SLG46855-AP [DIALOG]

Auto Grade GreenPAK Programmable Mixed-Signal Matrix;
SLG46855-AP
型号: SLG46855-AP
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

Auto Grade GreenPAK Programmable Mixed-Signal Matrix

文件: 总199页 (文件大小:2424K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
General Description  
The SLG46855-A provides a small, low power component for commonly used Mixed-Signal functions. The user creates their  
circuit design by programming the one time programmable (OTP) Non-Volatile Memory (NVM) to configure the interconnect  
logic, the IO Pins, and the macrocells of the SLG46855-A. This highly versatile device allows a wide variety of Mixed-Signal  
functions to be designed within a very small, low power single integrated circuit.  
Key Features  
Two High Speed General Purpose Analog Comparators  
(ACMPxH)  
Two Low Power General Purpose Analog Comparators  
(ACMPxL)  
Analog Temperature Sensor  
Power-On Reset (POR)  
Read Back Protection (Read Lock)  
Power Supply  
Two Voltage References (Vref)  
2.5 V (±8 %) to 5 V (±10 %)  
Two Vref Outputs  
Operating Temperature Range: -40 °C to 105 °C  
RoHS Compliant/Halogen-Free  
Available Package  
14-pin FCQFN: 3.0 mm x 3.0 mm x 0.55 mm, 0.65 mm  
pitch  
Fifteen Combination Function Macrocells  
Three Selectable DFF/LATCH or 2-bit LUTs  
One Selectable Programmable Pattern Generator or  
2-bit LUT  
Nine Selectable DFF/LATCH or 3-bit LUTs  
One Selectable Pipe Delay or Ripple Counter, or  
3-bit LUT  
AEC-Q100 Grade 2 Qualified  
One Selectable DFF/LATCH or 4-bit LUTs  
Eight Multi-Function Macrocells  
Seven Selectable DFF/LATCH or 3-bit LUTs + 8-bit  
Delay/Counters  
One Selectable DFF/LATCH or 4-bit LUT + 16-bit  
Delay/Counter  
Serial Communications  
I2C Protocol Interface  
Programmable Delay with Edge Detector Output  
Deglitch Filter or Edge Detector  
Three Oscillators (OSC)  
2.048 kHz Oscillator  
2.048 MHz Oscillator  
25 MHz Oscillator  
Applications  
Infotainment  
Advanced Driver Assistance Systems (ADAS)  
Instrument clusters  
Audio, video, navigation  
Datasheet  
17-Jun-2021  
Revision 3.0  
1 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Contents  
General Description................................................................................................................................................................. 1  
Key Features ............................................................................................................................................................................ 1  
Applications ............................................................................................................................................................................. 1  
1 Block Diagram ...................................................................................................................................................................... 7  
2 Pinout .................................................................................................................................................................................... 8  
2.1 Pin Configuration - FCQFN- 14L ........................................................................................................................... 8  
3 Characteristics ................................................................................................................................................................... 11  
3.1 Absolute Maximum Ratings ................................................................................................................................. 11  
3.2 Electrostatic Discharge Ratings ........................................................................................................................... 11  
3.3 Recommended Operating Conditions ................................................................................................................. 11  
3.4 Electrical Characteristics ..................................................................................................................................... 12  
3.5 I2C Pins Electrical Characteristics ....................................................................................................................... 15  
3.6 Macrocells Current Consumption ........................................................................................................................ 19  
3.7 Timing Characteristics ......................................................................................................................................... 19  
3.8 Counter/Delay Characteristics ............................................................................................................................. 23  
3.9 Oscillator Characteristics ..................................................................................................................................... 23  
3.10 ACMP Characteristics ........................................................................................................................................ 24  
3.11 Analog Temperature Sensor Characteristics ..................................................................................................... 27  
4 User Programmability ....................................................................................................................................................... 29  
5 IO Pins ................................................................................................................................................................................ 30  
5.1 GPIO Pins ............................................................................................................................................................ 30  
5.2 GPI Pins ............................................................................................................................................................... 30  
5.3 GPO Pins ............................................................................................................................................................. 30  
5.4 Pull-Up/Down Resistors ....................................................................................................................................... 30  
5.5 Fast Pull-up/down during Power-up ..................................................................................................................... 30  
5.6 GPI Structure ....................................................................................................................................................... 31  
5.7 GPIO with I2C Mode IO Structure ........................................................................................................................ 32  
5.8 Matrix OE IO Structure ........................................................................................................................................ 33  
5.9 GPO Structure ..................................................................................................................................................... 35  
5.10 IO Typical Performance ..................................................................................................................................... 36  
6 Connection Matrix ............................................................................................................................................................. 41  
6.1 Matrix Input Table ............................................................................................................................................... 42  
6.2 Matrix Output Table ............................................................................................................................................. 44  
6.3 Connection Matrix Virtual Inputs .......................................................................................................................... 47  
6.4 Connection Matrix Virtual Outputs ....................................................................................................................... 47  
7 Combination Function Macrocells ................................................................................................................................... 48  
7.1 2-Bit LUT or D Flip-Flop Macrocells ..................................................................................................................... 48  
7.2 2-bit LUT or Programmable Pattern Generator ................................................................................................... 51  
7.3 3-Bit LUT or D Flip-Flop with Set/Reset Macrocells ............................................................................................ 53  
7.4 4-Bit LUT or D Flip-Flop with Set/Reset Macrocell .............................................................................................. 62  
7.5 3-Bit LUT or Pipe Delay/Ripple Counter Macrocell .............................................................................................. 64  
8 Multi-Function Macrocells ................................................................................................................................................ 68  
8.1 3-Bit LUT or DFF/Latch with 8-Bit Counter/Delay Macrocells .............................................................................. 68  
8.2 4-Bit LUT or DFF/Latch with 16-Bit Counter/Delay Macrocell ............................................................................. 78  
8.3 CNT/DLY/FSM Timing Diagrams ......................................................................................................................... 81  
8.4 Wake and Sleep Controller .................................................................................................................................. 90  
9 Analog Comparators ......................................................................................................................................................... 95  
9.1 ACMP0H Block Diagram ..................................................................................................................................... 96  
9.2 ACMP1H Block Diagram ..................................................................................................................................... 97  
9.3 ACMP2L Block Diagram ..................................................................................................................................... 98  
9.4 ACMP3L Block Diagram ..................................................................................................................................... 99  
9.5 ACMP Typical Performance .............................................................................................................................. 100  
10 Programmable Delay/Edge Detector ............................................................................................................................ 103  
10.1 Programmable Delay Timing Diagram - Edge Detector Output ....................................................................... 103  
11 Additional Logic Function. Deglitch Filter .................................................................................................................. 104  
Datasheet  
17-Jun-2021  
Revision 3.0  
2 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
12 Voltage Reference ......................................................................................................................................................... 105  
12.1 Voltage Reference Overview ........................................................................................................................... 105  
12.2 Vref Selection Table ........................................................................................................................................ 105  
12.3 Vref Block Diagram ......................................................................................................................................... 106  
12.4 Vref Load Regulation ....................................................................................................................................... 107  
13 Clocking .......................................................................................................................................................................... 109  
13.1 OSC General description ................................................................................................................................. 109  
13.2 Oscillator0 (2.048 kHz) .................................................................................................................................... 110  
13.3 Oscillator1 (2.048 MHz) ................................................................................................................................... 111  
13.4 Oscillator2 (25 MHz) ........................................................................................................................................ 112  
13.5 CNT/DLY Clock Scheme ................................................................................................................................. 112  
13.6 External Clocking ............................................................................................................................................. 113  
13.7 Oscillators Power-On Delay ............................................................................................................................. 114  
13.8 Oscillators Accuracy ........................................................................................................................................ 116  
14 Power-On Reset ............................................................................................................................................................. 118  
14.1 General Operation ........................................................................................................................................... 118  
14.2 POR Sequence ................................................................................................................................................ 119  
14.3 Macrocells Output States During POR Sequence ........................................................................................... 119  
15 I2C Serial Communications Macrocell ......................................................................................................................... 122  
15.1 I2C Serial Communications Macrocell Overview ............................................................................................. 122  
15.2 I2C Serial Communications Device Addressing ............................................................................................... 122  
15.3 I2C Serial General Timing ................................................................................................................................ 123  
15.4 I2C Serial Communications Commands .......................................................................................................... 123  
15.5 I2C Serial Command Register Map ................................................................................................................. 127  
15.6 I2C Additional Options ..................................................................................................................................... 128  
16 Analog Temperature Sensor ......................................................................................................................................... 130  
17 Register Definitions ....................................................................................................................................................... 133  
17.1 Register Map ................................................................................................................................................... 133  
18 Package Top Marking Definitions ................................................................................................................................ 191  
18.1 FCQFN 14L 3mm x 3 mm 0.65P FCD ............................................................................................................. 191  
19 Package Information ..................................................................................................................................................... 192  
19.1 Package Outlines for FCQFN 14L 3.0 mm x 3.0 mm x 0.55 mm 0.65P FC Package ..................................... 192  
19.2 FCQFN Handling ............................................................................................................................................. 193  
19.3 Soldering Information ....................................................................................................................................... 193  
20 Ordering Information ..................................................................................................................................................... 193  
20.1 Tape and Reel Specifications .......................................................................................................................... 193  
20.2 Carrier Tape Drawing and Dimensions ............................................................................................................ 193  
21 Layout Guidelines .......................................................................................................................................................... 194  
21.1 FCQFN 14L 3 mm x 3 mm x 0.5 mm 0.65P FC Green .................................................................................... 194  
Glossary ............................................................................................................................................................................... 195  
Revision History .................................................................................................................................................................. 198  
Datasheet  
17-Jun-2021  
Revision 3.0  
3 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Figures  
Figure 1: Block Diagram ............................................................................................................................................................ 7  
Figure 2: Steps to Create a Custom GreenPAK Device .......................................................................................................... 29  
Figure 3: IO0 GPI Structure Diagram ...................................................................................................................................... 31  
Figure 4: GPIO with I2C Mode IO Structure Diagram.............................................................................................................. 32  
Figure 5: Matrix OE IO Structure Diagram............................................................................................................................... 33  
Figure 6: Matrix OE IO 4x Drive Structure Diagram ................................................................................................................ 34  
Figure 7: GPO Register OE 4x Drive Structure Diagram......................................................................................................... 35  
Figure 8: Typical High Level Output Current vs. High Level Output Voltage at T = 25 °C ...................................................... 36  
Figure 9: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C, Full Range...................... 36  
Figure 10: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C....................................... 37  
Figure 11: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C, Full Range.................... 37  
Figure 12: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C....................................... 38  
Figure 13: Typical Low Level Output Current vs. Low Level Output Voltage, 3.2x Drive at T = 25 °C, Full Range................. 38  
Figure 14: Typical Low Level Output Current vs. Low Level Output Voltage, 3.2x Drive at T = 25 °C.................................... 39  
Figure 15: Typical Low Level Output Current vs. Low Level Output Voltage, 4x Drive at T = 25 °C, Full Range.................... 39  
Figure 16: Typical Low Level Output Current vs. Low Level Output Voltage, 4x Drive at T = 25 °C....................................... 40  
Figure 17: Connection Matrix................................................................................................................................................... 41  
Figure 18: Connection Matrix Example.................................................................................................................................... 41  
Figure 19: 2-bit LUT0 or DFF0................................................................................................................................................. 48  
Figure 20: 2-bit LUT1 or DFF1................................................................................................................................................. 49  
Figure 21: 2-bit LUT2 or DFF2................................................................................................................................................. 49  
Figure 22: DFF Polarity Operations......................................................................................................................................... 51  
Figure 23: 2-bit LUT3 or PGen ................................................................................................................................................ 52  
Figure 24: PGen Timing Diagram............................................................................................................................................ 52  
Figure 25: 3-bit LUT0 or DFF3................................................................................................................................................. 54  
Figure 26: 3-bit LUT1 or DFF4................................................................................................................................................. 55  
Figure 27: 3-bit LUT2 or DFF5................................................................................................................................................. 55  
Figure 28: 3-bit LUT3 or DFF6................................................................................................................................................. 56  
Figure 29: 3-bit LUT4 or DFF7................................................................................................................................................. 56  
Figure 30: 3-bit LUT5 or DFF8................................................................................................................................................. 57  
Figure 31: 3-bit LUT6 or DFF9................................................................................................................................................. 57  
Figure 32: 3-bit LUT7 or DFF10............................................................................................................................................... 58  
Figure 33: 3-bit LUT8 or DFF11............................................................................................................................................... 58  
Figure 34: DFF Polarity Operations with nReset ..................................................................................................................... 61  
Figure 35: DFF Polarity Operations with nSet ......................................................................................................................... 62  
Figure 36: 4-bit LUT0 or DFF12............................................................................................................................................... 63  
Figure 37: 3-bit LUT16/Pipe Delay/Ripple Counter ................................................................................................................. 65  
Figure 38: Example: Ripple Counter Functionality .................................................................................................................. 66  
Figure 39: Possible Connections Inside Multi-Function Macrocell .......................................................................................... 68  
Figure 40: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT9/DFF13, CNT/DLY1)................................................... 69  
Figure 41: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT10/DFF14, CNT/DLY2)................................................. 70  
Figure 42: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT11/DFF15, CNT/DLY3)................................................. 71  
Figure 43: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT12/DFF16, CNT/DLY4)................................................. 72  
Figure 44: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT13/DFF17, CNT/DLY5)................................................. 73  
Figure 45: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT14/DFF18, CNT/DLY6)................................................. 74  
Figure 46: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT15/DFF19, CNT/DLY7)................................................. 75  
Figure 47: 4-bit LUT1 or CNT/DLY0 ........................................................................................................................................ 79  
Figure 48: Delay Mode Timing Diagram, Edge Select: Both, Counter Data: 3........................................................................ 81  
Figure 49: Delay Mode Timing Diagram for Different Edge Select Mode................................................................................ 82  
Figure 50: Counter Mode Timing Diagram without Two DFFs Synced Up.............................................................................. 82  
Figure 51: Counter Mode Timing Diagram with Two DFFs Synced Up................................................................................... 83  
Figure 52: One-Shot Function Timing Diagram....................................................................................................................... 84  
Figure 53: Frequency Detection Mode Timing Diagram.......................................................................................................... 85  
Figure 54: Edge Detection Mode Timing Diagram................................................................................................................... 86  
Figure 55: Delayed Edge Detection Mode Timing Diagram .................................................................................................... 87  
Datasheet  
17-Jun-2021  
Revision 3.0  
4 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Figure 56: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3..... 88  
Figure 57: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3......... 88  
Figure 58: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3..... 89  
Figure 59: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator Is Forced On, UP = 1) for Counter Data = 3 ........ 89  
Figure 60: Counter Value, Counter Data = 3........................................................................................................................... 90  
Figure 61: Wake/Sleep Controller............................................................................................................................................ 91  
Figure 62: Wake/Sleep Timing Diagram, Normal Wake Mode, Counter Reset is Used.......................................................... 92  
Figure 63: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Reset is Used............................................................. 92  
Figure 64: Wake/Sleep Timing Diagram, Normal Wake Mode, Counter Set is Used.............................................................. 93  
Figure 65: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Set is Used................................................................. 93  
Figure 66: ACMP0H Block Diagram ........................................................................................................................................ 96  
Figure 67: ACMP1H Block Diagram ........................................................................................................................................ 97  
Figure 68: ACMP2L Block Diagram......................................................................................................................................... 98  
Figure 69: ACMP3L Block Diagram......................................................................................................................................... 99  
Figure 70: Typical Propagation Delay vs. Vref for ACMPxH at T = 25 °C, Gain = 1, Hysteresis = 0..................................... 100  
Figure 71: Typical Propagation Delay vs. Vref for ACMPxL at T = 25 °C, Gain = 1, Hysteresis = 0..................................... 100  
Figure 72: ACMPxH Power-On Delay vs. VDD. ..................................................................................................................... 101  
Figure 73: ACMPxL Power-On Delay vs. VDD....................................................................................................................... 101  
Figure 74: ACMPxH Input Offset Voltage vs. Vref at T = -40 °C to 105 °C ........................................................................... 102  
Figure 75: ACMPxL Input Offset Voltage vs. Vref at T = -40 °C to 105 °C............................................................................ 102  
Figure 76: Programmable Delay............................................................................................................................................ 103  
Figure 77: Edge Detector Output........................................................................................................................................... 103  
Figure 78: Deglitch Filter/Edge Detector................................................................................................................................ 104  
Figure 79: Voltage Reference Block Diagram ....................................................................................................................... 106  
Figure 80: Typical Load Regulation, Vref = 320 mV, T = -40 °C to +105 °C, Buffer - Enabled ............................................. 107  
Figure 81: Typical Load Regulation, Vref = 640 mV, T = -40 °C to +105 °C, Buffer - Enabled ............................................. 107  
Figure 82: Typical Load Regulation, Vref = 1280 mV, T = -40 °C to +105 °C, Buffer - Enabled ........................................... 108  
Figure 83: Typical Load Regulation, Vref = 2016 mV, T = -40 °C to +105 °C, Buffer - Enabled ........................................... 108  
Figure 84: Oscillator0 Block Diagram .................................................................................................................................... 110  
Figure 85: Oscillator1 Block Diagram .................................................................................................................................... 111  
Figure 86: Oscillator2 Block Diagram .................................................................................................................................... 112  
Figure 87: Clock Scheme ...................................................................................................................................................... 113  
Figure 88: Oscillator Startup Diagram ................................................................................................................................... 114  
Figure 89: Oscillator0 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC0 = 2.048 kHz............................................... 114  
Figure 90: Oscillator1 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC1 = 2.048 MHz.............................................. 115  
Figure 91: Oscillator2 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC2 = 25 MHz................................................... 115  
Figure 92: Oscillator0 Frequency vs. Temperature, OSC0 = 2.048 kHz ............................................................................... 116  
Figure 93: Oscillator1 Frequency vs. Temperature, OSC1 = 2.048 MHz .............................................................................. 116  
Figure 94: Oscillator2 Frequency vs. Temperature, OSC2 = 25 MHz ................................................................................... 117  
Figure 95: Oscillators Total Error vs. Temperature................................................................................................................ 117  
Figure 96: POR Sequence..................................................................................................................................................... 119  
Figure 97: Internal Macrocell States During POR Sequence ................................................................................................ 120  
Figure 98: Power-Down......................................................................................................................................................... 121  
Figure 99: Basic Command Structure.................................................................................................................................... 123  
Figure 100: I2C General Timing Characteristics.................................................................................................................... 123  
Figure 101: Byte Write Command, R/W = 0 .......................................................................................................................... 124  
Figure 102: Sequential Write Command................................................................................................................................ 124  
Figure 103: Current Address Read Command, R/W = 1 ....................................................................................................... 125  
Figure 104: Random Read Command................................................................................................................................... 125  
Figure 105: Sequential Read Command ............................................................................................................................... 126  
Figure 106: Reset Command Timing..................................................................................................................................... 126  
Figure 107: Example of I2C Byte Write Bit Masking .............................................................................................................. 129  
Figure 108: Analog Temperature Sensor Structure Diagram ................................................................................................ 131  
Figure 109: TS Output vs. Temperature, VDD = 2.3 V to 5.5 V.............................................................................................. 132  
Datasheet  
17-Jun-2021  
Revision 3.0  
5 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Tables  
Table 1: Functional Pin Description........................................................................................................................................... 8  
Table 2: Pin Type Definitions................................................................................................................................................... 10  
Table 3: Absolute Maximum Ratings....................................................................................................................................... 11  
Table 4: Electrostatic Discharge Ratings................................................................................................................................. 11  
Table 5: Recommended Operating Conditions........................................................................................................................ 11  
