SLG46880 [DIALOG]

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine and Dual Supply;
SLG46880
型号: SLG46880
厂家: Dialog Semiconductor    Dialog Semiconductor
描述:

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine and Dual Supply

文件: 总353页 (文件大小:4101K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
General Description  
The GPAK product family is based around Dialog Semiconductor's proprietary Zero Static Power ASM (Asynchronous State  
Machine). This machine is fault tolerant and operates continuously over a wide voltage range with very low latency. The  
SLG46880/81 provides a small, low power component for commonly used Mixed-Signal functions. The user creates their  
circuit design by programming the one time Non-Volatile Memory (NVM) to configure the interconnect logic, the IO Pins, and  
the macrocells of the SLG46880/81. This highly versatile device allows a wide variety of Mixed-Signal functions to be designed  
within a very small, low power single integrated circuit.  
Key Features  
Two High Speed General Purpose Rail-to-Rail Analog  
Comparators (ACMPxH)  
Two Low Power General Purpose Rail-to-Rail Analog  
Comparators (ACMPxL)  
Crystal Oscillator  
Analog Temperature Sensor  
Power-On Reset  
Wide Range Power Supply  
Two Voltage References  
2.5 V (±8 %) to 5 V (±10 %) VDD  
2.5 V (±8 %) to 5 V (±10 %) VDD2 (VDD2 ≤ VDD) for  
SLG46880  
Two Vref Outputs  
Twelve Combination Function Macrocells  
One Selectable DFF/LATCH or 2-bit LUT  
Four Selectable DFF/LATCHES or 3-bit LUTs  
One Selectable Pipe Delay or Ripple Counter, or 3-bit  
LUT  
1 V (±5 %) to 1.8 V (±10%) VDD2 for SLG46881  
Operating Temperature Range: -40 °C to 85 °C  
RoHS Compliant/Halogen-Free  
32-pin STQFN: 4 mm x 4 mm x 0.55 mm, 0.4 mm pitch  
One Selectable Programmable Pattern Generator or  
2-bit LUT  
Four Selectable 8-bit CNT/DLYs or 3-bit LUTs  
One Selectable 16-bit CNT/DLY or 4-bit LUT  
Asynchronous State Machine  
Twelve States  
Four Dynamic Memory Macrocells  
f(1) Computation Macrocell with Dedicated ACMP  
Serial Communications  
I2C Protocol Interface  
Programmable Delay with Edge Detector Output  
Deglitch Filter or Edge Detector  
Three Oscillators  
2.048 kHz Oscillator  
2.048 MHz Oscillator  
25 MHz Oscillator  
Applications  
Personal Computers and Servers  
PC Peripherals  
Consumer Electronics  
Data Communications Equipment  
Handheld and Portable Electronics  
Smartphones and Fitness Bands  
Notebook and Tablet PCs  
Datasheet  
25-Feb-2021  
Revision 3.12  
1 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Contents  
General Description.................................................................................................................................................................1  
Key Features.............................................................................................................................................................................1  
Applications..............................................................................................................................................................................1  
1 Block Diagram ......................................................................................................................................................................9  
2 Pinout ..................................................................................................................................................................................10  
2.1 Pin Configuration - STQFN- 32L .........................................................................................................................10  
3 Characteristics ...................................................................................................................................................................12  
3.1 Absolute Maximum Ratings .................................................................................................................................12  
3.2 Electrostatic Discharge Ratings ...........................................................................................................................12  
3.3 Recommended Operating Conditions .................................................................................................................12  
3.4 Electrical Characteristics ......................................................................................................................................13  
3.5 Timing Characteristics ..........................................................................................................................................23  
3.6 Oscillator Characteristics .....................................................................................................................................27  
3.7 Analog Comparator Characteristics ....................................................................................................................29  
3.8 Analog Temperature Sensor Characteristics .......................................................................................................31  
4 User Programmability ........................................................................................................................................................34  
5 IO Pins .................................................................................................................................................................................35  
5.1 IO Pins .................................................................................................................................................................35  
5.2 Pull-Up/Down Resistors .......................................................................................................................................35  
5.3 100 ns Debounce Delay .......................................................................................................................................35  
5.4 Fast Pull-up/down during Power-up .....................................................................................................................35  
5.5 Digital Input Latch ................................................................................................................................................35  
5.6 GPO Output Skew ................................................................................................................................................36  
5.7 Ultra-Low Power Digital Input (SLG46881 only) ..................................................................................................36  
5.8 GPI IO Structure (VDD) ........................................................................................................................................37  
5.9 GPI with Input Latch IO Structure (VDD) .............................................................................................................39  
5.10 GPI with I2C Mode IO Structure (VDD) ...............................................................................................................41  
5.11 GPIO with Matrix OE IO Structure (VDD or VDD2) ..............................................................................................43  
5.12 GPIO with Matrix OE and Input Latch IO Structure (VDD or VDD2) ....................................................................45  
5.13 GPI with Input Latch and Crystal Input IO Structure (VDD) ................................................................................47  
5.14 GPO Register OE IO Structure (VDD or VDD2) ...................................................................................................49  
5.15 IO Typical Performance .....................................................................................................................................50  
6 Connection Matrix ..............................................................................................................................................................53  
6.1 Matrix Input Table ................................................................................................................................................54  
6.2 Matrix Output Table .............................................................................................................................................55  
6.3 Connection Matrix Virtual Inputs ..........................................................................................................................58  
6.4 Connection Matrix Virtual Outputs .......................................................................................................................58  
7 Combination Function Macrocells ....................................................................................................................................59  
7.1 2-Bit LUT or D Flip-Flop Macrocells .....................................................................................................................59  
7.2 2-bit LUT or Programmable Pattern Generator ....................................................................................................61  
7.3 3-Bit LUT or D Flip-Flop with Set/Reset Macrocells .............................................................................................63  
7.4 3-Bit LUT or Pipe Delay/Ripple Counter Macrocell ..............................................................................................69  
7.5 3-Bit LUT or 8-Bit Counter/Delay Macrocells .......................................................................................................73  
7.6 CNT/DLY/FSM Timing Diagrams .........................................................................................................................78  
7.7 4-Bit LUT or 16-Bit Counter/Delay Macrocell .......................................................................................................87  
7.8 Wake and Sleep Controller ..................................................................................................................................90  
8 Analog Comparators ..........................................................................................................................................................95  
8.1 ACMP0H Block Diagram .....................................................................................................................................96  
8.2 ACMP1H Block Diagram .....................................................................................................................................97  
8.3 ACMP2L Block Diagram .....................................................................................................................................98  
8.4 ACMP3L Block Diagram .....................................................................................................................................99  
8.5 ACMP Typical Performance ...............................................................................................................................100  
9 Programmable Delay/Edge Detector ..............................................................................................................................104  
9.1 Programmable Delay Timing Diagram - Edge Detector Output .........................................................................104  
10 Additional Logic Function .............................................................................................................................................105  
Datasheet  
25-Feb-2021  
Revision 3.12  
2 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
10.1 Deglitch Filter/Edge Detector ...........................................................................................................................105  
11 Voltage Reference ..........................................................................................................................................................106  
11.1 Voltage Reference Overview ...........................................................................................................................106  
11.2 Vref Selection Table ........................................................................................................................................106  
11.3 Truth Table for Vref0 Buffer and Output Switch Control ..................................................................................107  
11.4 Truth Table for Vref1 Buffer and Output Switch Control ..................................................................................107  
11.5 Vref Block Diagram .........................................................................................................................................108  
11.6 Vref Load Regulation .......................................................................................................................................109  
12 Clocking ..........................................................................................................................................................................111  
12.1 General Description .........................................................................................................................................111  
12.2 Oscillator0 (2.048 kHz) .....................................................................................................................................112  
12.3 Oscillator1 (2.048 MHz) ...................................................................................................................................113  
12.4 Oscillator2 (25 MHz) ........................................................................................................................................114  
12.5 Clock Scheme ..................................................................................................................................................114  
12.6 Crystal Oscillator ..............................................................................................................................................116  
12.7 External Clocking .............................................................................................................................................116  
12.8 Oscillators Power-On Delay .............................................................................................................................117  
12.9 Oscillators Accuracy .........................................................................................................................................119  
13 Power-On Reset ..............................................................................................................................................................122  
13.1 General Operation ............................................................................................................................................122  
13.2 POR Sequence ................................................................................................................................................123  
13.3 Macrocells Output States During POR Sequence ...........................................................................................123  
14 Asynchronous State Machine Subsystem ...................................................................................................................126  
14.1 ASM Subsystem Overview ...............................................................................................................................126  
14.2 ASM Subsystem Input Signals .........................................................................................................................128  
14.3 ASM Subsystem Output Signals ......................................................................................................................131  
14.4 Basic ASM_Subsystem Timing ........................................................................................................................133  
14.5 ASM Power Considerations .............................................................................................................................134  
14.6 Asynchronous State Machines vs. Synchronous State Machines ...................................................................135  
14.7 ASM Special Case Timing Considerations ......................................................................................................135  
15 Asynchronous State Machine Macrocell .....................................................................................................................141  
15.1 Asynchronous State Machine Overview ..........................................................................................................141  
15.2 ASM Macrocell Input Signals ...........................................................................................................................142  
15.3 ASM Logical vs. Physical Design .....................................................................................................................145  
16 Dynamic Memory Macrocell ..........................................................................................................................................147  
16.1 Dynamic Memory Macrocell Overview .............................................................................................................147  
16.2 DM0_0 and DM0_1 Macrocell Architecture .....................................................................................................148  
16.3 DM1_0 and DM1_1 Macrocell Architecture .....................................................................................................149  
16.4 DMx_x Macrocell Input Signals ........................................................................................................................150  
16.5 DMx_x Macrocell Output Signals .....................................................................................................................152  
17 f(1) Computation Macrocell ...........................................................................................................................................154  
17.1 f(1) Computation Macrocell Overview ..............................................................................................................154  
17.2 f(1) Computation Macrocell Architecture .........................................................................................................155  
17.3 f(1) Computation Macrocell Input Signals ........................................................................................................155  
17.4 f(1) Computation Macrocell Output Signals .....................................................................................................157  
17.5 f(1) Command Registers ..................................................................................................................................157  
17.6 f(1) Typical Performance ..................................................................................................................................164  
18 Matrix Interface Macrocells ...........................................................................................................................................165  
18.1 MI0, MI1, and MI2 Macrocell Architecture ........................................................................................................165  
18.2 MIx Macrocell Input Signals .............................................................................................................................166  
18.3 MIx Macrocell Output Signals ..........................................................................................................................166  
19 I2C Serial Communications Macrocell ..........................................................................................................................167  
19.1 I2C Serial Communications Macrocell Overview ..............................................................................................167  
19.2 I2C Serial Communications Device Addressing ...............................................................................................167  
19.3 I2C Serial General Timing ................................................................................................................................168  
19.4 I2C Serial Communications Commands ...........................................................................................................168  
19.5 I2C Serial Command Register Map ..................................................................................................................172  
Datasheet  
25-Feb-2021  
Revision 3.12  
3 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
19.6 I2C Additional Options ......................................................................................................................................173  
20 Analog Temperature Sensor .........................................................................................................................................176  
21 Register Definitions .......................................................................................................................................................179  
21.1 Register Map ....................................................................................................................................................179  
22 Package Top Marking System Definition ....................................................................................................................343  
23 Package Information ......................................................................................................................................................344  
23.1 STQFN Handling ..............................................................................................................................................345  
23.2 Soldering Information .......................................................................................................................................345  
24 Ordering Information .....................................................................................................................................................345  
24.1 Tape and Reel Specifications ..........................................................................................................................345  
24.2 Carrier Tape Drawing and Dimensions ............................................................................................................345  
25 Layout Guidelines ..........................................................................................................................................................347  
Glossary................................................................................................................................................................................348  
Revision History ..................................................................................................................................................................351  
Datasheet  
25-Feb-2021  
Revision 3.12  
4 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Figures  
Figure 1: Block Diagram............................................................................................................................................................ 9  
Figure 2: Steps to Create a Custom GreenPAK Device.......................................................................................................... 34  
Figure 3: Digital Input Latch Timing Diagram.......................................................................................................................... 35  
Figure 4: Output Skew Timing Diagram.................................................................................................................................. 36  
Figure 5: SLG46880 GPI IO Structure Diagram...................................................................................................................... 37  
Figure 6: SLG46881 GPI IO Structure Diagram...................................................................................................................... 38  
Figure 7: SLG46880 GPI with Input LATCH Structure Diagram ............................................................................................. 39  
Figure 8: SLG46881 GPI with Input LATCH Structure Diagram ............................................................................................. 40  
Figure 9: SLG46880 GPI with I2C Mode IO Structure Diagram .............................................................................................. 41  
Figure 10: SLG46881 GPI with I2C Mode IO Structure Diagram ............................................................................................ 42  
Figure 11: SLG46880 GPIO with Matrix OE IO Structure Diagram......................................................................................... 43  
Figure 12: SLG46881 GPIO with Matrix OE IO Structure Diagram......................................................................................... 44  
Figure 13: SLG46880 GPIO with Matrix OE and Input LATCH IO Structure Diagram............................................................ 45  
Figure 14: SLG46881 GPIO with Matrix OE and Input LATCH IO Structure Diagram............................................................ 46  
Figure 15: SLG46880 GPI with Input LATCH and Crystal Input IO Structure Diagram .......................................................... 47  
Figure 16: SLG46881 GPI with Input LATCH and Crystal Input IO Structure Diagram .......................................................... 48  
Figure 17: SLG46880/81 GPO Register OE IO Structure Diagram ........................................................................................ 49  
Figure 18: Typical High Level Output Current vs. High Level Output Voltage at T = 25 °C.................................................... 50  
Figure 19: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C, Full Range................... 50  
Figure 20: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C ...................................... 51  
Figure 21: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C, Full Range................... 51  
Figure 22: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C ...................................... 52  
Figure 23: Connection Matrix.................................................................................................................................................. 53  
Figure 24: Connection Matrix Example................................................................................................................................... 53  
Figure 25: 2-bit LUT0 or DFF0................................................................................................................................................ 59  
Figure 26: DFF Polarity Operations......................................................................................................................................... 61  
Figure 27: 2-bit LUT1 or PGen................................................................................................................................................ 62  
Figure 28: PGen Timing Diagram............................................................................................................................................ 62  
Figure 29: 3-bit LUT0 or DFF1................................................................................................................................................ 64  
Figure 30: 3-bit LUT1 or DFF2................................................................................................................................................ 65  
Figure 31: 3-bit LUT2 or DFF3................................................................................................................................................ 65  
Figure 32: 3-bit LUT3 or DFF4................................................................................................................................................ 66  
Figure 33: DFF Polarity Operations with nReset..................................................................................................................... 68  
Figure 34: DFF Polarity Operations with nSet......................................................................................................................... 69  
Figure 35: 3-bit LUT8/Pipe Delay/Ripple Counter................................................................................................................... 71  
Figure 36: Example: Ripple Counter Functionality.................................................................................................................. 72  
Figure 37: 3-bit LUT4 or CNT/DLY1........................................................................................................................................ 74  
Figure 38: 3-bit LUT5 or CNT/DLY2........................................................................................................................................ 75  
Figure 39: 3-bit LUT6 or CNT/DLY3........................................................................................................................................ 75  
Figure 40: 3-bit LUT7 or CNT/DLY4........................................................................................................................................ 76  
Figure 41: Delay Mode Timing Diagram, Edge Select: Both, Counter Data: 3 ....................................................................... 78  
Figure 42: Delay Mode Timing Diagram for Different Edge Select Modes.............................................................................. 79  
Figure 43: Counter Mode Timing Diagram without Two DFFs Synced Up ............................................................................. 79  
Figure 44: Counter Mode Timing Diagram with Two DFFs Synced Up .................................................................................. 80  
Figure 45: One-Shot Function Timing Diagram....................................................................................................................... 80  
Figure 46: Frequency Detection Mode Timing Diagram.......................................................................................................... 81  
Figure 47: Edge Detection Mode Timing Diagram.................................................................................................................. 82  
Figure 48: Delayed Edge Detection Mode Timing Diagram.................................................................................................... 83  
Figure 49: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3.... 84  
Figure 50: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3 ........ 84  
Figure 51: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3.... 85  
Figure 52: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3 ........ 85  
Figure 53: Counter Value, Counter Data = 3........................................................................................................................... 86  
Figure 54: 4-bit LUT0 or CNT/DLY0........................................................................................................................................ 88  
Figure 55: WS Controller......................................................................................................................................................... 90  
Datasheet  
25-Feb-2021  
Revision 3.12  
5 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Figure 56: Wake/Sleep Timing Diagram, Normal Wake Mode, Counter Reset is Used ......................................................... 91  
Figure 57: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Reset is Used ............................................................ 91  
Figure 58: Wake/Sleep Timing Diagram, Normal Wake Mode, Counter Set is Used ............................................................. 92  
Figure 59: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Set is Used ................................................................ 92  
Figure 60: ACMP0H Block Diagram........................................................................................................................................ 96  
Figure 61: ACMP1H Block Diagram........................................................................................................................................ 97  
Figure 62: ACMP2L Block Diagram ........................................................................................................................................ 98  
Figure 63: ACMP3L Block Diagram ........................................................................................................................................ 99  
Figure 64: Typical Propagation Delay vs. Vref for ACMPxH at T = 25 °C, Gain = 1, Buffer - Disabled, Hysteresis = 0 ....... 100  
Figure 65: Typical Propagation Delay vs. Vref for ACMPxL at T = 25 °C, Gain = 1, Buffer - Disabled, Hysteresis = 0........ 100  
Figure 66: ACMPxH Power-On Delay vs. VDD ..................................................................................................................................................... 101  
Figure 67: ACMPxL Power-On Delay vs. VDD...................................................................................................................................................... 101  
Figure 68: ACMPxH Input Offset Voltage vs. Vref at T = -40 °C to 85 °C, Input Buffer Disabled......................................... 102  
Figure 69: ACMPxL Input Offset Voltage vs. Vref at T = -40 °C to 85 °C, Input Buffer Disabled.......................................... 102  
Figure 70: ACMP Input Current Source vs. Input Voltage at T = -40 °C to 85 °C, VDD = 3.3 V ............................................ 103  
Figure 71: Programmable Delay ........................................................................................................................................... 104  
Figure 72: Edge Detector Output .......................................................................................................................................... 104  
Figure 73: Deglitch Filter/Edge Detector............................................................................................................................... 105  
Figure 74: Voltage Reference Block Diagram....................................................................................................................... 108  
Figure 75: Typical Load Regulation, Vref = 320 mV, T = -40 °C to +85 °C, Buffer - Enable................................................. 109  
Figure 76: Typical Load Regulation, Vref = 640 mV, T = -40 °C to +85 °C, Buffer - Enable................................................. 109  
Figure 77: Typical Load Regulation, Vref = 1280 mV, T = -40 °C to +85 °C, Buffer - Enable............................................... 110  
Figure 78: Typical Load Regulation, Vref = 2016 mV, T = -40 °C to +85 °C, Buffer - Enable............................................... 110  
Figure 79: Oscillator0 Block Diagram.................................................................................................................................... 112  
Figure 80: Oscillator1 Block Diagram.................................................................................................................................... 113  
Figure 81: Oscillator2 Block Diagram.................................................................................................................................... 114  
Figure 82: Clock Scheme...................................................................................................................................................... 115  
Figure 83: Crystal OSC Block Diagram................................................................................................................................. 116  
Figure 84: External Crystal Connection................................................................................................................................. 116  
Figure 85: Oscillator Startup Diagram................................................................................................................................... 117  
Figure 86: Oscillator0 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC0 = 2.048 kHz............................................... 118  
Figure 87: Oscillator1 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC1 = 2.048 MHz ............................................. 118  
Figure 88: Oscillator2 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC2 = 25 MHz .................................................. 119  
Figure 89: Oscillator0 Frequency vs. Temperature, OSC0 = 2.048 kHz............................................................................... 119  
Figure 90: Oscillator1 Frequency vs. Temperature, OSC1 = 2.048 MHz.............................................................................. 120  
Figure 91: Oscillator2 Frequency vs. Temperature, OSC2 = 25 MHz................................................................................... 120  
Figure 92: Oscillators Total Error vs. Temperature............................................................................................................... 121  
Figure 93: POR Sequence.................................................................................................................................................... 123  
Figure 94: Internal Macrocell States during POR Sequence................................................................................................. 124  
Figure 95: Power-Down......................................................................................................................................................... 125  
Figure 96: Asynchronous State Machine State Transitions .................................................................................................. 127  
Figure 97: Connection Matrix to ASM Subsystem................................................................................................................. 128  
Figure 98: ASM Subsystem Input Signals............................................................................................................................. 130  
Figure 99: Maximum 7 State Transitions out of a Given State.............................................................................................. 131  
Figure 100: Maximum 11 State Transitions into Given State................................................................................................ 131  
Figure 101: ASM Subsystem Input Signals........................................................................................................................... 132  
Figure 102: State Transition.................................................................................................................................................. 133  
Figure 103: State Transition Timing...................................................................................................................................... 134  
Figure 104: State Transition.................................................................................................................................................. 134  
Figure 105: State Transition Timing and Power Consumption.............................................................................................. 135  
Figure 106: State Transition.................................................................................................................................................. 136  
Figure 107: State Transition Pulse Input Timing................................................................................................................... 136  
Figure 108: State Transition - Competing Inputs................................................................................................................... 137  
Figure 109: State Transition Timing - Competing Inputs Indeterminate................................................................................ 137  
Figure 110: State Transition Timing - Competing Inputs Determinable ................................................................................ 138  
Figure 111: State Transition - Sequential.............................................................................................................................. 138  
Figure 112: State Transition - Sequential Timing.................................................................................................................. 139  
Datasheet  
25-Feb-2021  
Revision 3.12  
6 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Figure 113: State Transition - Closed Cycling....................................................................................................................... 139  
Figure 114: State Transition - Closed Cycling Timing........................................................................................................... 140  
Figure 115: Asynchronous State Machine State Transitions ................................................................................................ 141  
Figure 116: 12 State ASM Macrocell..................................................................................................................................... 142  
Figure 117: ASM Macrocell Input Signals............................................................................................................................. 143  
Figure 118: ASM Macrocell Output Signals .......................................................................................................................... 145  
Figure 119: DM0_0/DM0_1................................................................................................................................................... 148  
Figure 120: DM1_0/DM1_1................................................................................................................................................... 149  
Figure 121: DM0_0/DM0_1 Inputs........................................................................................................................................ 150  
Figure 122: DM1_0/DM1_1 Inputs........................................................................................................................................ 151  
Figure 123: DM0_0/DM0_1 Outputs ..................................................................................................................................... 152  
Figure 124: DM1_0/DM1_1 Outputs ..................................................................................................................................... 153  
Figure 125: f(1) Computation Macrocell Architecture............................................................................................................ 155  
Figure 126: f(1) Computation Macrocell Input Signals .......................................................................................................... 156  
Figure 127: f(1) Computation Macrocell Output Signals ....................................................................................................... 157  
Figure 128: f(1) Flowchart for Rising Edge Deglitch.............................................................................................................. 162  
Figure 129: f(1) Flowchart for Average Function for Captured Data..................................................................................... 163  
Figure 130: ACMP4F Power-On Delay vs. VDD................................................................................................................................................... 164  
Figure 131: ACMP4F Input Offset Voltage vs. Vref at T = -40 °C to 85 °C, Input Buffer Disabled ....................................... 164  
Figure 132: MIx Macrocell Architecture................................................................................................................................. 165  
Figure 133: Basic Command Structure................................................................................................................................. 168  
Figure 134: I2C General Timing Characteristics.................................................................................................................... 168  
Figure 135: Byte Write Command, R/W = 0.......................................................................................................................... 169  
Figure 136: Sequential Write Command............................................................................................................................... 169  
Figure 137: Current Address Read Command, R/W = 1....................................................................................................... 170  
Figure 138: Random Read Command .................................................................................................................................. 170  
Figure 139: Sequential Read Command............................................................................................................................... 171  
Figure 140: Reset Command Timing .................................................................................................................................... 171  
Figure 141: Example of I2C Byte Write Bit Masking.............................................................................................................. 175  
Figure 142: Analog Temperature Sensor Structure Diagram................................................................................................ 177  
Figure 143: TS Output vs. Temperature, VDD = 2.3 V to 5.5 V............................................................................................. 178  
Datasheet  
25-Feb-2021  
Revision 3.12  
7 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Tables  
Table 1: Functional Pin Description..........................................................................................................................................10  
Table 2: Pin Type Definitions ...................................................................................................................................................11  
Table 3: Absolute Maximum Ratings........................................................................................................................................12  
Table 4: Electrostatic Discharge Ratings .................................................................................................................................12  
Table 5: Recommended Operating Conditions for SLG46880/81............................................................................................12  
Table 6: EC for SLG46880 at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted.......................................13  
Table 7: EC for SLG46881 at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted.......................................15  
Table 8: EC of the I2C Pins at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted ......................................19  
Table 9: I2C Pins Timing Characteristics at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted..................20  
Table 10: Asynchronous State Machine Specifications at T = 25 °C.......................................................................................20  
Table 11: Typical Current Estimated for Each Macrocell at T = -40 °C to +85 °C ...................................................................22  
Table 12: Typical Delay Estimated for Each Macrocell at T = 25 °C........................................................................................23  
Table 13: Typical Delay Estimated for F(1) at T = 25 °C..........................................................................................................24  
Table 14: Programmable Delay Expected Delays and Widths (Typical) T = 25 °C .................................................................25  
Table 15: Typical Filter Rejection Pulse Width at T = 25 °C ....................................................................................................26  
Table 16: Typical Counter/Delay Offset Measurements at T = 25 °C ......................................................................................26  
Table 17: Oscillator0 2.048 kHz Frequency Limits...................................................................................................................27  
Table 18: Oscillator0 2.048 kHz Frequency Error (Error Calculated Relative to Nominal Value) ............................................27  
Table 19: Oscillator1 2.048 MHz Frequency Limits..................................................................................................................27  
Table 20: Oscillator1 2.048 MHz Frequency Error (Error Calculated Relative to Nominal Value) ...........................................27  
Table 21: Oscillator2 25 MHz Frequency Limits.......................................................................................................................28  
Table 22: Oscillator2 25 MHz Frequency Error (Error Calculated Relative to Nominal Value) ................................................28  
Table 23: Oscillators Power-On Delay at T = 25 °C, OSC Power Mode: "Auto Power-On".....................................................28  
Table 24: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted................................29  
Table 25: TS Output vs Temperature (Output range 1)............................................................................................................31  
Table 26: TS Output vs Temperature (Output Range 2) ..........................................................................................................32  
Table 27: TS Output Error (Output Range 1)...........................................................................................................................32  
Table 28: TS Output Error (Output Range 2)...........................................................................................................................33  
Table 29: Matrix Input Table.....................................................................................................................................................54  
Table 30: Matrix Output Table..................................................................................................................................................55  
Table 31: Connection Matrix Virtual Inputs ..............................................................................................................................58  
Table 32: 2-bit LUT0 Truth Table.............................................................................................................................................60  
Table 33: 2-bit LUT Standard Digital Functions .......................................................................................................................60  
Table 34: 2-bit LUT1 Truth Table.............................................................................................................................................63  
Table 35: 2-bit LUT Standard Digital Functions .......................................................................................................................63  
Table 36: 3-bit LUT0 Truth Table.............................................................................................................................................67  
Table 37: 3-bit LUT1 Truth Table.............................................................................................................................................67  
Table 38: 3-bit LUT2 Truth Table.............................................................................................................................................67  
Table 39: 3-bit LUT3 Truth Table.............................................................................................................................................67  
Table 40: 3-bit LUT Standard Digital Functions .......................................................................................................................67  
Table 41: 3-bit LUT8 Truth Table.............................................................................................................................................72  
Table 42: 3-bit LUT4 Truth Table.............................................................................................................................................77  
Table 43: 3-bit LUT5 Truth Table.............................................................................................................................................77  
Table 44: 3-bit LUT6 Truth Table.............................................................................................................................................77  
Table 45: 3-bit LUT7 Truth Table.............................................................................................................................................77  
Table 46: 4-bit LUT0 Truth Table.............................................................................................................................................89  
Table 47: 4-bit LUT Standard Digital Functions .......................................................................................................................89  
Table 48: WS Register Settings...............................................................................................................................................94  
Table 49: Vref Selection Table...............................................................................................................................................106  
Table 50: VrefO0 Truth Table.................................................................................................................................................107  
Table 51: VrefO1 Truth Table.................................................................................................................................................107  
Table 52: Oscillator Operation Mode Configuration Settings.................................................................................................111  
Table 53: External Components Selection Table...................................................................................................................116  
Table 54: Read/Write Protection Options...............................................................................................................................172  
Table 55: ASM Current State Bits Configuration....................................................................................................................173  
Table 56: Register Map..........................................................................................................................................................179  
Datasheet  
25-Feb-2021  
Revision 3.12  
8 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
1
Block Diagram  
VDD  
GPO7  
GND1  
GPO6  
GPO5  
GPIO11  
GPIO10  
GPIO9  
GPI7  
GPI6  
GPO0  
Temp  
Sensor  
Crystal  
Osc  
Combination Function Macrocells  
Vref  
POR  
GPIO0  
3bit  
LUT3_0  
or DFF1  
2-bit  
LUT2_0  
or DFF0  
2-bit  
LUT2_1  
or PGen  
Additional Logic  
Function  
FILTER with  
Edge Detect  
GPIO1  
GPI5  
GPI4  
3-bit  
3-bit  
LUT3_3  
or DFF4  
3-bit  
LUT3_1  
or DFF2  
LUT3_2  
or DFF3  
ACMP2L  
ACMP3L  
ACMP0H  
3-bit  
LUT3_4 or  
CNT/DLY1  
3-bit  
LUT3_5 or  
CNT/DLY2  
3-bit  
LUT3_6 or  
CNT/DLY3  
Programmable  
Delay  
GPIO2  
ACMP1H  
GPI0  
3-bit  
LUT3_7 or  
CNT/DLY4  
4-bit  
LUT4_0 or  
CNT/DLY0  
3-bitLUT3_8  
or Pipe  
Delay/Ripple  
I2C Serial  
Communication  
GPIO8  
GPIO7  
GPIO6  
ASM Subsystem  
GPI1  
DM0_0  
DM1_0  
f(1)  
DM0_1  
Oscillators  
12  
State  
ASM  
DM1_1  
ACMP4F  
2.048  
kHz  
2.048  
MHz  
25  
MHz  
GPI2/SDA  
GPI3/SCL  
GPIO3  
GPO4  
GPIO5  
GPO1  
GPIO4  
GPO2  
VDD2  
GND  
GPO3  
Figure 1: Block Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
9 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
2
Pinout  
2.1 PIN CONFIGURATION - STQFN- 32L  
31 30 29  
26 25  
24  
32  
28 27  
GPO0  
GPI7  
1
GPIO0  
2
23  
22  
21  
20  
19  
GPI6  
GPI5  
GPIO1  
GPIO2  
3
4
5
GPI4  
TP  
GPI0  
GPIO8  
GPIO7  
GPIO6  
GPO4  
6
7
GPI1  
GPI2/SDA  
GPI3/SCL  
18  
17  
8
9
16  
10 11 12 13 14 15  
Legend:  
TP- Thermal Pad  
GPI - General Purpose Input  
STQFN-32  
(Top View)  
GPO - General Purpose Output  
GPIO - General Purpose Input/  
Output  
Table 1: Functional Pin Description  
STQFN  
Pin Name Functions  
Pin #  
1
GPO0  
General Purpose Output or ACMP4F Input 1 or ASM1 output  
2
3
4
GPIO0  
GPIO1  
GPIO2  
General Purpose IO or ACMP4F Input 2  
General Purpose IO or ACMP4F Input 3  
General Purpose IO or VrefO1 or Din LATCH (en1)  
5
GPI0  
GPI1  
General Purpose Input or Din LATCH (en0)/EXT_CLK0  
6
General Purpose Input or Din LATCH (en0)/EXT_CLK1/Vref IN  
7
GPI2/SDA General Purpose Input/I2C SDA  
GPI3/SCL General Purpose Input/I2C SCL  
8
9
GPIO3  
GPIO4  
GPIO5  
GPO1  
GPO2  
GND  
General Purpose IO or Din LATCH (en1)  
General Purpose IO or I2C exp0 output  
General Purpose IO or I2C exp1 output  
General Purpose Output or ASM2 output  
General Purpose Output or ASM3 output  
Ground  
10  
11  
12  
13  
14  
15  
16  
VDD2  
Power Supply  
GPO3  
General Purpose Output or ASM4 output  
Datasheet  
25-Feb-2021  
Revision 3.12  
10 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 1: Functional Pin Description(Continued)  
STQFN  
Pin Name Functions  
Pin #  
17  
18  
19  
20  
21  
22  
23  
24  
25  
GPO4  
GPIO6  
GPIO7  
GPIO8  
GPI4  
General Purpose Output or ASM5 output  
General Purpose IO or Din LATCH (en1) or I2C exp2 output  
General Purpose IO or Din LATCH (en1) or I2C exp3 output  
General Purpose IO or ACMP4F Input 7  
General Purpose Input (XTAL IN) or Din LATCH (en0)/EXT_CLK2  
General Purpose Input (XTAL OUT) or Din LATCH (en0)/EXT_CLK3  
General Purpose Input or ACMP4F Input 4  
GPI5  
GPI6  
GPI7  
General Purpose Input or ACMP4F Input 5  
GPIO9  
General Purpose IO or ACMP4F Input 6 or VrefO0  
26  
27  
28  
GPIO10 General Purpose IO or ACMP0H  
GPIO11  
GPO5  
General Purpose IO or ACMP1H  
General Purpose Output or ACMP2L or ASM6 output  
29  
30  
31  
GPO6  
GND  
VDD  
General Purpose Output or ACMP3L or ASM7 output  
Ground  
Power Supply  
32  
GPO7  
TP  
General Purpose Output or ACMP4F Input 0 or ASM0 output  
Thermal Pad. Must be connected to GND externally  
TP  
Table 2: Pin Type Definitions  
Pin Type  
VDD  
Description  
Power Supply  
GPI  
General Purpose Input  
General Purpose Input/Output  
General Purpose Output  
Ground  
GPIO  
GPO  
GND  
Datasheet  
25-Feb-2021  
Revision 3.12  
11 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
3
Characteristics  
3.1 ABSOLUTE MAXIMUM RATINGS  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational  
sections of the specification are not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect  
device reliability.  
Table 3: Absolute Maximum Ratings  
Parameter  
Supply Voltage on VDD relative to GND  
DC Input Voltage  
Min  
Max  
Unit  
V
-0.3  
7
GND - 0.5 V VDD + 0.5 V  
V
Maximum Average or DC Current  
(Through VDD or GND pin)  
--  
90  
mA  
Current at Input Pin  
Input Leakage Current (Absolute Value)  
Storage Temperature Range  
Junction Temperature  
-1.0  
--  
1.0  
1000  
150  
mA  
nA  
°C  
-65  
--  
150  
°C  
Moisture Sensitivity Level  
1
3.2 ELECTROSTATIC DISCHARGE RATINGS  
Table 4: Electrostatic Discharge Ratings  
Parameter  
Min  
2000  
1300  
Max  
--  
Unit  
V
ESD Protection (Human Body Model)  
ESD Protection (Charged Device Model)  
--  
V
3.3 RECOMMENDED OPERATING CONDITIONS  
Table 5: Recommended Operating Conditions for SLG46880/81  
Parameter  
Condition  
Min  
2.3  
Max  
5.5  
Unit  
V
Supply Voltage (VDD  
)
Supply Voltage 2 (VDD2  
Supply Voltage 2 (VDD2  
Operating Temperature  
)
)
VDD2 ≤ VDD for SLG46880  
VDD2 ≤ VDD for SLG46881  
2.3  
5.5  
V
0.95  
-40  
1.98  
85  
V
°C  
Maximal Voltage Applied to any PIN in High  
Impedance State  
VDD+0.3  
(Note 1)  
--  
0.1  
0
V
µF  
V
Capacitor Value at VDD  
--  
Allowable Input Voltage at Analog  
Pins  
Analog Input Common Mode Range  
VDD  
Note 1 GPIs 0, 1, 2, 3, 4, 5, 6, 7, GPIOs 0, 1, 2, 3, 8, 9, 10, 11, GPOs 0, 5, 6, 7 are powered from VDD and GPIOs 4, 5, 6, 7,  
GPOs 1, 2, 3, 4 are powered from VDD2  
Datasheet  
25-Feb-2021  
Revision 3.12  
12 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
3.4 ELECTRICAL CHARACTERISTICS  
Table 6: EC for SLG46880 at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
0.7x  
VDD  
(Note 1)  
VDD+  
0.3  
(Note 1)  
Logic Input (Note 2)  
--  
V
0.8x  
VDD  
(Note 1)  
VDD+  
0.3  
(Note 1)  
VIH  
HIGH-Level Input Voltage  
Logic Input with Schmitt Trigger  
Low-Level Logic Input (Note 2)  
Logic Input (Note 2)  
--  
--  
--  
V
V
V
VDD  
+
1.25  
0.3  
(Note 1)  
0.3x  
VDD  
(Note 1)  
GND-  
0.3  
0.2x  
VDD  
(Note 1)  
GND-  
0.3  
VIL  
LOW-Level Input Voltage  
Logic Input with Schmitt Trigger  
--  
--  
V
V
GND-  
0.3  
Low-Level Logic Input (Note 2)  
0.5  
VDD = 2.5 V ± 8 %  
VDD = 3.3 V ± 10 %  
VDD = 5 V ± 10 %  
0.32  
0.36  
0.46  
0.43  
0.46  
0.58  
0.56  
0.57  
0.74  
V
V
V
Schmitt Trigger Hysteresis  
Voltage  
VHYS  
Push-Pull, IOH = 100 µA, 1x Drive,  
VDD = 2.5 V ± 8 % (Note 1)  
2.286  
2.704  
4.154  
2.294  
2.857  
4.329  
--  
2.292  
2.790  
4.247  
2.297  
2.896  
4.373  
0.006  
0.158  
0.212  
0.003  
0.079  
0.099  
0.003  
0.063  
0.079  
--  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Push-Pull, IOH = 3 mA, 1x Drive,  
VDD =VDD2 = 3.3 V ± 10 % (Note 1)  
--  
Push-Pull, IOH = 5 mA, 1x Drive,  
VDD = VDD2 = 5 V ± 10 % (Note 1)  
--  
VOH  
HIGH-Level Output Voltage  
Push-Pull, IOH = 100 µA, 2x Drive,  
VDD = 2.5 V ± 8 % (Note 1)  
--  
Push-Pull, IOH = 3 mA, 2x Drive,  
VDD = VDD2 = 3.3 V ± 10 % (Note 1)  
--  
Push-Pull, IOH = 5 mA, 2x Drive,  
VDD = VDD2 = 5 V ± 10 % (Note 1)  
--  
Push-Pull, IOL= 100 µA, 1x Drive,  
VDD = VDD2 = 2.5 V ± 8 % (Note 1)  
0.025  
0.217  
0.297  
0.013  
0.107  
0.136  
0.011  
0.087  
0.114  
Push-Pull, IOL = 3 mA,1x Drive,  
VDD = VDD2 = 3.3 V ± 10 % (Note 1)  
--  
Push-Pull, IOL= 5 mA, 1x Drive,  
VDD = VDD2 = 5 V ± 10 % (Note 1)  
--  
Push-Pull, IOL = 100 µA, 2x Drive,  
VDD = VDD2 = 2.5 V ± 8 % (Note 1)  
--  
Push-Pull, IOL= 3 mA, 2x Drive,  
VDD = VDD2 = 3.3 V ± 10 % (Note 1)  
VOL  
LOW-Level Output Voltage  
--  
Push-Pull, IOL = 5 mA, 2x Drive,  
VDD = VDD2 = 5 V ± 10 % (Note 1)  
--  
NMOS OD, IOL = 100 µA, 1x Drive,  
VDD = VDD2 = 2.5 V ± 8 % (Note 1)  
--  
NMOS OD, IOL = 3 mA, 1x Drive,  
VDD = VDD2 = 3.3 V ± 10 % (Note 1)  
--  
NMOS OD, IOL = 5 mA, 1x Drive,  
VDD = VDD2 = 5 V ± 10 % (Note 1)  
--  
Datasheet  
25-Feb-2021  
Revision 3.12  
13 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 6: EC for SLG46880 at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
NMOS OD, IOL = 100 µA, 2x Drive,  
VDD = VDD2 = 2.5 V ± 8 % (Note 1)  
--  
0.001  
0.002  
V
NMOS OD, IOL = 3 mA, 2x Drive,  
VDD = VDD2 = 3.3 V ± 10 % (Note 1)  
VOL  
LOW-Level Output Voltage  
--  
0.033  
0.041  
2.14  
0.046  
0.061  
--  
V
NMOS OD, IOL = 5 mA, 2x Drive,  
VDD = VDD2 = 5 V ± 10 % (Note 1)  
--  
V
Push-Pull, VOH = VDD - 0.2, 1x Drive,  
VDD = VDD2 = 2.5 V ± 8 % (Note 1)  
1.55  
5.54  
19.89  
3.08  
10.92  
38.89  
1.66  
5.26  
7.15  
3.32  
10.40  
14.06  
4.15  
12.90  
16.98  
7.89  
24.47  
31.20  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Push-Pull, VOH = 2.4 V, 1x Drive,  
VDD = VDD2 = 3.3 V ± 10 % (Note 1)  
7.48  
--  
Push-Pull, VOH = 2.4 V, 1x Drive,  
VDD = VDD2 = 5 V ± 10 % (Note 1)  
24.83  
4.21  
--  
HIGH-Level Output Current  
(Note 3)  
IOH  
Push-Pull, VOH = VDD - 0.2, 2x Drive,  
VDD = VDD2 = 2.5 V ± 8 % (Note 1)  
--  
Push-Pull, VOH = 2.4 V, 2x Drive,  
VDD = VDD2 = 3.3 V ± 10 % (Note 1)  
14.72  
48.60  
2.19  
--  
Push-Pull, VOH = 2.4 V, 2x Drive,  
VDD = VDD2 = 5 V ± 10 % (Note 1)  
--  
Push-Pull, VOL = 0.15 V, 1x Drive,  
VDD = VDD2 = 2.5 V ± 8 % (Note 1)  
--  
Push-Pull, VOL = 0.4 V, 1x Drive,  
VDD = VDD2 = 3.3 V ± 10 % (Note 1)  
7.00  
--  
Push-Pull, VOL = 0.4 V, 1x Drive,  
VDD = VDD2 = 5 V ± 10 % (Note 1)  
9.76  
--  
Push-Pull, VOL = 0.15 V, 2x Drive,  
VDD = VDD2 = 2.5 V ± 8 % (Note 1)  
4.29  
--  
Push-Pull, VOL = 0.4 V, 2x Drive,  
VDD = VDD2 = 3.3 V ± 10 % (Note 1)  
13.69  
18.98  
5.38  
--  
Push-Pull, VOL = 0.4 V, 2x Drive,  
VDD = VDD2 = 5 V ± 10 % (Note 1)  
--  
LOW-Level Output Current  
(Note 3)  
IOL  
NMOS OD, VOL = 0.15 V, 1x Drive,  
VDD = VDD2 = 2.5 V ± 8 % (Note 1)  
--  
NMOS OD, VOL = 0.4 V, 1x Drive,  
VDD = VDD2 = 3.3 V ± 10 % (Note 1)  
17.14  
23.70  
10.40  
33.02  
45.10  
--  
NMOS OD, VOL = 0.4 V, 1x Drive,  
VDD = VDD2 = 5 V ± 10 % (Note 1)  
--  
NMOS OD, VOL = 0.15 V, 2x Drive,  
VDD = VDD2 = 2.5 V ± 8 % (Note 1)  
--  
NMOS OD, VOL = 0.4 V, 2x Drive,  
VDD = VDD2 = 3.3 V ± 10 % (Note 1)  
--  
NMOS OD, VOL = 0.4 V, 2x Drive,  
VDD = VDD2 = 5 V ± 10 % (Note 1)  
--  
TSU  
TWR  
Startup Time  
From VDD rising past PONTHR  
--  
--  
1.13  
--  
1.72  
20  
ms  
ms  
ms  
V
NVM Page Write Time  
NVM Page Erase Time  
Power-On Threshold  
TER  
--  
--  
20  
PONTHR  
VDD Level Required to Start Up the Chip  
1.64  
1.84  
2.11  
VDD Level Required to Switch Off the  
Chip  
POFFTHR Power-Off Threshold  
0.98  
1.25  
1.49  
V
Datasheet  
25-Feb-2021  
Revision 3.12  
14 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 6: EC for SLG46880 at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
1 M for Pull-up: VIN = GND;  
for Pull-down: VIN = VDD  
0.74  
1.04  
1.50  
MΩ  
Pull-up or Pull-down  
Resistance  
100 k for Pull-up: VIN = GND;  
for Pull-down: VIN = VDD  
RPULL  
87  
7
104  
132  
17  
kΩ  
10 k For Pull-up: VIN = GND;  
for Pull-down: VIN = VDD  
10  
4
kΩ  
CIN  
Input Capacitance  
pF  
Note 1 GPIs 0, 1, 2, 3, 4, 5, 6, 7, GPIOs 0, 1, 2, 3, 8, 9, 10, 11, GPOs 0, 5, 6, 7 are powered from VDD and GPIOs 4, 5, 6, 7,  
GPOs 1, 2, 3, 4 are powered from VDD2.  
Note 2 No hysteresis.  
Note 3 DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.  
Table 7: EC for SLG46881 at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
0.7x  
VDD  
VDD  
0.3  
+
Logic Input (Note 2)  
--  
V
0.8x  
VDD  
VDD  
0.3  
+
Logic Input with Schmitt Trigger  
Low-Level Logic Input (Note 2)  
Ultra-Low Power Digital Input (Note 2)  
Ultra-Low Power Digital Input (Note 2)  
Logic Input (Note 2)  
--  
--  
--  
--  
--  
--  
--  
--  
--  
V
V
HIGH-Level Input Voltage  
(GPIs 0, 1, 2, 3, 4, 5, 6, 7,  
GPIOs 0, 1, 2, 3, 8, 9, 10, 11)  
VIH1  
VIH2  
VIL1  
VDD  
0.3  
+
1.25  
0.7x  
VDD2  
VDD2  
0.3  
+
+
HIGH-Level Input Voltage  
(GPIOs 4, 5, 6, 7)  
0.7x  
VDD2  
VDD2  
0.3  
V
V
V
V
V
V
GND-  
0.3  
0.3x  
VDD  
GND-  
0.3  
0.2x  
VDD  
Logic Input with Schmitt Trigger  
Low-Level Logic Input (Note 2)  
Ultra-Low Power Digital Input (Note 2)  
Ultra-Low Power Digital Input (Note 2)  
LOW-Level Input Voltage  
(GPIs 0, 1, 2, 3, 4, 5, 6, 7,  
GPIOs 0, 1, 2, 3, 8, 9, 10, 11)  
GND-  
0.3  
0.5  
GND-  
0.3  
0.42x  
VDD2  
LOW-Level Input Voltage  
(GPIOs 4, 5, 6, 7)  
GND-  
0.3  
0.42x  
VDD2  
VIL2  
Schmitt Trigger Hysteresis  
Voltage  
(GPIs 0, 1, 2, 3, 4, 5, 6, 7,  
GPIOs 0, 1, 2, 3, 8, 9, 10, 11)  
VDD = 2.5 V ± 8 %  
VDD = 3.3 V ± 10 %  
VDD = 5 V ± 10 %  
0.27  
0.32  
0.42  
0.43  
0.46  
0.58  
0.59  
0.59  
0.76  
V
V
V
VHYS1  
Datasheet  
25-Feb-2021  
Revision 3.12  
15 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 7: EC for SLG46881 at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, IOH = 100 µA, 1x Drive,  
VDD = 2.5 V ± 8 %  
2.29  
2.49  
--  
V
Push-Pull, IOH = 3 mA, 1x Drive,  
VDD = 3.3 V ± 10 %  
2.69  
4.14  
2.29  
2.85  
4.32  
0.923  
1.479  
1.780  
0.937  
1.489  
1.789  
--  
3.11  
4.77  
--  
--  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Push-Pull, IOH = 5 mA, 1x Drive,  
VDD = 5 V ± 10 %  
HIGH-Level Output Voltage  
(GPIOs 0, 1, 2, 3, 8, 9, 10, 11,  
GPOs 0, 5, 6, 7)  
VOH1  
Push-Pull, IOH = 100 µA, 2x Drive,  
VDD = 2.5 V ± 8 %  
2.50  
--  
Push-Pull, IOH = 3 mA, 2x Drive,  
VDD = 3.3 V ± 10 %  
3.21  
--  
Push-Pull, IOH = 5 mA, 2x Drive,  
VDD = 5 V ± 10 %  
4.88  
--  
Push-Pull, IOH = 100 µA, 1x Drive,  
VDD2 = 1.0 V ± 5 %  
0.957  
1.486  
1.886  
0.966  
1.493  
1.893  
0.006  
0.156  
0.197  
0.003  
0.078  
0.100  
0.003  
0.062  
0.080  
0.001  
0.032  
0.042  
--  
Push-Pull, IOH = 100 µA, 1x Drive,  
VDD2 = 1.5 V ± 5 %  
--  
Push-Pull, IOH = 100 µA, 1x Drive,  
VDD2 = 1.8 V ± 10 %  
--  
HIGH-Level Output Voltage  
(GPIOs 4, 5, 6, 7, GPOs 1, 2,  
3, 4)  
VOH2  
Push-Pull, IOH = 100 µA, 2x Drive,  
VDD2 = 1.0 V ± 5 %  
--  
Push-Pull, IOH = 100 µA, 2x Drive,  
VDD2 = 1.5 V ± 5 %  
--  
Push-Pull, IOH = 100 µA, 2x Drive,  
VDD2 = 1.8 V ± 10 %  
--  
Push-Pull, IOL= 100 µA, 1x Drive,  
VDD = 2.5 V ± 8 %  
0.012  
0.233  
0.295  
0.005  
0.116  
0.151  
0.004  
0.094  
0.122  
0.002  
0.051  
0.067  
Push-Pull, IOL = 3 mA,1x Drive,  
VDD = 3.3 V ± 10 %  
--  
Push-Pull, IOL= 5 mA, 1x Drive,  
VDD = 5 V ± 10 %  
--  
Push-Pull, IOL = 100 µA, 2x Drive,  
VDD = 2.5 V ± 8 %  
--  
Push-Pull, IOL= 3 mA, 2x Drive,  
VDD = 3.3 V ± 10 %  
--  
Push-Pull, IOL = 5 mA, 2x Drive,  
VDD = 5 V ± 10 %  
--  
LOW-Level Output Voltage  
(GPIOs 0, 1, 2, 3, 8, 9, 10, 11,  
GPOs 0, 5, 6, 7)  
VOL1  
NMOS OD, IOL = 100 µA, 1x Drive,  
VDD = 2.5 V ± 8 %  
--  
NMOS OD, IOL = 3 mA, 1x Drive,  
VDD = 3.3 V ± 10 %  
--  
NMOS OD, IOL = 5 mA, 1x Drive,  
VDD = 5 V ± 10 %  
--  
NMOS OD, IOL = 100 µA, 2x Drive,  
VDD = 2.5 V ± 8 %  
--  
NMOS OD, IOL = 3 mA, 2x Drive,  
VDD = 3.3 V ± 10 %  
--  
NMOS OD, IOL = 5 mA, 2x Drive,  
VDD = 5 V ± 10 %  
--  
Datasheet  
25-Feb-2021  
Revision 3.12  
16 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 7: EC for SLG46881 at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, IOL= 100 µA, 1x Drive,  
VDD2 = 1.0 V ± 5 %  
--  
0.015  
0.022  
V
Push-Pull, IOL= 100 µA, 1x Drive,  
VDD2 = 1.5 V ± 5 %  
--  
--  
0.012  
0.011  
0.007  
0.006  
0.006  
0.015  
0.012  
0.011  
0.007  
0.006  
0.006  
2.37  
0.018  
0.017  
0.011  
0.011  
0.008  
0.022  
0.018  
0.017  
0.011  
0.010  
0.008  
--  
V
V
Push-Pull, IOL= 100 µA, 1x Drive,  
VDD2 = 1.8 V ± 10 %  
Push-Pull, IOL = 100 µA, 2x Drive,  
VDD2 = 1.0 V ± 5 %  
--  
V
Push-Pull, IOL = 100 µA, 2x Drive,  
VDD2 = 1.5 V ± 5 %  
--  
V
Push-Pull, IOL = 100 µA, 2x Drive,  
VDD2 = 1.8 V ± 10 %  
--  
V
LOW-Level Output Voltage  
(GPIOs 4, 5, 6, 7, GPOs 1, 2,  
3, 4)  
VOL2  
NMOS OD, IOL = 100 µA, 1x Drive,  
VDD2 = 1.0 V ± 5 %  
--  
V
NMOS OD, IOL = 100 µA, 1x Drive,  
VDD2 = 1.5 V ± 5 %  
--  
V
NMOS OD, IOL = 100 µA, 1x Drive,  
VDD2 = 1.8 V ± 10 %  
--  
V
NMOS OD, IOL = 100 µA, 2x Drive,  
VDD2 = 1.0 V ± 5 %  
--  
V
NMOS OD, IOL = 100 µA, 2x Drive,  
VDD2 = 1.5 V ± 5 %  
--  
V
NMOS OD, IOL = 100 µA, 2x Drive,  
VDD2 = 1.8 V ± 10 %  
--  
V
Push-Pull, VOH = VDD - 0.2, 1x Drive,  
VDD = 2.5 V ± 8 %  
1.48  
5.30  
19.27  
2.91  
10.47  
37.75  
1.16  
2.84  
3.55  
2.32  
5.57  
6.99  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Push-Pull, VOH = 2.4 V, 1x Drive,  
VDD = 3.3 V ± 10 %  
11.12  
30.24  
4.67  
--  
Push-Pull, VOH = 2.4 V, 1x Drive,  
VDD = 5 V ± 10 %  
--  
HIGH-Level Output Current  
(GPIOs 0, 1, 2, 3, 8, 9, 10, 11,  
GPOs 0, 5, 6, 7) (Note 3)  
IOH1  
Push-Pull, VOH = VDD - 0.2, 2x Drive,  
VDD = 2.5 V ± 8 %  
--  
Push-Pull, VOH = 2.4 V, 2x Drive,  
VDD = 3.3 V ± 10 %  
21.89  
59.04  
1.55  
--  
Push-Pull, VOH = 2.4 V, 2x Drive,  
VDD = 5 V ± 10 %  
--  
Push-Pull, VOH = 2/3 VDD2, 1x Drive,  
VDD2 = 1.0 V ± 5 %  
--  
Push-Pull, VOH = 2/3 VDD2, 1x Drive,  
VDD2 = 1.5 V ± 5 %  
3.40  
--  
Push-Pull, VOH = 2/3 VDD2, 1x Drive,  
VDD2 = 1.8 V ± 10 %  
4.52  
--  
HIGH-Level Output Current  
(GPIOs 4, 5, 6, 7, GPOs 1, 2,  
3, 4) (Note 3)  
IOH2  
Push-Pull, VOH = 2/3 VDD2, 2x Drive,  
VDD2 = 1.0 V ± 5 %  
3.07  
--  
Push-Pull, VOH = 2/3 VDD2, 2x Drive,  
VDD2 = 1.5 V ± 5 %  
6.74  
--  
Push-Pull, VOH = 2/3 VDD2, 2x Drive,  
VDD2 = 1.8 V ± 10 %  
8.95  
--  
Datasheet  
25-Feb-2021  
Revision 3.12  
17 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 7: EC for SLG46881 at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
Push-Pull, VOL = 0.15 V, 1x Drive,  
VDD = 2.5 V ± 8 %  
1.58  
2.26  
--  
mA  
Push-Pull, VOL = 0.4 V, 1x Drive,  
VDD = 3.3 V ± 10 %  
4.94  
6.65  
3.07  
9.63  
12.86  
3.83  
11.92  
15.81  
7.18  
22.17  
28.68  
1.37  
3.26  
4.09  
2.70  
6.42  
8.08  
1.38  
3.24  
4.08  
2.70  
6.43  
8.09  
7.24  
9.82  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Push-Pull, VOL = 0.4 V, 1x Drive,  
VDD = 5 V ± 10 %  
Push-Pull, VOL = 0.15 V, 2x Drive,  
VDD = 2.5 V ± 8 %  
4.43  
Push-Pull, VOL = 0.4 V, 2x Drive,  
VDD = 3.3 V ± 10 %  
14.18  
19.13  
5.55  
Push-Pull, VOL = 0.4 V, 2x Drive,  
VDD = 5 V ± 10 %  
LOW-Level Output Current  
(GPIOs 0, 1, 2, 3, 8, 9, 10, 11,  
IOL1  
NMOS OD, VOL = 0.15 V, 1x Drive,  
VDD = 2.5 V ± 8 %  
GPOs 0, 5, 6, 7) (Note 3)  
NMOS OD, VOL = 0.4 V, 1x Drive,  
VDD = 3.3 V ± 10 %  
17.72  
23.84  
10.72  
34.11  
45.34  
1.85  
NMOS OD, VOL = 0.4 V, 1x Drive,  
VDD = 5 V ± 10 %  
NMOS OD, VOL = 0.15 V, 2x Drive,  
VDD = 2.5 V ± 8 %  
NMOS OD, VOL = 0.4 V, 2x Drive,  
VDD = 3.3 V ± 10 %  
NMOS OD, VOL = 0.4 V, 2x Drive,  
VDD = 5 V ± 10 %  
Push-Pull, VOL = 1/3 VDD2, 1x Drive,  
VDD2 = 1.0 V ± 5 %  
Push-Pull, VOL = 1/3 VDD2, 1x Drive,  
VDD2 = 1.5 V ± 5 %  
4.00  
Push-Pull, VOL = 1/3 VDD2, 1x Drive,  
VDD2 = 1.8 V ± 10 %  
5.27  
Push-Pull, VOL = 1/3 VDD2, 2x Drive,  
VDD2 = 1.0 V ± 5 %  
3.67  
Push-Pull, VOL = 1/3 VDD2, 2x Drive,  
VDD2 = 1.5 V ± 5 %  
7.93  
Push-Pull, VOL = 1/3 VDD2, 2x Drive,  
VDD2 = 1.8 V ± 10 %  
10.44  
1.85  
LOW-Level Output Current  
(GPIOs 4, 5, 6, 7, GPOs 1, 2,  
3, 4) (Note 3)  
IOL2  
NMOS OD, VOL = 1/3 VDD2, 1x Drive,  
VDD2 = 1.0 V ± 5 %  
NMOS OD, VOL = 1/3 VDD2, 1x Drive,  
VDD2 = 1.5 V ± 5 %  
4.00  
NMOS OD, VOL = 1/3 VDD2, 1x Drive,  
VDD2 = 1.8 V ± 10 %  
5.27  
NMOS OD, VOL = 1/3 VDD2, 2x Drive,  
VDD2 = 1.0 V ± 5 %  
3.67  
NMOS OD, VOL = 1/3 VDD2, 2x Drive,  
VDD2 = 1.5 V ± 5 %  
7.92  
NMOS OD, VOL = 1/3 VDD2, 2x Drive,  
VDD2 = 1.8 V ± 10 %  
10.44  
TSU  
Startup Time  
From VDD rising past PONTHR  
--  
1.13  
1.84  
1.72  
2.11  
ms  
V
PONTHR  
Power-On Threshold  
VDD Level Required to Start Up the Chip  
1.64  
Datasheet  
25-Feb-2021  
Revision 3.12  
18 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 7: EC for SLG46881 at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Parameter Description  
Condition  
Min  
Typ  
Max  
Unit  
VDD Level Required to Switch Off the  
Chip  
POFFTHR Power-Off Threshold  
0.98  
1.25  
1.49  
V
1 M for Pull-up: VIN = GND;  
for Pull-down: VIN = VDD  
0.85  
87  
7
1.048  
104.4  
10.36  
1.05  
1.32  
131  
14  
MΩ  
kΩ  
100 k for Pull-up: VIN = GND;  
for Pull-down: VIN = VDD  
10 k for Pull-up: VIN = GND;  
for Pull-down: VIN = VDD  
kΩ  
Pull-up or Pull-down  
Resistance  
RPULL  
1 M for Pull-up: VIN = GND;  
for Pull-down: VIN = VDD2  
0.85  
88  
9
1.35  
150  
22  
MΩ  
kΩ  
100 k for Pull-up: VIN = GND;  
for Pull-down: VIN = VDD2  
112.5  
10 k for Pull-up: VIN = GND;  
for Pull-down: VIN = VDD2  
14.14  
4
kΩ  
CIN  
Input Capacitance  
pF  
Note 1 GPIs 0, 1, 2, 3, 4, 5, 6, 7, GPIOs 0, 1, 2, 3, 8, 9, 10, 11, GPOs 0, 5, 6, 7 are powered from VDD and GPIOs 4, 5, 6, 7,  
GPOs 1, 2, 3, 4 are powered from VDD2  
.
