edge One Shot; 0101: rising edge One Shot;  
0110: both edge freq detect; 0111: falling edge freq detect;  
1000: rising edge freq detect; 1001: both edge detect;  
1010: falling edge detect; 1011: rising edge detect;  
1100: both edge reset CNT; 1101: falling edge reset CNT;  
1110: rising edge reset CNT; 1111: high level reset CNT  
1391:1388  
1393:1392  
CNT2 function and edge mode selection  
CNT2 initial value selection  
00: bypass the initial  
01: initial 0  
10: initial 1  
11: initial 1  
0: Default Output  
1: Inverted Output  
1395  
1396  
1397  
CNT2 output pol selection  
Reserved  
AE  
0: bypass  
1: after two DFF  
CNT2 CNT mode SYNC selection  
0: normal  
1: DLY function edge detection  
1398  
CNT2 DLY EDET FUNCTION Selection  
1399  
1407:1400  
1408  
Reserved  
AF  
B0  
REG_CNT2_Data[7:0]  
Reserved  
Data[7:0]  
00000: Matrix A - In2; Matrix B - In1;  
Matrix C - In0  
(DLY_IN - LOW)  
1411  
1413  
1412  
1410  
1409  
Single 3-bit LUT  
00100: MatrixA- D; Matrix B - nSET/nRST; Matrix C - CLK  
(DLY_IN - LOW)  
Single DFF w RST and SET  
Datasheet  
24-Feb-2021  
Revision 3.2  
160 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
00001: Matrix A - DLY_IN (CNT); Matrix B - EXT_CLK  
(CNT); Matrix C - NC  
(DLY_OUT connected to LUT/DFF)  
Single CNT/DLY  
CNT/DLY → LUT  
CNT/DLY → DFF  
00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0  
(DLY_OUT connected to In2)  
00110: Matrix A - DLY_IN; Matrix B - nSET/nRST;  
Matrix C - CLK  
(DLY_OUT connected to D)  
01010: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0  
(DLY_OUT connected to In1)  
CNT/DLY → LUT  
CNT/DLY → DFF  
1411  
1413  
1412  
1410  
1409  
01110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK  
(DLY_OUT connected to nSET/nRST)  
10010: Matrix A - In2; Matrix B - In1;  
Matrix C - DLY_IN  
(DLY_OUT connected to In0)  
B0  
CNT/DLY → LUT  
CNT/DLY → DFF  
10110: Matrix A - D; Matrix B - nSET/nRST;  
Matrix C - DLY_IN  
(DLY_OUT connected to CLK)  
00011: Matrix A - In2; Matrix B - In1; Matrix C - In0  
(LUT_OUT connected to DLY_IN)  
LUT → CNT/DLY  
DFF → CNT/DLY  
00111: MatrixA- D; Matrix B - nSET/nRST; Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
00: bypass the initial  
01: initial 0  
10: initial 1  
1415:1414  
1423:1416  
CNT3 initial value selection  
11: initial 1  
[7]: LUT3_9[7]/DFF or LATCH Select  
0: DFF function; 1: LATCH function  
[6]: LUT3_9[6]/DFF Output Select  
0: Q output; 1: QB output  
[5]: LUT3_9[5]/DFF  
B1  
LUT3_9_DFF12 setting  
0: nRST from Matrix Output; 1: nSET from Matrix  
Output  
[4]: LUT3_9[4]/DFF Initial Polarity Select  
0:Low; 1: High  
[3:0]: LUT3_9[3:0]  
Clock source SEL [3:0]  
0000: 25M(OSC2); 0001: 25M/4; 0010: 2M(OSC1);  
0011: 2M/8; 0100: 2M/64; 0101: 2M/512; 0110:  
2K(OSC0);  
1427:1424  
DLY/CNT3 Clock Source Select  
0111: 2K/8; 1000: 2K/64; 1001: 2K/512; 1010: 2K/4096;  
1011: 2K/32768; 1100: 2K/262144; 1101: CNT_END;  
1110: External; 1111: Not used  
B2  
B3  
0000: both edge Delay; 0001: falling edge delay;  
0010: rising edge delay; 0011: both edge One Shot;  
0100: falling edge One Shot; 0101: rising edge One Shot;  
0110: both edge freq detect; 0111: falling edge freq detect;  
1000: rising edge freq detect; 1001: both edge detect;  
1010: falling edge detect; 1011: rising edge detect;  
1100: both edge reset CNT; 1101: falling edge reset CNT;  
1110: rising edge reset CNT; 1111: high level reset CNT  
1431:1428  
1439:1432  
CNT3 function and edge mode selection  
REG_CNT3_Data[7:0]  
Data[7:0]  
Datasheet  
24-Feb-2021  
Revision 3.2  
161 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
1440  
0: Default Output  
1: Inverted Output  
CNT3 output pol selection  
Reserved  
1441  