Table 6: EC at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted............................................................ 12  
Table 7: EC of the I2C Pins for DI Mode at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted................ 15  
Table 8: EC of the I2C Pins for DILV Mode at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted............ 16  
Table 9: I2C Pins Timing Characteristics, DI Mode, T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted... 16  
Table 10: I2C Pins Timing Characteristics, DILV Mode, T = -40°C to +105°C, VDD = 2.3V to 5.5V Unless Otherwise Noted 17  
Table 11: Typical Current Estimated for Each Macrocell at T = -40 °C to +105 °C................................................................. 19  
Table 12: Typical Delay Estimated for Each Macrocell at T = 25 °C ....................................................................................... 19  
Table 13: Typical Propagations Delays and Pulse Widths at T = 25 °C.................................................................................. 22  
Table 14: Typical Filter Rejection Pulse Width at T = 25 °C.................................................................................................... 23  
Table 15: Typical Counter/Delay Offset at T = 25 °C .............................................................................................................. 23  
Table 16: Oscillators Frequency Limits, VDD = 2.3 V to 5.5 V ................................................................................................. 23  
Table 17: Oscillators Power-On Delay at T = -40 °C to +105 °C, OSC Power Setting: "Auto Power-On"............................... 24  
Table 18: ACMP Specifications at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted ............................. 24  
Table 19: TS Output vs Temperature (Output Range 1), VDD = 2.3 V to 5.5 V ....................................................................... 27  
Table 20: TS Output vs Temperature (Output Range 2), VDD = 2.3 V to 5.5 V ....................................................................... 27  
Table 21: TS Output Error (Output Range 1), VDD = 2.3 V to 5.5 V ........................................................................................ 28  
Table 22: TS Output Error (Output Range 2), VDD = 2.3 V to 5.5 V ........................................................................................ 28  
Table 23: Matrix Input Table.................................................................................................................................................... 42  
Table 24: Matrix Output Table ................................................................................................................................................. 44  
Table 25: Connection Matrix Virtual Inputs.............................................................................................................................. 47  
Table 26: 2-bit LUT0 Truth Table............................................................................................................................................. 50  
Table 27: 2-bit LUT1 Truth Table............................................................................................................................................. 50  
Table 28: 2-bit LUT2 Truth Table............................................................................................................................................. 50  
Table 29: 2-bit LUT Standard Digital Functions....................................................................................................................... 50  
Table 30: 2-bit LUT1 Truth Table............................................................................................................................................. 53  
Table 31: 2-bit LUT Standard Digital Functions....................................................................................................................... 53  
Table 32: 3-bit LUT0 Truth Table............................................................................................................................................. 59  
Table 33: 3-bit LUT1 Truth Table............................................................................................................................................. 59  
Table 34: 3-bit LUT2 Truth Table............................................................................................................................................. 59  
Table 35: 3-bit LUT3 Truth Table............................................................................................................................................. 59  
Table 36: 3-bit LUT4 Truth Table............................................................................................................................................. 59  
Table 37: 3-bit LUT5 Truth Table............................................................................................................................................. 59  
Table 38: 3-bit LUT6 Truth Table............................................................................................................................................. 59  
Table 39: 3-bit LUT7 Truth Table............................................................................................................................................. 59  
Table 40: 3-bit LUT8 Truth Table............................................................................................................................................. 60  
Table 41: 3-bit LUT Standard Digital Functions....................................................................................................................... 60  
Table 42: 4-bit LUT0 Truth Table............................................................................................................................................. 63  
Table 43: 4-bit LUT Standard Digital Functions....................................................................................................................... 64  
Table 44: 3-bit LUT16 Truth Table........................................................................................................................................... 67  
Table 45: 3-bit LUT9 Truth Table............................................................................................................................................. 76  
Table 46: 3-bit LUT10 Truth Table........................................................................................................................................... 76  
Table 47: 3-bit LUT11 Truth Table........................................................................................................................................... 76  
Table 48: 3-bit LUT12 Truth Table........................................................................................................................................... 76  
Table 49: 3-bit LUT13 Truth Table........................................................................................................................................... 76  
Table 50: 3-bit LUT14 Truth Table........................................................................................................................................... 76  
Table 51: 3-bit LUT15 Truth Table........................................................................................................................................... 76  
Table 52: 4-bit LUT1 Truth Table............................................................................................................................................. 80  
Table 53: 4-bit LUT Standard Digital Functions....................................................................................................................... 80  
Table 54: Vref Selection Table .............................................................................................................................................. 105  
Table 55: Oscillator Operation Mode Configuration Settings................................................................................................. 109  
Table 56: Read/Write Protection Options .............................................................................................................................. 127  
Table 57: Register Map ......................................................................................................................................................... 133  
Datasheet  
17-Jun-2021  
Revision 3.0  
6 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
1
Block Diagram  
GPIO8  
Vref0  
GPIO9  
Vref1  
Combination Function Macrocells  
I2C Serial  
Communication  
High Speed  
Analog  
Vref0  
V
GPIO7  
ACMP3_L  
DD  
2-bit  
LUT2_0  
or DFF0  
2-bit  
LUT2_1  
or DFF1  
2-bit  
LUT2_2  
or DFF2  
2-bit  
LUT2_3  
or PGen  
FILTER  
with Edge  
Detect  
ACMP0H  
ACMP1H  
3bit  
LUT3_0  
or DFF3  
3-bit  
LUT3_1  
or DFF4  
3-bit  
LUT3_2  
or DFF5  
3-bit  
LUT3_3  
or DFF6  
GPIO6  
ACMP2_L  
GPI0  
3-bit  
LUT3_4  
or DFF7  
3-bit  
LUT3_5  
or DFF8  
3-bit  
LUT3_6  
or DFF9  
3-bit  
LUT3_7  
or DFF10  
Temperature  
Sensor  
Low Power  
Analog  
GPIO0  
Low  
Power  
Vref1  
GPIO5  
ACMP1_H  
3-bit LUT3_16  
or Pipe Delay  
or Ripple CNT  
I2C_SCL  
3-bit  
LUT3_8  
or DFF11  
4-bit  
LUT4_0  
or DFF12  
Programmable  
Delay  
ACMP2L  
ACMP3L  
GPIO4  
ACMP0_H  
GPIO1  
Multi-Function Macrocells  
I2C_SDA  
3-bit  
3-bit  
3-bitLUT3_12  
/DFF16+8bit  
CNT/DLY4  
3-bitLUT3_9  
/DFF13+8bit  
CNT/DLY1  
LUT3_11 /  
DFF15+8bit  
CNT/DLY3  
LUT3_10/  
DFF14+8bit  
CNT/DLY2  
Oscillators  
GPIO2  
EXT_  
Vref0  
3-bit  
OSC0  
2.048  
kHz  
OSC1  
2.048  
MHz  
OSC2  
25  
MHz  
4-bitLUT4_1  
/DFF20+  
16bit  
3-bit  
3-bit  
POR  
GND  
LUT3_13 /  
DFF17+8bit  
CNT/DLY5  
LUT3_14  
LUT3_15 /  
DFF19+8bit  
CNT/DLY7  
/DFF18+8bit  
CNT/DLY6  
CNT/DLY0  
GPO0  
EXT_  
Vref1  
GPIO3  
Figure 1: Block Diagram  
Datasheet  
17-Jun-2021  
Revision 3.0  
7 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
2
Pinout  
2.1 PIN CONFIGURATION - FCQFN- 14L  
Pin # Pin Name Pin Functions  
1
2
VDD  
Power Supply  
GPI0  
GPI, SLA_0  
3
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPO0  
GND  
GPIO, SCL  
4
GPIO, SDA  
5
GPIO with OE, EXT_Vref0, SLA_1  
GPIO with OE  
6
13  
14  
7
GPO, EXT_Vref1  
1
2
12  
11  
VDD  
GPIO7  
GPIO6  
8
Ground  
9
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO with OE, ACMP0_H+, SLA_2  
GPIO with OE, ACMP1_H+, SLA_3  
GPIO with OE, ACMP2_L+  
GPIO with OE, ACMP3_L+  
GPIO with OE, Vref0_OUT, TS_OUT  
GPIO with OE, Vref1_OUT  
GPI0  
10  
11  
12  
13  
14  
10  
3
4
5
GPIO5  
GPIO0  
GPIO1  
GPIO2  
9
8
GPIO4  
GND  
6
7
Legend:  
OE: Output Enable  
ACMPx+: ACMPx Positive Input  
ACMPx-: ACMPx Negative Input  
SCL: I2C Clock Input  
FCQFN-14L  
(Top View)  
SDA: I2C Data Input/Output  
Vrefx: Voltage Reference Output  
EXT_CLKx: External Clock Input  
SLA: Slave Address  
TS_OUT: Temperature Output  
Table 1: Functional Pin Description  
FCQFN  
14L Pin # Name  
Pin  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
VDD  
Power Supply  
--  
--  
Analog Comparator 0  
Positive Input  
ACMP0_H+  
Analog  
--  
Analog Comparator 1  
Positive Input  
ACMP1_H+  
ACMP2_L+  
ACMP3_L+  
Analog  
Analog  
Analog  
--  
--  
--  
--  
1
VDD  
Analog Comparator 2  
Positive Input  
Analog Comparator 3  
Positive Input  
Digital Input  
without Schmitt Trigger  
GPI0  
General Purpose Input  
Digital Input  
with Schmitt Trigger  
--  
--  
--  
2
GPI0  
Low Voltage Digital Input  
Slave  
Address 0  
--  
Datasheet  
17-Jun-2021  
Revision 3.0  
8 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 1: Functional Pin Description(Continued)  
FCQFN  
14L Pin # Name  
Pin  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
Digital Input  
without Schmitt Trigger  
Open-Drain NMOS  
(3.2x)  
General Purpose IO  
with OE (Note 1)  
GPIO0  
SCL  
Digital Input  
with Schmitt Trigger  
3
GPIO0  
Low Voltage Digital Input  
--  
--  
--  
Digital Input  
without Schmitt Trigger  
I2C Serial Clock  
General Purpose IO  
I2C Serial Data  
Low Voltage Digital Input  
Digital Input  
without Schmitt Trigger  
Open-Drain NMOS  
(3.2x)  
GPIO1  
SDA  
Digital Input  
with Schmitt Trigger  
4
GPIO1  
Low Voltage Digital Input  
Digital Input  
without Schmitt Trigger  
--  
Low Voltage Digital Input  
--  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
GPIO2  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
5
6
GPIO2  
GPIO3  
Low Voltage Digital Input  
--  
Slave  
Address 1  
--  
--  
Analog Comparator  
Negative Input  
EXT_VREF0  
Analog  
--  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
GPIO3  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
Low Voltage Digital Input  
--  
--  
Push-Pull (1x) (2x)  
GPO0  
General Purpose Output  
Open-Drain NMOS  
(1x) (2x) (4x)  
--  
7
8
GPO0  
GND  
Analog Comparator  
Negative Input  
EXT_VREF1  
GND  
Analog  
--  
--  
Power Supply  
--  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
GPIO4  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x) (4x)  
9
GPIO4  
Low Voltage Digital Input  
--  
Analog Comparator 0_H  
Positive Input  
ACMP0_H+  
Analog  
--  
Slave  
Address 2  
--  
--  
Datasheet  
17-Jun-2021  
Revision 3.0  
9 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 1: Functional Pin Description(Continued)  
FCQFN  
14L Pin # Name  
Pin  
Signal  
Name  
Input  
Options  
Output  
Options  
Function  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
GPIO5  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
10  
GPIO5  
Low Voltage Digital Input  
--  
Analog Comparator 1_H  
Positive Input  
ACMP1_H+  
Analog  
--  
Slave  
Address 3  
--  
--  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
GPIO6  
ACMP2_L+  
GPIO7  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
11  
12  
GPIO6  
GPIO7  
Low Voltage Digital Input  
--  
Analog Comparator 2_L  
Positive Input  
Analog  
--  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
Low Voltage Digital Input  
--  
Analog Comparator 3_L  
Positive Input  
ACMP3_L+  
Analog  
--  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
GPIO8  
Vref0  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
13  
14  
GPIO8  
GPIO9  
Low Voltage Digital Input  
Analog  
--  
--  
Vref0 Output  
Digital Input  
without Schmitt Trigger  
Push-Pull (1x) (2x)  
General Purpose IO  
with OE (Note 1)  
GPIO9  
Vref1  
Digital Input  
with Schmitt Trigger  
Open-Drain NMOS  
(1x) (2x)  
Low Voltage Digital Input  
Analog  
--  
--  
Vref1 Output  
Note 1 General Purpose IO's with OE can be used to implement bidirectional signals under user control via  
Connection Matrix to OE signal in IO structure.  
Table 2: Pin Type Definitions  
Pin Type  
VDD  
Description  
Power Supply  
GPI  
General Purpose Input  
General Purpose Input/Output  
General Purpose Output  
Ground  
GPIO  
GPO  
GND  
Datasheet  
17-Jun-2021  
Revision 3.0  
10 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
3
Characteristics  
3.1 ABSOLUTE MAXIMUM RATINGS  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational  
sections of the specification are not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect  
device reliability.  
Table 3: Absolute Maximum Ratings  
Parameter  
Supply Voltage on VDD relative to GND  
DC Input Voltage  
Min  
-0.3  
Max  
7
Unit  
V
GND - 0.5 V  
V
DD + 0.5 V  
V
Maximum Average or DC Current  
(Through VDD or GND pin)  
--  
90  
mA  
Push-Pull 1x  
--  
--  
11  
16  
Push-Pull 2x  
Push-Pull 4x  
OD 1x  
--  
32  
Maximum Average or DC Current  
(Through pin)  
mA  
--  
11  
OD 2x  
--  
21  
OD 4x  
--  
43  
Current at Input Pin  
-1.0  
--  
1.0  
1000  
150  
150  
mA  
nA  
°C  
Input Leakage Current (Absolute Value)  
Storage Temperature Range  
Junction Temperature  
-65  
--  
°C  
Moisture Sensitive Level  
1
3.2 ELECTROSTATIC DISCHARGE RATINGS  
Table 4: Electrostatic Discharge Ratings  
Parameter  
Min  
2000  
1300  
Max  
--  
Unit  
V
ESD Protection (Human Body Model)  
ESD Protection (Charged Device Model)  
--  
V
3.3 RECOMMENDED OPERATING CONDITIONS  
Table 5: Recommended Operating Conditions  
Parameter  
Condition  
Min  
2.3  
-40  
Max  
5.5  
Unit  
V
Supply Voltage (VDD  
)
Operating Temperature  
105  
°C  
Maximal Voltage Applied to any PIN in High  
Impedance State  
VDD+  
0.3  
--  
V
Capacitor Value at VDD  
0.1  
0
--  
µF  
Analog Input Common Mode Range  
Allowable Input Voltage atAnalog Pins  
VDD  
V
Datasheet  
17-Jun-2021  
Revision 3.0  
11 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
3.4 ELECTRICAL CHARACTERISTICS  
Table 6: EC at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
0.7x  
VDD  
VDD  
0.3  
+
Logic Input (Note 1)  
--  
V
0.8x  
VDD  
VDD  
0.3  
+
VIH  
HIGH-Level Input Voltage  
Logic Input with Schmitt Trigger  
Low-Level Logic Input (Note 1)  
Logic Input (Note 1)  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
V
V
V
V
V
V
V
V
V
V
V
VDD+  
1.25  
0.3  
GND-  
0.3  
0.3x  
VDD  
GND-  
0.3  
0.2x  
VDD  
VIL  
LOW-Level Input Voltage  
Logic Input with Schmitt Trigger  
GND-  
0.3  
Low-Level Logic Input (Note 1)  
0.5  
--  
Push-Pull, 1x Drive,  
2.17  
3.02  
5.19  
2.23  
3.16  
5.34  
V
DD = 2.3 V, IOH = 1 mA  
Push-Pull, 1x Drive,  
VDD = 3.3 V, IOH = 3 mA  
--  
Push-Pull, 1x Drive,  
VDD = 5.5 V, IOH = 5 mA  
--  
Push-Pull, 2x Drive,  
--  
V
DD = 2.3 V, IOH = 1 mA  
Push-Pull, 2x Drive,  
VDD = 3.3 V, IOH = 3 mA  
--  
VOH  
HIGH-Level Output Voltage  
Push-Pull, 2x Drive,  
VDD = 5.5 V, IOH = 5 mA  
--  
Push-Pull, 4x Drive  
(only for GPO0 and GPIO4),  
2.27  
3.23  
5.41  
--  
--  
--  
--  
--  
--  
V
V
V
V
DD = 2.3 V, IOH = 1 mA  
Push-Pull, 4x Drive  
(only for GPO0 and GPIO4),  
V
DD = 3.3 V, IOH = 3mA  
Push-Pull, 4x Drive  
(only for GPO0 and GPIO4),  
VDD = 5.5 V, IOH = 5 mA  
Push-Pull, 1x Drive,  
VDD = 2.3 V, IOL= 1 mA  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0.100  
0.227  
0.272  
0.049  
0.112  
V
V
V
V
V
Push-Pull, 1x Drive,  
VDD = 3.3 V, IOL = 3 mA  
Push-Pull, 1x Drive,  
VDD = 5.5 V, IOL= 5 mA  
VOL  
LOW-Level Output Voltage  
Push-Pull, 2x Drive,  
VDD = 2.3 V, IOL = 1 mA  
Push-Pull, 2x Drive,  
VDD = 3.3 V, IOL= 3 mA  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
12 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 6: EC at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted (Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, 2x Drive,  
VDD = 5.5 V, IOL = 5 mA  
--  
--  
0.137  
V
Push-Pull, 4x Drive  
(only for GPO0 and GPIO4),  
VDD = 2.3 V, IOL = 1 mA  
--  
--  
--  
--  
--  
--  
0.023  
0.055  
0.067  
V
V
V
Push-Pull, 4x Drive  
(only for GPO0 and GPIO4),  
VDD = 3.3 V, IOL= 3 mA  
Push-Pull, 4x Drive  
(only for GPO0 and GPIO4),  
VDD = 5.5 V, IOL = 5 mA  
NMOS OD, 1x Drive,  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0.042  
0.093  
0.117  
0.020  
0.047  
0.058  
V
V
V
V
V
V
V
DD = 2.3 V, IOL = 1 mA  
NMOS OD, 1x Drive,  
VDD = 3.3 V, IOL = 3 mA  
NMOS OD, 1x Drive,  
VDD = 5.5 V, IOL = 5 mA  
VOL  
LOW-Level Output Voltage  
NMOS OD, 2x Drive,  
VDD = 2.3 V, IOL = 1 mA  
NMOS OD, 2x Drive,  
V
DD = 3.3 V, IOL = 3 mA  
NMOS OD, 2x Drive,  
VDD = 5.5 V, IOL = 5 mA  
NMOS OD, 4x Drive  
(only for GPO0 and GPIO4),  
--  
--  
--  
--  
--  
--  
0.009  
0.022  
0.027  
V
V
V
V
DD = 2.3 V, IOL = 1 mA  
NMOS OD, 4x Drive  
(only for GPO0 and GPIO4),  
VDD = 3.3 V, IOL = 3 mA  
NMOS OD, 4x Drive  
(only for GPO0 and GPIO4),  
V
DD = 5.5 V, IOL = 5 mA  
Push-Pull, 1x Drive,  
VDD = 2.3 V, VOH = VDD - 0.2 V  
1.44  
7.75  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
mA  
mA  
Push-Pull, 1x Drive,  
VDD = 3.3 V, VOH = 2.4 V  
Push-Pull, 1x Drive,  
VDD = 5.5 V, VOH = 2.75 V  
26.98  
2.82  
Push-Pull, 2x Drive,  
VDD = 2.3 V, VOH = VDD - 0.2 V  
HIGH-Level Output Pulse  
Current (Note 2)  
Push-Pull, 2x Drive,  
VDD = 3.3 V, VOH = 2.4 V  
IOH  
15.12  
51.97  
Push-Pull, 2x Drive,  
VDD = 5.5 V, VOH = 2.75 V  
Push-Pull, 4x Drive  
(only for GPO0 and GPIO4),  
VDD = 2.3 V, VOH = VDD - 0.2 V  
5.47  
--  
--  
--  
--  
mA  
mA  
Push-Pull, 4x Drive  
(only for GPO0 and GPIO4),  
VDD = 3.3 V, VOH = 2.4 V  
28.97  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
13 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 6: EC at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted (Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, 4x Drive  
(only for GPO0 and GPIO4),  
VDD = 5.5 V, VOH = 2.75 V  
HIGH-Level Output Pulse  
Current (Note 2)  
IOH  
97.85  
--  
--  
mA  
Push-Pull, 1x Drive,  
VDD = 2.3 V, VOL = 0.2 V  
1.92  
5.01  
7.10  
3.84  
9.96  
13.96  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
mA  
mA  
Push-Pull, 1x Drive,  
VDD = 3.3 V, VOL = 0.4 V  
Push-Pull, 1x Drive,  
VDD = 5.5 V, VOL = 0.4 V  
Push-Pull, 2x Drive,  
VDD = 2.3 V, VOL = 0.2 V  
Push-Pull, 2x Drive,  
VDD = 3.3 V, VOL = 0.4 V  
Push-Pull, 2x Drive,  
VDD = 5.5 V, VOL = 0.4 V  
Push-Pull, 4x Drive  
(only for GPO0 and GPIO4),  
7.72  
20.12  
28.34  
--  
--  
--  
--  
--  
--  
mA  
mA  
mA  
V
DD = 2.3 V, VOL = 0.2 V  
Push-Pull, 4x Drive  
(only for GPO0 and GPIO4),  
V
DD = 3.3 V, VOL = 0.4 V  
Push-Pull, 4x Drive  
(only for GPO0 and GPIO4),  
VDD = 5.5 V, VOL = 0.4 V  
LOW-Level Output Pulse  
Current (Note 2)  
IOL  
NMOS OD, 1x Drive,  
4.71  
12.21  
16.95  
9.24  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
mA  
mA  
V
DD = 2.3 V, VOL = 0.2 V  
NMOS OD, 1x Drive,  
VDD = 3.3 V, VOL = 0.4 V  
NMOS OD, 1x Drive,  
VDD = 5.5 V, VOL = 0.4 V  
NMOS OD, 2x Drive,  
V
DD = 2.3 V, VOL = 0.2 V  
NMOS OD, 2x Drive,  
VDD = 3.3 V, VOL = 0.4 V  
23.68  
32.64  
NMOS OD, 2x Drive,  
VDD = 5.5 V, VOL = 0.4 V  
NMOS OD, 4x Drive  
(only for GPO0 and GPIO4),  
VDD = 2.3 V, VOL = 0.2 V  
18.96  
49.08  
68.27  
--  
--  
--  
--  
--  
--  
mA  
mA  
mA  
NMOS OD, 4x Drive  
(only for GPO0 and GPIO4),  
VDD = 3.3 V, VOL = 0.4 V  
NMOS OD, 4x Drive  
(only for GPO0 and GPIO4),  
VDD = 5.5 V, VOL = 0.4 V  
From VDD rising past PONTHR  
TRAMP = 10 ms  
,
TSU  
Startup Time  
--  
1.4  
2.1  
ms  
V
PONTHR  
Power-On Threshold  
VDD Level Required to Start Up the Chip  
1.56  
1.84  
2.03  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
14 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 6: EC at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted (Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
VDD Level Required to Switch Off the  
Chip  
POFFTHR Power-Off Threshold  
0.83  
1.16  
1.63  
V
1 M for Pull-up: VIN = GND  
1 M for Pull-down: VIN = VDD  
100 k for Pull-up: VIN = GND  
100 k for Pull-down: VIN = VDD  
10 k For Pull-up: VIN = GND  
10 k for Pull-down: VIN = VDD  
0.84  
0.84  
84  
84  
7
1.08  
1.08  
108  
108  
10  
1.43  
1.44  
144  
144  
14  
MΩ  
MΩ  
kΩ  
kΩ  
kΩ  
kΩ  
pF  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
Pull-up or Pull-down  
Resistance  
RPULL  
7
10  
14  
CIN  
Input Capacitance  
3
Vin = VDD, VDD = 2.3 V, All Pins  
Vin = VDD, VDD = 3.3 V, All Pins  
Vin = VDD, VDD = 5.5 V, All Pins  
Vin = 0, VDD = 2.3 V, All Pins  
Vin = 0, VDD = 3.3 V, All Pins  
Vin = 0, VDD = 5.5 V, All Pins  
Vin = VDD, VDD = 2.3 V, All Pins  
Vin = VDD, VDD = 3.3 V, All Pins  
Vin = VDD, VDD = 5.5 V, All Pins  
Vin = 0, VDD = 2.3 V, All Pins  
Vin = 0, VDD = 3.3 V, All Pins  
Vin = 0, VDD = 5.5 V, All Pins  
Vin = VDD, VDD = 2.3 V, All Pins  
Vin = VDD, VDD = 3.3 V, All Pins  
Vin = VDD, VDD = 5.5 V, All Pins  
Vin = 0, VDD = 2.3 V, All Pins  
Vin = 0, VDD = 3.3 V, All Pins  
Vin = 0, VDD = 5.5 V, All Pins  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
4.61  
5.00  
6.56  
1.41  
1.58  
4.44  
4.72  
5.10  
6.64  
1.46  
1.62  
4.48  
4.64  
5.01  
6.52  
1.43  
1.59  
4.43  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Logic Input without Schmitt  
Trigger (Floating) Leakage  
Logic Input with Schmitt  
Trigger (Floating) Leakage  
ILKG  
Low-Level Logic Input  
(Floating) Leakage  
Note 1 No hysteresis.  
Note 2 DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.  
3.5 I2C PINS ELECTRICAL CHARACTERISTICS  
Table 7: EC of the I2C Pins for DI Mode at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Fast-Mode  
Fast-Mode Plus  
Parameter Description  
Condition  
Unit  
Min  
Max  
Min  
Max  
LOW-level Input  
Voltage  
VIL  
-0.5  
0.3xVDD  
-0.5  
0.3xVDD  
V
V
HIGH-level Input  
Voltage  
VIH  
0.7xVDD  
5.5  
--  
0.7xVDD  
5.5  
--  
Hysteresis of  
Schmitt Trigger  
Inputs  
VHYS  
0.05xVDD  
0.05xVDD  
V
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
15 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 7: EC of the I2C Pins for DI Mode at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Fast-Mode  
Fast-Mode Plus  
Parameter Description  
Condition  
Unit  
Min  
Max  
Min  
Max  
(Open-Drain or open  
collector) at 3 mAsink current  
VDD > 2 V  
LOW-Level Output  
Voltage 1  
VOL1  
0
0
0.4  
0
0.4  
V
(Open-Drain or open  
collector) at 2 mAsink current  
VDD ≤ 2 V  
LOW-Level Output  
Voltage 2  
VOL2  
0.2xVDD  
250  
0
0.2xVDD  
120  
V
Output Fall Time  
from VIHmin to  
VILmax  
14x  
(VDD/5.5V)  
10x  
(VDD/5.5V)  
tof  
ns  
(Note 1)  
Input Current each  
IO Pin  
Ii  
0.1xVDD < VI < 0.9xVDDmax  
-10  
--  
+10  
10  
-10  
--  
+10  
10  
µA  
Capacitance for  
each IO Pin  
Ci  
pF  
Note 1 Does not meet standard I2C specifications: tof = 20x(VDD/5.5V) (min).  
Note 2 For Fast-mode Plus SDA pin must be configured as NMOS 3.2x Open-Drain, see register [796] in section 17.  
Table 8: EC of the I2C Pins for DILV Mode at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Fast-Mode  
Parameter Description  
Condition  
Unit  
Min  
GND-0.3  
1.25  
Max  
0.5  
VIL  
VIH  
LOW-level Input Voltage (Note 1)  
V
V
HIGH-level Input Voltage (Note 1)  
VDD+0.3  
Hysteresis of Schmitt Trigger  
Inputs  
VHYS  
0.05xVDD  
0
--  
V
V
(Open-Drain or open collector) at 3mA  
sink current  
VDD > 2 V  
VOL1  
LOW-Level Output Voltage 1  
LOW-Level Output Voltage 2  
0.4  
(Open-Drain or open collector) at 2 mA  
sink current  
VDD ≤ 2 V  
VOL2  
0
0.2xVDD  
250  
V
Output Fall Time from VIHmin to  
VILmax  
(Note 1)  
14x  
(VDD/5.5V)  
tof  
ns  
Ii  
Input Current each IO Pin  
0.1xVDD < VI < 0.9xVDDmax  
-10  
--  
+10  
10  
µA  
Ci  
Capacitance for each IO Pin  
pF  
Note 1 Does not meet standard I2C specifications: VIL = -0.5 V (min), VIL = 0.3xVDD (max), VIH = 0.7xVDD (min), VIH = 5.5 V  
(max), tof = 20x(VDD/5.5V) (min).  
Table 9: I2C Pins Timing Characteristics, DI Mode, T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Speed  
Parameter Description  
Condition  
400 kHz  
1 MHz  
Typ  
--  
Unit  
Min  
--  
Typ  
--  
Max  
400  
--  
Min  
--  
Max  
1000  
--  
FSCL  
tLOW  
Clock Frequency, SCL  
Clock Pulse Width Low  
kHz  
ns  
1300  
--  
500  
--  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
16 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 9: I2C Pins Timing Characteristics, DI Mode, T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Speed  
Parameter Description  
Condition  
400 kHz  
1 MHz  
Unit  
Min  
600  
--  
Typ  
--  
Max  
--  
Min  
260  
--  
Typ  
--  
Max  
--  
tHIGH  
Clock Pulse Width High  
ns  
VDD = 2.3 V  
VDD = 3.3 V  
VDD = 5.5 V  
--  
90  
--  
87  
Input Filter Spike  
Suppression (SCL, SDA)  
(Note 1)  
tI  
--  
--  
90  
--  
--  
87  
ns  
--  
--  
90  
--  
--  
87  
tAA  
Clock Low to Data Out Valid  
--  
--  
900  
--  
--  
450  
ns  
ns  
Bus Free Time between  
Stop and Start  
tBUF  
1300  
--  
--  
500  
--  
--  
tHD_STA  
tSU_STA  
Start Hold Time  
600  
600  
0
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
260  
260  
0
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Start Set-up Time  
Rising Edge  
Falling Edge  
--  
--  
tHD_DAT  
tSU_DAT  
Data Hold Time  
0
--  
0
--  
Data Set-up Time  
100  
--  
--  
50  
--  
--  
C = 15 pF  
C = 100 pF  
C = 400 pF  
C = 15 pF  
C = 100 pF  
C = 400 pF  
300  
300  
300  
300  
300  
300  
--  
120  
120  
120  
120  
120  
120  
--  
tR  
Inputs Rise Time  
Inputs Fall Time  
--  
--  
--  
--  
--  
--  
tF  
--  
--  
--  
--  
tSU_STO  
tDH  
Stop Set-up Time  
600  
260  
Data Out Hold Time  
50  
--  
50  
--  
Note 1 Does not meet standard I2C specifications: tI = 95 ns for VDD = 2.3 V, tI = 95 ns for VDD = 3.3 V, tI = 111 ns for VDD  
5.5V for 400 kHz; tI = 168 ns for VDD = 2.3 V, tI = 157 ns for VDD = 3.3 V, tI = 156 ns for VDD = 5.5 V for 1 MHz.  
=
Note 2 Timing diagram can be found in the Figure 100.  
Note 3 Please follow official I2C spec UM10204.  
Table 10: I2C Pins Timing Characteristics, DILV Mode, T = -40°C to +105°C, VDD = 2.3V to 5.5V Unless Otherwise Noted  
Speed  
Parameter Description  
Condition  
400 kHz  
Unit  
Min  
--  
Typ  
--  
Max  
400  
--  
FSCL  
tLOW  
tHIGH  
Clock Frequency, SCL  
kHz  
ns  
Clock Pulse Width Low  
Clock Pulse Width High  
1300  
600  
--  
--  
--  
--  
ns  
VDD = 2.3 V  
VDD = 3.3 V  
VDD = 5.5 V  
--  
300  
235  
185  
900  
--  
Input Filter Spike Suppression (SCL,  
SDA) (Note 1)  
tI  
--  
--  
ns  
--  
--  
tAA  
Clock Low to Data Out Valid  
Bus Free Time between Stop and Start  
Start Hold Time  
--  
--  
ns  
ns  
ns  
ns  
tBUF  
1300  
600  
600  
--  
tHD_STA  
tSU_STA  
--  
--  
Start Set-up Time  
--  
--  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
17 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 10: I2C Pins Timing Characteristics, DILV Mode, T = -40°C to +105°C, VDD = 2.3V to 5.5V Unless Otherwise Noted  
Speed  
Parameter Description  
Condition  
400 kHz  
Unit  
Min  
255  
0
Typ  
--  
Max  
--  
Rising Edge  
Falling Edge  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tHD_DAT  
tSU_DAT  
Data Hold Time (Note 1)  
--  
--  
Data Set-up Time  
Inputs Rise Time  
100  
--  
--  
--  
C = 15 pF  
C = 100 pF  
C = 400pF  
C = 15 pF  
C = 100 pF  
C = 400 pF  
--  
300  
300  
300  
300  
300  
300  
--  
tR  
--  
--  
--  
--  
--  
--  
tF  
Inputs Fall Time  
--  
--  
--  
--  
tSU_STO  
tDH  
Stop Set-up Time  
600  
50  
--  
Data Out Hold Time  
--  
--  
Note 1 Does not meet standard I2C specifications: tI = 95 ns for VDD = 2.3 V, tI = 95 ns for VDD = 3.3 V, tI = 111 ns for VDD  
5.5 V; tHD_DAT = 0 ns (min) for Rising Edge.  
=
Note 2 Timing diagram can be found in the Figure 100.  
Note 3 Please follow official I2C spec UM10204.  
Note 4 When SCL Input is in Low-Level Logic mode max frequency is 400 kHz.  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
18 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
3.6 MACROCELLS CURRENT CONSUMPTION  
Table 11: Typical Current Estimated for Each Macrocell at T = -40 °C to +105 °C  
Parameter  
Description Note  
Chip Quiescent  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V  
Unit  
µA  
0.34  
7.61  
1.39  
0.39  
7.67  
1.42  
0.46  
7.88  
1.51  
Vref0, SourceNone  
Vref1, SourceNone  
µA  
µA  
OSC2 25 MHz, pre-divider = 1, second  
divider = 1  
50.46  
33.46  
30.35  
20.64  
18.56  
18.18  
0.62  
62.63  
39.91  
35.75  
21.99  
19.21  
18.71  
0.66  
90.60  
55.47  
49.03  
24.94  
20.61  
19.84  
0.77  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
OSC2 25 MHz, pre-divider = 4, second  
divider = 1  
OSC2 25 MHz, pre-divider = 8, second  
divider = 1  
OSC1 2.048 MHz, pre-divider = 1,  
second divider = 1  
OSC1 2.048 MHz, pre-divider = 4,  
second divider = 1  
OSC1 2.048 MHz, pre-divider = 8,  
second divider = 1  
OSC0 2.048 kHz, pre-divider= 1, second  
divider = 1  
IDD  
Current  
OSC0 2.048 kHz, pre-divider= 4, second  
divider = 1  
0.62  
0.66  
0.76  
OSC0 2.048 kHz, pre-divider= 8, second  
divider = 1  
0.61  
0.66  
0.76  
Temperature Sensor, output range 1  
(0.62 V to 0.99 V)  
14.80  
14.94  
37.36  
48.95  
14.87  
15.02  
38.10  
50.26  
15.43  
15.43  
40.42  
53.90  
Temperature Sensor, output range 2  
(0.75 V to 1.2 V)  
All ACMPs (includes internal Vref,  
Vin+ = 0, Vref = 32 mV)  
All ACMPxH (includes internal Vref,  
Vin+ = 0, Vref = 32 mV)  
ACMP0H 100µA Enabled  
(includes internal Vref, Vin+ = 0,  
Vref = 32 mV)  
35.95  
1.89  
36.65  
1.93  
38.92  
2.04  
µA  
µA  
Any ACMPxL (includes internal Vref,  
Vin+ = 0, Vref = 32 mV)  
3.7 TIMING CHARACTERISTICS  
Table 12: Typical Delay Estimated for Each Macrocell at T = 25 °C  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5 V  
Note  
Parameter Description  
Unit  
Rising Falling Rising Falling Rising Falling  
Digital Input to PP 1x  
Digital Input to PP 2x  
tpd  
tpd  
Delay  
Delay  
23  
22  
26  
25  
17  
16  
19  
16  
12  
12  
15  
14  
ns  
ns  
Digital Input with Schmitt Trigger to  
PP 1x  
tpd  
Delay  
24  
27  
18  
21  
14  
15  
ns  
Low Voltage Digital Input to PP 1x  
Digital input to NMOS 1x  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
38  
--  
241  
24  
26  
--  
164  
18  
18  
--  
104  
13  
ns  
ns  
ns  
Digital input to NMOS 2x  
--  
23  
--  
17  
--  
13  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
19 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 12: Typical Delay Estimated for Each Macrocell at T = 25 °C(Continued)  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5 V  
Note  
Parameter Description  
Unit  
Rising Falling Rising Falling Rising Falling  
Digital input to NMOS 4x  
Output enable from Pin, OE Hi-Z to 1  
Output enable from Pin, OE Hi-Z to 0  
PP 1x 3 State Hi-Z to 1  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
--  
23  
--  
--  
17  
--  
--  
12  
--  
13  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
23  
--  
16  
--  
22  
--  
16  
--  
12  
--  
22  
--  
16  
--  
12  
--  
PP 1x 3 State Hi-Z to 0  
22  
--  
16  
--  
12  
--  
PP 2x 3 State Hi-Z to 1  
21  
--  
16  
--  
12  
--  
PP 2x 3 State Hi-Z to 0  
21  
18  
15  
21  
24  
23  
21  
21  
19  
18  
21  
22  
19  
27  
23  
21  
25  
19  
17  
23  
15  
13  
11  
15  
17  
16  
15  
15  
13  
13  
15  
16  
13  
19  
17  
15  
18  
14  
12  
16  
11  
9
LATCH Q  
16  
19  
25  
22  
22  
24  
19  
22  
22  
19  
19  
22  
23  
27  
25  
21  
17  
20  
26  
11  
14  
17  
16  
15  
17  
14  
16  
16  
14  
14  
16  
16  
20  
18  
15  
12  
14  
18  
8
LATCH nQ  
9
7
LATCH nRESET High Q  
LATCH nRESET High nQ  
LATCH nRESET Low Q  
LATCH nRESET Low nQ  
LATCH nSET High Q  
12  
11  
11  
12  
9
10  
12  
12  
10  
10  
9
LATCH nSET High nQ  
11  
11  
9
LATCH nSET Low Q  
9
LATCH nSET Low nQ  
10  
11  
9
Multi-Function LATCH Q  
Multi-Function LATCH nQ  
Multi-Function LATCH nRESET Q  
Multi-Function LATCH nRESET nQ  
Multi-Function LATCH nSET Q  
Multi-Function LATCH nSET nQ  
LATCH3, LATCH12 First Q  
LATCH3, LATCH12 First nQ  
LATCH3, LATCH12 First nRESET High Q  
9
11  
11  
14  
13  
10  
8
14  
11  
10  
13  
9
10  
13  
8
11  
LATCH3, LATCH12 First nRESET High  
nQ  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
24  
23  
26  
26  
25  
23  
17  
16  
18  
18  
18  
16  
12  
11  
13  
13  
12  
11  
ns  
ns  
ns  
LATCH3, LATCH12 First nRESET Low Q  
LATCH3, LATCH12 First nRESET Low  
nQ  
LATCH3, LATCH12 First nSET High Q  
LATCH3, LATCH12 First nSET High nQ  
LATCH3, LATCH12 First nSET Low Q  
LATCH3, LATCH12 First nSET Low nQ  
LATCH3, LATCH12 Second Q  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
21  
23  
23  
21  
19  
20  
22  
20  
20  
23  
19  
18  
15  
17  
16  
15  
13  
14  
16  
14  
14  
16  
13  
13  
10  
12  
11  
10  
9
11  
10  
10  
11  
9
ns  
ns  
ns  
ns  
ns  
ns  
LATCH3, LATCH12 Second nQ  
10  
9
LATCH3, LATCH12 Second nRESET  
High Q  
LATCH3, LATCH12 Second nRESET  
High nQ  
tpd  
tpd  
Delay  
Delay  
--  
22  
--  
--  
16  
--  
--  
11  
--  
ns  
ns  
23  
17  
12  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
20 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 12: Typical Delay Estimated for Each Macrocell at T = 25 °C(Continued)  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5 V  
Note  
Parameter Description  
Unit  
Rising Falling Rising Falling Rising Falling  
LATCH3, LATCH12 Second nRESET  
Low Q  
LATCH3, LATCH12 Second nRESET  
Low nQ  
LATCH3, LATCH12 Second nSET High  
Q
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
--  
25  
--  
--  
18  
--  
--  
12  
--  
ns  
ns  
ns  
26  
20  
18  
14  
13  
10  
--  
--  
--  
LATCH3, LATCH12 Second nSET High  
nQ  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
--  
23  
--  