Note 2 No hysteresis.  
Note 3 DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.  
Table 8: EC of the I2C Pins at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Fast-Mode  
Fast-Mode Plus  
Parameter Description  
Condition  
Unit  
Min  
Max  
Min  
Max  
LOW-level Input  
Voltage  
VIL  
-0.5  
0.3VDD  
-0.5  
0.3 VDD  
V
V
V
HIGH-level Input  
Voltage  
VIH  
0.7VDD  
0.05VDD  
5.5  
--  
0.7VDD  
5.5  
--  
HysteresisofSchmitt  
Trigger Inputs  
VHYS  
0.05VDD  
(Open-Drain or open  
collector) at 3mA sink  
current  
LOW-Level Output  
Voltage 1  
VOL1  
0
0
0.4  
0
0
0.4  
V
V
VDD > 2 V  
(Open-Drain or open  
collector) at 2 mA sink  
current  
LOW-Level Output  
Voltage 2  
VOL2  
0.2VDD  
0.2VDD  
VDD ≤ 2 V  
VOL = 0.4 V, VDD = 2.3 V  
VOL = 0.4 V, VDD = 3.0 V  
VOL = 0.4 V, VDD = 4.5 V  
VOL= 0.6 V  
3
3
3
6
--  
--  
--  
--  
19.28  
20  
--  
--  
--  
--  
mA  
mA  
mA  
mA  
LOW-Level Output  
Current (Note 1)  
IOL  
20  
--  
Output Fall Time  
from VIHmin to VILmax  
(Note 1)  
14x  
(VDD/5.5 V)  
10x  
(VDD/5.5 V)  
tof  
250  
120  
ns  
Datasheet  
25-Feb-2021  
Revision 3.12  
19 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 8: EC of the I2C Pins at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted(Continued)  
Fast-Mode  
Fast-Mode Plus  
Parameter Description  
Condition  
Unit  
Min  
Max  
Min  
Max  
Pulse Width of  
Spikes that must be  
suppressed by the  
Input Filter  
tSP  
0
50  
0
50  
ns  
Input Current each  
IO Pin  
Ii  
0.1VDD < VI < 0.9VDDmax  
-10  
--  
+10  
10  
-10  
--  
+10  
10  
µA  
Capacitance for  
each IO Pin  
Ci  
pF  
Note 1 Does not meet standard I2C specifications: tof = 20x(VDD/5.5 V) (min); For Fast-mode Plus IOL = 20 mA (min) at  
VOL = 0.4 V.  
Note 2 For Fast-mode Plus SDA pin must be configured as NMOS 2x Open-Drain, see registers [893] in section 21.  
Table 9: I2C Pins Timing Characteristics at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Fast-Mode  
Fast-Mode  
Plus  
Parameter Description  
Condition/Note  
Unit  
Min  
--  
Max  
400  
--  
Min  
--  
Max  
1000  
--  
FSCL  
tLOW  
tHIGH  
Clock Frequency, SCL  
kHz  
ns  
Clock Pulse Width Low  
Clock Pulse Width High  
1300  
600  
--  
500  
260  
--  
--  
--  
ns  
V
DD = 2.5 V ± 8 %  
95  
168  
157  
156  
450  
Input Filter Spike Suppression  
(SCL, SDA)  
tI  
VDD = 3.3 V ± 10 %  
VDD = 5.0 V ± 10 %  
--  
95  
--  
ns  
--  
111  
900  
--  
tAA  
Clock Low to Data Out Valid  
--  
--  
ns  
ns  
Bus Free Time between Stop and  
Start  
tBUF  
1300  
--  
500  
--  
tHD_STA  
tSU_STA  
tHD_DAT  
tSU_DAT  
tR  
Start Hold Time  
Start Set-up Time  
Data Hold Time  
Data Set-up Time  
Inputs Rise Time  
Inputs Fall Time  
Stop Set-up Time  
Data Out Hold Time  
600  
600  
0
--  
--  
260  
260  
0
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
--  
--  
100  
--  
--  
50  
--  
--  
300  
300  
--  
120  
120  
--  
tF  
--  
--  
tSU_STO  
tDH  
600  
50  
260  
50  
--  
--  
Note 1 Timing diagram can be found in the Figure 134.  
Table 10: Asynchronous State Machine Specifications at T = 25 °C  
Parameter Description  
Condition  
Min  
133  
96  
Typ  
Max  
Unit  
VDD = 2.5 V ± 8 %  
VDD = 3.3 V ± 10 %  
VDD = 5.0 V ± 10 %  
--  
277  
190  
123  
Asynchronous State Machine  
tst_out_delay  
ns  
Output Delay Time  
70  
--  
Datasheet  
25-Feb-2021  
Revision 3.12  
20 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 10: Asynchronous State Machine Specifications at T = 25 °C(Continued)  
Parameter Description  
Condition  
Min  
--  
Typ  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Max  
165  
70  
Unit  
VDD = 2.5 V ± 8 %  
VDD = 3.3 V ± 10 %  
VDD = 5.0 V ± 10 %  
VDD = 2.5 V ± 8 %  
VDD = 3.3 V ± 10 %  
VDD = 5.0 V ± 10 %  
VDD = 2.5 V ± 8 %  
VDD = 3.3 V ± 10%  
VDD = 5.0 V ± 10 %  
VDD = 2.5 V ± 8 %  
Asynchronous State Machine  
Output Transition Time  
tst_out  
tst_pulse  
tst_comp  
--  
ns  
--  
46  
28  
19  
12  
--  
--  
Asynchronous State Machine  
Input Pulse Acceptance Time  
--  
ns  
ns  
ns  
ns  
--  
10  
Asynchronous State Machine  
Input Compete Time  
--  
7
--  
5
229  
162  
119  
229  
162  
119  
485  
330  
208  
485  
330  
208  
tst_sequen- Asynchronous State Machine  
Sequential Output Delay Time  
V
DD = 3.3 V ± 10 %  
VDD = 5.0 V ± 10 %  
DD = 2.5 V ± 8 %  
tial_delay  
V
tst_dmlatch_ Asynchronous State Machine  
VDD = 3.3 V ± 10 %  
VDD = 5.0 V ± 10 %  
Dynamic Memory Latch Delay  
delay  
Datasheet  
25-Feb-2021  
Revision 3.12  
21 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 11: Typical Current Estimated for Each Macrocell at T = -40 °C to +85 °C  
Parameter  
Description Note  
Chip Quiescent (I2C enable)  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V  
Unit  
µA  
0.11  
0.10  
0.39  
4.03  
0.13  
0.12  
0.43  
4.16  
0.20  
0.20  
0.53  
4.43  
Chip Quiescent (I2C disable)  
µA  
Vref (SourceNone, SourceTempSensor)  
Vref (ACMPxH or ACMPxL, 0.32 mV)  
µA  
µA  
ACMP0H, 100 µA disabled, hysteresis  
disabled, gain 1 or 0.25, +IN - GPIO10,  
Vref = 32 mV  
21.21  
24.59  
34.97  
21.59  
24.99  
35.67  
22.87  
26.40  
38.02  
µA  
µA  
µA  
ACMP0H, 100 µA disabled, hysteresis  
disabled, gain 1, Buffered +IN - GPIO10,  
Vref = 32 mV  
ACMP0,1H, 100 µA disabled, hysteresis  
disabled, gain 1, +IN - GPIO10, GPIO11,  
Vref = 32 mV  
ACMP0,1H 100 µA disabled,  
ACMP2, 3L, hysteresis disabled,  
gain 1, +IN - GPIO10, GPIO11, GPO5,  
GPO6, Vref = 32 mV  
36.32  
36.96  
39.37  
µA  
ACMP0H, 100 µA disabled, hysteresis  
disabled, gain 1, +IN - VDD, Vref = 32 mV  
37.06  
46.59  
38.41  
48.00  
41.99  
51.52  
µA  
µA  
ACMP0H, 100 µA enabled, hysteresis  
disabled, gain 1, +IN - GPIO10,  
Vref = 32 mV  
I
Current  
ACMP2L, hysteresis disabled, gain 1 or  
0.25, +IN - GPO5, Vref = 32 mV  
1.61  
1.86  
1.65  
1.91  
1.78  
2.04  
µA  
µA  
ACMP2,3L, hysteresis disabled, gain 1,  
+IN - GPO5, GPO6, Vref = 32 mV  
OSC2 25 MHz, pre-divider = 1  
OSC2 25 MHz, pre-divider = 4  
OSC2 25 MHz, pre-divider = 8  
OSC1 2.048 MHz, pre-divider = 1  
OSC1 2.048 MHz, pre-divider = 4  
OSC1 2.048 MHz, pre-divider = 8  
OSC0 2.048 kHz, pre-divider = 1 or 4 or 8  
Push-Pull 1x + 4 pF @ 25 kHz  
Push-Pull 1x + 4 pF @ 2 MHz  
111.45  
42.67  
30.94  
16.20  
13.83  
13.42  
0.39  
150.85  
54.93  
38.56  
17.52  
14.37  
13.83  
0.43  
5
244.34  
84.46  
57.16  
20.42  
15.60  
14.78  
0.53  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
0.4  
16  
22  
47  
106  
Temperature Sensor, range 0.75 to 1.2,  
Source Matrix  
4.64  
4.60  
4.15  
4.74  
4.71  
4.41  
4.85  
4.82  
6.73  
µA  
µA  
µA  
Temperature Sensor, range 0.62 to 0.99,  
Source Matrix or Register  
Temperature Sensor, range 0.62 to 0.99,  
Source Matrix or GPIO11  
Datasheet  
25-Feb-2021  
Revision 3.12  
22 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
3.5 TIMING CHARACTERISTICS  
Table 12: Typical Delay Estimated for Each Macrocell at T = 25 °C  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5 V  
Parameter Description Note  
Unit  
Rising Falling Rising Falling Rising Falling  
19  
20  
--  
20  
19  
23  
--  
13  
14  
--  
15  
15  
16  
--  
9
10  
--  
11  
11  
11  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
DFF Q  
DFF nQ  
DFF nRESET Q  
DFF nRESET nQ  
DFF nSET Q  
23  
23  
--  
15  
15  
--  
10  
10  
--  
--  
--  
--  
23  
21  
20  
20  
18  
24  
24  
21  
21  
21  
20  
17  
24  
24  
18  
21  
17  
15  
15  
14  
14  
17  
17  
16  
16  
15  
15  
12  
18  
17  
13  
15  
12  
11  
10  
10  
10  
12  
13  
12  
11  
11  
11  
8
DFF nSET nQ  
DFF1 Second Q  
DFF1 Second nQ  
LATCH Q  
20  
21  
18  
20  
23  
24  
21  
21  
20  
21  
18  
22  
22  
16  
18  
14  
14  
13  
14  
16  
16  
14  
15  
14  
15  
12  
16  
16  
11  
13  
9
9
9
8
LATCH nQ  
11  
11  
9
LATCH nRESET Q  
LATCH nRESET nQ  
LATCH nSET Q  
LATCH nSET nQ  
LATCH1 second Q  
LATCH1 second nQ  
2-bit LUT  
10  
9
10  
8
11  
11  
7
13  
13  
9
3-bit LUT  
4-bit LUT  
DM 2-bit LUT IN0  
9
10  
DM 3-bit LUT IN0 to 2-bit LUT IN0  
DM 3-bit LUT IN0 to CNT  
One Shot to 2-bit LUT IN1  
52  
55  
38  
39  
26  
26  
ns  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
17  
18  
41  
19  
19  
42  
12  
12  
29  
14  
14  
30  
8
8
9
ns  
ns  
ns  
DM 3-bit LUT IN1 to 2-bit LUT IN0  
DM 3-bit LUT IN2 to 2-bit LUT IN0  
10  
20  
20  
DM CNT Edge detect to 2-bit LUT IN1  
DM CNT Frequency detect to 2-bit  
LUT IN1  
54  
55  
38  
39  
27  
27  
ns  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
52  
44  
42  
54  
44  
37  
31  
29  
38  
32  
25  
21  
20  
26  
22  
96  
ns  
ns  
ns  
DM CNT One Shot to 2-bit LUT IN1  
DM CNT Delay to 2-bit LUT IN1  
224  
152  
Low Voltage Digital input to PP 1x  
Digital input to with Schmitt Trigger to  
PP 1x  
35  
37  
23  
26  
16  
18  
ns  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
35  
30  
--  
37  
35  
30  
--  
23  
21  
--  
26  
24  
21  
--  
16  
14  
--  
18  
17  
15  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Digital input to PP 1x  
Digital input to PP 2x  
PP 1x 3-State (Z to 0)  
PP 1x 3-State (Z to 1)  
PP 2x 3-State (Z to 0)  
PP 2x 3-State (Z to 1)  
Digital input to NMOS 1x  
Digital input to NMOS 2x  
34  
--  
23  
--  
16  
--  
29  
--  
20  
--  
14  
--  
31  
--  
22  
--  
15  
--  
33  
32  
23  
22  
16  
15  
--  
--  
--  
Datasheet  
25-Feb-2021  
Revision 3.12  
23 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 12: Typical Delay Estimated for Each Macrocell at T = 25 °C(Continued)  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5 V  
Parameter Description Note  
Unit  
Rising Falling Rising Falling Rising Falling  
19  
24  
31  
18  
29  
29  
25  
24  
25  
25  
24  
25  
18  
--  
18  
26  
26  
18  
24  
31  
--  
13  
17  
22  
13  
21  
21  
17  
17  
18  
17  
17  
17  
12  
--  
14  
19  
19  
14  
18  
23  
--  
9
12  
16  
9
10  
15  
15  
10  
13  
17  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tpd  
tw  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Width  
Ripple UP CLK CNT Q0  
Ripple UP CLK CNT Q1  
Ripple UP CLK CNT Q2  
Ripple DOWN CLK CNT Q0  
Ripple DOWN CLK CNT Q1  
Ripple DOWN CLK CNT Q2  
Ripple UP nSET CNT Q0  
Ripple UP nSET CNT Q1  
Ripple UP nSET CNT Q2  
Ripple DOWN nSET CNT Q0  
Ripple DOWN nSET CNT Q1  
Ripple DOWN nSET CNT Q2  
PGen CLK  
14  
15  
11  
11  
12  
11  
11  
12  
8
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
18  
20  
--  
13  
15  
--  
10  
11  
--  
--  
PGen nRESET (Z to 0)  
PGen nRESET (Z to 1)  
Pipe Delay Q  
22  
22  
22  
165  
145  
24  
242  
241  
15  
16  
16  
112  
101  
16  
177  
160  
10  
11  
11  
71  
67  
12  
129  
118  
22  
24  
144  
164  
25  
243  
241  
16  
18  
101  
113  
17  
179  
160  
12  
13  
68  
72  
11  
130  
118  
Pipe Delay nQ  
Filter Q  
Filter nQ  
Edge detect  
Edge detect Delayed  
Edge detect  
Table 13: Typical Delay Estimated for F(1) at T = 25 °C  
VDD = 2.5 V  
159  
VDD = 3.3 V  
111  
VDD = 5 V  
71  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Parameter  
tpd  
Description  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Delay  
Note  
Delay 0  
424  
362  
313  
672  
1070  
4264  
65  
tpd  
Delay 1  
786  
722  
tpd  
Delay 10  
1185  
4395  
147  
1111  
4323  
101  
tpd  
Delay 20  
tpd  
Delay 100  
tpd  
LOOP without Delay data  
LOOP with 0 Delay data  
LOOP with 1 Delay data  
LOOP with 10 Delay data  
LOOP with 20 Delay data  
LOOP with 100 Delay data  
INV  
159  
111  
72  
tpd  
424  
362  
314  
672  
1071  
4263  
70  
tpd  
785  
723  
tpd  
1186  
4395  
161  
1123  
4324  
111  
tpd  
tpd  
tpd  
160  
109  
69  
tpd  
AND  
161  
109  
69  
tpd  
OR  
160  
109  
69  
tpd  
XOR  
Datasheet  
25-Feb-2021  
Revision 3.12  
24 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 13: Typical Delay Estimated for F(1) at T = 25 °C(Continued)  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5 V  
Unit  
ns  
Parameter  
tpd  
Description  
Delay  
Note  
322  
163  
160  
161  
74  
219  
110  
109  
111  
52  
137  
69  
69  
70  
34  
41  
LOADx  
ns  
tpd  
Delay  
OUTx  
ns  
tpd  
Delay  
POP  
ns  
tpd  
Delay  
PUSH0  
ns  
tpd  
Delay  
RESET (Time for OUT0)  
RESET (Time to f1 init)  
89  
61  
ns  
tpd  
Delay  
Table 14: Programmable Delay Expected Delays and Widths (Typical) T = 25 °C  
Parameter  
tw  
Description  
Note  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V Unit  
Pulse Width, 1 cell mode: (any) edge detect, edge detect output  
Pulse Width, 2 cell mode: (any) edge detect, edge detect output  
Pulse Width, 3 cell mode: (any) edge detect, edge detect output  
Pulse Width, 4 cell mode: (any) edge detect, edge detect output  
325  
740  
1020  
1350  
44  
150  
300  
450  
600  
18  
110  
225  
340  
450  
14  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tw  
tw  
tw  
time1  
time1  
time1  
time1  
Delay, 1 cell  
Delay, 2 cell  
Delay, 3 cell  
Delay, 4 cell  
mode: (any) edge detect, edge detect output  
mode: (any) edge detect, edge detect output  
mode: (any) edge detect, edge detect output  
mode: (any) edge detect, edge detect output  
44  
18  
14  
44  
18  
14  
44  
18  
14  
mode: delayed (any) edge detect, delayed  
edge detect output  
tw  
tw  
Pulse Width, 1 cell  
Pulse Width, 2 cell  
Pulse Width, 3 cell  
Pulse Width, 4 cell  
Delay, 1 cell  
340  
670  
150  
300  
450  
600  
220  
220  
220  
220  
110  
220  
335  
450  
140  
140  
140  
140  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
mode: delayed (any) edge detect, delayed  
edge detect output  
mode: delayed (any) edge detect, delayed  
edge detect output  
tw  
1000  
1340  
570  
mode: delayed (any) edge detect, delayed  
edge detect output  
tw  
mode: delayed (any) edge detect, delayed  
edge detect output  
time1  
time1  
time1  
time1  
mode: delayed (any) edge detect, delayed  
edge detect output  
Delay, 2 cell  
570  
mode: delayed (any) edge detect, delayed  
edge detect output  
Delay, 3 cell  
570  
mode: delayed (any) edge detect, delayed  
edge detect output  
Delay, 4 cell  
570  
time2  
time2  
time2  
time2  
Delay, 1 cell  
Delay, 2 cell  
Delay, 3 cell  
Delay, 4 cell  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
mode: both edge delay, edge detect output  
382  
713  
375  
169  
318  
466  
126  
237  
350  
460  
ns  
ns  
ns  
ns  
1045  
1370  
mode: both edge delay, delayed edge detect  
output  
time2  
time2  
time2  
time2  
Delay, 1 cell  
Delay, 2 cell  
Delay, 3 cell  
Delay, 4 cell  
900  
613  
520  
680  
815  
250  
360  
480  
600  
ns  
ns  
ns  
ns  
mode: both edge delay, delayed edge detect  
output  
1250  
1600  
1900  
mode: both edge delay, delayed edge detect  
output  
mode: both edge delay, delayed edge detect  
output  
Datasheet  
25-Feb-2021  
Revision 3.12  
25 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 15: Typical Filter Rejection Pulse Width at T = 25 °C  
Parameter  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V  
< 123 < 84 < 52  
Unit  
Filtered Pulse Width  
ns  
Table 16: Typical Counter/Delay Offset Measurements at T = 25 °C  
Parameter  
OSC Freq  
25 MHz  
OSC Power  
auto  
VDD = 2.5 V VDD = 3.3 V VDD = 5.0 V  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
Power-On time  
0.13  
0.29  
663  
4
0.13  
0.41  
570  
4
0.13  
0.4  
Power-On time  
2.048 MHz  
2.048 kHz  
25 MHz  
auto  
Power-On time  
auto  
458  
8
frequency settling time  
frequency settling time  
frequency settling time  
variable (CLK period)  
variable (CLK period)  
variable (CLK period)  
auto  
2.048 MHz  
2.048 kHz  
25 MHz  
auto  
0.3  
0.4  
0.4  
auto  
660  
0-40  
0-0.5  
0-488  
570  
0-40  
0-0.5  
0-488  
480  
0-40  
0-0.5  
0-488  
forced  
forced  
forced  
2.048 MHz  
2.048 kHz  
µs  
µs  
25 MHz/  
2.048 kHz  
tpd (non-delayed edge)  
either  
35  
14  
10  
ns  
Datasheet  
25-Feb-2021  
Revision 3.12  
26 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
3.6 OSCILLATOR CHARACTERISTICS  
Table 17: Oscillator0 2.048 kHz Frequency Limits  
Temperature Range  
Power Supply Range  
+25 °C  
-40 °C to +85 °C  
(VDD), V  
Minimum Value, kHz MaximumValue, kHz Minimum Value, kHz MaximumValue, kHz  
2.5 V ±8 %  
3.3 V ±10 %  
5 V ±10 %  
2.026  
2.025  
2.025  
2.026  
2.025  
2.071  
2.070  
2.071  
2.071  
2.071  
1.907  
1.906  
1.905  
1.906  
1.905  
2.088  
2.088  
2.087  
2.088  
2.088  
2.5 V to 4.5 V  
2.3 V to 5.5 V  
Table 18: Oscillator0 2.048 kHz Frequency Error (Error Calculated Relative to Nominal Value)  
Temperature Range  
Power Supply Range  
(VDD), V  
+25 °C  
-40 °C to +85 °C  
Error  
Error  
Error  
Error  
(% at Minimum)  
(% at Maximum)  
(% at Minimum)  
(% at Maximum)  
2.5 V ±8 %  
3.3 V ±10 %  
5 V ±10 %  
-1.07 %  
-1.09 %  
-1.12 %  
-1.09 %  
-1.12 %  
1.12 %  
1.09 %  
1.11 %  
1.10 %  
1.12 %  
-6.91 %  
-6.94 %  
-6.96 %  
-6.96 %  
-6.96 %  
1.95 %  
1.94 %  
1.92 %  
2.5 V to 4.5 V  
2.3 V to 5.5 V  
1.95 %  
1.95 %  
Table 19: Oscillator1 2.048 MHz Frequency Limits  
Temperature Range  
Power Supply Range  
(VDD), V  
+25 °C  
-40 °C to +85 °C  
Minimum Value,  
MHz  
Maximum Value,  
MHz  
Minimum Value,  
MHz  
Maximum Value,  
MHz  
2.5 V ±8 %  
3.3 V ±10 %  
5 V ±10 %  
2.021  
2.024  
2.026  
2.022  
2.021  
2.068  
2.069  
2.072  
2.071  
2.072  
1.987  
1.990  
1.994  
1.988  
1.987  
2.088  
2.089  
2.092  
2.090  
2.092  
2.5 V to 4.5 V  
2.3 V to 5.5 V  
Table 20: Oscillator1 2.048 MHz Frequency Error (Error Calculated Relative to Nominal Value)  
Temperature Range  
Power Supply Range  
(VDD), V  
+25 °C  
-40 °C to +85 °C  
Error  
Error  
Error  
Error  
(% at Minimum)  
(% at Maximum)  
(% at Minimum)  
(% at Maximum)  
2.5 V ±8 %  
-1.32 %  
-1.14 %  
0.96 %  
1.01 %  
-2.98 %  
-2.80 %  
1.93 %  
2.01 %  
3.3 V ±10 %  
Datasheet  
25-Feb-2021  
Revision 3.12  
27 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 20: Oscillator1 2.048 MHz Frequency Error (Error Calculated Relative to Nominal Value)(Continued)  
Temperature Range  
Power Supply Range  
(VDD), V  
+25 °C  
-40 °C to +85 °C  
Error  
Error  
Error  
Error  
(% at Minimum)  
(% at Maximum)  
(% at Minimum)  
(% at Maximum)  
5 V ±10 %  
2.5 V to 4.5 V  
2.3 V to 5.5 V  
-1.03 %  
-1.27 %  
-1.32 %  
1.18 %  
1.09 %  
1.18 %  
-2.61 %  
2.13 %  
2.04 %  
2.13 %  
-2.91 %  
-2.98 %  
Table 21: Oscillator2 25 MHz Frequency Limits  
Power Supply Range  
Temperature Range  
+25 °C  
-40 °C to +85 °C  
(VDD), V  
Minimum Value,  
Maximum Value,  
MHz  
Minimum Value,  
MHz  
Maximum Value,  
MHz  
MHz  
2.5 V ±8 %  
3.3 V ±10 %  
5 V ±10 %  
24.588  
24.668  
24.736  
24.620  
24.588  
25.238  
25.261  
25.353  
25.288  
25.353  
23.622  
23.678  
23.723  
23.656  
23.622  
25.669  
25.732  
25.803  
25.769  
25.803  
2.5 V to 4.5 V  
2.3 V to 5.5 V  
Table 22: Oscillator2 25 MHz Frequency Error (Error Calculated Relative to Nominal Value)  
Temperature Range  
Power Supply Range  
(VDD), V  
+25 °C  
-40 °C to +85 °C  
Error  
Error  
Error  
Error  
(% at Minimum)  
(% at Maximum)  
(% at Minimum)  
(% at Maximum)  
2.5 V ±8 %  
3.3 V ±10 %  
5 V ±10 %  
-1.65 %  
-1.33 %  
-1.06 %  
-1.52 %  
-1.65 %  
0.96 %  
1.05 %  
1.42 %  
1.16 %  
1.42 %  
-5.51 %  
-5.29 %  
-5.11 %  
-5.38 %  
-5.51 %  
2.68 %  
2.93 %  
3.21 %  
3.08 %  
3.21 %  
2.5 V to 4.5 V  
2.3 V to 5.5 V  
3.6.1 OSC Power-On Delay  
Table 23: Oscillators Power-On Delay at T = 25 °C, OSC Power Mode: "Auto Power-On"  
Oscillator0  
2.048 kHz  
Oscillator1  
2.048 MHz  
Oscillator2  
25 MHz  
Oscillator2 25MHz  
Start with Delay  
Power  
Supply  
Range  
(VDD), V  
Typical  
Maximum  
Value, µs  
Typical  
Maximum  
Value, µs  
Typical  
Maximum  
Value, µs  
Typical  
Maximum  
Value, µs  
Value, µs  
Value, µs  
Value, µs  
Value, µs  
2.3  
2.5  
2.7  
3
702.100  
663.423  
632.868  
597.220  
879.295  
824.027  
779.510  
728.822  
0.314  
0.291  
0.274  
0.322  
0.329  
0.308  
0.291  
0.972  
0.034  
0.029  
0.025  
0.021  
0.040  
0.035  
0.029  
0.024  
0.131  
0.130  
0.128  
0.127  
0.142  
0.140  
0.139  
0.137  
Datasheet  
25-Feb-2021  
Revision 3.12  
28 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 23: Oscillators Power-On Delay at T = 25 °C, OSC Power Mode: "Auto Power-On"(Continued)  
Oscillator0  
2.048 kHz  
Oscillator1  
2.048 MHz  
Oscillator2  
25 MHz  
Oscillator2 25MHz  
Start with Delay  
Power  
Supply  
Range  
(VDD), V  
Typical  
Maximum  
Value, µs  
Typical  
Maximum  
Value, µs  
Typical  
Maximum  
Value, µs  
Typical  
Maximum  
Value, µs  
Value, µs  
Value, µs  
Value, µs  
Value, µs  
3.3  
3.6  
4
569.862  
548.042  
525.124  
515.409  
502.266  
481.578  
457.522  
690.555  
660.574  
628.266  
615.041  
596.996  
570.706  
539.814  
0.411  
0.434  
0.423  
0.418  
0.412  
0.404  
0.397  
0.842  
0.454  
0.441  
0.437  
0.431  
0.422  
0.415  
0.018  
0.015  
0.013  
0.012  
0.011  
0.010  
0.010  
0.020  
0.019  
0.015  
0.015  
0.015  
0.011  
0.010  
0.126  
0.126  
0.126  
0.127  
0.128  
0.129  
0.129  
0.139  
0.139  
0.139  
0.141  
0.142  
0.143  
0.143  
4.2  
4.5  
5
5.5  
3.7 ANALOG COMPARATOR CHARACTERISTICS  
Table 24: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted  
Parameter  
Description  
Note  
Condition  
Min  
0
Typ  
--  
Max  
Unit  
V
Positive Input  
Negative Input  
Positive Input  
Negative Input  
Positive Input  
Negative Input  
VDD  
2.016  
VDD  
VDD = 2.5 V ± 5 %  
0
--  
V
ACMP0H, ACMP1H,  
ACMP2L, ACMP3L  
Input Voltage Range  
0
--  
V
VACMP  
VDD = 3.3 V ± 10 %  
0
--  
2.016  
VDD  
V
0
--  
V
VDD = 5.0 V ± 10 %  
T = 25°C  
0
--  
2.016  
5.68  
6.33  
5.09  
5.55  
V
0
--  
mV  
mV  
mV  
mV  
ACMP0H, ACMP1H  
Input Offset Voltage  
Vhys = 0 mV, Gain = 1,  
Vref = 32 mV to 2016  
mV  
0
--  
Voffset  
T = 25 °C  
T = 25 °C  
0
--  
ACMP2L, ACMP3L  
Input Offset Voltage  
0
--  
--  
--  
--  
--  
25.0  
26.2  
36.3  
51.4  
µs  
µs  
µs  
µs  
ACMP0H, ACMP1H  
Start Time  
ACMPPower-Ondelay,  
Minimal required wake  
time for the “Wake and  
Sleep function”  
tstart  
T = 25 °C  
139.3  
144.6  
233.3  
326.6  
ACMP2L, ACMP3L  
Start Time  
Datasheet  
25-Feb-2021  
Revision 3.12  
29 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 24: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted (Continued)  
Parameter  
Description  
Note  
Condition  
T = 25 °C  
T = 25 °C  
T = 25 °C  
Min  
23.60  
56.32  
189.50  
21.16  
52.77  
180.62  
26.46  
56.58  
185.24  
22.28  
54.49  
183.47  
--  
Typ  
--  
Max  
36.74  
66.79  
Unit  
mV  
VHYS = 32 mV  
VHYS = 64 mV  
VHYS = 192 mV  
VHYS = 32 mV  
VHYS = 64 mV  
VHYS = 192 mV  
VHYS = 32 mV  
VHYS = 64 mV  
VHYS = 192 mV  
VHYS = 32 mV  
--  
mV  
--  
196.00 mV  
ACMP0H, ACMP1H  
Built-in Hysteresis  
--  
38.84  
67.32  
mV  
mV  
--  
--  
196.00 mV  
VHYS  
T = 25 °C  
T = 25 °C  
T = 25 °C  
--  
34.43  
67.38  
mV  
mV  
--  
--  
197.32 mV  
ACMP2L, ACMP3L  
Built-in Hysteresis  
--  
36.86  
68.02  
mV  
mV  
V
HYS = 64 mV  
--  
VHYS = 192 mV  
Gain = 1x  
--  
197.32 mV  
100.0  
1.0  
0.8  
1.0  
2.53  
--  
--  
ΜΩ  
ΜΩ  
ΜΩ  
ΜΩ  
µs  
Gain = 0.5x  
Gain = 0.33x  
Gain = 0.25x  
--  
Series Input  
Resistance  
Rsin  
PROP  
G
--  
--  
--  
--  
Gain = 1,  
Vref = 32 mV to 2016  
mV,  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
Low to High  
High to Low  
--  
4.73  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
1.88  
1.75  
9.48  
3.20  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Overdrive = 5 mV  
Propagation Delay,  
Response Time  
for ACMP0H,  
ACMP1H  
Gain = 1,  
Vref = 32 mV to 2016  
mV,  
1.36  
2.30  
Overdrive =10 mV  
Gain = 1,  
Vref = 32 mV to 2016  
mV,  
0.81  
7.42  
0.55  
0.84  
Overdrive = 100 mV  
Gain = 1,  
Vref = 32 mV to 2016  
mV,  
74.91  
72.28  
49.54  
46.92  
18.41  
16.54  
139.75  
213.26  
70.23  
68.44  
29.06  
26.87  
Overdrive = 5 mV  
Propagation Delay,  
Response Time  
for ACMP2L,  
Gain = 1,  
Vref = 32 mV to 2016  
mV,  
ACMP3L  
Overdrive =10 mV  
Gain = 1,  
Vref = 32 mV to 2016  
mV,  
Overdrive = 100 mV  
G = 1,  
--  
1
--  
--  
--  
--  
Gain error (including  
threshold and internal  
Vref error)  
G = 0.5,  
G = 0.33,  
G = 0.25,  
0.497  
0.330  
0.247  
0.504  
0.337  
0.253  
Datasheet  
25-Feb-2021  
Revision 3.12  
30 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 24: ACMP Specifications at T = -40 °C to +85 °C, VDD = 2.3 V to 5.5 V Unless Otherwise Noted (Continued)  
Parameter  
Description  
Note  
Condition  
Min  
Typ  
Max  
Unit  
Resistance Load =  
1 ΜΩ  
--  
--  
5
pF  
Resistance Load =  
560 κΩ  
--  
--  
--  
--  
--  
--  
--  
--  
10  
40  
pF  
pF  
pF  
pF  
Resistance Load =  
100 kΩ  
Vref0 Output  
Capacitance Loading  
Resistance Load =  
10 κΩ  
Vref  
80  
Resistance Load =  
2 κΩ  
120  
Resistance Load =  
1 κΩ,  
Vref = 32 mV to  
--  
--  
150  
pF  
1024 mV  
Resistance Load =  
1 ΜΩ  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
15  
27  
pF  
pF  
pF  
pF  
pF  
Resistance Load =  
560 κΩ  
Resistance Load =  
100 kΩ  
64  
Vref1 Output  
Capacitance Loading  
Resistance Load =  
10 κΩ  
Vref  
120  
180  
Resistance Load =  
2 κΩ  
Resistance Load =  
1 κΩ,  
Vref = 32 mV to  
1024 mV  
--  
--  
210  
pF  
µA  
Is  
Input Current Source  
Vin = VDD - 0.7 V  
83.3  
95.4  
109.8  
3.8 ANALOG TEMPERATURE SENSOR CHARACTERISTICS  
Temperature Sensor typical nonlinearity ±0.27 % for output range 1 and ±0.29 % for output range 2 at VDD = 3.3 V.  
Table 25: TS Output vs Temperature (Output range 1)  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5.0 V  
Typical, mV Accuracy, %  
T, °C  
Typical, mV  
Accuracy, %  
±0.45  
Typical, mV  
Accuracy, %  
±0.45  
-40  
-30  
-20  
-10  
0
997  
973  
950  
927  
905  
882  
859  
836  
813  
997  
973  
950  
927  
905  
882  
859  
836  
813  
997  
973  
950  
927  
905  
882  
859  
836  
813  
±0.45  
±0.22  
±0.29  
±0.21  
±0.30  
±0.28  
±0.28  
±0.21  
±0.28  
±0.22  
±0.22  
±0.28  
±0.28  
±0.21  
±0.20  
±0.30  
±0.30  
10  
20  
30  
40  
±0.28  
±0.28  
±0.27  
±0.27  
±0.21  
±0.21  
±0.29  
±0.28  
Datasheet  
25-Feb-2021  
Revision 3.12  
31 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 25: TS Output vs Temperature (Output range 1)(Continued)  
VDD = 2.5 V  
VDD = 3.3 V  
VDD = 5.0 V  
T, °C  
Typical, mV  
Accuracy, %  
±0.32  
Typical, mV  
Accuracy, %  
±0.32  
Typical, mV  
Accuracy, %  
±0.32  
50  
60  
70  
80  
85  
790  
766  
743  
719  
707  
790  
766  
743  
719  
707  
790  
766  
743  
719  
707  
±0.52  
±0.52  
±0.51  
±0.62  
±0.62  
±0.61  
±0.82  
±0.82  
±0.82  
±0.82  
±0.82  
±0.82  
Table 26: TS Output vs Temperature (Output Range 2)  
VDD = 2.5 V  
T, °C  
VDD = 3.3 V  
VDD = 5.0 V  
Typical, mV  
1186  
1158  
1131  
1104  
1076  
1049  
1021  
994  
Accuracy, %  
±0.54  
±0.29  
±0.26  
±0.26  
±0.37  
±0.36  
±0.36  
±0.24  
±0.34  
±0.46  
±0.63  
±0.75  
±0.93  
±1.02  
Typical, mV  
1187  
1158  
1131  
1104  
1076  
1049  
1021  
994  
Accuracy, %  
±0.50  
±0.29  
±0.27  
±0.26  
±0.37  
±0.37  
±0.35  
±0.25  
±0.33  
±0.47  
±0.64  
±0.75  
±0.93  
±1.03  
Typical, mV  
1187  
1158  
1131  
1104  
1076  
1049  
1021  
994  
Accuracy, %  
±0.60  
±0.29  
±0.27  
±0.25  
±0.37  
±0.37  
±0.37  
±0.25  
±0.33  
±0.47  
±0.64  
±0.75  
±0.92  
±1.02  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
85  
966  
966  
966  
938  
938  
938  
910  
910  
910  
881  
881  
881  
852  
852  
852  
838  
838  
838  
Table 27: TS Output Error (Output Range 1)  
VDD, V  
Error at T  
-40 °C, %  
±0.44  
±0.45  
±0.46  
±0.45  
±0.45  
±0.45  
±0.45  
±0.44  
±0.45  
±0.45  
±0.44  
-20 °C, %  
±0.28  
±0.28  
±0.28  
±0.29  
±0.28  
±0.28  
±0.28  
±0.28  
±0.28  
±0.29  
±0.28  
0 °C, %  
±0.30  
±0.30  
±0.30  
±0.30  
±0.30  
±0.31  
±0.30  
±0.30  
±0.30  
±0.30  
±0.30  
20 °C, %  
±0.28  
±0.27  
±0.27  
±0.27  
±0.27  
±0.27  
±0.27  
±0.28  
±0.27  
±0.28  
±0.28  
40 °C, %  
±0.29  
±0.29  
±0.28  
±0.28  
±0.28  
±0.28  
±0.28  
±0.28  
±0.28  
±0.28  
±0.28  
60 °C, %  
80 °C, %  
±0.82  
±0.82  
±0.84  
±0.82  
±0.82  
±0.82  
±0.82  
±0.82  
±0.82  
±0.82  
±0.82  
85 °C, %  
±0.82  
±0.82  
±0.84  
±0.82  
±0.82  
±0.82  
±0.82  
±0.82  
±0.82  
±0.82  
±0.83  
2.30  
2.50  
2.70  
3.00  
3.30  
3.60  
4.00  
4.20  
4.50  
5.00  
5.50  
±0.52  
±0.52  
±0.52  
±0.53  
±0.52  
±0.53  
±0.52  
±0.52  
±0.51  
±0.51  
±0.51  
Datasheet  
25-Feb-2021  
Revision 3.12  
32 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 28: TS Output Error (Output Range 2)  
Error at T  
VDD, V  
-40 °C, %  
±0.62  
±0.54  
±0.72  
±0.41  
±0.50  
±0.66  
±0.82  
±0.43  
±0.72  
±0.60  
±0.58  
-20 °C, %  
±0.27  
±0.26  
±0.26  
±0.26  
±0.27  
±0.26  
±0.26  
±0.27  
±0.27  
±0.27  
±0.27  
0 °C, %  
±0.37  
±0.37  
±0.37  
±0.37  
±0.37  
±0.37  
±0.37  
±0.37  
±0.37  
±0.37  
±0.37  
20 °C, %  
±0.35  
±0.36  
±0.36  
±0.36  
±0.35  
±0.36  
±0.36  
±0.36  
±0.37  
±0.37  
±0.36  
40 °C, %  
±0.34  
±0.34  
±0.34  
±0.33  
±0.33  
±0.34  
±0.34  
±0.34  
±0.34  
±0.33  
±0.34  
60 °C, %  
±0.63  
±0.63  
±0.62  
±0.64  
±0.64  
±0.64  
±0.64  
±0.64  
±0.64  
±0.64  
±0.64  
80 °C, %  
±0.94  
±0.93  
±0.94  
±0.93  
±0.93  
±0.93  
±0.93  
±0.92  
±0.92  
±0.92  
±0.93  
85 °C, %  
±1.02  
±1.02  
±1.03  
±1.02  
±1.03  
±1.02  
±1.03  
±1.02  
±1.02  
±1.02  
±1.03  
2.30  
2.50  
2.70  
3.00  
3.30  
3.60  
4.00  
4.20  
4.50  
5.00  
5.50  
Datasheet  
25-Feb-2021  
Revision 3.12  
33 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
4
User Programmability  
The SLG46880/81 is a user programmable device with a one time programmable (OTP) memory array that is used to configure  
the 12 state ASM, logic, and Mixed-Signal circuits. Three of the IO Pins provide a connection for the bit patterns into the OTP on  
board memory. A programming development kit allows the user the ability to create initial devices. Once the design is finalized,  
the programming code (.gpx file) is forwarded to Dialog Semiconductor to integrate into a production process.  
Product  
Definition  
Customer creates their own design in  
GreenPAK Designer  
Emulate design to verify behavior  
Customers Programs Engineering  
Samples with GreenPAK  
Development Tools  
Customer verifies GreenPAK  
in system design  
GreenPAK Design  
approved  
E-mail design file to  
CMBUGreenPAK@diasemi.com  
Custom GreenPAK part enters production  
Figure 2: Steps to Create a Custom GreenPAK Device  
Datasheet  
25-Feb-2021  
Revision 3.12  
34 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
5
IO Pins  
5.1 IO PINS  
The SLG46880/81 has a total of 12 GPIO, 8 GPI, and 8 GPO pins, which can function either as a user defined Input or Output,  
or as a special function (such as outputting the voltage reference), as well as a signal for programming of the on-chip Non Volatile  
Memory (NVM). Refer to Section 2 for pin definitions.  
GPIs 0, 1, 2, 3, 4, 5, 6, 7, GPIOs 0, 1, 2, 3, 8, 9, 10, 11, GPOs 0, 5, 6, 7 are powered from VDD and GPIOs 4, 5, 6, 7, GPOs 1,  
2, 3, 4 are powered from VDD2. All internal macrocells are powered from VDD. Voltage on VDD2 Pin must be less or equal voltage  
on VDD Pin.  
In case VDD2 floating and any Pin powered from VDD2 is configured as input, ESD pin protection diodes must be considered when  
applying an input signal to the pin. This will cause a significant current leakage.  
In case VDD2 floating and any Pin powered from VDD2 is configured as Output, the pin will behave as NMOS Open-Drain.  
It is not recommended to connect VDD2 to the GND.  
5.2 PULL-UP/DOWN RESISTORS  
All IO Pins have the option of user-selectable resistors that can be connected to the pin structure. The selectable values on these  
resistors are 10 k, 100 kΩ, and 1 M. The internal resistors can be configured as either Pull-up or Pull-downs.  
5.3 100 NS DEBOUNCE DELAY  
100 ns debounce can be enabled for GPI0, GPI1, GPI5, and GPI6 by setting registers [536], [537], [538], and [539], respectively.  
5.4 FAST PULL-UP/DOWN DURING POWER-UP  
During power-up, IO Pull-up/down resistance will switch to 2.6 kinitially and then it will switch to normal setting value. This  
function is enabled by register [670].  
5.5 DIGITAL INPUT LATCH  
Digital Input Latch can be enabled for GPI0, GPI1, GPI4, GPI5, GPIO2, GPIO3, GPIO6, GPIO7. For timing diagram refer to  
Figure 3.  
Digital Input  
LATCH Enable (LE)  
Without LATCH  
Normal LATCH  
Input Data 0 LATCH  
Input Data 1 LATCH  
Figure 3: Digital Input Latch Timing Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
35 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
5.6 GPO OUTPUT SKEW  
Output Skew function can be enabled for GPOs 0 to 7. Once enabled for any GPO (register [671]), Output Skew becomes valid  
for all GPOs. All eight GPOs are grouped in pairs: GPO0 and GPO7, GPO1 and GPO2, GPO3 and GPO4, GPO5 and GPO6.  
Output Skew allows to delay each pair before setting HIGH or LOW consequently. See Figure 4.  
IN  
Output Skew Disabled,  
all GPOs  
Output Skew Enabled,  
GPO 0 and GPO 7  
Output Skew Enabled,  
GPO 1 and GPO 2  
Output Skew Enabled,  
GPO 3 and GPO 4  
Output Skew Enabled,  
GPO 5 and GPO 6  
Figure 4: Output Skew Timing Diagram  
5.7 ULTRA-LOW POWER DIGITAL INPUT (SLG46881 ONLY)  
SLG46881 has an Ultra-Low Power Digital Input option that can be applied to GPIOs 0 to 11 and GPIs 1 to 7. Note that when  
Ultra-Low Power Digital Input is enabled, Pull-up resistors for GPIOs 0 to 3, 8 to 11, GPIs 1 to 7 switch from VDD to VDD2  
.
Datasheet  
25-Feb-2021  
Revision 3.12  
36 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
5.8 GPI IO STRUCTURE (VDD  
)
5.8.1 SLG46880 GPI IO Structure (for GPIs 6, 7)  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
01: Digital In with Schmitt Trigger, smt_en = 1  
10: Low Voltage Digital In mode, lv_en = 1  
11: Analog IO mode  
register [539]  
WOSMT_EN  
Schmitt  
Trigger Input  
Note 1: 100 ns debounce is available for GPI6 only  
Note 2: Can be varied over PVT, for reference only  
100 ns  
Debounce  
S1  
S0  
Digital IN  
SMT_EN  
LV_EN  
Low Voltage  
Input  
See Note 1  
Analog IO  
VDD  
Floating  
s0  
s1  
s2  
s3  
VDD  
172 Ω  
(Note 2)  
s1  
s0  
PAD  
900 kΩ  
90 kΩ  
10 kΩ  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
Pull-up_EN  
10: 100 kΩ  
11: 1 MΩ  
Figure 5: SLG46880 GPI IO Structure Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
37 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
5.8.2 SLG46881 GPI IO Structure (for GPIs 6, 7)  
Ultra-Low Power  
Digital Input  
ULP_EN  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
01: Digital In with Schmitt Trigger, smt_en = 1  
10: Low Voltage Digital In mode, lv_en = 1  
11: Analog IO mode  
register [539]  
WOSMT_EN  
Schmitt  
Trigger Input  
Note 1: 100 ns debounce is available for GPI6 only  
Note 2: Can be varied over PVT, for reference only  
100 ns  
Debounce  
S1  
S0  
Digital IN  
SMT_EN  
LV_EN  
Low Voltage  
Input  
See Note 1  
Analog IO  
VDD  
172 Ω  
(Note 2)  
Floating  
VDD (or VDD2 when Ultra-Low Power  
Digital Input enabled)  
s0  
s1  
s2  
s3  
PAD  
s1  
s0  
900 kΩ  
90 kΩ  
10 kΩ  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
Pull-up_EN  
10: 100 kΩ  
11: 1 MΩ  
Figure 6: SLG46881 GPI IO Structure Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
38 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
5.9 GPI WITH INPUT LATCH IO STRUCTURE (VDD  
)
5.9.1 SLG46880 GPI with Input LATCH IO Structure (for GPIs 0, 1)  
Non-Schmitt  
Trigger Input  
Latch config  
register [536] for GPI0  
register [537] for GPI1  
00: without latch (S0)  
01: normal latch (S1)  
10: input data 0 latch (S1)  
11: input data 1 latch (S1)  
LATCH Config  
2-bits  
WOSMT_EN  
Schmitt  
Trigger Input  
100 ns  
S1  
2
D
Debounce  
LATCH  
Q
S1  
S0  
EN  
S0  
SMT_EN  
LV_EN  
To Matrix  
Low Voltage  
Input  
LATCH_EN  
(from Register)  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
VDD  
172 Ω  
(Note 1)  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
01: Digital In with Schmitt Trigger, smt_en = 1  
10: Low Voltage Digital In mode, lv_en = 1  
11: Analog IO mode  
s1  
s0  
PAD  
900 kΩ  
90 kΩ  
10 kΩ  
Note 1: Can be varied over PVT, for reference only  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
Pull-up_EN  
10: 100 kΩ  
11: 1 MΩ  
Figure 7: SLG46880 GPI with Input LATCH Structure Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
39 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
5.9.2 SLG46881 GPI with Input LATCH IO Structure (for GPIs 0, 1)  
Ultra-Low Power  
Digital Input  
ULP_EN  
Non-Schmitt  
Trigger Input  
Latch config  
register [536] for GPI0  
register [537] for GPI1  
LATCH Config  
00: without latch (S0)  
01: normal latch (S1)  
10: input data 0 latch (S1)  
11: input data 1 latch (S1)  
2-bits  
WOSMT_EN  
Schmitt  
Trigger Input  
2
100 ns  
Debounce  
S1  
S0  
D
LATCH  
Q
S1  
S0  
EN  
SMT_EN  
LV_EN  
To Matrix  
Low Voltage  
Input  
LATCH_EN  
(from Register)  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
VDD (or VDD2 when Ultra-Low Power Digital Input enabled)  
172 Ω  
(Note 2)  
s1  
s0  
Input Mode [1:0]  
PAD  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
01: Digital In with Schmitt Trigger, smt_en = 1  
10: Low Voltage Digital In mode, lv_en = 1  
11: Analog IO mode  
900 kΩ  
90 kΩ  
10 kΩ  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
Note 1: Ultra-Low Power Digital Input is available for GPI1 only  
Note 2: Can be varied over PVT, for reference only  
Figure 8: SLG46881 GPI with Input LATCH Structure Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
40 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
5.10 GPI WITH I2C MODE IO STRUCTURE (VDD  
)
5.10.1 SLG46880 GPI with I2C Mode Structure (for GPIs 2, 3)  
PAD  
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
01: Reserved  
10: Low Voltage Digital In mode, lv_en = 1  
11: Reserved  
WOSMT_EN  
Digital IN  
Low Voltage  
Input 1  
LV_EN  
Floating  
s0  
VDD  
s1  
s2  
s3  
s1  
s0  
900 kΩ  
90 kΩ  
10 kΩ  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
Pull-up_EN  
10: 100 kΩ  
11: 1 MΩ  
I2C SDA Signal  
Only used when I2C is  
selected  
not available for direct user control  
Figure 9: SLG46880 GPI with I2C Mode IO Structure Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
41 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
5.10.2 SLG46881 GPI with I2C Mode Structure (for GPIs 2, 3)  
PAD  
Non-Schmitt  
Trigger Input  
WOSMT_EN  
Low Voltage  
Input 1  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
01: Reserved  
Digital IN  
10: Low Voltage Digital In mode, lv_en = 1  
11: Reserved  
LV_EN  
Ultra-Low Power  
Digital Input  
ULP_EN  
Floating  
s0  
VDD (or VDD2 when Ultra-Low Power Digital Input enabled)  
s1  
s2  
s3  
s1  
s0  
900 kΩ  
90 kΩ  
10 kΩ  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
Pull-up_EN  
10: 100 kΩ  
11: 1 MΩ  
I2C SDA Signal  
Only used when I2C is  
selected  
not available for direct user control  
Figure 10: SLG46881 GPI with I2C Mode IO Structure Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
42 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
5.11 GPIO WITH MATRIX OE IO STRUCTURE (VDD OR VDD2  
)
5.11.1 SLG46880 GPIO with Matrix OE IO Structure (for GPIOs 0, 1, 8, 9, 10, 11 with VDD, and GPIOs 4, 5 with VDD2  
)
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosm t_en = 1  
WOSMT_EN  
SMT_EN  
01: Digital In with Schmitt Trigger, smt_en =1  
10: Low Voltage Digital In mode, lv_en = 1  
11: analog IO mode  
Schmitt  
Trigger Input  
Output Mode [1:0]  
00: Push-Pull 1x mode, pp1x_en = 1  
01: Push-Pull 2x mode, pp2x_en = 1, pp1x_en = 1  
10: NMOS 1x Open-Drain mode, od1x_en = 1  
11: NMOS 2x Open-Drain mode, od2x_en = 1, od1x_en = 1  
Digital IN  
Note 1: Can be varied over PVT, for reference only.  
Low Voltage  
Input  
LV_EN  
Analog IO  
Floating  
s0  
VDD or VDD2  
s1  
s2  
s3  
172 Ω  
(Note 1)  
s1  
900 kΩ  
90 kΩ  
10 kΩ  
s0  
VDD or VDD2  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
Pull-up_EN  
10: 100 kΩ  
11: 1 MΩ  
Digital OUT  
OE  
Digital OUT  
OE  
OD1x_EN  
PP1x_EN  
VDD or VDD2  
PAD  
VDD or VDD2  
Digital OUT  
Digital OUT  
OE  
OE  
PP2x_EN  
OD2x_EN  
Figure 11: SLG46880 GPIO with Matrix OE IO Structure Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
43 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
5.11.2 SLG46881 GPIO with Matrix OE IO Structure (for GPIOs 0, 1, 8, 9, 10, 11 with VDD, and GPIOs 4, 5 with VDD2  
)
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosm t_en = 1  
01: Digital In with Schmitt Trigger, smt_en =1  
10: Low Voltage Digital In mode, lv_en = 1  
11: analog IO mode  
WOSMT_EN  
SMT_EN  
Schmitt  
Trigger Input  
Output Mode [1:0]  
Digital IN  
00: Push-Pull 1x mode, pp1x_en = 1  
01: Push-Pull 2x mode, pp2x_en = 1, pp1x_en = 1  
10: NMOS 1x Open-Drain mode, od1x_en = 1  
11: NMOS 2x Open-Drain mode, od2x_en = 1, od1x_en = 1  
Low Voltage  
Input  
Note 1: Can be varied over PVT, for reference only.  
Note 2: VDD for GPIOs 0, 1, 8, 9, 10, 11 when Ultra-Low Power Digital Input  
disabled or VDD2 when Ultra-Low Power Digital Input enabled.  
VDD2 for GPIOs 4 and 5.  
LV_EN  
Ultra-Low Power  
Digital Input  
ULP_EN  
Analog IO  
Floating  
s0  
Note 2  
s1  
s2  
172 Ω  
(Note 1)  
s1  
s3  
900 kΩ  
90 kΩ  
10 kΩ  
s0  
VDD or VDD2  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
Pull-up_EN  
10: 100 kΩ  
11: 1 MΩ  
Digital OUT  
OE  
Digital OUT  
OE  
OD1x_EN  
PP1x_EN  
VDD or VDD2  
PAD  
VDD or VDD2  
Digital OUT  
Digital OUT  
OE  
OE  
PP2x_EN  
OD2x_EN  
Figure 12: SLG46881 GPIO with Matrix OE IO Structure Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
44 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
5.12 GPIO WITH MATRIX OE AND INPUT LATCH IO STRUCTURE (VDD OR VDD2  
)
5.12.1 SLG46880 GPIO with Matrix OE and Input LATCH IO Structure (for GPIOs 2, 3 with VDD, GPIOs 6, 7 with VDD2  
)
Non-Schmitt  
Trigger Input  
Latch config  
LATCH Config  
2-bits  
00: without latch (S0)  
01: normal latch (S1)  
10: input data 0 latch (S1)  
11: input data 1 latch (S1)  
Input Mode [1:0]  
WOSMT_EN  
SMT_EN  
00: Digital In without Schmitt Trigger, wosm t_en = 1  
01: Digital In with Schmitt Trigger, smt_en =1  
10: Low Voltage Digital In mode, lv_en = 1  
11: analog IO mode  
2
Schmitt  
Trigger Input  
D
LATCH  
Q
S1  
S0  
EN  
To Matrix  
Output Mode [1:0]  
00: Push-Pull 1x mode, pp1x_en = 1  
Low Voltage  
Input  
01: Push-Pull 2x mode, pp2x_en = 1, pp1x_en = 1  
10: NMOS 1x Open-Drain mode, od1x_en = 1  
11: NMOS 2x Open-Drain mode, od2x_en = 1, od1x_en = 1  
LATCH_EN  
(from Register)  
Note 1: Can be varied over PVT, for reference only.  