0: bypass  
1: after two DFF  
1442  
CNT3 CNT mode SYNC selection  
0: normal  
1: DLY function edge detection  
B4  
1443  
CNT3 DLY EDET FUNCTION Selection  
Single 3-bit LUT  
00000: Matrix A - In2; Matrix B - In1;  
Matrix C - In0  
(DLY_IN - LOW)  
1466,  
1447:1444  
10000: MatrixA- D; Matrix B - nSET/nRST; Matrix C - CLK  
(DLY_IN - LOW)  
Single DFF w RST and SET  
Single CNT/DLY  
00001: Matrix A - DLY_IN (CNT); Matrix B - EXT_CLK  
(CNT); Matrix C - NC  
(DLY_OUT connected to LUT/DFF)  
00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0  
(DLY_OUT connected to In2)  
CNT/DLY → LUT  
10010: Matrix A - DLY_IN; Matrix B - nSET/nRST;  
Matrix C - CLK  
CNT/DLY → DFF  
(DLY_OUT connected to D)  
00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0  
(DLY_OUT connected to In1)  
CNT/DLY → LUT  
CNT/DLY → DFF  
1466,  
1447:1444  
10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK  
(DLY_OUT connected to nSET/nRST)  
B4  
01010: Matrix A - In2; Matrix B - In1;  
Matrix C - DLY_IN  
(DLY_OUT connected to In0)  
CNT/DLY → LUT  
CNT/DLY → DFF  
11010: Matrix A - D; Matrix B - nSET/nRST;  
Matrix C - DLY_IN  
(DLY_OUT connected to CLK)  
00011: Matrix A - In2; Matrix B - In1; Matrix C - In0  
(LUT_OUT connected to DLY_IN)  
LUT → CNT/DLY  
DFF → CNT/DLY  
10011: MatrixA- D; Matrix B - nSET/nRST; Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
[7]: LUT3[7]/DFF or LATCH Select  
0: DFF function; 1: LATCH function  
[6]: LUT3[6]/DFF Output Select  
0: Q output; 1: QB output  
[5]: LUT3[5]/DFF  
B5  
1455:1448  
LUT3_DFF setting  
0: nRST from Matrix Output; 1: nSET from Matrix  
Output  
[4]: LUT3[4]/DFF Initial Polarity Select  
0:Low; 1: High  
[3:0]: LUT3[3:0]  
Datasheet  
24-Feb-2021  
Revision 3.2  
162 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
Clock source SEL [3:0]  
0000: 25M(OSC2); 0001: 25M/4; 0010: 2M(OSC1);  
0011: 2M/8; 0100: 2M/64; 0101: 2M/512; 0110:  
2K(OSC0);  
1459:1456  
DLY/CNT4 Clock Source Select  
0111: 2K/8; 1000: 2K/64; 1001: 2K/512; 1010: 2K/4096;  
1011: 2K/32768; 1100: 2K/262144; 1101: CNT_END;  
1110: External; 1111: Not used  
B6  
0000: both edge Delay; 0001: falling edge delay;  
0010: rising edge delay; 0011: both edge One Shot;  
0100: falling edge One Shot; 0101: rising edge One Shot;  
0110: both edge freq detect; 0111: falling edge freq detect;  
1000: rising edge freq detect; 1001: both edge detect;  
1010: falling edge detect; 1011: rising edge detect;  
1100: both edge reset CNT; 1101: falling edge reset CNT;  
1110: rising edge reset CNT; 1111: high level reset CNT  
1463:1460  
1465:1464  
CNT4 function and edge mode selection  
CNT4 initial value selection  
00: bypass the initial  
01: initial 0  
10: initial 1  
11: initial 1  
0: Default Output  
1: Inverted Output  
1467  
1468  
1469  
CNT4 output pol selection  
Reserved  
B7  
0: bypass  
1: after two DFF  
CNT4 CNT mode SYNC selection  
0: normal  
1: DLY function edge detection  
1470  
CNT4 DLY EDET FUNCTION Selection  
1471  
1479:1472  
1480  
Reserved  
B8  
B9  
REG_CNT4_Data[7:0]  
Reserved  
Data[7:0]  
00000: Matrix A - In2; Matrix B - In1;  
Matrix C - In0  
(DLY_IN - LOW)  
1483  
1485  
1484  
1482  
1481  
Single 3-bit LUT  
00100: MatrixA- D; Matrix B - nSET/nRST; Matrix C - CLK  
(DLY_IN - LOW)  
Single DFF w RST and SET  
Datasheet  
24-Feb-2021  
Revision 3.2  
163 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
00001: Matrix A - DLY_IN (CNT); Matrix B - EXT_CLK  
(CNT); Matrix C - NC  
(DLY_OUT connected to LUT/DFF)  
Single CNT/DLY  
CNT/DLY → LUT  
CNT/DLY → DFF  
00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0  
(DLY_OUT connected to In2)  
00110: Matrix A - DLY_IN; Matrix B - nSET/nRST;  