20  
--  
--  
16  
--  
14  
--  
--  
11  
--  
10  
--  
ns  
ns  
ns  
LATCH3, LATCH12 Second nSET Low Q  
LATCH3, LATCH12 Second nSET Low  
nQ  
22  
16  
11  
2-bit LUT  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tw  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Width  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
15  
16  
19  
18  
46  
21  
48  
19  
211  
231  
18  
29  
27  
18  
24  
29  
26  
26  
25  
26  
26  
25  
17  
18  
--  
16  
17  
17  
21  
47  
23  
46  
20  
212  
235  
16  
22  
29  
16  
24  
23  
33  
41  
41  
33  
38  
44  
17  
16  
20  
--  
11  
11  
13  
13  
33  
15  
34  
13  
156  
170  
13  
20  
20  
13  
17  
21  
19  
19  
18  
19  
19  
18  
12  
13  
--  
11  
12  
12  
15  
34  
17  
34  
14  
157  
173  
11  
16  
21  
11  
17  
17  
23  
29  
29  
23  
27  
32  
12  
11  
14  
--  
7
8
8
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3-bit LUT  
4-bit LUT  
9
9
Multi-Function 3-bit LUT  
Multi-Function 3-bit LUT, CNT Delay  
Multi-Function 4-bit LUT  
Multi-Function 4-bit LUT, CNT Delay  
Edge detect  
9
11  
24  
12  
24  
9
23  
10  
23  
9
Edge detect  
115  
124  
9
115  
126  
8
Edge detect Delayed  
Ripple CNT CLK DOWN Q0  
Ripple CNT CLK DOWN Q1  
Ripple CNT CLK DOWN Q2  
Ripple CNT CLK UP Q0  
Ripple CNT CLK UP Q1  
Ripple CNT CLK UP Q2  
Ripple CNT nSET DOWN Q0  
Ripple CNT nSET DOWN Q1  
Ripple CNT nSET DOWN Q2  
Ripple CNT nSET UP Q0  
Ripple CNT nSET UP Q1  
Ripple CNT nSET UP Q2  
DFF Q  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
14  
14  
9
11  
14  
8
12  
15  
14  
13  
13  
14  
13  
13  
8
12  
12  
16  
21  
20  
16  
19  
22  
8
DFF nQ  
9
8
DFF nRESET High Q  
DFF nRESET High nQ  
DFF nRESET Low Q  
DFF nRESET Low nQ  
DFF nSET High Q  
--  
10  
--  
21  
--  
15  
--  
10  
--  
22  
--  
16  
--  
11  
--  
23  
21  
--  
17  
15  
--  
12  
10  
--  
--  
--  
--  
DFF nSET High nQ  
20  
--  
14  
--  
10  
--  
DFF nSET Low Q  
23  
16  
12  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
21 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 12: Typical Delay Estimated for Each Macrocell at T = 25 °C(Continued)  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5 V  
Note  
Parameter Description  
Unit  
Rising Falling Rising Falling Rising Falling  
DFF nSET Low nQ  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
--  
19  
20  
--  
22  
19  
19  
26  
--  
--  
13  
14  
--  
16  
13  
13  
19  
--  
--  
9
11  
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Multi-Function DFF Q  
Multi-Function DFF nQ  
9
9
Multi-Function DFF nRESET Q  
Multi-Function DFF nRESET nQ  
Multi-Function DFF nSET Q  
Multi-Function DFF nSET nQ  
DFF3, DFF12 First Q  
--  
13  
--  
26  
26  
--  
19  
19  
--  
13  
13  
--  
--  
--  
--  
26  
18  
18  
22  
--  
19  
13  
13  
15  
--  
14  
9
18  
19  
--  
13  
14  
--  
9
DFF3, DFF12 First nQ  
9
9
DFF3, DFF12 First nRESET High Q  
DFF3, DFF12 First nRESET High nQ  
DFF3, DFF12 First nRESET Low Q  
DFF3, DFF12 First nRESET Low nQ  
DFF3, DFF12 First nSET High Q  
DFF3, DFF12 First nSET High nQ  
DFF3, DFF12 First nSET Low Q  
DFF3, DFF12 First nSET Low nQ  
DFF3, DFF12 Second Q  
--  
11  
--  
22  
--  
16  
--  
11  
--  
24  
--  
17  
--  
12  
--  
25  
22  
--  
18  
16  
--  
12  
11  
--  
--  
--  
--  
22  
--  
15  
--  
11  
--  
24  
--  
17  
--  
12  
--  
24  
21  
20  
21  
--  
17  
15  
14  
15  
--  
12  
10  
10  
10  
--  
20  
21  
--  
14  
15  
--  
10  
11  
--  
DFF3, DFF12 Second nQ  
DFF3, DFF12 Second nRESET High Q  
DFF3, DFF12 Second nRESET High nQ  
DFF3, DFF12 Second nRESET Low Q  
DFF3, DFF12 Second nRESET Low nQ  
DFF3, DFF12 Second nSET High Q  
DFF3, DFF12 Second nSET High nQ  
DFF3, DFF12 Second nSET Low Q  
DFF3, DFF12 Second nSET Low nQ  
PGen CLK  
22  
--  
16  
--  
11  
--  
23  
--  
17  
--  
12  
--  
24  
22  
--  
17  
15  
--  
12  
11  
--  
--  
--  
--  
21  
--  
15  
--  
10  
--  
24  
--  
17  
--  
12  
--  
23  
16  
21  
--  
17  
11  
15  
--  
12  
8
16  
--  
12  
--  
8
PGen nRESET Hi-Z to 0  
--  
11  
--  
PGen nRESET Hi-Z to 1  
20  
23  
30  
160  
141  
14  
16  
22  
109  
99  
10  
11  
16  
68  
66  
Pipe Delay Out  
20  
28  
140  
159  
15  
21  
98  
108  
10  
15  
65  
68  
Pipe Delay nRESET Out  
Filter Q  
Filter nQ  
Table 13: Typical Propagations Delays and Pulse Widths at T = 25 °C  
Parameter  
Description  
Note  
VDD = 2.5 V VDD = 3.3V VDD = 5.0V Unit  
221 163 119 ns  
tw  
Pulse Width, 1 cell mode: (any)edge detect, edge detect output  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
22 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 13: Typical Propagations Delays and Pulse Widths at T = 25 °C(Continued)  
Parameter  
tw  
Description  
Note  
VDD = 2.5 V VDD = 3.3V VDD = 5.0V Unit  
Pulse Width, 2 cell mode: (any)edge detect, edge detect output  
Pulse Width, 3 cell mode: (any)edge detect, edge detect output  
Pulse Width, 4 cell mode: (any)edge detect, edge detect output  
438  
652  
869  
18  
322  
480  
639  
13  
234  
349  
464  
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tw  
tw  
time1  
time1  
time1  
time1  
time2  
time2  
time2  
time2  
Delay, 1 cell  
Delay, 2 cell  
Delay, 3 cell  
Delay, 4 cell  
Delay, 1 cell  
Delay, 2 cell  
Delay, 3 cell  
Delay, 4 cell  
mode: (any)edge detect, edge detect output  
mode: (any)edge detect, edge detect output  
mode: (any)edge detect, edge detect output  
mode: (any)edge detect, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
18  
13  
9
18  
13  
9
18  
13  
9
240  
455  
672  
888  
176  
334  
493  
673  
128  
243  
358  
473  
Table 14: Typical Filter Rejection Pulse Width at T = 25 °C  
Parameter  
VDD = 2.5 V VDD = 3.3V VDD = 5.0V  
< 127 < 86 < 54  
Unit  
Filtered Pulse Width  
ns  
3.8 COUNTER/DELAY CHARACTERISTICS  
Table 15: Typical Counter/Delay Offset at T = 25 °C  
Parameter  
OSC Freq  
25 MHz  
OSC Power  
auto  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
Power-On time  
0.14  
0.5  
0.14  
0.5  
0.14  
0.4  
Power-On time  
2.048 MHz  
2.048 kHz  
25 MHz  
auto  
Power-On time  
auto  
628  
4
544  
4
466  
8
frequency settling time  
frequency settling time  
frequency settling time  
variable (CLK period)  
variable (CLK period)  
variable (CLK period)  
auto  
2.048 MHz  
2.048 kHz  
25 MHz  
auto  
0.3  
0.4  
0.4  
auto  
660  
0-40  
0-0.5  
0-488  
570  
0-40  
0-0.5  
0-488  
480  
0-40  
0-0.5  
0-488  
forced  
forced  
forced  
2.048 MHz  
2.048 kHz  
25 MHz/  
2.048 kHz  
tpd (non-delayed edge)  
either  
35  
14  
10  
ns  
3.9 OSCILLATOR CHARACTERISTICS  
Table 16: Oscillators Frequency Limits, VDD = 2.3 V to 5.5 V  
Temperature Range  
+25 °C  
-40 °C to +105 °C  
OSC  
Minimum  
Value, kHz  
Maximum  
Value, kHz  
Minimum  
Error, %  
Maximum  
Value, kHz  
Error, %  
Value, kHz  
+1.00  
1.7799  
-1.61  
+2.95  
-13.09  
+1.60  
-4.91  
2.048 kHz OSC0  
2.048 MHz OSC1  
2.015  
2.0685  
2.1085  
+1.00  
2019.42  
2068.48  
1947.519  
-1.40  
2080.775  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
Revision 3.0  
23 of 199  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 16: Oscillators Frequency Limits, VDD = 2.3 V to 5.5 V(Continued)  
Temperature Range  
+25 °C  
-40 °C to +105 °C  
OSC  
Minimum  
Value, kHz  
Maximum  
Value, kHz  
Minimum  
Value, kHz  
Maximum  
Value, kHz  
Error, %  
Error, %  
+1.00  
-1.51  
+1.48  
-5.38  
25 MHz OSC2  
24623.20  
25250  
23655.43  
25369.01  
3.9.1 OSC Power-On Delay  
Table 17: Oscillators Power-On Delay at T = -40 °C to +105 °C, OSC Power Setting: "Auto Power-On"  
OSC2 25 MHz  
Power  
Supply  
Range  
(VDD) V  
OSC0 2.048 kHz  
OSC1 2.048 MHz  
OSC2 25 MHz  
Start with Delay  
Typical  
Maximum  
Value, µs  
Typical  
Maximum  
Value, ns  
Typical  
Value, ns  
Maximum  
Value, ns  
Typical  
Maximum  
Value, ns  
Value, µs  
698.2  
663.6  
601.9  
576.1  
555.7  
533.8  
492.0  
468.7  
Value, ns  
527.6  
505.5  
471.0  
457.7  
447.3  
436.0  
415.6  
408.3  
Value, ns  
144.5  
142.5  
140.3  
139.8  
139.6  
139.6  
139.9  
139.9  
2.30  
2.50  
3.00  
3.30  
3.60  
4.00  
5.00  
5.50  
1063.8  
993.6  
866.9  
812.0  
768.3  
721.1  
637.1  
598.1  
562.7  
542.8  
510.7  
498.1  
487.7  
475.7  
454.1  
446.4  
44.9  
61.2  
53.9  
42.1  
37.8  
34.6  
31.8  
26.9  
26.2  
166.0  
164.9  
164.8  
165.4  
166.2  
167.2  
170.1  
171.3  
39.7  
31.2  
28.0  
25.5  
23.1  
19.2  
18.0  
3.10 ACMP CHARACTERISTICS  
Table 18: ACMP Specifications at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Parameter Description  
Note  
Condition  
Min  
0
Typ  
--  
Max  
Unit  
V
Positive Input  
Negative Input  
VDD  
VDD  
ACMPInputVoltage  
VACMP  
Range  
0
--  
V
ACMPxH VHYS = 0 mV,  
Gain = 1,  
Vref = 32 mV to 2016 mV  
-6.4  
-4.6  
--  
--  
6.4  
5.3  
mV  
mV  
Voffset  
ACMP Input Offset  
ACMPxL VHYS = 0 mV,  
Gain = 1,  
Vref = 32 mV to 2016 mV  
ACMP Power-On delay,  
Minimal required wake  
time for the "Wake and  
Sleep function", for  
ACMPxH  
--  
--  
--  
--  
37  
µs  
µs  
tstart  
ACMP Startup Time  
ACMP Power-On delay,  
Minimal required wake  
time for the "Wake and  
Sleep function", for  
ACMPxL  
294  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
24 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 18: ACMP Specifications at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Note  
Condition  
T = 25 °C  
T = 25 °C  
T = 25 °C  
Min  
23.33  
55.78  
183.67  
22.03  
54.12  
182.73  
26.96  
58.44  
186.18  
25.01  
57.87  
Typ  
--  
Max  
Unit  
VHYS = 32 mV  
VHYS = 64 mV  
VHYS = 192 mV  
VHYS = 32 mV  
VHYS = 64 mV  
VHYS = 192 mV  
VHYS = 32 mV  
VHYS = 64 mV  
VHYS = 192 mV  
VHYS = 32 mV  
VHYS = 64 mV  
36.59 mV  
68.38 mV  
197.36 mV  
37.25 mV  
68.99 mV  
197.57 mV  
36.84 mV  
69.25 mV  
198.18 mV  
36.82 mV  
69.19 mV  
198.36 mV  
--  
ACMP0H, ACMP1H  
Built-in Hysteresis  
--  
--  
(Note 1)  
--  
--  
VHYS  
T = 25 °C  
T = 25 °C  
T = 25 °C  
--  
--  
ACMP2L, ACMP3L  
Built-in Hysteresis  
(Note 1)  
--  
--  
--  
VHYS = 192 mV  
Gain = 1x  
184.78  
--  
10  
2
--  
--  
--  
--  
--  
--  
--  
--  
GΩ  
MΩ  
MΩ  
MΩ  
Gain = 0.5x  
Gain = 0.33x  
Gain = 0.25x  
Series Input  
Resistance  
Rsin  
2
2
Gain = 1,  
Vref = 32 mV to 2016 mV,  
Overdrive =10 mV  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
1.85  
2.48  
0.54  
0.53  
1.46  
1.75  
0.55  
0.53  
13.55  
10.04  
2.03  
0.97  
--  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Gain = 1,  
Vref = 32 mV to 2016 mV,  
Overdrive = 100 mV  
Propagation Delay,  
Response Time  
for ACMP0H,  
ACMP1H  
Gain = 1, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 10 mV  
--  
Gain = 1, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 100 mV  
--  
--  
PROP  
Gain = 1,  
Vref = 32 mV to 2016 mV,  
Overdrive = 10 mV  
56.65 128.40 µs  
63.01 141.48 µs  
Gain = 1,  
Vref = 32 mV to 2016 mV,  
Overdrive = 100 mV  
19.73  
19.33  
68.15  
66.31  
27.54  
27.01  
60.49  
µs  
µs  
µs  
µs  
µs  
µs  
Propagation Delay,  
Response Time  
for ACMP2L,  
60.93  
Gain = 1, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 10 mV  
--  
--  
--  
--  
ACMP3L  
Gain = 1, T = 25 °C,  
Vref = 32 mV,  
Overdrive = 100 mV  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
25 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 18: ACMP Specifications at T = -40 °C to +105 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Note  
Condition  
Min  
1
Typ  
1
Max  
1
Unit  
G = 1, Vref = 32 mV  
G = 0.5, Vref = 32 mV  
G = 0.33, Vref = 32 mV  
G = 0.25, Vref = 32 mV  
G = 1, Vref = 480 mV  
G = 0.5, Vref = 480 mV  
G = 0.33, Vref = 480 mV  
G = 0.25, Vref = 480 mV  
0.484  
0.324  
0.238  
1
0.502  
0.338  
0.250  
1
0.526  
0.358  
0.263  
1
G
Gain error  
0.497  
0.330  
0.248  
0.501  
0.333  
0.250  
0.504  
0.337  
0.253  
Internal Vref0 error  
Vref0 = 32 mV to  
2016 mV,  
VDD = 4.0 V  
T = 25 °C  
-0.85  
--  
4.95  
%
Buffer disabled  
Internal Vref0 error  
Vref0 = 320 mV to  
2016 mV,  
T = 25 °C  
LOAD = 1 µA  
-7.96  
-8.66  
--  
--  
2.39  
2.39  
%
%
I
ILOAD = 1 µA  
Buffer enabled  
Vref  
Internal Vref1 error  
Vref1 = 32 mV to  
2016 mV,  
V
DD = 4.0 V  
T = 25 °C  
T = 25 °C  
-1.79  
--  
5.03  
%
Buffer disabled  
Internal Vref1 error  
Vref1 = 320 mV to  
2016 mV,  
-6.04  
-6.79  
23.3  
--  
--  
2.33  
2.51  
%
%
I
LOAD = 1 µA  
ILOAD = 1 µA  
Buffer enabled  
Vin = VDD - 0.7 V,  
VDD = 2.3 V  
94.1  
117.7  
µA  
Vin = VDD - 0.7 V,  
VDD = 2.5 V  
78.4  
78.2  
78.2  
79.4  
81.7  
94.9  
95.3  
95.4  
96.5  
98.7  
111.4  
111.8  
112.0  
112.9  
116.4  
µA  
µA  
µA  
µA  
µA  
Vin = VDD - 0.7 V,  
V
DD = 3.3 V  
Input Current  
Source  
Is  
Vin = VDD - 0.7 V,  
VDD = 4.0 V  
Vin = VDD - 0.7 V,  
VDD = 5.0 V  
Vin = VDD - 0.7 V,  
VDD =5.5 V  
Note 1 VIL = Vin - VHYS, VIH = Vin.  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
26 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
3.11 ANALOG TEMPERATURE SENSOR CHARACTERISTICS  
Temperature Sensor typical nonlinearity ± 0.72 % for output range 1 and ± 0.42 % for output range 2 at VDD = 2.3 V to 5.5 V.  
Table 19: TS Output vs Temperature (Output Range 1), VDD = 2.3 V to 5.5 V  
Buffer Enabled  
Buffer Disabled  
T, °C  
Min, mV  
992  
Typ, mV  
997  
Max, mV  
1004  
960  
Min, mV  
992  
Typ, mV  
997  
Max, mV  
1005  
960  
-40  
-20  
0
947  
952  
947  
952  
902  
907  
914  
902  
907  
914  
20  
856  
861  
868  
856  
861  
868  
40  
809  
814  
821  
808  
814  
821  
60  
761  
767  
775  
761  
766  
775  
80  
713  
719  
727  
713  
719  
727  
100  
105  
664  
670  
679  
664  
670  
679  
652  
658  
667  
652  
658  
667  
Table 20: TS Output vs Temperature (Output Range 2), VDD = 2.3 V to 5.5 V  
Buffer Enabled  
T, °C  
Buffer Disabled  
Typ, mV  
1204  
Min, mV  
1192  
1143  
1088  
1033  
976  
Typ, mV  
1204  
1150  
1095  
1040  
983  
Max, mV  
1212  
1158  
1103  
1048  
992  
Min, mV  
1193  
1143  
1088  
1033  
976  
Max, mV  
1213  
1158  
1103  
1048  
991  
-40  
-20  
0
1150  
1095  
20  
1040  
40  
983  
60  
919  
926  
935  
919  
926  
935  
80  
861  
868  
878  
861  
868  
878  
100  
105  
802  
810  
820  
802  
810  
820  
788  
795  
806  
787  
795  
806  
Datasheet  
17-Jun-2021  
Revision 3.0  
27 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 21: TS Output Error (Output Range 1), VDD = 2.3 V to 5.5 V  
Buffer Enabled  
T, °C  
Buffer Disabled  
Min, %  
-0.56  
-0.56  
-0.58  
-0.59  
-0.64  
-0.72  
-0.79  
-0.89  
-0.91  
Max, %  
0.70  
0.75  
0.78  
0.81  
0.92  
1.03  
1.15  
1.33  
1.40  
Min, %  
-0.57  
-0.56  
-0.58  
-0.59  
-0.65  
-0.73  
-0.79  
-0.90  
-0.91  
Max, %  
0.73  
0.76  
0.78  
0.80  
0.92  
1.06  
1.17  
1.33  
1.35  
-40  
-20  
0
20  
40  
60  
80  
100  
105  
Table 22: TS Output Error (Output Range 2), VDD = 2.3 V to 5.5 V  
Buffer Enabled  
T, °C  
Buffer Disabled  
Min, %  
-0.99  
-0.58  
-0.60  
-0.63  
-0.67  
-0.73  
-0.82  
-0.93  
-0.97  
Max, %  
0.70  
0.72  
0.76  
0.78  
0.89  
1.00  
1.12  
1.28  
1.31  
Min, %  
-0.96  
-0.59  
-0.60  
-0.63  
-0.67  
-0.73  
-0.82  
-0.93  
-0.97  
Max, %  
0.71  
0.72  
0.74  
0.77  
0.90  
0.99  
1.12  
1.28  
1.32  
-40  
-20  
0
20  
40  
60  
80  
100  
105  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
28 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
4
User Programmability  
The SLG46855-A is a user programmable device with one time programmable (OTP) memory elements that are able to  
configure the connection matrix and macrocells. A programming development kit allows the user the ability to create initial  
devices. Once the design is finalized, the programming code (.gpx file) is forwarded to Dialog Semiconductor to integrate into a  
production process.  
Product  
Definition  
E-mail Product Idea, Definition, Drawing or  
Customer creates their own design in  
Schematic to  
GreenPAK Designer  
CMBUGreenPAK@diasemi.com  
Dialog Semiconductor Applications  
Engineer will review design specifications  
with customer  
Customer verifies GreenPAK in system  
design  
GreenPAK Design  
approved  
Samples, Design and Characterization  
Report send to customer  
GreenPAK Design  
approved  
Customers verifies GreenPAK design  
GreenPAK Design  
approved in system test  
Custom GreenPAK part enters production  
Figure 2: Steps to Create a Custom GreenPAK Device  
Datasheet  
17-Jun-2021  
Revision 3.0  
29 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
5
IO Pins  
The SLG46855-A has a total of 10 GPIO, 1 GPI, and 1 GPO Pins which can function as either a user defined Input or Output, as  
well as serving as a special function (such as outputting the voltage reference).  
5.1 GPIO PINS  
GPIO0, GPIO1, GPIO2, GPIO3, GPIO4, GPIO5, GPIO6, GPIO7, GPIO8 and GPIO9 serve as General Purpose IO Pins.  
5.2 GPI PINS  
GPI0 serves as a General Purpose Input Pin.  
5.3 GPO PINS  
GPO0 serves as a General Purpose Output Pin.  
5.4 PULL-UP/DOWN RESISTORS  
All IO Pins have the option for user selectable resistors connected to the input structure. The selectable values on these resistors  
are 10 k, 100 kΩ, and 1 M. The internal resistors can be configured as either Pull-up or Pull-downs.  
5.5 FAST PULL-UP/DOWN DURING POWER-UP  
During power-up, IO Pull-up/down resistance will switch to 2.6 kinitially and then it will switch to normal setting value. This  
function is enabled by register [778].  
Datasheet  
17-Jun-2021  
Revision 3.0  
30 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
5.6 GPI STRUCTURE  
5.6.1 GPI Structure (for GPI0)  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1, OE=0  
01: Digital In with Schmitt Trigger, smt_en = 1, OE = 0  
10: Low Voltage Digital In mode, lv_en = 1, OE = 0  
11: Reserved  
WOSMT_EN  
SMT_EN  
OE  
OE  
Schmitt  
Trigger Input  
Digital IN  
Note 1: OE cannot be selected by user  
Note 2: OE is Matrix output, Digital In is Matrix input  
Low Voltage  
Input  
LV_EN  
OE  
Floating  
PAD  
s0  
s1  
s2  
s3  
VDD  
s1  
s0  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
[1:0]  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
Figure 3: IO0 GPI Structure Diagram  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
31 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
5.7 GPIO WITH I2C MODE IO STRUCTURE  
5.7.1 GPIO with I2C Mode Structure (for GPIO0 and GPIO1)  
IO6, IO7 Mode [2:0]  
00: Digital Input without Schmitt Trigger  
01: Reserved  
10: Low Voltage Digital Input  
11: Reserved  
Non-Schmitt  
Trigger Input  
register [790]=1: Open-Drain NMOS for GPIO0  
register [796]=1: Open-Drain NMOS for GPIO1  
WOSMT_EN  
OE  
Digital IN  
Low Voltage  
Input  
Note 1: OE cannot be selected by user and is controlled by register.  
Digital In is Matrix input.  
Note 2: GPIO0 and GPIO1 do not support Push-Pull and PMOS  
Open-Drain modes.  
LV_EN  
Note 3: It is possible to apply an input voltage higher than VDD to  
GPIO0 and GPIO1. However, this voltage should not exceed 5.5 V.  
Note 4: Can be varied over PVT, for reference only  
OE  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
172 Ω  
(Note 4)  
s1  
s0  
900 kΩ  
90 kΩ  
10 kΩ  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
Pull-up_EN  
10: 100 kΩ  
11: 1 MΩ  
Digital OUT  
OE  
OD 3.2x_en  
PAD  
Figure 4: GPIO with I2C Mode IO Structure Diagram  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
32 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
5.8 MATRIX OE IO STRUCTURE  
5.8.1 Matrix OE IO Structure (for GPIO2, GPIO3, GPIO5, GPIO6. GPIO7, GPIO8, and GPIO9)  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
01: Digital In with Schmitt Trigger, smt_en = 1  
10: Low Voltage Digital In mode, lv_en = 1  
11: analog IO mode  
WOSMT_EN  
SMT_EN  
Schmitt  
Trigger Input  
Digital IN  
Output Mode [1:0]  
00: Push-Pull 1x mode, pp1x_en = 1  
01: Push-Pull 2x mode, pp2x_en = 1, pp1x_en = 1  
10: NMOS 1x Open-Drain mode, od1x_en = 1  
11: NMOS 2x Open-Drain mode, od2x_en = 1, od1x_en = 1  
Low Voltage  
Input  
Note 1: Digital Out and OE are Matrix Output, Digital In is Matrix Input  
Note 2: Can be varied over PVT, for reference only.  
LV_EN  
Analog IO  
Floating  
s0  
VDD  
s1  
s2  
s3  
s1  
s0  
172 Ω  
(Note 2)  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
VDD  
[1:0]  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
Digital OUT  
Digital OUT  
OE  
OE  
OD1x_EN  
PP1x_EN  
VDD  
PAD  
VDD  
Digital OUT  
Digital OUT  
OE  
OE  
OD2x_EN  
PP2x_EN  
Figure 5: Matrix OE IO Structure Diagram  
Datasheet  
17-Jun-2021  
Revision 3.0  
33 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
5.8.2 Matrix OE 4x Drive Structure (for GPIO4)  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
01: Digital In with Schmitt Trigger, smt_en = 1  
Non-Schmitt  
Trigger Input  
10: Low Voltage Digital In mode, lv_en = 1  
11: Analog IO mode  
WOSMT_EN  
OE  
Schmitt  
Trigger Input  
Output Mode [2:0]  
Registers [828], [824:823]  
Digital IN  
000: Push-Pull 1x mode (pp1x_en)  
SMT_EN  
LV_EN  
001: Push-Pull 2x mode (pp2x_en)  
010: NMOS 1x Open-Drain mode (od1x_en)  
011: NMOS 2x Open-Drain mode (od2x_en)  
100: Reserved  
101: Push-Pull 4x mode (pp4x_en)  
110: Reserved  
OE  
OE  
Low Voltage  
Input  
111: NMOS 4x Open-Drain mode (od4x_en)  
Note 1: Digital Out and OE are Matrix output, Digital In is Matrix input  
Note 2: Can be varied over PVT, for reference only  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
VDD  
172 Ω  
(Note 2)  
s1  
s0  
900 kΩ  
Res_sel  
90 kΩ  
10 kΩ  
VDD  
[1:0]  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
Digital OUT  
OE  
Digital OUT  
OE  
OD1x_EN  
4x_EN  
PP1x_EN  
ODn_EN  
VDD  
Digital OUT  
OE  
OD2x_EN  
4x_EN  
PAD  
VDD  
ODn_EN  
2x  
2x  
Digital OUT  
OE  
Digital OUT  
OE  
4x_EN  
ODn_EN  
PP2x_EN  
VDD  
2x  
Digital OUT  
OE  
4x_EN  
ODn_EN  
2x  
Digital OUT  
OE  
PP4x_EN  
Figure 6: Matrix OE IO 4x Drive Structure Diagram  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
Revision 3.0  
34 of 199  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
5.9 GPO STRUCTURE  
5.9.1 GPO Register OE Structure (for GPO0)  
Floating  
s0  
s1  
s2  
s3  
Output Mode [2:0]  
Registers [820], [815:814]  
VDD  
000: Push-Pull 1x mode (pp1x_en)  
001: Push-Pull 2x mode (pp2x_en)  
010: NMOS 1x Open-Drain mode (od1x_en)  
011: NMOS 2x Open-Drain mode (od2x_en)  
100: Reserved  
s1  
s0  
900 kΩ  
Res_sel  
[1:0]  
90 kΩ  
10 kΩ  
101: Push-Pull 4x mode (pp4x_en)  
110: Reserved  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
111: NMOS 4x Open-Drain mode (od4x_en)  
Pull-up_EN  
VDD  
Digital OUT  
OE  
Digital OUT  
OE  
OD1x_EN  
4x_EN  
PP1x_EN  
ODn_EN  
Digital OUT  
OE  
VDD  
OD2x_EN  
4x_EN  
ODn_EN  
PAD  
VDD  
2x  
Digital OUT  
OE  
2x  
Digital OUT  
OE  
4x_EN  
ODn_EN  
PP2x_EN  
Digital OUT  
OE  
VDD  
2x  
4x_EN  
ODn_EN  
Digital OUT  
OE  
2x  
PP4x_EN  
Figure 7: GPO Register OE 4x Drive Structure Diagram  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
35 of 199  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
5.10 IO TYPICAL PERFORMANCE  
Figure 8: Typical High Level Output Current vs. High Level Output Voltage at T = 25 °C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Open Drain 1x @ VDD = 5.5 V  
Open Drain 1x @ VDD = 3.3 V  
Open Drain 1x @ VDD = 2.3 V  
Push-Pull 1x @ VDD = 5.5 V  
Push-Pull 1x @ VDD = 3.3 V  
Push-Pull 1x @ VDD = 2.3 V  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
VOL (V)  
Figure 9: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C, Full Range  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
36 of 199  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
30  
Open Drain 1x @ VDD = 5.5 V  
Open Drain 1x @ VDD = 3.3 V  
25  
Open Drain 1x @ VDD = 2.3 V  
Push-Pull 1x @ VDD = 5.5 V  
Push-Pull 1x @ VDD = 3.3 V  
20  
Push-Pull 1x @ VDD = 2.3 V  
15  
10  
5
0
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
VOL (V)  
Figure 10: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C  
160  
150  
Open Drain 2x @ VDD = 5.5 V  
140  
Open Drain 2x @ VDD = 3.3 V  
130  
Open Drain 2x @ VDD = 2.3 V  
120  
Push-Pull 2x @ VDD = 5.5 V  
110  
Push-Pull 2x @ VDD = 3.3 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Push-Pull 2x @ VDD = 2.3 V  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
VOL (V)  
Figure 11: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C, Full Range  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
37 of 199  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
50  
Open Drain 2x @ VDD = 5.5 V  
Open Drain 2x @ VDD = 3.3 V  
Open Drain 2x @ VDD = 2.3 V  
Push-Pull 2x @ VDD = 5.5 V  
Push-Pull 2x @ VDD = 3.3 V  
Push-Pull 2x @ VDD = 2.3 V  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
VOL (V)  
Figure 12: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C  
240  
220  
Open Drain 3.2x @ VDD = 5.5 V  
200  
Open Drain 3.2x @ VDD = 3.3 V  
180  
Open Drain 3.2x @ VDD = 2.3 V  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
VOL (V)  
Figure 13: Typical Low Level Output Current vs. Low Level Output Voltage, 3.2x Drive at T = 25 °C, Full Range  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
38 of 199  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
60  
55  
Open Drain 3.2x @ VDD = 5.5 V  
50  
Open Drain 3.2x @ VDD = 3.3 V  
45  
Open Drain 3.2x @ VDD = 2.3 V  
40  
35  
30  
25  
20  
15  
10  
5
0
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
VOL (V)  
Figure 14: Typical Low Level Output Current vs. Low Level Output Voltage, 3.2x Drive at T = 25 °C  
300  
280  
Open Drain 4x @ VDD = 5.5 V  
260  
Open Drain 4x @ VDD = 3.3 V  
240  
Open Drain 4x @ VDD = 2.3 V  
220  
200  
180  
160  
140  
120  
100  
80  
Push-Pull 4x @ VDD = 5.5 V  
Push-Pull 4x @ VDD = 3.3 V  
Push-Pull 4x @ VDD = 2.3 V  
60  
40  
20  
0
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
VOL (V)  
Figure 15: Typical Low Level Output Current vs. Low Level Output Voltage, 4x Drive at T = 25 °C, Full Range  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
39 of 199  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
60  
Open Drain 4x @ VDD = 5.5 V  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Open Drain 4x @ VDD = 3.3 V  
Open Drain 4x @ VDD = 2.3 V  
Push-Pull 4x @ VDD = 5.5 V  
Push-Pull 4x @ VDD = 3.3 V  
Push-Pull 4x @ VDD = 2.3 V  
0
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
VOL (V)  
Figure 16: Typical Low Level Output Current vs. Low Level Output Voltage, 4x Drive at T = 25 °C  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
40 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
6
Connection Matrix  
The Connection Matrix in the SLG46855-A is used to create the internal routing for internal functional macrocells of the device  
once it is programmed. The registers are programmed from the one time programmable (OTP) NVM cell during Test Mode  
Operation. The output of each functional macrocell within the SLG46855-A has a specific digital bit code assigned to it that is  
either set to active “High” or inactive “Low”, based on the design that is created. Once the 2048 register bits within the SLG46855-  
A are programmed a fully custom circuit will be created.  
The Connection Matrix has 64 inputs and 96 outputs. Each of the 64 inputs to the Connection Matrix is hard-wired to the digital  
output of a particular source macrocell, including IO pins, LUTs, analog comparators, other digital resources, such as VDD and  
GND. The input to a digital macrocell uses a 6-bit register to select one of these 64 input lines.  
For a complete list of the SLG46855-A’s register table, see Section 17.  
Matrix Input Signal  
N
Functions  
GND  
0
1
2
3
GPIO1 Digital In  
GPIO2 Digital In  
GPIO3 Digital In  
nRST_core  
VDD  
62  
63  
Matrix Inputs  
0
1
2
95  
N
Registers  
registers [5:0]  
registers [11:6]  
registers [17:12]  
registers [575:570]  
Matrix Out: Multi3_lut3_in2  
Matrix OUT: IN0 of  
LUT2_0 or Clock  
Input of DFF0  
Matrix OUT: IN1 of  
LUT2_0 or Data  
Input of DFF0  
Matrix Out: IN0 of  
LUT2_1 or Clock  
Input of PGen  
Function  
Matrix Outputs  
Figure 17: Connection Matrix  
Function  
Connection Matrix  
GPIO8  
GPIO7  
LUT  
GPIO7  
GPIO8  
GPIO9  
LUT  
GPIO9  
Figure 18: Connection Matrix Example  
Datasheet  
17-Jun-2021  
Revision 3.0  
41 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
6.1 MATRIX INPUT TABLE  
Table 23: Matrix Input Table  
Matrix Decode  
Matrix Input  
Matrix Input Signal Function  
Number  
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
GND  
1
LUT2_0/DFF0 output  
LUT2_1/DFF1 output  
LUT2_2/DFF2 output  
LUT2_3/PGen output  
LUT3_0/DFF3 output  
LUT3_1/DFF4 output  
LUT3_2/DFF5 output  
LUT3_3/DFF6 output  
LUT3_4/DFF7 output  
LUT3_5/DFF8 output  
LUT3_6/DFF9 output  
LUT3_7/DFF10 output  
LUT3_8/DFF11 output  
CNT0 output  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
MF0_LUT4/DFF_OUT  
CNT1 output  
MF1_LUT3/DFF_OUT  
CNT2 output  
MF2_LUT3/DFF_OUT  
CNT3 output  
MF3_LUT3/DFF_OUT  
CNT4 output  
MF4_LUT3/DFF_OUT  
CNT5 output  
MF5_LUT3/DFF_OUT  
CNT6 output  
MF6_LUT3/DFF_OUT  
CNT7 output  
MF7_LUT3/DFF_OUT  
LUT3_16/Ripple CNT/Pipe Delay_out0  
Ripple CNT/Pipe Delay_out1  
GPIO0 digital input or I2C_virtual_0 Input  
GPIO1 digital input or I2C_virtual_1 Input  
I2C_virtual_2 Input  
I2C_virtual_3 Input  
I2C_virtual_4 Input  
I2C_virtual_5 Input  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
42 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 23: Matrix Input Table(Continued)  
Matrix Decode  
Matrix Input  
Matrix Input Signal Function  
Number  
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
I2C_virtual_6 Input  
I2C_virtual_7 Input  
Ripple CNT_out2  
LUT4_0/DFF12 output  
Programmable Delay Edge Detect Output  
Edge Detect Filter Output  
GPI0 Digital Input  
GPIO2 Digital Input  
GPIO3,Digital Input  
GPIO4 Digital Input  
GPIO5 Digital Input  
GPIO6 Digital Input  
GPIO7 Digital Input  
GPIO8 Digital Input  
GPIO9, Digital Input  
Oscillator0 output 0  
Oscillator1 output 0  
Oscillator2 output  
ACMP0 Output (normal speed)  
ACMP1 Output (normal speed)  
ACMP2 Output (low speed)  
ACMP3 output (low speed)  
Oscillator0 output 1  
Oscillator1 output 1  
POR OUT  
VDD  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
43 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
6.2 MATRIX OUTPUT TABLE  
Table 24: Matrix Output Table  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
[5:0]  
IN0 of LUT2_0 or Clock Input of DFF0  
IN1 of LUT2_0 or Data Input of DFF0  
IN0 of LUT2_1 or Clock Input of DFF1  
IN1 of LUT2_1 or Data Input of DFF1  
IN0 of LUT2_2 or Clock Input of DFF2  
IN1 of LUT2_2 or Data Input of DFF2  
IN0 of LUT2_3 or Clock Input of PGen  
IN1 of LUT2_3 or nRST of PGen  
0
[11:6]  
1
[17:12]  
2
[23:18]  
3
[29:24]  
4
[35:30]  
5
[41:36]  
6
[47:42]  
7
[53:48]  
IN0 of LUT3_0 or CLK Input of DFF3  
IN1 of LUT3_0 or Data of DFF3  
8
[59:54]  
9
[65:60]  
IN2 of LUT3_0 or nRST (nSET) of DFF3  
IN0 of LUT3_1 or CLK Input of DFF4  
IN1 of LUT3_1 or Data of DFF4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
[71:66]  
[77:72]  
[83:78]  
IN2 of LUT3_1 or nRST (nSET) of DFF4  
IN0 of LUT3_2 or CLK Input of DFF5  
IN1 of LUT3_2 or Data of DFF5  
[89:84]  
[95:90]  
[101:96]  
[107:102]  
[113:108]  
[119:114]  
[125:120]  
[131:126]  
[137:132]  
[143:138]  
[149:144]  
[155:150]  
[161:156]  
[167:162]  
[173:168]  
[179:174]  
[185:180]  
[191:186]  
[197:192]  
[203:198]  
[209:204  
IN2 of LUT3_2 or nRST (nSET) of DFF5  
IN0 of LUT3_3 or CLK Input of DFF6  
IN1 of LUT3_3 or Data of DFF6  
IN2 of LUT3_3 or nRST (nSET) of DFF6  
IN0 of LUT3_4 or CLK Input of DFF7  
IN1 of LUT3_4 or Data of DFF7  
IN2 of LUT3_4 or Data of DFF7  
IN0 of LUT3_5 or CLK Input of DFF8  
IN1 of LUT3_5 or Data of DFF8  
IN2 of LUT3_5 or nRST (nSET) of DFF8  
IN0 of LUT3_6 or CLK Input of DFF9  
IN1 of LUT3_6 or Data of DFF9  
IN2 of LUT3_6 or nRST (nSET) of DFF9  
IN0 of LUT3_7 or CLK Input of DFF10  
IN1 of LUT3_7 or Data of DFF10  
IN2 of LUT3_7 or nRST (nSET) of DFF10  
IN0 of LUT3_8 or CLK Input of DFF11  
IN1 of LUT3_8 or CLK Input of DFF11  
IN2 of LUT3_8 or nRST (nSET) of DFF11  
IN0 of LUT3_12 or CLK Input of DFF16  
Delay4 Input (or Counter4 nRST Input)  
[215:210]  
[221:216]  
IN1 of LUT3_12 or nRST (nSET) of DFF16  
Delay4 Input (or Counter4 nRST Input)  
36  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
Revision 3.0  
44 of 199  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 24: Matrix Output Table(Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
IN2 of LUT3_12 or Data of DFF16  
[227:222]  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
Delay4 Input (or Counter4 nRST Input)  
IN0 of LUT3_13 or CLK Input of DFF17  
[233:228]  
Delay5 Input (or Counter5 nRST Input)  
IN1 of LUT3_13 or nRST (nSET) of DFF17  
[239:234]  
Delay5 Input (or Counter5 nRST Input)  
IN2 of LUT3_13 or Data of DFF17  
[245:240]  
Delay5 Input (or Counter5 nRST Input)  
IN0 of LUT3_14 or CLK Input of DFF18  
[251:246]  
Delay6 Input (or Counter6 nRST Input)  
IN1 of LUT3_14 or nRST (nSET) of DFF18  
[257:252]  
Delay6 Input (or Counter6 nRST Input)  
IN2 of LUT3_14 or Data of DFF18  
[263:258]  
Delay6 Input (or Counter6 nRST Input)  
IN0 of LUT3_15 or CLK Input of DFF19  
[269:264]  
Delay7 Input (or Counter7 nRST Input)  
IN1 of LUT3_15 or nRST (nSET) of DFF19  
[275:270]  
Delay7 Input (or Counter7 nRST Input)  
IN2 of LUT3_15 or Data of DFF19  
[281:276]  
Delay7 Input (or Counter7 nRST Input)  
[287:282]  
[293:288]  
[299:294]  
[305:300]  
[311:306]  
[317:312]  
[323:318]  
[329:324]  
[335:330]  
[341:336]  
[347:342]  
[353:348]  
[359:354]  
[365:360]  
[371:366]  
[377:372]  
[383:378]  
[389:384]  
[395:390]  
[401:396]  
[407:402]  
[413:408]  
IN0 of LUT3_16 or Input of Pipe Delay or UP signal of RIPP CNT  
IN1 of LUT3_16 or nRST of Pipe Delay or nSET of RIPP CNT  
IN2 of LUT3_16 or Clock of Pipe Delay_RIPP CNT  
IN0 of LUT4_0 or CLK Input of DFF12  
IN1 of LUT4_0 or Data of DFF12  
IN2 of LUT4_0 or nRST (nSET) of DFF12  
IN3 of LUT4_0  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
Programmable delay/edge detect input  
Filter/Edge detect input  
GPIO0 Digital Output  
GPIO1 Digital Output  
GPIO2 Digital Output  
GPIO2 Digital Output OE  
GPIO3, Digital Output  
GPIO3, Digital Output OE  
GPO0 Digital Output  
GPIO4 Digital Output  
GPIO4 Digital Output OE  
GPIO5 Digital Output  
GPIO5 Digital Output OE  
GPIO6 Digital Output  
GPIO6 Digital Output OE  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
Revision 3.0  
45 of 199  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 24: Matrix Output Table(Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
[419:414]  
[425:420]  
[431:426]  
[437:432]  
[443:438]  
[449:444]  
[455:450]  
[461:456]  
[467:462]  
[473:468]  
[479:474]  
[485:480]  
[491:486]  
[497:492]  
GPIO7 Digital Output  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
GPIO7 Digital Output OE  
GPIO8 Digital Output  
GPIO8 Digital Output OE  
GPIO9, Digital Output  
GPIO9 Digital Output OE  
PWR UP of ACMP0_H  
PWR UP of ACMP1_H  
PWR UP of ACMP2_L  
PWR UP of ACMP3_L  
Temp sensor, Vref Out_0, Vref Out_1 Power Up  
Oscillator0 ENABLE  
Oscillator1 ENABLE  
Oscillator2 ENABLE  
IN0 of LUT4_1 or CLK Input of DFF20  
Delay0 Input (or Counter0 nRST Input)  
[503:498]  
[509:504]  
[515:510]  
[521:516]  
[527:522]  
[533:528]  
[539:523]  
[545:540]  
[551:546]  
[557:552]  
[563:558]  
[569:564]  
[575:570]  
IN1 of LUT4_1 or nRST of DFF20  
Delay0 Input (or Counter0 nRST Input)  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
IN2 of LUT4_1 or nSET of DFF20  
Delay0 Input (or Counter0 nRST Input)  
IN3 of LUT4_1 or Data of DFF20  
Delay0 Input (or Counter0 nRST Input)  
IN0 of LUT3_9 or CLK Input of DFF13  
Delay1 Input (or Counter1 nRST Input)  
IN1 of LUT3_9 or nRST (nSET) of DFF13  
Delay1 Input (or Counter1 nRST Input)  
IN2 of LUT3_9 or Data of DFF13  
Delay1 Input (or Counter1 nRST Input)  
IN0 of LUT3_10 or CLK Input of DFF14  
Delay2 Input (or Counter2 nRST Input)  
IN1 of LUT3_10 or nRST (nSET) of DFF14  
Delay2 Input (or Counter2 nRST Input)  
IN2 of LUT3_10 or Data of DFF14  
Delay2 Input (or Counter2 nRST Input)  
IN0 of LUT3_11 or CLK Input of DFF15  
Delay3 Input (or Counter3 nRST Input)  
IN1 of LUT3_11 or nRST (nSET) of DFF15  
Delay3 Input (or Counter3 nRST Input)  
IN2 of LUT3_11 or Data of DFF15  
Delay3 Input (or Counter3 nRST Input)  
Note 1 For each Address, the two most significant bits are unused.  