LV_EN  
Analog IO  
Floating  
s0  
VDD or VDD2  
s1  
s2  
s3  
172 Ω  
(Note 1)  
s1  
900 kΩ  
90 kΩ  
10 kΩ  
s0  
VDD or VDD2  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
Pull-up_EN  
10: 100 kΩ  
11: 1 MΩ  
Digital OUT  
OE  
Digital OUT  
OE  
OD1x_EN  
PP1x_EN  
VDD or VDD2  
PAD  
VDD or VDD2  
Digital OUT  
OE  
Digital OUT  
OE  
PP2x_EN  
OD2x_EN  
Figure 13: SLG46880 GPIO with Matrix OE and Input LATCH IO Structure Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
45 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
5.12.2 SLG46881 GPIO with Matrix OE and Input LATCH IO Structure (for GPIOs 2, 3 with VDD, GPIOs 6, 7 with VDD2  
)
Non-Schmitt  
Trigger Input  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosm t_en = 1  
01: Digital In with Schmitt Trigger, smt_en =1  
10: Low Voltage Digital In mode, lv_en = 1  
WOSMT_EN  
11: analog IO mode  
Schmitt  
Trigger Input  
Latch config  
LATCH Config  
2-bits  
00: without latch (S0)  
01: normal latch (S1)  
10: input data 0 latch (S1)  
11: input data 1 latch (S1)  
Output Mode [1:0]  
00: Push-Pull 1x mode, pp1x_en = 1  
01: Push-Pull 2x mode, pp2x_en = 1, pp1x_en = 1  
10: NMOS 1x Open-Drain mode, od1x_en = 1  
11: NMOS 2x Open-Drain mode, od2x_en = 1, od1x_en = 1  
SMT_EN  
2
Low Voltage  
Input  
D
Note 1: Can be varied over PVT, for reference only.  
Note 2: VDD for GPIOs 0, 1, 8, 9, 10, 11 when Ultra-Low Power Digital Input  
disabled or VDD2 when Ultra-Low Power Digital Input enabled.  
VDD2 for GPIOs 4 and 5.  
LATCH  
Q
S1  
S0  
EN  
To Matrix  
LV_EN  
Ultra-Low Power  
Digital Input  
LATCH_EN  
(from Register)  
ULP_EN  
Analog IO  
Floating  
s0  
Note 2  
s1  
s2  
172 Ω  
(Note 1)  
s1  
s3  
900 kΩ  
90 kΩ  
10 kΩ  
s0  
VDD or VDD2  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
Pull-up_EN  
10: 100 kΩ  
11: 1 MΩ  
Digital OUT  
OE  
Digital OUT  
OE  
OD1x_EN  
PP1x_EN  
VDD or VDD2  
PAD  
VDD or VDD2  
Digital OUT  
OE  
Digital OUT  
OE  
PP2x_EN  
OD2x_EN  
Figure 14: SLG46881 GPIO with Matrix OE and Input LATCH IO Structure Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
46 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
5.13 GPI WITH INPUT LATCH AND CRYSTAL INPUT IO STRUCTURE (VDD  
)
5.13.1 SLG46880 GPI with Input LATCH and Crystal Input IO Structure (for GPIs 4, 5)  
Non-Schmitt  
Trigger Input  
Latch config  
register [538]  
LATCH Config  
2-bits  
00: without latch (S0)  
01: normal latch (S1)  
10: input data 0 latch (S1)  
11: input data 1 latch (S1)  
WOSMT_EN  
Schmitt  
Trigger Input  
2
100 ns  
Debounce  
S1  
D
LATCH  
Q
S1  
S0  
EN  
S0  
SMT_EN  
LV_EN  
To Matrix  
Low Voltage  
Input  
Note 1  
LATCH_EN  
(from Register)  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
VDD  
172 Ω  
(Note 2)  
Input Mode [1:0]  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
01: Digital In with Schmitt Trigger, smt_en = 1  
10: Low Voltage Digital In mode, lv_en = 1  
11: Analog IO mode  
s1  
s0  
PAD  
900 kΩ  
90 kΩ  
10 kΩ  
Note 1: 100 ns debounce is available for GPI5 only  
Note 2: Can be varied over PVT, for reference only  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
Pull-up_EN  
10: 100 kΩ  
11: 1 MΩ  
Figure 15: SLG46880 GPI with Input LATCH and Crystal Input IO Structure Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
47 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
5.13.2 SLG46881 GPI with Input LATCH and Crystal Input IO Structure (for GPIs 4, 5)  
Ultra-Low Power  
Digital Input  
ULP_EN  
Non-Schmitt  
Trigger Input  
Latch config  
00: without latch (S0)  
01: normal latch (S1)  
10: input data 0 latch (S1)  
11: input data 1 latch (S1)  
register [538]  
LATCH Config  
2-bits  
WOSMT_EN  
Schmitt  
Trigger Input  
2
100 ns  
S1  
S0  
Debounce  
D
LATCH  
Q
S1  
S0  
EN  
SMT_EN  
LV_EN  
To Matrix  
Low Voltage  
Input  
Note 1  
LATCH_EN  
(from  
Register)  
Analog IO  
Floating  
s0  
s1  
s2  
s3  
VDD (or VDD2 when Ultra-Low Power Digital Input enabled)  
172 Ω  
(Note 2)  
s1  
s0  
Input Mode [1:0]  
PAD  
00: Digital In without Schmitt Trigger, wosmt_en = 1  
01: Digital In with Schmitt Trigger, smt_en = 1  
10: Low Voltage Digital In mode, lv_en = 1  
11: Analog IO mode  
900 kΩ  
90 kΩ  
10 kΩ  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
10: 100 kΩ  
11: 1 MΩ  
Pull-up_EN  
Note 1: 100 ns debounce is available for GPI5 only  
Note 2: Can be varied over PVT, for reference only  
Figure 16: SLG46881 GPI with Input LATCH and Crystal Input IO Structure Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
48 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
5.14 GPO REGISTER OE IO STRUCTURE (VDD OR VDD2  
)
5.14.1 GPO Register OE IO Structure (for GPOs 0, 5, 6, 7 for VDD, and GPOs 1, 2, 3, 4 for VDD2  
)
Connection Matrix Out  
s1  
Output Mode [1:0]  
00: Push-Pull 1x mode, pp1x_en = 1  
Digital Out  
01: Push-Pull 2x mode, pp2x_en = 1, pp1x_en = 1  
10: NMOS 1x Open-Drain mode, od1x_en = 1  
11: NMOS 2x Open-Drain mode, od2x_en = 1, od1x_en = 1  
s0  
ASM Pin Output  
ASM to GPO  
0: Matrix Out  
1: ASM Pin Out  
Floating  
s0  
s1  
s2  
s3  
VDD or VDD2  
s1  
s0  
900 kΩ  
90 kΩ  
10 kΩ  
VDD or VDD2  
Res_sel [1:0]  
00: Floating  
01: 10 kΩ  
Pull-up_EN  
10: 100 kΩ  
11: 1 MΩ  
Digital OUT  
OE  
Digital OUT  
OE  
OD1x_EN  
PP1x_EN  
VDD or VDD2  
PAD  
VDD or VDD2  
Digital OUT  
Digital OUT  
OE  
OE  
OD2x_EN  
PP2x_EN  
Figure 17: SLG46880/81 GPO Register OE IO Structure Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
49 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
5.15 IO TYPICAL PERFORMANCE  
ꢆꢀ  
ꢍ%ꢎ.Rꢍ%CCꢏꢂ6ꢏꢐꢏꢌꢑꢑꢏYꢏꢅꢏꢌ  
ꢍ%ꢎ.Rꢍ%CCꢏꢁ6ꢏꢐꢏꢌꢑꢑꢏYꢏꢅꢏꢌ  
ꢍ%ꢎ.Rꢍ%CCꢏꢂ6ꢏꢐꢏꢌꢑꢑꢏYꢏꢃ8ꢃꢏꢌ  
ꢍ%ꢎ.Rꢍ%CCꢏꢁ6ꢏꢐꢏꢌꢑꢑꢏYꢏꢃ8ꢃꢏꢌ  
ꢍ%ꢎ.Rꢍ%CCꢏꢂ6ꢏꢐꢏꢌꢑꢑꢏYꢏꢂ8ꢅꢏꢌ  
ꢍ%ꢎ.Rꢍ%CCꢏꢁ6ꢏꢐꢏꢌꢑꢑꢏYꢏꢂ8ꢅꢏꢌ  
ꢅꢀ  
ꢄꢀ  
ꢃꢀ  
ꢂꢀ  
ꢁꢀ  
ꢅ8ꢀꢀ  
ꢄ8ꢇꢅ  
ꢄ8ꢅꢀ  
ꢄ8ꢂꢅ  
ꢄ8ꢀꢀ  
ꢃ8ꢇꢅ  
ꢃ8ꢅꢀ  
ꢃ8ꢂꢅ  
ꢃ8ꢀꢀ  
ꢂ8ꢇꢅ  
ꢂ8ꢅꢀ  
ꢂ8ꢂꢅ  
ꢂ8ꢀꢀ  
ꢁ8ꢇꢅ  
ꢁ8ꢅꢀ  
ꢁ8ꢂꢅ  
ꢉꢊ ^ꢌ_  
Figure 18: Typical High Level Output Current vs. High Level Output Voltage at T = 25 °C  
Figure 19: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C, Full Range  
Datasheet  
25-Feb-2021  
Revision 3.12  
50 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Figure 20: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C  
Figure 21: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C, Full Range  
Datasheet  
25-Feb-2021  
Revision 3.12  
51 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Figure 22: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C  
Datasheet  
25-Feb-2021  
Revision 3.12  
52 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
6
Connection Matrix  
The Connection Matrix in the SLG46880/81 is used to create the internal routing for internal functional macrocells of the device  
once it is programmed. The registers are programmed from the one-time NVM cell during Test Mode Operation. The output of  
each functional macrocell within the SLG46880/81 has a specific digital bit code assigned to it that is either set to active “High”  
or inactive “Low”, based on the design that is created. Once the 4096 register bits within the SLG46880/81 are programmed a  
fully custom circuit will be created.  
The Connection Matrix has 64 inputs, 84 outputs and 17 state dependent outputs. Each of the 64 inputs to the Connection Matrix  
is hard-wired to the digital output of a particular source macrocell, including IO pins, LUTs, analog comparators, other digital  
resources, such as VDD and GND. The input to a digital macrocell uses a 6-bit register to select one of these 64 input lines.  
For a complete list of the SLG46880/81’s register table, see Section 21  
.
Matrix Input Signal  
N
Functions  
GND  
0
1
2
3
GPIO0 Digital In  
GPIO1 Digital In  
GPIO2 Digital In  
nRST_core (POR)  
VDD  
62  
63  
Matrix Inputs  
0
1
2
83  
N
Registers  
register [5:0]  
register [11:6]  
register [17:12]  
registers [503:498]  
Matrix OUT: IN0 of  
LUT2_0 or Clock  
Input of DFF0  
Matrix OUT: IN1 of  
LUT2_0 or Data  
Input of DFF0  
Matrix Out: IN0 of  
LUT2_1 or Clock  
Input of PGen  
Function  
DM EXT CLK1  
Matrix Outputs  
Figure 23: Connection Matrix  
Function  
Connection Matrix  
GPIO0  
GPIO2  
LUT  
GPIO0  
GPIO2  
GPIO6  
LUT  
GPIO6  
Figure 24: Connection Matrix Example  
Datasheet  
25-Feb-2021  
Revision 3.12  
53 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
6.1 MATRIX INPUT TABLE  
Table 29: Matrix Input Table  
Matrix Decode  
Matrix Input  
Matrix Input Signal Function  
Number  
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
GND  
1
GPIO0 Digital Input  
2
GPIO1 Digital Input  
3
GPIO2 Digital Input  
4
GPI0 Digital Input  
5
GPI1 Digital Input  
6
GPIO3 Digital Input  
7
GPIO4 Digital Input  
8
LUT2_0/DFF0 Output  
9
LUT2_1/PGen Output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
LUT3_0/DFF1 Output  
LUT3_1/DFF2 Output  
LUT3_2/DFF3 Output  
LUT3_3/DFF4 Output  
LUT3_4/CNT_DLY1(8bit) Output  
LUT3_5/CNT_DLY2(8bit) Output  
LUT3_6/CNT_DLY3(8bit) Output  
LUT3_7/CNT_DLY4(8bit) Output  
LUT4_0/CNT_DLY0(16bit) Output  
LUT3_8/Pipe Delay Output0/Ripple CNT Output0  
Pipe Delay Output1/Ripple CNT Output1  
Internal 2.048 MHz Osc Output  
Internal 2.048 kHz Osc Output  
Internal 25 MHz Osc Output  
Filter/Edge Detect Output/Ripple CNT Output2  
Programmable Delay with Edge Detector Output  
F(1) Function Output0  
F(1) Function Output1  
F(1) Function Output2  
DM0_0 Macrocell Output0  
DM0_0 Macrocell Output1  
DM0_0 Macrocell Output2  
GPI2/SDA Digital Input or I2C_virtual_0 Input  
GPI3/SCL Digital Input or I2C_virtual_1 Input  
I2C_virtual_2 Input  
I2C_virtual_3 Input  
I2C_virtual_4 Input  
I2C_virtual_5 Input  
Datasheet  
25-Feb-2021  
Revision 3.12  
54 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 29: Matrix Input Table(Continued)  
Matrix Decode  
Matrix Input  
Matrix Input Signal Function  
Number  
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
I2C_virtual_6 Input  
I2C_virtual_7 Input  
DM0_1 Macrocell Output0  
DM0_1 Macrocell Output1  
DM0_1 Macrocell Output2  
ASM Connection Matrix Output RAM 0  
ASM Connection Matrix Output RAM 1  
ASM Connection Matrix Output RAM 2  
ASM Connection Matrix Output RAM 0  
GPIO5 Digital Input  
GPIO6 Digital Input  
GPIO7 Digital Input  
GPIO8 Digital Input  
GPI4 Digital Input/Crystal OSC  
GPI5 Digital Input  
GPI6 Digital Input  
GPI7 Digital Input  
GPIO9 Digital Input  
ACMP0H Output  
ACMP1H Output  
ACMP2L Output  
ACMP3L output  
GPIO10 Digital Input  
GPIO11 Digital Input  
nRST_core (POR) as matrix input  
VDD  
6.2 MATRIX OUTPUT TABLE  
Table 30: Matrix Output Table  
Register Bit  
Address  
Matrix Output  
Number  
Matrix Output Signal Function  
[5:0]  
Matrix Out 0: IN0 of LUT2_0 or Clock Input of DFF0  
Matrix Out 1: IN1 of LUT2_0 or Data Input of DFF0  
Matrix Out 2: IN0 of LUT2_1 or Clock Input of PGen  
Matrix Out 3: IN1 of LUT2_1 or nRST of PGen  
0
1
2
3
4
5
6
7
8
[11:6]  
[17:12]  
[23:18]  
[29:24]  
[35:30]  
[41:36]  
[47:42]  
[53:48]  
Matrix Out 4: IN0 of LUT3_0 or Clock Input of DFF1  
Matrix Out 5: IN1 of LUT3_0 or Data Input of DFF1  
Matrix Out 6: IN2 of LUT3_0 or nRST (nSET) of DFF1  
Matrix Out 7: IN0 of LUT3_1 or Clock Input of DFF2  
Matrix Out 8: IN1 of LUT3_1 or Data Input of DFF2  
Datasheet  
25-Feb-2021  
Revision 3.12  
55 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 30: Matrix Output Table(Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
[59:54]  
[65:60]  
Matrix Out 9: IN2 of LUT3_1 or nRST (nSET) of DFF2  
Matrix Out 10: IN0 of LUT3_2 or Clock Input of DFF3  
Matrix Out 11: IN1 of LUT3_2 or Data Input of DFF3  
Matrix Out 12: IN2 of LUT3_2 or nRST (nSET) of DFF3  
Matrix Out 13: IN0 of LUT3_3 or Clock Input of DFF4  
Matrix Out 14: IN1 of LUT3_3 or Data Input of DFF4  
Matrix Out 15: IN2 of LUT3_3 or nRST (nSET) of DFF4  
Matrix Out 16:IN0 of LUT3_4 or Delay1 Input (or Counter1 nRST Input)  
Matrix Out 17:IN1 of LUT3_4 or External Clock1 Input of Delay1 (or Counter1)  
Matrix Out 18:IN2 of LUT3_4  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
[71:66]  
[77:72]  
[83:78]  
[89:84]  
[95:90]  
[101:96]  
[107:102]  
[113:108]  
[119:114]  
[125:120]  
[131:126]  
[137:132]  
[143:138]  
[149:144]  
[155:150]  
[161:156]  
[167:162]  
[173:168]  
[179:174]  
[185:180]  
[191:186]  
[197:192]  
[203:198]  
[209:204]  
[215:210]  
[221:216]  
[227:222]  
[233:228]  
[239:234]  
[245:240]  
[251:246]  
[257:252]  
[263:258]  
[269:264]  
[275:270]  
[281:276]  
[287:282]  
Matrix Out 19:IN0 of LUT3_5 or Delay2 Input (or Counter2 nRST Input)  
Matrix Out 20:IN1 of LUT3_5 or External Clock1 Input of Delay2 (or Counter2)  
Matrix Out 21:IN2 of LUT3_5  
Matrix Out 22:IN0 of LUT3_6 or Delay3 Input (or Counter3 nRST Input)  
Matrix Out 23:IN1 of LUT3_6 or External Clock1 Input of Delay3 (or Counter3)  
Matrix Out 24:IN2 of LUT3_6  
Matrix Out 25:IN0 of LUT3_7 or Delay4 Input (or Counter4 nRST Input)  
Matrix Out 26:IN1 of LUT3_7 or External Clock1 Input of Delay4 (or Counter4)  
Matrix Out 27:IN2 of LUT3_7  
Matrix Out 28:IN0 of LUT3_8 or Input of Pipe Delay  
Matrix Out 29:IN1 of LUT3_8 or nRST of Pipe Delay  
Matrix Out 30:IN2 of LUT3_8 or Clock of Pipe Delay  
Matrix Out 31:IN0 of LUT4_0 or Delay0 Input (or Counter0 nRST Input)  
Matrix Out 32:IN1 of LUT4_0 or External Clock Input of Delay0 (or Counter0)  
Matrix Out 33:IN2 of LUT4_0 or UP Input of FSM0  
Matrix Out 34:IN3 of LUT4_0 or KEEP Input of FSM0  
Matrix Out 35: ACMP0H Power-down  
Matrix Out 36: ACMP1H Power-down  
Matrix Out 37: ACMP2L Power-down  
Matrix Out 38: ACMP3L Power-down  
Matrix Out 39: GPO7 DOUT  
Matrix Out 40: GPO0 DOUT  
Matrix Out 41: GPIO0 DOUT  
Matrix Out 42: GPIO0 DOUT OE  
Matrix Out 43: GPIO1 DOUT  
Matrix Out 44: GPIO1 DOUT OE  
Matrix Out 45: GPIO2 DOUT  
Matrix Out 46: GPIO2 DOUT OE  
Matrix Out 47: GPIO3 DOUT  
Datasheet  
25-Feb-2021  
Revision 3.12  
56 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 30: Matrix Output Table(Continued)  
Register Bit  
Matrix Output  
Number  
Matrix Output Signal Function  
Address  
[293:288]  
[299:294]  
[305:300]  
[311:306]  
[317:312]  
[323:318]  
[329:324]  
[335:330]  
[341:336]  
[347:342]  
[353:348]  
[359:354]  
[365:360]  
[371:366]  
[377:372]  
[383:378]  
[389:384]  
[395:390]  
[401:396]  
[407:402]  
[413:408]  
[419:414]  
[425:420]  
[431:426]  
[437:432]  
[443:438]  
[449:444]  
[455:450]  
[461:456]  
[467:462]  
[473:468]  
[479:474]  
[485:480]  
[491:486]  
[497:492]  
[503:498]  
Matrix Out 48: GPIO3 DOUT OE  
Matrix Out 49: GPIO4 DOUT  
Matrix Out 50: GPIO4 DOUT OE  
Matrix Out 51: GPIO5 DOUT  
Matrix Out 52: GPIO5 DOUT OE  
Matrix Out 53: GPO1 DOUT  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
Matrix Out 54: GPO2 DOUT  
Matrix Out 55: GPO3 DOUT  
Matrix Out 56: GPO4 DOUT  
Matrix Out 57: GPIO6 DOUT OE  
Matrix Out 58: GPIO6 DOUT  
Matrix Out 59: GPIO7 DOUT  
Matrix Out 60: GPIO7 DOUT OE  
Matrix Out 61: GPIO8 DOUT OE  
Matrix Out 62: GPIO8 DOUT  
Matrix Out 63: GPIO9 DOUT OE  
Matrix Out 64: GPIO9 DOUT  
Matrix Out 65: GPIO10 DOUT OE  
Matrix Out 66: GPIO10 DOUT  
Matrix Out 67: GPIO11 DOUT OE  
Matrix Out 68: GPIO11 DOUT  
Matrix Out 69: GPO5 DOUT  
Matrix Out 70: GPO6 DOUT  
Matrix Out 71: ASM nRST  
Matrix Out 72: OSC0 ENABLE  
Matrix Out 73: OSC1 ENABLE  
Matrix Out 74: OSC2 ENABLE  
Matrix Out 75: Filter/Edge detect input  
Matrix Out 76: F1 interrupt  
Matrix Out 77: Programmable delay/edge detect input  
Matrix Out 78: Temp sensor/Crystal OSC/Vref Out_0/Vref Out_1 Power Up  
Matrix Out 79: GPI LATCH enable  
Matrix Out 80: GPIO LATCH enable  
Matrix Out 81: BG enable  
DM EXT CLK0  
DM_EXT_CLK1  
Note: For each Address, the two most significant bits are unused.  
Datasheet  
25-Feb-2021  
Revision 3.12  
57 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
6.3 CONNECTION MATRIX VIRTUAL INPUTS  
As mentioned previously, the Connection Matrix inputs come from the outputs of various digital macrocells on the device. Eight  
of the Connection Matrix inputs have the special characteristic that the state of these signal lines comes from a corresponding  
data bit written as a register value via I2C. This gives the user the ability to write data via the serial channel, and have this  
information translated into signals that can be driven into the Connection Matrix and from the Connection Matrix to the digital  
inputs of other macrocells on the device. The I2C address for reading and writing these register values is at 0x1DB (475).  
Six of the eight Connection Matrix Virtual Inputs are dedicated to this virtual input function. An I2C write command to these register  
bits will set the signal values going into the Connection Matrix to the desired state. A read command to these register bits will read  
either the original data values coming from the NVM memory bits (that were loaded during the initial device startup), or the values  
from a previous write command (if that has happened).  
Two of the eight Connection Matrix Virtual Inputs are shared with Pin digital inputs (GPI3/SCL Digital Input or I2C_virtual_1 Input),  
and (GPI2/SDA Digital Input or I2C_virtual_0 Input). If the virtual input mode is selected, an I2C write command to these register  
bits will set the signal values going into the Connection Matrix to the desired state. A read command to these register bits will read  
either the original data values coming from the NVM memory bits (that were loaded during the initial device startup), or the values  
from a previous write command (if that has happened). The I2C disable/enable register bit [4084] selects whether the Connection  
Matrix input comes from the Pin input or from the virtual register.  
Select SCL & Virtual Input 1 or GPI3/SCL.  
Select SDA & Virtual Input 0 or GPI2/SDA.  
See Table 31 for Connection Matrix Virtual Inputs.  
Table 31: Connection Matrix Virtual Inputs  
Matrix Input  
Register Bit  
Addresses (d)  
Matrix Input Signal Function  
Number  
32  
I2C_virtual_0 Input  
I2C_virtual_1 Input  
I2C_virtual_2 Input  
I2C_virtual_3 Input  
I2C_virtual_4 Input  
I2C_virtual_5 Input  
I2C_virtual_6 Input  
I2C_virtual_7 Input  
[3800]  
[3801]  
[3802]  
[3803]  
[3804]  
[3805]  
[3806]  
[3807]  
33  
34  
35  
36  
37  
38  
39  
6.4 CONNECTION MATRIX VIRTUAL OUTPUTS  
The digital outputs of the various macrocells are routed to the Connection Matrix to enable interconnections to the inputs of other  
macrocells in the device. At the same time, it is possible to read the state of each of the macrocell outputs as a register value via  
I2C. This option, called Connection Matrix Virtual Outputs, allows the user to remotely read the values of each macrocell output.  
The I2C addresses for reading these register values are 0x1D7 (471) to 0x1DE (478). Write commands to these same register  
values will be ignored (with the exception of the Virtual Input register bits at 0x1DB (475)).  
Datasheet  
25-Feb-2021  
Revision 3.12  
58 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
7
Combination Function Macrocells  
The SLG46880/81 has 12 combination function macrocells that can serve more than one logic or timing function. In each case,  
they can serve as a Look Up Table (LUT), or as another logic or timing function. See the list below for the functions that can be  
implemented in these macrocells.  
One macrocell that can serve as either 2-bit LUT or as D Flip-Flop  
Four macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset Input  
One macrocell that can serve as either 3-bit LUT or as Pipe Delay/Ripple Counter  
One macrocell that can serve as either 2-bit LUT or as Programmable Pattern Generator (PGen)  
One macrocell that can serve as either 4-bit LUT or as 16-Bit Counter/Delay/FSM  
Four macrocells that can serve as either 3-bit LUTs or as 8-Bit Counter/Delays  
Inputs/Outputs for the 12 combination function macrocells are configured from the connection matrix with specific logic functions  
which are defined by the state of NVM bits.  
When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined  
function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR). Inputs/Outputs for the 11  
combination function macrocells are configured from the connection matrix with specific logic functions being defined by the state  
of NVM bits.  
7.1 2-BIT LUT OR D FLIP-FLOP MACROCELLS  
There is one macrocell that can serve as either 2-bit LUT or as D Flip-Flop. When used to implement LUT functions, the 2-bit LUT  
takes in two input signals from the connection matrix and produces a single output, which goes back into the connection matrix.  
When used to implement D Flip-Flop function, the two input signals from the connection matrix go to the data (D) and clock (CLK)  
inputs for the Flip-Flop, with the output going back to the connection matrix.  
The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:  
DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change  
LATCH: when CLK is Low, then Q = D; otherwise Q remains its previous value (input D has no effect on the output, when CLK  
is High).  
register [563] DFF or LATCH Select  
IN1  
register [562] Output Select (Q or nQ)  
S0  
From Connection Matrix Output [1]  
register [561] DFF Initial Polarity Select  
OUT  
2-bit LUT0  
0: 2-bit LUT0 IN1  
1: DFF0 Data  
S1  
IN0  
LUT Truth  
Table  
To Connection Matrix  
Input [8]  
S0  
S1  
4-bits NVM  
registers [563:560]  
0: 2-bit LUT0 Out  
1: DFF0 Out  
DFF/Latch  
Registers  
D
S0  
S1  
From Connection Matrix Output [0]  
Q/nQ  
DFF0  
0: 2-bit LUT0 IN0  
1: DFF0 CLK  
CLK  
1-bit NVM  
register [616]  
Figure 25: 2-bit LUT0 or DFF0  
Datasheet  
25-Feb-2021  
Revision 3.12  
59 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
7.1.1 2-Bit LUT or D Flip-Flop Macrocell Used as 2-Bit LUT  
Table 32: 2-bit LUT0 Truth Table  
IN1  
0
IN0  
0
OUT  
register [560]  
register [561]  
register [562]  
register [563]  
LSB  
0
1
1
0
1
1
MSB  
This macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:  
2-Bit LUT0 is defined by registers [563:560]  
Table 33 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the 2-bit LUT logic cells.  
Table 33: 2-bit LUT Standard Digital Functions  
Function  
AND-2  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-2  
OR-2  
NOR-2  
XOR-2  
XNOR-2  
Datasheet  
25-Feb-2021  
Revision 3.12  
60 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
7.1.2 Initial Polarity Operations  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
Q with nReset (Case 1)  
Initial Polarity: Low  
Q with nReset (Case 1)  
Figure 26: DFF Polarity Operations  
7.2 2-BIT LUT OR PROGRAMMABLE PATTERN GENERATOR  
The SLG46880/81 has one combination function macrocell that can serve as a logic or timing function. This macrocell can serve  
as a Look Up Table (LUT), or Programmable Pattern Generator (PGen).  
When used to implement LUT functions, the 2-bit LUT takes in two input signals from the connection matrix and produces a single  
output, which goes back into the connection matrix. When used as a LUT to implement combinatorial logic functions, the outputs  
of the LUT can be configured to any user defined function, including the following standard digital logic devices (AND, NAND,  
OR, NOR, XOR, XNOR). The user can also define the combinatorial relationship between inputs and outputs to be any selectable  
function.  
When operating as a Programmable Pattern Generator, the output of the macrocell with clock out a sequence of two to sixteen  
bits that are user selectable in their bit values, and user selectable in the number of bits (up to sixteen) that are output before the  
pattern repeats.  
Datasheet  
25-Feb-2021  
Revision 3.12  
61 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
From Connection Matrix Output [2]  
From Connection Matrix Output [3]  
In0  
In1  
OUT  
2-bit LUT1  
LUT Truth  
Table  
To Connection Matrix Input [9]  
S0  
S1  
registers [583:568]  
0: 2-bit LUT1 OUT  
1: PGen OUT  
PGen  
Data  
nRST  
CLK  
PGen  
OUT  
Pattern  
size  
register [617]  
registers [567:564]  
Figure 27: 2-bit LUT1 or PGen  
VDD  
t
t
nRST  
CLK  
OUT  
1
2
6
8
16 17  
3
5
7
0
4
9
10 11  
14 15  
12 13  
t
D7  
D6  
D5  
D10  
D8  
D4  
D3  
D2  
D1  
D15  
D0  
D9  
D0  
D15  
D14  
D13  
D12  
D11  
D0  
t
Figure 28: PGen Timing Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
62 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
7.2.1 2-Bit LUT or PGen Macrocell Used as 2-Bit LUT  
Table 34: 2-bit LUT1 Truth Table  
IN1  
0
IN0  
0
OUT  
register [564]  
register [565]  
register [566]  
register [567]  
LSB  
0
1
1
0
1
1
MSB  
This macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:  
2-Bit LUT1 is defined by registers [567:564]  
Table 35 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the 2-bit LUT logic cells.  
Table 35: 2-bit LUT Standard Digital Functions  
Function  
AND-2  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-2  
OR-2  
NOR-2  
XOR-2  
XNOR-2  
7.3 3-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELLS  
There are four macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset inputs. When used to implement  
LUT functions, the 3-bit LUTs each take in three input signals from the connection matrix and produce a single output, which goes  
back into the connection matrix. When used to implement D Flip-Flop function, the three input signals from the connection matrix  
go to the data (D) and clock (CLK), and Reset/Set (nRST/nSET) inputs for the Flip-Flop, with the output going back to the  
connection matrix.  
DFF1 operation will flow the functional description below:  
if register [619] = 0, and the CLK is rising edge triggered, then Q = D, otherwise Q will not change  
if register [619] = 1, then data from D is written into the DFF by the rising edge on CLK and output to Q by the falling edge on  
CLK  
Datasheet  
25-Feb-2021  
Revision 3.12  
63 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
register [591] DFF or LATCH Select  
register [590] Output Select (Q or nQ)  
register [589] DFF nRST or nSET Select  
register [588] DFF Initial Polarity Select  
IN2  
IN1  
From Connection  
Matrix Output [6]  
S0  
S1  
OUT  
3-bit LUT0  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [5]  
To Connection Matrix  
S0  
S1  
Input [10]  
S0  
S1  
8-bits NVM  
registers [591:584]  
From Connection  
Matrix Output [4]  
S0  
S1  
DFF/Latch  
Registers  
0
1
Q/nQ  
DFF  
DFF  
D
D
Q
D
Q
nRST/  
CL  
nSET  
nRST/  
nSET  
CL  
nRST/nSET  
CLK  
register [619]  
1-bit NVM  
register [618]  
Figure 29: 3-bit LUT0 or DFF1  
Datasheet  
25-Feb-2021  
Revision 3.12  
64 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
register [599] DFF or LATCH Select  
register [598] Output Select (Q or nQ)  
register [597] DFF nRST or nSET Select  
register [596] DFF Initial Polarity Select  
IN2  
IN1  
From Connection  
Matrix Output [9]  
S0  
S1  
OUT  
3-bit LUT1  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [8]  
To Connection Matrix  
S0  
S1  
Input [11]  
S0  
8-bits NVM  
registers [599:592]  
S1  
DFF/Latch  
Registers  
D
From Connection  
Matrix Output [7]  
S0  
S1  
nRST/nSET  
CLK  
DFF2  
Q/nQ  
1-bit NVM  
register [620]  
Figure 30: 3-bit LUT1 or DFF2  
register [607] DFF or LATCH Select  
register [606] Output Select (Q or nQ)  
register [605] DFF nRST or nSET Select  
register [604] DFF Initial Polarity Select  
IN2  
From Connection  
Matrix Output [12]  
S0  
S1  
IN1  
OUT  
3-bit LUT2  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [11]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [12]  
8-bits NVM  
registers [607:600]  
DFF/Latch  
Registers  
D
From Connection  
Matrix Output [10]  
S0  
S1  
nRST/nSET  
CLK  
DFF3  
Q/nQ  
1-bit NVM  
register [621]  
Figure 31: 3-bit LUT2 or DFF3  
Datasheet  
25-Feb-2021  
Revision 3.12  
65 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
register [615] DFF or LATCH Select  
register [614] Output Select (Q or nQ)  
register [613] DFF nRST or nSET Select  
register [612] DFF Initial Polarity Select  
IN2  
IN1  
From Connection  
Matrix Output [15]  
S0  
S1  
OUT  
3-bit LUT3  
IN0  
LUT Truth  
Table  
From Connection  
Matrix Output [14]  
To Connection Matrix  
S0  
S1  
S0  
S1  
Input [13]  
8-bits NVM  
registers [615:608]  
DFF/Latch  
Registers  
D
From Connection  
Matrix Output [13]  
S0  
S1  
nRST/nSET  
CLK  
DFF4  
Q/nQ  
1-bit NVM  
register [622]  
Figure 32: 3-bit LUT3 or DFF4  
Datasheet  
25-Feb-2021  
Revision 3.12  
66 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
7.3.1 3-Bit LUT or D Flip-Flop Macrocells Used as 3-Bit LUTs  
Table 36: 3-bit LUT0 Truth Table  
Table 38: 3-bit LUT2 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [584]  
register [585]  
register [586]  
register [587]  
register [588]  
register [589]  
register [590]  
register [591]  
LSB  
register [600]  
register [601]  
register [602]  
register [603]  
register [604]  
register [605]  
register [606]  
register [607]  
LSB  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 37: 3-bit LUT1 Truth Table  
Table 39: 3-bit LUT3 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [592]  
register [593]  
register [594]  
register [595]  
register [596]  
register [597]  
register [598]  
register [599]  
register [608]  
register [609]  
register [610]  
register [611]  
register [612]  
register [613]  
register [614]  
register [615]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
1
1
1
MSB  
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-Bit LUT0 is defined by registers [591:584]  
3-Bit LUT1 is defined by registers [599:592]  
3-Bit LUT2 is defined by registers [607:600]  
3-Bit LUT3 is defined by registers [615:608]  
Table 40 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created  
within each of the four 3-bit LUT logic cells.  
Table 40: 3-bit LUT Standard Digital Functions  
Function  
AND-3  
MSB  
LSB  
1
0
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-3  
OR-3  
NOR-3  
XOR-3  
XNOR-3  
Datasheet  
25-Feb-2021  
Revision 3.12  
67 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
7.3.2 Initial Polarity Operations  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
nReset (Case 1)  
Q with nReset (Case 1)  
nReset (Case 2)  
Q with nReset (Case 2)  
Initial Polarity: Low  
nReset (Case 1)  
Q with nReset (Case 1)  
nReset (Case 2)  
Q with nReset (Case 2)  
Figure 33: DFF Polarity Operations with nReset  
Datasheet  
25-Feb-2021  
Revision 3.12  
68 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
VDD  
Data  
Clock  
POR  
Initial Polarity: High  
nSet (Case 1)  
Q with nSet (Case 1)  
nSet (Case 2)  
Q with nSet (Case 2)  
Initial Polarity: Low  
nSet (Case 1)  
Q with nSet (Case 1)  
nSet (Case 2)  
Q with nSet (Case 2)  
Figure 34: DFF Polarity Operations with nSet  
7.4 3-BIT LUT OR PIPE DELAY/RIPPLE COUNTER MACROCELL  
There is one macrocell that can serve as either a 3-bit LUT or as a Pipe Delay/Ripple Counter.  
When used to implement LUT functions, the 3-bit LUT takes in three input signals from the connection matrix and produces a  
single output, which goes back into the connection matrix.  
When used as a Pipe Delay, there are three inputs signals from the matrix, Input (IN), Clock (CLK), and Reset (nRST). The Pipe  
Delay cell is built from 16 D Flip-Flop logic cells that provide the three delay options, two of which are user selectable. The DFF  
cells are tied in series where the output (Q) of each delay cell goes to the next DFF cell input (IN). Both of the two outputs (OUT0  
and OUT1) provide user selectable options for 1 to 16 stages of delay. There are delay output points for each set of the OUT0  
and OUT1 outputs to a 4-input mux that is controlled by registers [547:544] for OUT0 and registers [551:548] for OUT1. The 4-  
input mux is used to control the selection of the amount of delay.  
Datasheet  
25-Feb-2021  
Revision 3.12  
69 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
The overall time of the delay is based on the clock used in the SLG46880/81 design. Each DFF cell has a time delay of the inverse  
of the clock time (either external clock or the Oscillator within the SLG46880/81). The sum of the number of DFF cells used will  
be the total time delay of the Pipe Delay logic cell. OUT1 Output can be inverted (as selected by register [552]).  
In the Ripple Counter mode there are 3 options for setting, which use 7 bits. There are 3 bits to set nSET value (SV) in range  
from 0 to 7. It is a value, which will be set into the Ripple Counter outputs when nSET input goes LOW. End value (EV) will use  
3 bits for setting outputs code, which will be last code in the cycle. After reaching the EV, the Ripple Counter goes to the first code  
by the rising edge on CLK input. The Functionality mode option uses 1 bit. This setting defines how exactly Ripple Counter will  
operate.  
The user can select one of the functionality modes by register: RANGE or FULL. If the RANGE option is selected, the count starts  
from SV. If UP input is LOW the count goes down: SV→EV→EV-1 to SV+1→SV, and others (if SV is smaller than EV), or SV→SV-  
1 to EV+1→EV→SV (if SV is bigger than EV). If UP input is HIGH, count starts from SV up to EV, and others.  
In the FULL range configuration the Ripple Counter functions as follows. If UP input is LOW, the count starts from SV and goes  
down to 0. Then current counter value jumps to EV and goes down to 0, and others.  
If UP input is HIGH, count goes up starting from SV. Then current counter value jumps to 0 and counts up to EV, and others. See  
Ripple Counter functionality example in Figure 36.  
Every step is executed by the rising edge on CLK input.  
Datasheet  
25-Feb-2021  
Revision 3.12  
70 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
registers [551:544]  
From Connection  
Matrix Output [28]  
IN0  
From Connection  
Matrix Output [29]  
IN1  
IN2  
OUT  
3-bit LUT8  
From Connection  
Matrix Output [30]  
registers [551:548]  
Pipe Delay  
register [552]  
Deglitch Filter/  
Edge Detector OUT  
0
1
0
1
OUT2  
OUT1  
To Connection  
Matrix Input[24]  
register [554]  
From Connection  
Matrix Output [28]  
IN  
From Connection  
Matrix Output [29]  
16 Flip-Flops  
nRST  
0
OUT1  
From Connection  
Matrix Output [30]  
CLK  
To Connection  
Matrix Input [20]  
1
register [554]  
OUT0  
0
OUT0  
To Connection  
Matrix Input [19]  
0
1
1
registers [547:544]  
register [553]  
Ripple Counter  
3 Flip-Flops  
UP  
From Connection  
Matrix Output [28]  
UP/DOWN  
Control  
OUT0  
D
Q
DFF1  
CLK  
From Connection  
Matrix Output [30]  
CL  
nQ  
nSET  
From Connection  
Matrix Output [29]  
SET  
OUT1  
OUT2  
Control  
D
Q
DFF2  
CL  
nQ  
Mode & SET/END  
Value Control  
D
Q
DFF3  
nQ  
CL  
register [550:544]  
Figure 35: 3-bit LUT8/Pipe Delay/Ripple Counter  
Datasheet  
25-Feb-2021  
Revision 3.12  
71 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Figure 36: Example: Ripple Counter Functionality  
7.4.1 3-Bit LUT or Pipe Delay Macrocells Used as 3-Bit LUT  
Table 41: 3-bit LUT8 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [544]  
register [545]  
register [546]  
register [547]  
register [548]  
register [549]  
register [550]  
register [551]  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Datasheet  
25-Feb-2021  
Revision 3.12  
72 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-Bit LUT8 is defined by registers [551:544]  
7.5 3-BIT LUT OR 8-BIT COUNTER/DELAY MACROCELLS  
There are four macrocells that can serve as either 3-bit LUTs or as Counter/Delays. When used to implement LUT function, the  
3-bit LUT takes in three input signals from the connection matrix and produces a single output, which goes back into the connec-  
tion matrix. When used to implement 8-Bit Counter/Delay function, two of the three input signals from the connection matrix go  
to the external clock (EXT_CLK) and reset (DLY_IN/CNT Reset) inputs for the Counter/Delay, with the output going back to the  
connection matrix.  
Counter/Delay macrocell has an initial value, which defines its initial value after GPAK is powered up. It is possible to select initial  
Low or initial High, as well as initial value defined by a Delay In signal.  
For example, in case initial LOW option is used, the rising edge delay will start operation.  
These macrocells can also operate in a frequency detection mode.  
Delay time and Output Period can be calculated using the following formulas:  
Delay time: [(Counter data + 2)/CLK input frequency – Offset (Note)]  
Output Period: [(Counter data + 1)/CLK input frequency – Offset (Note)]  
One Shot pulse width can be calculated using formula:  
Pulse width = [(Counter Data + 2)/CLK input frequency – Offset (Note)]  
Note: Offset is the asynchronous time offset between the input signal and the first clock pulse.  
Three of the four macrocells can have their active count value read via I2C (CNT0, CNT2, and CNT4). See Section 19.6.1 for  
further details.  
Note: After two DFF – counters initialize with counter data = 0 after POR.  
Initial state = 1 – counters initialize with counter data = 0 after POR.  
Initial state = 0 And After two DFF is bypass – counters initialize with counter data after POR.  
Datasheet  
25-Feb-2021  
Revision 3.12  
73 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
7.5.1 3-Bit LUT or 8-Bit CNT/DLY Block Diagrams  
From Connection  
Matrix Output [18]  
IN2  
3-bit LUT4  
IN1  
IN0  
From Connection  
Matrix Output [17]  
S0  
S1  
OUT  
LUT Truth  
Table  
To Connection  
Matrix Input [14]  
S0  
S1  
8-bits NVM  
register [3943:3936]  
CNT  
Data  
ext_-  
CLK  
From Connection  
Matrix Output [16]  
S0  
S1  
OUT  
CNT/DLY1  
DLY_IN/CNT Reset  
Config  
Data  
registers [926:916]  
1-bit NVM  
register [927]  
Figure 37: 3-bit LUT4 or CNT/DLY1  
Datasheet  
25-Feb-2021  
Revision 3.12  
74 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
From Connection  
Matrix Output [21]  
IN2  
3-bit LUT5  
IN1  
IN0  
From Connection  
Matrix Output [20]  
S0  
S1  
OUT  
LUT Truth  
Table  
To Connection  
Matrix Input [15]  
S0  
S1  
8-bits NVM  
registers [3951:3944]  
CNT  
Data  
ext_CLK  
From Connection  
Matrix Output [19]  
S0  
S1  
OUT  
CNT/DLY2  
DLY_IN/CNT Reset  
Config  
Data  
registers [939:929]  
1-bit NVM  
register [940]  
Figure 38: 3-bit LUT5 or CNT/DLY2  
From Connection  
Matrix Output [24]  
IN2  
3-bit LUT6  
IN1  
From Connection  
Matrix Output [23]  
S0  
S1  
OUT  
IN0  
LUT Truth  
Table  
To Connection  
Matrix Input [16]  
S0  
S1  
8-bits NVM  
registers [3959:3952]  
CNT  
Data  
ext_CLK  
From Connection  
Matrix Output [22]  
S0  
S1  
OUT  
CNT/DLY3  
DLY_IN/CNT Reset  
Config  
Data  
registers [953:943]  
1-bit NVM  
register [954]  
Figure 39: 3-bit LUT6 or CNT/DLY3  
Datasheet  
25-Feb-2021  
Revision 3.12  
75 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
From Connection  
Matrix Output [27]  
IN2  
3-bit LUT7  
IN1  
IN0  
From Connection  
Matrix Output [26]  
S0  
S1  
OUT  
LUT Truth  
Table  
To Connection  
Matrix Input [17]  
S0  
S1  
8-bits NVM  
registers [3967:3960]  
CNT  
Data  
ext_CLK  
From Connection  
Matrix Output [25]  
S0  
S1  
OUT  
CNT/DLY4  
DLY_IN/CNT Reset  
Config  
Data  
registers [966:956]  
1-bit NVM  
register [967]  
Figure 40: 3-bit LUT7 or CNT/DLY4  
Datasheet  
25-Feb-2021  
Revision 3.12  
76 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
7.5.2 3-Bit LUT or CNT/DLYs Used as 3-Bit LUTs  
Table 42: 3-bit LUT4 Truth Table  
Table 44: 3-bit LUT6 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [3936]  
register [3937]  
register [3938]  
register [3939]  
register [3940]  
register [3941]  
register [3942]  
register [3943]  
LSB  
register [3952]  
register [3953]  
register [3954]  
register [3955]  
register [3956]  
register [3957]  
register [3958]  
register [3959]  
LSB  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
LSB  
1
1
1
MSB  
LSB  
Table 43: 3-bit LUT5 Truth Table  
Table 45: 3-bit LUT7 Truth Table  
IN2  
0
IN1  
0
IN0  
0
OUT  
IN2  
0
IN1  
0
IN0  
0
OUT  
register [3944]  
register [3945]  
register [3946]  
register [3947]  
register [3948]  
register [3949]  
register [3950]  
register [3951]  
register [3960]  
register [3961]  
register [3962]  
register [3963]  
register [3964]  
register [3965]  
register [3966]  
register [3967]  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
MSB  
1
1
1
MSB  
Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:  
3-Bit LUT4 is defined by registers [3943:3936]  
3-Bit LUT5 is defined by registers [3951:3944]  
3-Bit LUT6 is defined by registers [3959:3952]  
3-Bit LUT7 is defined by registers [3967:3960]  
Datasheet  
25-Feb-2021  
Revision 3.12  
77 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
7.6 CNT/DLY/FSM TIMING DIAGRAMS  
7.6.1 Delay Mode CNT/DLY0 to CNT/DLY4  
Delay In  
Asynchronous delay variable  
Asynchronous delay variable  
OSC: force Power-On  
(always running)  
Delay Output  
delay = period x (counter data + 1) + variable  
variable is from 0 to 1 clock period  
delay = period x (counter data + 1) + variable  
variable is from 0 to 1 clock period  
Delay In  
offset  
offset  
OSC: auto Power-On  
(powers up from delay in)  
Delay Output  
delay = offset + period x (counter data + 1)  
See offset in table 13  
delay = offset + period x (counter data + 1)  
See offset in table 13  
Figure 41: Delay Mode Timing Diagram, Edge Select: Both, Counter Data: 3  
Datasheet  
25-Feb-2021  
Revision 3.12  
78 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
The macrocell shifts the respective edge to a set time and restarts by appropriate edge. It works as a filter if the input signal is  
shorter than the delay time.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
Delay time  
Delay Function  
Rising Edge Detection  
t
Delay Function  
Falling Edge Detection  
t
Delay Function  
Both Edge Detection  
t
Figure 42: Delay Mode Timing Diagram for Different Edge Select Modes  
7.6.2 Count Mode (Count Data: 3), Counter Reset (Rising Edge Detect) CNT/DLY0 to CNT/DLY4  
RESET_IN  
CLK  
Counter OUT  
4 CLK period pulse  
Count start in first rising edge CLK  
Figure 43: Counter Mode Timing Diagram without Two DFFs Synced Up  
Datasheet  
25-Feb-2021  
Revision 3.12  
79 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
RESET_IN  
CLK  
Counter OUT  
4 CLK period pulse  
Count start in 0 CLK after reset  
Figure 44: Counter Mode Timing Diagram with Two DFFs Synced Up  
7.6.3 One-Shot Mode CNT/DLY0 to CNT/DLY4  
This macrocell will generate a pulse whenever a selected edge is detected on its input. Register bits set the edge selection. The  
pulse width determines by counter data and clock selection properties. The output pulse polarity (non-inverted or inverted) is  
selected by register bit. Any incoming edges will be ignored during the pulse width generation. The following diagram shows one-  
shot function for non-inverted output.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
Delay time  
One-Shot Function  
Rising Edge Detection  
t
One-Shot Function  
Falling Edge Detection  
t
One-Shot Function  
Both Edge Detection  
t
Figure 45: One-Shot Function Timing Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
80 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
This macrocell generates a high level pulse with a set width (defined by counter data) when detecting the respective edge. It  
does not restart while pulse is high.  
7.6.4 Frequency Detection Mode CNT/DLY0 to CNT/DLY4  
Rising Edge: The output goes high if the time between two successive edges is less than the delay. The output goes low if the  
second rising edge has not come after the last rising edge in specified time.  
Falling Edge: The output goes high if the time between two falling edges is less than the set time. The output goes low if the  
second falling edge has not come after the last falling edge in specified time.  
Both Edge: The output goes high if the time between the rising and falling edges is less than the set time, which is equivalent to  
the length of the pulse. The output goes low if after the last rising/falling edge and specified time, the second edge has not  
come.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
Delay time  
Frequency Detector Function  
Rising Edge Detection  
t
Frequency Detector Function  
Falling Edge Detection  
t
Frequency Detector Function  
Both Edge Detection  
t
Figure 46: Frequency Detection Mode Timing Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
81 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
7.6.5 Edge Detection Mode CNT/DLY1 to CNT/DLY4  
The macrocell generates high level short pulse when detecting the respective edge. See Table 14.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Edge Detector Function  
Rising Edge Detection  
Edge Detector Function  
Falling Edge Detection  
t
t
Edge Detector Function  
Both Edge Detection  
Figure 47: Edge Detection Mode Timing Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
82 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
7.6.6 Delayed Edge Detection Mode CNT/DLY0 to CNT/DLY4  
In Delayed Edge Detection Mode, High level short pulses are generated on the macrocell output after the configured delay time  
if the corresponding edge was detected on the input.  
If the input signal is changed during the set delay time, the pulse will not be generated. See Figure 48.  
Delay time  
Delay time  
Delay time  
Delay time  
Delay time  
One-Shot/Freq. DET/Delay IN  
t
t
Delay time  
Delayed Edge Detector Function  
Rising Edge Detection  
Delayed Edge Detector Function  
Falling Edge Detection  
t
t
Delayed Edge Detector Function  
Both Edge Detection  
Figure 48: Delayed Edge Detection Mode Timing Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
83 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
7.6.7 CNT/FSM Mode CNT/DLY0  
RESET IN  
KEEP  
COUNT END  
CLK  
3
2
1
0
3
2
1
0
3
2
1
3
2
1
0
0
Q
Note: Q = current counter value  
Figure 49: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3  
SET IN  
KEEP  
COUNT END  
CLK  
2
1
0
3
2
1
0
3
3
2
1
2
1
0
3
3
Q
Note: Q = current counter value  
Figure 50: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3  
Datasheet  
25-Feb-2021  
Revision 3.12  
84 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
RESETI N  
KEEP  
COUNT END  
CLK  
65535  
65533 65534  
5
6
7
8
9
3
4
5
3
4
5
1
2
3
4
0
Q
Note: Q = current counter value  
Figure 51: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3  
SET IN  
KEEP  
COUNT END  
CLK  
65533 65534 65535  
8
9
10 11 12  
3
4
5
3
4
5
4
5
6
7
3
Q
Note: Q = current counter value  
Figure 52: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3  
Datasheet  
25-Feb-2021  
Revision 3.12  
85 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
7.6.8 Difference in Counter Value for Counter, Delay, One-Shot, and Frequency Detect Modes  
There is a difference in counter value for Counter and Delay/One-Shot/Frequency Detect modes. The counter value is shifted for  
two rising edges of the clock signal in Delay/One-Shot/Frequency Detect modes compared to Counter mode. See Figure 53.  
One-Shot/Freq. SET/Delay IN  
CLK  
CNT Out  
3
2
1
0
0
3
CNT Data  
2
DLY Out  
3
3
2
Delay Data  
1
3
3
3
One-Shot Out  
One-Shot Data  
3
3
2
3
1
3
3
Figure 53: Counter Value, Counter Data = 3  
Datasheet  
25-Feb-2021  
Revision 3.12  
86 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
7.7 4-BIT LUT OR 16-BIT COUNTER/DELAY MACROCELL  
There is one macrocell that can serve as either 4-bit LUT or as 16-bit Counter/Delay. When used to implement LUT function, the  
4-bit LUT takes in four input signals from the Connection Matrix and produces a single output, which goes back into the Connection  
Matrix. When used to implement 16-Bit Counter/Delay function, two of the four input signals from the connection matrix go to the  
external clock (EXT_CLK) and reset (DLY_IN/CNT Reset) for the counter/delay, with the output going back to the connection  
matrix.  
This macrocell has an optional Finite State Machine (FSM) function. There are two additional matrix inputs for Up and Keep to  
support FSM functionality.  
This macrocell can also operate in a one-shot mode, which will generate an output pulse of user-defined width.  
This macrocell can also operate in a frequency detection or edge detection mode.  
This macrocell can have its active count value read via I2C. See Section 19.6.1 for further details.  
Note: After two DFF – counters initialize with counter data = 0 after POR.  
Initial state = 1 – counters initialize with counter data = 0 after POR.  
Initial state = 0 And After two DFF is bypass – counters initialize with counter data after POR.  
Datasheet  
25-Feb-2021  
Revision 3.12  
87 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
7.7.1 4-Bit LUT or 16-Bit CNT/DLY Block Diagram  
From Connection  
Matrix Output [34]  
S0  
S1  
IN3  
From Connection  
Matrix Output [33]  
S0  
S1  
IN2  
4-bit LUT0  
IN1  
IN0  
From Connection  
Matrix Output [32]  
S0  
S1  
OUT  
LUT Truth  
Table  
To Connection  
Matrix Input [18]  
S0  
S1  
16-bits NVM  
registers [3935:3920]  
CNT  
Data  
ext_CLK  
From Connection  
Matrix Output [31]  
S0  
S1  
OUT  
CNT/DLY0  
DLY_IN/CNT Reset  
KEEP  
UP  
FSM  
Config  
Data  
registers [907:896]  
1-bit NVM  
register [908]  
Figure 54: 4-bit LUT0 or CNT/DLY0  
Datasheet  
25-Feb-2021  
Revision 3.12  
88 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
7.7.2 4-Bit LUT or 16-Bit Counter/Delay Macrocells Used as 4-Bit LUTs  
Table 46: 4-bit LUT0 Truth Table  
IN3  
0
IN2  
0
IN1  
0
IN0  
0
OUT  
register [3920] LSB  
register [3921]  
register [3922]  
register [3923]  
register [3924]  
register [3925]  
register [3926]  
register [3927]  
register [3928]  
register [3929]  
register [3930]  
register [3931]  
register [3932]  
register [3933]  
register [3934]  
register [3935] MSB  
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
This macrocell, when programmed for a LUT function, uses a 16-bit register to define their output function:  
4-Bit LUT0 is defined by registers [3935:3920]  
Table 47: 4-bit LUT Standard Digital Functions  
Function  
AND-4  
MSB  
LSB  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
NAND-4  
OR-4  
NOR-4  
XOR-4  
XNOR-4  
Datasheet  
25-Feb-2021  
Revision 3.12  
89 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
7.8 WAKE AND SLEEP CONTROLLER  
The SLG46880/81 has a Wake and Sleep (WS) function for ACMP0H and ACMP1H. The macrocell CNT/DLY0 can be reconfig-  
ured for this purpose registers [897:896] = 11 and register [910] = 1. The WS serves for power saving, it allows to switch on and  
off selected ACMPs on selected bit of 16-bit counter.  
Power Control  
From Connection Matrix Output[59] for 2 kHz Low Power Osc.  