Matrix C - CLK  
(DLY_OUT connected to D)  
01010: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0  
(DLY_OUT connected to In1)  
CNT/DLY → LUT  
CNT/DLY → DFF  
1483  
1485  
1484  
1482  
1481  
01110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK  
(DLY_OUT connected to nSET/nRST)  
10010: Matrix A - In2; Matrix B - In1;  
Matrix C - DLY_IN  
(DLY_OUT connected to In0)  
B9  
CNT/DLY → LUT  
CNT/DLY → DFF  
10110: Matrix A - D; Matrix B - nSET/nRST;  
Matrix C - DLY_IN  
(DLY_OUT connected to CLK)  
00011: Matrix A - In2; Matrix B - In1; Matrix C - In0  
(LUT_OUT connected to DLY_IN)  
LUT → CNT/DLY  
DFF → CNT/DLY  
00111: MatrixA- D; Matrix B - nSET/nRST; Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
00: bypass the initial  
01: initial 0  
10: initial 1  
1487:1486  
1495:1488  
CNT5 initial value selection  
11: initial 1  
[7]: LUT3_11[7]/DFF or LATCH Select  
0: DFF function; 1: LATCH function  
[6]: LUT3_11[6]/DFF Output Select  
0: Q output; 1: QB output  
[5]: LUT3_11[5]/DFF  
BA  
LUT3_11_DFF14 setting  
0: nRST from Matrix Output; 1: nSET from Matrix  
Output  
[4]: LUT3_11[4]/DFF Initial Polarity Select  
0:Low; 1: High  
[3:0]: LUT3_11[3:0]  
Clock source SEL [3:0]  
0000: 25M(OSC2); 0001: 25M/4; 0010: 2M(OSC1);  
0011: 2M/8; 0100: 2M/64; 0101: 2M/512; 0110:  
2K(OSC0);  
1499:1496  
DLY/CNT5 Clock Source Select  
0111: 2K/8; 1000: 2K/64; 1001: 2K/512; 1010: 2K/4096;  
1011: 2K/32768; 1100: 2K/262144; 1101: CNT_END;  
1110: External; 1111: Not used  
BB  
BC  
0000: both edge Delay; 0001: falling edge delay;  
0010: rising edge delay; 0011: both edge One Shot;  
0100: falling edge One Shot; 0101: rising edge One Shot;  
0110: both edge freq detect; 0111: falling edge freq detect;  
1000: rising edge freq detect; 1001: both edge detect;  
1010: falling edge detect; 1011: rising edge detect;  
1100: both edge reset CNT; 1101: falling edge reset CNT;  
1110: rising edge reset CNT; 1111: high level reset CNT  
1503:1500  
1511:1504  
CNT5 function and edge mode selection  
REG_CNT5_Data[7:0]  
Data[7:0]  
Datasheet  
24-Feb-2021  
Revision 3.2  
164 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
1512  
0: Default Output  
1: Inverted Output  
CNT5 output pol selection  
Reserved  
1513  
0: bypass  
1: after two DFF  
1514  
CNT5 CNT mode SYNC selection  
0: normal  
1: DLY function edge detection  
BD  
1515  
CNT5 DLY EDET FUNCTION Selection  
Single 3-bit LUT  
00000: Matrix A - In2; Matrix B - In1;  
Matrix C - In0  
(DLY_IN - LOW)  
1538,  
1519:1516  
10000: MatrixA- D; Matrix B - nSET/nRST; Matrix C - CLK  
(DLY_IN - LOW)  
Single DFF w RST and SET  
Single CNT/DLY  
00001: Matrix A - DLY_IN (CNT); Matrix B - EXT_CLK  
(CNT); Matrix C - NC  
(DLY_OUT connected to LUT/DFF)  
00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0  
(DLY_OUT connected to In2)  
CNT/DLY → LUT  
10010: Matrix A - DLY_IN; Matrix B - nSET/nRST;  
Matrix C - CLK  
CNT/DLY → DFF  
(DLY_OUT connected to D)  
00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0  
(DLY_OUT connected to In1)  
CNT/DLY → LUT  
CNT/DLY → DFF  
1538,  
1519:1516  
10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK  
(DLY_OUT connected to nSET/nRST)  
BD  
01010: Matrix A - In2; Matrix B - In1;  
Matrix C - DLY_IN  
(DLY_OUT connected to In0)  
CNT/DLY → LUT  
CNT/DLY → DFF  
11010: Matrix A - D; Matrix B - nSET/nRST;  
Matrix C - DLY_IN  
(DLY_OUT connected to CLK)  
00011: Matrix A - In2; Matrix B - In1; Matrix C - In0  
(LUT_OUT connected to DLY_IN)  
LUT → CNT/DLY  
DFF → CNT/DLY  
10011: MatrixA- D; Matrix B - nSET/nRST; Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
[7]: LUT3_12[7]/DFF or LATCH Select  
0: DFF function; 1: LATCH function  