Datasheet  
17-Jun-2021  
Revision 3.0  
46 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
6.3 CONNECTION MATRIX VIRTUAL INPUTS  
As mentioned previously, the Connection Matrix inputs come from the outputs of various digital macrocells on the device. Eight  
of the Connection Matrix inputs have the special characteristic that the state of these signal lines comes from a corresponding  
data bit written as a register value via I2C. This gives the user the ability to write data via the serial channel, and have this  
information translated into signals that can be driven into the Connection Matrix and from the Connection Matrix to the digital  
inputs of other macrocells on the device. The I2C address for reading and writing these register values is at byte 0x4C (076).  
Six of the eight Connection Matrix Virtual Inputs are dedicated to this virtual input function. An I2C write command to these register  
bits will set the signal values going into the Connection Matrix to the desired state. A read command to these register bits will read  
either the original data values coming from the NVM memory bits (that were loaded during the initial device startup), or the values  
from a previous write command (if that has happened).  
Two of the eight Connection Matrix Virtual Inputs are shared with Pin digital inputs (GPIO0Digital or I2C_virtual_0 Input), and  
(GPIO1 Digital or I2C_virtual_1 Input). If the virtual input mode is selected, an I2C write command to these register bits will set  
the signal values going into the Connection Matrix to the desired state. A read command to these register bits will read either the  
original data values coming from the NVM memory bits (that were loaded during the initial device startup), or the values from a  
previous write command (if that has happened). The I2C disable/enable register bit [2032] selects whether the Connection Matrix  
input comes from the Pin input or from the virtual register:  
Select SCL & Virtual Input 0 or GPIO0  
Select SDA & Virtual Input 1 or GPIO1  
See Table 24 for Connection Matrix Virtual Inputs.  
Table 25: Connection Matrix Virtual Inputs  
Matrix Input  
Register Bit  
Addresses (d)  
Matrix Input Signal Function  
Number  
32  
I2C_virtual_0 Input  
I2C_virtual_1 Input  
I2C_virtual_2 Input  
I2C_virtual_3 Input  
I2C_virtual_4 Input  
I2C_virtual_5 Input  
I2C_virtual_6 Input  
I2C_virtual_7 Input  
[608]  
[609]  
[610]  
[611]  
[612]  
[613]  
[614]  
[615]  
33  
34  
35  
36  
37  
38  
39  
6.4 CONNECTION MATRIX VIRTUAL OUTPUTS  
The digital outputs of the various macrocells are routed to the Connection Matrix to enable interconnections to the inputs of other  
macrocells in the device. At the same time, it is possible to read the state of each of the macrocell outputs as a register value via  
I2C. This option, called Connection Matrix Virtual Outputs, allows the user to remotely read the values of each macrocell output.  
The I2C addresses for reading these register values are bytes 0x48 (072) to 0x4F (079). Write commands to these same register  
values will be ignored (with the exception of the Virtual Input register bits at byte 0x4С (076)).  
Datasheet  
17-Jun-2021  
Revision 3.0  
47 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
7
Combination Function Macrocells  
The SLG46855-A has 15 combination function macrocells that can serve more than one logic or timing function. In each case,  
they can serve as a Look Up Table (LUT), or as another logic or timing function. See the list below for the functions that can be  
implemented in these macrocells.  
Three macrocells that can serve as either 2-bit LUT or as D Flip-Flop  
Nine macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset Input  
One macrocell that can serve as either 3-bit LUT or as Pipe Delay/Ripple Counter  
One macrocell that can serve as either 2-bit LUT or as Programmable Pattern Generator (PGen)  
One macrocell that can serve as either 4-bit LUT or as D Flip-Flop with Set/Reset Input  
Inputs/Outputs for the 15 combination function macrocells are configured from the connection matrix with specific logic functions  
being defined by the state of configuration bits.  
When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined  
function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).  
7.1 2-BIT LUT OR D FLIP-FLOP MACROCELLS  
There is one macrocell that can serve as either 2-bit LUT or as D Flip-Flop. When used to implement LUT functions, the 2-bit LUT  
takes in two input signals from the connection matrix and produce a single output, which goes back into the connection matrix.  
When used to implement D Flip-Flop function, the two input signals from the connection matrix go to the data (D) and clock (CLK)  
inputs for the Flip-Flop, with the output going back to the connection matrix.  
The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:  
DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change  
LATCH: when CLK is Low, then Q = D; otherwise Q remains its previous value (input D has no effect on the output, when CLK is  
High).  
register [1499] DFF or Latch Select  
IN1  
register [1498] Output Select (Q or nQ)  
S0  
From Connection Matrix Output [1]  
register [1497] DFF Initial Polarity Select  
OUT  
2-bit LUT0  
0: 2-bit LUT0 IN1  
1: DFF0 Data  
S1  
IN0  
LUT Truth  
Table  
To Connection Matrix  
Input [1]  
S0  
S1  
4-bits NVM  
registers [1499:1496]  
0: 2-bit LUT0 Out  
1: DFF0 Out  
DFF/Latch  
Registers  
D
S0  
S1  
From Connection Matrix Output [0]  
Q/nQ  
DFF0  
0: 2-bit LUT0 IN0  
1: DFF0 CLK  
CLK  
1-bit NVM  
register [1488]  
Figure 19: 2-bit LUT0 or DFF0  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
48 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
register [1503] DFF or Latch Select  
register [1502] Output Select (Q or nQ)  
register [1501] DFF Initial Polarity Select  
IN1  
S0  
From Connection Matrix Output [3]  
OUT  
2-bit LUT1  
0: 2-bit LUT1 IN1  
1: DFF1 Data  
S1  
IN0  
LUT Truth  
Table  
To Connection Matrix  
S0  
Input [2]  
4-bits NVM  
registers [1503:1500]  
S1  
0: 2-bit LUT1 Out  
1: DFF1 Out  
DFF/Latch  
Registers  
D
S0  
S1  
From Connection Matrix Output [2]  
Q/nQ  
DFF1  
0: 2-bit LUT1 IN0  
1: DFF1 CLK  
CLK  
1-bit NVM  
register [1489]  
Figure 20: 2-bit LUT1 or DFF1  
register [1507] DFF or Latch Select  
IN1  
register [1506] Output Select (Q or  
S0  
S1  
From Connection Matrix Output [5]  
nQ)  
OUT  
register [1505] DFF Initial Polarity Se-  
2-bit LUT2  
lect  
0: 2-bit LUT2 IN1  
1: DFF2 Data  
IN0  
LUT Truth  
Table  
To Connection Matrix  
S0  
Input [3]  
4-bits NVM  
registers [1507:1504]  
S1  
0: 2-bit LUT2 Out  
1: DFF2 Out  
DFF/Latch  
Registers  
D
S0  
S1  
From Connection Matrix Output [4]  
Q/nQ  
DFF2  
0: 2-bit LUT2 IN0  
1: DFF2 CLK  
CLK  
1-bit NVM  
register [1490]  
Figure 21: 2-bit LUT2 or DFF2  
Datasheet  
17-Jun-2021  
Revision 3.0  
49 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
7.1.1 2-Bit LUT or D Flip-Flop Macrocell Used as 2-Bit LUT  
Table 26: 2-bit LUT0 Truth Table  
IN1  
0
IN0  
0
OUT  
register [1496]  
register [1497]  
register [1498]  
register [1499]  
LSB  
0
1
1
0
1
1
MSB  
Table 27: 2-bit LUT1 Truth Table  
IN1  
0
IN0  
0
OUT  
register [1500]  
register [1501]  
register [1502]  
register [1503]  
LSB  
0
1
1
0
1
1
MSB  
Table 28: 2-bit LUT2 Truth Table  
IN1  
0
IN0  
0
OUT  
register [1504]  
register [1505]  
register [1506]  
register [1507]  
LSB  
0
1
1
0
1
1
MSB  
This macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:  
2-Bit LUT0 is defined by registers [1499:1496]  
2-Bit LUT1 is defined by registers [1503:1500]  
2-Bit LUT2 is defined by registers [1507:1504]  
Table 28 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the 2-bit LUT logic cells  
Table 29: 2-bit LUT Standard Digital Functions  
Function  
AND-2  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-2  
OR-2  
NOR-2  
XOR-2  
XNOR-2  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
Revision 3.0  
50 of 199  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
7.1.2 Initial Polarity Operations  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
Q with nReset (Case 1)  
Initial Polarity: Low  
Q with nReset (Case 1)  
Figure 22: DFF Polarity Operations  
7.2 2-BIT LUT OR PROGRAMMABLE PATTERN GENERATOR  
The SLG46855-A has one combination function macrocell that can serve as a logic or timing function. This macrocell can serve  
as a Look Up Table (LUT), or Programmable Pattern Generator (PGen).  
When used to implement LUT functions, the 2-bit LUT takes in two input signals from the connection matrix and produces a single  
output, which goes back into the connection matrix. When used as a LUT to implement combinatorial logic functions, the outputs  
of the LUT can be configured to any user defined function, including the following standard digital logic devices (AND, NAND,  
OR, NOR, XOR, XNOR). The user can also define the combinatorial relationship between inputs and outputs to be any selectable  
function.  
It is possible to define the RST level for the PGen macrocell. There are both high level reset (RST) and a low level reset (nRST)  
options available, which are selected by register [1409]. When operating as a Programmable Pattern Generator, the output of the  
macrocell will clock out a sequence of two to sixteen bits that are user selectable in their bit values, and user selectable in the  
number of bits (up to sixteen) that are output before the pattern repeats.  
Datasheet  
17-Jun-2021  
Revision 3.0  
51 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
From Connection Matrix Output [6]  
From Connection Matrix Output [7]  
In0  
In1  
OUT  
2-bit LUT3  
LUT Truth  
Table  
To Connection Matrix Input [4]  
S0  
S1  
registers [1387:1384]  
0: 2-bit LUT3 OUT  
1: PGen OUT  
Pattern  
size  
nRST/RST  
CLK  
PGen  
OUT  
PGen  
Data  
register [1408]  
registers [1407:1392]  
Figure 23: 2-bit LUT3 or PGen  
V
DD  
t
t
nRST  
CLK  
OUT  
1
2
6
8
16 17  
3
5
7
0
4
9
11  
10  
14 15  
12 13  
t
D7  
D6  
D5  
D10  
D8  
D4  
D3  
D2  
D1  
D15  
D11  
D9  
D0  
D0  
D15  
D14  
D13  
D12  
D0  
t
Figure 24: PGen Timing Diagram  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
Revision 3.0  
52 of 199  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
7.2.1 2-Bit LUT or PGen Macrocell Used as 2-Bit LUT  
Table 30: 2-bit LUT1 Truth Table  
IN1  
0
IN0  
0
OUT  
register [1384]  
register [1385]  
register [1386]  
register [1387]  
LSB  
0
1
1
0
1
1
MSB  
This macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:  
2-Bit LUT3 is defined by registers [1387:1384]  
Table 30 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the 2-bit LUT logic cells.  
Table 31: 2-bit LUT Standard Digital Functions  
Function  
AND-2  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-2  
OR-2  
NOR-2  
XOR-2  
XNOR-2  
7.3 3-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELLS  
There are nine macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset inputs. When used to implement  
LUT functions, the 3-bit LUTs each take in three input signals from the connection matrix and produce a single output, which goes  
back into the connection matrix. When used to implement D Flip-Flop function, the three input signals from the connection matrix  
go to the data (D) and clock (CLK), and Reset/Set (nRST/nSET) inputs for the Flip-Flop, with the output going back to the  
connection matrix. It is possible to define the active level for the reset/set input of DFF/LATCH macrocell. There are both active  
high level reset/set (RST/SET) and active low level reset/set (nRST/nSET) options available which are selected by register [1445].  
DFF3 operation will flow the functional description below:  
If register [1443] = 0, and the CLK is rising edge triggered, then Q = D, otherwise Q will not change.  
If register [1443] = 1, then data from D is written into the DFF by the rising edge on CLK and output to Q by the falling edge on  
CLK.  
Datasheet  
17-Jun-2021  
Revision 3.0  
53 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
.
register [1447] DFF or Latch Select  
register [1446] Output Select (Q or nQ)  
register [1445] DFF Initial Polarity Select  
register [1444] Q1 or Q2 Select  
register [1443] DFF nRST or nSET Select  
register [1442] Active level selection for RST/  
SET  
IN2  
IN1  
From Connection  
Matrix Output [10]  
S0  
S1  
OUT  
3-bit LUT0  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [9]  
To Connection Matrix  
S0  
S1  
Input [5]  
S0  
S1  
8-bits NVM  
registers [1447:1440]  
From Connection  
Matrix Output [8]  
S0  
S1  
DFF/Latch  
Registers  
0
1
Q/nQ  
DFF  
DFF  
D
D
Q
D
Q
nRST/  
CL  
nSET  
nRST/  
nSET  
CL  
nRST/nSET  
CLK  
register [1444]  
1-bit NVM  
register [1415]  
Figure 25: 3-bit LUT0 or DFF3  
Datasheet  
17-Jun-2021  
Revision 3.0  
54 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
.
register [1359] DFF or Latch Select  
register [1358] Output Select (Q or nQ)  
register [1357] DFF Initial Polarity Select  
register [1356] DFF nRST or nSET Select  
register [1355] Active level selection for RST/  
SET  
IN2  
IN1  
From Connection  
Matrix Output [13]  
S0  
S1  
OUT  
3-bit LUT1  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [12]  
To Connection Matrix  
S0  
S1  
Input [6]  
S0  
8-bits NVM  
registers [1359:1352]  
S1  
DFF/Latch  
Registers  
D
From Connection  
Matrix Output [11]  
S0  
S1  
nRST/nSET DFF4  
Q/nQ  
RST/SET  
CLK  
1-bit NVM  
register [1388]  
Figure 26: 3-bit LUT1 or DFF4  
register [1367] DFF or Latch Select  
register [1366] Output Select (Q or nQ)  
register [1365] DFF Initial Polarity Select  
register [1364] DFF nRST or nSET Select  
register [1363] Active level selection for RST/  
SET  
IN2  
From Connection  
Matrix Output [16]  
S0  
S1  
IN1  
IN0  
OUT  
3-bit LUT2  
LUT Truth  
Table  
From Connection  
Matrix Output [15]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [7]  
8-bits NVM  
registers [1367:1360]  
DFF/Latch  
Registers  
D
From Connection  
Matrix Output [14]  
S0  
S1  
nRST/nSET DFF5  
RST/SET  
Q/nQ  
CLK  
1-bit NVM  
register [1389]  
Figure 27: 3-bit LUT2 or DFF5  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
55 of 199  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
register [1375] DFF or Latch Select  
register [1374] Output Select (Q or nQ)  
register [1373] DFF Initial Polarity Select  
register [1372] DFF nRST or nSET Select  
register [1371] Active level selection for RST/  
SET  
IN2  
IN1  
From Connection  
Matrix Output [19]  
S0  
S1  
OUT  
3-bit LUT3  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [18]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [8]  
8-bits NVM  
registers [1375:1368]  
DFF  
Registers  
D
From Connection  
Matrix Output [17]  
S0  
S1  
nRST/nSET  
RST/SET  
DFF6  
Q/nQ  
CLK  
1-bit NVM  
register [1390]  
Figure 28: 3-bit LUT3 or DFF6  
register [1383] DFF or Latch Select  
register [1382] Output Select (Q or nQ)  
register [1381] DFF Initial Polarity Select  
register [1380] DFF nRST or nSET Select  
register [1379] Active level selection for RST/  
SET  
IN2  
From Connection  
Matrix Output [22]  
S0  
S1  
IN1  
IN0  
OUT  
3-bit LUT4  
LUT Truth  
Table  
From Connection  
Matrix Output [21]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [9]  
8-bits NVM  
registers [1383:1376]  
DFF/Latch  
Registers  
D
From Connection  
Matrix Output [20]  
S0  
S1  
nRST/nSET  
RST/SET  
DFF7  
Q/nQ  
CLK  
1-bit NVM  
register [1391]  
Figure 29: 3-bit LUT4 or DFF7  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
56 of 199  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
register [1463] DFF or Latch Select  
register [1462] Output Select (Q or nQ)  
register [1461] DFF Initial Polarity Select  
register [1460] DFF nRST or nSET Select  
register [1459] Active level selection for RST/  
SET  
IN2  
IN1  
From Connection  
Matrix Output [25]  
S0  
S1  
OUT  
3-bit LUT5  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [24]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [10]  
8-bits NVM  
registers [1463:1456]  
DFF  
Registers  
D
From Connection  
Matrix Output [23]  
S0  
S1  
nRST/nSET  
RST/SET  
DFF8  
Q/nQ  
CLK  
1-bit NVM  
register [1492]  
Figure 30: 3-bit LUT5 or DFF8  
register [1471] DFF or Latch Select  
register [1470] Output Select (Q or nQ)  
register [1469] DFF Initial Polarity Select  
register [1468] DFF nRST or nSET Select  
register [1467] Active level selection for RST/  
SET  
IN2  
From Connection  
Matrix Output [28]  
S0  
S1  
IN1  
IN0  
OUT  
3-bit LUT6  
LUT Truth  
Table  
From Connection  
Matrix Output [27]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [11]  
8-bits NVM  
registers [1471:1464]  
DFF/Latch  
Registers  
D
From Connection  
Matrix Output [26]  
S0  
S1  
nRST/nSET  
RST/SET  
DFF9  
Q/nQ  
CLK  
1-bit NVM  
register [1493]  
Figure 31: 3-bit LUT6 or DFF9  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
57 of 199  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
register [1479] DFF or Latch Select  
register [1478] Output Select (Q or nQ)  
register [1477] DFF Initial Polarity Select  
register [1476] DFF nRST or nSET Select  
register [1475] Active level selection for RST/  
SET  
IN2  
IN1  
From Connection  
Matrix Output [31]  
S0  
S1  
OUT  
3-bit LUT7  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [30]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [12]  
8-bits NVM  
registers [1479:1472]  
DFF  
Registers  
D
From Connection  
Matrix Output [29]  
S0  
S1  
nRST/nSETDFF10  
RST/SET  
Q/nQ  
CLK  
1-bit NVM  
register [1494]  
Figure 32: 3-bit LUT7 or DFF10  
register [1487] DFF or Latch Select  
register [1486] Output Select (Q or nQ)  
register [1485] DFF Initial Polarity Select  
register [1484] DFF nRST or nSET Select  
register [1483] Active level selection for RST/  
SET  
IN2  
From Connection  
Matrix Output [34]  
S0  
S1  
IN1  
IN0  
OUT  
3-bit LUT8  
LUT Truth  
Table  
From Connection  
Matrix Output [33]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [13]  
8-bits NVM  
registers [1487:1480]  
DFF  
Registers  
D
From Connection  
Matrix Output [32]  
S0  
S1  
nRST/nSETDFF11  
RST/SET  
Q/nQ  
CLK  
1-bit NVM  
register [1495]  
Figure 33: 3-bit LUT8 or DFF11  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
58 of 199  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
7.3.1 3-Bit LUT or D Flip-Flop Macrocells Used as 3-Bit LUTs  
Table 32: 3-bit LUT0 Truth Table  
Table 36: 3-bit LUT4 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1440]  
register [1441]  
register [1442]  
register [1443]  
register [1444]  
register [1445]  
register [1446]  
register [1447]  
LSB  
register [1376]  
register [1377]  
register [1378]  
register [1379]  
register [1380]  
register [1381]  
register [1382]  
register [1383]  
LSB  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 33: 3-bit LUT1 Truth Table  
Table 37: 3-bit LUT5 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1352]  
register [1353]  
register [1354]  
register [1355]  
register [1356]  
register [1357]  
register [1358]  
register [1359]  
register [1356]  
register [1357]  
register [1358]  
register [1359]  
register [1360]  
register [1361]  
register [1362]  
register [1363]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 34: 3-bit LUT2 Truth Table  
Table 38: 3-bit LUT6 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1360]  
register [1361]  
register [1362]  
register [1363]  
register [1364]  
register [1365]  
register [1366]  
register [1367]  
register [1364]  
register [1365]  
register [1366]  
register [1367]  
register [1368]  
register [1369]  
register [1370]  
register [1371]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 35: 3-bit LUT3 Truth Table  
Table 39: 3-bit LUT7 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1368]  
register [1369]  
register [1370]  
register [1371]  
register [1372]  
register [1373]  
register [1374]  
register [1375]  
register [1472]  
register [1473]  
register [1474]  
register [1475]  
register [1476]  
register [1477]  
register [1478]  
register [1479]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
1
1
1
MSB  
Datasheet  
17-Jun-2021  
Revision 3.0  
59 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 40: 3-bit LUT8 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1480]  
register [1481]  
register [1482]  
register [1483]  
register [1484]  
register [1485]  
register [1486]  
register [1487]  
LSB  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
MSB  
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-Bit LUT0 is defined by registers [1447:1440]  
3-Bit LUT1 is defined by registers [1359:1352]  
3-Bit LUT2 is defined by registers [1367:1360]  
3-Bit LUT3 is defined by registers [1375:1368]  
3-Bit LUT4 is defined by registers [1383:1376]  
3-Bit LUT5 is defined by registers [1463:1456]  
3-Bit LUT6 is defined by registers [1471:1464]  
3-Bit LUT7 is defined by registers [1479:1472]  
3-Bit LUT8 is defined by registers [1487:1480]  
Table 40 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the four 3-bit LUT logic cells.  
Table 41: 3-bit LUT Standard Digital Functions  
Function  
AND-3  
MSB  
LSB  
1
0
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-3  
OR-3  
NOR-3  
XOR-3  
XNOR-3  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
60 of 199  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
7.3.2 Initial Polarity Operations  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
nReset (Case 1)  
Q with nReset (Case 1)  
nReset (Case 2)  
Q with nReset (Case 2)  
Initial Polarity: Low  
nReset (Case 1)  
Q with nReset (Case 1)  
nReset (Case 2)  
Q with nReset (Case 2)  
Figure 34: DFF Polarity Operations with nReset  
Datasheet  
17-Jun-2021  
Revision 3.0  
61 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
nSet (Case 1)  
Q with nSet (Case 1)  
nSet (Case 2)  
Q with nSet (Case 2)  
Initial Polarity: Low  
nSet (Case 1)  
Q with nSet (Case 1)  
nSet (Case 2)  
Q with nSet (Case 2)  
Figure 35: DFF Polarity Operations with nSet  
7.4 4-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELL  
There is one macrocell that can serve as either a 4-bit LUT or as a D Flip-Flop with Set/Reset inputs. When used to implement  
LUT functions, the 4-bit LUT takes in four input signals from the connection matrix and produce a single output, which goes back  
into the connection matrix. When used to implement D Flip-Flop function, the input signals from the connection matrix go to the  
data (D) and clock (CLK), and Reset/Set (nRST/nSET) inputs for the Flip-Flop, with the output going back to the connection matrix.  
If register [1436] = 0, and the CLK is rising edge triggered, then Q = D, otherwise Q will not change.  
If register [1436] = 1, then data from D is written into the DFF by the rising edge on CLK and output to Q by the falling edge on  
CLK.  
It is possible to define the active level for the reset/set input of DFF/LATCH macrocell. There are both active high level reset/set  
(RST/SET) and active low level reset/set (nRST/nSET) options available which are selected by register [1434].  
Datasheet  
17-Jun-2021  
Revision 3.0  
62 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
From Connection  
register [1439] DFF or Latch Select  
S0  
S1  
Matrix Output [53]  
register [1438] Output Select (Q or nQ)  
register [1437] DFF Initial Polarity Select  
register [1436] Q1 or Q2 Select  
register [1435] DFF nRST or nSET Select  
register [1434] Active level selection for RST/SET  
IN3  
IN2  
IN1  
From Connection  
Matrix Output [52]  
S0  
S1  
OUT  
4-bit LUT0  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [51]  
To Connection Matrix  
S0  
S1  
Input [41]  
S0  
16-bits NVM  
registers [1439:1424]  
S1  
DFF/Latch  
Registers  
D
From Connection  
Matrix Output [50]  
S0  
S1  
nRST/nSET DFF12  
RST/SET  
Q/nQ  
Q1/Q2  
CLK  
Select  
register [1436]  
1-bit NVM  
register [1414]  
Figure 36: 4-bit LUT0 or DFF12  
7.4.1 4-Bit LUT Macrocell Used as 4-Bit LUT  
Table 42: 4-bit LUT0 Truth Table  
IN3  
0
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1424]  
register [1425]  
register [1426]  
register [1427]  
register [1428]  
register [1429]  
register [1430]  
register [1431]  
register [1432]  
register [1433]  
register [1434]  
register [1435]  
register [1436]  
register [1437]  
register [1438]  
register [1439]  
LSB  
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
MSB  
Datasheet  
17-Jun-2021  
Revision 3.0  
63 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
This macrocell, when programmed for a LUT function, uses a 16-bit register to define their output function:  
4-Bit LUT0 is defined by registers [1439:1424]  
Table 43: 4-bit LUT Standard Digital Functions  
Function  
AND-4  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-4  
OR-4  
NOR-4  
XOR-4  
XNOR-4  
7.5 3-BIT LUT OR PIPE DELAY/RIPPLE COUNTER MACROCELL  
There is one macrocell that can serve as either a 3-bit LUT or as a Pipe Delay/Ripple Counter.  
When used to implement LUT functions, the 3-bit LUT takes in three input signals from the connection matrix and produces a  
single output, which goes back into the connection matrix.  
When used as a Pipe Delay, there are three inputs signals from the matrix, Input (IN), Clock (CLK), and Reset (nRST). The Pipe  
Delay cell is built from 16 D Flip-Flop logic cells that provide the three delay options, two of which are user selectable. The DFF  
cells are tied in series where the output (Q) of each delay cell goes to the next DFF cell input (IN). Both of the two outputs (OUT0  
and OUT1) provide user selectable options for 1 – 16 stages of delay. There are delay output points for each set of the OUT0 and  
OUT1 outputs to a 4-input mux that is controlled by registers [1419:1416] for OUT0 and registers [1423:1420] for OUT1. The 4-  
input mux is used to control the selection of the amount of delay.  
The overall time of the delay is based on the clock used in the SLG46855-A design. Each DFF cell has a time delay of the inverse  
of the clock time (either external clock or the internal Oscillator within the SLG46855-A). The sum of the number of DFF cells used  
will be the total time delay of the Pipe Delay logic cell. OUT1 Output can be inverted (as selected by register [1413]).  
In the Ripple Counter mode there are 3 options for setting which use 7 bits. There are 3 bits to set nSET value (SV) in range from  
0 to 7. This value will be set into the Ripple Counter outputs when nSET input goes LOW. End value (EV) will use 3 bits for setting  
output code, which will be last code in the cycle. After reaching the EV, the Ripple Counter goes to the first code by the rising  
edge on CLK input. The Functionality mode option uses 1 bit. This setting defines how exactly Ripple Counter will operate.  
The user can select one of the functionality modes by register: RANGE or FULL. If the RANGE option is selected, the count starts  
from SV. If UP input is LOW the count goes down: SV→EV→EV-1 to SV+1→SV, and others (if SV is smaller than EV), or SV→SV-  
1 to EV+1→EV→SV (if SV is bigger than EV). If UP input is HIGH, count starts from SV up to EV, and others.  
In the FULL range configuration the Ripple Counter functions as follows. If UP input is LOW, the count starts from SV and goes  
down to 0. Then current counter value jumps to EV and goes down to 0, and others.  
If UP input is HIGH, count goes up starting from SV. Then current counter value jumps to 0 and counts up to EV, and others. See  
Ripple Counter functionality example in Figure 38.  
Every step is executed by the rising edge on CLK input.  
Datasheet  
17-Jun-2021  
Revision 3.0  
64 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
registers [1423:1416]  
From Connection  
Matrix Output [47]  
IN0  
From Connection  
Matrix Output [48]  
IN1  
IN2  
OUT  
3-bit LUT16  
From Connection  
Matrix Output [49]  
Pipe Delay registers [1423:1420]  
register [1413]  
0
1
0
1
OUT2  
OUT1  
To Connection  
Matrix Input [40]  
register [1412]  
From Connection  
Matrix Output [47]  
IN  
From Connection  
Matrix Output [48]  
nRST  
16 Flip-Flops  
0
OUT1  
From Connection  
Matrix Output [49]  
CLK  
To Connection  
Matrix Input [31]  
1
register [1412]  
OUT0  
0
OUT0  
To Connection  
Matrix Input [30]  
0
1
1
registers [1419:1416]  
1 Pipe OUT  
register [1411]  
Ripple Counter  
3 Flip-Flops  
UP  
From Connection  
Matrix Output [47]  
UP/DOWN  
Control  
OUT0  
D
Q
DFF1  
CLK  
From Connection  
Matrix Output [49]  
CL  
nQ  
nSET  
From Connection  
Matrix Output [48]  
SET  
OUT1  
OUT2  
Control  
D
Q
DFF2  
CL  
nQ  
Mode & SET/END  
Value Control  
D
Q
DFF3  
nQ  
CL  
registers [1422:1416]  
Figure 37: 3-bit LUT16/Pipe Delay/Ripple Counter  
Datasheet  
17-Jun-2021  
Revision 3.0  
65 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Figure 38: Example: Ripple Counter Functionality  
Datasheet  
17-Jun-2021  
Revision 3.0  
66 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
7.5.1 3-Bit LUT or Pipe Delay Macrocells Used as 3-Bit LUT  
Table 44: 3-bit LUT16 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1416]  
register [1417]  
register [1418]  
register [1419]  
register [1420]  
register [1421]  
register [1422]  
register [1423]  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-Bit LUT16 is defined by registers [1423:1416]  
Datasheet  
17-Jun-2021  
Revision 3.0  
67 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
8
Multi-Function Macrocells  
The SLG46855-A has 8 Multi-Function macrocells that can serve more than one logic or timing function. In each case, they can  
serve as a LUT, DFF with flexible settings, or as CNT/DLY with multiple modes, such as One Shot, Frequency Detect, Edge  
Detect, and others. Also, the macrocell is capable to combine those functions: LUT/DFF connected to CNT/DLY or CNT/DLY  
connected to LUT/DFF, see Figure 39.  
See the list below for the functions that can be implemented in these macrocells:  
Seven macrocells that can serve as 3-bit LUTs/D Flip-Flops and as 8-Bit Counter/Delays  
One macrocell that can serve as a 4-bit LUT/D Flip-Flop and as 16-Bit Counter/Delay/FSM  
To Connection Matrix  
To Connection Matrix  
From Connection  
Matrix  
To Connection  
Matrix  
From Connection  
Matrix  
To Connection  
Matrix  
LUT  
or  
DFF  
LUT  
or  
DFF  
CNT/DLY  
CNT/DLY  
Figure 39: Possible Connections Inside Multi-Function Macrocell  
Inputs/Outputs for the 8 Multi-Function function macrocells are configured from the connection matrix with specific logic functions  
being defined by the state of NVM bits.  
When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined  
function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).  
8.1 3-BIT LUT OR DFF/LATCH WITH 8-BIT COUNTER/DELAY MACROCELLS  
There are seven macrocells that can serve as 3-bit LUTs/D Flip-Flops and as 8-Bit Counter/Delays.  
When used to implement LUT functions, the 3-bit LUTs each take in three input signals from the connection matrix and produce  
a single output, which goes back into the connection matrix or can be connected to CNT/DLY's input.  
When used to implement D Flip-Flop function, the three input signals from the connection matrix go to the data (D), clock (CLK),  
and Reset/Set (nRST/nSET) inputs of the Flip-Flop, with the output going back to the connection matrix or to the CNT/DLY's input.  
When used to implement Counter/Delays, each macrocell has a dedicated matrix input connection. For flexibility, each of these  
macrocells has a large selection of internal and external clock sources, as well as the option to chain from the output of the  
previous (N-1) CNT/DLY macrocell, to implement longer count/delay circuits. These macrocells can also operate in a One-Shot  
mode, which will generate an output pulse of user-defined width. They can also operate in a Frequency Detection or Edge  
Detection mode.  
Counter/Delay macrocell has an initial value, which define its initial value after GPAK is powered up. It is possible to select initial  
Low or initial High, as well as initial value defined by a Delay In signal.  
For example, in case initial LOW option is used, the rising edge delay will start operation.  
For timing diagrams refer to sections 7.1 and 8.3.  
Note: After two DFF – counters initialize with counter data = 0 after POR.  
Initial state = 1 – counters initialize with counter data = 0 after POR.Initial state = 0 And After two DFF is bypass – counters  
initialize with counter data after POR.  
Datasheet  
17-Jun-2021  
Revision 3.0  
68 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
CNT6 and CNT7 current count value can be read via I2C. However, it is possible to change the counter data (value counter starts  
operating from) for any macrocell using I2C write commands. In this mode, it is possible to load count data immediately (after two  
DFF) or after counter ends counting. See Section 15.6.1 for further details.  
8.1.1 3-Bit LUT or 8-Bit CNT/DLY Block Diagrams  
register [1215] DFF or Latch Select  
register [1214] Output Select (Q or  
From Connection  
Matrix Output [89]  
nQ)  
register [1213] (nRST or nSET)  
from matrix Output  
register [1212] DFF Initial Polarity  
Select  
IN2  
IN1  
IN0  
S0  
S1  
3-bit LUT9  
S0  
S1  
OUT  
LUT Truth  
Table  
From Connection  
Matrix Output [88]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [17]  
8-bits NVM  
registers [1215:1208]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [87]  
S0  
S1  
S0  
S1  
nRST/nSET  
CLK  
DFF/  
Latch13  
Q/nQ  
register [1053]  
LUT/DFF Sel  
registers [1223:1216]  
registers [1052:1049]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [16]  
0
S0  
OUT  
CNT/DLY1  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [1066:1054]  
Figure 40: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT9/DFF13, CNT/DLY1)  
Datasheet  
17-Jun-2021  
Revision 3.0  
69 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
register [1231] DFF or Latch Select  
register [1230] Output Select (Q or  
nQ)  
From Connection  
register [1229] (nRST or nSET)  
from matrix Output  
Matrix Output [92]  
IN2  
S0  
3-bit LUT10  
S0  
S1  
register [1228] DFF Initial Polarity  
Select  
OUT  
IN1  
IN0  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [91]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [19]  
8-bits NVM  
registers [1231:1224]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [90]  
S0  
S1  
S0  
S1  
DFF/  
Latch14  
nRST/nSET  
CLK  
Q/nQ  
register [1071]  
LUT/DFF Sel  
registers [1239:1232]  
registers [1067:1070]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [18]  
0
S0  
OUT  
CNT/DLY2  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [1084:1072]  
Figure 41: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT10/DFF14, CNT/DLY2)  
Datasheet  
17-Jun-2021  
Revision 3.0  
70 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
register [1247] DFF or Latch Select  
register [1246] Output Select (Q or  
nQ)  
register [1245] (nRST or nSET)  
from matrix Output  
register [1244] DFF Initial Polarity  
Select  
From Connection  
Matrix Output [95]  
IN2  
S0  
3-bit LUT11  
S0  
S1  
OUT  
IN1  
IN0  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [94]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [21]  
8-bits NVM  
registers [1247:1240]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [93]  
S0  
S1  
S0  
S1  
DFF/  
Latch15  
nRST/nSET  
Q/nQ  
CLK  
register [1087]  
LUT/DFF Sel  
registers [1255:1248]  
registers [1095:1092]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [20]  
0
S0  
OUT  
CNT/DLY3  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [1102:1096], [1091:1085]  
Figure 42: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT11/DFF15, CNT/DLY3)  
Datasheet  
17-Jun-2021  
Revision 3.0  
71 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
register [1263] DFF or Latch Select  
register [1262] Output Select (Q or  
nQ)  
From Connection  
Matrix Output [37]  
register [1261] (nRST or nSET)  
from matrix Output  
IN2  
S0  
3-bit LUT12  
S0  
S1  
register [1260] DFF Initial Polarity  
Select  
OUT  
IN1  
IN0  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [36]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [23]  
8-bits NVM  
registers [1263:1256]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [35]  
S0  
S1  
S0  
S1  
nRST/nSET DFF/  
Q/nQ  
Latch16  
CLK  