WS Controller  
OSC  
CNT0_out  
cnt_end  
CNT  
To Connection Matrix Input [14]  
ck  
CK_OSC  
Divider  
Analog Control Block  
ACMPxH WS EN [1:0]  
registers [663], [664]  
2
2
bg/regulator  
pd  
From Connection  
Matrix Output [38:37]  
WS_out  
WS_PD  
WS_PD  
(from OSC PD)  
ACMPs_PD  
WS_out  
WS_PD to W&S out  
state selection  
registers [531:530]  
WS clock freq. pre-divider  
registers [910]  
WS ratio control data  
ACMPs  
registers [903:900]  
WS clock freq. selection  
Note: WS_PD is High at WS OSC  
ACMPxHOUT  
+
-
2
0
1
(2 kHz Low Power OSC) Power-down  
2
To Connection  
Matrix Input  
[57:56]  
ACMPxH_PD  
WS_out  
nRST  
BG/Analog_Good  
Figure 55: WS Controller  
Datasheet  
25-Feb-2021  
Revision 3.12  
90 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
time between Reset goes low  
and 1st WS clock rsing edge  
Force Wake  
CNT_RST  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is latched  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
ACMP Latches Last Data  
Normal ACMP  
Operation  
ACMP follows input  
Sleep Mode  
ACMP Latches New Data  
Normal ACMP  
Sleep Mode  
ACMP Latches  
New Data  
Operation  
ACMP follows input  
BG/Analog  
Startup time*  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during latch.  
Figure 56: Wake/Sleep Timing Diagram, Normal Wake Mode, Counter Reset is Used  
time between Reset goes low  
and 1st WS clock rsing edge  
Force Wake  
CNT_RST  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is latched  
Data is latched  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
ACMP Latches Last Data  
Sleep Mode  
ACMP Latches New Data  
Normal ACMP  
Operation for short time  
ACMP follows inout  
Sleep Mode  
ACMP Latches  
New Data  
Normal ACMP  
Operation for short time  
ACMP follows inout  
BG/Analog  
Startup time*  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during latch.  
Figure 57: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Reset is Used  
Datasheet  
25-Feb-2021  
Revision 3.12  
91 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
time between Reset goes low  
and 1st WS clock rsing edge  
Force Sleep  
CNT_SET  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is latched  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
ACMP Latches Last Data  
Normal ACMP  
Operation  
ACMP follows input  
Sleep Mode  
ACMP Latches New Data  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during latch.  
Figure 58: Wake/Sleep Timing Diagram, Normal Wake Mode, Counter Set is Used  
time between Reset goes low  
and 1st WS clock rsing edge  
Force Sleep  
CNT_RST  
(From Connection Matrix)  
ACMP_PD is High  
(From Connection Matrix)  
CNT0_out  
(To Connection Matrix)  
WS_out  
(internal signal)  
Data is latched  
BG/Analog_Good  
(internal signal)  
Sleep Mode  
Sleep Mode  
ACMP Latches New Data  
ACMP Latches Last Data  
Normal ACMP  
Operation for short time  
ACMP follows inout  
BG/Analog  
Startup time*  
Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during latch.  
Figure 59: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Set is Used  
Note: If low power BG is powered on/off by WS, the wake time should be longer than 2.1 ms. The BG/analog start up time will  
take maximal 2 ms. If low power BG is always on, OSC0 period is longer than required wake time. The short wake mode can be  
used to reduce the current consumption.  
To use any ACMPxH under WS controller the following settings must be done:  
ACMPxH Power Up Input from matrix = 1 (for each ACMPxH separately).  
Datasheet  
25-Feb-2021  
Revision 3.12  
92 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
CNT/DLY0 must be set to Wake and Sleep Controller function (for all ACMPxH).  
Register WS → enable (for each ACMPxH separately).  
CNT/DLY0 set/reset input = 0 (for all ACMPxH).  
As the OSC any oscillator with any pre-divider can be used. The user can select a period of time while the ACMPxH is sleeping  
in a range of 1 to 65535 clock cycles. Before they are sent to sleep their outputs are latched, so the ACMPs remain their state  
(High or Low) while sleeping.  
WS controller has the following settings:  
Wake and Sleep Output State (High/Low)  
If OSC is powered off (Power-down option is selected; Power-down input = 1) and Wake and Sleep Output State = High, the  
ACMPxH is continuously on.  
If OSC is powered off (Power-down option is selected; Power-down input = 1) and Wake and Sleep Output State = Low, the  
ACMPxH is continuously off.  
Both cases WS function is turned off.  
Counter Data (Range: 1 to 65535)  
User can select wake and sleep ratio of the ACMP; counter data = sleep time, one clock = wake time.  
Q mode - defines the state of WS counter data when Set/Reset signal appears Reset - when active signal appears, the WS  
counter will reset to zero and High level signal on its output will turn on the ACMPs. When Reset signal goes out, the WS  
counter will go Low and turn off the ACMPxH until the counter counts up to the end. Set - when active signal appears, the WS  
counter will stop and Low level signal on its output will turn off the ACMPxH. When Set signal goes out, the WS counter will go  
on counting and High level signal will turn on the ACMPxH while counter is counting up to the end.  
Note: The OSC0 matrix power down to control ACMP W/S is not supported for short wait time option.  
Edge Select defines the edge for Q mode  
High level Set/Reset - switches mode Set/Reset when level is High  
Note: Q mode operates only in case of "High Level Set/Reset”.  
Wake time selection - time required for wake signal to turn the ACMPxH on  
Normal Wake Time - when WS signal is High, it takes BG/analog start up time to turn the ACMPs on. They will stay on until  
WS signal is Low again. Wake time is one clock period. It should be longer than BG turn on time and minimal required com-  
paring time of the ACMP.  
Short Wake Time - when WS signal is High, it takes BG/analog start up time to turn the ACMPs on. They will stay on for 1 µs  
and turn off regardless of WS signal. The WS signal width does not matter.  
Keep - pauses counting while Keep = 1  
Up - reverses counting  
If Up = 1, CNT is counting up from user selected value to 65535.  
If Up = 0, CNT is counting down from user selected value to 0.  
Datasheet  
25-Feb-2021  
Revision 3.12  
93 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
7.8.1 WS Register Settings  
Table 48: WS Register Settings  
Register Bit  
Address  
Signal Function  
Register Definition  
Counter/delay0  
Clock Source Select  
registers  
[903:900]  
0000: OSC2  
0001: OSC2 /4  
0010: OSC1  
0011: OSC1 /8  
0100: OSC1 /64  
0101: OSC1 /512  
0110: OSC0  
0111: OSC0 /8  
1000: OSC0 /64  
1001: OSC0 /512  
1010: OSC0 /4096  
1011: OSC0 /32768  
1100: OSC0 /262144  
1101: CNT4 Overflow  
1110: External  
1111: Reserved  
ACMP0H Wake & Sleep  
function Enable  
register [663]  
register [664]  
register [909]  
0: Disable  
1: Enable  
ACMP1H Wake & Sleep  
function Enable  
0: Disable  
1: Enable  
Wake Sleep Output State  
When WS Oscillator  
is Power-downif DLY/CNT0  
Mode Selection  
0: Low  
1: High  
is "11"  
DLY/CNT0  
(16bits, [15:0] =  
registers  
[3935:3920]  
1 - 65535  
[3935:3920]) Control Data  
Datasheet  
25-Feb-2021  
Revision 3.12  
94 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
8
Analog Comparators  
There are four General Purpose Rail-to-Rail Analog Comparator (ACMP) macrocells in the SLG46880/81. In order for the ACMP  
cells to be used in a GreenPAK design, the power up signals (ACMP0H PWR UP, ACMP1H PWR UP, ACMP2L PWR UP, and  
ACMP3L PWR UP) need to be active. By connecting to signals coming from the Connection Matrix, it is possible to have each  
ACMP be on continuously, off continuously, or switched on periodically based on a digital signal coming from the Connection  
Matrix. When ACMP is powered down, output is low.  
Two of the four General Purpose Rail-to-Rail Analog Comparators are optimized for high speed operation (ACMP0H and  
ACMP1H), and two of the four are optimized for low power operation (ACMP2L and ACMP3L).  
Each of the ACMP cells has a positive input signal that can be provided by a variety of external sources, and can also have a  
selectable gain stage before connection to the analog comparator. Each of the ACMP cells has a negative input signal that is  
either created from an internal Vref or provided by way of the external sources.  
PWR UP = 1 → ACMP is powered up.  
PWR UP = 0 → ACMP is powered down.  
During power-up, the ACMP output will remain LOW, and then become valid 51.4 μs (max) after power up signal goes high for  
ACMP0H and ACMP1H, and become valid 326.6 μs (max) after power up signal goes high for ACMP2L and ACMP3L. Input bias  
current < 1 nA (typ). The Gain divider is unbuffered and consists of 2 MΩ resistors.  
Each High Speed ACMP (ACMP0H and ACMP1H) has an optional Rail-to-Rail Input Buffer, which can be used along with the  
Gain divider to increase ACMP input resistance. However, Input buffer will increase an input offset voltage.  
Each cell also has a hysteresis selection, to offer hysteresis of (0, 32, 64, 192) mV. The hysteresis option is available when using  
an internal Vref only.  
The ACMP0H has an additional option of connecting an internal 100 μA current source to its positive input, register [666]. It is  
also possible to connect the 100 μA current source to each next ACMP via an internal analog MUX.  
ACMP0H IN+ options are GPIO10, buffered GPIO10, VDD, 100 µA Current Source  
ACMP1H IN+ options are GPIO11, buffered GPIO11, ACMP0H IN+ MUX output  
ACMP2L IN+ options are GPO5, ACMP0H IN+ MUX output, ACMP1H IN+ MUX output  
ACMP3L IN+ options are GPO6, ACMP2L IN+ MUX output, Temp Sensor OUT  
Datasheet  
25-Feb-2021  
Revision 3.12  
95 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
8.1 ACMP0H BLOCK DIAGRAM  
to ACMP1H, ACMP2L,  
VDD  
ACMP3L’s MUX input  
registers [628:627]  
100 µA  
Current  
Source  
register [666]  
en  
Hysteresis  
Selection  
registers [3889:3888]  
01  
00  
10  
BG_ok  
GPIO10: ACMP0H(+)  
Selectable  
Gain  
+
-
To Connection  
Matrix Input[56]  
L/S  
0
1
Internal VDD 2.3 V ~ 5.5 V  
Vref  
PWR UP  
HighSpeed  
ACMP  
Latch  
*GPIO10_aio_en; registers [632], [630]  
Ext. Vref (GPI7)  
register [630]  
111111  
From Connection  
Matrix Output [35]  
111110-  
000000  
Internal  
Vref  
registers [3895:3890]  
Figure 60: ACMP0H Block Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
96 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
8.2 ACMP1H BLOCK DIAGRAM  
to ACMP2L’s MUX input  
registers [636:635]  
Hysteresis  
Selection  
registers [3897:3896]  
00  
BG_ok  
L/S  
GPIO11: ACMP1H(+)  
Selectable  
Gain  
+
-
01  
10  
To Connection  
Matrix Input[57]  
0
1
ACMP0H IN+ MUX Output  
Vref  
PWR UP  
HighSpeed  
ACMP  
Latch  
*GPIO11_aio_en; registers [637], [633]  
register [637]  
Ext. Vref (GPI7)  
111111  
From Connection  
Matrix Output [35]  
111110-  
000000  
Internal  
Vref  
registers [3903:3898]  
Figure 61: ACMP1H Block Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
97 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
8.3 ACMP2L BLOCK DIAGRAM  
registers [642:641]  
Hysteresis  
Selection  
registers [3905:3904]  
GPO5: ACMP2L(+)  
00  
BG_ok  
L/S  
from ACMP0H’s MUX output  
Selectable  
Gain  
To Connection  
Matrix Input[58]  
+
01  
from ACMP1H’s MUX output  
10  
Vref  
-
PWR UP  
Low Power  
ACMP  
*GPO5_aio_en; registers [640], [639]  
Ext. Vref (GPI7)  
111111  
From Connection  
Matrix Output [37]  
Low  
Power  
Internal  
Vref  
111110-  
000000  
registers [3911:3906]  
Figure 62: ACMP2L Block Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
98 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
8.4 ACMP3L BLOCK DIAGRAM  
registers [646:645]  
Hysteresis  
Selection  
registers [3913:3912]  
GPO6: ACMP3L(+)  
00  
BG_ok  
L/S  
ACMP2L IN+ MUX Output  
Selectable  
Gain  
To Connection  
Matrix Input[59]  
+
01  
Temp Sensor  
10  
Vref  
-
PWR UP  
Low Power  
ACMP  
*GPO6_aio_en; registers [649], [669]  
Ext. Vref (GPI7)  
111111  
From Connection  
Low  
Power  
Internal  
Vref  
Matrix Output [38]  
111110-  
000000  
Low Power  
ACMP  
registers [3919:3914]  
Figure 63: ACMP3L Block Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
99 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
8.5 ACMP TYPICAL PERFORMANCE  
Figure 64: Typical Propagation Delay vs. Vref for ACMPxH at T = 25 °C, Gain = 1, Buffer - Disabled, Hysteresis = 0  
Figure 65: Typical Propagation Delay vs. Vref for ACMPxL at T = 25 °C, Gain = 1, Buffer - Disabled, Hysteresis = 0  
Datasheet  
25-Feb-2021  
Revision 3.12  
100 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
45  
40  
35  
30  
25  
20  
15  
10  
5
ACMPxH (T = -40 °C)  
ACMPxH (T = 25 °C)  
ACMPxH (T = 85 °C)  
0
2.3 2.5 2.7  
2.9  
3.1  
3.3  
3.5 3.7 3.9  
VDD (V)  
Figure 66: ACMPxH Power-On Delay vs. VDD  
4.1  
4.3  
4.5  
4.7 4.9 5.1  
5.3  
5.5  
220  
210  
200  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
ACMPxL (T = -40 °C)  
ACMPxL (T = 25 °C)  
ACMPxL (T = 85 °C)  
2.3  
2.5  
2.7  
2.9  
3.1  
3.3 3.5 3.7  
3.9  
4.1  
4.3  
4.5  
4.7  
4.9 5.1 5.3 5.5  
VDD (V)  
Figure 67: ACMPxL Power-On Delay vs. VDD  
Datasheet  
25-Feb-2021  
Revision 3.12  
101 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
8
6
4
2
0
Upper Limit  
Lower Limit  
32  
256  
480  
1024  
1504  
2016  
-2  
-4  
-6  
-8  
Vref (mV)  
Figure 68: ACMPxH Input Offset Voltage vs. Vref at T = -40 °C to 85 °C, Input Buffer Disabled  
8
6
4
Upper Limit  
Lower Limit  
2
0
32  
256  
480  
1024  
1504  
2016  
-2  
-4  
-6  
-8  
Vref (mV)  
Figure 69: ACMPxL Input Offset Voltage vs. Vref at T = -40 °C to 85 °C, Input Buffer Disabled  
Datasheet  
25-Feb-2021  
Revision 3.12  
102 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
120  
100  
80  
60  
40  
Max  
20  
Typical  
Min  
0
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
Input Voltage (V)  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4  
Figure 70: ACMP Input Current Source vs. Input Voltage at T = -40 °C to 85 °C, VDD = 3.3 V  
Datasheet  
25-Feb-2021  
Revision 3.12  
103 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
9
Programmable Delay/Edge Detector  
The SLG46880/81 has a programmable time delay logic cell available that can generate a delay that is selectable from one of  
four timings (time1) configured in the GreenPAK Designer. The programmable time delay cell can generate one of four different  
delay patterns, rising edge detection, falling edge detection, both edge detection, and both edge delay. These four patterns can  
be further modified with the addition of delayed edge detection, which adds an extra unit of delay as well as glitch rejection during  
the delay period. See Figure 72 for further information.  
Note: The input signal must be longer than the delay, otherwise it will be filtered out.  
registers [559:558]  
registers [557:556]  
Delay Value Selection  
Edge Mode Selection  
To Connection  
Matrix Input [25]  
Programmable  
From Connection Matrix Output [77]  
IN  
OUT  
Delay  
Figure 71: Programmable Delay  
9.1 PROGRAMMABLE DELAY TIMING DIAGRAM - EDGE DETECTOR OUTPUT  
width  
width  
IN  
time1  
Rising Edge Detector  
time1  
Falling Edge Detector  
Edge Detector  
Output  
Both Edge Detector  
Both Edge Delay  
time2  
time2  
time1 is a fixed value  
time2 delay value is selected via register  
Figure 72: Edge Detector Output  
Please refer to Table 14.  
Datasheet  
25-Feb-2021  
Revision 3.12  
104 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
10 Additional Logic Function  
The SLG46880/81 has one additional logic function that is connected directly to the Connection Matrix inputs and outputs. There  
is one deglitch filter, with edge detector function.  
10.1 DEGLITCH FILTER/EDGE DETECTOR  
Filter  
R
From Connection Matrix  
0
Output [75]  
C
0
0
1
1
Edge  
Detector  
Logic  
1
To Connection  
Matrix  
Input [24]  
register [540]  
registers [543:542]  
register [541]  
register [554]  
Ripple Counter OUT2  
Figure 73: Deglitch Filter/Edge Detector  
Datasheet  
25-Feb-2021  
Revision 3.12  
105 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
11 Voltage Reference  
11.1 VOLTAGE REFERENCE OVERVIEW  
The SLG46880/81 has a Voltage Reference (Vref) Macrocell to provide references to the four analog comparators. This macrocell  
can supply a user selection of fixed voltage references, or temperature sensor output. The macrocell also has the option to output  
reference voltages on GPIO2 and GPIO9. See Table 49 for the available selections for each analog comparator. Also, see Figure  
74, which shows the reference output structure.  
11.2 VREF SELECTION TABLE  
Table 49: Vref Selection Table  
SEL[5:0]  
0
Vref  
0.032  
0.064  
0.096  
0.128  
0.16  
SEL[5:0]  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
Vref  
1.056  
1.088  
1.12  
1
2
3
1.152  
1.184  
1.216  
1.248  
1.28  
4
5
0.192  
0.224  
0.256  
0.288  
0.32  
6
7
8
1.312  
1.344  
1.376  
1.408  
1.44  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0.352  
0.384  
0.416  
0.448  
0.48  
1.472  
1.504  
1.536  
1.568  
1.6  
0.512  
0.544  
0.576  
0.608  
0.64  
1.632  
1.664  
1.696  
1.728  
1.76  
0.672  
0.704  
0.736  
0.768  
0.8  
1.792  
1.824  
1.856  
1.888  
1.92  
0.832  
0.864  
0.896  
0.928  
0.96  
1.952  
1.984  
2.016  
External  
0.992  
1.024  
Datasheet  
25-Feb-2021  
Revision 3.12  
106 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
11.3 TRUTH TABLE FOR VREF0 BUFFER AND OUTPUT SWITCH CONTROL  
Table 50: VrefO0 Truth Table  
VrefO0  
Source  
VrefO0  
Buffer  
VrefO0  
Buffer  
Enable  
TS PD  
Register  
Control  
GPIO9  
Analog Mode  
Enable  
TS PD  
Selection  
Selection  
Selection  
Function  
Enable  
Matrix  
out78  
Buffer  
state  
Output  
switch  
Note  
register  
[856:855]= 11,  
means enable  
register  
[623]  
register  
[655:654]  
register  
[653]  
register  
[651]  
register  
[650]  
None  
00  
01  
0
0
0
0
0
0
0
0
0
0
Disable  
Disable  
Off  
Off  
Off  
Off  
VrefO0 is all off  
VrefO0 select ACMP0H;  
output has no buffer;  
pd comes from register  
[653]  
01  
01  
01  
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
Enable  
Disable  
Enable  
Off  
On  
On  
On  
Off  
On  
VrefO0 select ACMP0H;  
output has buffer;  
pd comes from register  
[653]  
ACMP0H_Vref  
01  
01  
01  
01  
10  
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
Disable  
Enable  
Disable  
Enable  
Disable  
Off  
Off  
On  
On  
Off  
Off  
On  
Off  
On  
Off  
VrefO0 select ACMP0H;  
output has no buffer;  
pd comes from matrix78  
VrefO0 select ACMP0H;  
output has buffer;  
pd comes from matrix78  
VrefO0 select ACMP1H;  
output has no buffer;  
pd comes from register  
[653]  
10  
10  
10  
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
Enable  
Disable  
Enable  
Off  
On  
On  
On  
Off  
On  
VrefO0 select ACMP1H;  
output has buffer;  
pd comes from register  
[653]  
ACMP1H_Vref  
10  
10  
10  
10  
11  
11  
11  
11  
11  
11  
11  
11  
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
Off  
Off  
On  
On  
Off  
Off  
On  
On  
Off  
Off  
On  
On  
Off  
On  
Off  
On  
Off  
Off  
Off  
On  
Off  
Off  
Off  
On  
VrefO0 select ACMP1H;  
output has no buffer;  
pd comes from matrix78  
VrefO0 select ACMP1H;  
output has buffer;  
pd comes from matrix78  
TS enable comes from  
register [650]  
TS function  
TS enable comes from  
Matrix78  
11.4 TRUTH TABLE FOR VREF1 BUFFER AND OUTPUT SWITCH CONTROL  
Table 51: VrefO1 Truth Table  
VrefO1  
Source  
VrefO1  
Buffer  
GPIO2  
Analog Mode  
Enable  
Selection Selection  
Function  
Enable  
Buffer  
state  
Output  
switch  
Note  
registers  
[708:707]= 11,  
means enable  
register  
[656]  
registers  
[658:657]  
None  
00  
01  
01  
01  
01  
0
0
0
1
1
Disable  
Disable  
Enable  
Disable  
Enable  
Off  
Off  
Off  
On  
On  
Off  
Off  
On  
Off  
On  
VrefO1 is all off  
VrefO1 select ACMP2L; output has no buffer; pd come from register [656]  
VrefO1 select ACMP2L; output has buffer; pd come from register [656]  
ACMP2L_Vref  
Datasheet  
25-Feb-2021  
Revision 3.12  
107 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 51: VrefO1 Truth Table(Continued)  
VrefO1  
Source  
VrefO1  
Buffer  
GPIO2  
Analog Mode  
Enable  
Selection Selection  
Function  
Enable  
Buffer  
state  
Output  
switch  
Note  
registers  
[708:707]= 11,  
means enable  
register  
[656]  
registers  
[658:657]  
10  
10  
10  
10  
0
0
1
1
Disable  
Enable  
Disable  
Enable  
Off  
Off  
On  
On  
Off  
On  
Off  
On  
VrefO1 select ACMP2L; output has no buffer; pd come from register [656]  
VrefO1 select ACMP2L; output has buffer; pd come from register [656]  
ACMP3L_Vref  
valid output mode  
11.5 VREF BLOCK DIAGRAM  
registers [3895:3890]  
External Vref  
(GPI7)  
None  
00  
01  
10  
11  
ACMP0H_Vref  
GPIO9_aio_en  
1
0
OP  
pd  
registers [3903:3898]  
Vref Out_0 (GPIO9)  
ACMP1H_Vref  
registers [655:654]  
register [653]  
Temp Sensor  
None  
None  
00  
01  
10  
11  
registers [3911:3906]  
GPIO2_aio_en  
1
0
OP  
pd  
Vref Out_1 (GPIO2)  
ACMP2L_Vref  
registers [3919:3914]  
registers [658:657]  
ACMP3L_Vref  
register [656]  
Figure 74: Voltage Reference Block Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
108 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
11.6 VREF LOAD REGULATION  
Note 1 It is not recommended to use Vref connected to external pin without buffer.  
Note 2 Vref buffer performance is not guaranteed at VDD < 2.7 V.  
330  
320  
310  
300  
290  
280  
270  
260  
250  
240  
VDD=5.5V  
VDD=3.3V  
VDD=2.7V  
I, UA  
Figure 75: Typical Load Regulation, Vref = 320 mV, T = -40 °C to +85 °C, Buffer - Enable  
650  
640  
630  
620  
610  
600  
590  
580  
570  
560  
VDD=5.5V  
VDD=3.3V  
VDD=2.7V  
I, UA  
Figure 76: Typical Load Regulation, Vref = 640 mV, T = -40 °C to +85 °C, Buffer - Enable  
Datasheet  
25-Feb-2021  
Revision 3.12  
109 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
1290  
1280  
1270  
1260  
1250  
1240  
1230  
1220  
1210  
1200  
VDD=5.5V  
VDD=3.3V  
VDD=2.7V  
I, UA  
Figure 77: Typical Load Regulation, Vref = 1280 mV, T = -40 °C to +85 °C, Buffer - Enable  
2030  
2020  
2010  
2000  
1990  
1980  
1970  
1960  
1950  
1940  
1930  
1920  
1910  
VDD=5.5V  
VDD=3.3V  
VDD=2.7V  
I, UA  
Figure 78: Typical Load Regulation, Vref = 2016 mV, T = -40 °C to +85 °C, Buffer - Enable  
Datasheet  
25-Feb-2021  
Revision 3.12  
110 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
12 Clocking  
12.1 GENERAL DESCRIPTION  
The SLG46880/81 has three internal oscillators to support a variety of applications:  
Oscillator0 (2.048 kHz)  
Oscillator1 (2.048 MHz)  
Oscillator2 (25 MHz)  
There are two divider stages for each oscillator that gives the user flexibility for introducing clock signals to connection matrix, as  
well as various other Macrocells. The pre-divider (first stage) for Oscillator allows the selection of /1, /2, /4 or /8 to divide down  
frequency from the fundamental. The second stage divider has an input of frequency from the pre-divider, and outputs one of  
eight different frequencies divided by /1, /2, /3, /4, /8, /12, /24 or /64 on Connection Matrix Input lines [27], [28], and [29]. Please  
see Figure 82 for more details on the SLG46880/81 clock scheme.  
Oscillator2 (25 MHz) has an additional function of 100 ns delayed startup, which can be enabled/disabled by register [525]. This  
function is recommended to use when analog blocks are used along with the Oscillator.  
The Matrix Power-down/Force On function allows switching off or force on the oscillator using an external pin. The Matrix Power-  
down/Force On (Connection Matrix Output [72], [73], [74]) signal has the highest priority. The OSC operates according to the  
Table 52.  
Table 52: Oscillator Operation Mode Configuration Settings  
OSC Enable  
Signal from  
CNT/DLY  
Register:  
Power-Down  
or Force On by  
Matrix Input  
OSC  
Operation  
Mode  
Signal From  
Connection  
Matrix  
Register: Auto  
Power-On or  
Force On  
External Clock  
Selection  
POR  
Macrocells  
0
1
X
1
X
X
X
X
X
X
X
X
OFF  
Internal OSC is  
OFF, logic is ON  
1
1
1
0
0
0
1
1
0
0
1
X
X
X
1
X
X
X
OFF  
ON  
ON  
ON  
CNT/DLY re-  
quires OSC  
1
1
0
0
0
0
X
X
0
0
CNT/DLY does  
not require OSC  
OFF  
Note: The OSC will run only when any macrocell that uses OSC is powered on.  
Datasheet  
25-Feb-2021  
Revision 3.12  
111 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
12.2 OSCILLATOR0 (2.048 KHZ)  
From Connection Matrix  
Output [72]  
Power-down/Force On  
Matrix Output control register [527]  
OSC Power Mode  
register [526]  
2.048 kHz Pre-divided Clock  
PD/FORCE ON  
registers [531:530]  
OSC0  
Auto Power-On  
Force Power-On  
(2.048 kHz) OUT  
0
0
1
WS  
DIV /1 /2 /4 /8  
Pre-divider  
0
1
register [535]  
1
/ 2  
/ 3  
GPI4 Ext. Clock  
2
3
4
5
6
Ext. CLK Sel register [528]  
To Connection Matrix  
Input [22]  
/ 4  
/ 8  
/ 12  
/ 24  
/ 64  
7
registers [534:532]  
Second Stage  
Divider  
Figure 79: Oscillator0 Block Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
112 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
12.3 OSCILLATOR1 (2.048 MHZ)  
From Connection Matrix  
Output [73]  
Power-down/Force On  
Matrix Output control register [505]  
OSC Power Mode  
register [504]  
2.048 MHz Pre-divided Clock  
PD/FORCE ON  
registers [508:507]  
OSC1  
Auto Power-On  
Force Power-On  
(2.048 MHz)OUT  
0
0
1
DIV /1 /2 /4 /8  
Pre-divider  
0
1
GPI1 Ext. Clock  
1
/ 2  
/ 3  
2
3
4
5
6
Ext. CLK Sel register [506]  
To Connection Matrix  
Input [21]  
/ 4  
/ 8  
/ 12  
/ 24  
/ 64  
7
registers [511:509]  
Second Stage  
Divider  
Figure 80: Oscillator1 Block Diagram  
Datasheet  
25-Feb-2021  
Revision 3.12  
113 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
12.4 OSCILLATOR2 (25 MHZ)  
From Connection Matrix  
Output [74]  
Power-down/Force On  
Matrix Output control register [517]  
OSC Power Mode  
register [516]  
25 MHz Pre-divided Clock  
PD/FORCE ON  
registers [521:520]  
OSC2  
(25 MHz)  
Auto Power-On  
OUT  
0
0
Force Power-On  
Startup delay  
1
DIV /1 /2 /4 /8  
Pre-divider  
0
1
register [525]  
1
/ 2  
/ 3  
GPI0 Ext. Clock  
2
3
4
5
6
Ext. CLK Sel register [518]  
To Connection Matrix  
Input [23]  
/ 4  
/ 8  
/ 12  
/ 24  
/ 64  
7
registers [524:522]  
Second Stage  
Divider  
Figure 81: Oscillator2 Block Diagram  
12.5 CLOCK SCHEME  
Each CNT/DLY within Multi-Function macrocell has its own additional clock divider connected to oscillators pre-divider. Available  
dividers are:  
OSC0/1, OSC0/8, OSC0/64, OSC0/512, OSC0/4096, OSC0/32768, OSC0/262144  
OSC1/1, OSC1/8, OSC1/64, OSC1/512  
OSC2/1, OSC2/4  
Datasheet  
25-Feb-2021  
Revision 3.12  
114 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
0
1
25 MHz Pre-divided clock  
Div4  
2
Div8  
3
4
5
6
7
8
CNT/DLY/  
ONESHOT/  
FREQ_DET/  
2.048 MHz Pre-divided clock  
2.048 kHz Pre-divided clock  
Div64  
Div512  
DLY_EDGE_DET  
Div8  
Div64  
CNT overflow  
Div512  
9
Div4096  
Div32768  
Div262144  
10  
11  
12  
13  
14  
15  
CNT4 overflow can be used as the clock  
source for CNT0/DLY0 or DM00  
CNT (x-1) overflow  
from Connection Matrix Out  
(separate for each CNT/DLY  
macrocell)  
CNT0/CNT1/CNT2/CNT3/CNT4  
0
1
2
3
4
5
from Connection Matrix  
Output [82]  
Div4  
from Connection Matrix  
Output [83]  
Div8  
Div64  
Div512  
CNT/DLY/  
ONESHOT/  
FREQ_DET/  
DLY_EDGE_DET  
6
Div8  
Div64  
7
8
CNT overflow  
Div512  
9
Div4096  
Div32768  
Div262144  
10  
11  
12  
13  
14  
15  
DM00_CNT_end can be used as the clock  
source for DM01  
CNT4 overflow  
DM00  
0
Div4  
1
2
Div8  
Div64  
Div512  
3
4
5
6
CNT/DLY/  
ONESHOT/  
FREQ_DET/  
DLY_EDGE_DET  
Div8  
Div64  
7
8
CNT overflow  
Div512  
9
Div4096  
Div32768  
Div262144  
10  
11  
12  
13  
14  
15  
DM00_CNToverflow can be used as the clock source for DM01  
DM01_CNToverflow can be used as the clock source for DM10  
DM10_CNToverflow can be used as the clock source for DM11  
DM11_CNToverflow is not connected to any other macrocell  
DM_(x-1)_cnt_overflow  
DM01/DM10/DM11  
Figure 82: Clock Scheme  
Datasheet  
25-Feb-2021  
Revision 3.12  
115 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
12.6 CRYSTAL OSCILLATOR  
The Crystal OSC provides high precision and stability of the output frequency. GPI5 and GPI4 are input and output, respectively,  
of an inverting amplifier which is configured for use as an On-chip Oscillator, as shown in Figure 84. Either a quartz crystal or a  
ceramic resonator may be used. C1 and C2 should always be equal for both crystals and resonators. The optimal value of the  
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the electromagnetic noise of the  
environment. Refer to Table 53. For the ceramic resonators, the capacitor values given by the manufacturer should be used. It is  
possible to use an external clock source, it must be connected to GPI4. In this case no external components are required.  
The Power-down Mode is paired with temperature sensor, Section 20. If it is enabled for Crystal OSC, it is not available for Temp  
Sensor and vice versa. However, it is possible to enable Power-down Mode for Crystal OSC and Temp Sensor simultaneously.  
register [894]  
POR  
Connection Matrix Output [78]  
PWR ON  
GPI5  
register [895]  
Crystal OSC  
S1  
S0  
GPI4  
To Connection Matrix Input [51]  
Figure 83: Crystal OSC Block Diagram  
C1  
SLG46880/81  
GPI5  
R1  
1M  
Crystal  
GPI4  
R2  
C2  
Figure 84: External Crystal Connection  
Table 53: External Components Selection Table  
f (MHz)  
C1, C2  
33 pF  
22 pF  
15 pF  
10 pF  
R2  
5
5 kΩ  
10  
15  
20  
1 kΩ  
500 Ω  
270 Ω  
12.7 EXTERNAL CLOCKING  
The SLG46880/81 supports several ways to use an external, higher accuracy clock as a reference source for internal opera-  
tions.  
12.7.1 Crystal OSC Mode  
When register [1136] is set to 1, an external crystal can be connected to GPI5 and GPI4 for supplying an accurate clock source.  
See Section 12.6. An external clocking signal on GPI4 can be used in place of the crystal. The high and low limits for crystal fre-  
quency that can be selected are 40 MHz and 32.75 kHz.  
Datasheet  
25-Feb-2021  
Revision 3.12  
116 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
12.7.2 GPI4 Source for Oscillator0 (2.048 kHz)  
When register [528] is set to 1, an external clocking signal on GPI4 will be routed in place of the internal oscillator derived 2.048  
kHz clock source. See Figure 79. The high and low limits for external frequency are 0 MHz and 20 MHz.  
12.7.3 GPI1 Source for Oscillator1 (2.048 kHz)  
When register [506] is set to 1, an external clocking signal on GPI1 will be routed in place of the internal oscillator derived 2.048  
MHz clock source. See Figure 80. The high and low limits for external frequency are 0 MHz and 70 MHz.  
12.7.4 GPI0 Source for Oscillator2 (25 MHz)  
When register [518] is set to 1, an external clocking signal on GPI0 will be routed in place of the internal oscillator derived 25  
MHz clock source. See Figure 81. The high and low limits for external frequency are 0 MHz and 80 MHz.  
12.8 OSCILLATORS POWER-ON DELAY  
OSC enable  
Power-On  
Delay  
CLK  
Figure 85: Oscillator Startup Diagram  
Note 1 OSC power mode: “Auto Power-On”.  
Note 2 “OSC enable” signal appears when any macrocell that uses OSC is powered on.  
Datasheet  
25-Feb-2021  
Revision 3.12  
117 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
900  
850  
800  
750  
700  
650  
600  
550  
500  
2.3  
2.5  
2.7  
3
3.3  
3.6  
4
4.2  
4.5  
5
5.5  
VDD (V)  
Figure 86: Oscillator0 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC0 = 2.048 kHz  
1000  
800  
600  
400  
200  
0
2.3  
2.5  
2.7  
3
3.3  
3.6  
4
4.2  
4.5  
5
5.5  
VDD (V)  
Figure 87: Oscillator1 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC1 = 2.048 MHz  
Datasheet  
25-Feb-2021  
Revision 3.12  
118 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
147  
127  
107  
87  
Start with Delay  
Normal start  
67  
47  
27  
7
2.3  
2.5  
2.7  
3
3.3  
3.6  
4
4.2  
4.5  
5
5.5  
VDD (V)  
Figure 88: Oscillator2 Maximum Power-On Delay vs. VDD at T = 25 °C, OSC2 = 25 MHz  
12.9 OSCILLATORS ACCURACY  
Note: OSC power setting: Force Power-On; Clock to matrix input - enable; Bandgap: turn on by register - enable.  
ꢂ8ꢀ  
ꢂ8ꢅꢄꢃ  
ꢂ8ꢅꢃ  
ꢂ8ꢅꢂꢃ  
ꢀ8ꢁꢄꢃ  
ꢀ8ꢁꢃ  
Fmax @ VDD = (2.5 to 5) V  
Ftyp @ VDD = 3.3 V  
ꢀ8ꢁꢂꢃ  
Fmin @ VDD = (2.5 to 5.5) V  
ꢀ8ꢁ  
Rꢆꢅ  
Rꢇꢅ  
Rꢂꢅ  
Rꢀꢅ  
ꢀꢅ  
ꢂꢅ  
ꢇꢅ  
ꢆꢅ  
ꢃꢅ  
ꢈꢅ  
ꢄꢅ  
ꢉꢅ  
T (C)  
Figure 89: Oscillator0 Frequency vs. Temperature, OSC0 = 2.048 kHz  
Datasheet  
25-Feb-2021  
Revision 3.12  
119 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
ꢄ8ꢅꢂꢃ  
ꢄ8ꢅꢉꢃ  
ꢄ8ꢅꢈꢃ  
ꢄ8ꢅꢃꢃ  
ꢄ8ꢅꢇꢃ  
ꢄ8ꢅꢆꢃ  
ꢄ8ꢅꢄꢃ  
ꢄ8ꢅꢀꢃ  
Fmax @ VDD = 5.0 V  
Fmax @ VDD = 3.3 V  
ꢄ8ꢅꢅꢃ  
Fmax @ VDD = 2.5 V  
Ftyp @ VDD = 3.3 V  
Fmin @ VDD = 5.0 V  
Fmin @ VDD = 3.3 V  
Fmin @ VDD = 2.5 V  
ꢀ8ꢁꢁꢃ  
ꢀ8ꢁꢂꢃ  
Rꢇꢅ  
Rꢆꢅ  
Rꢄꢅ  
Rꢀꢅ  
ꢀꢅ  
ꢄꢅ  
ꢆꢅ  
ꢇꢅ  
ꢃꢅ  
ꢈꢅ  
ꢉꢅ  
ꢂꢅ  
T (C)  
Figure 90: Oscillator1 Frequency vs. Temperature, OSC1 = 2.048 MHz  
25.8  
25.6  
25.4  
25.2  
25  
24.8  
24.6  
24.4  
24.2  
24  
Fmax @ VDD = 5.0 V  
Fmax @ VDD = 3.3 V  
Fmax @ VDD = 2.5 V  
Ftyp @ VDD = 3.3 V  
Fmin @ VDD = 5.0 V  
Fmin @ VDD = 3.3 V  
Fmin @ VDD = 2.5 V  
23.8  
23.6  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
T (C)  
Figure 91: Oscillator2 Frequency vs. Temperature, OSC2 = 25 MHz  
Datasheet  
25-Feb-2021  
Revision 3.12  
120 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
7.5  
2.048 kHz Total Error @ VDD = (2.3 to 5.5) V  
7
6.5  
6
25 MHz Total Error @ VDD = (2.3 to 5.5) V  
2.048 MHz Total Error @ VDD = (2.3 to 5.5) V  
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
T (C)  
Figure 92: Oscillators Total Error vs. Temperature  
Note: For more information see Section 3.6.  
Datasheet  
25-Feb-2021  
Revision 3.12  
121 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
13 Power-On Reset  
The SLG46880/81 has a Power-On Reset (POR) macrocell to ensure correct device initialization and operation of all macrocells  
in the device. The purpose of the POR circuit is to have consistent behavior and predictable results when the VDD power is first  
ramping to the device, and also while the VDD is falling during Power-down. To accomplish this goal, the POR drives a defined  
sequence of internal events that trigger changes to the states of different macrocells inside the device, and finally to the state of  
the IO pins.  
13.1 GENERAL OPERATION  
The SLG46880/81 is guaranteed to be powered down and non-operational when the VDD voltage (voltage on VDD) is less than  
Power-Off Threshold (see in Table 3.4 and Table 7), but not less than -0.6 V. Another essential condition for the chip to be powered  
down is that no voltage higher (Note) than the VDD voltage is applied to any other PIN. For example, if VDD voltage is 0.3 V,  
applying a voltage higher than 0.3 V to any other PIN is incorrect, and can lead to incorrect or unexpected device behavior.  
Note: There is a 0.6 V margin due to forward drop voltage of the ESD protection diodes.  
To start the POR sequence in the SLG46880/81, the voltage applied on the VDD should be higher than the Power-On threshold  
(Note). The full operational VDD range for the SLG46880/81 is 2.3 V to 5.5 V. This means that the VDD voltage must ramp up to  
the operational voltage value, but the POR sequence will start earlier, as soon as the VDD voltage rises to the Power-On threshold.  
After the POR sequence has started, the SLG46880/81 will have a typical Startup Time (see in Table 6 and Table 7) to go through  
all the steps in the sequence, and will be ready and completely operational after the POR sequence is complete.  
Note: The Power-On threshold is defined in Table 3.4 and Table 7.  
To power down the chip the, VDD voltage should be lower than the operational and to guarantee that chip is powered down, it  
should be less than Power-Off Threshold.  
All PINs are in high impedance state when the chip is powered down and while the POR sequence is taking place. The last step  
in the POR sequence releases the IO structures from the high impedance state, at which time the device is operational. The pin  
configuration at this point in time is defined by the design programmed into the chip. Also, as it was mentioned before, the voltage  
on PINs can’t be bigger than the VDD, this rule also applies to the case when the chip is powered on.  
Datasheet  
25-Feb-2021  
Revision 3.12  
122 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
13.2 POR SEQUENCE  
The POR system generates a sequence of signals that enable certain macrocells. The sequence is shown in Figure 93.  
VDD  
t
t
t
t
t
t
t
t
POR_NVM  
(reset for NVM)  
NVM_ready_out  
POR_GPI  
(reset for input enable)  
POR_LUT  
(reset for LUT output)  
POR_CORE  
(reset for DLY/OSC/DFF  
/LATCH/Pipe DLY  
POR_OUT  
(generate low to high to matrix)  
POR_GPO  
(reset for output enable)  
Figure 93: POR Sequence  
As can be seen from Figure 93, after the VDD has started ramping up and crossed the Power-On threshold, first, the on-chip NVM  
memory is reset. Next, the chip reads the data from NVM, and transfers this information to a CMOS LATCH that serves to configure  
each macrocell, and the Connection Matrix which routes signals between macrocells. The third stage causes the reset of the input  
pins, and then to enable them. After that, the LUTs are reset and become active. After LUTs, the Delay cells, OSCs, DFFs,  
LATCHES, and Pipe Delay are initialized. Only after all macrocells are initialized, internal POR signal (POR macrocell output)  
goes from LOW to HIGH (POR_OUT in Figure 93). The last portion of the device to be initialized is the output pins, which transition  
from high impedance to active at this point.  
The typical time that takes to complete the POR sequence varies by device type in the GreenPAK family. It also depends on many  
environmental factors, such as: slew rate, VDD value, temperature, and even will vary from chip to chip (process influence).  
13.3 MACROCELLS OUTPUT STATES DURING POR SEQUENCE  
To have a full picture of SLG46880/81 operation during powering and POR sequence, refer to Figure 94, which describes the  
macrocell output states during the POR sequence.  
First, before the NVM has been reset, all macrocells have their output set to logic LOW (except the output pins which are in high  
impedance state). On the next step, some of the macrocells start initialization: input pins output state becomes LOW; LUTs also  
output LOW. After that input pins are enabled. Next, only LUTs are configured. Then, all other macrocells are initialized. After  
Datasheet  
25-Feb-2021  
Revision 3.12  
123 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
macrocells are initialized, internal POR matrix signal switches from LOW to HIGH. The last are output pins that become active  
and determined by the input signals.  
VDD  
Guaranteed HIGH before POR_GPI  
t
VDD_out  
to matrix  
t
t
Input PIN _out  
to matrix  
Determined by External Signal  
Determined by Input signals  
LUT_out  
to matrix  
t
Programmable Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
t
Determined by initial state  
DFF/LATCH_out  
to matrix  
Determined by Input signals  
Determined by initial value  
settings  
t
t
t
t
Delay_out  
to matrix  
Determined by Input signals  
Starts to detect input edges  
POR_out  
to matrix  
Ext. GPO  
Tri-state  
Determined by input signals  
Output State Unpredictable  
Figure 94: Internal Macrocell States during POR Sequence  
13.3.1 Initialization  
All internal macrocells by default have initial low level. Starting from indicated power-up time of 1.64 V to 2.11 V, macrocells in  
SLG46880/81 are powered on while forced to the reset state. All outputs are in Hi-Z and chip starts loading data from NVM. Then  
the reset signal is released for internal macrocells and they start to initialize according to the following sequence:  
1. Input pins, Pull-up/down.  
2. LUTs.  
3. DFFs, Delays/Counters, Pipe Delay, OSCs, ACMPs.  
4. POR output to matrix.  
5. Output pin corresponds to the internal logic.  
The Vref output pin driving signal can precede POR output signal going high by 3 µs to 5 µs. The POR signal going high indicates  
the mentioned power-up sequence is complete.  
Note: The maximum voltage applied to any pin should not be higher than the VDD level. There are ESD Diodes between pin →  
VDD and pin → GND on each pin. Exceeding VDD results in leakage current on the input pin, and VDD will be pulled up, following  
the voltage on the input pin.  
Datasheet  
25-Feb-2021  
Revision 3.12  
124 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
13.3.2 Power-Down  
VDD (V)  
2 V  
1.49 V  
0.98 V  
1 V Vref Out Signal  
1 V  
Time  
Not guaranteed output state  
Figure 95: Power-Down  
During powerdown, macrocells in SLG46880/81 are powered off after VDD falling down below Power-Off Threshold. Please note  
that during a slow rampdown, outputs can possibly switch state.  
Datasheet  
25-Feb-2021  
Revision 3.12  
125 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
14 Asynchronous State Machine Subsystem  
14.1 ASM SUBSYSTEM OVERVIEW  
The Asynchronous State Machine (ASM) Subsystem is designed to allow the user to create state machines with between 2 to 12  
states. The user has flexibility to define the available states, the available state transitions, and the input signals (a, b, c …) that  
will cause transitions from one state to another state, as shown in Figure 96.  
The ASM Sybsystem can persist in 1 of 12 states at any given time and the ASM Current State can be read via I2C. See Section  
19.6.2 for details.  
The ASM Subsystem includes several discrete macrocells, including the ASM macrocell, four Dynamic Memory (DMx_x) macro-  
cells, three Matrix Interface (MIx) macrocells, and one f(1) Computation Macrocell. These macrocells are designed to work as a  
system for building user defined state machines. More information on each of these various macrocells can be found in the  
following chapters:  
ASM Macrocell – Section 15.  
Dynamic Memory (DM) Macrocells – Section 16.  
f(1) Computation Macrocell – Section 17  
Matrix Interface (MI) Macrocells Section 18.  
.
The ASM Subsystem has a total of 25 digital input signal lines, as shown in Figure 97, which all come from the Connection Matrix  
outputs. Of these 25 digital input signals, 3 are user selectable inputs going directly from the Connection Matrix to the three Matrix  
Interface (MI) macrocells. There are a total of 16 input signals that go to the DMx_x macrocell, four per macrocell. There is 1  
ASM_nReset input that is for driving a state transition in both the ASM macrocell and the f(1) Computation Macrocell to an Initial/  
Reset state. It is possible to use one macrocell only (MI or DM) for state to state transitions. There are 4 digital input signals  
coming from the Connection Matrix to the f(1) Computation Macrocell. There is also 1 dedicated Interrupt input signal to the f(1)  
Computation Macrocell that will halt any active operations and transfer control back to the ASM macrocell.  
There are a total of 8 analog inputs coming from various pins which can be muxed into the positive input for the f(1) Analog  
Comparator inside the f(1) Computation Macrocell. The f(1) Analog Comparator can be re-programmed for analog input source  
and negative input reference settings. The user selections for both positive input signal and negative reference are included as  
part of the information stored in the f(1) Command Register Table. This allows the user to make different analog measurements  
that are state dependent in their analog sources and reference settings.  
The ASM Subsystem has a total of 21 digital output signal lines, as shown in Figure 97. There are a total of 4 output signals which  
go to the Connections Matrix inputs, and from there can be routed to other internal macrocells or pins. The 4 outputs are user  
defined for each of the possible 12 states. There are a total of 8 output signals which go directly to the 8 GPOs. The 8 outputs  
are user defined for each of the possible 12 states. Each of the three macrocells, DM0_0, DM0_1 and f(1) have three output  
signals that go to the Connection Matrix.  
In using this macrocell, the user must take into consideration the critical timing required on all input and output signals. The timing  
waveforms and timing specifications for this macrocell are all measured relative to the input signals (which come into the macrocell  
on the Connection Matrix outputs) and on the outputs from the macrocell (which are direct connections to Connection Matrix  
inputs). The user must consider any delays from other logic and internal chip connections, including IO delays, to insure that  
signals are properly processed, and state transitions are deterministic.  
It is also important to note that the timing for the ASM Subsystem will change based on changes in temperature and system  
voltage. The user design that implements a state machine function must take into consideration, and be tolerant of, this variation  
The GPAK Designer development tools support user designs for the ASM Subsystem at both the physical level and logic level.  
Figure 96 is a representation of the user design at the logical level, and Figure 97 shows the physical resources inside the various  
macrocells in the ASM Subsystem. To best utilize this subsystem, the user must develop a logical representation of their desired  
state machine, as well as a physical mapping of the input and outputs required for the desired functionality.  
Datasheet  
25-Feb-2021  
Revision 3.12  
126 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Off  
a
d
c
Normal  
Speed  
Standby  
Fault  
b
e
f
g
h
High  
Speed  
Figure 96: Asynchronous State Machine State Transitions  
Datasheet  
25-Feb-2021  
Revision 3.12  
127 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Analog Inputs to  
f(1) Computation Macrocell  
ASM Subsystem  
8
1
MI2  
12 State ASM  
Macrocell  
1
MI1  
1
MI0  
4
DM1_0  
Connection  
Matrix  
4
DM1_1  
4
Out  
DM0_0  
4
DM0_1  
1
ASM_nReset  
1
f1_Interrupt  
f(1)  
4
In  
3
3
3
4
Connection Matrix Output RAM Signals  
8
Pin Output RAM Signals  
to GPO Pin  
Outputs  
Figure 97: Connection Matrix to ASM Subsystem  
14.2 ASM SUBSYSTEM INPUT SIGNALS  
The ASM Subsystem has a total of 25 digital input signal lines, as shown in Figure 98, which all come from the Connection Matrix  
outputs. Of these 25 input signals, 3 are user selectable inputs going directly from the Connection Matrix to the three Matrix  
Interface (MI) macrocells. There are a total of 16 input signals that go to the DMx_x macrocell, four per macrocell. There is 1  
ASM_nReset input that is for driving a state transition in both the ASM macrocell and the f(1) Computation Macrocell to an Initial/  
Reset state. There are 4 digital input signals coming from the Connection Matrix to the f(1) Computation Macrocell. There is also  
1 dedicated Interrupt input to the f(1) Computation Macrocell that will halt any active operations and transfer control back to the  
ASM macrocell. Each of the 25 input signals are level sensitive.  
Datasheet  
25-Feb-2021  
Revision 3.12  
128 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
There are a total of 16 digital input signals to theASM Subsystem which are inputs directly to the DM macrocells. These 16 signals  
are shown in Figure 98, highlighted in blue. While there are 4 input signals coming from the Connection Matrix and going to each  
DMx_ x macrocell, there is only 1 output signal from each of these macrocells, which goes directly to the ASM macrocell. There  
are also 3 signal lines that come directly from the Connection Matrix and go to the three Matrix Interface (MI) macrocells which  
can drive state transitions. These signals are shown in Figure 98, highlighted in green. This sets an upper bound on the number  
of transitions that the user can select going out of a particular state to be 7, shown in Figure 99. There is no limitation on the  
number of unique transitions that can be supported going into a particular state, the user can select to have transitions going from  
a state to all other states, shown in Figure 100. Each of these input signals to the ASM macrocell is level sensitive, and active  
high. A high level input will trigger a state transition.  
There are a total of 8 analog inputs coming from various pins which can be muxed into the positive input for the f(1) Analog  
Comparator inside the f(1) Computation Macrocell. These 8 signals are shown in Figure 98, highlighted in pink. The f(1) Analog  
Comparator can be re-programmed for analog input source and negative input reference settings. The user selections for both  
positive input signal and negative reference are included as part of the information stored in the f(1) Command Register Table.  
This allows the user to make different analog measurements that are state dependent in their analog sources and reference  
settings.  
Also, there are 4 digital inputs that can be connected with any Connection Matrix output by the f(1) Computational Macrocell  
commands. These 4 signals are shown in highlighted in light blue.  
The ASM macrocell also has a ASM_nReset input. This input to the ASM macrocell is level sensitive and active low. This signal  
is shown in Figure 98, highlighted in yellow. An active signal on this input will drive an immediate state transition to the user-  
defined Initial/Reset state. The user can choose which state within the ASM Editor inside GPAK Designer will be the reset state.  
There is also 1 dedicated f1_Interrupt input to the f(1) Computation Macrocell that will halt any active operations and transfer  
control back to the ASM macrocell. This signal is shown in Figure 98, also highlighted in yellow.  
Datasheet  
25-Feb-2021  
Revision 3.12  
129 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Analog Inputs to  
f(1) Computation Macrocell  
ASM Subsystem  
8
1
MI2  
12 State ASM  
Macrocell  
1
MI1  
1
MI0  
4
DM1_0  
Connection  
Matrix  
4
DM1_1  
4
Out  
DM0_0  
4
DM0_1  
1
ASM_nReset  
1
f1_Interrupt  
f(1)  
4
In  
3
3
3
4
Connection Matrix Output RAM Signals  
8
Pin Output RAM Signals  
to GPO Pin  
Outputs  
Figure 98: ASM Subsystem Input Signals  
Datasheet  
25-Feb-2021  
Revision 3.12  
130 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
State 1  
State 7  
State 2  
State 0  
State 6  
State 3  
State5  
State 4  
Figure 99: Maximum 7 State Transitions out of a Given State  
State 1  
State 11  
State 2  
State 10  
State 9  
State 3  
State 4  
State 0  
State 8  
State 5  
State 7  
State 6  
Figure 100: Maximum 11 State Transitions into Given State  
14.3 ASM SUBSYSTEM OUTPUT SIGNALS  
The ASM subsystem has a total of 21 output signal lines, as shown in Figure 101.  
There are a total of 4 output signals from the ASM macrocell which go to the Connections Matrix inputs and from there can be  
routed to other internal macrocells or pins. These signals are shown in Figure 101, highlighted in green. The 4 outputs are user  
defined for each of the possible 12 states. The user selection for the output states is held in the Connection Matrix Output RAM.  
There are a total of 8 output signals from the ASM macrocell which go directly to the 8 GPOs. These signals are shown in Figure  
101, highlighted in blue. The 8 outputs are user defined for each of the possible 12 states. The user selection for the output states  
is held in the Pin Output RAM. Each of these GPOs has a single selection bit which defines the GPO input source as either the  
ASM Output RAM signal or the Connection Matrix signal.  
Datasheet  
25-Feb-2021  
Revision 3.12  
131 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Two of the Dynamic Memory macrocells, DM0_0 and DM0_1, can be used as either a resource for generating input signals for  
driving state transitions in the ASM macrocell, or to generate signals for use in other parts of the user design. When used to  
generate signals for purposes other than ASM state transitions, each of these macrocells has three output signals that go to the  
Connection Matrix, and from there can be routed to other internal macrocells or pins. Each of these macrocells has a total of 3  
output signals of this type. These signals are shown in Figure 101, highlighted in yellow.  
The f(1) Computation Macrocell has 3 output signals that go to the Connection Matrix, and from there can be routed to other  
internal macrocells or pins. These signals are shown in Figure 101, highlighted in pink.  
Analog Inputs to  
f(1) Computation Macrocell  
ASM Subsystem  
8
1
MI2  
12 State ASM  
Macrocell  
1
MI1  
1
MI0  
4
DM1_0  
Connection  
Matrix  
4
DM1_1  
4
Out  
DM0_0  
4
DM0_1  
1
ASM_nReset  
1
f1_Interrupt  
f(1)  
4
In  
3
3
3
4
Connection Matrix Output RAM Signals  
8
Pin Output RAM Signals  
to GPO Pin  
Outputs  
Figure 101: ASM Subsystem Input Signals  
Datasheet  
25-Feb-2021  
Revision 3.12  
132 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
14.4 BASIC ASM_SUBSYSTEM TIMING  
The basic state transition timing from input on one of 19 state transition input lines (4 going into each DMx_x and 3 from Connection  
Matrix going directly to the ASM macrocell) to the time when the 4 Connection Matrix Output RAM signals and 8 Pin Output RAM  
signals change is shown in Figure 102 and Figure 103. The time from a valid input signal to the time that there is a valid change  
of state, and valid signals on the 4 Connection Matrix Output RAM signals and 8 Pin Output RAM signals is State Machine Output  
Delay Time (Tst_out_delay).  
At the point in time that the Connection Matrix Output RAM signals and Pin Output RAM signals are changing, the f(1) Computation  
Macrocell is prepared for executing commands coded for the new state, if the user has coded commands to execute. Based on  
the chosen commands, the f(1) Computation Macrocell outputs can change a number of times before the f(1) finishes for the new  
state. The ASM Subsystem will not be ready for the next state transition until the f(1) Computation Macrocell has completed the  
commands for the new state, or until it is reset by asserting the f1_Interrupt input from the Connection Matrix. The period of time  
between the input on one of the 7 inputs to the ASM macrocell and the ASM subsystem being ready for the next state transition  
input is State Machine Sequential Delay Time (Tst_sequential_delay).  
From the input on one of 19 state transition input lines, there is a delay before the outputs are latched from the DM0_0 and DM0_1  
macrocells, noted as DM Connection Matrix Output Delay Time (Tst_dmlatch_delay).  