[6]: LUT3_12[6]/DFF Output Select  
0: Q output; 1: QB output  
[5]: LUT3_12[5]/DFF  
BE  
1527:1520  
LUT3_12_DFF15 setting  
0: nRST from Matrix Output; 1: nSET from Matrix  
Output  
[4]: LUT3_12[4]/DFF Initial Polarity Select  
0:Low; 1: High  
[3:0]: LUT3_12[3:0]  
Datasheet  
24-Feb-2021  
Revision 3.2  
165 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
Clock source SEL [3:0]  
0000: 25M(OSC2); 0001: 25M/4; 0010: 2M(OSC1);  
0011: 2M/8; 0100: 2M/64; 0101: 2M/512; 0110:  
2K(OSC0);  
1531:1528  
DLY/CNT6 Clock Source Select  
0111: 2K/8; 1000: 2K/64; 1001: 2K/512; 1010: 2K/4096;  
1011: 2K/32768; 1100: 2K/262144; 1101: CNT_END;  
1110: External; 1111: Not used  
BF  
0000: both edge Delay; 0001: falling edge delay;  
0010: rising edge delay; 0011: both edge One Shot;  
0100: falling edge One Shot; 0101: rising edge One Shot;  
0110: both edge freq detect; 0111: falling edge freq detect;  
1000: rising edge freq detect; 1001: both edge detect;  
1010: falling edge detect; 1011: rising edge detect;  
1100: both edge reset CNT; 1101: falling edge reset CNT;  
1110: rising edge reset CNT; 1111: high level reset CNT  
1535:1532  
1537:1536  
CNT6 function and edge mode selection  
CNT6 initial value selection  
00: bypass the initial  
01: initial 0  
10: initial 1  
11: initial 1  
0: Default Output  
1: Inverted Output  
1539  
1540  
1541  
CNT6 output pol selection  
Reserved  
C0  
0: bypass  
1: after two DFF  
CNT6 CNT mode SYNC selection  
0: normal  
1: DLY function edge detection  
1542  
CNT6 DLY EDET FUNCTION Selection  
1543  
Reserved  
C1  
C2  
1551:1544  
REG_CNT6_Data[7:0]  
Data[7:0]  
00000: Matrix A - In2; Matrix B - In1;  
Matrix C - In0  
(DLY_IN - LOW)  
Single 3-bit LUT  
1556:1552  
10000: MatrixA- D; Matrix B - nSET/nRST; Matrix C - CLK  
(DLY_IN - LOW)  
Single DFF w RST and SET  
Datasheet  
24-Feb-2021  
Revision 3.2  
166 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
00001: Matrix A - DLY_IN (CNT); Matrix B - EXT_CLK  
(CNT); Matrix C - NC  
(DLY_OUT connected to LUT/DFF)  
Single CNT/DLY  
CNT/DLY → LUT  
CNT/DLY → DFF  
00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0  
(DLY_OUT connected to In2)  
10010: Matrix A - DLY_IN; Matrix B - nSET/nRST;  
Matrix C - CLK  
(DLY_OUT connected to D)  
00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0  
(DLY_OUT connected to In1)  
CNT/DLY → LUT  
CNT/DLY → DFF  
10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK  
(DLY_OUT connected to nSET/nRST)  
1556:1552  
01010: Matrix A - In2; Matrix B - In1;  
Matrix C - DLY_IN  
(DLY_OUT connected to In0)  
CNT/DLY → LUT  
CNT/DLY → DFF  
C2  
11010: Matrix A - D; Matrix B - nSET/nRST;  
Matrix C - DLY_IN  
(DLY_OUT connected to CLK)  
00011: Matrix A - In2; Matrix B - In1; Matrix C - In0  
(LUT_OUT connected to DLY_IN)  
LUT → CNT/DLY  
DFF → CNT/DLY  
10011: MatrixA- D; Matrix B - nSET/nRST; Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
0: Default Output  
1: Inverted Output  
1557  
1558  
1559  
CNT7 output pol selection  
Reserved  
0: bypass  
1: after two DFF  
CNT7 CNT mode SYNC selection  
[7]: LUT3_13[7]/DFF or LATCH Select  
0: DFF function; 1: LATCH function  
[6]: LUT3_13[6]/DFF Output Select  
0: Q output; 1: QB output  
[5]: LUT3_13[5]/DFF  
C3  
1567:1560  
LUT3_13_DFF16 setting  
0: nRST from Matrix Output; 1: nSET from Matrix  
Output  
[4]: LUT3_13[4]/DFF Initial Polarity Select  
0:Low; 1: High  
[3:0]: LUT3_13[3:0]  
Clock source SEL [3:0]  
0000: 25M(OSC2); 0001: 25M/4; 0010: 2M(OSC1);  
0011: 2M/8; 0100: 2M/64; 0101: 2M/512; 0110:  
2K(OSC0);  
0111: 2K/8; 1000: 2K/64; 1001: 2K/512; 1010: 2K/4096;  
1011: 2K/32768; 1100: 2K/262144; 1101: CNT_END;  
1110: External; 1111: Not used  
1571:1568  
1575:1572  