register [1107]  
LUT/DFF Sel  
registers [1271:1264]  
registers [1108:1111]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [22]  
0
S0  
OUT  
CNT/DLY4  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [1120:1112], [1106:1103]  
Figure 43: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT12/DFF16, CNT/DLY4)  
Datasheet  
17-Jun-2021  
Revision 3.0  
72 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
register [1279] DFF or Latch Select  
register [1278] Output Select (Q or  
nQ)  
register [1277] (nRST or nSET)  
from matrix Output  
register [1276] DFF Initial Polarity  
Select  
From Connection  
Matrix Output [40]  
IN2  
S0  
3-bit LUT13  
S0  
S1  
OUT  
IN1  
IN0  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [39]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [25]  
8-bits NVM  
registers [1279:1272]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [38]  
S0  
S1  
S0  
S1  
DFF/  
Latch17  
nRST/nSET  
Q/nQ  
CLK  
register [1134]  
LUT/DFF Sel  
registers [1127:1126],  
[1133:1132]  
registers [1287:1280]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [24]  
0
S0  
OUT  
CNT/DLY5  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [1125:1121], [1131:1128],  
[1138:1135]  
Figure 44: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT13/DFF17, CNT/DLY5)  
Datasheet  
17-Jun-2021  
Revision 3.0  
73 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
register [1295] DFF or Latch Select  
register [1294] Output Select (Q or  
nQ)  
From Connection  
register [1293] (nRST or nSET)  
from matrix Output  
Matrix Output [43]  
IN2  
S0  
3-bit LUT14  
S0  
S1  
register [1292] DFF Initial Polarity  
Select  
OUT  
IN1  
IN0  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [42]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [27]  
8-bits NVM  
registers [1295:1288]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [41]  
S0  
S1  
S0  
S1  
DFF/  
Latch18  
nRST/nSET  
Q/nQ  
CLK  
register [1152]  
LUT/DFF Sel  
registers [1303:1296]  
registers [1150:1148]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [26]  
0
S0  
OUT  
CNT/DLY6  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [1156:1153], [1147:1139]  
Figure 45: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT14/DFF18, CNT/DLY6)  
Datasheet  
17-Jun-2021  
Revision 3.0  
74 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
register [1311] DFF or Latch Select  
register [1310] Output Select (Q or  
nQ)  
register [1309] (nRST or nSET) from  
matrix Output  
register [1308] DFF Initial Polarity Se-  
lect  
From Connection  
Matrix Output [46]  
IN2  
S0  
3-bit LUT15  
S0  
S1  
OUT  
IN1  
IN0  
S1  
LUT Truth  
Table  
From Connection  
Matrix Output [45]  
To Connection  
S0  
S0  
S1  
S0  
S1  
Matrix Input [29]  
8-bits NVM  
registers [1311:1304]  
S1  
DFF  
Registers  
D
From Connection  
Matrix Output [44]  
S0  
S1  
S0  
S1  
DFF/  
Latch19  
nRST/nSET  
CLK  
Q/nQ  
register [1161]  
LUT/DFF Sel  
registers [1319:1312]  
registers [1165:1162]  
Mode Sel  
CNT  
Data  
ext_CLK  
To Connection  
Matrix Input [28]  
0
S0  
OUT  
CNT/DLY7  
DLY_IN/CNT Reset  
S0  
S1  
S2  
S1  
S2  
S3  
Config  
Data  
0
S3  
registers [1174:1166], [1160:1157]  
Figure 46: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT15/DFF19, CNT/DLY7)  
As shown in Figures 24-30 there is a possibility to use LUT/DFF and CNT/DLY simultaneously.  
Note: It is not possible to use LUT and DFF at once, one of these macrocells must be selected.  
Case 1. LUT/DFF in front of CNT/DLY. Three input signals from the connection matrix go to previously selected LUT or DFF's  
inputs and produce a single output which goes to a CND/DLY input. In its turn Counter/Delay's output goes back to the matrix.  
Case 2. CNT/DLY in front of LUT/DFF. Two input signals from the connection matrix go to CND/DLY's inputs (IN and CLK). Its  
output signal can be connected to any input of previously selected LUT or DFF, after which the signal goes back to the matrix.  
Case 3. Single LUT/DFF or CNT/DLY. Also, it is possible to use a standalone LUT/DFF or CNT/DLY. In this case, all inputs  
and output of the macrocell are connected to the matrix.  
Datasheet  
17-Jun-2021  
Revision 3.0  
75 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
8.1.2 3-Bit LUT or CNT/DLYs Used as 3-Bit LUTs  
Table 45: 3-bit LUT9 Truth Table  
Table 49: 3-bit LUT13 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1208]  
register [1209]  
register [1210]  
register [1211]  
register [1212]  
register [1213]  
register [1214]  
register [1215]  
LSB  
register [1272]  
register [1273]  
register [1274]  
register [1275]  
register [1276]  
register [1277]  
register [1278]  
register [1279]  
LSB  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 46: 3-bit LUT10 Truth Table  
Table 50: 3-bit LUT14 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1224]  
register [1225]  
register [1226]  
register [1227]  
register [1228]  
register [1229]  
register [1230]  
register [1231]  
register [1288]  
register [1289]  
register [1290]  
register [1291]  
register [1292]  
register [1293]  
register [1294]  
register [1295]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 47: 3-bit LUT11 Truth Table  
Table 51: 3-bit LUT15 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1240]  
register [1241]  
register [1242]  
register [1243]  
register [1244]  
register [1245]  
register [1246]  
register [1247]  
register [1304]  
register [1305]  
register [1306]  
register [1307]  
register [1308]  
register [1309]  
register [1310]  
register [1311]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
Table 48: 3-bit LUT12 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1256]  
register [1257]  
register [1258]  
register [1259]  
register [1260]  
register [1261]  
register [1262]  
register [1263]  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
MSB  
Datasheet  
17-Jun-2021  
Revision 3.0  
76 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-Bit LUT9 is defined by registers [1215:1208]  
3-Bit LUT10 is defined by registers [1231:1224]  
3-Bit LUT11 is defined by registers [1247:1240]  
3-Bit LUT12 is defined by registers [1263:1256]  
3-Bit LUT13 is defined by registers [1279:1272]  
3-Bit LUT14 is defined by registers [1295:1288]  
3-Bit LUT15 is defined by registers [1311:1304]  
Datasheet  
17-Jun-2021  
Revision 3.0  
77 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
8.2 4-BIT LUT OR DFF/LATCH WITH 16-BIT COUNTER/DELAY MACROCELL  
There is one macrocell that can serve as either 4-bit LUT/D Flip-Flops or as 16-bit Counter/Delay.  
When used to implement LUT function, the 4-bit LUT takes in four input signals from the Connection Matrix and produces a single  
output, which goes back into the Connection Matrix.  
When used to implement D Flip-Flop function, the two input signals from the connection matrix go to the data (D) and clock (CLK)  
inputs for the Flip-Flop, with the output going back to the connection matrix.  
When used to implement 16-Bit Counter/Delay function, two of the four input signals from the connection matrix go to the external  
clock (EXT_CLK) and reset (DLY_IN/CNT Reset) for the Counter/Delay, with the output going back to the connection matrix.  
This macrocell has an optional Finite State Machine (FSM) function. There are two additional matrix inputs for Up and Keep to  
support FSM functionality  
This macrocell can also operate in a one-shot mode, which will generate an output pulse of user-defined width.  
This macrocell can also operate in a frequency detection or edge detection mode.  
This macrocell can have its active count value read via I2C. See Section 15.6.1 for further details.  
Note: After two DFF – counters initialize with counter data = 0 after POR.  
Initial state = 1 – counters initialize with counter data = 0 after POR.  
Initial state = 0 And After two DFF is bypass – counters initialize with counter data after POR.  
Datasheet  
17-Jun-2021  
Revision 3.0  
78 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
8.2.1 4-Bit LUT or DFF/LATCH with 16-Bit CNT/DLY Block Diagram  
From Connection  
Matrix Output [57]  
IN3  
register [1367] DFF or Latch Se-  
S0  
S1  
lect  
register [1366] DFF Output Select  
(Q or nQ)  
register [1365] DFF Initial Polarity  
Select  
S1  
S0  
S1  
S0  
IN2  
IN1  
From Connection  
Matrix Output [56]  
0
4-bit LUT1  
S1  
S0  
S0  
S1  
S1  
S0  
0
OUT  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [55]  
S1  
S0  
To Connection  
S0  
S0  
S1  
S1  
S0  
Matrix Input [15]  
registers [1217:1216] =  
00, 10, 11  
16-bits NVM  
registers [1367:1352]  
1
S1  
From Connection  
Matrix Output [54]  
DFF  
D
S1  
S0  
Registers  
S0  
S1  
S1  
S0  
nSET  
Q/nQ  
DFF17  
1
nRST  
CLK  
LUT/DFF Sel  
register [1220]  
registers [1222:1221]  
registers [1383:1368]  
CNT  
registers [1219:1216]  
Mode Selection  
0
S0  
S1  
S2  
S3  
Data  
ext_CLK  
CMO* [56]  
CMO* [55]  
S0  
S1  
To Connection  
Matrix Input [14]  
S0  
0
0
S0  
S1  
S2  
S3  
CMO* [57]  
CMO* [56]  
CMO* [55]  
CMO* [54]  
S1  
S2  
S3  
OUT  
CNT/DLY0  
DLY_IN/CNT Reset  
CMO* [55]  
S1  
S0  
From Connection  
Matrix Output [56]  
0
KEEP  
UP  
From Connection  
Matrix Output [57]  
FSM  
S1  
S0  
Config  
Data  
0
Note: CMO - Connection Matrix Output  
registers [1238:1223],  
[1337:1336]  
registers [1217:1216] = 01  
Figure 47: 4-bit LUT1 or CNT/DLY0  
Datasheet  
17-Jun-2021  
Revision 3.0  
79 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
8.2.2 4-Bit LUT or 16-Bit Counter/Delay Macrocells Used as 4-Bit LUTs  
Table 52: 4-bit LUT1 Truth Table  
IN3  
0
IN2  
0
IN1  
0
IN0  
0
OUT  
register [1176]  
register [1177]  
register [1178]  
register [1179]  
register [1180]  
register [1181]  
register [1182]  
register [1183]  
register [1184]  
register [1185]  
register [1186]  
register [1187]  
register [1188]  
register [1189]  
register [1190]  
register [1191]  
LSB  
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
MSB  
This macrocell, when programmed for a LUT function, uses a 16-bit register to define their output function:  
4-Bit LUT1 is defined by registers [1191:1176]  
Table 53: 4-bit LUT Standard Digital Functions  
Function  
AND-4  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-4  
OR-4  
NOR-4  
XOR-4  
XNOR-4  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
80 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
8.3 CNT/DLY/FSM TIMING DIAGRAMS  
8.3.1 Delay Mode CNT/DLY0 to CNT/DLY7  
Delay In  
Asynchronous delay variable  
Asynchronous delay variable  
OSC: force power-on  
(always running)  
Delay Output  
delay = period x (counter data + 1) + variable  
variable is from 0 to 1 clock period  
delay = period x (counter data + 1) + variable  
variable is from 0 to 1 clock period  
Delay In  
offset  
offset  
OSC: auto power-on  
(powers up from delay in)  
Delay Output  
delay = offset + period x (counter data + 1)  
See offset in table 11  
delay = offset + period x (counter data + 1)  
See offset in table 11  
Figure 48: Delay Mode Timing Diagram, Edge Select: Both, Counter Data: 3  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
81 of 199  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
The macrocell shifts the respective edge to a set time and restarts by appropriate edge. It works as a filter, if the input signal is  
shorter than the delay time.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
Delay time  
Delay Function  
Rising Edge Detection  
t
Delay Function  
Falling Edge Detection  
t
Delay Function  
Both Edge Detection  
t
Figure 49: Delay Mode Timing Diagram for Different Edge Select Mode  
8.3.2 Count Mode (Count Data: 3), Counter Reset (Rising Edge Detect) CNT/DLY0 to CNT/DLY7  
RESET_IN  
CLK  
Counter OUT  
4 CLK period pulse  
Count start in first rising edge CLK  
Figure 50: Counter Mode Timing Diagram without Two DFFs Synced Up  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
82 of 199  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
.
RESET_IN  
CLK  
Counter OUT  
4 CLK period pulse  
Count start in 0 CLK after reset  
Figure 51: Counter Mode Timing Diagram with Two DFFs Synced Up  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
83 of 199  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
8.3.3 One-Shot Mode CNT/DLY0 to CNT/DLY7  
This macrocell will generate a pulse whenever a selected edge is detected on its input. Register bits set the edge selection. The  
pulse width determines by counter data and clock selection properties. The output pulse polarity (non-inverted or inverted) is  
selected by register bit. Any incoming edges will be ignored during the pulse width generation. The following diagram shows one-  
shot function for non-inverted output.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
Delay time  
One-Shot Function  
Rising Edge Detection  
t
One-Shot Function  
Falling Edge Detection  
t
One-Shot Function  
Both Edge Detection  
t
Figure 52: One-Shot Function Timing Diagram  
This macrocell generates a high level pulse with a set width (defined by counter data) when detecting the respective edge. It does  
not restart while pulse is high.  
8.3.4 Frequency Detection Mode CNT/DLY0 to CNT/DLY7  
Rising Edge: The output goes high if the time between two successive edges is less than the delay. The output goes low if the  
second rising edge has not come after the last rising edge in specified time.  
Falling Edge: The output goes high if the time between two falling edges is less than the set time. The output goes low if the  
second falling edge has not come after the last falling edge in specified time.  
Both Edge: The output goes high if the time between the rising and falling edges is less than the set time, which is equivalent to  
the length of the pulse. The output goes low if after the last rising/falling edge and specified time, the second edge has not come.  
Datasheet  
17-Jun-2021  
Revision 3.0  
84 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Delay time  
Frequency Detector Function  
Rising Edge Detection  
Frequency Detector Function  
Falling Edge Detection  
t
t
Frequency Detector Function  
Both Edge Detection  
Figure 53: Frequency Detection Mode Timing Diagram  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
85 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
8.3.5 Edge Detection Mode CNT/DLY1 to CNT/DLY7  
The macrocell generates high level short pulse when detecting the respective edge. See Table 12.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Edge Detector Function  
Rising Edge Detection  
Edge Detector Function  
Falling Edge Detection  
t
t
Edge Detector Function  
Both Edge Detection  
Figure 54: Edge Detection Mode Timing Diagram  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
86 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
8.3.6 Delayed Edge Detection Mode CNT/DLY0 to CNT/DLY7  
In Delayed Edge Detection Mode, High level short pulses are generated on the macrocell output after the configured delay time,  
if the corresponding edge was detected on the input.  
If the input signal is changed during the set delay time, the pulse will not be generated. See Figure 55.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
Delay time  
Delayed Edge Detector Function  
t
t
Rising Edge Detection  
Delayed Edge Detector Function  
Falling Edge Detection  
t
t
Delayed Edge Detector Function  
Both Edge Detection  
Figure 55: Delayed Edge Detection Mode Timing Diagram  
Datasheet  
17-Jun-2021  
Revision 3.0  
87 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
8.3.7 CNT/FSM Mode CNT/DLY0  
RESET IN  
KEEP  
COUNT END  
CLK  
3
2
1
0
3
2
1
0
3
2
1
3
2
1
0
0
Q
Note: Q = current counter value  
Figure 56: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3  
SET IN  
KEEP  
COUNT END  
CLK  
2
1
0
3
2
1
0
3
3
2
1
2
1
0
3
3
Q
Note: Q = current counter value  
Figure 57: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3  
Datasheet  
17-Jun-2021  
Revision 3.0  
88 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
RESETI N  
KEEP  
COUNT END  
CLK  
65535  
65533 65534  
5
6
7
8
9
3
4
5
3
4
5
1
2
3
4
0
Q
Note: Q = current counter value  
Figure 58: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3  
SET IN  
KEEP  
COUNT END  
CLK  
65533 65534 65535  
3
4
5
8
9
10 11 12  
3
4
5
4
5
6
7
3
Q
Note: Q = current counter value  
Figure 59: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator Is Forced On, UP = 1) for Counter Data = 3  
Datasheet  
17-Jun-2021  
Revision 3.0  
89 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
8.3.8 Difference in Counter Value for Counter, Delay, One-Shot, and Frequency Detect Modes  
There is a difference in counter value for Counter and Delay/One-Shot/Frequency Detect modes. The counter value is shifted for  
two rising edges of the clock signal in Delay/One-Shot/Frequency Detect modes compared to Counter mode. See Figure 60:  
One-Shot/Freq. SET/Delay IN  
CLK  
CNT Out  
3
2
1
0
0
CNT Data  
3
2
DLY Out  
Delay Data  
3
3
2
1
3
3
3
One-Shot Out  
One-Shot Data  
3
3
3
2
1
3
3
Figure 60: Counter Value, Counter Data = 3  
8.4 WAKE AND SLEEP CONTROLLER  
The SLG46855-A has a Wake and Sleep function for all ACMPs. The macrocell CNT/DLY0 can be reconfigured for this purpose  
registers [1032:1031] = 11 and register [1046] = 1. The WS serves for power saving, it allows to switch on and off selected ACMPs  
on selected bit of 16-bit counter.  
Note 1: BG/Analog_Good time is long and should be considered in wake and sleep timing in case it dynamically powers on/off.  
Datasheet  
17-Jun-2021  
Revision 3.0  
90 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Note 2: Wake time should be long enough to make sure ACMP and Vref have enough time to get a sample before going to sleep.  
Power Control  
From Connection Matrix Output [80] for 2 kHz OSC0  
WS Controller  
OSC  
CNT0_out  
CNT_end  
CNT  
To Connection Matrix Input [14]  
ck  
Divider  
CK_OSC  
Analog Control Block  
ACMPx WS EN:  
registers [687], [688]  
[695], [647]  
4
bg/regulator  
pdb  
From Connection  
Matrix Output [78:75]  
WS_out  
WS_PD  
WS_PD  
(from OSC PD)  
ACMPs_PD  
4
WS_out  
WS_PD to W&S out  
state selection  
registers [1038:1035]  
WS clock freq. selection  
registers [1207:1192]  
WS ratio control data  
ACMPs  
register [689]  
WS mode: normal or short wake  
Note: WS_PD is High at WS OSC  
ACMP0..3 OUT  
4
+
-
0
1
(2 kHz OSC0) power-down  
4
To Connection  
Matrix Input  
[56:59]  
ACMPs_PD  
WS_out  
BG/Analog_Good  
Figure 61: Wake/Sleep Controller  
Datasheet  
17-Jun-2021  
Revision 3.0  
91 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
time between Reset goes low  
and 1st WS clock rsing edge  
Force Wake  
CNT_RST  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is latched  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
ACMP Latches Last Data  
Normal ACMP  
Operation  
ACMP follows input  
Sleep Mode  
ACMP Latches New Data  
Normal ACMP  
Sleep Mode  
ACMP Latches  
New Data  
Operation  
ACMP follows input  
BG/Analog  
Startup time*  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.  
Figure 62: Wake/Sleep Timing Diagram, Normal Wake Mode, Counter Reset is Used  
time between Reset goes low  
and 1st WS clock rsing edge  
Force Wake  
CNT_RST  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is latched  
Data is latched  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
Sleep Mode  
ACMP Latches New Data  
Normal ACMP  
Operation for short time  
ACMP follows inout  
Sleep Mode  
ACMP Latches  
New Data  
ACMP Latches Last Data  
Normal ACMP  
Operation for short time  
ACMP follows inout  
BG/Analog  
Startup time*  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.  
Figure 63: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Reset is Used  
Datasheet  
17-Jun-2021  
Revision 3.0  
92 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
time between Reset goes low  
and 1st WS clock rsing edge  
Force Sleep  
CNT_SET  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is latched  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
ACMP Latches Last Data  
Normal ACMP  
Operation  
ACMP follows input  
Sleep Mode  
ACMP Latches New Data  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.  
Figure 64: Wake/Sleep Timing Diagram, Normal Wake Mode, Counter Set is Used  
time between Reset goes low  
and 1st WS clock rsing edge  
Force Sleep  
CNT_RST  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is latched  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
Sleep Mode  
ACMP Latches New Data  
ACMP Latches Last Data  
Normal ACMP  
Operation for short time  
ACMP follows inout  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.  
Figure 65: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Set is Used  
Note: If low power BG is powered on/off by WS, the wake time should be longer than 2.1 ms. The BG/analog start up time will  
take maximal 2 ms. Therefore, 8 periods of the Oscillator0 is recommended for the wake time, when BG is configured to Auto  
Power mode. If low power BG is always on, Oscillator0 period is longer than required wake time. The BG/analog start up time will  
Datasheet  
17-Jun-2021  
Revision 3.0  
93 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
take maximal 450 us for ACMP0/1 and a shorter time for ACMP2/3. The short wake mode can be used to reduce the current  
consumption.  
To use any ACMP under WS controller, the following settings must be done:  
ACMP Power Up Input from matrix = 1 (for each ACMP separately);  
CNT/DLY0 must be set to Wake and Sleep Controller function (for all ACMP);  
Register WS → enable (for each ACMP separately);  
CNT/DLY0 set/reset input = 0 (for all ACMP).  
The user can select a period of time while the ACMP is sleeping in a range of 1 - 65535 clock cycles. Before they are sent to  
sleep their outputs are latched, so the ACMPs remain their state (High or Low) while sleeping.  
WS controller has the following settings:  
Wake and Sleep Output State (High/Low)  
If OSC is powered off (Power-down option is selected; Power-down input = 1) and Wake and Sleep Output State = High, the  
ACMP is continuously on.  
If OSC is powered off (Power-down option is selected; Power-down input = 1) and Wake and Sleep Output State = Low, the  
ACMP is continuously off.  
Both cases WS function is turned off.  
Counter Data (Range: 1 - 65535)  
User can select wake and sleep ratio of the ACMP; counter data = sleep time, one clock = wake time.  
Q mode - defines the state of WS counter data when Set/Reset signal appears Reset - when active signal appears, the WS  
counter will reset to zero and High level signal on its output will turn on the ACMPs. When Reset signal goes out, the WS  
counter will go Low and turn off the ACMP until the counter counts up to the end. Set - when active signal appears, the WS  
counter will stop and Low level signal on its output will turn off the ACMP. When Set signal goes out, the WS counter will go on  
counting and High level signal will turn on the ACMP while counter is counting up to the end.  
Note: The OSC0 matrix power-down to control ACMP WS is not supported for short wait time option.  
Edge Select defines the edge for Q mode  
High level Set/Reset - switches mode Set/Reset when level is High  
Note: Q mode operates only in case of "High Level Set/Reset”.  
Wake time selection - time required for wake signal to turn the ACMPxH on  
Normal Wake Time - when WS signal is High, it takes BG/analog start up time to turn the ACMPs on. They will stay on until  
WS signal is Low again. Wake time is one clock period. It should be longer than BG turn on time and minimal required com-  
paring time of the ACMP.  
Short Wake Time - when WS signal is High, it takes BG/analog start up time to turn the ACMPs on. They will stay on for 1 µs  
and turn off regardless of WS signal. The WS signal width does not matter.  
Keep - pauses counting while Keep = 1  
Up - reverses counting  
If Up = 1, CNT is counting up from user selected value to 65535.  
If Up = 0, CNT is counting down from user selected value to 0.  
Datasheet  
17-Jun-2021  
Revision 3.0  
94 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
9
Analog Comparators  
There are two High Speed and two Low Power Rail-to-Rail General Purpose Analog Comparators (ACMP) macrocells in the  
SLG46855-A. In order for the ACMP cells to be used in a GreenPAK design, the power up signals (ACMP0H PWR UP, ACMP1H  
PWR UP, ACMP2L PWR UP, and ACMP3L PWR UP) need to be active. By connecting to signals coming from the Connection  
Matrix, it is possible to have each ACMP be ON continuously, OFF continuously, or switched on periodically based on a digital  
signal coming from the Connection Matrix. When ACMP is powered down, its output is low.  
Two of the four General Purpose Analog Comparators are optimized for high speed operation (ACMP0H and ACMP1H), and two  
other are optimized for low power operation (ACMP2L and ACMP3L).  
Each of the ACMP cells has a positive input signal that can be provided by a variety of external sources, and can also have a  
selectable gain stage (1x, 0.5x, 0.33x, 0.25x) before connection to the analog comparator. The gain divider is unbuffered and has  
input resistance of 2 M(typ) for 0.5x, 0.33x, 0.25x, and 10 Gfor 1x. Each of the ACMP cells has a negative input signal that  
is either created from an internal Vref or provided by any external source (GPIO2 and GPO0). Note that the external Vref signal  
is filtered with a 2nd order low pass filter with 8 kHz typical bandwidth, see Figure 66 to Figure 69.  
Input bias current < 1 nA (typ).  
PWR UP = 1 => ACMP is powered up.  
PWR UP = 0 => ACMP is powered down.  
During power-up, the ACMP output will remain LOW, and then becomes valid in 37 μs (max) after power up signal goes high for  
ACMP0H and ACMP1H, and becomes valid 294 μs (max) after power up signal goes high for ACMP2L and ACMP3L.  
Each High Speed ACMP (ACMP0H and ACMP1H) has an optional Rail-to-Rail Input Buffer, which can be used along with the  
Gain divider to increase ACMP input resistance. However, Input buffer will increase an input offset voltage.  
Each cell also has a hysteresis selection, to offer hysteresis of (0, 32, 64, 192) mV. The hysteresis option is available when using  
an internal Vref only.  
The ACMP0H has an additional option of connecting an internal 100 μA current source to its positive input, register [690]. It is  
also possible to connect the 100 μA current source to each next ACMP via an internal analog MUX.  
ACMP0H IN+ options are GPIO4, buffered GPIO4, VDD, 100 µA Current Source  
ACMP1H IN+ options are GPIO5, buffered GPIO5, ACMP0H IN+ MUX output  
ACMP2L IN+ options are GPIO6, ACMP0H IN+ MUX output, ACMP1H IN+ MUX output  
ACMP3L IN+ options are GPIO7, ACMP2L IN+ MUX output, Temp Sensor OUT  
Datasheet  
17-Jun-2021  
Revision 3.0  
95 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
9.1 ACMP0H BLOCK DIAGRAM  
to ACMP1H, ACMP2L, AC-  
VDD = 1.8 V  
MP3L’s MUX input  
registers [652:651]  
100 µA  
Current  
Source  
register [690]  
en  
Hysteresis  
Selection  
registers [697:696]  
ACMP  
Ready  
01  
00  
10  
GPIO4: ACMP0H(+)  
Selectable  
Gain  
+
To Connection  
Matrix Input [56]  
0
1
Internal VDD 2.3V ~ 5.5 V  
Vref  
-
PWR UP  
Latch  
HighSpeed  
ACMP  
*GPIO4 _aio_en; registers [656]; [654]  
register [687]  
W/S Control  
Ext. Vref0 (GPIO2)  
111111  
LPF*  
From Connection  
Matrix Output [75]  
111110-  
000000  
Internal  
Vref  
Note*: 2nd order low pass filter  
with typical bandwidth 8 kHz  
registers [703:698]  
Figure 66: ACMP0H Block Diagram  
Datasheet  
17-Jun-2021  
Revision 3.0  
96 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
9.2 ACMP1H BLOCK DIAGRAM  
to ACMP2L’s MUX input  
registers [660:659]  
Hysteresis  
Selection  
registers [705:704]  
ACMP  
Ready  
00  
01  
10  
GPIO5: ACMP1H(+)  
Selectable  
Gain  
+
-
To Connection  
Matrix Input [57]  
0
1
ACMP0H IN+ MUX Output  
Vref  
PWR UP  
Latch  
HighSpeed  
ACMP  
*GPIO5_aio_en; registers [661], [657]  
register [688]  
W/S Control  
Ext. Vref0 (GPIO2)  
0
LPF*  
111111  
Ext. Vref1 (GPO0)  
1
register [644]  
From Connection  
Matrix Output [76]  
111110-  
000000  
Internal  
Vref  
Note*: 2nd order low pass filter  
with typical bandwidth 8 kHz  
registers [711:706]  
Figure 67: ACMP1H Block Diagram  
Datasheet  
17-Jun-2021  
Revision 3.0  
97 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
9.3 ACMP2L BLOCK DIAGRAM  
registers [666:665]  
Hysteresis  
Selection  
registers [713:712]  
GPIO6: ACMP2L(+)  
ACMP  
Ready  
00  
from ACMP0H’s MUX output  
Selectable  
Gain  
+
01  
To Connection  
Matrix Input [58]  
0
1
from ACMP1H’s MUX output  
10  
Vref  
-
PWR UP  
Latch  
Low Power  
ACMP  
*GPIO6_aio_en; registers [664], [663]  
register [695]  
W/S Control  
Ext.Vref0 (GPIO2)  
0
LPF*  
111111  
Ext. Vref1 (GPO0)  
1
register [645]  
111110-  
000000  
From Connection  
Matrix Output [77]  
Low  
Power  
Internal  
Vref  
Note*: 2nd order low pass filter  
with typical bandwidth 8 kHz  
registers [719:714]  
Figure 68: ACMP2L Block Diagram  
Datasheet  
17-Jun-2021  
Revision 3.0  
98 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
9.4 ACMP3L BLOCK DIAGRAM  
registers [670:669]  
Hysteresis  
Selection  
registers [721:720]  
GPIO7: ACMP3L(+)  
ACMP  
Ready  
00  
01  
10  
ACMP2L IN+ MUX Output  
Selectable  
Gain  
+
-
To Connection  
Matrix Input[59]  
0
1
Vref  
Vref  
PWR UP  
Latch  
Low Power  
ACMP  
*GPIO7_aio_en; registers [693], [673]  
register [647]  
W/S Control  
Ext. Vref0 (GPIO2)  
0
LPF*  
111111  
Ext. Vref1 (GPO0)  
1
register [646]  
From Connection  
Low  
Matrix Output [78]  
111110-  
000000  
Power  
Internal  
Vref  
Low Power  
ACMP  
Note*: 2nd order low pass filter  
with typical bandwidth 8 kHz  
registers [727:722]  
Figure 69: ACMP3L Block Diagram  
Datasheet  
17-Jun-2021  
Revision 3.0  
99 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
9.5 ACMP TYPICAL PERFORMANCE  
6
5
4
High To Low, Overdrive = 5 mV  
High To Low, Overdrive = 10 mV  
High To Low, Overdrive = 100 mV  
Low to High, Overdrive = 5 mV  
Low to High, Overdrive = 10 mV  
Low to High, Overdrive = 100 mV  
3
2
1
0
32  
480  
1024  
Vref (mV)  
1600  
2016  
Figure 70: Typical Propagation Delay vs. Vref for ACMPxH at T = 25 °C, Gain = 1, Hysteresis = 0  
150  
High To Low, Overdrive = 5 mV  
Low to High, Overdrive = 5 mV  
130  
High To Low, Overdrive = 10 mV  
Low to High, Overdrive = 10 mV  
High To Low, Overdrive = 100 mV  
Low to High, Overdrive = 100 mV  
110  
90  
70  
50  
30  
10  
32  
480  
1024  
1600  
2016  
Vref (mV)  
Figure 71: Typical Propagation Delay vs. Vref for ACMPxL at T = 25 °C, Gain = 1, Hysteresis = 0  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
100 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
25  
T = -40 °C  
T = 25 °C  
20  
T = 105 °C  
15  
10  
5
0
2.3  
2.6  
2.9  
3.2  
3.5  
3.8  
VDD (V)  
4.1  
4.4  
4.7  
5.0  
5.3  
Figure 72: ACMPxH Power-On Delay vs. VDD  
.
200  
T = -40 °C  
T = 25 °C  
T = 105 °C  
180  
160  
140  
120  
100  
80  
60  
2.3  
2.6  
2.9  
3.2  
3.5  
3.8  
VDD (V)  
4.1  
4.4  
4.7  
5.0  
5.3  
Figure 73: ACMPxL Power-On Delay vs. VDD  
.
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
101 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
8
6
4
2
0
-2  
-4  
-6  
-8  
32  
480  
1024  
1600  
2016  
Vref (mV)  
Figure 74: ACMPxH Input Offset Voltage vs. Vref at T = -40 °C to 105 °C  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
32  
480  
1024  
1600  
2016  
Vref (mV)  
Figure 75: ACMPxL Input Offset Voltage vs. Vref at T = -40 °C to 105 °C  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
102 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
10 Programmable Delay/Edge Detector  
The SLG46855-A has a programmable time delay logic cell that can generate a delay that is selectable from one of four timings  
(time2) configured in the GreenPAK Designer. The programmable time delay cell can generate one of four different delay patterns,  
rising edge detection, falling edge detection, both edge detection, and both edge delay. These four patterns can be further  
modified with the addition of delayed edge detection, which adds an extra unit of delay, as well as glitch rejection during the delay  
period. See Figure 76 for further information.  
Note: The input signal must be longer than the delay, otherwise it will be filtered out.  
registers [1453:1452]  
Delay Value Selection  
registers [1455:1454]  
Edge Mode Selection  
To Connection  
Matrix Input [42]  
Programmable  
From Connection Matrix Output [54]  
IN  
OUT  
Delay  
Figure 76: Programmable Delay  
10.1 PROGRAMMABLE DELAY TIMING DIAGRAM - EDGE DETECTOR OUTPUT  
width  
width  
IN  
time1  
Rising Edge Detector  
time1  
Falling Edge Detector  
Edge Detector  
Output  
Both Edge Detector  
Both Edge Delay  
time2  
time2  
time1 is a fixed value  
time2 delay value is selected via register  
Figure 77: Edge Detector Output  
Please refer to Table 12.  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
103 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
11 Additional Logic Function. Deglitch Filter  
The SLG46855-A has one Deglitch Filter macrocell with inverter function that is connected directly to the Connection Matrix inputs  
and outputs. In addition, this macrocell can be configured as an Edge Detector, with the following settings:  
Rising Edge Detector  
Falling Edge Detector  
Both Edge Detector  
Both Edge Delay  
Filter  
R
From Connection Matrix  
Output [55]  
C
To Connection Matrix  
Input [43]  
Edge  
Detector  
Logic  
register [1448]  
registers [1451:1450]  
register [1449]  
Figure 78: Deglitch Filter/Edge Detector  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
104 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
12 Voltage Reference  
12.1 VOLTAGE REFERENCE OVERVIEW  
The SLG46855-A has a Voltage Reference (Vref) macrocell to provide references to the four analog comparators. This macrocell  
can supply a user selection of fixed voltage references, or temperature sensor output. The macrocell also has the option to output  
reference voltages on GPIO8 and GPIO9. See Table 53 for the available selections for each analog comparator.  
Also see Figure 79, which shows the reference output structure.  
12.2 VREF SELECTION TABLE  
Table 54: Vref Selection Table  
SEL[5:0]  
0
Vref  
0.032  
0.064  
0.096  
0.128  
0.16  
SEL[5:0]  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
Vref  
1.056  
1.088  
1.12  
1
2
3
1.152  
1.184  
1.216  
1.248  
1.28  
4
5
0.192  
0.224  
0.256  
0.288  
0.32  
6
7
8
1.312  
1.344  
1.376  
1.408  
1.44  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0.352  
0.384  
0.416  
0.448  
0.48  
1.472  
1.504  
1.536  
1.568  
1.6  
0.512  
0.544  
0.576  
0.608  
0.64  
1.632  
1.664  
1.696  
1.728  
1.76  
0.672  
0.704  
0.736  
0.768  
0.8  
1.792  
1.824  
1.856  
1.888  
1.92  
0.832  
0.864  
0.896  
0.928  
0.96  
1.952  
1.984  
2.016  
External  
0.992  
1.024  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
105 of 199  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
12.3 VREF BLOCK DIAGRAM  
External Vref  
registers [703:698]  
(GPIO2,  
None  
00  
01  
10  
11  
GPO0)  
ACMP0H_Vref0  
GPIO8_aio_en  
VrefOut_0 (GPIO8)  
1
0
OP  
pd  
registers [711:706]  
ACMP1H_Vref0  
registers [679:678]  
register [677]  
Temp Sensor  
register [648]  
0
From Matrix  
Output [79]  
1
register [649]  
None  
None  
00  
01  
10  
11  
registers [719:714]  
GPIO9_aio_en  
VrefOut_1 (GPIO9)  
1
0
OP  
pd  
ACMP2L_Vref1  
registers [727:722]  
registers [682:681]  
ACMP3L_Vref1  
register [680]  
register [650]  
0
1
From Matrix  
Output [79]  
register [694]  
Figure 79: Voltage Reference Block Diagram  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
106 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
12.4 VREF LOAD REGULATION  
Note 1 It is not recommended to use Vref connected to external pin without buffer.  
Note 2 Vref buffer performance is not guaranteed at VDD < 2.7 V.  
350  
300  
250  
200  
150  
100  
VDD = 5 V  
VDD = 3.3 V  
VDD = 2.5 V  
50  
0
0
1
2
3
4
5
6
7
8
9
10  
I, mA  
Figure 80: Typical Load Regulation, Vref = 320 mV, T = -40 °C to +105 °C, Buffer - Enabled  
700  
600  
500  
400  
300  
200  
VDD = 5 V  
VDD = 3.3 V  
VDD = 2.5 V  
100  
0
0
1
2
3
4
5
6
7
8
9
10  
I, mA  
Figure 81: Typical Load Regulation, Vref = 640 mV, T = -40 °C to +105 °C, Buffer - Enabled  