During state transitions, there will be no change in output levels on other states than the one state going active→inactive and the  
other state going inactive→active  
a
State 0  
State 1  
Figure 102: State Transition  
Datasheet  
25-Feb-2021  
Revision 3.12  
133 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Tst_output_delay  
Tst_sequential_delay  
Detect inputs for  
next state transition  
ASM Input (a)  
ASM Pin Output RAM <7:0>  
State 0  
State 0  
State 1  
State 1  
ASM Connection Matrix Output RAM<3:0>  
Tst_dmlatch_delay  
KEEP  
F(1) Output  
(to matrix)  
KEEP  
DM Output  
(to matrix)  
State 0  
KEEP  
State 1  
(the output data will be kept  
if DM function is not used)  
Figure 103: State Transition Timing  
14.5 ASM POWER CONSIDERATIONS  
A benefit of the asynchronous nature of this macrocell is that it will consume power only during state transitions. Shown in Figure  
104 and Figure 105, the current consumption of the macrocell will be a fraction of a µA between state transitions, and will rise  
only during state transitions. This is assuming that the DLY/CNT inside each DMx_x macrocells are also in-active. See Table 10  
to find average current during state transitions.  
a
State 0  
State 1  
Figure 104: State Transition  
Datasheet  
25-Feb-2021  
Revision 3.12  
134 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Tst_output_delay  
Tst_sequential_delay  
Detect inputs for  
next state transition  
ASM Input (a)  
ASM Pin Output RAM <7:0>  
State 0  
State 0  
State 1  
State 1  
ASM Connection Matrix Output RAM<3:0>  
Tst_dmlatch_delay  
KEEP  
KEEP  
F(1) Output  
(to matrix)  
KEEP  
DM Output  
(to matrix)  
State 0  
State 1  
Average Active ASM Power  
Sub ΞA Inactive Power Consumption  
(Assumes that the DLY/CNT inside each  
DMx_x is also inactive)  
ASM Power Consumption  
Figure 105: State Transition Timing and Power Consumption  
14.6 ASYNCHRONOUS STATE MACHINES VS. SYNCHRONOUS STATE MACHINES  
It is important to note that this macrocell is designed for asynchronous operation, which means the following:  
1. No clock source is needed, it reacts only to input signals.  
2. The input signals do not have to be synchronized to each other, the macrocell will react to the earliest valid signal for state  
transition.  
3. This macrocell does not have traditional set-up and hold time specifications which are related to incoming clock, as this  
macrocell has no clock source.  
4. The macrocell only consumes power while in state transition.  
14.7 ASM SPECIAL CASE TIMING CONSIDERATIONS  
14.7.1 State Transition Pulse Input Timing  
All inputs to the ASM macrocell are level sensitive. If the input to the state machine macrocell for a state transition is a pulse,  
there is a minimum pulse width on the input to the state machine macrocell (as measured at the matrix input to the macrocell)  
which is guaranteed to result in a state transition shown in Figure 106 and Figure 107. This pulse width is defined by the State  
Machine Input Pulse Acceptance Time (Tst_pulse). If a pulse width that is shorter than Tst_pulse is input to the state machine  
macrocell, it is indeterminate whether the state transition will happen or not. If a pulse that is rejected (invalid due to the pulse  
Datasheet  
25-Feb-2021  
Revision 3.12  
135 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
width being narrower than the guaranteed minimum of Tst_pulse), this will not stop a valid pulse on another state transition input  
that does meet minimum pulse width.  
a
State 0  
State 1  
Figure 106: State Transition  
Tst_output_delay  
Tst_sequential_delay  
Detect inputs for  
next state transition  
ASM Input (a)  
Tst_pulse  
Tst_pulse  
ASM Pin Output RAM <7:0>  
State 0  
State 0  
State 1  
State 1  
ASM Connection Matrix Output RAM<3:0>  
Tst_dmlatch_delay  
KEEP  
KEEP  
F(1) Output  
(to matrix)  
State 0  
KEEP  
State 1  
DM Output  
(to matrix)  
(the output data will be kept  
if DM function is not used)  
Figure 107: State Transition Pulse Input Timing  
14.7.2 State Transition Competing Input Timing  
There will be situations where two input signals can be valid inputs that will drive two different state transitions from a given state.  
In that sense, the two signals are “competing” (signals a and b in Figure 108), and the signal that arrives sooner should drive the  
state transition that will “win”, or drive the state transition. If one signal arrives Tst_comp before the other one, it is guaranteed to  
win, and the state transition that it codes for will be taken, as shown in Figure 109. If the two signals arrive within Tst_comp of each  
Datasheet  
25-Feb-2021  
Revision 3.12  
136 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
other, it will be indeterminate which state transition will win, but one of the transitions will take place as long as the winning signal  
satisfies the pulse width criteria described in the paragraph above, as shown in Figure 110.  
a
b
State 0  
State 1  
State 2  
Figure 108: State Transition - Competing Inputs  
Tst_output_delay  
Tst_sequential_delay  
Detect inputs for  
ASM Input (a)  
next state transition  
ASM Input (b)  
Tst_comp  
State 0  
State 1 or 2  
State 1 or 2  
ASM Pin Output RAM <7:0>  
ASM Connection Matrix Output RAM<3:0>  
State 0  
Tst_dmlatch_delay  
F(1) Output  
(to matrix)  
KEEP  
KEEP  
State 0  
KEEP  
State 1 or 2  
DM Output  
(to matrix)  
(the output data will be kept  
if DM function is not used)  
Figure 109: State Transition Timing - Competing Inputs Indeterminate  
Datasheet  
25-Feb-2021  
Revision 3.12  
137 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Tst_output_delay  
Tst_sequential_delay  
Detect inputs for  
next state transition  
ASM Input (a)  
ASM Input (b)  
Tst_comp  
State 0  
State 0  
State 1  
State 1  
ASM Pin Output RAM <7:0>  
ASM Connection Matrix Output RAM<3:0>  
Tst_dmlatch_delay  
F(1) Output  
(to matrix)  
KEEP  
KEEP  
State 0  
KEEP  
State 1  
DM Output  
(to matrix)  
(the output data will be kept  
if DM function is not used)  
Figure 110: State Transition Timing - Competing Inputs Determinable  
14.7.3 ASM State Transition Sequential Timing  
It is possible to have a valid input signal for a transition out from a particular state be active before the state is active. If this is the  
case, the macrocell will only stay in that particular state for Tst_sequential_delay time before making the transition to the next state.  
An example of this sequential behavior is shown in Figure 111 and the associated timing is shown in Figure 112.  
a
b
State 0  
State 1  
State 2  
Figure 111: State Transition - Sequential  
Datasheet  
25-Feb-2021  
Revision 3.12  
138 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Tst_output_delay  
Tst_sequential_delay  
Tst_output_delay  
Tst_sequential_delay  
ASM Input (a)  
ASM Input (b)  
State 0  
State 1  
State 1  
State 2  
State 2  
ASM Pin Output RAM <7:0>  
ASM Connection Matrix  
Output RAM<3:0>  
State 0  
Tst_dmlatch_delay  
Tst_dmlatch_delay  
F(1) Output  
(to matrix)  
KEEP  
KEEP  
KEEP  
DM Output  
(to matrix)  
State 0  
State 1  
State 2  
KEEP  
KEEP  
Figure 112: State Transition - Sequential Timing  
14.7.4 State Transition Closed Cycling  
It is possible to have a closed cycle of state transitions that will run continuously, if there are valid inputs that are active at the  
same time. The rate at which the state transitions will take place is determined by Tst_sequential_delay, which determines the timing  
from one state transition signal that is accepted (and causes a state transition) to the ASM Subsystem being ready for the next  
input signal. The example shown in Figure 113 involves cycling between two states, but any number of two – twelve states can  
be included in state transition closed cycling of this nature. Figure 114 shows the associated timing for closed cycling.  
a
State 0  
State 1  
b
Figure 113: State Transition - Closed Cycling  
Datasheet  
25-Feb-2021  
Revision 3.12  
139 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Tst_output_delay  
Tst_sequential_delay  
Tst_output_delay  
Tst_sequential_delay  
Tst_output_delay  
Tst_sequential_delay  
ASM Input (a)  
ASM Input (b)  
State 0  
State 1  
State 1  
State 0  
State 0  
State 1  
State 1  
ASM Pin Output RAM <7:0>  
ASM Connection Matrix  
Output RAM<3:0>  
State 0  
Tst_dmlatch_delay  
Tst_dmlatch_delay  
Tst_dmlatch_delay  
F(1) Output  
(to matrix)  
KEEP  
KEEP  
KEEP  
KEEP  
DM Output  
(to matrix)  
State 0  
KEEP  
State 1  
KEEP  
State 0  
KEEP  
State 1  
Figure 114: State Transition - Closed Cycling Timing  
Datasheet  
25-Feb-2021  
Revision 3.12  
140 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
15 Asynchronous State Machine Macrocell  
15.1 ASYNCHRONOUS STATE MACHINE OVERVIEW  
The Asynchronous State Machine macrocell is one of several macrocells in the Asynchronous State Machine Subsystem, and  
it’s specific role is to hold one active state at a time, and to facility user defined state transitions in a fast and power efficient  
manner. This macrocell is designed to allow the user to create state machines with between 2 to 12 states. When combined with  
the other macrocells in the ASM subsystem [four Dynamic Memory (DMx_x) macrocells, three Matrix Interface (MIx) macrocells,  
and one f(1) Computation Macrocell], the user has flexibility to define the available states, the available state transitions, and the  
input signals (a, b, c …) that will cause transitions from one state to another state, as shown in the example in Figure 115.  
The ASM macrocell has a total of 8 input signal lines, as shown in Figure 116, which come from a combination of three Matrix  
Interface (MI) macrocell outputs and DM macrocell outputs. Of these 8 inputs, 3 are user selectable inputs coming from the three  
Matrix Interface (MI) macrocells (one per macrocell) to the ASM macrocell. There are also 4 inputs that come from the DMx_x  
macrocells (one per macrocell). There is 1 ASM_nReset input that is for driving a state transition in the ASM macrocell to a user  
defined Initial/Reset state.  
The ASM macrocell has a total of 12 output signal lines, as shown in Figure 117. There are a total of 4 output signals which go  
to the Connections Matrix inputs, and from there can be routed to other internal macrocells or pins. The 4 output signals are user  
defined for each of the possible 12 states. There are a total of 8 output signals which go directly to the 8 GPOs. The 8 outputs  
are user defined for each of the possible 12 states.  
In using this macrocell, the user must take into consideration the critical timing required on all input and output signals. The timing  
waveforms and timing specifications for this macrocell are all measured relative to the input signals (which come into the macrocell  
on the Connection Matrix outputs) and on the outputs from the macrocell (which are direct connections to Connection Matrix  
inputs). The user must consider any delays from other logic and internal chip connections, including IO delays, to insure that  
signals are properly processed, and state transitions are deterministic.  
It is also important to note that the timing for the ASM Subsystem will change based on changes in temperature and system  
voltage. The user design that implements a state machine function must take into consideration, and be tolerant of this variation  
The GPAK Designer development tools support user designs for the ASM macrocell at both the physical level and logic level.  
Figure 116 is a representation of the user design at the logical level, and Figure 116 shows the physical resources inside the  
various macrocells in the ASM Subsystem. To best utilize this subsystem, the user must develop a logical representation of their  
desired state machine, as well as a physical mapping of the input and outputs required for the desired functionality.  
Off  
a
d
c
Normal  
Speed  
Standby  
Fault  
b
e
f
g
h
High  
Speed  
Figure 115: Asynchronous State Machine State Transitions  
Datasheet  
25-Feb-2021  
Revision 3.12  
141 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
State  
Dependent  
Memory  
Connection Matrix  
Pin Output  
RAM  
Output RAM  
(12x4)  
ASM State  
Holding DFFs  
from DM  
Macrocells  
(12x8)  
DM0_0  
DM0_1  
DM1_0  
DM1_1  
State 0  
State 0  
State 0  
State 1  
State 2  
State 3  
State 4  
State 5  
State 6  
State 7  
State 8  
State 9  
State 10  
State 11  
Output Bits (4)  
Output Bits (8)  
State 1  
Output Bits (4)  
State 1  
Output Bits (8)  
State 2  
Output Bits (4)  
State 2  
Output Bits (8)  
State 3  
Output Bits (4)  
State 3  
Output Bits (8)  
State 4  
Output Bits (4)  
State 4  
Output Bits (8)  
ASM  
Input  
Matrix  
State 5  
Output Bits (4)  
State 5  
Output Bits (8)  
from MI  
Macrocell  
State 6  
Output Bits (4)  
State 6  
Output Bits (8)  
MI0  
MI1  
MI2  
State 7  
Output Bits (4)  
State 7  
Output Bits (8)  
State 8  
Output Bits (4)  
State 8  
Output Bits (8)  
State 9  
Output Bits (4)  
State 9  
Output Bits (8)  
State 10  
Output Bits (4)  
State 10  
Output Bits (8)  
State 11  
Output Bits (4)  
State 11  
Output Bits (8)  
from Connection  
Matrix  
ASM_nReset  
to Connection  
Matrix  
to GPO Pin  
Outputs  
Figure 116: 12 State ASM Macrocell  
15.2 ASM MACROCELL INPUT SIGNALS  
The ASM macrocell has a total of 8 input signal lines, as shown in Figure 116, which come from a combination of Connection  
Matrix outputs and DM macrocell outputs.  
There are 3 user selectable input signals that come from the MIx macrocells (one per macrocell) to the ASM macrocell. These  
signals are shown in Figure 118, highlighted in green. Each of these input signals are level sensitive and active high. A high level  
signal on any of these inputs can be enabled to drive a state transition, depending on the coding in the ASM Input Matrix.  
Datasheet  
25-Feb-2021  
Revision 3.12  
142 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
There are 4 input signals that come from the DMx_x macrocells (one per macrocell). These signals are shown in Figure 118,  
highlighted in blue. Each of these input signals are level sensitive and active high. A high level signal on any of these inputs can  
be enabled to drive a state transition, depending on the coding in the ASM Input Matrix.  
There is 1 ASM_nReset input that is for driving a state transition in the ASM macrocell to an user defined Initial/Reset state. This  
signal is shown in Figure 118, highlighted in yellow. This input signal is level sensitive and active low.  
State  
Dependent  
Memory  
Connection Matrix  
Output RAM  
(12x4)  
Pin Output  
RAM  
ASM State  
Holding DFFs  
from DM  
Macrocells  
(12x8)  
DM0_0  
DM0_1  
DM1_0  
DM1_1  
State 0  
State 0  
State 0  
State 1  
State 2  
State 3  
State 4  
State 5  
State 6  
State 7  
State 8  
State 9  
State 10  
State 11  
Output Bits (4)  
Output Bits (8)  
State 1  
Output Bits (4)  
State 1  
Output Bits (8)  
State 2  
Output Bits (4)  
State 2  
Output Bits (8)  
State 3  
Output Bits (4)  
State 3  
Output Bits (8)  
State 4  
Output Bits (4)  
State 4  
Output Bits (8)  
ASM  
Input  
Matrix  
State 5  
Output Bits (4)  
State 5  
Output Bits (8)  
from MI  
Macrocell  
State 6  
Output Bits (4)  
State 6  
Output Bits (8)  
MI0  
MI1  
MI2  
State 7  
Output Bits (4)  
State 7  
Output Bits (8)  
State 8  
Output Bits (4)  
State 8  
Output Bits (8)  
State 9  
Output Bits (4)  
State 9  
Output Bits (8)  
State 10  
Output Bits (4)  
State 10  
Output Bits (8)  
State 11  
Output Bits (4)  
State 11  
Output Bits (8)  
from Connection  
Matrix  
ASM_nReset  
to Connection  
Matrix  
to GPO Pin  
Outputs  
Figure 117: ASM Macrocell Input Signals  
Datasheet  
25-Feb-2021  
Revision 3.12  
143 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
15.2.1 ASM Macrocell Output Signals  
The ASM macrocell has a total of 12 output signal lines, as shown in Figure 118.  
There are a total of 4 output signals which go to the Connections Matrix inputs, and from there can be routed to other internal  
macrocells or pins. These signals are shown in Figure 118, highlighted in green. The 4 outputs are user defined for each of the  
possible 12 states. The user defined values for these outputs is stored in the Connection Matrix Output RAM which is 12 x 4 in  
size (12 states x 4 outputs), for a total of 48 bits.  
There are a total of 8 output signals which go directly to the 8 GPOs. These signals are shown in Figure 118, highlighted in blue.  
The 8 outputs are user defined for each of the possible 12 states. The user defined values for these outputs is stored in the Con  
nection Matrix Output RAM which is 12 x 8 in size (12 states x 8 outputs), for a total of 96 bits. Each of the 8 GPOs has an inter  
-
-
nal mux that will either accept a signal from the outputs defined here, or directly from a Connection Matrix output. This mux in  
each GPO is under control of a register bit.  
Datasheet  
25-Feb-2021  
Revision 3.12  
144 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
State  
Dependent  
Memory  
Connection Matrix  
Pin Output  
RAM  
Output RAM  
(12x4)  
ASM State  
Holding DFFs  
from DM  
Macrocells  
(12x8)  
DM0_0  
DM0_1  
DM1_0  
DM1_1  
State 0  
State 0  
State 0  
State 1  
State 2  
State 3  
State 4  
State 5  
State 6  
State 7  
State 8  
State 9  
State 10  
State 11  
Output Bits (4)  
Output Bits (8)  
State 1  
Output Bits (4)  
State 1  
Output Bits (8)  
State 2  
Output Bits (4)  
State 2  
Output Bits (8)  
State 3  
Output Bits (4)  
State 3  
Output Bits (8)  
State 4  
Output Bits (4)  
State 4  
Output Bits (8)  
ASM  
Input  
Matrix  
State 5  
Output Bits (4)  
State 5  
Output Bits (8)  
from MI  
Macrocell  
State 6  
Output Bits (4)  
State 6  
Output Bits (8)  
MI0  
MI1  
MI2  
State 7  
Output Bits (4)  
State 7  
Output Bits (8)  
State 8  
Output Bits (4)  
State 8  
Output Bits (8)  
State 9  
Output Bits (4)  
State 9  
Output Bits (8)  
State 10  
Output Bits (4)  
State 10  
Output Bits (8)  
State 11  
Output Bits (4)  
State 11  
Output Bits (8)  
from Connection  
Matrix  
ASM_nReset  
to Connection  
Matrix  
to GPO Pin  
Outputs  
Figure 118: ASM Macrocell Output Signals  
15.3 ASM LOGICAL VS. PHYSICAL DESIGN  
A successful design with the ASM macrocell must include both the logic level design, as well as the physical level design. The  
GPAK Designer development software support user designs for the ASM macrocell at both the logic level and physical level.  
The logic level design of the user defined state machine takes place inside the ASM Editor. In the ASM Editor, the user can  
select and name states, define and name allowed state transitions, define the Initial/Reset state, and define the output values for  
Datasheet  
25-Feb-2021  
Revision 3.12  
145 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
the 8 outputs in the Pin Output RAM and 4 outputs in the Connection Matrix Output RAM. The physical level design takes place  
in the general GPAK Designer window, and here the user makes connections for the sources for ASM input signals, as well as  
making connections for destinations for ASM output signals.  
Datasheet  
25-Feb-2021  
Revision 3.12  
146 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
16 Dynamic Memory Macrocell  
16.1 DYNAMIC MEMORY MACROCELL OVERVIEW  
The ASM Sub-System includes several discrete macrocells, including the ASM macrocell, four Dynamic Memory (DMx_x) mac  
-
rocells, and one f(1) Computation Macrocell. These macrocells are designed to work as a system for building user defined state  
machines.  
The Dynamic Memory (DM) macrocells have the characteristic that they can change internal configuration characteristics and  
their connections to the Connection Matrix based on the current state of the State Machine (SM) macrocell. This is accomplished  
by making different memory register bit settings contained within the macrocell active, based on the current active state of the  
SM. This allows the user to “repurpose” the resources inside these macrocells to match the circuit needs in various states.  
There are two different types of DM macrocells, which vary slightly in the resources available inside the DM macrocell, as well as  
the connectivity to the Connection Matrix. The SLG46880/81 has a total of four DM macrocells. DM0_0 and DM0_1 have the  
same structure and resources as each other, and DM1_0 and DM1_1 also have the same structure and resources as each other.  
The DM0_x macrocells include all the functionality of the DM1_x macrocells, but they also have an output control capability, which  
is optimized for using the output of this macrocell to drive IO pin output states though the Connection Matrix. The DM CNT included  
in the DM0_x macrocells has more operating modes than the equivalent structure in the DM1_x macrocells.  
Each DM macrocell has a DMx_x Configuration Register Table, which is a bank of 6 DMx_x Configuration Registers. The bits in  
these registers hold user selections which define all functional aspects of the behavior for the DM macrocell, including input  
connections from the Connection Matrix, DM LUT settings, DM CNT settings, and settings of muxing internal to the DM macrocell.  
The fact that there are 6 Configuration Registers means that there can only be a total of six unique configurations for each DMx_x  
macrocell. There are a total of twelve states, which means that the user can either re-use the configuration coded in a particular  
DMx_x Operating Mode Register in more than one state, or not use some DMx_x macrocells in some states.  
Each DM macrocell has a DMx_x Configuration Selection Table, which is a bank of 12 Configuration Selection Registers, one for  
each state of the State Machine macrocell. The bits in these registers hold the user’s selection of DM functional behavior, by  
mapping to a particular selection in the Configuration Register Table, based on the current state of the State Machine macrocell.  
Datasheet  
25-Feb-2021  
Revision 3.12  
147 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
16.2 DM0_0 AND DM0_1 MACROCELL ARCHITECTURE  
DMx Configuration Selection Table  
ASM 12 states  
to 3 bits output  
mapping table  
3
12  
ASM 12 states  
to 2 bits output  
mapping table  
12  
2
from ASM_state  
from ASM_state  
DMx Configuration Register Table  
000  
001  
010  
011  
100  
101  
110  
111  
Not Used  
DM0_x Config. Register0[55:0]  
DM0_x Config. Register5[55:0]  
Not Used  
DM0_0 and DM0_1  
Output to  
ASM Input  
Matrix  
8 registers  
from  
Connection  
Matrix  
Output  
Control  
1 register  
matrix_out  
matrix_out  
matrix_out  
3-bitDM  
LUT  
4 registers  
S1  
S0  
OUT0  
OUT1  
OUT2  
2-bitDM  
LUT  
1 register  
18 registers  
from  
Connection  
Matrix  
Outputs to  
Connection  
Matrix  
S1  
S0  
8-bit DLY/  
Edge Detect  
matrix_out  
00: all outputs are kept  
01: DMOut bypass to OUT0,  
others are kept  
10: DMOut bypass to OUT1,  
others are kept  
11: DMOut bypass to OUT2,  
others are kept  
Supported Modes: Dly/Counter/One Shot/  
Freq. Detect/Edge Detect/Reset Counter  
Figure 119: DM0_0/DM0_1  
Datasheet  
25-Feb-2021  
Revision 3.12  
148 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
16.3 DM1_0 AND DM1_1 MACROCELL ARCHITECTURE  
DMx Configuration Selection Table  
12  
3
ASM 12 states to 3 bits  
output mapping table  
from ASM_state  
DMx Configuration Register Table  
000  
001  
010  
011  
100  
101  
110  
111  
Not Used  
DM1_x Config. Register0[55:0]  
DM1_x Config. Register5[55:0]  
Not Used  
DM1_0 and DM1_1  
8 registers  
from  
Connection  
Matrix  
1 register  
matrix_out  
matrix_out  
matrix_out  
3-bit DM  
LUT  
4 registers  
S1  
S0  
Output  
to ASM  
Input  
Matrix  
Output  
Control  
2-bit DM  
LUT  
1 register  
18 registers  
from  
Connection  
Matrix  
S1  
S0  
8-bit DLY/  
Edge Detect  
matrix_out  
Supported Modes: Dly/Counter/One Shot/  
Freq. Detect/Edge Detect/Reset Counter  
Figure 120: DM1_0/DM1_1  
Datasheet  
25-Feb-2021  
Revision 3.12  
149 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
16.4 DMX_X MACROCELL INPUT SIGNALS  
Each DMx_x macrocell has 4 digital input signals coming from the Connection Matrix and from there can be routed to other internal  
macrocells or pins. These 4 signals are shown in Figure 121 and Figure 122, highlighted in blue.  
DMx Configuration Selection Table  
ASM 12 states  
to 3 bits output  
mapping table  
3
12  
ASM 12 states  
to 2 bits output  
mapping table  
2
12  
from ASM_state  
from ASM_state  
DMx Configuration Register Table  
000  
001  
010  
011  
100  
101  
110  
111  
Not Used  
DM0_x Config. Register0[55:0]  
DM0_x Config. Register5[55:0]  
Not Used  
DM0_0 and DM0_1  
Output to  
ASM Input  
Matrix  
8 registers  
from  
Connection  
Matrix  
Output  
Control  
1 register  
matrix_out  
3-bit DM  
LUT  
4 registers  
matrix_out  
matrix_out  
S1  
S0  
OUT0  
OUT1  
OUT2  
2-bitDM  
LUT  
1 register  
18 registers  
from  
Connection  
Matrix  
Outputs to  
Connection  
Matrix  
S1  
S0  
8-bit DLY/  
Edge Detect  
matrix_out  
00: all outputs are kept  
01: DMOut bypass to OUT0,  
others are kept  
10: DMOut bypass to OUT1,  
others are kept  
11: DMOut bypass to OUT2,  
others are kept  
Supported Modes: Dly/Counter/One Shot/  
Freq. Detect/Edge Detect/Reset Counter  
Figure 121: DM0_0/DM0_1 Inputs  
Datasheet  
25-Feb-2021  
Revision 3.12  
150 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
DMx Configuration Selection Table  
12  
3
ASM 12 states to 3 bits  
output mapping table  
from ASM_state  
DMx Configuration Register Table  
000  
001  
010  
011  
100  
101  
110  
111  
Not Used  
DM1_x Config. Regsiter0[55:0]  
DM1_x Config. Register5[55:0]  
Not Used  
DM1_0 and DM1_1  
8 registers  
from  
Connection  
Matrix  
1 register  
matrix_out  
matrix_out  
matrix_out  
3-bit DM  
LUT  
4 registers  
S1  
S0  
Output  
to ASM  
Input  
Matrix  
Output  
Control  
2-bit DM  
LUT  
1 register  
18 registers  
from  
Connection  
Matrix  
S1  
S0  
8-bit DLY/  
Edge Detect  
matrix_out  
Supported Modes: Dly/Counter/One Shot/  
Freq. Detect/Edge Detect/Reset Counter  
Figure 122: DM1_0/DM1_1 Inputs  
Datasheet  
25-Feb-2021  
Revision 3.12  
151 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
16.5 DMX_X MACROCELL OUTPUT SIGNALS  
Each DMx_ x macrocell has 1 digital output signal, which goes directly to the ASM Input Matrix inside the ASM Macrocell. This  
signal is shown in Figure 123 and Figure 124, highlighted in blue.  
Additionally, the DM0_0 and DM0_1 Macrocells each have 3 digital output signals which go to the Connection Matrix and from  
there can be routed to other internal macrocells or pins. These 3 signals are shown in Figure 123, highlighted in green.  
DMx Configuration Selection Table  
ASM 12 states  
to 3 bits output  
mapping table  
3
12  
ASM 12 states  
to 2 bits output  
mapping table  
2
12  
from ASM_state  
from ASM_state  
DMx Configuration Register Table  
000  
001  
010  
011  
100  
101  
110  
111  
Not Used  
DM0_x Config. Register0[55:0]  
DM0_x Config. Register5[55:0]  
Not Used  
DM0_0 and DM0_1  
Output to  
ASM Input  
Matrix  
8 registers  
from  
Connection  
Matrix  
Output  
Control  
1 register  
matrix_out  
matrix_out  
matrix_out  
3-bit DM  
LUT  
4 registers  
S1  
S0  
OUT0  
OUT1  
OUT2  
2-bitDM  
LUT  
1 register  
18 registers  
from  
Connection  
Matrix  
Outputs to  
Connection  
Matrix  
S1  
S0  
8-bit DLY/  
Edge Detect  
matrix_out  
00: all outputs are kept  
01: DMOut bypass to OUT0,  
others are kept  
10: DMOut bypass to OUT1,  
others are kept  
11: DMOut bypass to OUT2,  
others are kept  
Supported Modes: Dly/Counter/One Shot/  
Freq. Detect/Edge Detect/Reset Counter  
Figure 123: DM0_0/DM0_1 Outputs  
Datasheet  
25-Feb-2021  
Revision 3.12  
152 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
DMx Configuration Selection Table  
12  
3
ASM 12 states to 3 bits  
output mapping table  
from ASM_state  
DMx Configuration Register Table  
000  
001  
010  
011  
100  
101  
110  
111  
Not Used  
DM1_x Config. Register0[55:0]  
DM1_x Config. Register5[55:0]  
Not Used  
DM1_0 and DM1_1  
8 registers  
from  
Connection  
Matrix  
1 register  
matrix_out  
matrix_out  
matrix_out  
3-bit DM  
LUT  
4 registers  
S1  
S0  
Output  
to ASM  
Input  
Matrix  
Output  
Control  
2-bit DM  
LUT  
1 register  
18 registers  
from  
Connection  
Matrix  
S1  
S0  
8-bit DLY/  
Edge Detect  
matrix_out  
Supported Modes: Dly/Counter/One Shot/  
Freq. Detect/Edge Detect/Reset Counter  
Figure 124: DM1_0/DM1_1 Outputs  
Datasheet  
25-Feb-2021  
Revision 3.12  
153 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
17 f(1) Computation Macrocell  
17.1 F(1) COMPUTATION MACROCELL OVERVIEW  
The f(1) Computation Macrocell consists of a specialized state machine which is optimized for simple data manipulation activities  
on single data bit values. The operation of this macrocell can be initiated whenever the ASM Macrocell enters a new state, and  
can execute a string of up to 12 commands for loading and storing 1 bit data, as well as doing simple logical functions such as  
ANDs, ORs, and XORs.  
The only time the f(1) Computation Macrocell will begin to execute instructions is when the ASM Macrocell first enters a new state.  
At that point in time, the f(1) Computation Macrocell will execute the user selected commands, if any, that are associated with that  
particular ASM state. When the f(1) Computation Macrocell completes the commands, it will then relinquish control back to the  
ASM Macrocell. During the time that the f(1) Computation Macrocell is active, there can be no activity in the ASM macrocell (i.e.,  
the ASM Macrocell is prevented from any state transition during the time when the f(1) Macrocell is active).  
The f(1) Computation Macrocell has two digital inputs, ASM_nReset and f1_Interupt. An active signal on either of these inputs  
will immediately halt any command execution for the f(1) Computation Macrocell, and will immediately relinquish control back to  
the ASM macrocell.  
The f(1) Command Register Table has 4 registers, each of which holds a string of up to 12 commands to run when the f(1)  
Computation Macrocell is initiated. These 4 registers allow for 4 different command strings that the user can choose from. The  
f(1) Command Selection Table has 12 entries (one per ASM state), which allow the user to select which of the f(1) Command  
Registers will be used upon entry into each state. The user can also select that no commands are used in a particular state (one  
of the selection options for each entry in the f(1) Command Selection Table), in which case the f(1) Computation Macrocell is  
completely bypassed upon entry to that particular state.  
There are a total of 8 analog inputs coming from various pins which can be muxed into the positive input for the f(1) Analog  
Comparator inside the f(1) Computation Macrocell. The f(1) Analog Comparator can be re-programmed for analog input source  
and negative input reference settings. The user selections for both positive input signal and negative reference are included as  
part of the information stored in the f(1) Command Register Table. This allows the user to make different analog measurements  
that are state dependent in their analog sources and reference settings.  
This macrocell also includes a f(1) Memory Stack, which is 1 bit wide by 16 deep memory which is organized as a stack, and can  
serve as a data source or data destination for the commands running on the macrocell. LOADx commands will push data down  
into the stack. OUTx commands will pop data off the stack, and send to the contents of the Top-Of-Stack to one of three outputs  
of the f(1) macrocell to the Connection Matrix. The contents of this memory are not changed during ASM state transitions, and  
are only changed by the commands running inside the f(1) Computation Macrocell itself. The initial memory stack values are  
loaded from registers [3279:3264].  
Datasheet  
25-Feb-2021  
Revision 3.12  
154 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
17.2 F(1) COMPUTATION MACROCELL ARCHITECTURE  
f(1) Command Selection Table  
12  
3
ASM 12 states to 3 bits  
output mapping table  
from ASM_state  
f(1) Command Register Table  
000  
001  
010  
011  
100  
101  
110  
111  
None  
Register0[111:0]  
Register1[111:0]  
Register2[111:0]  
Register3[111:0]  
None  
None  
None  
From Connection  
Matrix Output  
4
f(1) Computation Macrocell  
S0  
S0  
4
GPO8  
GPIO9  
GPI7  
S0  
S1  
S2  
S3  
S0  
S0  
GPI6  
ACMP4F  
S0  
S1  
f(1) CMD Configuration  
4
f(1) State  
Machine  
Function  
+
-
ACMP4F_out  
S1  
GPIO1  
GPIO0  
GPO0  
GPO7  
To Connection  
Matrix Input  
S0  
S1  
S2  
S3  
f(1) CMD  
Configuration  
CMIn [28]  
OUT2  
f(1) CMD  
f(1) Memory Stack  
Configuration  
f(1) CMD Configuration  
(1x16)  
CMIn [27]  
CMIn [26]  
OUT1  
OUT0  
0
Analog  
Reference  
Selector  
S0  
From Internal  
Vref  
1
S62  
S63  
Ext. Vref (GPI7)  
f(1) CMD Configuration  
From Connection  
Matrix Output  
ASM_nRESET  
f(1) Interrupt  
15  
CMOut [71]  
CMOut [76]  
Figure 125: f(1) Computation Macrocell Architecture  
17.3 F(1) COMPUTATION MACROCELL INPUT SIGNALS  
The f(1) Computation Macrocell has 6 digital input signals, ASM_nReset, f1_Interupt, and four inputs from Connection Matrix  
outputs. An active signal on either of the first 2 inputs will immediately halt any command execution for the f(1) Computation  
Macrocell, and will immediately relinquish control back to the ASM macrocell. The ASM_nReset is a level sensitive signal, and  
active low. The f1_Interupt is a level sensitive signal, and active high. These signals are shown in Figure 126, highlighted in  
blue. Also there are 4 digital inputs from the Connection Matrix, which can be routed to any Connection Matrix outputs from the  
f(1) Commands. These signals are shown on Figure 126, highlighted in yellow.  
Datasheet  
25-Feb-2021  
Revision 3.12  
155 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
There are a total of 8 analog inputs coming from various pins which can be muxed into the positive input for the f(1) Analog  
Comparator inside the f(1) Computation Macrocell. These signals are shown in Figure 102, highlighted in green. The f(1) Analog  
Comparator can be re-programmed for analog input source and negative input reference settings with settings inside the LOADx  
command. The user selections for both positive input signal and negative reference are included as part of the information stored  
in the f(1) Command Register Table. This allows the user to make different analog measurements that are state dependent in  
their analog sources and reference settings.  
f(1) Command Selection Table  
12  
3
ASM 12 states to 3 bits  
output mapping table  
from ASM_state  
f(1) Command Register Table  
000  
001  
010  
011  
100  
101  
110  
111  
None  
Register0[111:0]  
Register1[111:0]  
Register2[111:0]  
Register3[111:0]  
None  
None  
None  
From Connection  
Matrix Output  
4
f(1) Computation Macrocell  
S0  
S0  
4
PIN15  
PIN18  
PIN17  
PIN31  
S0  
S1  
S2  
S3  
S0  
S0  
ACMP4F  
S0  
S1  
f(1) CMD Configuration  
4
f(1) State  
Machine  
Function  
+
-
ACMP4F_out  
S1  
PIN24  
PIN3  
PIN23  
PIN2  
To Connection  
Matrix Input  
S0  
S1  
S2  
S3  
f(1) CMD  
Configuration  
CMIn [28]  
OUT2  
f(1) CMD  
f(1) Memory Stack  
Configuration  
f(1) CMD Configuration  
(1x16)  
CMIn [27]  
CMIn [26]  
OUT1  
OUT0  
0
Analog  
Reference  
Selector  
S0  
From Internal  
Vref  
1
S62  
S63  
Ext. Vref (GPI7)  
f(1) CMD Configuration  
From Connection  
Matrix Output  
ASM_nRESET  
f(1) Interrupt  
15  
CMOut [71]  
CMOut [76]  
Figure 126: f(1) Computation Macrocell Input Signals  
The f(1) interrupt signal comes from Connection Matrix Output. The high level f(1) interrupt signal forces the f(1) computation  
macrocell to immediately finish command execution and return control to the ASM similar to the END command. It is possible to  
load initial memory stack with the f(1) interrupt signal when register [3766] is high.  
The ASM_nRESET low level signal forces the ASM macrocell and the f(1) computation macrocell to an initial state and an initial  
memory stack value.  
Datasheet  
25-Feb-2021  
Revision 3.12  
156 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
17.4 F(1) COMPUTATION MACROCELL OUTPUT SIGNALS  
The f(1) Computation Macrocell has 3 digital output signals that go to the Connection Matrix, and from there can be routed to  
other internal macrocells or pins. These signals are shown in Figure 127, highlighted in blue. The state of these output signals  
are under user control, and are changed based on the Output commands.  
f(1) Command Selection Table  
12  
3
ASM 12 states to 3 bits  
output mapping table  
from ASM_state  
f(1) Command Register Table  
000  
001  
010  
011  
100  
101  
110  
111  
None  
Register0[111:0]  
Register1[111:0]  
Register2[111:0]  
Register3[111:0]  
None  
None  
None  
From Connection  
Matrix Output  
4
f(1) Computation Macrocell  
S0  
S0  
4
GPO8  
GPIO9  
GPI7  
S0  
S1  
S2  
S3  
S0  
S0  
GPI6  
ACMP4F  
S0  
S1  
f(1) CMD Configuration  
4
f(1) State  
Machine  
Function  
+
-
ACMP4F_out  
S1  
To Connection  
Matrix Input  
GPIO1  
GPIO0  
GPO0  
GPO7  
S0  
S1  
S2  
S3  
f(1) CMD  
Configuration  
CMIn [28]  
OUT2  
f(1) CMD  
f(1) Memory Stack  
Configuration  
f(1) CMD Configuration  
(1x16)  
CMIn [27]  
CMIn [26]  
OUT1  
OUT0  
0
Analog  
Reference  
Selector  
S0  
From Internal  
Vref  
1
S62  
S63  
Ext. Vref (GPI7)  
f(1) CMD Configuration  
From Connection  
Matrix Output  
ASM_nRESET  
f(1) Interrupt  
15  
CMOut [71]  
CMOut [76]  
Figure 127: f(1) Computation Macrocell Output Signals  
17.5 F(1) COMMAND REGISTERS  
The f(1) Computation Macrocell consists of a specialized state machine which is optimized for simple data manipulation activi  
ties on single data bit values. The f(1) Computation Macrocell must be used for accessing the 8:1 analog multiplexer and asso  
-
-
ciated analog comparator. The f(1) is also useful for storing state independent values, looping operations such as periodic signal  
checks, and for performing simple repetitive logic functions.  
The operation of this macrocell can be initiated whenever the ASM Macrocell enters a new state, and can execute a string of up  
to 12 commands for loading and storing 1 bit data, as well as doing simple logical functions such as ANDs, ORs, and XORs.  
Datasheet  
25-Feb-2021  
Revision 3.12  
157 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
The f(1) Command Register Table has 4 registers, therefore 4 independent f(1) functions can be defined. Each state of the ASM  
can access one of the four f(1) configurable instances of the f(1).  
Each of the four f(1) configurations may contain up to 12 commands which run when the f(1) Computation Macrocell is initiated.  
The list of available commands is as follows:  
Command  
Name  
Command  
Command Description  
Loads a one bit value to the top of the memory stack (location 0). During the execution of this  
command, all other values are shifted down 1 location, and the value in location 15 is lost. The  
data loaded by Load 1 command is defined in the Load 1 register, which defines where the value  
is to be loaded from such as a pin, the f(1) comparator, and others.  
0000  
LOAD1  
Loads a one bit value to the top of the memory stack (location 0). During the execution of this  
command, all other values are shifted down 1 location, and the value in location 15 is lost. The  
data loaded by Load 2 command is defined in the Load 2 register, which defines where the value  
is to be loaded from such as a pin, the f(1) comparator, and others.  
0001  
0010  
0011  
0100  
0101  
LOAD2  
LOAD3  
LOAD4  
AND  
Loads a one bit value to the top of the memory stack (location 0). During the execution of this  
command, all other values are shifted down 1 location, and the value in location 15 is lost. The  
data loaded by Load 3 command is defined in the Load 3 register, which defines where the value  
is to be loaded from such as a pin, the f(1) comparator, and others.  
Loads a one bit value to the top of the memory stack (location 0). During the execution of this  
command, all other values are shifted down 1 location, and the value in location 15 is lost. The  
data loaded by Load 4 command is defined in the Load 4 register, which defines where the value  
is to be loaded from such as a pin, the f(1) comparator, and others.  
Performs a logical AND to the top two locations in the memory stack (location 0 and location 1).  
During execution of this command, the two values in the top two stack locations are deleted,  
and the logical AND result is pushed on the top of stack (location 0). In the process, all other  
values in the stack are shifted up 1 location, and a 0 is loaded in location 15.  
Performs a logical OR to the top two locations in the memory stack (location 0 and location 1).  
During execution of this command, the two values in the top two stack locations are deleted,  
and the logical OR result is pushed on the top of stack (location 0). In the process, all other  
values in the stack are shifted up 1 location, and a 0 is loaded in location 15.  
OR  
Performs a logical XOR to the top two locations in the memory stack (location 0 and location 1).  
During execution of this command, the two values in the top two stack locations are deleted,  
and the logical XOR result is pushed on the top of stack (location 0). In the process, all other  
values in the stack are shifted up 1 location, and a 0 is loaded in location 15.  
0110  
0111  
XOR  
INV  
Performs a logical Invert (INV) to the top location in the memory stack (location 0). During  
execution of this command, the value in the top stack location is deleted, and the logical INV  
result is pushed on the top of stack. There is no effect on all other values in the stack.  
Pushes a 0 into the top location in the memory stack (location 0). During the execution of this  
command, all other values are shifted down 1 location, and the value in the location 15 is lost.  
1000  
1001  
PUSH0  
POP  
During execution of this command, values in the stack are shifted up 1 location, and a 0 is loaded  
in location 15.  
The execution of commands by the f(1) Computation microcell is delayed by a period of time  
defined in the configuration of the delay function. Once this time period is completed, the next  
f(1) instruction will execute.  
1010  
1011  
DELAY  
If the top location in the memory stack (location 0) is equal to 0, the command execution in the  
f(1) Macrocell is delayed by a period of time defined in the configuration of the delay function  
and then executes the f(1) sequence at the specified jump location. If the top location in the  
memory stack (location 0) is equal to 1, the f(1) Macrocell proceeds with execution of the next  
command in sequence.  
LOOP with  
DELAY  
1100  
1101  
1110  
OUT1  
OUT2  
OUT3  
Outputs the top location in the memory stack (location 0) on matrix input OUT1.  
Outputs the top location in the memory stack (location 0) on matrix input OUT2.  
Outputs the top location in the memory stack (location 0) on matrix input OUT3.  
Immediately ends execution of commands by f(1) Macrocell, and control is returned to ASM  
Macrocell.  
1111  
END  
Datasheet  
25-Feb-2021  
Revision 3.12  
158 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
These commands form a machine level language that may be configured within GPAK Designer software using a simple GUI, as  
opposed to using a typical text editor. See application examples below:  
Example #1: Sensor Application showing the command sequence for a potential use case of the f(1) Macrocell.  
f(1) Command  
Command  
INV  
Description  
Sequence  
1
Change Top Memory location from 0 1.  
Output a 1 to a pin defined by OUT1 register. This can be used to turn on or bias  
an external sensor.  
2
3
4
OUT1  
DELAY  
LOAD1  
Wait for a time defined by DELAY register. This can be used to allow sensor to settle.  
Capture the output of f(1) ACMP from an analog pin connected to the sensor as  
defined by the LOAD1 register.  
Capture the output of a pin as defined by the LOAD2 register. This can be used to  
check a power good signal.  
5
6
LOAD2  
AND  
Logically AND the top two values of the 1x16 memory that were just loaded with  
LOAD1 and LOAD2.  
Output the result of sensor output AND power good signal for a control decision for  
the ASM.  
7
8
OUT2  
END  
ASM can now act on OUT2 signal.  
Example #2: Power Good Application showing the command sequence for a potential use case of the f(1) Macrocell.  
f(1) Command  
Sequence  
Command  
Description  
1
LOAD1  
Capture the output of f(1) ACMP from an analog pin connected to power rail 1 as  
defined by the LOAD1 register. A “1” means that power is good on power rail 1.  
2
3
4
5
LOAD2  
LOAD3  
LOAD4  
AND  
Capture the output of f(1) ACMP from an analog pin connected to power rail 2 as  
defined by the LOAD2 register. A “1” means that power is good on power rail 2.  
Capture the output of f(1) ACMP from an analog pin connected to power rail 3 as  
defined by the LOAD3 register. A “1” means that power is good on power rail 3.  
Capture the output of f(1) ACMP from an analog pin connected to power rail 4 as  
defined by the LOAD4 register. A “1” means that power is good on power rail 4.  
LOAD4 result ANDs with LOAD3 result (LOAD4 & LOAD3). This combines two of  
the Power Good signals.  
6
7
AND  
AND  
(LOAD4 & LOAD3) & LOAD2. This combines three of the Power Good signals.  
((LOAD4 & LOAD3) & LOAD2) & LOAD1. This combines four of the Power Good  
signals.  
8
OUT1  
Output the Master Power Good signal to a location defined by the OUT1 register.  
The LOADx, OUTx, and DELAY/LWD commands are required to be defined before using them.  
17.5.1 Delay Command Configuration Bits  
The Delay Command is defined by 12 bits. Each of the 4 instances of the f(1) command can configure a new value for the delays.  
However, the DELAY and LWD use the same configuration data, so these two delays must be identical.  
Datasheet  
25-Feb-2021  
Revision 3.12  
159 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Delay Configuration Bits  
Configuration Bits  
Description  
8 Bits  
Delay Count (0 .. 255)  
Delay Clock  
000  
OSC2  
001  
OSC2/4  
OSC1  
010  
3 Bits  
011  
OSC1/8  
OSC1/64  
OSC0  
100  
101  
110  
OSC0/8  
OSC0/64  
111  
ACMP Shutdown  
during Delay  
1 Bit  
ACMP is shutdown after data Load  
17.5.2 LOADx Command Configuration Bits  
There are two types of load configuration schemes. One method defines loading from one of eight analog pins via the f(1) ACMP.  
The other method defines loading from any of the matrix outputs connected to digital input pins, logic macrocells, ASM outputs,  
oscillators, and others. LOAD1 and LOAD2 can only be configured for 4 analog input pins. LOAD3 and LOAD 4 can be configured  
for the remaining 4 analog input pins.  
LOAD1, 2, 3, 4 Command from f(1) ACMP or Matrix connection. A single bit determines if LOADx takes its value from the f(1)  
analog comparator or from a matrix output.  
Configuration Bit  
Description  
1 Bit  
1 Bit  
1 Bit  
1 Bit  
LOAD1 Connection  
LOAD2 Connection  
LOAD3 Connection  
LOAD4 Connection  
0: Matrix, 1: f(1) ACMP  
0: Matrix, 1: f(1) ACMP  
0: Matrix, 1: f(1) ACMP  
0: Matrix, 1: f(1) ACMP  
LOAD1 and LOAD2 Configuration Bits f(1) ACMP input.  
Configuration Bits  
Description  
6 Bits  
ACMP Voltage Reference value 000000 is 32 mV, 111111 is 2.048 V  
One of four analog input pins  
00  
01  
Analog pin 1  
Analog pin 2  
Analog pin 3  
Analog pin 4  
2 Bits  
1 Bit  
10  
11  
Reserved  
Datasheet  
25-Feb-2021  
Revision 3.12  
160 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
LOAD3 and LOAD4 Configuration Bits f(1) ACMP input.  
Configuration Bits  
Description  
6 Bits  
ACMP Voltage Reference value 000000 is 32 mV, 111111 is 2.048 V  
One of four analog input pins  
00  
01  
Analog pin 5  
Analog pin 6  
Analog pin 7  
Analog pin 8  
2 Bits  
1 Bit  
10  
11  
Reserved  
17.5.3 OUTx Command Configuration Bits  
Each f(1) instance can be configured to output to up to three matrix inputs using the OUTx command. OUT1, 2, & 3’s initial  
condition is two bit selectable. Each time the ASM changes state, the initial condition of the f(1) is re-loaded.  
Configuration Bits  
Description  
00  
01  
10  
11  
OUTx equals previous OUTx  
OUTx is 0  
OUTx is 1  
none (high Z)  
The only time the f(1) Computation Macrocell will run is when ASM macrocell first enters a new state. At that point in time, the  
f(1) Computation Macrocell will execute the user selected commands (based on user selection), and then relinquish control back  
to the ASM macrocell. During the time that the f(1) Computation Macrocell is active, there can be no activity in the ASM macrocell  
(i.e. no ASM macrocell state change).  
The f(1) Computation Macrocell has two digital inputs, ASM_nReset and f1_Interupt. An active signal on either of these inputs  
will immediately halt any command execution for the f(1) Computation Macrocell, and will immediately relinquish control back to  
the ASM macrocell.  
17.5.4 LOOP WITH DELAY Configuration Bits  
There is one conditional command LOOP WITH DELAY (LWD) in f(1) computation macrocell. The order of the f(1) command  
execution depends on the LWD usage and its configuration. If top value in 1 x 16 memory stack is 0, then the f(1) is delayed  
according to the configuration of the f(1) delay function and the f(1) command sequence starting from the location defined by 4-  
bit register is executed, otherwise f(1) continues to execute commands one by one.  
Configuration Bits  
Description  
4 bits  
Next command location after  
LWD command  
0000 is the first command in the f(1) sequence, 1011 is the  
twelfth last command in the f(1) sequence  
Datasheet  
25-Feb-2021  
Revision 3.12  
161 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Example #3: Rising Edge Deglitch Application showing the command sequence for a potential use case of the f(1) Macrocell.  
f(1) Command  
Sequence  
Command  
Description  
1
2
3
4
5
LOAD1  
DELAY  
LOAD1  
DELAY  
LOAD1  
Capture the output of a pin or any macrocell output defined by the LOAD1 register.  
Delay for the time defined by configuration register.  
Capture the output of a pin or any macrocell output defined by the LOAD1 register.  
Delay for time defined by configuration register.  
Capture the output of a pin or any macrocell output defined by the LOAD1 register.  
Logically AND the top two values of the 1x16 memory stack, that was loaded  
before (LOAD1 & LOAD1 after Delay).  
6
7
AND  
AND  
(LOAD1 & LOAD1 after Delay) & LOAD1 after double Delay.  
If the calculated value is 0, then start to execute first command once again, which  
8
LWD  
is defined by the configuration bits. Otherwise f(1) continues to execute next com  
-
mand (command 9).  
9
OUT1  
END  
Output the result value, which is a high level.  
ASM can act on any other signals.  
10  
The following flowchart shows the f(1) rising edge deglitch based on three samples application.  
f(1) GO  
1
LOAD1  
2
DELAY  
3LOAD1 (GPIO5)  
4
DELAY (5 ms)  
5LOAD1 (GPIO5)  
6
AND  
7
AND  
8
TOP VALUE in STACK = 0  
LWD  
command location=1  
delay value=5us  
TOP VALUE in STACK = 1  
9
OUT1  
10  
END  
f(1) DONE  
Figure 128: f(1) Flowchart for Rising Edge Deglitch  
Datasheet  
25-Feb-2021  
Revision 3.12  
162 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Example #4: Average Function for Captured Data, showing the command sequence for a potential use case of the f(1) Macrocell.  
This function requires two f(1) Macrocell command sequences to implement.  
f(1) GO  
LOAD1  
DELAY  
LOAD1  
DELAY  
LOAD1  
END  
f(1) GO  
1
2
3
4
5
6
1
TOP VALUE in STACK = 0  
TOP VALUE in STACK = 1  
LWD  
command location=5  
delay value=0  
6
2
3
4
5
POP  
POP  
OR  
7
AND  
8
OUT1  
OUT1  
END  
9
END  
f(1) DONE  
f(1) DONE  
Figure 129: f(1) Flowchart for Average Function for Captured Data  
Datasheet  
25-Feb-2021  
Revision 3.12  
163 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
17.6 F(1) TYPICAL PERFORMANCE  
35  
30  
25  
20  
15  
10  
5
ACMP4F (T = -40 °C)  
ACMP4F (T = 25 °C)  
ACMP4F (T = 85 °C)  
0
2.3  
2.5  
2.7  
3
3.3  
3.6  
4
4.2  
4.5  
5
5.5  
VDD (V)  
Figure 130: ACMP4F Power-On Delay vs. VDD  
15  
10  
5
0
32  
480  
1024  
1504  
2016  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
Upper Limit Internal Vref  
Upper Limit External Vref  
Lower Limit External Vref  
Lower Limit Internal Vref  
Vref (mV)  
Figure 131: ACMP4F Input Offset Voltage vs. Vref at T = -40 °C to 85 °C, Input Buffer Disabled  
Datasheet  
25-Feb-2021  
Revision 3.12  
164 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
18 Matrix Interface Macrocells  
The ASM Sub-System includes several discrete macrocells, including the ASM macrocell, four Dynamic Memory (DMx_x) mac  
-
rocells, three Matrix Interface (MI) Macrocells, and one f(1) Computation Macrocell. These macrocells are designed to work as a  
system for building user defined state machines.  
The Matrix Interface macrocells have the characteristic that they can change internal configuration characteristics and their  
connections to the Connection Matrix based on the current state of the State Machine (SM) macrocell. This is accomplished by  
making different memory register bit settings contained within the macrocell active, based on the current active state of the SM.  
This allows the user to “repurpose” the resources inside these macrocells to match the circuit needs in various states.  
The SLG46880/81 has a total of three MI macrocells, MI0, MI1, and MI2.  
Each MI macrocell has a MIx Configuration Register Table, which is a bank of 4 MIx Configuration Registers. The bits in these  
registers hold user selections which define the input connections from the Connection Matrix. The fact that there are 4 Configu  
-
ration Registers means that there can only be a total of four unique configurations for each MIx macrocell. There are a total of  
twelve states, which means that the user can either re-use the configuration coded in a particular MIx Operating Mode Register  
in more than one state, or not use some MIx macrocells in some states.  
Each MI macrocell has a MIx Operating Mode Selection Table, which is a bank of 12 Configuration Selection Registers, one for  
each state of the State Machine macrocell. The bits in these registers hold the user’s selection of MI functional behavior (input  
selection from Connection Matrix), by mapping to a particular selection in the Configuration Register Table, based on the current  
state of the State Machine macrocell.  
18.1 MI0, MI1, AND MI2 MACROCELL ARCHITECTURE  
MIx Configuration Selection Table  
12  
2
ASM 12 states to 2 bits  
output mapping table  
from ASM_state  
MIx Configuration Register Table  
00  
01  
10  
11  
Register0[5:0]  
Register1[5:0]  
Register2[5:0]  
Register3[5:0]  
from  
Connection  
Matrix  
MIx Macrocell  
matrix_out  
Output to  
ASM Input  
Matrix  
Figure 132: MIx Macrocell Architecture  
Datasheet  
25-Feb-2021  
Revision 3.12  
165 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
18.2 MIX MACROCELL INPUT SIGNALS  
Each MIx macrocell has a single digital input signal coming from the Connection Matrix and from there can be routed to other  
internal macrocells or pins. This signal is shown in Figure 132, highlighted in blue.  
18.3 MIX MACROCELL OUTPUT SIGNALS  
Each MIx macrocell has a single digital output signal, which goes directly to the ASM Input Matrix inside the ASM Macrocell.  
This signal is shown in Figure 132, highlighted in green.  
Datasheet  
25-Feb-2021  
Revision 3.12  
166 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
2
19 I C Serial Communications Macrocell  
19.1 I2C SERIAL COMMUNICATIONS MACROCELL OVERVIEW  
In the standard use case for the GreenPAK devices, the configuration choices made by the user are stored as bit settings in the  
Non-Volatile Memory (NVM), and this information is transferred at startup time to volatile RAM registers that enable the configu  
-
ration of the macrocells. Other RAM registers in the device are responsible for setting the connections in the Connection Matrix  
to route signals in the manner most appropriate for the user’s application.  
The I2C Serial Communications Macrocell in this device allows an I2C bus Master to read and write this information via a serial  
channel directly to the RAM registers, allowing the remote re-configuration of macrocells, and remote changes to signal chains  
within the device.  
An I2C bus Master is also able read and write other register bits that are not associated with NVM memory. As an example, the  
input lines to the Connection Matrix can be read as digital register bits. These are the signal output of each of the macrocells in  
the device, giving an I2C bus Master the capability to remotely read the current value of any macrocell.  
The user has the flexibility to control read access and write access via registers bits registers [4071:4069]. See Section 19.5 for  
more details on I2C read/write memory protection.  
19.2 I2C SERIAL COMMUNICATIONS DEVICE ADDRESSING  
Each command to the I2C Serial Communications macrocell begins with a Control Byte. The bits inside this Control Byte are  
shown in Figure 133. After the Start bit, the first four bits are a control code, which can be set by the user in registers [4083:4080]  
or value defined externally by GPIs 4, 5, 6, and 7. The LSB of the control code is defined by the value of GPI4, while the MSB is  
defined by the value of GPI7. The address source is selected by register [4087]. This gives the user flexibility on the chip level  
addressing of this device and other devices on the same I2C bus. The Block Address is the next three bits (A10, A9, A8), which  
will define the most significant bits in the addressing of the data to be read or written by the command. The last bit in the Control  
Byte is the R/W bit, which selects whether a read command or write command is requested, with a “1” selecting for a Read  
command, and a “0” selecting for a Write command. This Control Byte will b followed by an Acknowledge bit (ACK), which is sent  
by this device to indicate successful communication of the Control Byte data.  
In the I2C-bus specification and user manual, there are two groups of eight addresses (0000 xxx and 1111 xxx) that are reserved  
for the special functions, such as a system General Call address. If the user of this device choses to set the Control Code to either  
“1111” or “0000” in a system with other slave device, please consult the I2C-bus specification and user manual to understand the  
addressing and implementation of these special functions, to insure reliable operation.  