DLY/CNT7 Clock Source Select  
C4  
0000: both edge Delay; 0001: falling edge delay;  
0010: rising edge delay; 0011: both edge One Shot;  
0100: falling edge One Shot; 0101: rising edge One Shot;  
0110: both edge freq detect; 0111: falling edge freq detect;  
1000: rising edge freq detect; 1001: both edge detect;  
1010: falling edge detect; 1011: rising edge detect;  
1100: both edge reset CNT; 1101: falling edge reset CNT;  
1110: rising edge reset CNT; 1111: high level reset CNT  
CNT7 function and edge mode selection  
Datasheet  
24-Feb-2021  
Revision 3.2  
167 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
C5  
Register Bit  
00: bypass the initial  
01: initial 0  
10: initial 1  
1577:1576  
CNT7 initial value selection  
11: initial 1  
0: normal  
1: DLY function edge detection  
1578  
CNT7 DLY EDET FUNCTION Selection  
1583:1579  
1591:1584  
1592  
Reserved  
C6  
REG_CNT7_Data[7:0]  
Data[7:0]  
2
IO0 I C output expander data  
0: IO0 output come from matrix  
1: IO0 output is register  
2
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1600  
1601  
IO0 I C output expander select  
2
IO5 I C output expander data  
0: IO5 output come from matrix  
1: IO5 output is register  
2
IO5 I C output expander select  
C7  
2
IO6 I C output expander data  
0: IO6 output come from matrix  
1: IO6 output is register  
2
IO6 I C output expander select  
2
IO9 I C output expander data  
0: IO9 output come from matrix  
1: IO9 output is register  
2
IO9 I C output expander select  
Reserved  
2
I C reset bit with reloading NVM into  
Data register (soft reset)  
0: Keep existing condition  
1: Reset execution  
C8  
C9  
2
IO latching enable during I C write  
interface  
1: disable  
0: enable  
1602  
1607:1603  
1615:1608  
1619:1616  
1620  
Reserved  
0: overwrite  
1: mask  
2
I C write mask bits  
2
I C slave address  
0: from register  
1: from IO2  
Slave address selection A4  
Slave address selection A5  
Slave address selection A6  
Slave address selection A7  
0: from register  
1: from IO3  
1621  
1622  
1623  
CA  
0: from register  
1: from IO4  
0: from register  
1: from IO5  
8-bit Pattern ID Byte 0 (From NVM):  
ID[23:16]  
CB  
CC  
1631:1624  
1639:1632  
Reserved  
Reserved  
1643:1640  
1647:1644  
Reserved  
Reserved  
CD  
Datasheet  
24-Feb-2021  
Revision 3.2  
168 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
1648  
Reserved  
Reserved  
1652:1649  
CE  
1653  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1654  
1655  
1657:1656  
1658  
1659  
CF  
1660  
1661  
1662  
1663  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
1671:1664  
1679:1672  
1687:1680  
1695:1688  
1703:1696  
1711:1704  
1719:1712  
1727:1720  
1735:1728  
1743:1736  
1751:1744  
1759:1752  
1767:1760  
1775:1768  
1783:1776  
1791:1784  
00: 2k register data is unprotected for read;  
01: 2k register data is partly protected for read;  
10: 2k register data is fully protected for read;  
11: reserved  
2k Register Read Selection Bits  
RPRB[1:0]  
1793:1792  
1795:1794  
00: 2k register data is unprotected for write;  
01: 2k register data is partly protected for write;  
10: 2k register data is fully protected for write;  
11: reserved  
2k Register Write Selection Bits  
RPRB[3:2]  
E0  
RPR  
1796  
1797  
1798  
1799  
Reserved  
Reserved  
Reserved  
Reserved  
Datasheet  
24-Feb-2021  
Revision 3.2  
169 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
00: 2k NVM Configuration data is unprotected for read  
and write/erase;  
01: 2k NVM Configuration data is fully protected for read;  
10: 2k NVM Configuration data is fully protected for  
write/erase;  
2k NVM Configuration Selection Bits  
NPRB[1:0]  
1801:1800  