Datasheet  
17-Jun-2021  
Revision 3.0  
107 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
1400  
1200  
1000  
800  
600  
400  
VDD = 5 V  
VDD = 3.3 V  
VDD = 2.5 V  
200  
0
0
1
2
3
4
5
6
7
8
9
10  
I, mA  
Figure 82: Typical Load Regulation, Vref = 1280 mV, T = -40 °C to +105 °C, Buffer - Enabled  
2100  
1800  
1500  
1200  
900  
600  
VDD = 5 V  
VDD = 3.3 V  
VDD = 2.5 V  
300  
0
0
1
2
3
4
5
6
7
8
9
10  
I, mA  
Figure 83: Typical Load Regulation, Vref = 2016 mV, T = -40 °C to +105 °C, Buffer - Enabled  
Datasheet  
17-Jun-2021  
Revision 3.0  
108 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
13 Clocking  
13.1 OSC GENERAL DESCRIPTION  
The SLG46855-A has three internal oscillators to support a variety of applications:  
Oscillator0 (2.048 kHz)  
Oscillator1 (2.048 MHz)  
Oscillator2 (25 MHz).  
There are two divider stages for each oscillator that gives the user flexibility for introducing clock signals to connection matrix, as  
well as various other macrocells. The pre-divider (first stage) for Oscillator allows the selection of /1, /2, /4 or /8 to divide down  
frequency from the fundamental. The second stage divider has an input of frequency from the pre-divider, and outputs one of  
eight different frequencies divided by /1, /2, /3, /4, /8, /12, /24 or /64 on Connection Matrix Input lines [53], [54], and [55]. Please  
see Figure 87 for more details on the SLG46855-A clock scheme.  
Oscillator2 (25 MHz) has an additional function of 100 ns delayed startup, which can be enabled/disabled by register [749]. This  
function is recommended to use when analog blocks are used along with the Oscillator.  
The Matrix Power-down/Force On function allows switching off or force on the oscillator using an external pin. The Matrix Power-  
down/Force On (Connection Matrix Output [80], [81], [82]) signal has the highest priority. The OSC operates according to the  
following table:  
Table 55: Oscillator Operation Mode Configuration Settings  
OSC Enable  
Signal from  
CNT/DLY  
Register:  
Power-Down  
or Force On by  
Matrix Input  
OSC  
Operation  
Mode  
Signal From  
Connection  
Matrix  
Register: Auto  
Power-On or  
Force On  
External Clock  
Selection  
POR  
Macrocells  
0
1
X
1
X
X
X
X
X
X
X
X
OFF  
Internal OSC is  
OFF, logic is ON  
1
1
1
0
0
0
1
1
0
0
1
X
X
X
1
X
X
X
OFF  
ON  
ON  
ON  
CNT/DLY re-  
quires OSC  
1
1
0
0
0
0
X
X
0
0
CNT/DLY does  
not require OSC  
OFF  
Note 1 The OSC will run only when any macrocell that uses OSC is powered on.  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
109 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
13.2 OSCILLATOR0 (2.048 KHZ)  
From Connection Matrix  
Output [80]  
PWR_DWN/Force On  
Matrix Output control register [751]  
OSC Power Mode  
register [750]  
2.048 kHz Pre-divided Clock  
PWR DOWN/  
FORCE ON  
registers [755:754]  
OSC0  
Auto Power-On  
Force Power-On  
(2.048 kHz) OUT  
0
1
0
1
DIV /1 /2 /4 /8  
0
1
Ext. Clock  
Pre-divider  
/ 2  
/ 3  
2
3
4
5
6
7
EXT_CLK Sel register [752]  
To Connection Matrix  
Input [53]  
/ 4  
OUT0  
/ 8  
OUT1  
To Connection Matrix  
Input [60]  
/ 12  
/ 24  
/ 64  
registers [758:756]  
registers [766:764]  
Second Stage  
Divider  
Figure 84: Oscillator0 Block Diagram  
Datasheet  
17-Jun-2021  
Revision 3.0  
110 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
13.3 OSCILLATOR1 (2.048 MHZ)  
From Connection Matrix  
Output [81]  
PWR_DWN/Force On  
Matrix Output control register [729]  
OSC Power Mode  
register [728]  
2.048 MHz Pre-divided Clock  
PWR DOWN/  
FORCE ON  
registers [732:731]  
OSC1  
Auto Power-On  
Force Power-On  
(2.048 MHz)OUT  
0
0
1
DIV /1 /2 /4 /8  
0
1
Ext. Clock  
Pre-divider  
1
/ 2  
/ 3  
2
3
4
5
6
EXT_CLK Sel register [730]  
To Connection Matrix  
Input [54]  
/ 4  
OUT0  
/ 8  
OUT1  
To Connection Matrix  
Input [61]  
/ 12  
/ 24  
/ 64  
7
registers [735:733]  
registers [762:760]  
Second Stage  
Divider  
Figure 85: Oscillator1 Block Diagram  
Datasheet  
17-Jun-2021  
Revision 3.0  
111 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
13.4 OSCILLATOR2 (25 MHZ)  
From Connection Matrix  
Output [82]  
PWR_DWN/Force On  
Matrix Output control register [741]  
OSC Power Mode  
register [740]  
25 MHz Pre-divided Clock  
PWR DOWN/  
FORCE ON  
registers [745:744]  
OSC2  
(25 MHz)  
Auto Power-On  
Force Power-On  
OUT  
0
0
1
Startup delay  
DIV /1 /2 /4 /8  
0
1
register [749]  
Pre-divider  
1
/ 2  
/ 3  
Ext. Clock  
2
3
4
5
6
EXT_CLK Sel register [742]  
To Connection Matrix  
Input [55]  
/ 4  
/ 8  
/ 12  
/ 24  
/ 64  
7
registers [748:746]  
Second Stage  
Divider  
Figure 86: Oscillator2 Block Diagram  
13.5 CNT/DLY CLOCK SCHEME  
Each CNT/DLY within Multi-Function macrocell has its own additional clock divider connected to oscillators pre-divider. Available  
dividers are:  
OSC0/1, OSC0/8, OSC0/64, OSC0/512, OSC0/4096, OSC0/32768, OSC0/262144  
OSC1/1, OSC1/8, OSC1/64, OSC1/512  
OSC2/1, OSC2/4  
Datasheet  
17-Jun-2021  
Revision 3.0  
112 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
registers [3:0]  
0
1
25 MHz Pre-divided clock  
Div4  
2
Div8  
Div64  
Div512  
3
4
5
6
CNT/DLY/  
ONESHOT/  
FREQ_DET/  
2.048 MHz Pre-divided clock  
DLY_EDGE_DET  
Div8  
Div64  
7
8
CNT overflow  
2.048 kHz Pre-divided clock  
Div512  
9
Div4096  
Div32768  
Div262144  
10  
11  
12  
13  
14  
15  
CNT (x-1) overflow  
from Connection Matrix Out  
(separate for each CNT/DLY macrocell)  
CNT0/CNT1/CNT2/CNT3/  
CNT4/CNT5/CNT6/CNT7  
none  
Figure 87: Clock Scheme  
13.6 EXTERNAL CLOCKING  
The SLG46855-A supports several ways to use an external, higher accuracy clock as a reference source for internal operations.  
13.6.1 GPI0 Source for Oscillator0 (2.048 kHz)  
When register [752] is set to 1, an external clocking signal on GPI0 will be routed in place of the internal oscillator derived 2.048  
kHz clock source. See Figure 84. The low and high limits for external frequency that can be selected are 0 MHz and 10 MHz.  
13.6.2 GPIO2 Source for Oscillator1 (2.048 MHz)  
When register [730] is set to 1, an external clocking signal on GPIO2 will be routed in place of the internal oscillator derived  
2.048 MHz clock source. See Figure 85. The low and high limits for external frequency that can be selected are 0 MHz and  
10 MHz.  
13.6.3 GPIO8 Source for Oscillator 2 (25 MHz)  
When register [742] is set to 1, an external clocking signal on GPIO8 will be routed in place of the internal oscillator derived 25  
MHz clock source. See Figure 86. The external frequency range is 0 MHz to 20 MHz at VDD = 2.3 V, 30 MHz at VDD = 3.3 V, 50  
MHz at VDD = 5.0 V.  
Datasheet  
17-Jun-2021  
Revision 3.0  
113 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
13.7 OSCILLATORS POWER-ON DELAY  
OSC enable  
Power-On  
Delay  
CLK  
Figure 88: Oscillator Startup Diagram  
Note 1 OSC power mode: “Auto Power-On”.  
Note 2 “OSC enable” signal appears when any macrocell that uses OSC is powered on.  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
2.4  
2.7  
3
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
VDD (V)  
Figure 89: Oscillator0 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC0 = 2.048 kHz  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
114 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
560  
540  
520  
500  
480  
460  
440  
420  
400  
2.4  
2.7  
3
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
VDD (V)  
Figure 90: Oscillator1 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC1 = 2.048 MHz  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
2.4  
2.7  
3
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
VDD (V)  
Figure 91: Oscillator2 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC2 = 25 MHz  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
115 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
13.8 OSCILLATORS ACCURACY  
Note: OSC power setting: Force Power-On; Clock to matrix input - enable; Bandgap: turn on by register - enable.  
2.15  
2.1  
2.05  
2
1.95  
1.9  
1.85  
1.8  
Fmax @ VDD = 2.3 V to 5.5 V  
1.75  
Ftyp @ VDD = 3.3 V  
1.7  
Fmin @ VDD = 2.3 V to 5.5 V  
1.65  
T (°C)  
Figure 92: Oscillator0 Frequency vs. Temperature, OSC0 = 2.048 kHz  
2.1  
2.08  
2.06  
2.04  
2.02  
2
1.98  
1.96  
Fmax @ VDD = 5.5 V  
Fmax @ VDD = 3.3 V  
1.94  
1.92  
1.9  
Fmax @ VDD = 2.3 V  
Ftyp @ VDD = 3.3 V  
Fmin @ VDD = 5.5 V  
Fmin @ VDD = 3.3 V  
1.88  
T (°C)  
Figure 93: Oscillator1 Frequency vs. Temperature, OSC1 = 2.048 MHz  
Datasheet  
17-Jun-2021  
Revision 3.0  
116 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
25.9  
25.7  
25.5  
25.3  
25.1  
24.9  
24.7  
24.5  
24.3  
24.1  
Fmax @ VDD = 5.5 V  
Fmax @ VDD = 3.3 V  
Fmax @ VDD = 2.3 V  
23.9  
Ftyp @ VDD = 3.3 V  
23.7  
Fmin @ VDD = 5.5 V  
23.5  
23.3  
Fmin @ VDD = 3.3 V  
Fmin @ VDD = 2.3 V  
T (°C)  
Figure 94: Oscillator2 Frequency vs. Temperature, OSC2 = 25 MHz  
18  
16  
14  
12  
10  
8
2.048 kHz Total Error @ VDD = 2.3 V to 5.5 V  
25 MHz Total Error @ VDD = 2.3 V to 5.5 V  
2.048 MHz Total Error @ VDD = 2.3 V to 5.5 V  
6
4
2
0
T (°C)  
Figure 95: Oscillators Total Error vs. Temperature  
Note: For more information see Section 3.9.  
Datasheet  
17-Jun-2021  
Revision 3.0  
117 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
14 Power-On Reset  
The SLG46855-A has a Power-On Reset (POR) macrocell to ensure correct device initialization and operation of all macrocells  
in the device. The purpose of the POR circuit is to have consistent behavior and predictable results when the VDD power is first  
ramping to the device, and also while the VDD is falling during Power-down. To accomplish this goal, the POR drives a defined  
sequence of internal events that trigger changes to the states of different macrocells inside the device, and finally to the state of  
the IOs.  
14.1 GENERAL OPERATION  
The SLG46855-A is guaranteed to be powered down and non-operational when the VDD voltage (voltage on PIN1) is less than  
Power-Off Threshold (see in Table 6), but not less than -0.6 V. Another essential condition for the chip to be powered down is that  
no voltage higher (Note) than the VDD voltage is applied to any other PIN. For example, if VDD voltage is 0.3 V, applying a voltage  
higher than 0.3 V to any other PIN is incorrect, and can lead to incorrect or unexpected device behavior.  
Note: There is a 0.6 V margin due to forward drop voltage of the ESD protection diodes.  
To start the POR sequence in the SLG46855-A, the voltage applied on the VDD should be higher than the Power-On threshold  
(Note). The full operational VDD range for the SLG46855-A is 2.3 V to 5.5 V. This means that the VDD voltage must ramp up to  
the operational voltage value, but the POR sequence will start earlier, as soon as the VDD voltage rises to the Power-On threshold.  
After the POR sequence has started, the SLG46855-A will have a typical period of time to go through all the steps in the sequence  
(noted in the datasheet for that device), and will be ready and completely operational after the POR sequence is complete.  
Note: The Power-On threshold is defined in Table 6.  
To power down the chip the VDD voltage should be lower than the operational and to guarantee that chip is powered down it  
should be less than Power-Off Threshold.  
All PINs are in high impedance state when the chip is powered down and while the POR sequence is taking place. The last step  
in the POR sequence releases the IO structures from the high impedance state, at which time the device is operational. The pin  
configuration at this point in time is defined by the design programmed into the chip. Also, as it was mentioned before the voltage  
on PINs can’t be bigger than the VDD, this rule also applies to the case when the chip is powered on.  
Datasheet  
17-Jun-2021  
Revision 3.0  
118 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
14.2 POR SEQUENCE  
The POR system generates a sequence of signals that enable certain macrocells. The sequence is shown in Figure 96.  
VDD  
t
t
t
t
t
t
t
t
POR_NVM  
(reset for NVM)  
NVM_ready_out  
POR_GPI  
(reset for input enable)  
POR_LUT  
(reset for LUT/FILTER)  
POR_CORE  
(reset for DLY/OSC/DFF/LATCH/  
Pipe DLY/ACMP/  
Edge Detector in Filter)  
POR_OUT  
(generate low to high to matrix)  
POR_GPO  
(reset for output enable)  
Figure 96: POR Sequence  
As can be seen from Figure 96 after the VDD has start ramping up and crosses the Power-On threshold, first, the on-chip NVM  
memory is reset. Next, the chip reads the data from NVM, and transfers this information to a CMOS LATCH that serves to configure  
each macrocell, and the Connection Matrix which routes signals between macrocells. The third stage causes the reset of the input  
pins, and then to enable them. After that, the LUTs are reset and become active. After LUTs the Delay cells, OSCs, DFFs,  
LATCHES, and Pipe Delay are initialized. Only after all macrocells are initialized internal POR signal (POR macrocell output) goes  
from LOW to HIGH. The last portion of the device to be initialized are the output pins, which transition from high impedance to  
active at this point.  
The typical time that takes to complete the POR sequence varies by device type in the GreenPAK family. It also depends on many  
environmental factors, such as: slew rate, VDD value, temperature, and even will vary from chip to chip (process influence).  
14.3 MACROCELLS OUTPUT STATES DURING POR SEQUENCE  
To have a full picture of SLG46855-A operation during powering and POR sequence, review the overview the macrocell output  
states during the POR sequence (Figure 97 describes the output signals states).  
First, before the NVM has been reset, all macrocells have their output set to logic LOW (except the output pins which are in high  
impedance state). On the next step, some of the macrocells start initialization: input pins output state becomes LOW; LUTs also  
output LOW. Only P_DLY macrocell configured as edge detector becomes active at this time. After that input pins are enabled.  
Datasheet  
17-Jun-2021  
Revision 3.0  
119 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Next, only LUTs are configured. Next, all other macrocells are initialized. After macrocells are initialized, internal POR matrix signal  
switches from LOW to HIGH. The last are output pins that become active and determined by the input signals.  
VDD  
Guaranteed HIGH before POR_GPI  
Unpredictable  
t
VDD _out  
to matrix  
t
t
Input PIN _out  
to matrix  
Unpredictable  
Unpredictable  
Unpredictable  
Unpredictable  
Unpredictable  
Determined by External Signal  
Determined by Input signals  
LUT/FILTER_out  
to matrix  
Determined by input signals  
OUT = IN without Delay  
t
t
t
t
t
t
Programmable Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
Determined by initial state  
DFF/LATCH/ACMP/  
Edge Detector in  
Filter_out to matrix  
Determined by Input signals  
Determined by input signals  
OUT = IN without Delay  
Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
POR_out  
to matrix  
Unpredictable  
Ext. GPO  
Tri-state  
Determined by input signals  
Output State Unpredictable  
Figure 97: Internal Macrocell States During POR Sequence  
14.3.1 Initialization  
All internal macrocells by default have initial low level. Starting from indicated power-up time of 1.56 V to 2.03 V, macrocells in  
SLG46855-A are powered on while forced to the reset state. All outputs are in Hi-Z and chip starts loading data from NVM. Then  
the reset signal is released for internal macrocells and they start to initialize according to the following sequence:  
1. Input pins, ACMP, Pull-up/down.  
2. LUTs.  
3. DFFs, Delays/Counters, Pipe Delay.  
4. POR output to matrix.  
5. Output pin corresponds to the internal logic.  
The Vref output pin driving signal can precede POR output signal going high by 3 µs to 5 µs. The POR signal going high indicates  
the mentioned power-up sequence is complete.  
Note: The maximum voltage applied to any pin should not be higher than the VDD level. There are ESD Diodes between pin →  
VDD and pin → GND on each pin. So, if the input signal applied to pin is higher than VDD, then current will sink through the diode  
to VDD. Exceeding VDD results in leakage current on the input pin, and VDD will be pulled up, following the voltage on the input  
pin.There is no effect from input pin when input voltage is applied at the same time as VDD  
.
Datasheet  
17-Jun-2021  
Revision 3.0  
120 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
14.3.2 Power-Down  
VDD (V)  
2 V  
1.63 V  
0.83 V  
1 V Vref Out Signal  
1 V  
Time  
Not guaranteed output state  
Figure 98: Power-Down  
During power-down, macrocells in SLG46855-A are powered off after VDD falling down below Power-Off Threshold. Please note  
that during a slow rampdown, outputs can possibly switch state during this time.  
Datasheet  
17-Jun-2021  
Revision 3.0  
121 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
2
15 I C Serial Communications Macrocell  
15.1 I2C SERIAL COMMUNICATIONS MACROCELL OVERVIEW  
In the standard use case for the GreenPAK devices, the configuration choices made by the user are stored as bit settings in the  
Non-Volatile Memory (NVM), and this information is transferred at startup time to volatile RAM registers that enable the configu-  
ration of the macrocells. Other RAM registers in the device are responsible for setting the connections in the Connection Matrix  
to route signals in the manner most appropriate for the user’s application.  
The I2C Serial Communications Macrocell in this device allows an I2C bus Master to read and write this information via a serial  
channel directly to the RAM registers, allowing the remote re-configuration of macrocells, and remote changes to signal chains  
within the device.  
An I2C bus Master is also able to read and write other register bits that are not associated with NVM memory. As an example,  
the input lines to the Connection Matrix can be read as digital register bits. These are the signal outputs of each of the macrocells  
in the device, giving an I2C bus Master the capability to remotely read the current value of any macrocell.  
The user has the flexibility to control read access and write access via registers bits registers [1967:1965]. See Section 15.5 for  
more details on I2C read/write memory protection.  
15.2 I2C SERIAL COMMUNICATIONS DEVICE ADDRESSING  
Each command to the I2C Serial Communications macrocell begins with a Control Byte. The bits inside this Control Byte are  
shown in Figure 99. After the Start bit, the first four bits are a control code. Each bit in a control code can be sourced independently  
from the register or by value defined externally GPI0, GPIO2, GPIO4, and GPIO5. The LSB of the control code is defined by the  
value of GPI0, while the MSB is defined by the value of GPIO5. The address source (either register bit or PIN) for each bit in the  
control code is defined by registers [2027:2024]. This gives the user flexibility on the chip level addressing of this device and other  
devices on the same I2C bus. The Block Address is the next three bits (A10, A9, A8), which will define the most significant bits  
in the addressing of the data to be read or written by the command. The last bit in the Control Byte is the R/W bit, which selects  
whether a read command or write command is requested, with a “1” selecting for a Read command, and a “0” selecting for a Write  
command. This Control Byte will be followed by an Acknowledge bit (ACK), which is sent by this device to indicate successful  
communication of the Control Byte data.  
In the I2C-bus specification and user manual, there are two groups of eight addresses (0000 xxx and 1111 xxx) that are reserved  
for the special functions, such as a system General Call address. If the user of this device choses to set the Control Code to either  
“1111” or “0000” in a system with other slave device, please consult the I2C-bus specification and user manual to understand the  
addressing and implementation of these special functions, to insure reliable operation.  
In the read and write command address structure, there are a total of 11 bits of addressing, each pointing to a unique byte of  
information, resulting in a total address space of 2K bytes. Of this 2K byte address space, the valid addresses accessible to the  
I2C Macrocell on the SLG46855-A are in the range from 0 (0x00) to 255 (0xFF). The MSB address bits (A10, A9, and A8) will be  
“0” for all commands to the SLG46855-A.  
With the exception of the Current Address Read command, all commands will have the Control Byte followed by the Word  
Address. Figure 99 shows this basic command structure.  
Datasheet  
17-Jun-2021  
Revision 3.0  
122 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Start  
bit  
Acknowledge  
bit  
Control Byte  
Word Address  
A
10  
A
9
A
8
A
7
A
0
S
X
X
X
X
R/W ACK  
Control  
Code  
Block  
Address  
Not used, set t  
o 0  
Read/Write bit  
(1 = Read, 0 = Write)  
Figure 99: Basic Command Structure  
15.3 I2C SERIAL GENERAL TIMING  
General timing characteristics for the I2C Serial Communications macrocell are shown in Figure 100. Timing specifications can  
be found in the AC Characteristics section.  
tHIGH  
tF  
tR  
tLOW  
SCL  
tSU STA  
tHD DAT  
tHD STA  
tSU DAT  
tSU STO  
SDA IN  
tBUF  
tAA  
tDH  
SDA OUT  
Figure 100: I2C General Timing Characteristics  
15.4 I2C SERIAL COMMUNICATIONS COMMANDS  
15.4.1 Byte Write Command  
Following the Start condition from the Master, the Control Code [4 bits], the Block Address [3 bits], and the R/W bit (set to “0”) are  
placed onto the I2C bus by the Master. After the SLG46855-A sends an Acknowledge bit (ACK), the next byte transmitted by the  
Master is the Word Address. The Block Address (A10, A9, A8), combined with the Word Address (A7 through A0), together set  
the internal address pointer in the SLG46855-A, where the data byte is to be written. After the SLG46855-A sends another  
Acknowledge bit, the Master will transmit the data byte to be written into the addressed memory location. The SLG46855-A again  
provides an Acknowledge bit and then the Master generates a Stop condition. The internal write cycle for the data will take place  
at the time that the SLG46855-A generates the Acknowledge bit.  
It is possible to latch all IOs during I2C write command, register [1961] = 1 - Enable. It means that IOs will remain their state until  
the write command is done.  
Datasheet  
17-Jun-2021  
Revision 3.0  
123 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Acknowledge  
bit  
Acknowledge  
bit  
Start  
bit  
Acknowledge  
bit  
Bus Activity  
Control Byte  
Word Address  
Data  
A
10  
A
9
A
8
A
7
A
0
D
7
D
0
S
X
X
X
X
W
ACK  
ACK  
ACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, set to  
0
R/W bit = 0  
Figure 101: Byte Write Command, R/W = 0  
15.4.2 Sequential Write Command  
The write Control Byte, Word Address, and the first data byte are transmitted to the SLG46855-A in the same way as in a Byte  
Write command. However, instead of generating a Stop condition, the Bus Master continues to transmit data bytes to the  
SLG46855-A. Each subsequent data byte will increment the internal address counter, and will be written into the next higher byte  
in the command addressing. As in the case of the Byte Write command, the internal write cycle will take place at the time that the  
SLG46855-A generates the Acknowledge bit.  
Acknowledge  
Acknowledge  
bit  
Start  
bit  
bit  
Bus Activity  
SDA LINE  
Not used, se  
Data (n + 1)  
Data (n + x)  
Control Byte  
Word Address (n)  
Data (n)  
A
10  
A
9
A
8
ACK  
ACK  
P
S
X
X
X
X
W
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
t to 0  
Write bit  
Figure 102: Sequential Write Command  
15.4.3 Current Address Read Command  
The Current Address Read Command reads from the current pointer address location. The address pointer is incremented at the  
first STOP bit following any write control byte. For example, if a Sequential Read command (which contains a write control byte)  
reads data up to address n, the address pointer would get incremented to n + 1 upon the STOP of that command. Subsequently,  
a Current Address Read that follows would start reading data at n + 1. The Current Address Read Command contains the Control  
Byte sent by the Master, with the R/W bit = “1”. The SLG46855-A will issue an Acknowledge bit, and then transmit eight data bits  
for the requested byte. The Master will not issue an Acknowledge bit, and follow immediately with a Stop condition.  
Datasheet  
17-Jun-2021  
Revision 3.0  
124 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Start  
bit  
Acknowledge  
bit  
Stop  
bit  
Bus Activity  
Control Byte  
Data (n)  
A
10  
A
9
A
8
S
X
X
X
X
R
ACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
No ACK  
bit  
Not used, set to  
0
R/W bit = 1  
Figure 103: Current Address Read Command, R/W = 1  
15.4.4 Random Read Command  
The Random Read command starts with a Control Byte (with R/W bit set to “0”, indicating a write command) and Word Address  
to set the internal byte address, followed by a Start bit, and then the Control Byte for the read (exactly the same as the Byte Write  
command). The Start bit in the middle of the command will halt the decoding of a Write command, but will set the internal address  
counter in preparation for the second half of the command. After the Start bit, the Bus Master issues a second control byte with  
the R/W bit set to “1”, after which the SLG46855-A issues an Acknowledge bit, followed by the requested eight data bits.  
Acknowledge  
Stop  
bit  
Start  
bit  
bit  
Bus Activity  
Data (n)  
Control Byte  
Word Address (n)  
Control Byte  
A
10  
A
9
A
8
A
10  
A
8
A
9
S
ACK  
X
X
X
X
R ACK  
P
SDA LINE  
S
X
X
X
X
W
ACK  
Control  
Code  
Block  
Address  
Control  
Code  
Block  
Address  
No ACK  
bit  
Not used, set to  
0
Write bit  
Read bit  
Figure 104: Random Read Command  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
Revision 3.0  
125 of 199  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
15.4.5 Sequential Read Command  
The Sequential Read command is initiated in the same way as a Random Read command, except that once the SLG46855-A  
transmits the first data byte, the Bus Master issues an Acknowledge bit as opposed to a Stop condition in a random read. The  
Bus Master can continue reading sequential bytes of data, and will terminate the command with a Stop condition.  
Acknowledge  
Start  
bit  
bit  
Bus Activity  
Data (n + 2)  
Data (n + x)  
Control Byte  
Data (n)  
Data (n + 1)  
A
10  
A
9
A
8
ACK  
P
SDA LINE  
S
X
X X X  
R
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
No ACK  
bit  
Read bit  
Figure 105: Sequential Read Command  
15.4.6 I2C Serial Reset Command  
If I2C serial communication is established with the device, it is possible to reset the device to initial power up conditions, including  
configuration of all macrocells, and all connections provided by the Connection Matrix. This is implemented by setting  
register [1960] I2C reset bit to “1”, which causes the device to re-enable the Power-On Reset (POR) sequence, including the  
reload of all register data from NVM. During the POR sequence, the outputs of the device will be in tri-state. After the reset has  
taken place, the contents of register [1960] will be set to “0” automatically. The Figure 106 illustrates the sequence of events for  
this reset function.  
Acknowledge  
bit  
Acknowledge  
bit  
Start  
bit  
Acknowledge  
bit  
Bus Activity  
Control Byte  
Word Address  
Data  
A
10  
A
9
A
8
A
7
A
0
D
7
D
0
S
X
X
X
X
W
ACK  
ACK  
ACK  
SDA LINE  
P
Internal Reset bit  
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, se  
t to 0  
Write bit  
by I2C Stop Signal  
Reset-bit register output  
DFF output gated by stop signal  
Internal POR for core only  
Figure 106: Reset Command Timing  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
126 of 199  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
15.5 I2C SERIAL COMMAND REGISTER MAP  
There are seven read/write protect modes for the design sequence from being corrupted or copied. See Table 55 for details.  
Table 56: Read/Write Protection Options  
Protection Modes Configuration  
Partly  
Partly  
Lock  
Partly  
Lock  
Lock  
Read/  
Write  
Data  
Output  
From  
Lock  
Read2/  
Write  
Lock  
Read  
Lock  
Write  
Register  
Address  
Configurations  
Unlocked  
Read1  
Read2  
(Mode 0) (Mode1) (Mode2) (Mode3) (Mode4) (Mode5) (Mode 6)  
I2C Byte Write Bit  
Masking  
R/W  
R/W  
R/W  
R/W  
W
R
-
Memory  
F6  
(section 15.6.3)  
I2C Serial Reset  
Command  
(section 15.4.6)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
W
W
W
R
R
R
-
-
-
Memory  
Memory  
Macrocell  
F5,b'0  
F5,b'1  
4C  
Outputs Latching  
During I2C Write  
Connection Matrix  
Virtual Inputs  
(section 6.3)  
ConfigurationBits for  
All Macrocells  
(IO Pins, ACMPs,  
Combination  
Function Macrocells,  
etc.)  
R/W  
R/W  
R/W  
W
W
W
-
-
W
W
R
R
-
-
Memory  
Memory  
Macrocells Inputs  
Configuration  
(Connection Matrix  
Outputs, section 6.2)  
0~47  
Protection Mode  
Enable  
R
R
R
R
R
R
R
R
R
R
R
R
R
Memory  
Memory  
F5,b'3  
Protection Mode  
Selection  
R/W  
F5,b'7~5  
Macrocells Output  
Values (Connection  
MatrixInputs,section  
6.1)  
48~4B;  
4D~4F  
R
R
R
R
R
R
R
R
-
-
R
R
-
-
Macrocell  
Macrocell  
Counter Current  
Value  
A5,A6  
(for 16-bit CNT)  
Counter Current  
Value  
(for 8-bit CNT)  
I2C Control Code  
(section 15.2)  
R
R
R
R
R
R
R
R
-
R
R
-
Macrocell  
Memory  
A7,A8  
R
R
FD,b'3~0  
Pin Slave Address  
Select  
I2C Disable/Enable  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
Memory  
Memory  
FD,b'7~4  
FE,b'0  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
127 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
R/W  
W
R
Allow Read and Write Data  
Allow Write Data Only  
Allow Read Data Only  
-
The Data is protected for Read and Write  
It is possible to read some data from macrocells, such as counter current value, connection matrix, and connection matrix virtual  
inputs. The I2C write will not have any impact on data in case data comes from macrocell output, except Connection Matrix Virtual  
Inputs. The silicon identification service bits allows identifying silicon family, its revision, and others.  
See Section 17 for detailed information on all registers.  
15.6 I2C ADDITIONAL OPTIONS  
When Output latching during I2C write, register [1961] = 1 allows all PINs output value to be latched until I2C write is done. It will  
protect the output change due to configuration process during I2C write in case multiple register bytes are changed. Inputs and  
internal macrocells retain their status during I2C write.  
If the user sets GPIO0 and GPIO1 function to a selection other than SDA and SCL, all access via I2C will be disabled.  
Note: Any write commands that come to the device via I2C that are not blocked, based on the protection bits, will change the  
contents of the RAM register bits that mirror the NVM bits. These write commands will not change the NVM bits themselves, and  
a POR event will restore the register bits to original programmed contents of the NVM.  
See Section 17 for detailed information on all registers.  
15.6.1 Reading Counter Data via I2C  
The current count value in three counters in the device can be read via I2C. The counters that have this additional functionality  
are 16-bit CNT0, and 8-bit counters CNT6 and CNT7.  
15.6.2 I2C Expander  
In addition to the eight Connection Matrix Virtual Inputs, the SLG46855-A chip has four pins which can be used as an I2C  
Expander. These four pins are GPO0, GPIO6, GPIO7, and GPIO8.  
Each of these pins can be used as an I2C Expander output or used as a normal pin. Also, each of these four expander outputs  
have initial state settings which are specified in registers [1959:1952].  
Datasheet  
17-Jun-2021  
Revision 3.0  
128 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
15.6.3 I2C Byte Write Bit Masking  
The I2C macrocell inside SLG46855-A supports masking of individual bits within a byte that is written to the RAM memory space.  
This function is supported across the entire RAM memory space. To implement this function, the user performs a Byte Write  
Command (see Section 15.4.1 for details) on the I2C Byte Write Mask Register (address 0F6H) with the desired bit mask pattern.  
This sets a bit mask pattern for the target memory location that will take effect on the next Byte Write Command to this register  
byte. Any bit in the mask that is set to “1” in the I2C Byte Write Mask Register will mask the effect of changing that particular bit  
in the target register, during the next Byte Write Command. The contents of the I2C Byte Write Mask Register are reset (set to  
00h) after valid Byte Write Command. If the next command received by the device is not a Byte Write Command, the effect of the  
bit masking function will be aborted, and the I2C Byte Write Mask Register will be reset with no effect. Figure 107 shows an  
example of this function.  
User Actions  
Byte Write Command, Address = F6h, Data = 11110000b [sets mask bits]  
Byte Write Command, Address = 74h, Data = 10101010b [writes data with mask]  
Memory Address 74h (original contents)  
Mask to choose bit from new  
write command  
1
1
1
1
0
0
1
1
0
0
0
0
Mask to choose bit from  
original register contents  
Memory Address 74h (new data in write command)  
0
1
1
0
1
0
1
Bit from new write command  
Memory Address F6h (mask register)  
1
1
0
0
0
Bit from original register  
contents  
Memory Address 74h (new contents after write command)  
1
1
0
0
1
0
1
0
Figure 107: Example of I2C Byte Write Bit Masking  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
129 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
16 Analog Temperature Sensor  
The SLG46855-A has an Analog Temperature sensor (TS) with an output voltage linearly-proportional to the Centigrade tempera-  
ture. The TS cell shares buffer with Vref 0, so it is impossible to use both cells simultaneously, its output can be connected directly  
to the GPIO8 or to the ACPM3_L positive input. Using buffer causes low-output impedance, linear output, and makes interfacing  
to readout or control circuitry especially easy. The TS is rated to operate over a -40 °C to 105 °C temperature range. The error in  
the whole temperature range does not exceed ±1.5 %. For more detail refer to section 3.11.  
The equation below calculates the typical analog voltage passed from the TS to the ACMPs' IN+ source input for VDD = 2.3 V to  
5.5 V. It is important to note that there will be a chip to chip variation of about ±2 °C.  
VTS1 = -2.3 x T + 906.2  
VTS2 = -2.8 x T + 1094.3  
where:  
V
V
TS1 (mV) - TS Output Voltage, range 1  
TS2 (mV) - TS Output Voltage, range 2  
T (°C) - Temperature  
Temperature hysteresis can be setup by enabling the GreenPAK's internal ACMP hysteresis.  
Datasheet  
17-Jun-2021  
Revision 3.0  
130 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
register [675]  
TS  
register [674]  
TS_ON  
0
TS_En  
From Connection Matrix Output [9]  
1
VDD  
register [679]  
register [678]  
registers [679:678] force to “11” when TS is ON  
OUT  
11  
10  
01  
00  
+
-
Vref0  
GPIO8  
registers [851:850]=11  
register [693] =1  
ACMP3_L in+  
Output Range Control  
register [676]  
ACMP1H Vref  
ACMP0H Vref  
none  
0
1
Enable Temp. Sensor  
register [674]=1  
Closed  
Figure 108: Analog Temperature Sensor Structure Diagram  
Datasheet  
17-Jun-2021  
Revision 3.0  
131 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
1.25  
1.2  
Range 2  
Range 1  
1.15  
1.1  
1.05  
1
0.95  
0.9  
0.85  
0.8  
0.75  
0.7  
0.65  
T (°C)  
Figure 109: TS Output vs. Temperature, VDD = 2.3 V to 5.5 V  
Datasheet  
17-Jun-2021  
Revision 3.0  
132 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
17 Register Definitions  
17.1 REGISTER MAP  
Table 57: Register Map  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
Matrix Output  
0
1
2
OUT0:  
IN0 of LUT2_0 or Clock Input of DFF0  
3
4
0
5
6
LUT2_0 & DFF0  
7
8
OUT1  
IN1 of LUT2_0 or Data Input of DFF0  
9
10  
11  
12  
1
13  
14  
15  
16  
17  
18  
OUT2:  
IN0 of LUT2_1 or Clock Input of DFF1  
LUT2_1 & DFF1  
19  
20  
2
OUT3:  
IN1 of LUT2_1 or Data Input of DFF1  
21  
22  
23  
Datasheet  
17-Jun-2021  
Revision 3.0  
133 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