In the read and write command address structure, there are a total of 11 bits of addressing, each pointing to a unique byte of  
information, resulting in a total address space of 2K bytes. Of this 2K byte address space, the valid addresses accessible to the  
I2C Macrocell on the SLG46880/81 are in the range from 0 (00H) to 511 (1FFH). The upper two address bits (A10 and A9) will  
be “0” for all commands to the SLG46880/81. The value of Address bit A8 will depend on whether the Bus Master is addressing  
the upper or lower half of the 4K bit address space.  
With the exception of the Current Address Read command, all commands will have the Control Byte followed by the Word  
Address.  
Datasheet  
25-Feb-2021  
Revision 3.12  
167 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Start  
bit  
Acknowledge  
bit  
Control Byte  
Word Address  
A
10  
A
9
A
8
A
7
A
0
S
X
X
X
X
R/W ACK  
Control  
Code  
Block  
Address  
Not used, set to  
0
Read/Write bit  
Figure 133: Basic Command Structure  
19.3 I2C SERIAL GENERAL TIMING  
General timing characteristics for the I2C Serial Communications macrocell are shown in Figure 134. Timing specifications can  
be found in the AC Characteristics section.  
tHIGH  
tF  
tR  
tLOW  
SCL  
tSU STA  
tHD DAT  
tHD STA  
tSU DAT  
tSU STO  
SDA IN  
tBUF  
tAA  
tDH  
SDA OUT  
Figure 134: I2C General Timing Characteristics  
19.4 I2C SERIAL COMMUNICATIONS COMMANDS  
19.4.1 Byte Write Command  
Following the Start condition from the Master, the Control Code [4 bits], the Block Address [3 bits], and the R/W bit (set to “0”) are  
placed onto the I2C bus by the Master. After the SLG46880/81 sends an Acknowledge bit (ACK), the next byte transmitted by the  
Master is the Word Address. The Block Address (A10, A9, A8), combined with the Word Address (A7 through A0), together set  
the internal address pointer in the SLG46880/81, where the data byte is to be written. After the SLG46880/81 sends another  
Acknowledge bit, the Master will transmit the data byte to be written into the addressed memory location. The SLG46880/81 again  
provides an Acknowledge bit and then the Master generates a Stop condition. The internal write cycle for the data will take place  
at the time that the SLG46880/81 generates the Acknowledge bit.  
It is possible to latch all IOs during I2C write command, register [4065] = 1 - Enable. It means that IOs will remain their state until  
the write command is done.  
Datasheet  
25-Feb-2021  
Revision 3.12  
168 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Acknowledge  
bit  
Acknowledge  
bit  
Start  
bit  
Acknowledge  
bit  
Bus Activity  
Control Byte  
Word Address  
Data  
A
10  
A
9
A
8
A
7
A
0
D
7
D
0
S
X
X
X
X
W
ACK  
ACK  
ACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, s  
et to 0  
R/W bit = 0  
Figure 135: Byte Write Command, R/W = 0  
19.4.2 Sequential Write Command  
The write Control Byte, Word Address, and the first data byte are transmitted to the SLG46880/81 in the same way as in a Byte  
Write command. However, instead of generating a Stop condition, the Bus Master continues to transmit data bytes to the  
SLG46880/81. Each subsequent data byte will increment the internal address counter, and will be written into the next higher byte  
in the command addressing. As in the case of the Byte Write command, the internal write cycle will take place at the time that the  
SLG46880/81 generates the Acknowledge bit.  
Acknowledge  
Acknowledge  
bit  
Start  
bit  
bit  
Bus Activity  
Data (n + 1)  
Data (n + x)  
Control Byte  
Word Address (n)  
Data (n)  
A
10  
A
8
A
9
ACK  
ACK  
P
SDA LINE  
S
X
X
X
X
W
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, set  
to 0  
Write bit  
Figure 136: Sequential Write Command  
19.4.3 Current Address Read Command  
The Current Address Read Command reads from the current pointer address location. The address pointer is incremented at the  
first STOP bit following any write control byte. For example, if a Sequential Read command (which contains a write control byte)  
reads data up to address n, the address pointer would get incremented to n + 1 upon the STOP of that command. Subsequently,  
a Current Address Read that follows would start reading data at n + 1. The Current Address Read Command contains the Control  
Byte sent by the Master, with the R/W bit = “1”. The SLG46880/81 will issue an Acknowledge bit, and then transmit eight data bits  
for the requested byte. The Master will not issue an Acknowledge bit, and follow immediately with a Stop condition.  
Datasheet  
25-Feb-2021  
Revision 3.12  
169 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Start  
bit  
Acknowledge  
bit  
Stop  
bit  
Bus Activity  
Control Byte  
Data (n)  
A
10  
A
9
A
8
S
X
X
X
X
R
ACK  
SDA LINE  
P
Control  
Code  
Block  
Address  
No Ack  
bit  
Not used, set t  
o 0  
R/W bit = 1  
Figure 137: Current Address Read Command, R/W = 1  
19.4.4 Random Read Command  
The Random Read command starts with a Control Byte (with R/W bit set to “0”, indicating a write command) and Word Address  
to set the internal byte address, followed by a Start bit, and then the Control Byte for the read (exactly the same as the Byte Write  
command). The Start bit in the middle of the command will halt the decoding of a Write command, but will set the internal address  
counter in preparation for the second half of the command. After the Start bit, the Bus Master issues a second control byte with  
the R/W bit set to “1”, after which the SLG46880/81 issues an Acknowledge bit, followed by the requested eight data bits.  
Acknowledge  
Stop  
bit  
Start  
bit  
bit  
Bus Activity  
Data (n)  
Control Byte  
Word Address (n)  
Control Byte  
A
10  
A
9
A
8
A
10  
A
9
A
8
S
ACK  
1
0
1
0
R ACK  
P
SDA LINE  
S
X
X
X
X
W
ACK  
Control  
Code  
Block  
Address  
Read bit  
No Ack  
bit  
Not used, set to  
0
Write bit  
Figure 138: Random Read Command  
Datasheet  
25-Feb-2021  
Revision 3.12  
170 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
19.4.5 Sequential Read Command  
The Sequential Read command is initiated in the same way as a Random Read command, except that once the SLG46880/81  
transmits the first data byte, the Bus Master issues an Acknowledge bit as opposed to a Stop condition in a random read. The  
Bus Master can continue reading sequential bytes of data, and will terminate the command with a Stop condition.  
Acknowledge  
Start  
bit  
bit  
Bus Activity  
Data (n + 2)  
Data (n + x)  
Control Byte  
Data (n)  
Data (n + 1)  
A
10  
A
9
A
8
ACK  
P
SDA LINE  
S
X
X
X
X
R
ACK  
ACK  
ACK  
Control  
Code  
Block  
Address  
Stop  
bit  
No Ack  
bit  
Read bit  
Figure 139: Sequential Read Command  
19.4.6 I2C Serial Reset Command  
If I2C serial communication is established with the device, it is possible to reset the device to initial power up conditions, including  
configuration of all macrocells, and all connections provided by the Connection Matrix. This is implemented by setting  
register [4064] I2C reset bit to “1”, which causes the device to re-enable the Power-On Reset (POR) sequence, including the  
reload of all register data from NVM. During the POR sequence, the outputs of the device will be in tri-state. After the reset has  
taken place, the contents of register [4064] will be set to “0” automatically. The timing diagram shown below illustrates the  
sequence of events for this reset function.  
Acknowledge  
bit  
Acknowledge  
bit  
Start  
bit  
Acknowledge  
bit  
Bus Activity  
Control Byte  
Word Address  
Data  
A
10  
A
9
A
8
A
7
A
0
D
7
D
0
S
X
X
X
X
W
ACK  
ACK  
ACK  
SDA LINE  
P
Internal Reset bit  
Control  
Code  
Block  
Address  
Stop  
bit  
Not used, set to  
0
Write bit  
by I2C Stop Signal  
Reset-bit register output  
DFF output gated by stop signal  
Internal POR for core only  
Figure 140: Reset Command Timing  
Datasheet  
25-Feb-2021  
Revision 3.12  
171 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
19.5 I2C SERIAL COMMAND REGISTER MAP  
There are seven read/write protect modes for the design sequence from being corrupted or copied. See Table 54 for details.  
Table 54: Read/Write Protection Options  
Protection Modes Configuration  
Partly  
Partly  
Lock  
Partly  
Lock  
Lock  
Read/  
Write  
Data  
Output  
From  
Lock  
Read2/  
Write  
Lock  
Read  
Lock  
Write  
Register  
Address  
Configurations  
Unlocked  
Read1  
Read2  
(Mode 0) (Mode1) (Mode2) (Mode3) (Mode4) (Mode5) (Mode 6)  
I2C Byte Write Bit  
Masking  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
W
W
R
R
-
-
Memory  
Memory  
1FD  
(section 19.6.4)  
I2C Serial Reset  
Command  
1FC,b'0  
(section 19.4.6)  
Outputs Latching  
During I2C Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
W
W
R
R
-
-
Memory  
1FC,b'1  
f(1) Computation  
Macrocell Stack  
Macrocell  
198~199  
Connection Matrix  
Virtual Inputs  
R/W  
R/W  
R/W  
R/W  
R/W  
W
R/W  
W
W
R
R
-
-
Macrocell  
Memory  
1DB  
(section 6.3)  
ConfigurationBits for  
All Macrocells  
(IO Pins, ACMPs,  
-
Combination  
FunctionMacrocells,  
ASM, etc.)  
Macrocells Inputs  
Configuration  
(Connection Matrix  
Outputs, section 6.2)  
R/W  
R/W  
R
W
R
W
R
-
W
R
-
R
R
R
-
R
-
Memory  
Memory  
Macrocell  
0~3E  
Protection Mode  
Selection  
1FC,b'7,6,  
5
R
R
Macrocells Output  
Values (Connection  
MatrixInputs,section  
6.1)  
1D7~1DA;  
1DC~1DE  
R
R
Counter Current  
Value  
1DF,1E0,1  
E1,1E2  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
-
R
R
R
R
-
Macrocell  
Macrocell  
Memory  
Memory  
ASM Current State  
I2C Control Code  
(section 19.4)  
-
-
1E3,1E4  
1FE,b'3~0  
1FE,b'4  
R
R
R
R
I2C Disable/Enable  
R/W  
W
Allow Read and Write Data  
Allow Write Data Only  
Allow Read Data Only  
R
Datasheet  
25-Feb-2021  
Revision 3.12  
172 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
-
The Data is protected for Read and Write  
It is possible to read some data from macrocells, such as counter current value, ASM current state, connection matrix, f(1) com  
-
putation macrocell stack, and connection matrix virtual inputs. The I2C write will not have any impact on data in case data comes  
from macrocell output, except f(1) Computation Macrocell Stack and Connection Matrix Virtual Inputs. The silicon identification  
service bits allows identifying silicon family, its revision, and others.  
See Section 21 for detailed information on all registers.  
19.6 I2C ADDITIONAL OPTIONS  
When Output latching during I2C write, register [4065] = 1 allows all PINs output value to be latched until I2C write is done. It will  
protect the output change due to configuration process during I2C write in case multiple register bytes are changed. Inputs and  
internal macrocells retain their status during I2C write.  
If the user sets GPIO0 and GPIO1 function to a selection other than SDA and SCL, all access via I2C will be disabled.  
Note: Any write commands that come to the device via I2C that are not blocked, based on the protection bits, will change the  
contents of the RAM register bits that mirror the NVM bits. These write commands will not change the NVM bits themselves, and  
a POR event will restore the register bits to original programmed contents of the NVM.  
See Section 21 for detailed information on all registers.  
19.6.1 Reading Counter Data via I2C  
The current count value in three counters in the device can be read via I2C. The counters that have this additional functionality  
are 16-bit CNT0, and 8-bit counters CNT2 and CNT4.  
19.6.2 Reading ASM Current State via I2C  
The Current State of the ASM can be read via I2C. There are 12 memory bits located at registers [3875:3864]. Configuration for  
each Current State can be found in Table 55.  
Table 55: ASM Current State Bits Configuration  
ASM Current State Bits Configuration  
2
I C  
Register  
Bit #  
ASM  
State #  
State  
0
State  
1
State  
2
State  
3
State  
4
State  
5
State Stat e State  
State  
9
State  
10  
State  
11  
Address  
6
0
0
0
0
0
0
1
0
0
0
0
0
7
0
0
0
0
0
0
0
1
0
0
0
0
8
0
0
0
0
0
0
0
0
1
0
0
0
3864  
3865  
3866  
3867  
3868  
3869  
3870  
3871  
3872  
3873  
3874  
3875  
State 0  
State 1  
State 2  
State 3  
State 4  
State 5  
State 6  
State 7  
State 8  
State 9  
State 10  
State 11  
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1E3  
1E4  
19.6.3 I2C Expander  
Datasheet  
25-Feb-2021  
Revision 3.12  
173 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
In addition to the eight Connection Matrix Virtual Inputs, the SLG46880/81 chip has four pins which can be used as an I2C  
Expander. These four pins are GPIO4, GPIO5, GPIO6, and GPIO7.  
Each of these pins can be used as an I2C Expander output or used as a normal pin. Also, each of these four expander outputs  
have initial state settings which are specified in registers [3880:3870].  
Datasheet  
25-Feb-2021  
Revision 3.12  
174 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
19.6.4 I2C Byte Write Bit Masking  
The I2C macrocell inside SLG46880/81 supports masking of individual bits within a byte that is written to the RAM memory space.  
This function is supported across the entire RAM memory space. To implement this function, the user performs a Byte Write  
Command (see Section 19.4.1 for details) on the I2C Byte Write Mask Register (address 1FDH) with the desired bit mask pattern.  
This sets a bit mask pattern for the target memory location that will take effect on the next Byte Write Command to this register  
byte. Any bit in the mask that is set to “1” in the I2C Byte Write Mask Register will mask the effect of changing that particular bit  
in the target register, during the next Byte Write Command. The contents of the I2C Byte Write Mask Register are reset (set to  
00h) after the Byte Write Command. If the next command received by the device is not a Byte Write Command, the effect of the  
bit masking function will be aborted, and the I2C Byte Write Mask Register will be reset with no effect. Figure 141 shows an  
example of this function.  
User Actions  
Byte Write Command, Address = 1FDh, Data = 11110000b [sets mask bits]  
Byte Write Command, Address = 74h, Data = 10101010b [writes data with mask]  
Memory Address 74h (original contents)  
Mask to choose bit from new  
write command  
1
1
1
1
0
0
1
1
0
0
0
0
Mask to choose bit from  
original register contents  
Memory Address 74h (new data in write command)  
0
1
0
1
0
1
Bit from new write command  
Memory Address 1FDh (mask register)  
1
1
1
0
0
0
Bit from original register  
contents  
Memory Address 74h (new contents after write command)  
1
1
0
0
1
0
1
0
Figure 141: Example of I2C Byte Write Bit Masking  
Datasheet  
25-Feb-2021  
Revision 3.12  
175 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
20 Analog Temperature Sensor  
The SLG46880 has an Analog Temperature sensor (TS) with an output voltage linearly-proportional to the Centigrade tempera  
-
ture. The TS cell shares buffer with Vref0, so it is impossible to use both cells simultaneously, its output can be connected directly  
to the GPIO9 or to the ACPM3_L positive input. Using buffer causes low-output impedance, linear output, and makes interfacing  
to readout or control circuitry especially easy. The TS is rated to operate over a -40 °C to 85 °C temperature range. The error in  
the whole temperature range does not exceed ±3.6 %. TS output voltage variation over VDD at constant temperature is less than  
±1 %. For more detail refer to Section 3.  
The equation below calculates the typical analog voltage passed from the TS to the ACMPs' IN+ source input. It is important to  
note that there will be a chip to chip variation of about ±2 °C.  
VTS1 = -2.3 x T + 904.6  
VTS2 = -2.8 x T + 1076.1  
where:  
VTS1 (mV) - TS Output Voltage, range 1  
V
TS2 (mV) - TS Output Voltage, range 2  
T (°C) - Temperature  
Temperature hysteresis can be setup by enabling the GreenPAK's internal ACMP hysteresis.  
Datasheet  
25-Feb-2021  
Revision 3.12  
176 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
register [651]  
TS  
TS_ON  
From Connection Matrix Output [78]  
1
0
PD  
register [650]  
register [654]  
VDD  
registers [655:654] force to “11” when TS is ON  
register [655]  
TS_ON  
11  
10  
01  
00  
+
-
Vref0  
GPIO9  
GPIO9_aio_en  
ACMP3_L in+  
register [669]=1  
register [652]  
ACMP1_H Vref  
ACMP0_H Vref  
none  
0
1
TS_ON  
Closed  
Figure 142: Analog Temperature Sensor Structure Diagram  
Note that the Power-Down Mode is paired with Crystal OSC, see Section 12.6. If it is enabled for Temp Sensor, it is not available  
for Crystal OSC and vice versa. However, it is possible to enable Power-Down Mode for Crystal OSC and Temp Sensor simulta  
-
neously.  
Datasheet  
25-Feb-2021  
Revision 3.12  
177 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
1.2  
1.15  
1.1  
Output Range Ϯ  
Output Range ϭ  
1.05  
1
0.95  
0.9  
0.85  
0.8  
0.75  
0.7  
T (°C)  
Figure 143: TS Output vs. Temperature, VDD = 2.3 V to 5.5 V  
Datasheet  
25-Feb-2021  
Revision 3.12  
178 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
21 Register Definitions  
21.1 REGISTER MAP  
Table 56: Register Map  
Address  
Signal Function  
Register Bit Definition  
Byte  
Register Bit  
0
1
2
OUT0: IN0 of LUT2_0 or Clock Input of DFF0  
3
0
4
5
6
7
8
OUT1: IN1 of LUT2_0 or Data Input of DFF0  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
1
2
3
OUT2: IN0 of LUT2_1 or Clock Input of  
PGen  
OUT3: IN1 of LUT2_1 or nRST of PGen  
OUT4: IN0 of LUT3_0 or Clock Input of DFF1  
OUT5: IN1 of LUT3_0 or Data Input of DFF1  
4
Datasheet  
25-Feb-2021  
Revision 3.12  
179 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
4
OUT6: IN2 of LUT3_0 or nRST (nSET) of  
DFF1  
5
OUT7:IN0 of LUT3_1 or Clock Input of DFF2  
OUT8:IN1 of LUT3_1 or Data Input of DFF2  
6
OUT9:IN2 of LUT3_1 or nRST (nSET) of  
DFF2  
7
OUT10:IN0 of LUT3_2 or Clock Input of  
DFF3  
8
OUT11:IN1 of LUT3_2 or Data Input of DFF3  
Datasheet  
25-Feb-2021  
Revision 3.12  
180 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
OUT12:IN2 of LUT3_2 or nRST (nSET) of  
DFF3  
9
9
OUT13:IN0 of LUT3_3 or Clock Input of  
DFF4  
A
OUT14:IN1 of LUT3_3 or Data Input of DFF4  
B
OUT15:IN2 of LUT3_3 or nRST (nSET) of  
DFF4  
Datasheet  
25-Feb-2021  
Revision 3.12  
181 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
96  
97  
98  
OUT16:IN0 of LUT3_4 or Delay1 Input (or  
Counter1 nRST Input)  
99  
C
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
OUT17:IN1 of LUT3_4 or External Clock1  
Input of Delay1 (or Counter1)  
D
OUT18:IN2 of LUT3_4  
E
OUT19:IN0 of LUT3_5 or Delay2 Input (or  
Counter2 nRST Input)  
Datasheet  
25-Feb-2021  
Revision 3.12  
182 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
OUT20:IN1 of LUT3_5 or External Clock1  
Input of Delay2 (or Counter2)  
F
OUT21:IN2 of LUT3_5  
10  
OUT22:IN0 of LUT3_6 or Delay3 Input (or  
Counter3 nRST Input)  
11  
OUT23:IN1 of LUT3_6 or External Clock1  
Input of Delay3 (or Counter3)  
OUT24:IN2 of LUT3_6  
12  
13  
OUT25:IN0 of LUT3_7 or Delay4 Input (or  
Counter4 nRST Input)  
Datasheet  
25-Feb-2021  
Revision 3.12  
183 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
13  
OUT26:IN1 of LUT3_7 or External Clock1  
Input of Delay4 (or Counter4)  
14  
15  
16  
17  
OUT27:IN2 of LUT3_7  
OUT28:IN0ofLUT3_8or Inputof PipeDelay  
or UP signal of Ripple CNT  
OUT29:IN1 of LUT3_8 or nRST of Pipe De  
lay or STB of Ripple CNT  
-
OUT30:IN2 of LUT3_8 or Clock of Pipe De  
lay_Ripple CNT  
-
OUT31:IN0 of LUT4_0 or Delay0 Input (or  
Counter0 nRST Input)  
Datasheet  
25-Feb-2021  
Revision 3.12  
184 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
OUT32:IN1 of LUT4_0 or External Clock In  
put of Delay0 (or Counter0)  
-
18  
OUT33:IN2 of LUT4_0 or UP Input of FSM0  
19  
OUT34:IN3 of LUT4_0 or KEEP Input of  
FSM0  
1A  
OUT35:PWR UP of ACMP0_H  
OUT36:PWR UP of ACMP1_H  
OUT37:PWR UP of ACMP2_L  
1B  
1C  
Datasheet  
25-Feb-2021  
Revision 3.12  
185 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
1C  
OUT38:PWR UP of ACMP3_L  
1D  
1E  
1F  
20  
OUT39: GPO7 DOUT  
OUT40: GPO0 DOUT  
OUT41: GPIO0 DOUT  
OUT42: GPIO0 DOUT OE  
OUT43: GPIO1 DOUT  
Datasheet  
25-Feb-2021  
Revision 3.12  
186 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
OUT44:GPIO1 DOUT OE  
21  
OUT45: GPIO2 DOUT  
OUT46: GPIO2 DOUT OE  
OUT47: GPIO3 DOUT  
22  
23  
Datasheet  
25-Feb-2021  
Revision 3.12  
187 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
OUT48: GPIO3 DOUT OE  
24  
OUT49: GPIO4 DOUT  
OUT50: GPIO4 DOUT OE  
OUT51: GPIO5 DOUT  
25  
26  
Datasheet  
25-Feb-2021  
Revision 3.12  
188 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
OUT52: GPIO5 DOUT OE  
27  
OUT53: GPO1 DOUT  
OUT54: GPO2 DOUT  
OUT55: GPO3 DOUT  
28  
29  
Datasheet  
25-Feb-2021  
Revision 3.12  
189 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
OUT56: GPO4 DOUT  
2A  
OUT57: GPIO6 DOUT OE  
OUT58: GPIO6 DOUT  
OUT59: GPIO7 DOUT  
2B  
2C  
Datasheet  
25-Feb-2021  
Revision 3.12  
190 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
OUT60: GPIO7 DOUT OE  
2D  
OUT61: GPIO8 DOUT OE  
2E  
OUT62: GPIO8 DOUT  
2F  
OUT63: GPIO9 DOUT OE  
Datasheet  
25-Feb-2021  
Revision 3.12  
191 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
OUT64: GPIO9 DOUT  
30  
OUT65: GPIO10 DOUT OE  
31  
OUT66: GPIO10 DOUT  
32  
OUT67: GPIO11 DOUT OE  
Datasheet  
25-Feb-2021  
Revision 3.12  
192 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
OUT68: GPIO11 DOUT  
33  
OUT69: GPO5 DOUT  
OUT70: GPO6 DOUT  
OUT71: ASM REnSET  
34  
35  
Datasheet  
25-Feb-2021  
Revision 3.12  
193 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
OUT72: OSC0 ENABLE  
36  
OUT73: OSC1 ENABLE  
37  
OUT74: OSC2 ENABLE  
38  
OUT75: Filter/Edge detect input  
Datasheet  
25-Feb-2021  
Revision 3.12  
194 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
OUT76: F1 interrupt  
39  
OUT77: Programmable delay/edge detect  
input  
3A  
OUT78: Temp sensor/Crystal OSC/Vref  
Out_0/Vref Out_1 Power Up  
3B  
OUT79: GPI LATCH enable  
Datasheet  
25-Feb-2021  
Revision 3.12  
195 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
OUT80: GPIO LATCH enable  
3C  
OUT81: BG Power-down  
3D  
OUT82: DM EXT CLK0  
3E  
OUT83: DM EXT CLK1  
OSC1 turn on by register  
when matrix output enable/pd control signal = 0:  
0: auto on by delay cells  
1: always on  
504  
505  
0: matrix down, and register [504] should set to 1  
1: matrix on, and register [504] should set to 0  
OSC1 matrix power-down or on select  
external clock source enable  
0: internal OSC1  
1: external clock from GPI1  
506  
507  
00: div 1  
01: div 2  
10: div 4  
11: div 8  
post divider ratio control  
3F  
508  
509  
510  
000: /1  
001: /2  
010: /4  
011: /3  
100: /8  
101: /12  
110: /24  
111: /64  
matrix divider ratio control  
511  
Datasheet  
25-Feb-2021  
Revision 3.12  
196 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
0: disable  
1: enable  
512  
matrix out enable  
513  
514  
515  
Reserved  
Reserved  
Reserved  
when matrix output enable/pd control signal = 0:  
0: auto on by delay cells  
1: always on  
516  
OSC2 turn on by register  
40  
0: matrix down  
1: matrix on  
517  
518  
matrix power-down or on select  
external clock source enable  
matrix out enable  
0: internal OSC2  
1: external clock from GPI0  
0: disable  
1: enable  
519  
520  
00: div 1  
01: div 2  
10: div 4  
11: div 8  
post divider ratio control  
521  
522  
523  
000: /1  
001: /2  
010: /4  
011: /3  
100: /8  
101: /12  
110: /24  
111: /64  
matrix divider ratio control  
524  
41  
0: enable  
1: disable  
525  
526  
100 ns Startup Delay  
when matrix output enable/pd control signal = 0:  
0: auto on by delay cells  
OSC0 turn on by register  
1: always on  
0: matrix down  
1: matrix on  
527  
528  
matrix power-down or on select  
external clock source enable  
matrix out enable  
0: internal OSC0  
1: external clock from PIN30  
0: disable  
1: enable  
529  
530  
00: div 1  
01: div 2  
10: div 4  
11: div 8  
post divider ratio control  
531  
42  
532  
533  
000: /1  
001: /2  
010: /4  
011: /3  
100: /8  
101: /12  
110: /24  
111: /64  
matrix divider ratio control  
Reserved  
534  
535  
Datasheet  
25-Feb-2021  
Revision 3.12  
197 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
0: disable  
1: enable  
536  
537  
538  
539  
GPI0 Digital Input 100 ns debounce enable  
GPI1 Digital Input 100 ns debounce enable  
GPI5 Digital Input 100 ns debounce enable  
GPI6 Digital Input 100 ns debounce enable  
0: disable  
1: enable  
0: disable  
1: enable  
0: disable  
1: enable  
43  
Filter or Edge Detector Select  
0: filter  
1: edge det  
540  
Filter or Edge Detector selection  
Output Polarity Select  
0: Filter/edge detect output  
1: Filter/edge detect output inverted  
541  
542  
00: Rising Edges Det  
01: Falling Edge Det  
10: Both Edge Det  
11: Both Edge dly  
Select the edge mode  
543  
544  
545  
546  
547  
548  
549  
550  
551  
[7:4]: LUT3_8 [7:4]/REG_S1[3:0] pipe delay out1 sel  
[3:0]: LUT3_8 [3:0]/REG_S0[3:0] pipe delay out0 sel  
LUT value or pipe delay out sel or Nset/END at Ripple CNT mode:  
44  
value  
bit[546:544] is the nSET value.  
bit[549:547] is the END value  
bit [550] is the range control: 0: full cycle, 1: ranged cycle  
bit [551] Not used  
0: Non-inverted  
1: Inverted  
552  
553  
554  
Pipe Delay OUT1 Polarity Select  
LUT3_8 or Pipe Delay Select  
0: LUT3_8  
1: Pipe Delay or Ripple CNT  
0: Pipe delay mode selection  
1: Ripple Counter mode selection  
PIPE_Ripple_CNT_S  
Reserved  
555  
556  
45  
00: Rising Edge Detector  
01: Falling Edge Detector  
10: Both Edge Detector  
11: Both Edge Delay  
Select the Edge Mode of Programmable De  
lay & Edge Detector  
-
557  
558  
559  
00: 125ns  
Delay Value Select for Programmable Delay 01: 250ns  
& Edge Detector  
10: 375ns  
11: 500ns  
Datasheet  
25-Feb-2021  
Revision 3.12  
198 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
560  
561  
562  
[3]:LUT2_0 [3]/DFF0 or LATCH Select  
0: DFF function  
1: LATCH function  
[2]:LUT2_0 [2]/DFF0 Output Select  
0: Q output  
LUT2_0/DFF0 setting  
1: QB output  
[1]:LUT2_0 [1]/DFF0 Initial Polarity Select  
0: Low  
563  
46  
1: High  
[0]:LUT2_0 [0]  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
LUT2_1_VAL or PGen_data  
LUT2_1[3:0] or PGen 4bit counter data[3:0]  
47  
PGen data  
PGen Data[15:0]  
48  
[7]:LUT3_0 [7]/DFF1 or LATCH Select  
0: DFF function  
1: LATCH function  
[6]:LUT3_0 [6]/DFF1 Output Select  
0: Q output  
1: QB output  
49  
LUT3_0_DFF1 setting  
[5]:LUT3_0 [5]/DFF1  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
[4]:LUT3_0 [4]/DFF1 Initial Polarity Select  
0: Low,  
591  
1: High  
[3:0]: LUT3_0 [3:0]  
Datasheet  
25-Feb-2021  
Revision 3.12  
199 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
592  
593  
594  
595  
596  
597  
598  
[7]:LUT3_1 [7]/DFF2 or LATCH Select  
0: DFF function  
1: LATCH function  
[6]:LUT3_1 [6]/DFF2 Output Select  
0: Q output  
1: QB output  
4A  
LUT3_1_DFF2 setting  
[5]:LUT3_1 [5]/DFF2  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
[4]:LUT3_1 [4]/DFF2 Initial Polarity Select  
0: Low  
599  
1: High  
[3:0]: LUT3_1 [3:0]  
600  
601  
602  
603  
604  
605  
606  
[7]:LUT3_2 [7]/DFF3 or LATCH Select  
0: DFF function,  
1: LATCH function  
[6]:LUT3_2 [6]/DFF3 Output Select  
0: Q output  
1: QB output  
[5]:LUT3_2 [5]/DFF3  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
[4]:LUT3_2 [4]/DFF3 Initial Polarity Select  
0: Low  
4B  
LUT3_2_DFF3 setting  
607  
1: High [  
3:0]: LUT3_2 [3:0]  
608  
609  
610  
611  
612  
613  
614  
[7]:LUT3_3 [7]/DFF4 or LATCH Select  
0: DFF function  
1: LATCH function  
[6]:LUT3_3 [6]/DFF4 Output Select  
0: Q output  
1: QB output  
[5]:LUT3_3 [5]/DFF4  
0: nRST from Matrix Output  
1: nSET from Matrix Output  
[4]:LUT3_3 [4]/DFF4 Initial Polarity Select  
0: Low  
4C  
LUT3_3_DFF4 setting  
615  
1: High  
[3:0]: LUT3_3 [3:0]  
Datasheet  
25-Feb-2021  
Revision 3.12  
200 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
0: LUT2_0  
1: DFF0  
616  
617  
618  
619  
620  
621  
LUT2_0 or DFF0 Select  
LUT2_1 or PGen Select  
LUT3_0 or DFF1 Select  
DFF1_SECONDQ_Sel  
LUT3_1 or DFF2 Select  
LUT3_2 or DFF3 Select  
0: LUT2_1  
1: PGen  
0: LUT3_0  
1: DFF1  
0: Q of first DFF  
1 Q of second DFF  
4D  
0: LUT3_1  
1: DFF2  
0: LUT3_2  
1: DFF3  
0: LUT3_3  
1: DFF4  
622  
623  
624  
625  
626  
627  
LUT3_3 or DFF4 Select  
Reserved  
0: CHOP enable  
1: chopper off  
BG CHOP OFF  
BG Chopper clock test enable  
1: enable  
Bandgap internal voltage output to Pin en  
able  
-
1: enable  
00: 0 mV  
4E  
01: 32 mV  
10: 64 mV  
11: 192 mV  
ACMP0_H hysteresis  
628  
629  
630  
Reserved  
ACMP0_H input buffer enable  
1: enable  
631  
632  
633  
Reserved  
ACMP0_H input tie to VDD enable  
1: enable  
1: enable  
ACMP1_H positive input come from AC  
MP0_H's input mux output enable  
-
634  
635  
Reserved  
00: 0 mV  
01: 32 mV  
10: 64 mV  
11: 192 mV  
ACMP1_H hysteresis  
636  
4F  
0: disable  
1: enable  
637  
638  
639  
ACMP1_H input buffer enable  
Reserved  
ACMP2_L positive input come from AC  
MP0_H's input mux output enable  
-
1: enable  
Datasheet  
25-Feb-2021  
Revision 3.12  
201 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
ACMP2_L positive input come from AC  
MP1_H's input mux output enable  
-
640  
641  
1: enable  
00: 0 mV  
01: 32 mV  
10: 64 mV  
11: 192 mV  
ACMP2_L hysteresis  
642  
643  
644  
645  
Reserved  
Reserved  
50  
00: 0 mV  
01: 32 mV  
10: 64 mV  
11: 192 mV  
ACMP3_L hysteresis  
646  
647  
648  
Reserved  
Reserved  
ACMP3_L positive input come from AC  
MP2_L's input mux output enable  
-
649  
650  
651  
652  
1: enable  
0: Power-down  
1: Power-On  
Temp sensor register pd control  
Temp sensor register pd select  
Temp sensor range select  
Vref0 output OP  
0: from register  
1: from matrix  
51  
0: range 1 (0.62 V ~ 0.99 V (TYP))  
1: range 2 (0.75 V ~ 1.2 V (TYP))  
0: disable  
1: enable  
653  
654  
00: None  
01: ACMP0_H Vref  
10: ACMP1_H Vref  
11: temp sensor  
Vref0 input selection  
655  
656  
0: disable  
1: enable  
Vref1 output OP  
657  
658  
00: None  
01: ACMP2_L Vref  
10: ACMP3_L Vref  
Vref1 input selection  
52  
659  
660  
661  
662  
663  
Reserved  
ACMP0_H Wake/sleep enable  
1: enable  
Datasheet  
25-Feb-2021  
Revision 3.12  
202 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
664  
ACMP1_H Wake/sleep enable  
1: enable  
0: short time  
1: normal w/s  
665  
ACMP wake/sleep time selection,  
666  
667  
668  
ACMP0_H 100uA current source enable  
Reserved for ACMP  
1: enable  
Reserved  
53  
ACMP3_L input come from Temp sensor  
output enable  
669  
670  
671  
1: enable  
0: disable  
1: enable  
IO fast Pull-up/down enable  
8 GPO outputs skew enable  
0: disable  
1: enable  
Datasheet  
25-Feb-2021  
Revision 3.12  
203 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
672  
673  
674  
675  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
GPO7output mode configuration  
GPO7Pull-up/down resistance selection  
00: floating  
01: 10K  
10: 100K  
11: 1M  
54  
0: Pull-down  
1: Pull-up  
676  
677  
GPO7Pull-up/down selection  
GPO7digital output source selection  
GPO7output enable  
0: from matrix  
1: from ASM (ASM output to GPO bit[0])  
0: disable  
1: enable.  
678  
679  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
GPO0output mode configuration  
680  
681  
682  
00: floating  
01: 10K  
10: 100K  
11: 1M  
GPO0Pull-up/down resistance selection  
0: Pull-down  
1: Pull-up  
683  
684  
685  
GPO0Pull-up/down selection  
GPO0digital output source selection  
GPO0output enable  
55  
0: from matrix  
1: from ASM (ASM output to GPO bit[1])  
0: disable  
1: enable  
GPIO0ultra-low powerdigitalinenable(only 0: disable  
686  
687  
used in SLG46881)  
1: enable  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
GPIO0input mode configuration  
688  
689  
690  
691  
692  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
GPIO0output mode configuration  
00: floating  
01: 10K  
10: 100K  
11: 1M  
56  
GPIO0Pull-up/down resistance selection  
0: Pull-down  
1: Pull-up  
693  
694  
695  
GPIO0Pull-up/down selection  
Reserved  
GPIO1 ultra-low powerdigitalinenable(only 0: disable  
used in SLG46881) 1: enable  
Datasheet  
25-Feb-2021  
Revision 3.12  
204 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
696  
697  
698  
699  
700  
701  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
GPIO1input mode configuration  
GPIO1output mode configuration  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
57  
00: floating  
01: 10K  
10: 100K  
GPIO1Pull-up/down resistance selection  
11: 1M  
0: Pull-down  
1: Pull-up  
702  
703  
704  
705  
GPIO1Pull-up/down selection  
Reserved  
GPIO2ultra-low powerdigitalinenable(only 0: disable  
used in SLG46881)  
1: enable  
00: without LATCH  
01: normal LATCH  
10: input data 0 LATCH (when LATCH_en is high)  
11: input data 1 LATCH (when LATCH_en is high)  
GPIO2digital input LATCH configuration  
706  
707  
708  
709  
710  
711  
712  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
58  
GPIO2input mode configuration  
GPIO2output mode configuration  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
00: floating  
01: 10K  
10: 100K  
11: 1M  
GPIO2Pull-up/down resistance selection  
GPIO2Pull-up/down selection  
0: Pull-down  
1: Pull-up  
713  
714  
00: without LATCH  
01: normal LATCH  
10: input data 0 LATCH (when LATCH_en is high)  
GPI0digital input LATCH configuration  
715  
716  
717  
718  
719  
11: input data 1 LATCH (when LATCH_en is high)  
59  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
GPI0input mode configuration  
00: floating  
01: 10K  
10: 100K  
11: 1M  
GPI0Pull-up/down resistance selection  
Datasheet  
25-Feb-2021  
Revision 3.12  
205 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
0: Pull-down  
1: Pull-up  
720  
GPI0Pull-up/down selection  
GPI1 ultra-low power digital in enable (only 0: disable  
721  
722  
used in SLG46881)  
1: enable  
00: without LATCH  
01: normal LATCH  
10: input data 0 LATCH (when LATCH_en is high)  
11: input data 1 LATCH (when LATCH_en is high)  
GPI1digital input LATCH configuration  
723  
724  
725  
726  
727  
5A  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
GPI1input mode configuration  
00: floating  
01: 10K  
10: 100K  
GPI1Pull-up/down resistance selection  
GPI1Pull-up/down selection  
11: 1M  
0: Pull-down  
1: Pull-up  
728  
GPI2 ultra-low power digital in enable (only 0: disable  
729  
730  
used in SLG46881)  
1: enable  
00: digital in without Schmitt Trigger  
01: digital in with Schmitt Trigger  
(when register [4084] = 1)  
10: low voltage digital in  
11: Reserved  
GPI2/SDA input mode configuration  
731  
5B  
732  
733  
00: floating  
01: 10K  
10: 100K  
GPI2/SDA Pull-up/down resistance selec  
tion  
-
11: 1M  
0: Pull-down  
1: Pull-up  
734  
GPI2/SDAPull-up/down selection  
GPI3 ultra-low power digital in enable (only 0: disable  
735  
736  
used in SLG46881)  
1: enable  
00: digital in without Schmitt Trigger  
01: digital in with Schmitt Trigger  
(when register [4084] = 1)  
10: low voltage digital in  
11: Reserved  
GPI3/SCL input mode configuration  
737  
738  
739  
00: floating  
01: 10K  
10: 100K  
GPI3/SCLPull-up/down resistance selection  
GPI3/SCLPull-up/down selection  
11: 1M  
5C  
0: Pull-down  
1: Pull-up  
740  
GPIO3ultra-low powerdigitalinenable(only 0: disable  
741  
742  
used in SLG46881)  
1: enable  
00: without LATCH  
01: normal LATCH  
10: input data 0 LATCH (when LATCH_en is high)  
11: input data 1 LATCH (when LATCH_en is high)  
GPIO3digital input LATCH configuration  
743  
Datasheet  
25-Feb-2021  
Revision 3.12  
206 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
744  
745  
746  
747  
748  
749  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO.  
GPIO3input mode configuration  
GPIO3output mode configuration  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
5D  
00: floating  
01: 10K  
10: 100K  
GPIO3Pull-up/down resistance selection  
GPIO3Pull-up/down selection  
11: 1M  
0: Pull-down  
1: Pull-up  
750  
751  
752  
753  
Reserved  
Reserved  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
GPIO4input mode configuration  
754  
755  
756  
757  
758  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
GPIO4output mode configuration  
GPIO4Pull-up/down resistance selection  
5E  
00: floating  
01: 10K  
10: 100K  
11: 1M  
0: Pull-down  
1: Pull-up  
759  
GPIO4Pull-up/down selection  
Reserved  
760  
761  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
GPIO5input mode configuration  
GPIO5output mode configuration  
762  
763  
764  
765  
766  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
5F  
00: floating  
01: 10K  
10: 100K  
GPIO5Pull-up/down resistance selection  
GPIO5Pull-up/down selection  
11: 1M  
0: Pull-down  
1: Pull-up  
767  
Datasheet  
25-Feb-2021  
Revision 3.12  
207 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
768  
769  
770  
771  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
GPO1output mode configuration  
GPO1Pull-up/down resistance selection  
00: floating  
01: 10K  
10: 100K  
11: 1M  
60  
0: Pull-down  
1: Pull-up  
772  
773  
GPO1Pull-up/down selection  
GPO1digital output source selection  
GPO1output enable  
0: from matrix  
1: from ASM (ASM output to GPO bit[2])  
0: disable  
1: enable.  
774  
775  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
GPO2output mode configuration  
776  
777  
778  
00: floating  
01: 10K  
10: 100K  
11: 1M  
GPO2Pull-up/down resistance selection  
0: Pull-down  
1: Pull-up  
779  
780  
GPO2Pull-up/down selection  
GPO2digital output source selection  
GPO2output enable  
61  
0: from matrix  
1: from ASM (ASM output to GPO bit[3]).  
0: disable  
1: enable.  
781  
782  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
GPO3output mode configuration  
783  
784  
785  
00: floating  
01: 10K  
10: 100K  
GPO3Pull-up/down resistance selection  
11: 1M  
0: Pull-down  
1: Pull-up  
786  
787  
GPO3Pull-up/down selection  
GPO3digital output source selection  
GPO3output enable  
0: from matrix  
1: from ASM (ASM output to GPO bit[4]).  
62  
0: disable  
1: enable.  
788  
789  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
GPO4output mode configuration  
790  
791  
792  
00: floating  
01: 10K  
10: 100K  
11: 1M  
GPO4Pull-up/down resistance selection  
63  
Datasheet  
25-Feb-2021  
Revision 3.12  
208 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
0: Pull-down  
1: Pull-up  
793  
794  
795  
GPO4Pull-up/down selection  
0: from matrix  
1: from ASM (ASM output to GPO bit[5]).  
GPO4digital output source selection  
0: disable  
1: enable.  
GPO4output enable  
Reserved  
63  
796  
797  
00: without LATCH  
01: normal LATCH  
10: input data 0 LATCH (when LATCH_en is high)  
11: input data 1 LATCH (when LATCH_en is high)  
GPIO6digital input LATCH configuration  
GPIO6input mode configuration  
798  
799  
800  
801  
802  
803  
804  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO.  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
GPIO6output mode configuration  
00: floating  
01: 10K  
10: 100K  
11: 1M.  
64  
GPIO6Pull-up/down resistance selection  
GPIO6Pull-up/down selection  
0: Pull-down  
1: Pull-up  
805  
806  
807  
808  
Reserved  
Reserved  
00: without LATCH  
01: normal LATCH  
10: input data 0 LATCH (when LATCH_en is high)  
11: input data 1 LATCH (when LATCH_en is high)  
GPIO7digital input LATCH configuration  
GPIO7input mode configuration  
809  
810  
811  
812  
813  
814  
815  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
65  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
GPIO7output mode configuration  
GPIO7Pull-up/down resistance selection  
00: floating  
01: 10K  
10: 100K  
11: 1M  
Datasheet  
25-Feb-2021  
Revision 3.12  
209 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
0: Pull-down  
1: Pull-up  
816  
817  
818  
819  
GPIO7Pull-up/down selection  
Reserved  
GPIO8ultra-low powerdigitalinenable(only 0: disable  
used in SLG46881)  
1: enable  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
66  
GPIO8input mode configuration  
820  
821  
822  
823  
824  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
GPIO8output mode configuration  
00: floating  
01: 10K  
10: 100K  
11: 1M  
GPIO8Pull-up/down resistance selection  
GPIO8Pull-up/down selection  
0: Pull-down  
1: Pull-up  
825  
GPI4 ultra-low power digital in enable (only 0: disable  
826  
827  
used in SLG46881)  
1: enable  
00: without LATCH  
67  
01: normal LATCH  
10: input data 0 LATCH (when LATCH_en is high)  
11: input data 1 LATCH (when LATCH_en is high)  
GPI4digital input LATCH configuration  
828  
829  
830  
831  
832  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
GPI4input mode configuration  
00: floating  
01: 10K  
10: 100K  
11: 1M  
GPI4Pull-up/down resistance selection  
GPI4Pull-up/down selection  
0: Pull-down  
1: Pull-up  
833  
GPI5 ultra-low power digital in enable (only 0: disable  
834  
835  
used in SLG46881)  
1: enable  
68  
00: without LATCH  
01: normal LATCH  
10: input data 0 LATCH (when LATCH_en is high)  
11: input data 1 LATCH (when LATCH_en is high)  
GPI5digital input LATCH configuration  
836  
837  
838  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
GPI5input mode configuration  
Datasheet  
25-Feb-2021  
Revision 3.12  
210 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
68  
839  
00: floating  
01: 10K  
10: 100K  
11: 1M  
GPI5Pull-up/down resistance selection  
GPI5Pull-up/down selection  
840  
0: Pull-down  
1: Pull-up  
69  
841  
GPI6 ultra-low power digital in enable (only 0: disable  
842  
843  
used in SLG46881)  
1: enable  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
GPI6input mode configuration  
844  
845  
846  
00: floating  
01: 10K  
10: 100K  
69  
GPI6Pull-up/down resistance selection  
GPI6Pull-up/down selection  
11: 1M  
0: Pull-down  
1: Pull-up  
847  
Datasheet  
25-Feb-2021  
Revision 3.12  
211 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
GPI7 ultra-low power digital in enable (only 0: disable  
848  
849  
used in SLG46881)  
1: enable  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
GPI7input mode configuration  
850  
851  
852  
00: floating  
01: 10K  
10: 100K  
11: 1M  
6A  
GPI7Pull-up/down resistance selection  
GPI7Pull-up/down selection  
0: Pull-down  
1: Pull-up  
853  
GPIO9ultra-low powerdigitalinenable(only 0: disable  
854  
855  
used in SLG46881)  
1: enable  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
GPIO9input mode configuration  
856  
857  
858  
859  
860  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
GPIO9output mode configuration  
00: floating  
01: 10K  
10: 100K  
11: 1M  
6B  
GPIO9Pull-up/down resistance selection  
GPIO9Pull-up/down selection  
0: Pull-down  
1: Pull-up  
861  
GPIO10 ultra-low power digital in enable  
(only used in SLG46881)  
0: disable  
1: enable  
862  
863  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
GPIO10input mode configuration  
GPIO10output mode configuration  
864  
865  
866  
867  
868  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
00: floating  
01: 10K  
10: 100K  
11: 1M.  
6C  
GPIO10Pull-up/down resistance selection  
GPIO10Pull-up/down selection  
0: Pull-down  
1: Pull-up  
869  
870  
GPIO11 ultra-low power digital in enable (on  
ly used in SLG46881)  
-
0: disable  
1: enable  
Datasheet  
25-Feb-2021  
Revision 3.12  
212 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
6C  
871  
872  
873  
874  
875  
876  
00: digital without Schmitt Trigger  
01: digital with Schmitt Trigger  
10: low voltage digital in  
11: analog IO  
GPIO11input mode configuration  
GPIO11output mode configuration  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
00: floating  
01: 10K  
10: 100K  
6D  
GPIO11Pull-up/down resistance selection  
11: 1M  
0: Pull-down  
1: Pull-up  
877  
GPIO11Pull-up/down selection  
Reserved  
878  
879  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
GPO5output mode configuration  
880  
881  
882  
00: floating  
01: 10K  
10: 100K  
GPO5Pull-up/down resistance selection  
11: 1M  
0: Pull-down  
1: Pull-up  
883  
884  
GPO5Pull-up/down selection  
GPO5digital output source selection  
GPO5output enable  
6E  
0: from matrix  
1: from ASM (ASM output to GPO bit[6])  
0: disable  
1: enable  
885  
886  
00: Push-Pull 1x  
01: Push-Pull 2x  
10: 1x Open-Drain  
11: 2x Open-Drain  
GPO6output mode configuration  
887  
888  
889  
00: floating  
01: 10K  
10: 100K  
11: 1M  
GPO6Pull-up/down resistance selection  
0: Pull-down  
1: Pull-up  
890  
891  
892  
893  
GPO6Pull-up/down selection  
GPO6digital output source selection  
GPO6output enable  
0: from matrix  
1: from ASM (ASM output to GPO bit[7]).  