11: 2k NVM Configuration data is fully protected for read  
and write/erase.  
E1  
NPR  
1802  
1803  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1804  
1805  
1806  
1807  
1809:1808  
E2  
WPR  
0: No Software Write Protection enabled (default).  
1: Write Protection is set by the state of the WPB[1:0] bits.  
1810  
Write Protect Register Enable  
Reserved  
1815:1811  
Define the page address which will be erased.  
ERSEB[4] = 0 corresponds to the upper 2k NVM used for  
chip configuration;  
Page Selection for Erase  
ERSEB[4:0]  
1820:1816  
1821  
1822  
Reserved  
Reserved  
E3  
E4  
0: erase disable  
Erase Enable  
ERSE  
1: cause the NVM erase: full NVM (4k bits) erase for  
ERSCHIP = 1 (reg[1973]) if DIS_ERSCHIP = 0  
(reg[1972]) or page erase for ERSCHIP = 0 (reg[1973]).  
1823  
0: RPR/WPR/NPR setting can be changed  
1: RPR/WPR/NPR setting cannot be changed  
1824  
Protection Lock Bit (PRL)  
1831:1825  
1839:1832  
1847:1840  
1855:1848  
1863:1856  
1871:1864  
1879:1872  
1887:1880  
1895:1888  
1903:1896  
1911:1904  
1919:1912  
1926:1920  
1927  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
1932:1928  
1934:1933  
1935  
F1  
Reserved  
Datasheet  
24-Feb-2021  
Revision 3.2  
170 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Table 58: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
1940:1936  
1943:1941  
1949:1944  
1951:1950  
1957:1952  
1959:1958  
1965:1960  
1967:1966  
1968  
Reserved  
F2  
Reserved  
Reserved  
Reserved  
F3  
F4  
F5  
Reserved  
Reserved  
1971:1969  
1972  
Reserved  
F6  
1973  
1974  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1975  
F7  
F8  
1983:1976  
1991:1984  
1992  
1993  
F9  
1995:1994  
1999:1996  
2000  
2001  
FA  
FB  
2002  
2006:2003  
2007  
Reserved  
Reserved  
2015:2008  
FC  
FD  
FE  
FF  
2023:2016  
2031:2024  
2039:2032  
2047:2040  
Reserved  
Reserved  
Reserved  
Reserved  
Datasheet  
24-Feb-2021  
Revision 3.2  
171 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
19 Package Top Marking System Definition  
19.1 TSSOP-20  
XXXXXXXXX  
$RR###NNNN  
YYWW  
Device Name  
$: Subcon  
RR: Revision  
###: Programming Code  
NNNN: Alphanumeric  
Date Code  
Pin 1  
Identifier  
Datasheet  
24-Feb-2021  
Revision 3.2  
172 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
20 Package Information  
20.1 PACKAGE OUTLINES FOR TSSOP 20L 173 MIL GREEN PACKAGE  
JEDEC MO-220  
Side View  
Marking View  
Side view  
20.2 TSSOP HANDLING  
Be sure to handle TSSOP package only in a clean, ESD-safe environment. Tweezers or vacuum pick-up tools are suitable for  
handling. Do not handle TSSOP package with fingers as this can contaminate the package pins and interface with solder reflow.  
Datasheet  
24-Feb-2021  
Revision 3.2  
173 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
20.3 SOLDERING INFORMATION  
3
Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 25.74 mm (nominal) for  
TSSOP-20 Package. More information can be found at www.jedec.org.  
21 Ordering Information  
Part Number  
Type  
SLG46827-AG  
20-pin TSSOP  
20-pin TSSOP Tape and Reel (4k units)  
SLG46827-AGTR  
21.1 TAPE AND REEL SPECIFICATIONS  
Max Units  
per Reel per Box  
Leader (min)  
Length  
Trailer (min)  
Nominal  
Package Size  
(mm)  
Reel &  
Hub Size  
(mm)  
Tape  
Width Pitch  
(mm) (mm)  
Part  
Package # of  
Length  
Type  
Pins  
Pockets  
Pockets  
(mm)  
(mm)  
TSSOP 20L  
173 MIL  
Green  
20  
6.5 x 6.4  
4,000  
4,000  
330/100  
42  
336  
42  
336  
16  
8
Package  
21.2 CARRIER TAPE DRAWING AND DIMENSIONS  
Index Hole Index Hole  
PocketBTMPocketBTM Pocket Index Hole Pocket Index Hole  
to Tape  
Edge  
to Pocket Tape Width  
Center  
(mm)  
Length  