Byte  
OUT4:  
IN0 of LUT2_2 or Clock Input of DFF2  
3
LUT2_2 & DFF2  
OUT5:  
IN1 of LUT2_2 or Data Input of DFF2  
4
5
6
7
8
OUT6:  
IN0 of LUT2_3 or Clock Input of PGen  
LUT2_3 & PGen  
OUT7:  
IN1 of LUT2_3 or nRST of PGen  
OUT8:  
IN0 of LUT3_0 or CLK Input of DFF3  
OUT9:  
LUT3_0 & DFF3  
IN1 of LUT3_0 or Data of DFF3  
OUT10:  
IN2 of LUT3_0 or nRST (nSET) of DFF3  
OUT11:  
LUT3_1 & DFF4  
IN0 of LUT3_1 or CLK Input of DFF4  
Datasheet  
17-Jun-2021  
Revision 3.0  
134 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
72  
Byte  
73  
74  
OUT12:  
IN1 of LUT3_1 or Data of DFF4  
75  
76  
9
77  
78  
LUT3_1 & DFF4  
79  
80  
OUT13:  
IN2 of LUT3_1 or nRST (nSET) of DFF4  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
A
B
C
D
E
OUT14:  
IN0 of LUT3_2 or CLK Input of DFF5  
OUT15:  
IN1 of LUT3_2 or Data of DFF5  
LUT3_2 & DFF5  
OUT16:  
IN2 of LUT3_2 or nRST (nSET) of DFF5  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
OUT17:  
IN0 of LUT3_3 or CLK Input of DFF6  
OUT18:  
IN1 of LUT3_3 or Data of DFF6  
LUT3_3 & DFF6  
OUT19:  
IN2 of LUT3_3 or nRST (nSET) of DFF6  
Datasheet  
17-Jun-2021  
Revision 3.0  
135 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
OUT20:  
IN0 of LUT3_4 or CLK Input of DFF7  
F
OUT21:  
IN1 of LUT3_4 or Data of DFF7  
LUT3_4 & DFF7  
10  
11  
12  
13  
14  
OUT22:  
IN2 of LUT3_4 or nRST (nSET) of DFF7  
OUT23:  
IN0 of LUT3_5 or CLK Input of DFF8  
OUT24:  
IN1 of LUT3_5 or Data of DFF8  
LUT3_5 & DFF8  
OUT25:  
IN2 of LUT3_5 or nRST (nSET) of DFF8  
OUT26:  
IN0 of LUT3_6 or CLK Input of DFF9  
LUT3_6 & DFF9  
OUT27:  
IN1 of LUT3_6 or Data of DFF9  
Datasheet  
17-Jun-2021  
Revision 3.0  
136 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
OUT28:  
LUT3_6 & DFF9  
IN2 of LUT3_6 or nRST (nSET) of DFF9  
15  
OUT29:  
IN0 of LUT3_7 or CLK Input of DFF10  
16  
17  
18  
19  
1A  
OUT30:  
LUT3_7 & DFF10  
IN1 of LUT3_7 or Data of DFF10  
OUT31:  
IN2 of LUT3_7 or nRST (nSET) of DFF10  
OUT32:  
IN0 of LUT3_8 or CLK Input of DFF11  
OUT33:  
LUT3_8 & DFF11  
IN1 of LUT3_8 or Data of DFF11  
OUT34:  
IN2 of LUT3_8 or nRST (nSET) of DFF11  
OUT35:  
Multi_function4  
IN0 of LUT3_12 or CLK Input of DFF16  
Delay4 Input (or Counter4 nRST Input)  
Datasheet  
17-Jun-2021  
Revision 3.0  
137 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
OUT36:  
IN1 of LUT3_12 or nRST (nSET) of DFF16  
Delay4 Input (or Counter4 nRST Input)  
1B  
Multi_function4  
OUT37:  
IN2 of LUT3_12 or Data of DFF16  
Delay4 Input (or Counter4 nRST Input)  
1C  
1D  
1E  
1F  
20  
OUT38:  
IN0 of LUT3_13 or CLK Input of DFF17  
Delay5 Input (or Counter5 nRST Input)  
OUT39:  
Multi_function5  
IN1 of LUT3_13 or nRST (nSET) of DFF17  
Delay5 Input (or Counter5 nRST Input)  
OUT40:  
IN2 of LUT3_13 or Data of DFF17  
Delay5 Input (or Counter5 nRST Input)  
OUT41:  
IN0 of LUT3_14 or CLK Input of DFF18  
Delay6 Input (or Counter6 nRST Input)  
OUT42:  
Multi_function6  
IN1 of LUT3_14 or nRST (nSET) of DFF18  
Delay6 Input (or Counter6 nRST Input)  
OUT43:  
IN2 of LUT3_14 or Data of DFF18  
Delay6 Input (or Counter6 nRST Input)  
Datasheet  
17-Jun-2021  
Revision 3.0  
138 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
OUT44:  
IN0 of LUT3_15 or CLK Input of DFF19  
Delay7 Input (or Counter7 nRST Input)  
21  
OUT45:  
Multi_function7  
IN1 of LUT3_15 or nRST (nSET) of DFF19  
Delay7 Input (or Counter7 nRST Input)  
22  
23  
24  
25  
26  
OUT46:  
IN2 of LUT3_15 or Data of DFF19  
Delay7 Input (or Counter7 nRST Input)  
OUT47:  
IN0 of LUT3_16 or Input of Pipe Delay or UP signal of RIPP  
CNT  
OUT48:  
LUT3_16 & Pipe Delay (RIPP CNT)  
IN1 of LUT3_16 or nRST of Pipe Delay or nSET of RIPP CNT  
OUT49:  
IN2 of LUT3_16 or Clock of Pipe  
Delay_RIPP CNT  
OUT50:  
IN0 of LUT4_0 or CLK Input of DFF12  
LUT4_DFF12  
OUT51:  
IN1 of LUT4_0 or Data of DFF12  
Datasheet  
17-Jun-2021  
Revision 3.0  
139 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
OUT52:  
IN2 of LUT4_0 or nRST (nSET) of DFF12  
27  
LUT4_DFF12  
OUT53:  
IN3 of LUT4_0  
28  
29  
2A  
2B  
2C  
Programmable delay  
Filter/Edge Detect  
GPIO0  
OUT54: Programmable delay/edge detect input  
OUT55: Filter/Edge detect input  
OUT56: GPIO0 DOUT  
GPIO1  
OUT57: GPIO1 DOUT  
OUT58: GPIO2 DOUT  
GPIO2  
OUT59: GPIO2 DOUT OE  
Datasheet  
17-Jun-2021  
Revision 3.0  
140 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
OUT60: GPIO3 DOUT and Input of Power Switch ON0  
2D  
GPIO3 DOUT and Input of Power Switch ON0  
OUT61: GPIO3 DOUT OE  
OUT62: GPO0 DOUT and Input of Power Switch ON1  
OUT63: GPIO4 DOUT  
2E  
2F  
30  
31  
32  
GPO0 and Input of Power Switch ON1  
GPIO4  
OUT64: GPIO4 DOUT OE  
OUT65: GPIO5 DOUT  
GPIO5  
OUT66: GPIO5 DOUT OE  
OUT67: GPIO6 DOUT  
GPIO6  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
141 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
GPIO6  
OUT68: GPIO6 DOUT OE  
33  
OUT69: GPIO7 DOUT  
OUT70: GPIO7 DOUT OE  
OUT71: GPIO8 DOUT  
OUT72: GPIO8 DOUT OE  
OUT73: GPIO9 DOUT  
OUT74: GPIO9 DOUT OE  
34  
35  
36  
37  
38  
GPIO7  
GPIO8  
GPIO9  
OUT75:  
PWR UP of ACMP0H  
ACMP0H  
Datasheet  
17-Jun-2021  
Revision 3.0  
142 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
OUT76:  
ACMP1H  
PWR UP of ACMP1H  
39  
OUT77:  
PWR UP of ACMP2L  
ACMP2L  
ACMP3L  
Temp Sensor  
OSC0  
3A  
3B  
3C  
3D  
3E  
OUT78:  
PWR UP of ACMP3L  
OUT79:  
Temp sensor, Vref Out_0, Vref Out_1 Power Up  
OUT80: OSC0 ENABLE  
OUT81: OSC1 ENABLE  
OUT82: OSC2 ENABLE  
OSC1  
OSC2  
OUT83:  
Multi_function0  
IN0 of LUT4_1 or CLK Input of DFF20  
Delay0 Input (or Counter0 nRST Input)  
Datasheet  
17-Jun-2021  
Revision 3.0  
143 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
OUT84:  
IN1 of LUT4_1 or nRST of DFF20  
Delay0 Input (or Counter0 nRST Input)  
Delay/Counter0 External CLK source  
3F  
OUT85:  
IN2 of LUT4_1 or nSET of DFF20  
Delay0 Input (or Counter0 nRST Input)  
Delay/Counter0 External CLK source  
KEEP Input of FSM0  
Multi_function0  
40  
41  
42  
43  
44  
OUT86:  
IN3 of LUT4_1 or Data of DFF20  
Delay0 Input (or Counter0 nRST Input)  
UP Input of FSM0  
OUT87:  
IN0 of LUT3_9 or CLK Input of DFF13  
Delay1 Input (or Counter1 nRST Input)  
OUT88:  
Multi_function1  
IN1 of LUT3_9 or nRST (nSET) of DFF13  
Delay1 Input (or Counter1 nRST Input)  
OUT89:  
IN2 of LUT3_9 or Data of DFF13  
Delay1 Input (or Counter1 nRST Input)  
OUT90:  
IN0 of LUT3_10 or CLK Input of DFF14  
Delay2 Input (or Counter2 nRST Input)  
Multi_function2  
OUT91:  
IN1 of LUT3_10 or nRST (nSET) of DFF14  
Delay2 Input (or Counter2 nRST Input)  
Datasheet  
17-Jun-2021  
Revision 3.0  
144 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
OUT92:  
Multi_function2  
IN2 of LUT3_10 or Data of DFF14  
Delay2 Input (or Counter2 nRST Input)  
45  
OUT93:  
IN0 of LUT3_11 or CLK Input of DFF15  
Delay3 Input (or Counter3 nRST Input)  
46  
47  
48  
49  
4A  
OUT94:  
Multi_function3  
IN1 of LUT3_11 or nRST (nSET) of DFF15  
Delay3 Input (or Counter3 nRST Input)  
OUT95:  
IN2 of LUT3_11 or Data of DFF15  
Delay3 Input (or Counter3 nRST Input)  
Matrix Input 0  
Matrix Input 1  
Matrix Input 2  
Matrix Input 3  
Matrix Input 4  
Matrix Input 5  
Matrix Input 6  
Matrix Input 7  
Matrix Input 8  
Matrix Input 9  
Matrix Input 10  
Matrix Input 11  
Matrix Input 12  
Matrix Input 13  
Matrix Input 14  
Matrix Input 15  
Matrix Input 16  
Matrix Input 17  
Matrix Input 18  
Matrix Input 19  
Matrix Input 20  
Matrix Input 21  
Matrix Input 22  
Matrix Input 23  
GND  
LUT2_0/DFF0 output  
LUT2_1/DFF1 output  
LUT2_2/DFF2 output  
LUT2_3/PGen output  
LUT3_0/DFF3 output  
LUT3_1/DFF4 output  
LUT3_2/DFF5 output  
LUT3_3/DFF6 output  
LUT3_4/DFF7 output  
LUT3_5/DFF8 output  
LUT3_6/DFF9 output  
LUT3_7/DFF10 output  
LUT3_8/DFF11 output  
CNT0 output  
MF0_LUT4/DFF_OUT  
CNT1 output  
MF1_LUT3/DFF_OUT  
CNT2 output  
MF2_LUT3/DFF_OUT  
CNT3 output  
MF3_LUT3/DFF_OUT  
CNT4 output  
MF4_LUT3/DFF_OUT  
Datasheet  
17-Jun-2021  
Revision 3.0  
145 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
Matrix Input 24  
Matrix Input 25  
Matrix Input 26  
Matrix Input 27  
Matrix Input 28  
Matrix Input 29  
Matrix Input 30  
Matrix Input 31  
Matrix Input 32  
Matrix Input 33  
Matrix Input 34  
Matrix Input 35  
Matrix Input 36  
Matrix Input 37  
Matrix Input 38  
Matrix Input 39  
Matrix Input 40  
Matrix Input 41  
Matrix Input 42  
Matrix Input 43  
Matrix Input 44  
Matrix Input 45  
Matrix Input 46  
Matrix Input 47  
Matrix Input 48  
Matrix Input 49  
Matrix Input 50  
Matrix Input 51  
Matrix Input 52  
Matrix Input 53  
Matrix Input 54  
Matrix Input 55  
Matrix Input 56  
Matrix Input 57  
Matrix Input 58  
Matrix Input 59  
Matrix Input 60  
Matrix Input 61  
Matrix Input 62  
Matrix Input 63  
CNT5 output  
MF5_LUT3/DFF_OUT  
CNT6 output  
MF6_LUT3/DFF_OUT  
CNT7 output  
MF7_LUT3/DFF_OUT  
LUT3_16/Ripple CNT/Pipe Delay_out0  
Ripple CNT/Pipe Delay_out1  
GPIO0 digital input or I2C_virtual_0 Input  
GPIO1 digital input or I2C_virtual_1 Input  
I2C_virtual_2 Input  
I2C_virtual_3 Input  
I2C_virtual_4 Input  
I2C_virtual_5 Input  
I2C_virtual_6 Input  
I2C_virtual_7 Input  
Ripple CNT_out2  
LUT4_0/DFF12 output  
Programmable Delay Edge Detect Output  
Edge Detect Filter Output  
GPI0 Digital Input  
GPIO2 Digital Input  
Power Switch ON0, GPIO3 Digital Input  
GPIO4 Digital Input  
GPIO5 Digital Input  
GPIO6 Digital Input  
GPIO7 Digital Input  
GPIO8 Digital Input  
GPIO9 Digital Input  
OSC0 output 0  
4B  
4C  
4D  
4E  
4F  
OSC1 output 0  
OSC2 output  
ACMP0H Output (normal speed)  
ACMP1H Output (normal speed)  
ACMP2L Output (low speed)  
ACMP3L output (low speed)  
OSC0 output 1  
OSC1 output 1  
Matrix nRST  
VDD  
Datasheet  
17-Jun-2021  
Revision 3.0  
146 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0: CHOP enable  
1: chopper off  
640  
BG CHOP OFF  
641  
642  
BG Chopper clock test enable  
Bandgap internal voltage output to IO enable 1: enable  
1: enable  
0: always on  
643  
644  
645  
646  
647  
648  
649  
Bandgap power-down control  
1: power-down if no function enable it (ACMP, Vref, TS)  
0: from GPIO2  
1: from GPO0  
0: from GPIO2  
1: from GPO0  
0: from GPIO2  
1: from GPO0  
1: enable  
0: disable  
50  
ACMP1H external Vref0 source selection  
ACMP2L external Vref1 source selection  
ACMP3L external Vref1 source selection  
ACMP3L wake sleep enable  
1: on  
0: off  
VrefO0 register Power-On/Off  
0: come from register [648]  
1: come from matrix out92  
VrefO0 power-down selection  
1: on  
0: off  
00: 0 mV  
650  
651  
VrefO1 register Power-On/Off  
51  
01: 32 mV  
10: 64 mV  
11: 192 mV  
ACMP0H hysteresis  
652  
653  
654  
655  
656  
Reserved  
ACMP0_H input buffer enable  
Reserved  
1: enable  
1: enable  
ACMP0H input tie to VDD enable  
ACMP1_H positive input come from AC-  
MP0_H's input mux output enable; 1:enable  
657  
658  
659  
Reserved  
00: 0 mV  
01: 32 mV  
10: 64 mV  
11: 192 mV  
52  
ACMP1H hysteresis  
660  
661  
662  
ACMP1H input buffer enable  
Reserved  
1: enable  
ACMP2L positive input come from ACMP0H's  
input mux output enable  
ACMP2L positive input come from ACMP1H's  
input mux output enable  
663  
1: enable  
1: enable  
664  
665  
00: 0 mV  
01: 32 mV  
10: 64 mV  
11: 192 mV  
ACMP2L hysteresis  
666  
667  
668  
669  
Reserved  
Reserved  
53  
00: 0 mV  
01: 32 mV  
10: 64 mV  
11: 192 mV  
ACMP3_L hysteresis  
Reserved  
670  
671  
Datasheet  
17-Jun-2021  
Revision 3.0  
147 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
672  
Reserved  
ACMP3_L positive input come from ACMP2L's  
input mux output enable  
673  
674  
675  
676  
1: enable  
0: Power-down  
1: Power-On  
0: come from register  
1: come from Matrix  
0: range 1 (0.62V ~ 0.99V (TYP))  
1: range 2 (0.75V ~ 1.2V (TYP))  
0: disable  
1: enable  
Temp sensor register pdb control  
Temp sensor register pdb select  
Temp sensor range select  
Vref0 output OP  
54  
677  
678  
00: None  
01: ACMP0H Vref  
10: ACMP1H Vref  
11: temp sensor  
Vref0 input selection  
679  
0: disable  
1: enable  
680  
Vref1 output OP  
681  
682  
00: None  
01: ACMP2L Vref  
10: ACMP3L Vref  
Vref1 input selection  
55  
683  
684  
685  
686  
687  
688  
0000: 1.194, 0001:1.195, 0011:1.196, 0100:1.197,  
0101:1.198, 0110:1.199 0111:1.2, 1000:1.201, 1001:1.202,  
1010:1.203, 1011:1.204, 1100:1.205, 1101:1.206,  
1110:1.207, 1111:1.208  
VBG fine tune selection  
ACMP0H Wake/Sleep enable  
ACMP1H Wake/Sleep enable  
0: short time  
1: normal w/s  
689  
ACMP Wake/Sleep time selection  
690  
691  
692  
ACMP0H 100 uA current source enable  
Reserve for ACMP  
Reserved  
56  
ACMP3L input come from Temp sensor output  
enable  
693  
694  
0: come from register [650]  
1: come from matrix OUT92  
0: disable  
1: enable  
VrefO1 power-down selection  
ACMP2L wake sleep enable  
695  
696  
ACMP gain divider select:  
00: 1x  
ACMP0H Gain divider  
01:0.5x  
697  
10:0.33x  
11:0.25x  
698  
699  
700  
701  
702  
703  
57  
ACMP Vref select:  
000000: 32mV ~  
ACMP0H Vref0  
111110: 2.016V/step = 32 mV  
111111: External Vref  
Datasheet  
17-Jun-2021  
Revision 3.0  
148 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
704  
ACMP gain divider select:  
00: 1x  
ACMP1H Gain divider  
01:0.5x  
705  
10:0.33x  
11:0.25x  
706  
707  
708  
709  
710  
711  
712  
58  
ACMP Vref select:  
000000: 32 mV ~ 1  
ACMP1H Vref0  
11110: 2.016V/step = 32mV  
111111: External Vref  
ACMP gain divider select:  
00: 1x  
ACMP2L Gain divider  
ACMP2L Vref1  
01:0.5x  
713  
10:0.33x  
11:0.25x  
714  
715  
716  
717  
718  
719  
720  
59  
ACMP Vref select:  
000000: 32 mV ~  
111110: 2.016V/step = 32mV  
111111: External Vref  
ACMP gain divider select:  
00: 1x  
ACMP3L Gain divider  
ACMP3L Vref1  
01:0.5x  
721  
10:0.33x  
11:0.25x  
722  
723  
724  
725  
726  
727  
5A  
ACMP Vref select:  
000000: 32 mV ~  
111110: 2.016V/step = 32mV  
111112: External Vref  
OSC1  
when matrix output enable/pd control signal = 0:  
0: auto on by delay cells  
728  
729  
OSC1 turn on by register  
1: always on  
0: matrix down  
1: matrix on  
0: internal OSC1  
1: external clock from GPIO2  
00: div 1  
01: div 2  
10: div 4  
11: div 8  
matrix power-down or on select  
external clock source enable  
730  
731  
5B  
post divider ratio control  
732  
733  
734  
735  
000: /1, 001:/2 , 010:/4, 011: /3, 100: /8, 101: /12, 110: /24,  
111: /64  
matrix divider ratio control  
matrix out enable  
0: disable  
1: enable  
736  
737  
738  
739  
Reserved  
Reserved  
Reserved  
5C  
Datasheet  
17-Jun-2021  
Revision 3.0  
149 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
OSC2  
when matrix output enable/pd control signal = 0:  
0: auto on by delay cells  
1: always on  
740  
OSC2 turn on by register  
0: matrix down  
1: matrix on  
0: internal OSC2  
1: external clock from GPIO8  
0: disable  
1: enable  
00: div 1  
01: div 2  
10: div 4  
11: div 8  
741  
742  
matrix power-down or on select  
external clock source enable  
matrix out enable  
5C  
743  
744  
5D  
5D  
post divider ratio control  
745  
746  
747  
748  
000: /1, 001:/2 , 010:/4, 011: /3, 100: /8, 101: /12, 110: /24,  
111: /64  
matrix divider ratio control  
startup delay with 100 ns  
0: enable  
1: disable  
749  
OSC0  
when matrix output enable/pd control signal = 0:  
0: auto on by delay cells  
1: always on  
750  
OSC0 turn on by register  
5D  
0: matrix down  
1: matrix on  
0: internal OSC0  
1: external clock from GPIO  
0: disable  
1: enable  
00: div 1  
01: div 2  
10: div 4  
11: div 8  
751  
752  
matrix power-down or on select  
external clock source enable  
matrix out enable  
753  
754  
post divider ratio control  
matrix divider ratio control  
755  
5E  
756  
757  
758  
000: /1, 001:/2 , 010:/4, 011: /3, 100: /8, 101: /12, 110: /24,  
111: /64  
enable OSC0 output gating by wake_sleep sig-  
nal  
0: no gating  
759  
(note: the wake_sleep clock is separated path, 1: enable  
so it is not gated)  
760  
761  
762  
000: /1, 001:/2 , 010:/4, 011: /3, 100: /8, 101: /12, 110: /24,  
matrix divider ratio control  
2nd output to matrix enable  
matrix divider ratio control  
2nd output to matrix enable  
111: /64  
0: disable  
1: enable  
763  
5F  
764  
765  
766  
000: /1, 001:/2 , 010:/4, 011: /3, 100: /8, 101: /12, 110: /24,  
111: /64  
0: disable  
1: enable  
767  
Datasheet  
17-Jun-2021  
Revision 3.0  
150 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
768  
769  
770  
771  
772  
773  
774  
775  
776  
777  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
60  
61  
0: disable  
1: enable  
778  
IO fast Pull-up/down enable  
GPI0  
779  
780  
781  
782  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
00: floating  
01: 10K  
10: 100K  
11: 1M  
input mode configuration  
61  
Pull-up/down resistance selection  
Pull-up/down selection  
0: Pull-down  
1: Pull-up  
783  
GPIO0  
784  
785  
00: digital in without Schmitt Trigger  
01: digital in with Schmitt Trigger  
(when register [2032] = 1)  
10: low voltage digital in  
11: Reserved  
input mode configuration  
786  
787  
00: floating  
01: 10K  
10: 100K  
11: 1M  
Pull-up/down resistance selection  
62  
0: Pull-down  
1: Pull-up  
0: I2C fast mode+ (3.2x drivability)  
1: I2C standard/fast mode  
0: digital input  
1: digital output (3.2x Open-Drain NMOS)  
788  
789  
790  
Pull-up/down selection  
I2C mode selection  
I/O selection  
GPIO1  
62  
791  
792  
00: digital without Schmitt Trigger  
01: digital in with Schmitt Trigger  
(when register [2032] = 1)  
10: low voltage digital in  
11: Reserved  
input mode configuration  
793  
794  
00: floating  
01: 10K  
Pull-up/down resistance selection  
Pull-up/down selection  
10: 100K  
11: 1M  
63  
0: Pull-down  
1: Pull-up  
795  
0: digital input  
1: digital output (3.2x Open-Drain NMOS)  
796  
797  
I/O selection  
Reserved  
Datasheet  
17-Jun-2021  
Revision 3.0  
151 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
GPIO2  
798  
799  
800  
801  
802  
803  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
00: floating  
01: 10K  
10: 100K  
11: 1M  
63  
input mode configuration  
output mode configuration  
64  
Pull-up/down resistance selection  
Pull-up/down selection  
0: Pull-down  
1: Pull-up  
804  
GPIO3  
805  
806  
807  
808  
809  
810  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
00: floating  
01: 10K  
10: 100K  
11: 1M  
input mode configuration  
output mode configuration  
64  
65  
Pull-up/down resistance selection  
Pull-up/down selection  
65  
GPO0  
65  
0: Pull-down  
1: Pull-up  
811  
812  
813  
814  
Reserved  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
00: floating  
01: 10K  
10: 100K  
11: 1M  
output mode configuration  
815  
816  
817  
Pull-up/down resistance selection  
0: Pull-down  
1: Pull-up  
0: output disable (input mode)  
1: output enable  
0: disable  
1: enable  
818  
819  
820  
Pull-up/down selection  
output enable  
4x drive  
66  
GPIO4  
Datasheet  
17-Jun-2021  
Revision 3.0  
152 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
821  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
00: floating  
01: 10K  
10: 100K  
11: 1M  
input mode configuration  
output mode configuration  
Pull-up/down resistance selection  
66  
822  
823  
824  
825  
826  
67  
0: Pull-down  
1: Pull-up  
0: disable  
1: enable  
827  
828  
Pull-up/down selection  
4x drive  
GPIO5  
829  
830  
831  
832  
833  
834  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
00: floating  
01: 10K  
10: 100K  
11: 1M  
input mode configuration  
output mode configuration  
67  
68  
Pull-up/down resistance selection  
Pull-up/down selection  
0: Pull-down  
1: Pull-up  
835  
GPIO6  
836  
837  
838  
839  
840  
841  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
00: floating  
01: 10K  
10: 100K  
11: 1M  
input mode configuration  
output mode configuration  
68  
Pull-up/down resistance selection  
Pull-up/down selection  
69  
0: Pull-down  
1: Pull-up  
842  
GPIO7  
Datasheet  
17-Jun-2021  
Revision 3.0  
153 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
843  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
00: floating  
01: 10K  
10: 100K  
11: 1M  
input mode configuration  
output mode configuration  
844  
845  
846  
847  
848  
69  
Pull-up/down resistance selection  
Pull-up/down selection  
6A  
0: Pull-down  
1: Pull-up  
849  
GPIO8  
850  
851  
852  
853  
854  
855  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
00: floating  
01: 10K  
10: 100K  
11: 1M  
input mode configuration  
output mode configuration  
6A  
Pull-up/down resistance selection  
Pull-up/down selection  
0: Pull-down  
1: Pull-up  
6B  
856  
GPIO9  
857  
858  
859  
860  
861  
862  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
00: floating  
01: 10K  
10: 100K  
11: 1M  
input mode configuration  
output mode configuration  
6B  
Pull-up/down resistance selection  
Pull-up/down selection  
0: Pull-down  
1: Pull-up  
863  
864  
865  
866  
867  
868  
869  
870  
871  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6C  
Datasheet  
17-Jun-2021  
Revision 3.0  
154 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
872  
873  
874  
875  
876  
877  
878  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6D  
6E  
6F  
70  
71  
72  
Datasheet  
17-Jun-2021  
Revision 3.0  
155 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
73  
74  
75  
76  
77  
78  
Datasheet  
17-Jun-2021  
Revision 3.0  
156 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
968  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
79  
7A  
7B  
7C  
7D  
7E  
Datasheet  
17-Jun-2021  
Revision 3.0  
157 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1016  
1017  
1018  
1019  
1020  
1021  
1022  
1023  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
7F  
0000000: Matrix A - In3; Matrix B - In2; Matrix C - In1;  
Single 4-bit LUT  
Matrix D - In0  
(DLY_IN - LOW)  
0010000: Matrix A - D; Matrix B - nSET; Matrix C - nRST;  
Single DFF w RST and SET  
Single CNT/DLY  
Matrix D - CLK  
(DLY_IN - LOW)  
0000001: Matrix A - UP (CNT); Matrix B - KEEP (CNT);  
Matrix C - EXT_CLK (CNT); Matrix D - DLY_IN (CNT)  
(DLY_OUT connected to LUT/DFF)  
0000010: Matrix A - DLY_IN; Matrix B - In2; Matrix C - In1;  
Matrix D - In0  
CNT/DLY → LUT  
CNT/DLY → DFF  
CNT/DLY → LUT  
CNT/DLY → DFF  
(DLY_OUT connected to In3)  
0010010:MatrixA- DLY_IN; Matrix B -nSET; Matrix C - nRST;  
Matrix D - CLK  
(DLY_OUT connected to D)  
0100010: Matrix A - DLY_IN; Matrix B - EXT_CLK (CNT);  
Matrix C - In1; Matrix D - In0  
(DLY_OUT connected to In3; In2 - LOW)  
0110010: Matrix A - DLY_IN; Matrix B - EXT_CLK (CNT);  
Matrix C - nRST; Matrix D - CLK  
(DLY_OUT connected to D; nSET - HIGH)  
80 1030:1024  
1000010: Matrix A - DLY_IN; Matrix B - In2;  
Matrix C - EXT_CLK (CNT);  
CNT/DLY → LUT  
CNT/DLY → DFF  
Matrix D - In0  
(DLY_OUT connected to In3; In1 - LOW)  
1010010: Matrix A - DLY_IN; Matrix B - nSET;  
Matrix C - EXT_CLK (CNT);  
Matrix D - CLK  
(DLY_OUT connected to D; nRST - HIGH)  
0000110: Matrix A - In3; Matrix B - DLY_IN; Matrix C - In1;  
Matrix D - In0  
CNT/DLY → LUT  
CNT/DLY → DFF  
(DLY_OUT connected to In2)  
0010110: Matrix A - D; Matrix B - DLY_IN; Matrix C - nRST;  
Matrix D - CLK  
(DLY_OUT connected to nSET)  
1000110: Matrix A - In3; Matrix B - DLY_IN;  
Matrix C - EXT_CLK (CNT);  
CNT/DLY → LUT  
Matrix D - In0  
(DLY_OUT connected to In2; In1 - LOW)  
Datasheet  
17-Jun-2021  
Revision 3.0  
158 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1010110: MatrixA- D; Matrix B - DLY_IN; Matrix C - EXT_CLK  
(CNT);  
Matrix D - CLK  
CNT/DLY → DFF  
(DLY_OUT connected to nSET; nRST - HIGH)  
0001010: Matrix A - In3; Matrix B - In2; Matrix C - DLY_IN;  
Matrix D - In0  
CNT/DLY → LUT  
CNT/DLY → DFF  
(DLY_OUT connected to In1)  
0011010: Matrix A - D; Matrix B - nSET; Matrix C - DLY_IN;  
Matrix D - CLK  
(DLY_OUT connected to nRST)  
0101010: Matrix A - In3; Matrix B - EXT_CLK (CNT);  
Matrix C - DLY_IN;  
CNT/DLY → LUT  
Matrix D - In0  
(DLY_OUT connected to In1; In2 - LOW)  
0111010: Matrix A - D; Matrix B - EXT_CLK (CNT);  
Matrix C - DLY_IN; Matrix D - CLK  
CNT/DLY → DFF  
CNT/DLY → LUT  
CNT/DLY → DFF  
(DLY_OUT connected to nRST; nSET - HIGH)  
0001110: Matrix A - In3; Matrix B - In2; Matrix C - In1;  
Matrix D - DLY_IN  
(DLY_OUT connected to In0)  
0011110: Matrix A - D; Matrix B - nSET; Matrix C - nRST;  
Matrix D - DLY_IN  
(DLY_OUT connected to CLK)  
80 1030:1024  
0101110: Matrix A - In3; Matrix B - EXT_CLK (CNT);  
Matrix C - In1;  
CNT/DLY → LUT  
CNT/DLY → DFF  
CNT/DLY → LUT  
Matrix D - DLY_IN  
(DLY_OUT connected to In0; In2 - LOW)  
0111110: Matrix A - D; Matrix B - EXT_CLK (CNT);  
Matrix C - nRST; Matrix D - DLY_IN  
(DLY_OUT connected to CLK; nSET - HIGH)  
1001110: Matrix A - In3; Matrix B - In2; Matrix C - EXT_CLK  
(CNT);  
Matrix D - DLY_IN  
(DLY_OUT connected to In0; In1 - LOW)  
1011110: Matrix A - D; Matrix B - nSET; Matrix C - EXT_CLK  
(CNT); Matrix D - DLY_IN  
CNT/DLY → DFF  
LUT → CNT/DLY  
DFF → CNT/DLY  
LUT → CNT/DLY  
(DLY_OUT connected to CLK; nRST - HIGH)  
0000011: Matrix A - In3; Matrix B - In2; Matrix C - In1;  
Matrix D - In0  
(LUT_OUT connected to DLY_IN)  
0010011: Matrix A - D; Matrix B - nSET; Matrix C - nRST;  
Matrix D - CLK  
(DFF_OUT connected to DLY_IN)  
0100011: Matrix A - In3; Matrix B - EXT_CLK (CNT);  
Matrix C - In1; Matrix D - In0  
(LUT_OUT connected to DLY_IN; In2 - LOW)  
Datasheet  
17-Jun-2021  
Revision 3.0  
159 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0110011: Matrix A - D; Matrix B - EXT_CLK (CNT);  
Matrix C - nRST; Matrix D - CLK  
(DFF_OUT connected to DLY_IN; nSET - HIGH)  
DFF → CNT/DLY  
1000011: Matrix A - In3; Matrix B - In2; Matrix C - EXT_CLK  
(CNT); Matrix D - In0  
(LUT_OUT connected to DLY_IN; In1 - LOW)  
1030:1024 LUT → CNT/DLY  
80  
1010011: Matrix A - D; Matrix B - nSET; Matrix C - EXT_CLK  
(CNT); Matrix D - CLK  
DFF → CNT/DLY  
1031  
(DFF_OUT connected to DLY_IN; nRST - HIGH)  
00: DLY  
01: one shot  
10: frequency det  
11: CNT register [1040] = 0  
DLY/CNT0 Mode Selection  
1032  
1033  
1034  
00: both edge  
01: falling edge  
DLY/CNT0 edge Mode Selection  
10: rising edge  
11: High Level Reset (only in CNT mode)  
1035  
1036  
1037  
Clock source sel[3:0]  
0000: 25M(OSC2);  
0001: 25M/4;  
0010: 2M(OSC1);  
0011: 2M/8;  
0100: 2M/64;  
81  
0101: 2M/512;  
0110: 2K(OSC0);  
0111: 2K/8;  
DLY/CNT0 Clock Source Select  
1000: 2K/64;  
1038  
1001: 2K/512;  
1010: 2K/4096;  
1011: 2K/32768;  
1100: 2 K/262144;  
1101: CNT7_END;  
1110: External;  
1111: Not used  
0: Reset to 0  
1: Set to data  
0: normal  
1: DLY function edge detection  
(registers [1032:1031] = 00)  
0: bypass  
1: after two DFF  
0: bypass  
1: after two DFF  
00: bypass the initial  
01: initial 0  
10: initial 1  
11: initial 1  
0: low  
1: high  
1039  
1040  
1041  
FSM0 SET/RST Selection  
CNT0 DLY EDET FUNCTION Selection  
UP signal SYNC selection  
Keep signal SYNC selection  
1042  
1043  
82  
CNT0 initial value selection  
1044  
1045  
Wake sleep power-down state selection  
wake sleep mode selection  
0: Default Mode  
1: Wake Sleep Mode  
(registers [1032:1031] = 11)  
0: Default Output  
1: Inverted Output  
1046  
1047  
CNT0 output pol selection  
Datasheet  
17-Jun-2021  
Revision 3.0  
160 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0: bypass  
1048  
CNT0 CNT mode SYNC selection  
Single 3-bit LUT  
1: after two DFF  
00000: Matrix A - In2; Matrix B - In1;  
Matrix C - In0  
(DLY_IN - LOW)  
10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DLY_IN - LOW)  
00001: Matrix A- DLY_IN (CNT); Matrix B - EXT_CLK (CNT);  
Matrix C - NC  
(DLY_OUT connected to LUT/DFF)  
Single DFF w RST and SET  
Single CNT/DLY  
00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0  
(DLY_OUT connected to In2)  
CNT/DLY → LUT  
10010: Matrix A - DLY_IN; Matrix B - nSET/nRST;  
Matrix C - CLK  
(DLY_OUT connected to D)  
CNT/DLY → DFF  
1053:1049  
83  
00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0  
(DLY_OUT connected to In1)  
10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK  
(DLY_OUT connected to nSET/nRST)  
CNT/DLY → LUT  
CNT/DLY → DFF  
01010: Matrix A - In2; Matrix B - In1;  
Matrix C - DLY_IN  
(DLY_OUT connected to In0)  
CNT/DLY → LUT  
11010: Matrix A- D; Matrix B - nSET/nRST; Matrix C - DLY_IN  
(DLY_OUT connected to CLK)  
00011: Matrix A - In2; Matrix B - In1; Matrix C - In0  
(LUT_OUT connected to DLY_IN)  
10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
CNT/DLY → DFF  
LUT → CNT/DLY  
DFF → CNT/DLY  
1054  
1055  
1056  
0000: both edge Delay;  
0001: falling edge delay;  
0010: rising edge delay:  
0011: both edge One Shot;  
0100: falling edge One Shot;  
0101: rising edge One Shot;  
0110: both edge freq detect;  
0111: falling edge freq detect;  
1000: rising edge freq detect;  
1001: both edge detect;  
1010: falling edge detect;  
1011: rising edge detect;  
1100: both edge reset CNT;  
1101: falling edge reset CNT;  
1110: rising edge reset CNT;  
1111: high level reset CNT  
CNT1 function and edge mode selection  
1057  
84  
1058  
1059  
00: bypass the initial  
01: initial 0  
CNT1 initial value selection  
10: initial 1  
11: initial 1  
Datasheet  
17-Jun-2021  
Revision 3.0  
161 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1060  
1061  
1062  
Clock source sel[3:0]  
0000: 25M(OSC2);  
0001: 25M/4;  
0010: 2M(OSC1);  
0011:2M/8;  
0100: 2M/64;  
0101: 2M/512;  
0110:2K(OSC0);  
0111: 2K/8;  
84  
DLY/CNT1 Clock Source Select  
1000:2K/64;  
1063  
1001: 2K/512;  
1010: 2K/4096;  
1011:2K/32768;  
1100: 2K/262144;  
1101: CNT0_END;  
1110: External;  
1111: Not used  
0: Default Output  
1: Inverted Output  
0: bypass  
1: after two DFF  
1064  
1065  
CNT1 output pol selection  
CNT1 CNT mode SYNC selection  
0: normal  
1066  
CNT1 DLY EDET FUNCTION Selection  
1: DLY function edge detection  
(registers[1057:1054]=0000/0001/0010)  
00000: Matrix A - In2; Matrix B - In1;  
Matrix C - In0  
(DLY_IN - LOW)  
Single 3-bit LUT  
10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DLY_IN - LOW)  
00001: Matrix A- DLY_IN (CNT); Matrix B - EXT_CLK (CNT);  
Matrix C - NC  
(DLY_OUT connected to LUT/DFF)  
Single DFF w RST and SET  
Single CNT/DLY  
00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0  
(DLY_OUT connected to In2)  
CNT/DLY → LUT  
85  
10010: Matrix A - DLY_IN; Matrix B - nSET/nRST;  
Matrix C - CLK  
(DLY_OUT connected to D)  
CNT/DLY → DFF  
1071:1067  
00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0  
(DLY_OUT connected to In1)  
10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK  
(DLY_OUT connected to nSET/nRST)  
CNT/DLY → LUT  
CNT/DLY → DFF  
01010: Matrix A - In2; Matrix B - In1;  
Matrix C - DLY_IN  
(DLY_OUT connected to In0)  
CNT/DLY → LUT  
11010: Matrix A- D; Matrix B - nSET/nRST; Matrix C - DLY_IN  
(DLY_OUT connected to CLK)  
00011: Matrix A - In2; Matrix B - In1; Matrix C - In0  
(LUT_OUT connected to DLY_IN)  
10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
CNT/DLY → DFF  
LUT → CNT/DLY  
DFF → CNT/DLY  
Datasheet  
17-Jun-2021  
Revision 3.0  
162 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1072  
00: bypass the initial  
01: initial 0  
CNT2 initial value selection  
10: initial 1  
1073  
11: initial 1  
1074  
1075  
1076  
0000: both edge Delay;  
0001: falling edge delay;  
0010: rising edge delay:  
0011: both edge One Shot;  
0100: falling edge One Shot;  
0101: rising edge One Shot;  
0110: both edge freq detect;  
0111: falling edge freq detect;  
1000: rising edge freq detect;  
1001: both edge detect;  
1010: falling edge detect;  
1011: rising edge detect;  
1100: both edge reset CNT;  
1101: falling edge reset CNT;  
1110: rising edge reset CNT;  
1111: high level reset CNT  
86  
CNT2 function and edge mode selection  
1077  
1078  
1079  
1080  
Clock source sel[3:0]  
0000: 25M(OSC2);  
0001: 25M/4;  
0010: 2M(OSC1);  
0011:2M/8;  
0100: 2M/64;  
0101: 2M/512;  
0110:2K(OSC0);  
0111: 2K/8;  
DLY/CNT2 Clock Source Select  
1000:2K/64;  
1081  
1001: 2K/512;  
1010: 2K/4096;  
1011:2K/32768;  
1100: 2K/262144;  
1101: CNT1_END;  
1110: External;  
1111: Not used  
87  
1082  
1083  
CNT2 output pol selection  
CNT2 CNT mode SYNC selection  
0: Default Output, 1: Inverted Output  
0: bypass; 1: after two DFF  
0: normal; 1: DLY function edge detection(regis-  
ters[1077:1074] = 0000/0001/0010)  
1084  
CNT2 DLY EDET FUNCTION Selection  
1085  
1086  
1087  
1088  
1089  
1090  
CNT3 initial value selection  
Multi3 register configure  
00:bypass the initial; 01: initial 0; 10: initial 1; 11: initial 1  
refer to byte 88  
0000: both edge Delay;  
0001: falling edge delay;  
0010: rising edge delay:  
0011: both edge One Shot;  
0100: falling edge One Shot;  
0101: rising edge One Shot;  
0110: both edge freq detect;  
0111: falling edge freq detect;  
1000: rising edge freq detect;  
1001: both edge detect;  
1010: falling edge detect;  
1011: rising edge detect;  
1100: both edge reset CNT;  
1101: falling edge reset CNT;  
1110: rising edge reset CNT;  
1111: high level reset CNT  
88  
CNT3 function and edge mode selection  
1091  
Datasheet  
17-Jun-2021  
Revision 3.0  
163 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
00000: Matrix A - In2; Matrix B - In1;  
Matrix C - In0  
(DLY_IN - LOW)  
Single 3-bit LUT  
10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DLY_IN - LOW)  
00001: Matrix A- DLY_IN (CNT); Matrix B - EXT_CLK (CNT);  
Matrix C - NC  
(DLY_OUT connected to LUT/DFF)  
Single DFF w RST and SET  
Single CNT/DLY  
00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0  
(DLY_OUT connected to In2)  
CNT/DLY → LUT  
10010: Matrix A - DLY_IN; Matrix B - nSET/nRST;  
Matrix C - CLK  
CNT/DLY → DFF  
1087,  
(DLY_OUT connected to D)  
88 1093:1092,  
00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0  
(DLY_OUT connected to In1)  
1095:1094 CNT/DLY → LUT  
10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK  
(DLY_OUT connected to nSET/nRST)  
01010: Matrix A - In2; Matrix B - In1;  
Matrix C - DLY_IN  
(DLY_OUT connected to In0)  
CNT/DLY → DFF  
CNT/DLY → LUT  
11010: Matrix A- D; Matrix B - nSET/nRST; Matrix C - DLY_IN  
(DLY_OUT connected to CLK)  
00011: Matrix A - In2; Matrix B - In1; Matrix C - In0  
(LUT_OUT connected to DLY_IN)  
10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
CNT/DLY → DFF  
LUT → CNT/DLY  
DFF → CNT/DLY  
1096  
1097  
1098  
Clock source sel[3:0]  
0000: 25M(OSC2); 0001: 25M/4;  
0010: 2M(OSC1); 0011:2M/8;  
0100: 2M/64; 0101: 2M/512;  
0110:2K(OSC0); 0111: 2K/8;  
1000:2K/64; 1001: 2K/512;  
1010: 2K/4096; 1011:2K/32768;  
1100: 2K/262144; 1101: CNT2_END;  
1110: External; 1111: Not used  
DLY/CNT3 Clock Source Select  
1099  
89  
0: Default Output  
1: Inverted Output  
1100  
CNT3 output pol selection  
0: bypass  
1101  
1102  
1103  
CNT3 CNT mode SYNC selection  
1: after two DFF  
0: normal  
CNT3 DLY EDET FUNCTION Selection  
CNT4 CNT mode SYNC selection  
1: DLY function edge detection  
(registers[1091:1088]=0000/0001/0010)  
0: bypass  
1: after two DFF  
Datasheet  
17-Jun-2021  
Revision 3.0  
164 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1104  
00: bypass the initial  
01: initial 0  
CNT4 initial value selection  
10: initial 1  
1105  
1106  
11: initial 1  
0: normal  
1: DLY function edge detection  
(registers[1119:1116]=0000/0001/0010)  
CNT4 DLY EDET FUNCTION Selection  
00000: Matrix A - In2; Matrix B - In1;  
Matrix C - In0  
(DLY_IN - LOW)  
Single 3-bit LUT  
10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DLY_IN - LOW)  
00001: Matrix A- DLY_IN (CNT); Matrix B - EXT_CLK (CNT);  
Matrix C - NC  
(DLY_OUT connected to LUT/DFF)  
Single DFF w RST and SET  
Single CNT/DLY  
00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0  
(DLY_OUT connected to In2)  
10010: Matrix A - DLY_IN; Matrix B - nSET/nRST;  
Matrix C - CLK  
(DLY_OUT connected to D)  
00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0  
(DLY_OUT connected to In1)  
10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK  
(DLY_OUT connected to nSET/nRST)  
CNT/DLY → LUT  
8A  
CNT/DLY → DFF  
1111:1107  
CNT/DLY → LUT  
CNT/DLY → DFF  
01010: Matrix A - In2; Matrix B - In1;  
Matrix C - DLY_IN  
(DLY_OUT connected to In0)  
CNT/DLY → LUT  
11010: Matrix A- D; Matrix B - nSET/nRST; Matrix C - DLY_IN  
(DLY_OUT connected to CLK)  
00011: Matrix A - In2; Matrix B - In1; Matrix C - In0  