6F  
0: disable  
1: enable  
0: I2C fast mode +  
I2C mode selection  
1: I2C standard/fast mode  
1: xtal enable is controlled by matrix out78 and matrix  
- in51 source is from Xtal OSC  
0: xtal is powered down and matrix in51 source is from  
XTALenable and matrix in51 source mux se  
lect  
894  
GPI4  
Datasheet  
25-Feb-2021  
Revision 3.12  
213 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
0: matrix enable signal (matrix out78) is gated and xtal  
is controlled by register [894]  
1: matrix enable signal is effective if register [894] = 1  
(matrix out78 = 0 → off, matrix out78 = 1 → on)  
6F  
895  
XTAL matrix enable signal gating  
DLY/CNT0 Mode Selection  
896  
897  
898  
899  
00:DLY  
01: one shot  
10: frequency det  
11: cnt register [913] = 0  
00:both edge  
01: falling edge  
10: rising edge  
11: High LevelReset (only inCNTmode)  
DLY/CNT0 edge Mode Selection  
900  
901  
902  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
70  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
DLY/CNT0 Clock Source Select  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT4_END;  
1110: External;  
903  
904  
1111: Not used  
0: Reset to 0  
1: Set to data  
FSM0 SET/RST Selection  
CNT0 output pol selection  
0: Default Output  
1: Inverted Output  
905  
906  
00: bypass the initial  
01: initial 0  
10: initial 1  
CNT0 initial value selection  
907  
11: initial 1  
71  
0: LUT4_0  
1: DLY/CNT0(16bits)  
908  
909  
910  
911  
lut4_0 or DLY/CNT0 selection  
Wake sleep power-down state selection  
wake sleep mode selection  
0: (low)  
1: (high)  
0: Default Mode  
1: Wake Sleep Mode (registers [897:896] = 11)  
0: bypass  
1: after two DFFs  
Keep signal SYNC selection  
Datasheet  
25-Feb-2021  
Revision 3.12  
214 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
0: bypass  
1: after two DFFs  
912  
913  
914  
915  
UP signal SYNC selection  
0: normal  
CNT0 DLY EDET FUNCTION Selection  
CNT0 CNT mode SYNC selection  
CNT1 CNT mode SYNC selection  
1: DLY function edge detection (registers [897:896] = 00)  
72  
0: bypass  
1: after two DFFs  
0: bypass  
1: after two DFFs  
916  
917  
918  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT0_END;  
1110: External;  
72  
DLY/CNT1 Clock Source Select  
919  
1111: Not used  
920  
921  
00: bypass the initial  
01: initial 0  
10: initial 1  
CNT1 initial value selection  
11: initial 1  
922  
923  
924  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
CNT1 function and edge mode selection  
73  
925  
0: Default Output  
1: Inverted Output  
926  
CNT1 output pol selection  
0: LUT3_4  
1: DLY/CNT1(8bits)  
927  
928  
LUT3_4 or CNT_1 selection  
74  
CNT2 CNT mode SYNC selection  
0: bypass; 1: after two DFFs  
Datasheet  
25-Feb-2021  
Revision 3.12  
215 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
929  
930  
931  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT1_END;  
1110: External;  
DLY/CNT2 Clock Source Select  
932  
74  
1111: Not used  
933  
934  
00: bypass the initial  
01: initial 0  
10: initial 1  
CNT2 initial value selection  
11: initial 1  
935  
936  
937  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
CNT2 function and edge mode selection  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
register [941] = 0  
938  
75  
0: Default Output  
1: Inverted Output  
939  
940  
CNT2 output pol selection  
LUT3_5 or CNT_2 selection  
0: LUT3_5  
1: DLY/CNT2(8bits)  
0: normal  
941  
942  
CNT2 DLY EDET FUNCTION Selection  
CNT3 CNT mode SYNC selection  
1: DLY function edge detection  
(registers [938:935]=0000/0001/0010)  
0: bypass  
1: after two DFFs  
Datasheet  
25-Feb-2021  
Revision 3.12  
216 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
75  
943  
944  
945  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT2_END;  
1110: External;  
DLY/CNT3 Clock Source Select  
946  
76  
1111: Not used  
947  
948  
00: bypass the initial  
01: initial 0  
10: initial 1  
CNT3 initial value selection  
11: initial 1  
949  
950  
951  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
CNT3 function and edge mode selection  
952  
77  
0: Default Output  
1: Inverted Output  
953  
954  
955  
CNT3 output pol selection  
0: LUT3_6  
1: DLY/CNT3(8bits)  
LUT3_6 or CNT_3 selection  
CNT4 CNT mode SYNC selection  
0: bypass  
1: after two DFFs  
Datasheet  
25-Feb-2021  
Revision 3.12  
217 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
956  
957  
958  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT3_END;  
1110: External;  
77  
DLY/CNT4 Clock Source Select  
959  
1111: Not used  
960  
961  
00: bypass the initial  
01: initial 0  
10: initial 1  
CNT4 initial value selection  
11: initial 1  
962  
963  
964  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
CNT4 function and edge mode selection  
78  
965  
0: Default Output  
1: Inverted Output  
966  
967  
CNT4 output pol selection  
0: LUT3_7  
1: DLY/CNT4(8bits)  
LUT3_7 or CNT_4 selection  
REG_TEST_EN  
79  
79  
968  
969  
970  
971  
972  
973  
974  
975  
Reserved  
Reserved  
Reserved  
Reserved  
Datasheet  
25-Feb-2021  
Revision 3.12  
218 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
976  
977  
Memory for GPO 0  
Memory for GPO 1  
Memory for GPO 2  
Memory for GPO 3  
Memory for GPO 4  
Memory for GPO 5  
Memory for GPO 6  
Memory for GPO 7  
Memory for GPO 0  
Memory for GPO 1  
Memory for GPO 2  
Memory for GPO 3  
Memory for GPO 4  
Memory for GPO 5  
Memory for GPO 6  
Memory for GPO 7  
Memory for GPO 0  
Memory for GPO 1  
Memory for GPO 2  
Memory for GPO 3  
Memory for GPO 4  
Memory for GPO 5  
Memory for GPO 6  
Memory for GPO 7  
Memory for GPO 0  
Memory for GPO 1  
Memory for GPO 2  
Memory for GPO 3  
Memory for GPO 4  
Memory for GPO 5  
Memory for GPO 6  
Memory for GPO 7  
Memory for GPO 0  
Memory for GPO 1  
Memory for GPO 2  
Memory for GPO 3  
Memory for GPO 4  
Memory for GPO 5  
Memory for GPO 6  
Memory for GPO 7  
978  
979  
7A  
ASM State 0 Output Memory for 8 GPOs  
980  
981  
982  
983  
984  
985  
986  
987  
7B  
7C  
7D  
7E  
ASM State 1 Output Memory for 8 GPOs  
ASM State 2 Output Memory for 8 GPOs  
ASM State 3 Output Memory for 8 GPOs  
ASM State 4 Output Memory for 8 GPOs  
988  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
Datasheet  
25-Feb-2021  
Revision 3.12  
219 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1016  
1017  
1018  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
Memory for GPO 0  
Memory for GPO 1  
Memory for GPO 2  
Memory for GPO 3  
Memory for GPO 4  
Memory for GPO 5  
Memory for GPO 6  
Memory for GPO 7  
Memory for GPO 0  
Memory for GPO 1  
Memory for GPO 2  
Memory for GPO 3  
Memory for GPO 4  
Memory for GPO 5  
Memory for GPO 6  
Memory for GPO 7  
Memory for GPO 0  
Memory for GPO 1  
Memory for GPO 2  
Memory for GPO 3  
Memory for GPO 4  
Memory for GPO 5  
Memory for GPO 6  
Memory for GPO 7  
Memory for GPO 0  
Memory for GPO 1  
Memory for GPO 2  
Memory for GPO 3  
Memory for GPO 4  
Memory for GPO 5  
Memory for GPO 6  
Memory for GPO 7  
Memory for GPO 0  
Memory for GPO 1  
Memory for GPO 2  
Memory for GPO 3  
Memory for GPO 4  
Memory for GPO 5  
Memory for GPO 6  
Memory for GPO 7  
7F  
ASM State 5 Output Memory for 8 GPOs  
80  
81  
82  
83  
ASM State 6 Output Memory for 8 GPOs  
ASM State 7 Output Memory for 8 GPOs  
ASM State 8 Output Memory for 8 GPOs  
ASM State 9 Output Memory for 8 GPOs  
Datasheet  
25-Feb-2021  
Revision 3.12  
220 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1056  
1057  
1058  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
Memory for GPO 0  
Memory for GPO 1  
Memory for GPO 2  
Memory for GPO 3  
84  
ASM State 10 Output Memory for 8 GPOs  
Memory for GPO 4  
Memory for GPO 5  
Memory for GPO 6  
Memory for GPO 7  
Memory for GPO 0  
Memory for GPO 1  
Memory for GPO 2  
Memory for GPO 3  
85  
86  
87  
88  
ASM State 11 Output Memory for 8 GPOs  
Memory for GPO 4  
Memory for GPO 5  
Memory for GPO 6  
Memory for GPO 7  
Memory for Matrix input 0  
Memory for Matrix input 1  
Memory for Matrix input 2  
Memory for Matrix input 3  
Memory for Matrix input 0  
Memory for Matrix input 1  
Memory for Matrix input 2  
Memory for Matrix input 3  
Memory for Matrix input 0  
Memory for Matrix input 1  
Memory for Matrix input 2  
Memory for Matrix input 3  
Memory for Matrix input 0  
Memory for Matrix input 1  
Memory for Matrix input 2  
Memory for Matrix input 3  
Memory for Matrix input 0  
Memory for Matrix input 1  
Memory for Matrix input 2  
Memory for Matrix input 3  
Memory for Matrix input 0  
Memory for Matrix input 1  
Memory for Matrix input 2  
Memory for Matrix input 3  
ASM State 0 Output Memory for Matrix Input  
ASM State 1 Output Memory for Matrix Input  
ASM State 2 Output Memory for Matrix Input  
ASM State 3 Output Memory for Matrix Input  
ASM State 4 Output Memory for Matrix Input  
ASM State 5 Output Memory for Matrix Input  
Datasheet  
25-Feb-2021  
Revision 3.12  
221 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1096  
1097  
1098  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
Memory for Matrix input 0  
Memory for Matrix input 1  
Memory for Matrix input 2  
Memory for Matrix input 3  
Memory for Matrix input 0  
Memory for Matrix input 1  
Memory for Matrix input 2  
Memory for Matrix input 3  
Memory for Matrix input 0  
Memory for Matrix input 1  
Memory for Matrix input 2  
Memory for Matrix input 3  
Memory for Matrix input 0  
Memory for Matrix input 1  
Memory for Matrix input 2  
Memory for Matrix input 3  
Memory for Matrix input 0  
Memory for Matrix input 1  
Memory for Matrix input 2  
Memory for Matrix input 3  
Memory for Matrix input 0  
Memory for Matrix input 1  
Memory for Matrix input 2  
Memory for Matrix input 3  
ASM State 6 Output Memory for Matrix Input  
89  
ASM State 7 Output Memory for Matrix Input  
ASM State 8 Output Memory for Matrix Input  
ASM State 9 Output Memory for Matrix Input  
8A  
8B  
8С  
ASM State 10 Output Memory for Matrix In  
put  
-
ASM State 11 Output Memory for Matrix In  
put  
-
ASM Initial State Selection  
Reserved registers for ASM  
0000 → 1011: State 0 → State 11  
Datasheet  
25-Feb-2021  
Revision 3.12  
222 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1128  
1129  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1150  
1151  
OUT0_Setting0:  
REG_MATRIX_IN_SEL[5:0]  
6Bit MATRIX_IN_Setting0  
8D  
OUT0_Setting0:  
REG_MATRIX_IN_SEL[11:6]  
6Bit MATRIX_IN_Setting1  
6Bit MATRIX_IN_Setting2  
6Bit MATRIX_IN_Setting3  
8E  
OUT0_Setting0:  
REG_MATRIX_IN_SEL[17:12]  
8F  
OUT0_Setting0:  
REG_MATRIX_IN_SEL[23:18]  
Datasheet  
25-Feb-2021  
Revision 3.12  
223 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
OUT1_Setting0:  
REG_MATRIX_IN_SEL[5:0]  
6Bit MATRIX_IN_Setting0  
90  
OUT1_Setting0:  
REG_MATRIX_IN_SEL[11:6]  
6Bit MATRIX_IN_Setting1  
6Bit MATRIX_IN_Setting2  
6Bit MATRIX_IN_Setting3  
91  
OUT1_Setting0:  
REG_MATRIX_IN_SEL[17:12]  
92  
OUT1_Setting0:  
REG_MATRIX_IN_SEL[23:18]  
Datasheet  
25-Feb-2021  
Revision 3.12  
224 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1176  
1177  
1178  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1200  
OUT2_Setting0:  
REG_MATRIX_IN_SEL[5:0]  
6Bit MATRIX_IN_Setting0  
93  
OUT2_Setting0:  
REG_MATRIX_IN_SEL[11:6]  
6Bit MATRIX_IN_Setting1  
6Bit MATRIX_IN_Setting2  
6Bit MATRIX_IN_Setting3  
94  
OUT2_Setting0:  
REG_MATRIX_IN_SEL[17:12]  
95  
95  
OUT2_Setting0:  
REG_MATRIX_IN_SEL[23:18]  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State0_6BitMatrix_OUT0  
4 Settings selection  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State0_6BitMatrix_OUT1  
4 Settings selection  
96  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State0_6BitMatrix_OUT2  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State1_6BitMatrix_OUT0  
4 Settings selection  
Datasheet  
25-Feb-2021  
Revision 3.12  
225 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1208  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1230  
1231  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State1_6BitMatrix_OUT1  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State1_6BitMatrix_OUT2  
4 Settings selection  
97  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State2_6BitMatrix_OUT0  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State2_6BitMatrix_OUT1  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State2_6BitMatrix_OUT2  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State3_6BitMatrix_OUT0  
4 Settings selection  
98  
98  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State3_6BitMatrix_OUT1  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State3_6BitMatrix_OUT2  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State4_6BitMatrix_OUT0  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State4_6BitMatrix_OUT1  
4 Settings selection  
99  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State4_6BitMatrix_OUT2  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State5_6BitMatrix_OUT0  
4 Settings selection  
Datasheet  
25-Feb-2021  
Revision 3.12  
226 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State5_6BitMatrix_OUT1  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State5_6BitMatrix_OUT2  
4 Settings selection  
9A  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State6_6BitMatrix_OUT0  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State6_6BitMatrix_OUT1  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State6_6BitMatrix_OUT2  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State7_6BitMatrix_OUT0  
4 Settings selection  
9B  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State7_6BitMatrix_OUT1  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State7_6BitMatrix_OUT2  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State8_6BitMatrix_OUT0  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State8_6BitMatrix_OUT1  
4 Settings selection  
9C  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State8_6BitMatrix_OUT2  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State9_6BitMatrix_OUT0  
4 Settings selection  
Datasheet  
25-Feb-2021  
Revision 3.12  
227 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1256  
1257  
1258  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1270  
1271  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State9_6BitMatrix_OUT1  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State9_6BitMatrix_OUT2  
4 Settings selection  
9D  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State10_6BitMatrix_OUT0  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State10_6BitMatrix_OUT1  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State10_6BitMatrix_OUT2  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State11_6BitMatrix_OUT0  
4 Settings selection  
9E  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State11_6BitMatrix_OUT1  
4 Settings selection  
00: Settings 0  
01: Settings 1  
10: Settings 2  
11: Settings 3  
State11_6BitMatrix_OUT2  
4 Settings selection  
Datasheet  
25-Feb-2021  
Revision 3.12  
228 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1272  
1273  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 0 011: 6Bit_Matrix_OUT2;  
→State 0 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1274  
1275  
1276  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
9F  
ASM Input Matrix (Signal Source for State 0 011: 6Bit_Matrix_OUT2;  
→State 1 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1277  
1278  
1279  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 0 011: 6Bit_Matrix_OUT2;  
→State 2 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1280  
1281  
1282  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 0 011: 6Bit_Matrix_OUT2;  
→State 3 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1283  
A0  
1284  
1285  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 0 011: 6Bit_Matrix_OUT2;  
→State 4 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1286  
1287  
1288  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 0 011: 6Bit_Matrix_OUT2;  
→State 5 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
A1  
1289  
Datasheet  
25-Feb-2021  
Revision 3.12  
229 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1290  
1291  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 0 011: 6Bit_Matrix_OUT2;  
→State 6 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1292  
A1  
1293  
1294  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 0 011: 6Bit_Matrix_OUT2;  
→State 7 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1295  
Datasheet  
25-Feb-2021  
Revision 3.12  
230 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1296  
1297  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 0 011: 6Bit_Matrix_OUT2;  
→State 8 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1298  
1299  
1300  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
A2  
ASM Input Matrix (Signal Source for State 0 011: 6Bit_Matrix_OUT2;  
→State 9 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1301  
1302  
1303  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 0 011: 6Bit_Matrix_OUT2;  
→State 10 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1304  
1305  
1306  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 0 011: 6Bit_Matrix_OUT2;  
→State 11 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1307  
000: VSS;  
A3  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
011: 6Bit_Matrix_OUT2;  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
ASM Input Matrix (Signal Source for State 1  
→State 10 Transition), bit [2]  
Note: This bit, along with  
registers [1343:1342], select the signal  
source for State 1 to State 10 Transition  
1308  
111: DM1_1  
1309  
1310  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 1 011: 6Bit_Matrix_OUT2;  
→State 11 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1311  
Datasheet  
25-Feb-2021  
Revision 3.12  
231 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1312  
1313  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 1 011: 6Bit_Matrix_OUT2;  
→State 0 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1314  
1315  
1316  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
A4  
ASM Input Matrix (Signal Source for State 1 011: 6Bit_Matrix_OUT2;  
→State 1 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1317  
1318  
1319  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 1 011: 6Bit_Matrix_OUT2;  
→State 2 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1320  
1321  
1322  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 1 011: 6Bit_Matrix_OUT2;  
→State 3 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1323  
A5  
1324  
1325  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 1 011: 6Bit_Matrix_OUT2;  
→State 4 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1326  
1327  
1328  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 1 011: 6Bit_Matrix_OUT2;  
→State 5 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
A6  
1329  
Datasheet  
25-Feb-2021  
Revision 3.12  
232 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1330  
1331  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 1 011: 6Bit_Matrix_OUT2;  
→State 6 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1332  
A6  
1333  
1334  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 1 011: 6Bit_Matrix_OUT2;  
→State 7 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1335  
1336  
1337  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 1 011: 6Bit_Matrix_OUT2;  
→State 8 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1338  
1339  
1340  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 1 011: 6Bit_Matrix_OUT2;  
A7  
→State 9 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1341  
1342  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
011: 6Bit_Matrix_OUT2;  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
ASM Input Matrix (Signal Source for State 1  
→State 10 Transition), bits [1:0]  
Note: These bits, along with register [1308],  
select the signal source for State 1 to State  
10 Transition  
1343  
111: DM1_1  
Datasheet  
25-Feb-2021  
Revision 3.12  
233 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1344  
1345  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 2 011: 6Bit_Matrix_OUT2;  
→State 0 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1346  
1347  
1348  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
A8  
ASM Input Matrix (Signal Source for State 2 011: 6Bit_Matrix_OUT2;  
→State 1 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1349  
1350  
1351  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 2 011: 6Bit_Matrix_OUT2;  
→State 2 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
A9  
1352  
Datasheet  
25-Feb-2021  
Revision 3.12  
234 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1353  
1354  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 2 011: 6Bit_Matrix_OUT2;  
→State 3 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1355  
A9  
1356  
1357  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 2 011: 6Bit_Matrix_OUT2;  
→State 4 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1358  
1359  
1360  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 2 011: 6Bit_Matrix_OUT2;  
→State 5 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1361  
1362  
1363  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 2 011: 6Bit_Matrix_OUT2;  
→State 6 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
AA  
1364  
1365  
1366  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 2 011: 6Bit_Matrix_OUT2;  
→State 7 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1367  
Datasheet  
25-Feb-2021  
Revision 3.12  
235 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1368  
1369  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 2 011: 6Bit_Matrix_OUT2;  
→State 8 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1370  
AB  
1371  
1372  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 2 011: 6Bit_Matrix_OUT2;  
→State 9 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1373  
1374  
1375  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
AB  
ASM Input Matrix (Signal Source for State 2 011: 6Bit_Matrix_OUT2;  
→State 10 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1376  
1377  
1378  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 2 011: 6Bit_Matrix_OUT2;  
→State 11 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1379  
000: VSS;  
AC  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
011: 6Bit_Matrix_OUT2;  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
ASM Input Matrix (Signal Source for State 3  
→State 10 Transition), bit [2]  
Note: This bit, along with  
registers [1415:1414], select the signal  
source for State 3 to State 10 Transition  
1380  
111: DM1_1  
1381  
1382  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 3 011: 6Bit_Matrix_OUT2;  
→State 11 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1383  
Datasheet  
25-Feb-2021  
Revision 3.12  
236 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1384  
1385  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 3 011: 6Bit_Matrix_OUT2;  
→State 0 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1386  
1387  
1388  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
AD  
ASM Input Matrix (Signal Source for State 3 011: 6Bit_Matrix_OUT2;  
→State 1 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1389  
1390  
1391  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 3 011: 6Bit_Matrix_OUT2;  
→State 2 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
AE  
1392  
Datasheet  
25-Feb-2021  
Revision 3.12  
237 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1393  
1394  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 3 011: 6Bit_Matrix_OUT2;  
→State 3 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1395  
AE  
1396  
1397  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 3 011: 6Bit_Matrix_OUT2;  
→State 4 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1398  
1399  
1400  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 3 011: 6Bit_Matrix_OUT2;  
→State 5 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1401  
1402  
1403  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 3 011: 6Bit_Matrix_OUT2;  
→State 6 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
AF  
1404  
1405  
1406  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 3 011: 6Bit_Matrix_OUT2;  
→State 7 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1407  
Datasheet  
25-Feb-2021  
Revision 3.12  
238 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1408  
1409  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 3 011: 6Bit_Matrix_OUT2;  
→State 8 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1410  
BO  
1411  
1412  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 3 011: 6Bit_Matrix_OUT2;  
→State 9 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1413  
1414  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
011: 6Bit_Matrix_OUT2;  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
ASM Input Matrix (Signal Source for State 3  
→State 10 Transition), bits [1:0]  
Note:Thesebits, alongwith registers [1380],  
select the signal source for State 3 to State  
10 Transition  
BO  
1415  
111: DM1_1  
Datasheet  
25-Feb-2021  
Revision 3.12  
239 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1416  
1417  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 4 011: 6Bit_Matrix_OUT2;  
→State 0 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1418  
1419  
1420  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
B1  
ASM Input Matrix (Signal Source for State 4 011: 6Bit_Matrix_OUT2;  
→State 1 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1421  
1422  
1423  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 4 011: 6Bit_Matrix_OUT2;  
→State 2 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1424  
1425  
1426  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 4 011: 6Bit_Matrix_OUT2;  
→State 3 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1427  
B2  
1428  
1429  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 4 011: 6Bit_Matrix_OUT2;  
→State 4 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1430  
1431  
1432  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 4 011: 6Bit_Matrix_OUT2;  
→State 5 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
B3  
1433  
Datasheet  
25-Feb-2021  
Revision 3.12  
240 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1434  
1435  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 4 011: 6Bit_Matrix_OUT2;  
→State 6 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1436  
B3  
1437  
1438  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 4 011: 6Bit_Matrix_OUT2;  
→State 7 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1439  
1440  
1441  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 4 011: 6Bit_Matrix_OUT2;  
→State 8 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1442  
1443  
1444  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
B4  
ASM Input Matrix (Signal Source for State 4 011: 6Bit_Matrix_OUT2;  
→State 9 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1445  
1446  
1447  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 4 011: 6Bit_Matrix_OUT2;  
→State 10 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1448  
1449  
1450  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
B5  
ASM Input Matrix (Signal Source for State 4 011: 6Bit_Matrix_OUT2;  
→State 11 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1451  
Datasheet  
25-Feb-2021  
Revision 3.12  
241 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
011: 6Bit_Matrix_OUT2;  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
ASM Input Matrix (Signal Source for State 5  
→State 10 Transition), bit [2]  
Note: This bit, along with  
registers [1487:1486], select the signal  
source for State 5 to State 10 Transition  
1452  
111: DM1_1  
B5  
1453  
1454  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 5 011: 6Bit_Matrix_OUT2;  
→State 11 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1455  
1456  
1457  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 5 011: 6Bit_Matrix_OUT2;  
→State 0 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1458  
1459  
1460  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
B6  
ASM Input Matrix (Signal Source for State 5 011: 6Bit_Matrix_OUT2;  
→State 1 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1461  
1462  
1463  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 5 011: 6Bit_Matrix_OUT2;  
→State 2 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1464  
1465  
1466  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
B7  
ASM Input Matrix (Signal Source for State 5 011: 6Bit_Matrix_OUT2;  
→State 3 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1467  
Datasheet  
25-Feb-2021  
Revision 3.12  
242 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1468  
1469  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 5 011: 6Bit_Matrix_OUT2;  
→State 4 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
B7  
1470  
1471  
1472  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 5 011: 6Bit_Matrix_OUT2;  
→State 5 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1473  
1474  
1475  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 5 011: 6Bit_Matrix_OUT2;  
→State 6 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
B8  
1476  
1477  
1478  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 5 011: 6Bit_Matrix_OUT2;  
→State 7 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1479  
Datasheet  
25-Feb-2021  
Revision 3.12  
243 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1480  
1481  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 5 011: 6Bit_Matrix_OUT2;  
→State 8 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1482  
1483  
1484  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 5 011: 6Bit_Matrix_OUT2;  
B9  
→State 9 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1485  
1486  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
011: 6Bit_Matrix_OUT2;  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
ASM Input Matrix (Signal Source for State 5  
→State 10 Transition), bits [1:0]  
Note: These bits, along with register [1452],  
select the signal source for State 5 to State  
10 Transition  
1487  
111: DM1_1  
Datasheet  
25-Feb-2021  
Revision 3.12  
244 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1488  
1489  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 6 011: 6Bit_Matrix_OUT2;  
→State 0 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1490  
1491  
1492  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
BA  
ASM Input Matrix (Signal Source for State 6 011: 6Bit_Matrix_OUT2;  
→State 1 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1493  
1494  
1495  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 6 011: 6Bit_Matrix_OUT2;  
→State 2 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1496  
1497  
1498  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 6 011: 6Bit_Matrix_OUT2;  
→State 3 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1499  
BB  
1500  
1501  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 6 011: 6Bit_Matrix_OUT2;  
→State 4 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1502  
1503  
1504  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 6 011: 6Bit_Matrix_OUT2;  
→State 5 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
BC  
1505  
Datasheet  
25-Feb-2021  
Revision 3.12  
245 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1506  
1507  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 6 011: 6Bit_Matrix_OUT2;  
→State 6 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1508  
BC  
1509  
1510  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 6 011: 6Bit_Matrix_OUT2;  
→State 7 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1511  
Datasheet  
25-Feb-2021  
Revision 3.12  
246 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1512  
1513  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 6 011: 6Bit_Matrix_OUT2;  
→State 8 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1514  
1515  
1516  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
BD  
ASM Input Matrix (Signal Source for State 6 011: 6Bit_Matrix_OUT2;  
→State 9 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1517  
1518  
1519  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 6 011: 6Bit_Matrix_OUT2;  
→State 10 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1520  
1521  
1522  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 6 011: 6Bit_Matrix_OUT2;  
→State 11 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1523  
000: VSS;  
BE  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
011: 6Bit_Matrix_OUT2;  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
ASM Input Matrix (Signal Source for State 7  
→State 10 Transition), bit [2]  
Note: This bit, along with  
registers [1559:1558], select the signal  
source for State 7 to State 10 Transition  
1524  
111: DM1_1  
1525  
1526  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 7 011: 6Bit_Matrix_OUT2;  
→State 11 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1527  
Datasheet  
25-Feb-2021  
Revision 3.12  
247 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1528  
1529  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 7 011: 6Bit_Matrix_OUT2;  
→State 0 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1530  
1531  
1532  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
BF  
ASM Input Matrix (Signal Source for State 7 011: 6Bit_Matrix_OUT2;  
→State 1 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1533  
1534  
1535  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 7 011: 6Bit_Matrix_OUT2;  
→State 2 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1536  
1537  
1538  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 7 011: 6Bit_Matrix_OUT2;  
→State 3 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1539  
CO  
1540  
1541  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 7 011: 6Bit_Matrix_OUT2;  
→State 4 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1542  
1543  
1544  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 7 011: 6Bit_Matrix_OUT2;  
→State 5 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
C1  
1545  
Datasheet  
25-Feb-2021  
Revision 3.12  
248 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1546  
1547  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 7 011: 6Bit_Matrix_OUT2;  
→State 6 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1548  
C1  
1549  
1550  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 7 011: 6Bit_Matrix_OUT2;  
→State 7 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1551  
1552  
1553  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 7 011: 6Bit_Matrix_OUT2;  
→State 8 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1554  
1555  
1556  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 7 011: 6Bit_Matrix_OUT2;  
C2  
→State 9 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1557  
1558  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
011: 6Bit_Matrix_OUT2;  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
ASM Input Matrix (Signal Source for State 7  
→State 10 Transition), bits [1:0]  
Note: These bits, along with register [1524],  
select the signal source for State 7 to State  
10 Transition  
1559  
111: DM1_1  
Datasheet  
25-Feb-2021  
Revision 3.12  
249 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1560  
1561  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 8 011: 6Bit_Matrix_OUT2;  
→State 0 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1562  
1563  
1564  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
C3  
ASM Input Matrix (Signal Source for State 8 011: 6Bit_Matrix_OUT2;  
→State 1 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1565  
1566  
1567  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 8 011: 6Bit_Matrix_OUT2;  
→State 2 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
C4  
1568  
Datasheet  
25-Feb-2021  
Revision 3.12  
250 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1569  
1570  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 8 011: 6Bit_Matrix_OUT2;  
→State 3 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1571  
C4  
1572  
1573  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 8 011: 6Bit_Matrix_OUT2;  
→State 4 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1574  
1575  
1576  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 8 011: 6Bit_Matrix_OUT2;  
→State 5 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1577  
1578  
1579  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 8 011: 6Bit_Matrix_OUT2;  
→State 6 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
C5  
1580  
1581  
1582  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 8 011: 6Bit_Matrix_OUT2;  
→State 7 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1583  
Datasheet  
25-Feb-2021  
Revision 3.12  
251 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1584  
1585  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 8 011: 6Bit_Matrix_OUT2;  
→State 8Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1586  
C6  
1587  
1588  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 8 011: 6Bit_Matrix_OUT2;  
→State 9 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1589  
1590  
1591  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
C6  
ASM Input Matrix (Signal Source for State 8 011: 6Bit_Matrix_OUT2;  
→State 10 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1592  
1593  
1594  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 8 011: 6Bit_Matrix_OUT2;  
→State 11 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1595  
000: VSS;  
C7  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
011: 6Bit_Matrix_OUT2;  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
ASM Input Matrix (Signal Source for State 9  
→State 10 Transition), bit [2]  
Note: This bit, along with  
registers [1631:1630], select the signal  
source for State 9 to State 10 Transition  
1596  
111: DM1_1  
1597  
1598  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 9 011: 6Bit_Matrix_OUT2;  
→State 11 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1599  
Datasheet  
25-Feb-2021  
Revision 3.12  
252 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1600  
1601  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 9 011: 6Bit_Matrix_OUT2;  
→State 0 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1602  
1603  
1604  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
C8  
ASM Input Matrix (Signal Source for State 9 011: 6Bit_Matrix_OUT2;  
→State 1 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1605  
1606  
1607  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 9 011: 6Bit_Matrix_OUT2;  
→State 2 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
C9  
1608  
Datasheet  
25-Feb-2021  
Revision 3.12  
253 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1609  
1610  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 9 011: 6Bit_Matrix_OUT2;  
→State 3 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1611  
C9  
1612  
1613  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 9 011: 6Bit_Matrix_OUT2;  
→State 4 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1614  
1615  
1616  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 9 011: 6Bit_Matrix_OUT2;  
→State 5 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1617  
1618  
1619  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 9 011: 6Bit_Matrix_OUT2;  
→State 6 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
CA  
1620  
1621  
1622  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 9 011: 6Bit_Matrix_OUT2;  
→State 7 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1623  
Datasheet  
25-Feb-2021  
Revision 3.12  
254 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1624  
1625  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 9 011: 6Bit_Matrix_OUT2;  
→State 8 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1626  
CB  
1627  
1628  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 9 011: 6Bit_Matrix_OUT2;  
→State 9 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1629  
1630  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
011: 6Bit_Matrix_OUT2;  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
ASM Input Matrix (Signal Source for State 9  
→State 10 Transition), bits [1:0]  
Note: These bits, along with register [1596],  
select the signal source for State 9 to State  
10 Transition  
CB  
1631  
111: DM1_1  
Datasheet  
25-Feb-2021  
Revision 3.12  
255 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1632  
1633  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASMInputMatrix(SignalSourceforState10 011: 6Bit_Matrix_OUT2;  
→State 0 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1634  
1635  
1636  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
CC  
ASMInputMatrix(SignalSourceforState10 011: 6Bit_Matrix_OUT2;  
→State 1 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1637  
1638  
1639  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASMInputMatrix(SignalSourceforState10 011: 6Bit_Matrix_OUT2;  
→State 2 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1640  
1641  
1642  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 011: 6Bit_Matrix_OUT2;  
10 →State 3 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1643  
CD  
1644  
1645  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 011: 6Bit_Matrix_OUT2;  
10 →State 4 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1646  
1647  
1648  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 011: 6Bit_Matrix_OUT2;  
10 →State 5 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
CE  
1649  
Datasheet  
25-Feb-2021  
Revision 3.12  
256 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1650  
1651  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 011: 6Bit_Matrix_OUT2;  
10 →State 6 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1652  
CE  
1653  
1654  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 011: 6Bit_Matrix_OUT2;  
10 →State 7 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1655  
Datasheet  
25-Feb-2021  
Revision 3.12  
257 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1656  
1657  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 011: 6Bit_Matrix_OUT2;  
10 →State 8 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1658  
1659  
1660  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
CF  
ASM Input Matrix (Signal Source for State 011: 6Bit_Matrix_OUT2;  
10 →State 9 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1661  
1662  
1663  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 011: 6Bit_Matrix_OUT2;  
10 →State 10 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1664  
1665  
1666  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 011: 6Bit_Matrix_OUT2;  
10 →State 11 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
D0  
1667  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
011: 6Bit_Matrix_OUT2;  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
ASM InputMatrix (SignalSourceforState 11  
→State 10 Transition), bit [2]  
Note: This bit, along with  
registers [1703:1702], select the signal  
source for State 11 to State 10 Transition  
1668  
111: DM1_1  
1669  
1670  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 011: 6Bit_Matrix_OUT2;  
D0  
11 →State 11 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1671  
Datasheet  
25-Feb-2021  
Revision 3.12  
258 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1672  
1673  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 011: 6Bit_Matrix_OUT2;  
11 →State 0 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1674  
1675  
1676  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
D1  
ASM Input Matrix (Signal Source for State 011: 6Bit_Matrix_OUT2;  
11 →State 1 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1677  
1678  
1679  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 011: 6Bit_Matrix_OUT2;  
11 →State 2 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1680  
1681  
1682  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 011: 6Bit_Matrix_OUT2;  
11 →State 3 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1683  
D2  
1684  
1685  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 011: 6Bit_Matrix_OUT2;  
11 →State 4 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1686  
1687  
1688  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 011: 6Bit_Matrix_OUT2;  
11 →State 5 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
D3  
1689  
Datasheet  
25-Feb-2021  
Revision 3.12  
259 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1690  
1691  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 011: 6Bit_Matrix_OUT2;  
11 →State 6 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1692  
D3  
1693  
1694  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 011: 6Bit_Matrix_OUT2;  
11 →State 7 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1695  
1696  
1697  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 011: 6Bit_Matrix_OUT2;  
11 →State 8Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1698  
1699  
1700  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
ASM Input Matrix (Signal Source for State 011: 6Bit_Matrix_OUT2;  
D4  
11 →State 9 Transition)  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
111: DM1_1  
1701  
1702  
000: VSS;  
001: 6Bit_Matrix_OUT0;  
010: 6Bit_Matrix_OUT1;  
011: 6Bit_Matrix_OUT2;  
100: DM0_0;  
101: DM0_1;  
110: DM1_0;  
ASM InputMatrix (SignalSourceforState 11  
→State 10 Transition), bits [1:0]  
Note: These bits, along with register [1668],  
select the signal source for State 11 to State  
10 Transition  
1703  
111: DM1_1  
Datasheet  
25-Feb-2021  
Revision 3.12  
260 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1704  
1705  
1706  
1707  
1708  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727  
1728  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
DM0_0 Configuration Register 0  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
D5  
DM0_0 Configuration Register 0  
IN1 of LUT3  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
DM Delay input  
D6  
D6  
DM0_0 Configuration Register 0  
IN2 of LUT3  
D7  
DM0_0 Configuration Register 0  
DLY input from matrix  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
DM0_0 Configuration Register 0  
Data of LUT3  
D8  
Datasheet  
25-Feb-2021  
Revision 3.12  
261 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1736  
1737  
1738  
1739  
1740  
1741  
1742  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM0_0 Configuration Register 0  
Data of LUT2  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
D9  
DM0_0 Configuration Register 0  
Clock source selection  
1743  
1111: External  
1744  
1745  
1746  
1747  
1748  
1749  
1750  
1751  
DM0_0 Configuration Register 0  
Data of Delay  
DA  
Data[7:0]  
Datasheet  
25-Feb-2021  
Revision 3.12  
262 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1752  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM0_0 Configuration Register 0  
DLY input initial selection  
1753  
11: initial 1  
1754  
1755  
1756  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM0_0 Configuration Register 0  
DLY/CNT Function selection  
DB  
1757  
DM0_0 Configuration Register 0  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
1758  
1759  
DM0_0 Configuration Register 0  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1770  
1771  
DM0_0 Configuration Register 1  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
DC  
DD  
DM0_0 Configuration Register 1  
IN1 of LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
263 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1780  
1781  
1782  
1783  
1784  
1785  
1786  
1787  
1788  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1796  
1797  
1798  
DD  
DM0_0 Configuration Register 1  
IN2 of LUT3  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
DE  
DM0_0 Configuration Register 1  
DLY input from matrix  
DM Delay input  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM0_0 Configuration Register 1  
Data of LUT3  
DF  
DM0_0 Configuration Register 1  
Data of LUT2  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
E0  
DM0_0 Configuration Register 1  
Clock source selection  
1799  
1111: External  
Datasheet  
25-Feb-2021  
Revision 3.12  
264 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
1808  
DM0_0 Configuration Register 1  
Data of Delay  
E1  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM0_0 Configuration Register 1  
DLY input initial selection  
1809  
11: initial 1  
1810  
1811  
1812  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM0_0 Configuration Register 1  
DLY/CNT Function selection  
E2  
1813  
DM0_0 Configuration Register 1  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
1814  
1815  
DM0_0 Configuration Register 1  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
1816  
1817  
1818  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
DM0_0 Configuration Register 2  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
E3  
E4  
DM0_0 Configuration Register 2  
IN1 of LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
265 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1828  
1829  
1830  
1831  
1832  
1833  
1834  
1835  
1836  
1837  
1838  
1839  
1840  
1841  
1842  
1843  
1844  
1845  
1846  
1847  
1848  
1849  
1850  
1851  
1852  
1853  
1854  
E4  
DM0_0 Configuration Register 2  
IN2 of LUT3  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
E5  
DM0_0 Configuration Register 2  
DLY input from matrix  
DM Delay input  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM0_0 Configuration Register 2  
Data of LUT3  
E6  
DM0_0 Configuration Register 2  
Data of LUT2  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
E7  
DM0_0 Configuration Register 2  
Clock source selection  
1855  
1111: External  
Datasheet  
25-Feb-2021  
Revision 3.12  
266 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1856  
1857  
1858  
1859  
1860  
1861  
1862  
1863  
1864  
DM0_0 Configuration Register 2  
Data of Delay  
E8  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM0_0 Configuration Register 2  
DLY input initial selection  
1865  
11: initial 1  
1866  
1867  
1868  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM0_0 Configuration Register 2  
DLY/CNT Function selection  
E9  
1869  
DM0_0 Configuration Register 2  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
1870  
1871  
DM0_0 Configuration Register 2  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
1872  
1873  
1874  
1875  
1876  
1877  
1878  
1879  
1880  
1881  
1882  
1883  
DM0_0 Configuration Register 3  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
EA  
EB  
DM0_0 Configuration Register 3  
IN1 of LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
267 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1884  
1885  
1886  
1887  
1888  
1889  
1890  
1891  
1892  
1893  
1894  
1895  
1896  
1897  
1898  
1899  
1900  
1901  
1902  
1903  
1904  
1905  
1906  
1907  
1908  
1909  
1910  
EB  
DM0_0 Configuration Register 3  
IN2 of LUT3  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
EC  
DM0_0 Configuration Register 3  
DLY input from matrix  
DM Delay input  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM0_0 Configuration Register 3  
Data of LUT3  
ED  
DM0_0 Configuration Register 3  
Data of LUT2  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
EE  
DM0_0 Configuration Register 3  
Clock source selection  
1911  
1111: External  
Datasheet  
25-Feb-2021  
Revision 3.12  
268 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1912  
1913  
1914  
1915  
1916  
1917  
1918  
1919  
1920  
DM0_0 Configuration Register 3  
Data of Delay  
EF  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM0_0 Configuration Register 3  
DLY input initial selection  
1921  
11: initial 1  
1922  
1923  
1924  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM0_0 Configuration Register 3  
DLY/CNT Function selection  
F0  
1925  
DM0_0 Configuration Register 3  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
1926  
1927  
DM0_0 Configuration Register 3  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
1928  
1929  
1930  
1931  
1932  
1933  
1934  
1935  
1936  
1937  
1938  
1939  
DM0_0 Configuration Register 4  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
F1  
F2  
DM0_0 Configuration Register 4  
IN1 of LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
269 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1940  
1941  
1942  
1943  
1944  
1945  
1946  
1947  
1948  
1949  
1950  
1951  
1952  
1953  
1954  
1955  
1956  
1957  
1958  
1959  
1960  
1961  
1962  
1963  
1964  
1965  
1966  
F2  
DM0_0 Configuration Register 4  
IN2 of LUT3  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
F3  
DM0_0 Configuration Register 4  
DLY input from matrix  
DM Delay input  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM0_0 Configuration Register 4  
Data of LUT3  
F4  
DM0_0 Configuration Register 4  
Data of LUT2  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
F5  
DM0_0 Configuration Register 4  
Clock source selection  
1967  
1111: External  
Datasheet  
25-Feb-2021  
Revision 3.12  
270 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1968  
1969  
1970  
1971  
1972  
1973  
1974  
1975  
1976  
DM0_0 Configuration Register 4  
Data of Delay  
F6  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM0_0 Configuration Register 4  
DLY input initial selection  
1977  
11: initial 1  
1978  
1979  
1980  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM0_0 Configuration Register 4  
DLY/CNT Function selection  
F7  
1981  
DM0_0 Configuration Register 4  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
1982  
1983  
DM0_0 Configuration Register 4  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
1984  
1985  
1986  
1987  
1988  
1989  
1990  
1991  
1992  
1993  
1994  
1995  
DM0_0 Configuration Register 5  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
F8  
F9  
DM0_0 Configuration Register 5  
IN1 of LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
271 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1996  
1997  
1998  
1999  
2000  
2001  
2002  
2003  
2004  
2005  
2006  
2007  
2008  
2009  
2010  
2011  
2012  
2013  
2014  
2015  
2016  
2017  
2018  
2019  
2020  
2021  
2022  
F9  
DM0_0 Configuration Register 5  
IN2 of LUT3  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
FA  
DM0_0 Configuration Register 5  
DLY input from matrix  
DM Delay input  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM0_0 Configuration Register 5  
Data of LUT3  
FB  
DM0_0 Configuration Register 5  
Data of LUT2  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
FC  
DM0_0 Configuration Register 5  
Clock source selection  
2023  
1111: External  
Datasheet  
25-Feb-2021  
Revision 3.12  
272 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2024  
2025  
2026  
2027  
2028  
2029  
2030  
2031  
2032  
DM0_0 Configuration Register 5  
Data of Delay  
FD  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM0_0 Configuration Register 5  
DLY input initial selection  
2033  
11: initial 1  
2034  
2035  
2036  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM0_0 Configuration Register 5  
DLY/CNT Function selection  
FE  
2037  
DM0_0 Configuration Register 5  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
2038  
2039  
DM0_0 Configuration Register 5  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
2040  
2041  
2042  
2043  
2044  
2045  
2046  
2047  
2048  
2049  
2050  
2051  
2052  
2053  
FF  
Reserved  
DM0_1 Configuration Register 0  
IN0 of LUT3  
100  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
Datasheet  
25-Feb-2021  
Revision 3.12  
273 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2054  
2055  
2056  
2057  
2058  
2059  
2060  
2061  
2062  
2063  
2064  
2065  
2066  
2067  
2068  
2069  
2070  
2071  
2072  
2073  
2074  
2075  
2076  
2077  
2078  
2079  
2080  
2081  
2082  
2083  
100  
DM0_1 Configuration Register 0  
IN1 of LUT3  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
101  
DM0_1 Configuration Register 0  
IN2 of LUT3  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
102  
DM0_1 Configuration Register 0  
DLY input from matrix  
DM Delay input  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM0_1 Configuration Register 0  
Data of LUT3  
103  
104  
DM0_1 Configuration Register 0  
Data of LUT2  
Datasheet  
25-Feb-2021  
Revision 3.12  
274 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2084  
2085  
2086  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
DM0_1 Configuration Register 0  
Clock source selection  
104  
2087  
1111: External  
2088  
2089  
2090  
2091  
2092  
2093  
2094  
2095  
2096  
DM0_1 Configuration Register 0  
Data of Delay  
105  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM0_1 Configuration Register 0  
DLY input initial selection  
2097  
11: initial 1  
2098  
2099  
2100  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM0_1 Configuration Register 0  
DLY/CNT Function selection  
106  
2101  
DM0_1 Configuration Register 0  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
2102  
2103  
DM0_1 Configuration Register 0  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
275 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2104  
2105  
2106  
2107  
2108  
2109  
2110  
2111  
2112  
2113  
2114  
2115  
2116  
2117  
2118  
2119  
2120  
2121  
2122  
2123  
2124  
2125  
2126  
2127  
2128  
2129  
2130  
2131  
2132  
2133  
2134  
2135  
2136  
2137  
2138  
2139  
DM0_1 Configuration Register 1  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
107  
DM0_1 Configuration Register 1  
IN1 of LUT3  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
DM Delay input  
108  
DM0_1 Configuration Register 1  
IN2 of LUT3  
109  
DM0_1 Configuration Register 1  
DLY input from matrix  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM0_1 Configuration Register 1  
Data of LUT3  
10A  
10B  
DM0_1 Configuration Register 1  
Data of LUT2  
Datasheet  
25-Feb-2021  
Revision 3.12  
276 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2140  
2141  
2142  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
DM0_1 Configuration Register 1  
Clock source selection  
10B  
2143  
1111: External  
2144  
2145  
2146  
2147  
2148  
2149  
2150  
2151  
2152  
DM0_1 Configuration Register 1  
Data of Delay  
10C  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM0_1 Configuration Register 1  
DLY input initial selection  
2153  
11: initial 1  
2154  
2155  
2156  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM0_1 Configuration Register 1  
DLY/CNT Function selection  
10D  
2157  
DM0_1 Configuration Register 1  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
2158  
2159  
DM0_1 Configuration Register 1  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
277 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2160  
2161  
2162  
2163  
2164  
2165  
2166  
2167  
2168  
2169  
2170  
2171  
2172  
2173  
2174  
2175  
2176  
2177  
2178  
2179  
2180  
2181  
2182  
2183  
2184  
2185  
2186  
2187  
2188  
2189  
2190  
2191  
2192  
2193  
2194  
2195  
DM0_1 Configuration Register 2  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
10E  
DM0_1 Configuration Register 2  
IN1 of LUT3  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
DM Delay input  
10F  
DM0_1 Configuration Register 2  
IN2 of LUT3  
110  
DM0_1 Configuration Register 2  
DLY input from matrix  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM0_1 Configuration Register 2  
Data of LUT3  
111  
112  
DM0_1 Configuration Register 2  
Data of LUT2  
Datasheet  
25-Feb-2021  
Revision 3.12  
278 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2196  
2197  
2198  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
DM0_1 Configuration Register 2  
Clock source selection  
112  
2199  
1111: External  
2200  
2201  
2202  
2203  
2204  
2205  
2206  
2207  
2208  
DM0_1 Configuration Register 2  
Data of Delay  
113  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM0_1 Configuration Register 2  
DLY input initial selection  
2209  
11: initial 1  
2210  
2211  
2212  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM0_1 Configuration Register 2  
DLY/CNT Function selection  
114  
2213  
DM0_1 Configuration Register 2  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
2214  
2215  
DM0_1 Configuration Register 2  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
279 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2216  
2217  
2218  
2219  
2220  
2221  
2222  
2223  
2224  
2225  
2226  
2227  
2228  
2229  
2230  
2231  
2232  
2233  
2234  
2235  
2236  
2237  
2238  
2239  
2240  
2241  
2242  
2243  
2244  
2245  
2246  
2247  
2248  
2249  
2250  
2251  
DM0_1 Configuration Register 3  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
115  
DM0_1 Configuration Register 3  
IN1 of LUT3  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
DM Delay input  
116  
DM0_1 Configuration Register 3  
IN2 of LUT3  
117  
DM0_1 Configuration Register 3  
DLY input from matrix  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM0_1 Configuration Register 3  
Data of LUT3  
118  
119  
DM0_1 Configuration Register 3  
Data of LUT2  
Datasheet  
25-Feb-2021  
Revision 3.12  
280 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2252  
2253  
2254  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
DM0_1 Configuration Register 3  
Clock source selection  
119  
2255  
1111: External  
2256  
2257  
2258  
2259  
2260  
2261  
2262  
2263  
2264  
DM0_1 Configuration Register 3  
Data of Delay  
11A  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM0_1 Configuration Register 3  
DLY input initial selection  
2265  
11: initial 1  
2266  
2267  
2268  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM0_1 Configuration Register 3  
DLY/CNT Function selection  
11B  
2269  
DM0_1 Configuration Register 3  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
2270  
2271  
DM0_1 Configuration Register 3  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
281 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2272  
2273  
2274  
2275  
2276  
2277  
2278  
2279  
2280  
2281  
2282  
2283  
2284  
2285  
2286  
2287  
2288  
2289  
2290  
2291  
2292  
2293  
2294  
2295  
2296  
2297  
2298  
2299  
2300  
2301  
2302  
2303  
2304  
2305  
2306  
2307  
DM0_1 Configuration Register 4  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
11C  
DM0_1 Configuration Register 4  
IN1 of LUT3  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
DM Delay input  
11D  
DM0_1 Configuration Register 4  
IN2 of LUT3  
11E  
DM0_1 Configuration Register 4  
DLY input from matrix  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM0_1 Configuration Register 4  
Data of LUT3  
11F  
120  
DM0_1 Configuration Register 4  
Data of LUT2  
Datasheet  
25-Feb-2021  
Revision 3.12  
282 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2308  
2309  
2310  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
DM0_1 Configuration Register 4  
Clock source selection  
120  
2311  
1111: External  
2312  
2313  
2314  
2315  
2316  
2317  
2318  
2319  
2320  
DM0_1 Configuration Register 4  
Data of Delay  
121  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM0_1 Configuration Register 4  
DLY input initial selection  
2321  
11: initial 1  
2322  
2323  
2324  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM0_1 Configuration Register 4  
DLY/CNT Function selection  
122  
2325  
DM0_1 Configuration Register 4  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
2326  
2327  
DM0_1 Configuration Register 4  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
283 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2328  
2329  
2330  
2331  
2332  
2333  
2334  
2335  
2336  
2337  
2338  
2339  
2340  
2341  
2342  
2343  
2344  
2345  
2346  
2347  
2348  
2349  
2350  
2351  
2352  
2353  
2354  
2355  
2356  
2357  
2358  
2359  
DM0_1 Configuration Register 5  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
123  
DM0_1 Configuration Register 5  
IN1 of LUT3  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
DM Delay input  
124  
125  
126  
DM0_1 Configuration Register 5  
IN2 of LUT3  
DM0_1 Configuration Register 5  
DLY input from matrix  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
DM0_1 Configuration Register 5  
Data of LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
284 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2360  
2361  
2362  
2363  
2364  
2365  
2366  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM0_1 Configuration Register 5  
Data of LUT2  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
127  
DM0_1 Configuration Register 5  
Clock source selection  
2367  
1111: External  
2368  