(mm)  
Width  
(mm)  
Depth  
(mm)  
Pitch  
(mm)  
Pitch  
(mm)  
Diameter  
(mm)  
Package  
Type  
(mm)  
(mm)  
A0  
B0  
K0  
P0  
P1  
D0  
E
F
W
TSSOP 20L  
173 MIL  
Green  
6.8  
6.9  
1.6  
4
8
1.5  
1.75  
7.5  
16  
Package  
21.3 TSSOP-20L  
Refer to EIA-481 specification  
Note: Orientation in carrier: Pin1 is at upper left corner (Quadrant1).  
Datasheet  
24-Feb-2021  
Revision 3.2  
174 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
22 Layout Guidelines  
22.1 TSSOP-20  
Unit: µm  
Datasheet  
24-Feb-2021  
Revision 3.2  
175 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Glossary  
A
ACK  
Acknowledge bit  
ACMP  
ACMPH  
ACMPL  
Analog Comparator  
Analog Comparator High Speed  
Analog Comparator Low Power  
B
BG  
Bandgap  
C
CLK  
CMO  
CNT  
Clock  
Connection matrix output  
Counter  
D
DFF  
DLY  
D Flip-Flop  
Delay  
E
EC  
Electrical Characteristics  
Erase Enable  
ERSE  
ERSR  
ESD  
EV  
Erase Register  
Electrostatic discharge  
End Value  
F
FSM  
Finite State Machine  
G
GPI  
GPIO  
GPO  
General Purpose Input  
General Purpose Input/Output  
General Purpose Output  
I
IN  
IO  
Input  
Input/Output  
Datasheet  
24-Feb-2021  
Revision 3.2  
176 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
L
LPF  
LSB  
LUT  
LV  
Low Pass Filter  
Least Significant Bit  
Look Up Table  
Low Voltage  
M
MSB  
MTP  
MUX  
Most Significant Bit  
Multiple-Time-Programmable  
Multiplexer  
N
NPR  
nRST  
NVM  
Non-Volatile Memory Read/Write/Erase Protection  
Reset  
Non-Volatile Memory  
O
OD  
OE  
Open-Drain  
Output Enable  
Oscillator  
OSC  
OUT  
Output  
P
PD  
Power-down  
PGen  
POR  
PP  
Pattern Generator  
Power-On Reset  
Push-Pull  
PRL  
PWR  
P DLY  
Protect Lock Bit  
Power  
Programmable Delay  
R
RPR  
RPRB  
RPRL  
R/W  
Register Read/Write Protection  
Register Read/Write Protection Bit  
Register Protection Read/Write/Erase Lock  
Read/Write  
S
SCL  
I2C Clock Input  
Datasheet  
24-Feb-2021  
Revision 3.2  
177 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
SDA  
SLA  
SMT  
SV  
I2C Data Input/Output  
Slave Address  
With Schmitt Trigger  
nSET Value  
T
TS  
Temperature Sensor  
Voltage Reference  
V
Vref  
W
WOSMT  
WPB  
WPR  
WPRE  
WS  
Without Schmitt Trigger  
Write Protect Bit  
Write Protection Register  
Write Protect Enable  
Wake and Sleep Controller  
Datasheet  
24-Feb-2021  
Revision 3.2  
178 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Revision History  
Revision  
3.2  
Date  
Description  
Updated table ACMP Specifications at T = -40 °C to +105 °C, V = 2.3 V to 5.5 V Unless  
Otherwise Noted  
DD  
24-Feb-2021  
11-Dec-2020  
3.1  
Updated register definitions: [984], [985]  
Final version  
Updated table Oscillators Power-On Delay  
Updated table Oscillators Frequency Limits  
Updated graphs in OSC Accuracy section  
Updated graphs ACMPs Typical Propagation Delay vs. Vref  
Updated graphs in Oscillators Power-On Delay section  
Fixed typos  
3.0  
12-Oct-2020  
Datasheet  
24-Feb-2021  
Revision 3.2  
179 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  
SLG46827-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
with In-System Debug  
Status Definitions  
Revision Datasheet Status  
Product Status  
Definition  
1.<n>  
Target  
Development  
This datasheet contains the design specifications for product development. Specifications may  
change in any manner without notice.  
2.<n>  
Preliminary  
Qualification  
Production  
This datasheet contains the specifications and preliminary characterization data for products in  
pre-production. Specifications may be changed at any time without notice in order to improve the  
design.  
3.<n>  
4.<n>  
Final  