(LUT_OUT connected to DLY_IN)  
10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
CNT/DLY → DFF  
LUT → CNT/DLY  
DFF → CNT/DLY  
1112  
1113  
1114  
Clock source sel[3:0]  
0000: 25M(OSC2);  
0001: 25M/4;  
0010: 2M(OSC1);  
0011:2M/8;  
0100: 2M/64;  
0101: 2M/512;  
0110:2K(OSC0);  
0111: 2K/8;  
8B  
DLY/CNT4 Clock Source Select  
1000:2K/64;  
1115  
1001: 2K/512;  
1010: 2K/4096;  
1011:2K/32768;  
1100: 2K/262144;  
1101: CNT3_END;  
1110: External;  
1111: Not used  
Datasheet  
17-Jun-2021  
Revision 3.0  
165 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1116  
1117  
1118  
0000: both edge Delay;  
0001: falling edge delay;  
0010: rising edge delay:  
0011: both edge One Shot;  
0100: falling edge One Shot;  
0101: rising edge One Shot;  
0110: both edge freq detect;  
0111: falling edge freq detect;  
1000: rising edge freq detect;  
1001: both edge detect;  
1010: falling edge detect;  
1011: rising edge detect;  
1100: both edge reset CNT;  
1101: falling edge reset CNT;  
1110: rising edge reset CNT;  
1111: high level reset CNT  
8B  
CNT4 function and edge mode selection  
1119  
0: Default Output  
1: Inverted Output  
1120  
CNT4 output pol selection  
1121  
1122  
1123  
0000: both edge Delay;  
0001: falling edge delay;  
0010: rising edge delay:  
0011: both edge One Shot;  
0100: falling edge One Shot;  
0101: rising edge One Shot;  
0110: both edge freq detect;  
0111: falling edge freq detect;  
1000: rising edge freq detect;  
1001: both edge detect;  
1010: falling edge detect;  
1011: rising edge detect;  
1100: both edge reset CNT;  
1101: falling edge reset CNT;  
1110: rising edge reset CNT;  
1111: high level reset CNT  
0: Default Output  
1: Inverted Output  
00000: Matrix A - In2; Matrix B - In1;  
Matrix C - In0  
(DLY_IN - LOW)  
CNT5 function and edge mode selection  
1124  
1125  
CNT5 output pol selection  
Single 3-bit LUT  
8C  
10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DLY_IN - LOW)  
00001: Matrix A- DLY_IN (CNT); Matrix B - EXT_CLK (CNT);  
Matrix C - NC  
(DLY_OUT connected to LUT/DFF)  
Single DFF w RST and SET  
Single CNT/DLY  
00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0  
(DLY_OUT connected to In2)  
10010: Matrix A - DLY_IN; Matrix B - nSET/nRST;  
Matrix C - CLK  
(DLY_OUT connected to D)  
CNT/DLY → LUT  
1134,  
1127:1126,  
1133:1132  
CNT/DLY → DFF  
00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0  
(DLY_OUT connected to In1)  
10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK  
(DLY_OUT connected to nSET/nRST)  
CNT/DLY → LUT  
CNT/DLY → DFF  
01010: Matrix A - In2; Matrix B - In1;  
Matrix C - DLY_IN  
(DLY_OUT connected to In0)  
CNT/DLY → LUT  
Datasheet  
17-Jun-2021  
Revision 3.0  
166 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
11010: Matrix A- D; Matrix B - nSET/nRST; Matrix C - DLY_IN  
(DLY_OUT connected to CLK)  
00011: Matrix A - In2; Matrix B - In1; Matrix C - In0  
(LUT_OUT connected to DLY_IN)  
10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
CNT/DLY → DFF  
1134,  
8C 1127:1126, LUT → CNT/DLY  
1133:1132  
DFF → CNT/DLY  
1128  
1129  
1130  
Clock source sel[3:0]  
0000: 25M(OSC2);  
0001: 25M/4;  
0010: 2M(OSC1);  
0011:2M/8;  
0100: 2M/64;  
0101: 2M/512;  
0110:2K(OSC0);  
0111: 2K/8;  
DLY/CNT5 Clock Source Select  
1000:2K/64;  
8D  
1131  
1135  
1001: 2K/512;  
1010: 2K/4096;  
1011:2K/32768;  
1100: 2K/262144;  
1101: CNT4_END;  
1110: External;  
1111: Not used  
0: normal;  
1: DLY function edge detection  
(registers[1124:1121]=0000/0001/0010)  
0: bypass;  
1: after two DFF  
00: bypass the initial  
01: initial 0  
10: initial 1  
11: initial 1  
CNT5 DLY EDET FUNCTION Selection  
CNT5 CNT mode SYNC selection  
1136  
1137  
CNT5 initial value selection  
1138  
1139  
1140  
1141  
0000: both edge Delay;  
0001: falling edge delay;  
0010: rising edge delay:  
0011: both edge One Shot;  
0100: falling edge One Shot;  
0101: rising edge One Shot;  
0110: both edge freq detect;  
0111: falling edge freq detect;  
1000: rising edge freq detect;  
1001: both edge detect;  
1010: falling edge detect;  
1011: rising edge detect;  
1100: both edge reset CNT;  
1101: falling edge reset CNT;  
1110: rising edge reset CNT;  
1111: high level reset CNT  
8E  
CNT6 function and edge mode selection  
1142  
1143  
0: Default Output  
1: Inverted Output  
CNT6 output pol selection  
Datasheet  
17-Jun-2021  
Revision 3.0  
167 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1144  
1145  
1146  
Clock source sel[3:0]  
0000: 25M(OSC2);  
0001: 25M/4;  
0010: 2M(OSC1);  
0011:2M/8;  
0100: 2M/64;  
0101: 2M/512;  
0110:2K(OSC0);  
0111: 2K/8;  
DLY/CNT6 Clock Source Select  
1000:2K/64;  
1147  
1001: 2K/512;  
1010: 2K/4096;  
1011:2K/32768;  
1100: 2K/262144;  
1101: CNT5_END;  
1110: External;  
1111: Not used  
00000: Matrix A - In2; Matrix B - In1;  
Matrix C - In0  
(DLY_IN - LOW)  
Single 3-bit LUT  
10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DLY_IN - LOW)  
00001: Matrix A- DLY_IN (CNT); Matrix B - EXT_CLK (CNT);  
Matrix C - NC  
(DLY_OUT connected to LUT/DFF)  
Single DFF w RST and SET  
Single CNT/DLY  
8F  
00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0  
(DLY_OUT connected to In2)  
CNT/DLY → LUT  
10010: Matrix A - DLY_IN; Matrix B - nSET/nRST;  
Matrix C - CLK  
CNT/DLY → DFF  
1152,  
(DLY_OUT connected to D)  
1149:1148,  
00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0  
(DLY_OUT connected to In1)  
1151:1150 CNT/DLY → LUT  
10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK  
(DLY_OUT connected to nSET/nRST)  
CNT/DLY → DFF  
01010: Matrix A - In2; Matrix B - In1;  
Matrix C - DLY_IN  
(DLY_OUT connected to In0)  
CNT/DLY → LUT  
11010: Matrix A- D; Matrix B - nSET/nRST; Matrix C - DLY_IN  
(DLY_OUT connected to CLK)  
00011: Matrix A - In2; Matrix B - In1; Matrix C - In0  
(LUT_OUT connected to DLY_IN)  
10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
CNT/DLY → DFF  
LUT → CNT/DLY  
DFF → CNT/DLY  
0: normal  
1153  
CNT6 DLY EDET FUNCTION Selection  
1: DLY function edge detection (registers[1142:1139]=0000/  
0001/0010)  
90  
90  
0: bypass  
1154  
1155  
CNT6 CNT mode SYNC selection  
CNT6 initial value selection  
1: after two DFF  
00: bypass the initial  
01: initial 0  
10: initial 1  
11: initial 1  
00: bypass the initial  
01: initial 0  
10: initial 1  
11: initial 1  
1156  
1157  
1158  
CNT7 initial value selection  
0: bypass  
1: after two DFF  
1159  
CNT7 CNT mode SYNC selection  
Datasheet  
17-Jun-2021  
Revision 3.0  
168 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0: normal  
1160  
CNT7 DLY EDET FUNCTION Selection  
1: DLY function edge detection (registers [1174:1171]=0000/  
0001/0010)  
00000: Matrix A - In2; Matrix B - In1;  
Matrix C - In0  
(DLY_IN - LOW)  
Single 3-bit LUT  
10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DLY_IN - LOW)  
00001: Matrix A- DLY_IN (CNT); Matrix B - EXT_CLK (CNT);  
Matrix C - NC  
(DLY_OUT connected to LUT/DFF)  
Single DFF w RST and SET  
Single CNT/DLY  
00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0  
(DLY_OUT connected to In2)  
CNT/DLY → LUT  
10010: Matrix A - DLY_IN; Matrix B - nSET/nRST;  
Matrix C - CLK  
CNT/DLY → DFF  
91  
(DLY_OUT connected to D)  
1161,  
1165:1162  
00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0  
(DLY_OUT connected to In1)  
10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK  
(DLY_OUT connected to nSET/nRST)  
CNT/DLY → LUT  
CNT/DLY → DFF  
01010: Matrix A - In2; Matrix B - In1;  
Matrix C - DLY_IN  
(DLY_OUT connected to In0)  
CNT/DLY → LUT  
11010: Matrix A- D; Matrix B - nSET/nRST; Matrix C - DLY_IN  
(DLY_OUT connected to CLK)  
00011: Matrix A - In2; Matrix B - In1; Matrix C - In0  
(LUT_OUT connected to DLY_IN)  
10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK  
(DFF_OUT connected to DLY_IN)  
CNT/DLY → DFF  
LUT → CNT/DLY  
DFF → CNT/DLY  
Datasheet  
17-Jun-2021  
Revision 3.0  
169 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1166  
1167  
1168  
Clock source sel[3:0]  
0000: 25M(OSC2);  
0001: 25M/4;  
91  
0010: 2M(OSC1);  
0011:2M/8;  
0100: 2M/64;  
0101: 2M/512;  
0110:2K(OSC0);  
0111: 2K/8;  
DLY/CNT7 Clock Source Select  
1000:2K/64;  
1169  
1001: 2K/512;  
1010: 2K/4096;  
1011: 2K/32768;  
1100: 2K/262144;  
1101: CNT6_END;  
1110: External;  
1111: Not used  
0: Default Output  
1: Inverted Output  
0000: both edge Delay;  
0001: falling edge delay;  
0010: rising edge delay:  
0011: both edge One Shot;  
0100: falling edge One Shot;  
0101: rising edge One Shot;  
0110: both edge freq detect;  
0111: falling edge freq detect;  
1000: rising edge freq detect;  
1001: both edge detect;  
1010: falling edge detect;  
1011: rising edge detect;  
1100: both edge reset CNT;  
1101: falling edge reset CNT;  
1110: rising edge reset CNT;  
1111: high level reset CNT  
1170  
CNT7 output pol selection  
CNT7 function and edge mode selection  
Reserved  
1171  
1172  
1173  
92  
1174  
1175  
1176  
1177  
1178  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1190  
1191  
93  
[15]:LUT4_1 [15]/DFF20 or LATCH Select  
0: DFF function, 1: LATCH function  
[14]:LUT4_1 [14]/DFF20 Output Select  
0: Q output, 1: QB output  
Multi0_LUT4_DFF setting  
[13]:LUT4_1 [13]/DFF20 Initial Polarity Select  
0: Low, 1: High  
[12:0]:LUT4_1 [12:0]  
94  
Datasheet  
17-Jun-2021  
Revision 3.0  
170 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
95  
REG_CNT0_D[15:0]  
Data[15:0]  
96  
97  
98  
99  
9A  
[7]:LUT3_9 [7]/DFF13 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_9 [6]/DFF13 Output Select  
0: Q output, 1: QB output  
Multi1_LUT3_DFF setting  
[5]:LUT3_9 [5]/DFF13  
0: nRST from Matrix Output, 1: nSET from Matrix Output  
[4]:LUT3_9 [4]/DFF13 Initial Polarity Select  
0: Low, 1: High  
[3:0]:LUT3_9 [3:0]  
REG_CNT1_D[7:0]  
Data[7:0]  
[7]:LUT3_10 [7]/DFF14 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_10[6]/DFF14 Output Select  
0: Q output, 1: QB output  
Multi2_LUT3_DFF setting  
[5]:LUT3_10 [5]/DFF14  
0: nRST from Matrix Output, 1: nSET from Matrix Output  
[4]:LUT3_10 [4]/DFF14 Initial Polarity Select  
0: Low, 1: High  
[3:0]:LUT3_10 [3:0]  
REG_CNT2_D[7:0]  
Data[7:0]  
Datasheet  
17-Jun-2021  
Revision 3.0  
171 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
[7]:LUT3_11 [7]/DFF15 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_11[6]/DFF15 Output Select  
0: Q output, 1: QB output  
9B  
Multi3_LUT3_DFF setting  
[5]:LUT3_11 [5]/DFF15  
0: nRST from Matrix Output, 1: nSET from Matrix Output  
[4]:LUT3_11 [4]/DFF15 Initial Polarity Select  
0: Low, 1: High  
[3:0]:LUT3_11 [3:0]  
9C  
9D  
9E  
9F  
A0  
REG_CNT3_D[7:0]  
Data[7:0]  
[7]:LUT3_12 [7]/DFF16 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_12[6]/DFF16 Output Select  
0: Q output, 1: QB output  
Multi4_LUT3_DFF setting  
[5]:LUT3_12 [5]/DFF16  
0: nRST from Matrix Output, 1: nSET from Matrix Output  
[4]:LUT3_12 [4]/DFF16 Initial Polarity Select  
0: Low, 1: High  
[3:0]:LUT3_12 [3:0]  
REG_CNT4_D[7:0]  
Data[7:0]  
[7]:LUT3_13 [7]/DFF17 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_13[6]/DFF17 Output Select  
0: Q output, 1: QB output  
Multi5_LUT3_DFF setting  
[5]:LUT3_13 [5]/DFF17  
0: nRST from Matrix Output, 1: nSET from Matrix Output  
[4]:LUT3_13 [4]/DFF17 Initial Polarity Select  
0: Low, 1: High  
[3:0]:LUT3_13 [3:0]  
REG_CNT5_D[7:0]  
Data[7:0]  
Datasheet  
17-Jun-2021  
Revision 3.0  
172 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1288  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1298  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
[7]:LUT3_14 [7]/DFF18 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_14[6]/DFF18 Output Select  
0: Q output, 1: QB output  
A1  
Multi6_LUT3_DFF setting  
[5]:LUT3_14 [5]/DFF18  
0: nRST from Matrix Output, 1: nSET from Matrix Output  
[4]:LUT3_14 [4]/DFF18 Initial Polarity Select  
0: Low, 1: High  
[3:0]:LUT3_14 [3:0]  
A2  
A3  
A4  
A5  
A6  
REG_CNT6_D[7:0]  
Data[7:0]  
[7]:LUT3_15 [7]/DFF19 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_15[6]/DFF19 Output Select  
0: Q output, 1: QB output  
Multi7_LUT3_DFF setting  
[5]:LUT3_15 [5]/DFF19  
0: nRST from Matrix Output, 1: nSET from Matrix Output  
[4]:LUT3_15 [4]/DFF19 Initial Polarity Select  
0: Low, 1: High  
[3:0]:LUT3_15 [3:0]  
REG_CNT7_D[7:0]  
Data[7:0]  
CNT0 (16bits) Counted Value  
Virtual Input  
Datasheet  
17-Jun-2021  
Revision 3.0  
173 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1336  
1337  
1338  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
A7  
CNT6 (8bits) Counted Value  
Virtual Input  
A8  
CNT7 (8bits) Counted Value  
Virtual Input  
[7]:LUT3_1 [7]/DFF4 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_1 [6]/DFF4 Output Select  
0: Q output, 1: QB output  
[5]:LUT3_1 [5]/DFF4 Initial Polarity Select  
0: Low, 1: High  
[4]:LUT3_1 [4]/DFF4  
0: nRST from Matrix Output, 1: nSET from Matrix Output  
[3]:LUT3_1 [3]/DFF4 Active level selection for RST/SET  
0: Active low level reset/set, 1: Active high level reset/set  
[2:0]: LUT3_1 [2:0]  
A9  
LUT3_1_DFF4 setting  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
[7]:LUT3_2 [7]/DFF5 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_2 [6]/DFF5 Output Select  
0: Q output, 1: QB output  
[5]:LUT3_2 [5]/DFF5 Initial Polarity Select  
0: Low, 1: High  
AA  
LUT3_2_DFF5 setting  
[4]:LUT3_2 [4]/DFF5  
0: nRST from Matrix Output, 1: nSET from Matrix Output  
[3]:LUT3_2 [3]/DFF5 Active level selection for RST/SET  
0: Active low level reset/set, 1: Active high level reset/set  
[2:0]: LUT3_2 [2:0]  
1367  
1368  
1369  
1370  
1371  
1372  
1373  
1374  
[7]:LUT3_3 [7]/DFF6 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_3 [6]/DFF6 Output Select  
0: Q output, 1: QB output  
[5]:LUT3_3 [5]/DFF6 Initial Polarity Select  
0: Low, 1: High  
AB  
LUT3_3_DFF6 setting  
[4]:LUT3_3 [4]/DFF6  
0: nRST from Matrix Output, 1: nSET from Matrix Output  
[3]:LUT3_3 [3]/DFF6 Active level selection for RST/SET  
0: Active low level reset/set, 1: Active high level reset/set  
[2:0]: LUT3_3 [2:0]  
1375  
Datasheet  
17-Jun-2021  
Revision 3.0  
174 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1376  
1377  
1378  
1379  
1380  
1381  
1382  
[7]:LUT3_4 [7]/DFF7 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_4 [6]/DFF7 Output Select  
0: Q output, 1: QB output  
[5]:LUT3_4 [5]/DFF7 Initial Polarity Select  
0: Low, 1: High  
AC  
LUT3_4_DFF7 setting  
[4]:LUT3_4 [4]/DFF7  
0: nRST from Matrix Output, 1: nSET from Matrix Output  
[3]:LUT3_4 [3]/DFF7 Active level selection for RST/SET  
0: Active low level reset/set, 1: Active high level reset/set  
[2:0]: LUT3_4 [2:0]  
1383  
1384  
1385  
1386  
1387  
LUT2_3_VAL or PGen_data  
LUT2_3[3:0] or PGen 4bit counter data[3:0]  
0: LUT3_1  
1: DFF4  
0: LUT3_2  
1: DFF5  
0: LUT3_3  
1: DFF6  
0: LUT3_4  
1: DFF7  
1388  
1389  
1390  
1391  
LUT3_1 or DFF4 Select  
LUT3_2 or DFF5 Select  
LUT3_3 or DFF6 Select  
LUT3_4 or DFF7 Select  
AD  
1392  
1393  
1394  
1395  
1396  
1397  
1398  
1399  
1400  
1401  
1402  
1403  
1404  
1405  
1406  
1407  
AE  
PGen data  
PGen Data[15:0]  
AF  
Datasheet  
17-Jun-2021  
Revision 3.0  
175 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0: LUT2_3  
1: PGen  
1408  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
LUT2_3 or PGen Select  
Active level selection for RST/SET for LUT2_3 0: Active low level reset/set  
or PGen 1: Active high level reset/set  
Activelevelselection for RST/SETfor LUT3_16 0: Active low level reset/set  
or Pipe Delay/RIPP CNT 1: Active high level reset/set  
Out of LUT3_16 or Out0 of Pipe Delay/RIPP 0: LUT3_16  
CNT Select  
1: OUT0 of Pipe Delay or RIPP CNT  
0: Pipe delay mode selection  
1: Ripple Counter mode selection  
0: Non-inverted  
1: Inverted  
0: LUT4_0  
1: DFF12  
0: LUT3_0  
1: DFF3  
B0  
PIPE_RIPP_CNT_S  
Pipe Delay OUT1 Polarity Select  
LUT4_0 or DFF12 Select  
LUT3_0 or DFF3 Select  
1416  
1417  
1418  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
[7:4]: LUT3_8 [7:4]/REG_S1[3:0] pipe delay out1 sel  
[3:0]: LUT3_8 [3:0]/REG_S0[3:0] pipe delay out0 sel  
at RIPP CNT mode:  
LUT value or pipe delay out sel or nSET/END  
value  
B1  
B2  
B3  
bit[1418:1416] is the nSET value  
bit[1421:1419] is the END value  
bit[1422] is the range control: 0 full cycle, 1 range cycle  
bit[1423] Not used  
[15]:LUT4_0 [15]/DFF12 or LATCH Select  
0: DFF function, 1: LATCH function  
[14]:LUT4_0 [14]/DFF12 Output Select  
0: Q output, 1: QB output  
[13]:LUT4_0 [13]/DFF12 Initial Polarity Select  
0: Low, 1: High  
[12]:LUT4_0 [12]/DFF12 stage selection  
0: Q of first DFF; 1 Q of second DFF  
[11]:LUT4_0 [11]/DFF12  
0: nRST from Matrix Output, 1: nSET from Matrix Output  
[10]:LUT4_0 [10]/DFF12 Active level selection for RST/SET  
0: Active low level reset/set, 1: Active high level reset/set  
[9:0]: LUT4_0 [9:0]  
LUT4_0_DFF12 setting  
[7]:LUT3_0 [7]/DFF3 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_0 [6]/DFF3 Output Select  
0: Q output, 1: QB output  
[5]:LUT3_0 [5]/DFF3 Initial Polarity Select  
0: Low, 1: High  
[4]:LUT3_0 [4]/DFF3stage selection  
0: Q of first DFF; 1 Q of second DFF  
[3]:LUT3_0 [3]/DFF3  
0: nRST from Matrix Output, 1: nSET from Matrix Output  
[2]:LUT3_0 [2]/DFF3 Active level selection for RST/SET  
0: Active low level reset/set, 1: Active high level reset/set  
[1:0]: LUT3_0 [1:0]  
B4  
LUT3_0_DFF3 setting  
1447  
Datasheet  
17-Jun-2021  
Revision 3.0  
176 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0, filter  
1448  
Filter or Edge Detector selection  
Output Polarity Select  
1, edge det  
0: output non-invert  
1: output invert  
00: Rising Edge Det  
01: Falling Edge Det  
10: Both Edge Det  
11: Both Edge DLY  
1449  
1450  
Select the edge mode  
1451  
1452  
1453  
1454  
1455  
B5  
00: 125 ns  
Delay Value Select for Programmable Delay & 01: 250 ns  
Edge Detector  
10: 375 ns  
11: 500 ns  
00: Rising Edge Detector  
Select the Edge Mode of Programmable Delay 01: Falling Edge Detector  
& Edge Detector  
10: Both Edge Detector  
11: Both Edge Delay  
1456  
1457  
1458  
1459  
1460  
1461  
1462  
[7]:LUT3_5 [7]/DFF8 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_5 [6]/DFF8 Output Select  
0: Q output, 1: QB output  
[5]:LUT3_5 [5]/DFF8 Initial Polarity Select  
0: Low, 1: High  
B6  
B7  
B8  
B9  
LUT3_5_DFF8 setting  
[4]:LUT3_5 [4]/DFF8  
0: nRST from Matrix Output, 1: nSET from Matrix Output  
[3]:LUT3_5 [3]/DFF8 Active level selection for RST/SET  
0: Active low level reset/set, 1: Active high level reset/set  
[2:0]: LUT3_5 [2:0]  
1463  
1464  
1465  
1466  
1467  
1468  
1469  
1470  
[7]:LUT3_6 [7]/DFF9 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_6 [6]/DFF9 Output Select  
0: Q output, 1: QB output  
[5]:LUT3_6 [5]/DFF9 Initial Polarity Select  
0: Low, 1: High  
[4]:LUT3_6 [4]/DFF9  
0: nRST from Matrix Output, 1: nSET from Matrix Output  
[3]:LUT3_6 [3]/DFF9 Active level selection for RST/SET  
0: Active low level reset/set, 1: Active high level reset/set  
[2:0]: LUT3_6 [2:0]  
[7]:LUT3_7 [7]/DFF10 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_7 [6]/DFF10 Output Select  
0: Q output, 1: QB output  
[5]:LUT3_7 [5]/DFF10 Initial Polarity Select  
0: Low, 1: High  
[4]:LUT3_7 [4]/DFF10  
0: nRST from Matrix Output, 1: nSET from Matrix Output  
[3]:LUT3_7 [3]/DFF10 Active level selection for RST/SET  
0: Active low level reset/set, 1: Active high level reset/set  
[2:0]: LUT3_7 [2:0]  
[7]:LUT3_8 [7]/DFF11 or LATCH Select  
0: DFF function, 1: LATCH function  
[6]:LUT3_8 [6]/DFF11 Output Select  
0: Q output, 1: QB output  
[5]:LUT3_8 [5]/DFF11 Initial Polarity Select  
0: Low, 1: High  
[4]:LUT3_8 [4]/DFF11  
LUT3_6_DFF9 setting  
LUT3_7_DFF10 setting  
LUT3_8_DFF11 setting  
1471  
1472  
1473  
1474  
1475  
1476  
1477  
1478  
1479  
1480  
1481  
1482  
1483  
1484  
1485  
1486  
0: nRST from Matrix Output, 1: nSET from Matrix Output  
[3]:LUT3_8 [3]/DFF11 Active level selection for RST/SET  
0: Active low level reset/set, 1: Active high level reset/set  
[2:0]: LUT3_8 [2:0]  
1487  
Datasheet  
17-Jun-2021  
Revision 3.0  
177 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0: LUT2_0  
1: DFF0  
0: LUT2_1  
1: DFF1  
1488  
1489  
LUT2_0 or DFF0 Select  
LUT2_1 or DFF1 Select  
0: LUT2_2  
1: DFF2  
1490  
1491  
1492  
LUT2_2 or DFF2 Select  
Reserved  
BA  
0: LUT3_5  
1: DFF8  
LUT3_5 or DFF8 Select  
0: LUT3_6  
1: DFF9  
0: LUT3_7  
1: DFF10  
0: LUT3_8  
1: DFF11  
1493  
1494  
1495  
LUT3_6 or DFF9 Select  
LUT3_7 or DFF10 Select  
LUT3_8 or DFF11 Select  
1496  
1497  
1498  
[3]:LUT2_0 [3]/DFF0 or LATCH Select  
0: DFF function, 1: LATCH function  
[2]:LUT2_0 [2]/DFF0 Output Select  
0: Q output, 1: QB output  
LUT2_0/DFF0 setting  
LUT2_1/DFF1 setting  
LUT2_2/DFF2 setting  
[1]:LUT2_0 [1]/DFF0 Initial Polarity Select  
0: Low, 1: High  
1499  
[0]:LUT2_0 [0]  
BB  
1500  
1501  
1502  
[3]:LUT2_1 [3]/DFF1 or LATCH Select  
0: DFF function, 1: LATCH function  
[2]:LUT2_1 [2]/DFF1 Output Select  
0: Q output, 1: QB output  
[1]:LUT2_1 [1]/DFF1 Initial Polarity Select  
0: Low, 1: High  
[0]:LUT2_1 [0]  
[3]:LUT2_2 [3]/DFF2 or LATCH Select  
0: DFF function, 1: LATCH function  
[2]:LUT2_2 [2]/DFF2 Output Select  
0: Q output, 1: QB output  
[1]:LUT2_2 [1]/DFF2 Initial Polarity Select  
0: Low, 1: High  
[0]:LUT2_2 [0]  
1503  
1504  
1505  
1506  
1507  
BC  
1508  
1509  
1510  
1511  
1512  
1513  
1514  
1515  
1516  
1517  
1518  
1519  
Reserved  
BD  
Datasheet  
17-Jun-2021  
Revision 3.0  
178 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1520  
1521  
1522  
1523  
1524  
1525  
1526  
1527  
1528  
1529  
1530  
1531  
1532  
1533  
1534  
1535  
1536  
1537  
1538  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547  
1548  
1549  
1550  
1551  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1560  
1561  
1562  
1563  
1564  
1565  
1566  
1567  
Reserved  
Reserved  
Reserved  
Reserved  
BE  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BF  
C0  
C1  
C2  
C3  
Datasheet  
17-Jun-2021  
Revision 3.0  
179 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1568  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
C4  
C5  
C6  
C7  
C8  
C9  
Datasheet  
17-Jun-2021  
Revision 3.0  
180 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1616  
1617  
1618  
1619  
1620  
1621  
1622  
1623  
1624  
1625  
1626  
1627  
1628  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1660  
1661  
1662  
1663  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CA  
CB  
CC  
CD  
CE  
CF  
Datasheet  
17-Jun-2021  
Revision 3.0  
181 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1664  
1665  
1666  
1667  
1668  
1669  
1670  
1671  
1672  
1673  
1674  
1675  
1676  
1677  
1678  
1679  
1680  
1681  
1682  
1683  
1684  
1685  
1686  
1687  
1688  
1689  
1690  
1691  
1692  
1693  
1694  
1695  
1696  
1697  
1698  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1710  
1711  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
D0  
D1  
D2  
D3  
D4  
D5  
Datasheet  
17-Jun-2021  
Revision 3.0  
182 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727  
1728  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
D6  
D7  
D8  
D9  
DA  
DB  
Datasheet  
17-Jun-2021  
Revision 3.0  
183 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1780  
1781  
1782  
1783  
1784  
1785  
1786  
1787  
1788  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1796  
1797  
1798  
1799  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
DC  
DD  
DE  
DF  
E0  
E1  
Datasheet  
17-Jun-2021  
Revision 3.0  
184 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1808  
1809  
1810  
1811  
1812  
1813  
1814  
1815  
1816  
1817  
1818  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829  
1830  
1831  
1832  
1833  
1834  
1835  
1836  
1837  
1838  
1839  
1840  
1841  
1842  
1843  
1844  
1845  
1846  
1847  
1848  
1849  
1850  
1851  
1852  
1853  
1854  
1855  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
E2  
E3  
E4  
E5  
E6  
E7  
Datasheet  
17-Jun-2021  
Revision 3.0  
185 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1856  
1857  
1858  
1859  
1860  
1861  
1862  
1863  
1864  
1865  
1866  
1867  
1868  
1869  
1870  
1871  
1872  
1873  
1874  
1875  
1876  
1877  
1878  
1879  
1880  
1881  
1882  
1883  
1884  
1885  
1886  
1887  
1888  
1889  
1890  
1891  
1892  
1893  
1894  
1895  
1896  
1897  
1898  
1899  
1900  
1901  
1902  
1903  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
E8  
E9  
EA  
EB  
EC  
ED  
Datasheet  
17-Jun-2021  
Revision 3.0  
186 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1904  
1905  
1906  
1907  
1908  
1909  
1910  
1911  
1912  
1913  
1914  
1915  
1916  
1917  
1918  
1919  
1920  
1921  
1922  
1923  
1924  
1925  
1926  
1927  
1928  
1929  
1930  
1931  
1932  
1933  
1934  
1935  
1936  
1937  
1938  
1939  
1940  
1941  
1942  
1943  
1944  
1945  
1946  
1947  
1948  
1949  
1950  
1951  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
EE  
EF  
F0  
F1  
F2  
F3  
Datasheet  
17-Jun-2021  
Revision 3.0  
187 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1952  
GPO0 I2C output expander data  
GPO0 I2C output expander select  
0: GPO0 output come from matrix  
1: GPO0 output is register  
1953  
1954  
GPIO6 I2C output expander data  
0: GPIO6 output come from matrix  
1: GPIO6 output is register  
1955  
1956  
1957  
1958  
1959  
GPIO6 I2C output expander select  
GPIO7 I2C output expander data  
GPIO7 I2C output expander select  
GPIO8 I2C output expander data  
GPIO8 I2C output expander select  
F4  
0: GPIO7 output come from matrix  
1: GPIO7 output is register  
0: GPIO8 output come from matrix  
1: GPIO8 output is register  
I2C reset bit with reloading NVM into Data  
register (soft reset)  
0: Keep existing condition  
1: Reset execution  
1960  
0: Disable  
1: Enable  
1961  
1962  
1963  
IO Latching Enable During I2C Write Interface  
Reserved  
0: Disable  
1: Enable  
Protect mode enable  
F5  
1964  
1965  
1966  
Reserved  
Register protection mode bit 0  
Register protection mode bit 1  
000: all open read/write (mode 0);  
001: partly lock read (mode 1);  
010: partly lock read2 (mode 2);  
011: partly lock read2/write (mode 3);  
100: all lock read (mode 4);  
1967  
Register protection mode bit 2  
101: all lock write (mode 5);  
110: all lock read/write (mode 6).  
1968  
1969  
1970  
1971  
1972  
1973  
1974  
1975  
1976  
1977  
1978  
1979  
1980  
1981  
1982  
1983  
1984  
1985  
1986  
1987  
1988  
1989  
1990  
1991  
1: mask  
0: overwrite  
F6  
F7  
F8  
I2C write mask bits  
Reserved  
Reserved  
Datasheet  
17-Jun-2021  
Revision 3.0  
188 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
1992  
Reserved  
Reserved  
1993  
1994  
1995  
1996  
1997  
1998  
1999  
2000  
2001  
2002  
2003  
2004  
2005  
2006  
2007  
2008  
2009  
2010  
2011  
2012  
2013  
2014  
2015  
2016  
2017  
2018  
2019  
2020  
2021  
2022  
2023  
2024  
2025  
2026  
2027  
Reserved  
Reserved  
F9  
FA  
FB  
FC  
Reserved  
Reserved  
Reserved  
I2C slave address  
0: from register [2024]  
1: from GPI0  
0: from register [2025]  
1: from GPIO2  
0: from register [2026]  
1: from GPIO4  
0: from register [2027]  
1: from GPIO5  
2028  
2029  
2030  
2031  
Slave address selection bit0  
Slave address selection bit1  
Slave address selection bit2  
Slave address selection bit3  
FD  
Datasheet  
17-Jun-2021  
Revision 3.0  
189 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Table 57: Register Map (Continued)  
Address  
Signal Function  
Register Bit Definition  
Register  
Bit  
Byte  
0: I2C operation enable; matrix in 32(33) select  
I2C_virtual_0(1) Input  
1: I2C operation disable; matrix in 32(33) select  
GPIO0(GPIO1) digital input  
2032  
I2C operation disable bit  
2033  
2034  
2035  
2036  
2037  
2038  
2039  
2040  
2041  
2042  
2043  
2044  
2045  
2046  
2047  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
FE  
FF  
Reserved  
Datasheet  
17-Jun-2021  
Revision 3.0  
190 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
18 Package Top Marking Definitions  
18.1 FCQFN 14L 3MM X 3 MM 0.65P FCD  
PPPPP  
DDLLL  
Part Code  
Date Code + Lot Number  
Country + Revision  
Pin 1 Identifier  
ARR  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
191 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
19 Package Information  
19.1 PACKAGE OUTLINES FOR FCQFN 14L 3.0 MM X 3.0 MM X 0.55 MM 0.65P FC PACKAGE  
PIN  
Detail A  
Top View  
Bottom View  
Wettable Flank  
Detail A  
Terminal Cross Section  
Controlling Dimensions: mm  
Marking View  
Standard Tolerance: ±0.05  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
192 of 199  
CFR0011-120-00  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
19.2 FCQFN HANDLING  
Be sure to handle FCQFN package only in a clean, ESD-safe environment. Tweezers or vacuum pick-up tools are suitable for  
handling. Do not handle FCQFN package with fingers as this can contaminate the package pins and interface with solder re-  
flow.  
19.3 SOLDERING INFORMATION  
Please see IPC/JEDEC J-STD-020: latest revision for re-flow profile based on package volume of 2.64 mm3 (nominal) for  
FCQFN 14L Package. More information can be found at www.jedec.org.  
20 Ordering Information  
Part Number  
Type  
SLG46855-AP  
SLG46855-APTR  
14-pin FCQFN  
14-pin FCQFN - Tape and Reel (5k units)  
20.1 TAPE AND REEL SPECIFICATIONS  
Max Units  
Leader (min)  
Length  
Trailer (min)  
Length  
Nominal  
# of  
Pins  
Reel &  
Hub Size  
(mm)  
Tape Part  
Width Pitch  
(mm) (mm)  
Package Type  
Package Size  
(mm)  
per Reel per Box  
Pockets  
Pockets  
(mm)  
(mm)  
FCQFN 14L  
3 mm x 3 mm  
0.65P FC Green  
14 3.0 x 3.0 x0.55 5000  
10000 330/102  
50  
400  
50  
400  
12  
8
20.2 CARRIER TAPE DRAWING AND DIMENSIONS  
Index Hole Index Hole  
PocketBTMPocketBTM Pocket Index Hole Pocket Index Hole  
to Tape  
Edge  
to Pocket Tape Width  
Center  
(mm)  
Length  
(mm)  
Width  
(mm)  
Depth  
(mm)  
Pitch  
(mm)  
Pitch Diameter  
(mm)  
Package Type  
(mm)  
(mm)  
(mm)  
A0  
B0  
K0  
P0  
P1  
D0  
E
F
W
FCQFN 14L  
3.0 mm x 3.0mm  
0.65P FC Green  
3.3  
3.3  
0.8  
4
8
1.5  
1.75  
5.5  
12  
Datasheet  
CFR0011-120-00  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
193 of 199  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
21 Layout Guidelines  
21.1 FCQFN 14L 3 MM X 3 MM X 0.5 MM 0.65P FC GREEN  
Unit: mm  
Datasheet  
17-Jun-2021  
Revision 3.0  
194 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Glossary  
A
ACK  
Acknowledge bit  
ACMP  
ACMPH  
ACMPL  
ADAS  
Analog Comparator  
Analog Comparator High Speed  
Analog Comparator Low Power  
Advanced Driver Assistance Systems  
B
BG  
Bandgap  
C
CLK  
CMO  
CNT  
Clock  
Connection matrix output  
Counter  
D
DFF  
DLY  
D Flip-Flop  
Delay  
E
ESD  
EV  
Electrostatic discharge  
End Value  
F
FSM  
Finite State Machine  
G
GPI  
GPIO  
GPO  
General Purpose Input  
General Purpose Input/Output  
General Purpose Output  
I
IN  
IO  
Input  
Input/Output  
L
LPF  
LSB  
Low Pass Filter  
Least Significant Bit  
Datasheet  
17-Jun-2021  
Revision 3.0  
195 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
LUT  
LV  
Look Up Table  
Low Voltage  
M
MSB  
MUX  
Most Significant Bit  
Multiplexer  
N
NPR  
nRST  
NVM  
Non-Volatile Memory Read/Write/Erase Protection  
Reset  
Non-Volatile Memory  
O
OD  
Open-Drain  
OE  
Output Enable  
Oscillator  
OSC  
OTP  
OUT  
one time programmable  
Output  
P
PD  
Power-down  
PGen  
POR  
PP  
Pattern Generator  
Power-On Reset  
Push-Pull  
PWR  
P DLY  
Power  
Programmable Delay  
R
R/W  
Read/Write  
S
SCL  
SDA  
SLA  
SMT  
SV  
I2C Clock Input  
I2C Data Input/Output  
Slave Address  
With Schmitt Trigger  
nSET Value  
T
TS  
Temperature Sensor  
Datasheet  
17-Jun-2021  
Revision 3.0  
196 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
V
Vref  
Voltage Reference  
W
WOSMT  
WS  
Without Schmitt Trigger  
Wake and Sleep Controller  
Datasheet  
17-Jun-2021  
Revision 3.0  
197 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Revision History  
Revision  
Date  
Description  
3.0  
17-Jun-2021  
Final version  
Datasheet  
17-Jun-2021  
Revision 3.0  
198 of 199  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46855-A  
Auto Grade GreenPAK Programmable Mixed-Signal Matrix  
Status Definitions  
Revision Datasheet Status  
Product Status  
Definition  
1.<n>  
Target  
Development  
This datasheet contains the design specifications for product development.  
Specifications may change in any manner without notice.  
2.<n>  
Preliminary  
Qualification  
Production  
This datasheet contains the specifications and preliminary characterization  
data for products in pre-production. Specifications may be changed at any  
time without notice in order to improve the design.  
3.<n>  
4.<n>  
Final  
This datasheet contains the final specifications for products in volume  
production. The specifications may be changed at any time in order to  
improve the design, manufacturing and supply. Major specification  
changes are communicated via Customer Product Notifications. Datasheet  
changes are communicated via www.dialog-semiconductor.com.  
Obsolete  
Archived  
This datasheet contains the specifications for discontinued products. The  
information is provided for reference only.  
Disclaimer  
Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or warranted  
to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product (or  
associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers  
accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion  
and/or use is at the customer's own risk.  
Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or implied, as  
to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any  
information source outside of Dialog Semiconductor.  
Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the design of  
the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device, Dialog Semiconductor  
reserves the right to change the information published in this document, including, without limitation, the specification and the design of the related semiconductor products,  
software and applications, in accordance with its standard automotive change notification process.  
Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty  
that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing,  
such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.  
Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such  
license must be separately sought by customer with Dialog Semiconductor.  
All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions  
of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.  
Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are  
the property of their respective owners.  
© 2021 Dialog Semiconductor. All rights reserved.  
RoHS Compliance  
Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction  
of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Hong Kong  
Dialog Semiconductor Hong Kong  
Phone: +852 2607 4271  
China (Shenzhen)  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Korea  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5769 5100  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
The Netherlands  
Taiwan  
199  
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
Datasheet  
17-Jun-2021  
© 2021 Dialog Semiconductor  
Revision 3.0  
199 of 199  
CFR0011-120-00  

相关型号:

SLG46855-APTR

Auto Grade GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46855V

GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46855VTR

GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46857-A

Automotive GreenPAK™ Programmable Mixed-signal Matrix
RENESAS

SLG46857-A

Auto Grade GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46857-AP

Auto Grade GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46857-APTR

Auto Grade GreenPAK Programmable Mixed-Signal Matrix
DIALOG

SLG46867

GreenPAK Programmable Mixed-Signal Matrix with Dual 44 mΩ/2 A P-FET
DIALOG

SLG46867M

GreenPAK Programmable Mixed-Signal Matrix with Dual 44 mΩ/2 A P-FET
DIALOG

SLG46867MTR

GreenPAK Programmable Mixed-Signal Matrix with Dual 44 mΩ/2 A P-FET
DIALOG

SLG46880

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine and Dual Supply
DIALOG

SLG46880V

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine and Dual Supply
DIALOG