This datasheet contains the final specifications for products in volume production. The  
specifications may be changed at any time in order to improve the design, manufacturing and  
supply. Major specification changes are communicated via Customer Product Notifications.  
Datasheet changes are communicated via www.dialog-semiconductor.com.  
Obsolete  
Archived  
This datasheet contains the specifications for discontinued products. The information is provided  
for reference only.  
Disclaimer  
Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or  
warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a  
Dialog Semiconductor product (or associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage.  
Dialog Semiconductor and its suppliers accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such  
equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.  
Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or  
implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this  
document if provided by any information source outside of Dialog Semiconductor.  
Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the  
design of the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device,  
Dialog Semiconductor reserves the right to change the information published in this document, including, without limitation, the specification and the design of the  
related semiconductor products, software and applications, in accordance with its standard automotive change notification process.  
Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or  
warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise  
agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.  
Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this  
document. Such license must be separately sought by customer with Dialog Semiconductor.  
All use of Dialog Semiconductor products, software and applications referred to in this document is subject to Dialog Semiconductor’s Standard Terms and  
Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.  
Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are  
the property of their respective owners.  
© 2021 Dialog Semiconductor. All rights reserved.  
RoHS Compliance  
Dialog Semiconductor’s suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restric-  
tion of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Hong Kong  
Dialog Semiconductor Hong Kong  
Phone: +852 2607 4271  
China (Shenzhen)  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Korea  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5769 5100  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
The Netherlands  
Taiwan  
194  
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
Datasheet  
24-Feb-2021  
Revision 3.2  
180 of 180  
© 2021 Dialog Semiconductor  
CFR0011-120-00  

相关型号:

SLG46827-AGTR

Auto Grade GreenPAK Programmable Mixed-Signal Matrix with In-System Debug
DIALOG

SLG46855

GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46855-A

Auto Grade GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46855-AP

Auto Grade GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46855-APTR

Auto Grade GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46855V

GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46855VTR

GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46857-A

Automotive GreenPAK™ Programmable Mixed-signal Matrix
RENESAS

SLG46857-A

Auto Grade GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46857-AP

Auto Grade GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46857-APTR

Auto Grade GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46867

GreenPAK Programmable Mixed-Signal Matrix with Dual 44 mΩ/2 A P-FET
DIALOG