2369  
2370  
2371  
2372  
2373  
2374  
2375  
2376  
DM0_1 Configuration Register 5  
Data of Delay  
128  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM0_1 Configuration Register 5  
DLY input initial selection  
2377  
11: initial 1  
2378  
2379  
2380  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
129  
DM0_1 Configuration Register 5  
DLY/CNT Function selection  
2381  
2382  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM0_1 Configuration Register 5  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
Datasheet  
25-Feb-2021  
Revision 3.12  
285 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
DM0_1 Configuration Register 5  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
129  
2383  
2384  
2385  
2386  
2387  
2388  
2389  
2390  
2391  
2392  
2393  
2394  
2395  
2396  
2397  
2398  
2399  
2400  
2401  
2402  
2403  
2404  
2405  
2406  
2407  
2408  
2409  
2410  
2411  
2412  
2413  
2414  
2415  
2416  
2417  
2418  
2419  
DM1_0 Configuration Register 0  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
DM Delay input  
12A  
12B  
12C  
DM1_0 Configuration Register 0  
IN1 of LUT3  
DM1_0 Configuration Register 0  
IN2 of LUT3  
DM1_0 Configuration Register 0  
DLY input from matrix  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM1_0 Configuration Register 0  
Data of LUT3  
12D  
12E  
DM1_0 Configuration Register 0  
Data of LUT2  
Datasheet  
25-Feb-2021  
Revision 3.12  
286 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2420  
2421  
2422  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
DM1_0 Configuration Register 0  
Clock source selection  
12E  
2423  
1111: External  
2424  
2425  
2426  
2427  
2428  
2429  
2430  
2431  
2432  
DM1_0 Configuration Register 0  
Data of Delay  
12F  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM1_0 Configuration Register 0  
DLY input initial selection  
2433  
11: initial 1  
2434  
2435  
2436  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM1_0 Configuration Register 0  
DLY/CNT Function selection  
130  
2437  
DM1_0 Configuration Register 0  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
2438  
2439  
DM1_0 Configuration Register 0  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
287 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2440  
2441  
2442  
2443  
2444  
2445  
2446  
2447  
2448  
2449  
2450  
2451  
2452  
2453  
2454  
2455  
2456  
2457  
2458  
2459  
2460  
2461  
2462  
2463  
2464  
2465  
2466  
2467  
2468  
2469  
2470  
2471  
2472  
2473  
2474  
2475  
DM1_0 Configuration Register 1  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
131  
DM1_0 Configuration Register 1  
IN1 of LUT3  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
DM Delay input  
132  
DM1_0 Configuration Register 1  
IN2 of LUT3  
133  
DM1_0 Configuration Register 1  
DLY input from matrix  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM1_0 Configuration Register 1  
Data of LUT3  
134  
135  
DM1_0 Configuration Register 1  
Data of LUT2  
Datasheet  
25-Feb-2021  
Revision 3.12  
288 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2476  
2477  
2478  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
DM1_0 Configuration Register 1  
Clock source selection  
135  
2479  
1111: External  
2480  
2481  
2482  
2483  
2484  
2485  
2486  
2487  
2488  
DM1_0 Configuration Register 1  
Data of Delay  
136  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM1_0 Configuration Register 1  
DLY input initial selection  
2489  
11: initial 1  
2490  
2491  
2492  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM1_0 Configuration Register 1  
DLY/CNT Function selection  
137  
2493  
DM1_0 Configuration Register 1  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
2494  
2495  
DM1_0 Configuration Register 1  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
289 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2496  
2497  
2498  
2499  
2500  
2501  
2502  
2503  
2504  
2505  
2506  
2507  
2508  
2509  
2510  
2511  
2512  
2513  
2514  
2515  
2516  
2517  
2518  
2519  
2520  
2521  
2522  
2523  
2524  
2525  
2526  
2527  
2528  
2529  
2530  
2531  
DM1_0 Configuration Register 2  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
138  
DM1_0 Configuration Register 2  
IN1 of LUT3  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
DM Delay input  
139  
DM1_0 Configuration Register 2  
IN2 of LUT3  
13A  
DM1_0 Configuration Register 2  
DLY input from matrix  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM1_0 Configuration Register 2  
Data of LUT3  
13B  
13C  
DM1_0 Configuration Register 2  
Data of LUT2  
Datasheet  
25-Feb-2021  
Revision 3.12  
290 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2532  
2533  
2534  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
DM1_0 Configuration Register 2  
Clock source selection  
13C  
2535  
1111: External  
2536  
2537  
2538  
2539  
2540  
2541  
2542  
2543  
2544  
DM1_0 Configuration Register 2  
Data of Delay  
13D  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM1_0 Configuration Register 2  
DLY input initial selection  
2545  
11: initial 1  
2546  
2547  
2548  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM1_0 Configuration Register 2  
DLY/CNT Function selection  
13E  
2549  
DM1_0 Configuration Register 2  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
2550  
2551  
DM1_0 Configuration Register 2  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
291 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2552  
2553  
2554  
2555  
2556  
2557  
2558  
2559  
2560  
2561  
2562  
2563  
2564  
2565  
2566  
2567  
2568  
2569  
2570  
2571  
2572  
2573  
2574  
2575  
2576  
2577  
2578  
2579  
2580  
2581  
2582  
2583  
2584  
2585  
2586  
2587  
DM1_0 Configuration Register 3  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
13F  
DM1_0 Configuration Register 3  
IN1 of LUT3  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
DM Delay input  
140  
DM1_0 Configuration Register 3  
IN2 of LUT3  
141  
DM1_0 Configuration Register 3  
DLY input from matrix  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM1_0 Configuration Register 3  
Data of LUT3  
142  
143  
DM1_0 Configuration Register 3  
Data of LUT2  
Datasheet  
25-Feb-2021  
Revision 3.12  
292 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2588  
2589  
2590  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
DM1_0 Configuration Register 3  
Clock source selection  
143  
2591  
1111: External  
2592  
2593  
2594  
2595  
2596  
2597  
2598  
2599  
2600  
DM1_0 Configuration Register 3  
Data of Delay  
144  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM1_0 Configuration Register 3  
DLY input initial selection  
2601  
11: initial 1  
2602  
2603  
2604  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM1_0 Configuration Register 3  
DLY/CNT Function selection  
145  
2605  
DM1_0 Configuration Register 3  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
2606  
2607  
DM1_0 Configuration Register 3  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
293 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2608  
2609  
2610  
2611  
2612  
2613  
2614  
2615  
2616  
2617  
2618  
2619  
2620  
2621  
2622  
2623  
2624  
2625  
2626  
2627  
2628  
2629  
2630  
2631  
2632  
2633  
2634  
2635  
2636  
2637  
2638  
2639  
2640  
2641  
2642  
2643  
DM1_0 Configuration Register 4  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
146  
DM1_0 Configuration Register 4  
IN1 of LUT3  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
DM Delay input  
147  
DM1_0 Configuration Register 4  
IN2 of LUT3  
148  
DM1_0 Configuration Register 4  
DLY input from matrix  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM1_0 Configuration Register 4  
Data of LUT3  
149  
14A  
DM1_0 Configuration Register 4  
Data of LUT2  
Datasheet  
25-Feb-2021  
Revision 3.12  
294 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2644  
2645  
2646  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
DM1_0 Configuration Register 4  
Clock source selection  
14A  
2647  
1111: External  
2648  
2649  
2650  
2651  
2652  
2653  
2654  
2655  
2656  
DM1_0 Configuration Register 4  
Data of Delay  
14B  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM1_0 Configuration Register 4  
DLY input initial selection  
2657  
11: initial 1  
2658  
2659  
2660  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM1_0 Configuration Register 4  
DLY/CNT Function selection  
14C  
2661  
DM1_0 Configuration Register 4  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
2662  
2663  
DM1_0 Configuration Register 4  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
295 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2664  
2665  
2666  
2667  
2668  
2669  
2670  
2671  
2672  
2673  
2674  
2675  
2676  
2677  
2678  
2679  
2680  
2681  
2682  
2683  
2684  
2685  
2686  
2687  
2688  
2689  
2690  
2691  
2692  
2693  
2694  
2695  
2696  
2697  
2698  
2699  
DM1_0 Configuration Register 5  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
14D  
DM1_0 Configuration Register 5  
IN1 of LUT3  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
DM Delay input  
14E  
DM1_0 Configuration Register 5  
IN2 of LUT3  
14F  
DM1_0 Configuration Register 5  
DLY input from matrix  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM1_0 Configuration Register 5  
Data of LUT3  
150  
151  
DM1_0 Configuration Register 5  
Data of LUT2  
Datasheet  
25-Feb-2021  
Revision 3.12  
296 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2700  
2701  
2702  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
DM1_0 Configuration Register 5  
Clock source selection  
151  
2703  
1111: External  
2704  
2705  
2706  
2707  
2708  
2709  
2710  
2711  
2712  
DM1_0 Configuration Register 5  
Data of Delay  
152  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM1_0 Configuration Register 5  
DLY input initial selection  
2713  
11: initial 1  
2714  
2715  
2716  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM1_0 Configuration Register 5  
DLY/CNT Function selection  
153  
2717  
DM1_0 Configuration Register 5  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
2718  
2719  
DM1_0 Configuration Register 5  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
297 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2720  
2721  
2722  
2723  
2724  
2725  
2726  
2727  
2728  
2729  
2730  
2731  
2732  
2733  
2734  
2735  
2736  
2737  
2738  
2739  
2740  
2741  
2742  
2743  
2744  
2745  
2746  
2747  
2748  
2749  
2750  
2751  
2752  
2753  
2754  
2755  
DM1_1 Configuration Register 0  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
154  
DM1_1 Configuration Register 0  
IN1 of LUT3  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
DM Delay input  
155  
DM1_1 Configuration Register 0  
IN2 of LUT3  
156  
DM1_1 Configuration Register 0  
DLY input from matrix  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM1_1 Configuration Register 0  
Data of LUT3  
157  
158  
DM1_1 Configuration Register 0  
Data of LUT2  
Datasheet  
25-Feb-2021  
Revision 3.12  
298 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2756  
2757  
2758  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
DM1_1 Configuration Register 0  
Clock source selection  
158  
2759  
1111: External  
2760  
2761  
2762  
2763  
2764  
2765  
2766  
2767  
2768  
DM1_1 Configuration Register 0  
Data of Delay  
159  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM1_1 Configuration Register 0  
DLY input initial selection  
2769  
11: initial 1  
2770  
2771  
2772  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM1_1 Configuration Register 0  
DLY/CNT Function selection  
15A  
2773  
DM1_1 Configuration Register 0  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
2774  
2775  
DM1_1 Configuration Register 0  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
299 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2776  
2777  
2778  
2779  
2780  
2781  
2782  
2783  
2784  
2785  
2786  
2787  
2788  
2789  
2790  
2791  
2792  
2793  
2794  
2795  
2796  
2797  
2798  
2799  
2800  
2801  
2802  
2803  
2804  
2805  
2806  
2807  
2808  
2809  
2810  
2811  
DM1_1 Configuration Register 1  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
15B  
DM1_1 Configuration Register 1  
IN1 of LUT3  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
DM Delay input  
15C  
DM1_1 Configuration Register 1  
IN2 of LUT3  
15D  
DM1_1 Configuration Register 1  
DLY input from matrix  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM1_1 Configuration Register 1  
Data of LUT3  
15E  
15F  
DM1_1 Configuration Register 1  
Data of LUT2  
Datasheet  
25-Feb-2021  
Revision 3.12  
300 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2812  
2813  
2814  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
DM1_1 Configuration Register 1  
Clock source selection  
15F  
2815  
1111: External  
2816  
2817  
2818  
2819  
2820  
2821  
2822  
2823  
2824  
DM1_1 Configuration Register 1  
Data of Delay  
160  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM1_1 Configuration Register 1  
DLY input initial selection  
2825  
11: initial 1  
2826  
2827  
2828  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM1_1 Configuration Register 1  
DLY/CNT Function selection  
161  
2829  
DM1_1 Configuration Register 1  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
2830  
2831  
DM1_1 Configuration Register 1  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
301 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2832  
2833  
2834  
2835  
2836  
2837  
2838  
2839  
2840  
2841  
2842  
2843  
2844  
2845  
2846  
2847  
2848  
2849  
2850  
2851  
2852  
2853  
2854  
2855  
2856  
2857  
2858  
2859  
2860  
2861  
2862  
2863  
2864  
2865  
2866  
2867  
DM1_1 Configuration Register 2  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
162  
DM1_1 Configuration Register 2  
IN1 of LUT3  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
DM Delay input  
163  
DM1_1 Configuration Register 2  
IN2 of LUT3  
164  
DM1_1 Configuration Register 2  
DLY input from matrix  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM1_1 Configuration Register 2  
Data of LUT3  
165  
166  
DM1_1 Configuration Register 2  
Data of LUT2  
Datasheet  
25-Feb-2021  
Revision 3.12  
302 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2868  
2869  
2870  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
DM1_1 Configuration Register 2  
Clock source selection  
166  
2871  
1111: External  
2872  
2873  
2874  
2875  
2876  
2877  
2878  
2879  
2880  
DM1_1 Configuration Register 2  
Data of Delay  
167  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM1_1 Configuration Register 2  
DLY input initial selection  
2881  
11: initial 1  
2882  
2883  
2884  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM1_1 Configuration Register 2  
DLY/CNT Function selection  
168  
2885  
DM1_1 Configuration Register 2  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
2886  
2887  
DM1_1 Configuration Register 2  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
303 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2888  
2889  
2890  
2891  
2892  
2893  
2894  
2895  
2896  
2897  
2898  
2899  
2900  
2901  
2902  
2903  
2904  
2905  
2906  
2907  
2908  
2909  
2910  
2911  
2912  
2913  
2914  
2915  
2916  
2917  
2918  
2919  
2920  
2921  
2922  
2923  
DM1_1 Configuration Register 3  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
169  
DM1_1 Configuration Register 3  
IN1 of LUT3  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
DM Delay input  
16A  
DM1_1 Configuration Register 3  
IN2 of LUT3  
16B  
DM1_1 Configuration Register 3  
DLY input from matrix  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM1_1 Configuration Register 3  
Data of LUT3  
16C  
16D  
DM1_1 Configuration Register 3  
Data of LUT2  
Datasheet  
25-Feb-2021  
Revision 3.12  
304 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2924  
2925  
2926  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
DM1_1 Configuration Register 3  
Clock source selection  
16D  
2927  
1111: External  
2928  
2929  
2930  
2931  
2932  
2933  
2934  
2935  
2936  
DM1_1 Configuration Register 3  
Data of Delay  
16E  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM1_1 Configuration Register 3  
DLY input initial selection  
2937  
11: initial 1  
2938  
2939  
2940  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM1_1 Configuration Register 3  
DLY/CNT Function selection  
16F  
2941  
DM1_1 Configuration Register 3  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
2942  
2943  
DM1_1 Configuration Register 3  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
305 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2944  
2945  
2946  
2947  
2948  
2949  
2950  
2951  
2952  
2953  
2954  
2955  
2956  
2957  
2958  
2959  
2960  
2961  
2962  
2963  
2964  
2965  
2966  
2967  
2968  
2969  
2970  
2971  
2972  
2973  
2974  
2975  
2976  
2977  
2978  
2979  
DM1_1 Configuration Register 4  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
170  
DM1_1 Configuration Register 4  
IN1 of LUT3  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
DM Delay input  
171  
DM1_1 Configuration Register 4  
IN2 of LUT3  
172  
DM1_1 Configuration Register 4  
DLY input from matrix  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM1_1 Configuration Register 4  
Data of LUT3  
173  
174  
DM1_1 Configuration Register 4  
Data of LUT2  
Datasheet  
25-Feb-2021  
Revision 3.12  
306 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
2980  
2981  
2982  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
DM1_1 Configuration Register 4  
Clock source selection  
174  
2983  
1111: External  
2984  
2985  
2986  
2987  
2988  
2989  
2990  
2991  
2992  
DM1_1 Configuration Register 4  
Data of Delay  
175  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM1_1 Configuration Register 4  
DLY input initial selection  
2993  
11: initial 1  
2994  
2995  
2996  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM1_1 Configuration Register 4  
DLY/CNT Function selection  
176  
2997  
DM1_1 Configuration Register 4  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
2998  
2999  
DM1_1 Configuration Register 4  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
307 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3000  
3001  
3002  
3003  
3004  
3005  
3006  
3007  
3008  
3009  
3010  
3011  
3012  
3013  
3014  
3015  
3016  
3017  
3018  
3019  
3020  
3021  
3022  
3023  
3024  
3025  
3026  
3027  
3028  
3029  
3030  
3031  
3032  
3033  
3034  
3035  
DM1_1 Configuration Register 5  
IN0 of LUT3  
REG_MATRIX_LUT3_IN0_SEL[5:0]  
177  
DM1_1 Configuration Register 5  
IN1 of LUT3  
REG_MATRIX_LUT3_IN1_SEL[5:0]  
REG_MATRIX_LUT3_IN2_SEL[5:0]  
DM Delay input  
178  
DM1_1 Configuration Register 5  
IN2 of LUT3  
179  
DM1_1 Configuration Register 5  
DLY input from matrix  
REG_VAL_LUT3[0]  
REG_VAL_LUT3[1]  
REG_VAL_LUT3[2]  
REG_VAL_LUT3[3]  
REG_VAL_LUT3[4]  
REG_VAL_LUT3[5]  
REG_VAL_LUT3[6]  
REG_VAL_LUT3[7]  
REG_VAL_LUT2[0]  
REG_VAL_LUT2[1]  
REG_VAL_LUT2[2]  
REG_VAL_LUT2[3]  
DM1_1 Configuration Register 5  
Data of LUT3  
17A  
17B  
DM1_1 Configuration Register 5  
Data of LUT2  
Datasheet  
25-Feb-2021  
Revision 3.12  
308 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3036  
3037  
3038  
Clock source sel[3:0]  
0000: 25M;  
0001: 25M/4;  
0010: 2.048M  
0011: 2.048M/8;  
0100: 2.048M/64;  
0101: 2.048M/512;  
0110: 2.048K;  
0111: 2.048K/8;  
1000: 2.048K/64;  
1001: 2.048K/512;  
1010: 2.048K/4096  
1011: 2.048K/32768;  
1100: 2.048K/262144;  
1101: CNT_END;  
1110: External;  
DM1_1 Configuration Register 5  
Clock source selection  
17B  
3039  
1111: External  
3040  
3041  
3042  
3043  
3044  
3045  
3046  
3047  
3048  
DM1_1 Configuration Register 5  
Data of Delay  
17C  
Data[7:0]  
00: bypass the initial  
01: initial 0  
10: initial 1  
DM1_1 Configuration Register 5  
DLY input initial selection  
3049  
11: initial 1  
3050  
3051  
3052  
0000: Both Edge Delay  
0001: Falling Edge Delay  
0010: Rising Edge Delay  
0011: Both Edge One Shot  
0100: Falling Edge One Shot  
0101: Rising Edge One Shot  
0110: Both Edge Freq Detect  
0111: Falling Edge Freq Detect  
1000: Rising Edge Freq Detect  
1001: Both Edge Detect  
1010: Falling Edge Detect  
1011: Rising Edge Detect  
1100: Both Edge Reset CNT  
1101: Falling Edge Reset CNT  
1110: Rising Edge Reset CNT  
1111: High Level Reset CNT  
DM1_1 Configuration Register 5  
DLY/CNT Function selection  
17D  
3053  
DM1_1 Configuration Register 5  
MUX1 selection for LUT2  
0: from LUT3  
1: from matrix (DLY IN)  
3054  
3055  
DM1_1 Configuration Register 5  
MUX2 selection for DLY input  
0: from matrix (DLY IN)  
1: from LUT3  
Datasheet  
25-Feb-2021  
Revision 3.12  
309 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3056  
3057  
3058  
3059  
3060  
3061  
3062  
3063  
3064  
3065  
3066  
3067  
3068  
3069  
3070  
3071  
3072  
3073  
3074  
3075  
3076  
3077  
3078  
3079  
3080  
3081  
3082  
3083  
3084  
3085  
3086  
3087  
3088  
3089  
3090  
3091  
DM0_0 Selection Register State 0, bit [0]  
DM0_0 Selection Register State 1, bit [0]  
DM0_0 Selection Register State 2, bit [0]  
DM0_0 Selection Register State 3, bit [0]  
DM0_0 Selection Register State 4, bit [0]  
DM0_0 Selection Register State 5, bit [0]  
DM0_0 Selection Register State 6, bit [0]  
DM0_0 Selection Register State 7, bit [0]  
DM0_0 Selection Register State 8, bit [0]  
DM0_0 Selection Register State 9, bit [0]  
DM0_0 Selection Register State 10, bit [0]  
DM0_0 Selection Register State 11, bit [0]  
DM0_0 Selection Register State 0, bit [1]  
DM0_0 Selection Register State 1, bit [1]  
DM0_0 Selection Register State 2, bit [1]  
DM0_0 Selection Register State 3, bit [1]  
DM0_0 Selection Register State 4, bit [1]  
DM0_0 Selection Register State 5, bit [1]  
DM0_0 Selection Register State 6, bit [1]  
DM0_0 Selection Register State 7, bit [1]  
DM0_0 Selection Register State 8, bit [1]  
DM0_0 Selection Register State 9, bit [1]  
DM0_0 Selection Register State 10, bit [1]  
DM0_0 Selection Register State 11, bit [1]  
DM0_0 Selection Register State 0, bit [2]  
DM0_0 Selection Register State 1, bit [2]  
DM0_0 Selection Register State 2, bit [2]  
DM0_0 Selection Register State 3, bit [2]  
DM0_0 Selection Register State 4, bit [2]  
DM0_0 Selection Register State 5, bit [2]  
DM0_0 Selection Register State 6, bit [2]  
DM0_0 Selection Register State 7, bit [2]  
DM0_0 Selection Register State 8, bit [2]  
DM0_0 Selection Register State 9, bit [2]  
DM0_0 Selection Register State 10, bit [2]  
DM0_0 Selection Register State 11, bit [2]  
selection bit[2:0]:  
000: Not Used  
17E  
001: DM0_0 Configuration Register 0  
010: DM0_0 Configuration Register 1  
011: DM0_0 Configuration Register 2  
100: DM0_0 Configuration Register 3  
101: DM0_0 Configuration Register 4  
110: DM0_0 Configuration Register 5  
111: Not Used  
17F  
selection bit[2:0]:  
000: Not Used  
001: DM0_0 Configuration Register 0  
010: DM0_0 Configuration Register 1  
011: DM0_0 Configuration Register 2  
100: DM0_0 Configuration Register 3  
101: DM0_0 Configuration Register 4  
110: DM0_0 Configuration Register 5  
111: Not Used  
180  
selection bit[2:0]:  
000: Not Used  
181  
182  
001: DM0_0 Configuration Register 0  
010: DM0_0 Configuration Register 1  
011: DM0_0 Configuration Register 2  
100: DM0_0 Configuration Register 3  
101: DM0_0 Configuration Register 4  
110: DM0_0 Configuration Register 5  
111: Not Used  
Datasheet  
25-Feb-2021  
Revision 3.12  
310 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
DM0_0 Output Configuration Selection Reg  
ister State 0, bit [0]  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3092  
3093  
3094  
3095  
3096  
3097  
3098  
3099  
3100  
3101  
3102  
3103  
3104  
3105  
3106  
3107  
3108  
3109  
3110  
3111  
3112  
3113  
3114  
3115  
DM0_0 Output Configuration Selection Reg  
ister State 1, bit [0]  
182  
DM0_0 Output Configuration Selection Reg  
ister State 2, bit [0]  
DM0_0 Output Configuration Selection Reg  
ister State 3, bit [0]  
DM0_0 Output Configuration Selection Reg  
ister State 4, bit [0]  
control bit[1:0]:  
00:DM out0/1/2 keep  
01:DM out bypass to out0, out1/2 keep  
10: DM out bypass to out1, out0/2 keep  
11: DM out bypass to out2, out0/1 keep  
DM0_0 Output Configuration Selection Reg  
ister State 5, bit [0]  
DM0_0 Output Configuration Selection Reg  
ister State 6, bit [0]  
DM0_0 Output Configuration Selection Reg  
ister State 7, bit [0]  
183  
DM0_0 Output Configuration Selection Reg  
ister State 8, bit [0]  
DM0_0 Output Configuration Selection Reg  
ister State 9, bit [0]  
DM0_0 Output Configuration Selection Reg  
ister State 10, bit [0]  
DM0_0 Output Configuration Selection Reg  
ister State 11, bit [0]  
DM0_0 Output Configuration Selection Reg  
ister State 0, bit [1]  
DM0_0 Output Configuration Selection Reg  
ister State 1, bit [1]  
DM0_0 Output Configuration Selection Reg  
ister State 2, bit [1]  
DM0_0 Output Configuration Selection Reg  
ister State 3, bit [1]  
184  
DM0_0 Output Configuration Selection Reg  
ister State 4, bit [1]  
control bit[1:0]:  
00:DM out0/1/2 keep  
01:DM out bypass to out0, out1/2 keep  
10: DM out bypass to out1, out0/2 keep  
11: DM out bypass to out2, out0/1 keep  
DM0_0 Output Configuration Selection Reg  
ister State 5, bit [1]  
DM0_0 Output Configuration Selection Reg  
ister State 6, bit [1]  
DM0_0 Output Configuration Selection Reg  
ister State 7, bit [1]  
DM0_0 Output Configuration Selection Reg  
ister State 8, bit [1]  
DM0_0 Output Configuration Selection Reg  
ister State 9, bit [1]  
185  
DM0_0 Output Configuration Selection Reg  
ister State 10, bit [1]  
DM0_0 Output Configuration Selection Reg  
ister State 11, bit [1]  
Datasheet  
25-Feb-2021  
Revision 3.12  
311 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3116  
3117  
3118  
3119  
3120  
3121  
3122  
3123  
3124  
3125  
3126  
3127  
3128  
3129  
3130  
3131  
3132  
3133  
3134  
3135  
3136  
3137  
3138  
3139  
3140  
3141  
3142  
3143  
3144  
3145  
3146  
3147  
3148  
3149  
3150  
3151  
DM1_0 Selection Register State 0, bit [0]  
DM1_0 Selection Register State 1, bit [0]  
DM1_0 Selection Register State 2, bit [0]  
DM1_0 Selection Register State 3, bit [0]  
DM1_0 Selection Register State 4, bit [0]  
DM1_0 Selection Register State 5, bit [0]  
DM1_0 Selection Register State 6, bit [0]  
DM1_0 Selection Register State 7, bit [0]  
DM1_0 Selection Register State 8, bit [0]  
DM1_0 Selection Register State 9, bit [0]  
DM1_0 Selection Register State 10, bit [0]  
DM1_0 Selection Register State 11, bit [0]  
DM1_0 Selection Register State 0, bit [1]  
DM1_0 Selection Register State 1, bit [1]  
DM1_0 Selection Register State 2, bit [1]  
DM1_0 Selection Register State 3, bit [1]  
DM1_0 Selection Register State 4, bit [1]  
DM1_0 Selection Register State 5, bit [1]  
DM1_0 Selection Register State 6, bit [1]  
DM1_0 Selection Register State 7, bit [1]  
DM1_0 Selection Register State 8, bit [1]  
DM1_0 Selection Register State 9, bit [1]  
DM1_0 Selection Register State 10, bit [1]  
DM1_0 Selection Register State 11, bit [1]  
DM1_0 Selection Register State 0, bit [2]  
DM1_0 Selection Register State 1, bit [2]  
DM1_0 Selection Register State 2, bit [2]  
DM1_0 Selection Register State 3, bit [2]  
DM1_0 Selection Register State 4, bit [2]  
DM1_0 Selection Register State 5, bit [2]  
DM1_0 Selection Register State 6, bit [2]  
DM1_0 Selection Register State 7, bit [2]  
DM1_0 Selection Register State 8, bit [2]  
DM1_0 Selection Register State 9, bit [2]  
DM1_0 Selection Register State 10, bit [2]  
DM1_0 Selection Register State 11, bit [2]  
185  
selection bit[2:0]:  
000: Not Used  
001: DM1_0 Configuration Register 0  
010: DM1_0 Configuration Register 1  
011: DM1_0 Configuration Register 2  
100: DM1_0 Configuration Register 3  
101: DM1_0 Configuration Register 4  
110: DM1_0 Configuration Register 5  
111: Not Used  
186  
187  
188  
189  
selection bit[2:0]:  
000: Not Used  
001: DM1_0 Configuration Register 0  
010: DM1_0 Configuration Register 1  
011: DM1_0 Configuration Register 2  
100: DM1_0 Configuration Register 3  
101: DM1_0 Configuration Register 4  
110: DM1_0 Configuration Register 5  
111: Not Used  
selection bit[2:0]:  
000: Not Used  
001: DM1_0 Configuration Register 0  
010: DM1_0 Configuration Register 1  
011: DM1_0 Configuration Register 2  
100: DM1_0 Configuration Register 3  
101: DM1_0 Configuration Register 4  
110: DM1_0 Configuration Register 5  
111: Not Used  
Datasheet  
25-Feb-2021  
Revision 3.12  
312 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3152  
3153  
3154  
3155  
3156  
3157  
3158  
3159  
3160  
3161  
3162  
3163  
3164  
3165  
3166  
3167  
3168  
3169  
3170  
3171  
3172  
3173  
3174  
3175  
3176  
3177  
3178  
3179  
3180  
3181  
3182  
3183  
3184  
3185  
3186  
3187  
DM0_1 Selection Register State 0, bit [0]  
DM0_1 Selection Register State 1, bit [0]  
DM0_1 Selection Register State 2, bit [0]  
DM0_1 Selection Register State 3, bit [0]  
DM0_1 Selection Register State 4, bit [0]  
DM0_1 Selection Register State 5, bit [0]  
DM0_1 Selection Register State 6, bit [0]  
DM0_1 Selection Register State 7, bit [0]  
DM0_1 Selection Register State 8, bit [0]  
DM0_1 Selection Register State 9, bit [0]  
DM0_1 Selection Register State 10, bit [0]  
DM0_1 Selection Register State 11, bit [0]  
DM0_1 Selection Register State 0, bit [1]  
DM0_1 Selection Register State 1, bit [1]  
DM0_1 Selection Register State 2, bit [1]  
DM0_1 Selection Register State 3, bit [1]  
DM0_1 Selection Register State 4, bit [1]  
DM0_1 Selection Register State 5, bit [1]  
DM0_1 Selection Register State 6, bit [1]  
DM0_1 Selection Register State 7, bit [1]  
DM0_1 Selection Register State 8, bit [1]  
DM0_1 Selection Register State 9, bit [1]  
DM0_1 Selection Register State 10, bit [1]  
DM0_1 Selection Register State 11, bit [1]  
DM0_1 Selection Register State 0, bit [2]  
DM0_1 Selection Register State 1, bit [2]  
DM0_1 Selection Register State 2, bit [2]  
DM0_1 Selection Register State 3, bit [2]  
DM0_1 Selection Register State 4, bit [2]  
DM0_1 Selection Register State 5, bit [2]  
DM0_1 Selection Register State 6, bit [2]  
DM0_1 Selection Register State 7, bit [2]  
DM0_1 Selection Register State 8, bit [2]  
DM0_1 Selection Register State 9, bit [2]  
DM0_1 Selection Register State 10, bit [2]  
DM0_1 Selection Register State 11, bit [2]  
selection bit[2:0]:  
000: Not Used  
18A  
001: DM0_1 Configuration Register 0  
010: DM0_1 Configuration Register 1  
011: DM0_1 Configuration Register 2  
100: DM0_1 Configuration Register 3  
101: DM0_1 Configuration Register 4  
110: DM0_1 Configuration Register 5  
111: Not Used  
18B  
selection bit[2:0]:  
000: Not Used  
001: DM0_1 Configuration Register 0  
010: DM0_1 Configuration Register 1  
011: DM0_1 Configuration Register 2  
100: DM0_1 Configuration Register 3  
101: DM0_1 Configuration Register 4  
110: DM0_1 Configuration Register 5  
111: Not Used  
18C  
selection bit[2:0]:  
000: Not Used  
18D  
18E  
001: DM0_1 Configuration Register 0  
010: DM0_1 Configuration Register 1  
011: DM0_1 Configuration Register 2  
100: DM0_1 Configuration Register 3  
101: DM0_1 Configuration Register 4  
110: DM0_1 Configuration Register 5  
111: Not Used  
Datasheet  
25-Feb-2021  
Revision 3.12  
313 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
DM0_1 Output Configuration Selection Reg  
ister State 0, bit [0]  
-
-
-
-
-
-
-
-
-
-
-
-
3188  
3189  
3190  
3191  
3192  
3193  
3194  
3195  
3196  
3197  
3198  
3199  
DM0_1 Output Configuration Selection Reg  
ister State 1, bit [0]  
18E  
DM0_1 Output Configuration Selection Reg  
ister State 2, bit [0]  
DM0_1 Output Configuration Selection Reg  
ister State 3, bit [0]  
DM0_1 Output Configuration Selection Reg  
ister State 4, bit [0]  
control bit[1:0]:  
00:DM out0/1/2 keep  
01:DM out bypass to out0, out1/2 keep  
10: DM out bypass to out1, out0/2 keep  
11: DM out bypass to out2, out0/1 keep  
DM0_1 Output Configuration Selection Reg  
ister State 5, bit [0]  
DM0_1 Output Configuration Selection Reg  
ister State 6, bit [0]  
DM0_1 Output Configuration Selection Reg  
ister State 7, bit [0]  
18F  
DM0_1 Output Configuration Selection Reg  
ister State 8, bit [0]  
DM0_1 Output Configuration Selection Reg  
ister State 9, bit [0]  
DM0_1 Output Configuration Selection Reg  
ister State 10, bit [0]  
DM0_1 Output Configuration Selection Reg  
ister State 11, bit [0]  
Datasheet  
25-Feb-2021  
Revision 3.12  
314 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
DM0_1 Output Configuration Selection Reg  
ister State 0, bit [1]  
-
-
-
-
-
-
-
-
-
-
-
-
3200  
3201  
3202  
3203  
3204  
3205  
3206  
3207  
3208  
3209  
3210  
3211  
DM0_1 Output Configuration Selection Reg  
ister State 1, bit [1]  
DM0_1 Output Configuration Selection Reg  
ister State 2, bit [1]  
DM0_1 Output Configuration Selection Reg  
ister State 3, bit [1]  
190  
DM0_1 Output Configuration Selection Reg  
ister State 4, bit [1]  
control bit[1:0]:  
00:DM out0/1/2 keep  
01:DM out bypass to out0, out1/2 keep  
10: DM out bypass to out1, out0/2 keep  
11: DM out bypass to out2, out0/1 keep  
DM0_1 Output Configuration Selection Reg  
ister State 5, bit [1]  
DM0_1 Output Configuration Selection Reg  
ister State 6, bit [1]  
DM0_1 Output Configuration Selection Reg  
ister State 7, bit [1]  
DM0_1 Output Configuration Selection Reg  
ister State 8, bit [1]  
DM0_1 Output Configuration Selection Reg  
ister State 9, bit [1]  
DM0_1 Output Configuration Selection Reg  
ister State 10, bit [1]  
191  
DM0_1 Output Configuration Selection Reg  
ister State 11, bit [1]  
3212  
3213  
3214  
3215  
3216  
3217  
3218  
3219  
3220  
3221  
3222  
3223  
DM1_1 Selection Register State 0, bit [0]  
DM1_1 Selection Register State 1, bit [0]  
DM1_1 Selection Register State 2, bit [0]  
DM1_1 Selection Register State 3, bit [0]  
DM1_1 Selection Register State 4, bit [0]  
DM1_1 Selection Register State 5, bit [0]  
DM1_1 Selection Register State 6, bit [0]  
DM1_1 Selection Register State 7, bit [0]  
DM1_1 Selection Register State 8, bit [0]  
DM1_1 Selection Register State 9, bit [0]  
DM1_1 Selection Register State 10, bit [0]  
DM1_1 Selection Register State 11, bit [0]  
selection bit[2:0]:  
000: Not Used  
001: DM1_1 Configuration Register 0  
010: DM1_1 Configuration Register 1  
011: DM1_1 Configuration Register 2  
100: DM1_1 Configuration Register 3  
101: DM1_1 Configuration Register 4  
110: DM1_1 Configuration Register 5  
111: Not Used  
192  
Datasheet  
25-Feb-2021  
Revision 3.12  
315 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3224  
3225  
3226  
3227  
3228  
3229  
3230  
3231  
3232  
3233  
3234  
3235  
3236  
3237  
3238  
3239  
3240  
3241  
3242  
3243  
3244  
3245  
3246  
3247  
DM1_1 Selection Register State 0, bit [1]  
DM1_1 Selection Register State 1, bit [1]  
DM1_1 Selection Register State 2, bit [1]  
DM1_1 Selection Register State 3, bit [1]  
DM1_1 Selection Register State 4, bit [1]  
DM1_1 Selection Register State 5, bit [1]  
DM1_1 Selection Register State 6, bit [1]  
DM1_1 Selection Register State 7, bit [1]  
DM1_1 Selection Register State 8, bit [1]  
DM1_1 Selection Register State 9, bit [1]  
DM1_1 Selection Register State 10, bit [1]  
DM1_1 Selection Register State 11, bit [1]  
DM1_1 Selection Register State 0, bit [2]  
DM1_1 Selection Register State 1, bit [2]  
DM1_1 Selection Register State 2, bit [2]  
DM1_1 Selection Register State 3, bit [2]  
DM1_1 Selection Register State 4, bit [2]  
DM1_1 Selection Register State 5, bit [2]  
DM1_1 Selection Register State 6, bit [2]  
DM1_1 Selection Register State 7, bit [2]  
DM1_1 Selection Register State 8, bit [2]  
DM1_1 Selection Register State 9, bit [2]  
DM1_1 Selection Register State 10, bit [2]  
DM1_1 Selection Register State 11, bit [2]  
selection bit[2:0]:  
000: Not Used  
193  
001: DM1_1 Configuration Register 0  
010: DM1_1 Configuration Register 1  
011: DM1_1 Configuration Register 2  
100: DM1_1 Configuration Register 3  
101: DM1_1 Configuration Register 4  
110: DM1_1 Configuration Register 5  
111: Not Used  
194  
selection bit[2:0]:  
000: Not Used  
001: DM1_1 Configuration Register 0  
010: DM1_1 Configuration Register 1  
011: DM1_1 Configuration Register 2  
100: DM1_1 Configuration Register 3  
101: DM1_1 Configuration Register 4  
110: DM1_1 Configuration Register 5  
111: Not Used  
195  
0: initial 0  
1: initial 1  
3248  
3249  
DM0_0 function 4 outputs initial value  
DM0_1 function 4 outputs initial value  
0: initial 0  
1: initial 1  
3250  
3251  
3252  
3253  
3254  
3255  
3256  
3257  
3258  
3259  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
196  
197  
Vrefo0 register Power-down signal  
0: Power-down, 1: Power-On  
3260  
3261  
VrefO0 register PD control  
VrefO0 PD control select  
Vrefo0 pd selection  
0: from register [3260], 1: from matrix out 78  
Datasheet  
25-Feb-2021  
Revision 3.12  
316 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
Vrefo1 register Power-down signal  
0: Power-down, 1: Power-On  
3262  
3263  
VrefO1 register PD control  
VrefO1 PD control select  
197  
Vrefo1 pd selection  
0: from register [3262], 1: from matrix out 78  
3264  
3265  
3266  
3267  
3268  
3269  
3270  
3271  
3272  
3273  
3274  
3275  
3276  
3277  
3278  
3279  
3280  
Bit0 (top memory)  
Bit1  
Bit2  
Bit3  
198  
F1 stack memory, lower byte  
Bit4  
Bit5  
Bit6  
Bit7  
Bit8  
Bit9  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
199  
F1 stack memory, higher byte  
00: aio0  
01: aio1  
10: aio2  
11: aio3  
aio0-3 input selection load 1  
ACMP4_F Vref selection load 1  
aio0-3 input selection load 2  
ACMP4_F Vref selection load 2  
aio4-7 input selection load 3  
3281  
3282  
3283  
3284  
3285  
3286  
3287  
3288  
"F1 input selection load 1" bit = 0:  
Matrix input select: 000000: Matrix in0; ~ 111111: Matrix  
in63  
"F1 input selection load 1" bit = 1:  
ACMP Vref select:  
000000: 32 mV ~ 111110: 2.016 V/step = 32 mV;  
111111: External Vref  
19A  
00: aio0  
01: aio1  
10: aio2  
11: aio3  
3289  
3290  
3291  
3292  
3293  
3294  
3295  
3296  
"F1 input selection load 1" bit = 0:  
Matrix input select: 000000: Matrix in0; ~ 111111: Matrix  
in63  
"F1 input selection load 1" bit = 1:  
ACMP Vref select:  
19B  
19C  
000000: 32 mV ~ 111110: 2.016 V/step = 32 mV;  
111111: External Vref  
00: aio4  
01: aio5  
10: aio6  
11: aio7  
3297  
Datasheet  
25-Feb-2021  
Revision 3.12  
317 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3298  
3299  
3300  
3301  
3302  
3303  
3304  
"F1 input selection load 1" bit = 0:  
Matrix input select: 000000: Matrix in0; ~ 111111: Matrix  
in63  
"F1 input selection load 1" bit = 1:  
ACMP Vref select:  
19C  
ACMP4_F Vref selection load 3  
000000: 32 mV ~ 111110: 2.016 V/step = 32 mV;  
111111: External Vref  
00: aio4  
01: aio5  
10: aio6  
11: aio7  
aio4-7 input selection load 4  
3305  
3306  
3307  
3308  
3309  
3310  
3311  
"F1 input selection load 1" bit = 0:  
Matrix input select: 000000: Matrix in0; ~ 111111: Matrix  
in63  
"F1 input selection load 1" bit = 1:  
ACMP Vref select:  
000000: 32 mV ~ 111110: 2.016 V/step = 32 mV;  
111111: External Vref  
19D  
ACMP4_F Vref selection load 4  
0: from matrix  
1: from ACMP4_F  
3312  
3313  
3314  
3315  
F1 input selection load 1  
F1 input selection load 2  
F1 input selection load 3  
0: from matrix  
1: from ACMP4_F  
0: from matrix  
1: from ACMP4_F  
0: from matrix  
1: from ACMP4_F  
F1 input selection load 4  
Reserved  
19E  
3316  
3317  
3318  
000: OSC2  
001: OSC2/4  
010: OSC1  
011: OSC1/8  
100: OSC1/64  
101: OSC0  
delay clock source selection  
3319  
110: OSC0/8  
111: OSC0/64  
3320  
3321  
3322  
3323  
3324  
3325  
3326  
3327  
3328  
3329  
3330  
3331  
19F  
1A0  
F1 delay data  
Data[7:0]  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
F1 CMD1 selection  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
Datasheet  
25-Feb-2021  
Revision 3.12  
318 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3332  
3333  
3334  
3335  
3336  
3337  
3338  
3339  
3340  
3341  
3342  
3343  
3344  
3345  
3346  
3347  
3348  
3349  
3350  
3351  
3352  
3353  
3354  
3355  
3356  
3357  
3358  
3359  
3360  
3361  
3362  
3363  
3364  
3365  
3366  
3367  
3368  
3369  
3370  
3371  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
1A0  
F1 CMD2 selection  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
F1 CMD3 selection  
F1 CMD4 selection  
F1 CMD5 selection  
F1 CMD6 selection  
F1 CMD7 selection  
F1 CMD8 selection  
F1 CMD9 selection  
F1 CMD10 selection  
F1 CMD11 selection  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
1A1  
1A2  
1A3  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
1A4  
1A5  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
Datasheet  
25-Feb-2021  
Revision 3.12  
319 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3372  
3373  
3374  
3375  
3376  
3377  
3378  
3379  
3380  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
1A5  
F1 CMD12 selection  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:CMD1;0001:CMD2;0010:CMD3;0011:CMD4;010  
0:CMD5;0101:CMD6:or;0110:CMD7;0111:CMD8;1000:  
CMD9;1001:CMD10;1010:CMD11;1011:CMD12  
loop with delay to location selection  
00: keep  
01: 0  
10: 1  
1A6  
output mux1 initial state setting  
output mux2 initial state setting  
3381  
3382  
3383  
3384  
3385  
11: none  
00: keep  
01: 0  
10: 1  
11: none  
00: keep  
01: 0  
10: 1  
output mux3 initial state setting  
11: none  
0: no reset stack memory  
1: reset stack memory  
3386  
interrupt reset stack memory enable  
1A7  
3387  
3388  
3389  
3390  
3391  
3392  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
00: aio0  
01: aio1  
10: aio2  
11: aio3  
aio0-3 input selection load 1  
ACMP4_F Vref selection load 1  
aio0-3 input selection load 2  
3393  
3394  
3395  
3396  
3397  
3398  
3399  
3400  
"F1 input selection load 1" bit = 0:  
Matrix input select: 000000: Matrix in0; ~ 111111: Matrix  
in63  
"F1 input selection load 1" bit = 1:  
ACMP Vref select:  
000000: 32 mV ~ 111110: 2.016 V/step = 32 mV;  
111111: External Vref  
1A8  
1A9  
00: aio0  
01: aio1  
10: aio2  
11: aio3  
3401  
Datasheet  
25-Feb-2021  
Revision 3.12  
320 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3402  
3403  
3404  
3405  
3406  
3407  
3408  
"F1 input selection load 1" bit = 0:  
Matrix input select: 000000: Matrix in0; ~ 111111: Matrix  
in63  
"F1 input selection load 1" bit = 1:  
ACMP Vref select:  
1A9  
ACMP4_F Vref selection load 2  
000000: 32 mV ~ 111110: 2.016 V/step = 32 mV;  
111111: External Vref  
00: aio4  
01: aio5  
10: aio6  
11: aio7  
aio4-7 input selection load 3  
ACMP4_F Vref selection load 3  
aio4-7 input selection load 4  
ACMP4_F Vref selection load 4  
3409  
3410  
3411  
3412  
3413  
3414  
3415  
3416  
"F1 input selection load 1" bit = 0:  
Matrix input select: 000000: Matrix in0; ~ 111111: Matrix  
in63  
"F1 input selection load 1" bit = 1:  
ACMP Vref select:  
000000: 32 mV ~ 111110: 2.016 V/step = 32 mV;  
111111: External Vref  
1AA  
00: aio4  
01: aio5  
10: aio6  
11: aio7  
3417  
3418  
3419  
3420  
3421  
3422  
3423  
"F1 input selection load 1" bit = 0:  
Matrix input select: 000000: Matrix in0; ~ 111111: Matrix  
in63  
"F1 input selection load 1" bit = 1:  
ACMP Vref select:  
000000: 32 mV ~ 111110: 2.016 V/step = 32 mV;  
111111: External Vref  
1AB  
0: from matrix  
1: from ACMP4_F  
3424  
3425  
3426  
3427  
F1 input selection load 1  
F1 input selection load 2  
F1 input selection load 3  
0: from matrix  
1: from ACMP4_F  
0: from matrix  
1: from ACMP4_F  
0: from matrix  
1: from ACMP4_F  
F1 input selection load 4  
Reserved  
1AC  
3428  
3429  
3430  
000: OSC2  
001: OSC2/4  
010: OSC1  
011: OSC1/8  
100: OSC1/64  
101: OSC0  
delay clock source selection  
3431  
110: OSC0/8  
111: OSC0/64  
Datasheet  
25-Feb-2021  
Revision 3.12  
321 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3432  
3433  
3434  
3435  
3436  
3437  
3438  
3439  
3440  
3441  
3442  
3443  
3444  
3445  
3446  
3447  
3448  
3449  
3450  
3451  
3452  
3453  
3454  
3455  
3456  
3457  
3458  
3459  
3460  
3461  
3462  
3463  
3464  
3465  
3466  
3467  
3468  
3469  
3470  
3471  
1AD  
F1 delay data  
Data[7:0]  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
F1 CMD1 selection  
F1 CMD2 selection  
F1 CMD3 selection  
F1 CMD4 selection  
F1 CMD5 selection  
F1 CMD6 selection  
F1 CMD7 selection  
F1 CMD8 selection  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
1AE  
1AF  
1B0  
1B1  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
Datasheet  
25-Feb-2021  
Revision 3.12  
322 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3472  
3473  
3474  
3475  
3476  
3477  
3478  
3479  
3480  
3481  
3482  
3483  
3484  
3485  
3486  
3487  
3488  
3489  
3490  
3491  
3492  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
F1 CMD9 selection  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
1B2  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
F1 CMD10 selection  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
F1 CMD11 selection  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
1B3  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
F1 CMD12 selection  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:CMD1;0001:CMD2;0010:CMD3;0011:CMD4;010  
0:CMD5;0101:CMD6:or;0110:CMD7;0111:CMD8;1000:  
CMD9;1001:CMD10;1010:CMD11;1011:CMD12  
loop with delay to location selection  
00: keep  
01: 0  
10: 1  
1B4  
output mux1 initial state setting  
output mux2 initial state setting  
3493  
3494  
3495  
3496  
3497  
11: none  
00: keep  
01: 0  
10: 1  
11: none  
00: keep  
01: 0  
10: 1  
output mux3 initial state setting  
11: none  
0: no reset stack memory  
1: reset stack memory.  
3498  
interrupt reset stack memory enable  
1B5  
3499  
3500  
3501  
3502  
3503  
3504  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
00: aio0  
01: aio1  
10: aio2  
11: aio3  
1B6  
aio0-3 input selection load 1  
3505  
Datasheet  
25-Feb-2021  
Revision 3.12  
323 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3506  
3507  
3508  
3509  
3510  
3511  
3512  
"F1 input selection load 1" bit = 0:  
Matrix input select: 000000: Matrix in0; ~ 111111: Matrix  
in63  
"F1 input selection load 1" bit = 1:  
ACMP Vref select:  
1B6  
ACMP4_F Vref selection load 1  
000000: 32 mV ~ 111110: 2.016 V/step = 32 mV;  
111111: External Vref  
00: aio0  
01: aio1  
10: aio2  
11: aio3  
aio0-3 input selection load 2  
ACMP4_F Vref selection load 2  
aio4-7 input selection load 3  
ACMP4_F Vref selection load 3  
aio4-7 input selection load 4  
ACMP4_F Vref selection load 4  
3513  
3514  
3515  
3516  
3517  
3518  
3519  
3520  
"F1 input selection load 1" bit = 0:  
Matrix input select: 000000: Matrix in0; ~ 111111: Matrix  
in63  
"F1 input selection load 1" bit = 1:  
ACMP Vref select:  
000000: 32 mV ~ 111110: 2.016 V/step = 32 mV;  
111111: External Vref  
1B7  
00: aio4  
01: aio5  
10: aio6  
11: aio7  
3521  
3522  
3523  
3524  
3525  
3526  
3527  
3528  
"F1 input selection load 1" bit = 0:  
Matrix input select: 000000: Matrix in0; ~ 111111: Matrix  
in63  
"F1 input selection load 1" bit = 1:  
ACMP Vref select:  
000000: 32 mV ~ 111110: 2.016 V/step = 32 mV;  
111111: External Vref  
1B8  
00: aio4  
01: aio5  
10: aio6  
11: aio7  
3529  
3530  
3531  
3532  
3533  
3534  
3535  
"F1 input selection load 1" bit = 0:  
Matrix input select: 000000: Matrix in0; ~ 111111: Matrix  
in63  
"F1 input selection load 1" bit = 1:  
ACMP Vref select:  
1B9  
000000: 32 mV ~ 111110: 2.016 V/step = 32 mV;  
111111: External VRE  
0: from matrix  
1: from ACMP4_F  
3536  
3537  
3538  
F1 input selection load 1  
F1 input selection load 2  
F1 input selection load 3  
0: from matrix  
1: from ACMP4_F  
1BA  
0: from matrix  
1: from ACMP4_F  
0: from matrix  
1: from ACMP4_F  
3539  
3540  
F1 input selection load 4  
Reserved  
Datasheet  
25-Feb-2021  
Revision 3.12  
324 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3541  
3542  
000: OSC2  
001: OSC2/4  
010: OSC1  
011: OSC1/8  
100: OSC1/64  
101: OSC0  
1BA  
delay clock source selection  
3543  
110: OSC0/8  
111: OSC0/64  
3544  
3545  
3546  
3547  
3548  
3549  
3550  
3551  
3552  
3553  
3554  
3555  
3556  
3557  
3558  
3559  
3560  
3561  
3562  
3563  
3564  
3565  
3566  
3567  
3568  
3569  
3570  
3571  
3572  
3573  
3574  
3575  
1BB  
1BC  
1BD  
1BE  
F1 delay data  
Data[7:0]  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
F1 CMD1 selection  
F1 CMD2 selection  
F1 CMD3 selection  
F1 CMD4 selection  
F1 CMD5 selection  
F1 CMD6 selection  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
Datasheet  
25-Feb-2021  
Revision 3.12  
325 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3576  
3577  
3578  
3579  
3580  
3581  
3582  
3583  
3584  
3585  
3586  
3587  
3588  
3589  
3590  
3591  
3592  
3593  
3594  
3595  
3596  
3597  
3598  
3599  
3600  
3601  
3602  
3603  
3604  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
1BF  
F1 CMD7 selection  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
1BF  
1C0  
F1 CMD8 selection  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
F1 CMD9 selection  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
F1 CMD10 selection  
F1 CMD11 selection  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
1C1  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
F1 CMD12 selection  
loop with delay to location selection  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:CMD1;0001:CMD2;0010:CMD3;0011:CMD4;010  
0:CMD5;0101:CMD6:or;0110:CMD7;0111:CMD8;1000:  
CMD9;1001:CMD10;1010:CMD11;1011:CMD12  
00: keep  
01: 0  
10: 1  
1C2  
output mux1 initial state setting  
output mux2 initial state setting  
3605  
3606  
3607  
11: none  
00: keep  
01: 0  
10: 1  
11: none  
Datasheet  
25-Feb-2021  
Revision 3.12  
326 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1C3  
1C3  
3608  
00: keep  
01: 0  
10: 1  
output mux3 initial state setting  
3609  
11: none  
0: no reset stack memory  
1: reset stack memory  
3610  
interrupt reset stack memory enable  
3611  
3612  
3613  
3614  
3615  
3616  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
00: aio0  
01: aio1  
10: aio2  
11: aio3  
aio0-3 input selection load 1  
ACMP4_F Vref selection load 1  
aio0-3 input selection load 2  
ACMP4_F Vref selection load 2  
aio4-7 input selection load 3  
ACMP4_F Vref selection load 3  
3617  
3618  
3619  
3620  
3621  
3622  
3623  
3624  
"F1 input selection load 1" bit = 0:  
Matrix input select: 000000: Matrix in0; ~ 111111: Matrix  
in63  
"F1 input selection load 1" bit = 1:  
ACMP Vref select:  
000000: 32 mV ~ 111110: 2.016 V/step = 32 mV;  
111111: External Vref  
1C4  
1C5  
1C6  
00: aio0  
01: aio1  
10: aio2  
11: aio3  
3625  
3626  
3627  
3628  
3629  
3630  
3631  
3632  
"F1 input selection load 1" bit = 0:  
Matrix input select: 000000: Matrix in0; ~ 111111: Matrix  
in63  
"F1 input selection load 1" bit = 1:  
ACMP Vref select:  
000000: 32 mV ~ 111110: 2.016 V/step = 32 mV;  
111111: External Vref  
00: aio4  
01: aio5  
10: aio6  
11: aio7  
3633  
3634  
3635  
3636  
3637  
3638  
3639  
"F1 input selection load 1" bit = 0:  
Matrix input select: 000000: Matrix in0; ~ 111111: Matrix  
in63  
"F1 input selection load 1" bit = 1:  
ACMP Vref select:  
000000: 32 mV ~ 111110: 2.016 V/step = 32 mV;  
111111: External Vref  
Datasheet  
25-Feb-2021  
Revision 3.12  
327 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3640  
00: aio4  
01: aio5  
10: aio6  
11: aio7  
aio4-7 input selection load 4  
3641  
3642  
3643  
3644  
3645  
3646  
3647  
"F1 input selection load 1" bit = 0:  
Matrix input select: 000000: Matrix in0; ~ 111111: Matrix  
in63  
"F1 input selection load 1" bit = 1:  
ACMP Vref select:  
000000: 32 mV ~ 111110: 2.016 V/step = 32 mV;  
111111: External Vref  
1C7  
ACMP4_F Vref selection load 4  
0: from matrix  
1: from ACMP4_F  
3648  
3649  
3650  
3651  
F1 input selection load 1  
F1 input selection load 2  
F1 input selection load 3  
1C8  
0: from matrix  
1: from ACMP4_F  
0: from matrix  
1: from ACMP4_F  
0: from matrix  
1: from ACMP4_F  
F1 input selection load 4  
Reserved  
3652  
3653  
3654  
000: OSC2  
001: OSC2/4  
010: OSC1  
1C8  
011: OSC1/8  
100: OSC1/64  
101: OSC0  
delay clock source selection  
3655  
110: OSC0/8  
111: OSC0/64  
3656  
3657  
3658  
3659  
3660  
3661  
3662  
3663  
3664  
3665  
3666  
3667  
3668  
3669  
3670  
3671  
1C9  
F1 delay data  
Data[7:0]  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
F1 CMD1 selection  
F1 CMD2 selection  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
1CA  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
Datasheet  
25-Feb-2021  
Revision 3.12  
328 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3672  
3673  
3674  
3675  
3676  
3677  
3678  
3679  
3680  
3681  
3682  
3683  
3684  
3685  
3686  
3687  
3688  
3689  
3690  
3691  
3692  
3693  
3694  
3695  
3696  
3697  
3698  
3699  
3700  
3701  
3702  
3703  
3704  
3705  
3706  
3707  
3708  
3709  
3710  
3711  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
F1 CMD3 selection  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
1CB  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
F1 CMD4 selection  
F1 CMD5 selection  
F1 CMD6 selection  
F1 CMD7 selection  
F1 CMD8 selection  
F1 CMD9 selection  
F1 CMD10 selection  
F1 CMD11 selection  
F1 CMD12 selection  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
1CC  
1CC  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
1CD  
1CE  
1CF  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
0000:load1;0001:load2;0010:load3;0011:load4;0100:a  
nd;0101:or;0110:xor;0111:inv;1000:push0;1001:pop;10  
10:delay;1011:delay with  
loop;1100:out1;1101:out2;1110:out3; 1111:end.  
Datasheet  
25-Feb-2021  
Revision 3.12  
329 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3712  
3713  
3714  
3715  
3716  
0000: CMD1; 0001: CMD2; 0010: CMD3; 0011: CMD4;  
0100: CMD5; 0101: CMD6 or; 0110: CMD7; 0111:  
CMD8; 1000: CMD9; 1001: CMD10; 1010: CMD11;  
1011: CMD12  
loop with delay to location selection  
00: keep  
01: 0  
10: 1  
1D0  
output mux1 initial state setting  
output mux2 initial state setting  
3717  
3718  
3719  
3720  
3721  
11: none  
00: keep  
01: 0  
10: 1  
11: none  
00: keep  
01: 0  
10: 1  
1D1  
1D1  
output mux3 initial state setting  
11: none  
0: no reset stack memory  
1: reset stack memory  
3722  
interrupt reset stack memory enable  
3723  
3724  
3725  
3726  
3727  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Datasheet  
25-Feb-2021  
Revision 3.12  
330 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3728  
3729  
000: none  
001: setting 0  
010: setting 1  
011: setting 2  
100: setting 3  
101: none  
F1 state0 setting selection  
3730  
110: none  
111: none  
3731  
3732  
000: none  
1D2  
001: setting 0  
010: setting 1  
011: setting 2  
100: setting 3  
101: none  
110: none  
111: none  
F1 state 1 setting selection  
F1 state 2 setting selection  
F1 state 3 setting selection  
F1 state 4 setting selection  
3733  
3734  
3735  
000: none  
001: setting 0  
010: setting 1  
011: setting 2  
100: setting 3  
101: none  
110: none  
111: none  
3736  
3737  
3738  
000: none  
001: setting 0  
010: setting 1  
011: setting 2  
100: setting 3  
101: none  
110: none  
111: none  
1D3  
3739  
3740  
3741  
000: none  
001: setting 0  
010: setting 1  
011: setting 2  
100: setting 3  
101: none  
3742  
110: none  
111: none  
Datasheet  
25-Feb-2021  
Revision 3.12  
331 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
1D3  
3743  
3744  
000: none  
001: setting 0  
010: setting 1  
011: setting 2  
100: setting 3  
101: none  
F1 state 5 setting selection  
3745  
110: none  
111: none  
3746  
3747  
000: none  
001: setting 0  
010: setting 1  
011: setting 2  
100: setting 3  
101: none  
F1 state 6 setting selection  
1D4  
3748  
110: none  
111: none  
3749  
3750  
000: none  
001: setting 0  
010: setting 1  
011: setting 2  
100: setting 3  
101: none  
F1 state 7 setting selection  
3751  
110: none  
111: none  
Datasheet  
25-Feb-2021  
Revision 3.12  
332 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3752  
3753  
000: none  
001: setting 0  
010: setting 1  
011: setting 2  
100: setting 3  
101: none  
F1 state 8 setting selection  
3754  
110: none  
111: none  
3755  
3756  
000: none  
1D5  
001: setting 0  
010: setting 1  
011: setting 2  
100: setting 3  
101: none  
110: none  
111: none  
F1 state 9 setting selection  
F1 state 10 setting selection  
F1 state 11 setting selection  
3757  
3758  
3759  
000: none  
001: setting 0  
010: setting 1  
011: setting 2  
100: setting 3  
101: none  
110: none  
111: none  
3760  
3761  
3762  
000: none  
1D6  
001: setting 0  
010: setting 1  
011: setting 2  
100: setting 3  
101: none  
3763  
110: none  
111: none.  
3764  
3765  
3766  
3767  
3768  
3769  
3770  
3771  
3772  
3773  
3774  
3775  
Reserved  
Reserved  
1D6  
1D7  
register interrupt  
Reserved  
1: interrupt active  
Matrix Input 0  
Matrix Input 1  
Matrix Input 2  
Matrix Input 3  
Matrix Input 4  
Matrix Input 5  
Matrix Input 6  
Matrix Input 7  
GND  
GPIO0 Digital Input  
GPIO1 Digital Input  
GPIO2 Digital Input  
GPI0 Digital Input  
GPI1 Digital Input  
GPIO3 Digital Input  
GPIO4 Digital Input  
Datasheet  
25-Feb-2021  
Revision 3.12  
333 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3776  
3777  
3778  
3779  
3780  
3781  
3782  
3783  
3784  
3785  
3786  
3787  
3788  
3789  
3790  
3791  
3792  
3793  
3794  
3795  
3796  
3797  
3798  
3799  
3800  
3801  
3802  
3803  
3804  
3805  
3806  
3807  
3808  
3809  
3810  
3811  
3812  
3813  
3814  
3815  
Matrix Input 8  
Matrix Input 9  
Matrix Input 10  
Matrix Input 11  
Matrix Input 12  
Matrix Input 13  
Matrix Input 14  
Matrix Input 15  
Matrix Input 16  
Matrix Input 17  
Matrix Input 18  
Matrix Input 19  
Matrix Input 20  
Matrix Input 21  
Matrix Input 22  
Matrix Input 23  
Matrix Input 24  
Matrix Input 25  
Matrix Input 26  
Matrix Input 27  
Matrix Input 28  
Matrix Input 29  
Matrix Input 30  
Matrix Input 31  
Matrix Input 32  
Matrix Input 33  
Matrix Input 34  
Matrix Input 35  
Matrix Input 36  
Matrix Input 37  
Matrix Input 38  
Matrix Input 39  
Matrix Input 40  
Matrix Input 41  
Matrix Input 42  
Matrix Input 43  
Matrix Input 44  
Matrix Input 45  
Matrix Input 46  
Matrix Input 47  
LUT2_0/DFF0 Output  
LUT2_1/PGen Output  
LUT3_0/DFF1 Output  
LUT3_1/DFF2 Output  
1D8  
LUT3_2/DFF3 Output  
LUT3_3/DFF4 Output  
LUT3_4/CNT_DLY1(8bit) Output  
LUT3_5/CNT_DLY2(8bit) Output  
LUT3_6/CNT_DLY3(8bit) Output  
LUT3_7/CNT_DLY4(8bit) Output  
LUT4_0/CNT_DLY0(16bit) Output  
LUT3_8/Pipe Delay Output0/Ripple CNT Output0  
Pipe Delay Output1/Ripple CNT Output1  
Internal OSC1 2.048 MHz Output  
Internal OSC0 2.048 kHz Output  
Internal OSC2 25 MHz Output  
Filter0/Edge Detect0 Output/Ripple CNT Output2  
Programmable Delay with Edge Detector Output  
F(1) Function Output0  
1D9  
F(1) Function Output1  
1DA  
F(1) Function Output2  
DM0_0 Block Output0  
DM0_0 Block Output1  
DM0_0 Block Output2  
GPI2/SDA Digital Input or I2C_virtual_0 Input  
GPI3/SCL Digital Input or I2C_virtual_1 Input  
I2C_virtual_2 Input  
I2C_virtual_3 Input  
I2C_virtual_4 Input  
I2C_virtual_5 Input  
I2C_virtual_6 Input  
I2C_virtual_7 Input  
1DB  
1DB  
DM0_1 Macrocell Output0  
DM0_1 Macrocell Output1  
DM0_1 Macrocell Output2  
ASM Connection Matrix Output RAM 0  
ASM Connection Matrix Output RAM 1  
ASM Connection Matrix Output RAM 2  
ASM Connection Matrix Output RAM 0  
GPIO5 Digital Input  
1DC  
Datasheet  
25-Feb-2021  
Revision 3.12  
334 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3816  
3817  
3818  
3819  
3820  
3821  
3822  
3823  
3824  
3825  
3826  
3827  
3828  
3829  
3830  
3831  
3832  
3833  
3834  
3835  
3836  
3837  
3838  
3839  
3840  
3841  
3842  
3843  
3844  
3845  
3846  
3847  
3848  
3849  
3850  
3851  
3852  
3853  
3854  
3855  
Matrix Input 48  
Matrix Input 49  
Matrix Input 50  
Matrix Input 51  
Matrix Input 52  
Matrix Input 53  
Matrix Input 54  
Matrix Input 55  
Matrix Input 56  
Matrix Input 57  
Matrix Input 58  
Matrix Input 59  
Matrix Input 60  
Matrix Input 61  
Matrix Input 62  
Matrix Input 63  
GPIO6 Digital Input  
GPIO7 Digital Input  
GPIO8 Digital Input  
GPI4 Digital Input  
GPI5 Digital Input  
GPI6 Digital Input  
GPI7 Digital Input  
GPIO9 Digital Input  
ACMP0H Output  
ACMP1H Output  
ACMP2L Output  
1DD  
ACMP3L output  
1DE  
1DF  
1E0  
1E1  
GPIO10 Digital Input  
GPIO11 Digital Input  
nRST_core (POR) as matrix input  
VDD  
CNT0 (16bits) Counted Value  
CNT2 (8bits) Counted Value  
Datasheet  
25-Feb-2021  
Revision 3.12  
335 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3856  
3857  
3858  
3859  
3860  
3861  
3862  
3863  
3864  
3865  
3866  
3867  
3868  
3869  
3870  
3871  
3872  
3873  
3874  
3875  
3876  
3877  
3878  
3879  
3880  
1E2  
CNT4 (8bits) Counted Value  
1E3  
ASM state read back  
1E4  
GPIO4 I2C output expander data  
GPIO4 I2C output expander select  
GPIO5 I2C output expander data  
GPIO5 I2C output expander select  
GPIO6 I2C output expander data  
GPIO6 I2C output expander select  
GPIO7 I2C output expander data  
GPIO7 I2C output expander select  
0: GPIO4 output from matrix  
1: GPIO4 output is register  
3881  
3882  
3883  
3884  
3885  
3886  
3887  
0: GPIO5 output from matrix  
1: GPIO5 output is register  
1E5  
0: GPIO6 output from matrix  
1: GPIO6 output is register  
0: GPIO7 output from matrix  
1: GPIO7 output is register  
Datasheet  
25-Feb-2021  
Revision 3.12  
336 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3888  
ACMP gain divider select:  
00: 1x  
ACMP0_H Gain divider  
01: 0.5x  
10: 0.33x  
3889  
11: Reserved  
3890  
3891  
3892  
3893  
3894  
3895  
3896  
1E6  
ACMP Vref select:  
000000: 32 mV ~  
111110: 2.016 V/step = 32 mV  
111111: External Vref  
ACMP0_H Vref  
ACMP gain divider select:  
00: 1x  
1E7  
1E7  
ACMP1_H Gain divider  
ACMP1_H Vref  
01: 0.5x  
10: 0.33x  
11: Reserved  
3897  
3898  
3899  
3900  
3901  
3902  
3903  
3904  
ACMP Vref select:  
000000: 32 mV ~  
111110: 2.016 V/step = 32 mV  
111111: External Vref  
ACMP gain divider select:  
00: 1x  
ACMP2_L Gain divider  
ACMP2_L Vref  
01: 0.5x  
10: 0.33x  
11: Reserved  
3905  
3906  
3907  
3908  
3909  
3910  
3911  
3912  
1E8  
ACMP Vref select:  
000000: 32 mV ~  
111110: 2.016 V/step = 32 mV  
111111: External Vref  
ACMP gain divider select:  
00: 1x  
ACMP3_L Gain divider  
ACMP3_L Vref  
01: 0.5x  
10: 0.33x  
11: Reserved  
3913  
3914  
3915  
3916  
3917  
3918  
3919  
1E9  
ACMP Vref select:  
000000: 32 mV ~  
111110: 2.016 V/step = 32 mV  
111111: External Vref  
Datasheet  
25-Feb-2021  
Revision 3.12  
337 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3920  
3921  
3922  
3923  
3924  
3925  
3926  
3927  
3928  
3929  
3930  
3931  
3932  
3933  
3934  
3935  
3936  
3937  
3938  
3939  
3940  
3941  
3942  
3943  
3944  
3945  
3946  
3947  
3948  
3949  
3950  
3951  
3952  
3953  
3954  
3955  
3956  
3957  
3958  
3959  
1EA  
REG_LUT4_0_D0[15:0]  
Data[15:0]  
1EB  
1EC  
1ED  
1EE  
REG_LUT3_4_D1[7:0]  
REG_LUT3_5_D2[7:0]  
REG_LUT3_6_D3[7:0]  
Data[7:0]  
Data[7:0]  
Data[7:0]  
Datasheet  
25-Feb-2021  
Revision 3.12  
338 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
3960  
3961  
3962  
3963  
3964  
3965  
3966  
3967  
3968  
3969  
3970  
3971  
3972  
3973  
3974  
3975  
3976  
3977  
3978  
3979  
3980  
3981  
3982  
3983  
3984  
3985  
3986  
3987  
3988  
3989  
3990  
3991  
3992  
3993  
3994  
3995  
3996  
3997  
3998  
3999  
1EF  
REG_LUT3_7_D4[7:0]  
Data[7:0]  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1F0  
1F1  
1F2  
1F3  
Datasheet  
25-Feb-2021  
Revision 3.12  
339 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
4000  
4001  
4002  
4003  
4004  
4005  
4006  
4007  
4008  
4009  
4010  
4011  
4012  
4013  
4014  
4015  
4016  
4017  
4018  
4019  
4020  
4021  
4022  
4023  
4024  
4025  
4026  
4027  
4028  
4029  
4030  
4031  
4032  
4033  
4034  
4035  
4036  
4037  
4038  
4039  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1F4  
1F5  
1F6  
1F7  
1F8  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Datasheet  
25-Feb-2021  
Revision 3.12  
340 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
4040  
4041  
4042  
4043  
4044  
4045  
4046  
4047  
4048  
4049  
4050  
4051  
4052  
4053  
4054  
4055  
4056  
4057  
4058  
4059  
4060  
4061  
4062  
4063  
8-bit Pattern ID Byte 0 (From NVM):  
ID[23:16]  
1F9  
1FA  
Reserved  
1FB  
Reserved  
I2C reset bit with reloading NVM into Data 0: Keep existing condition  
4064  
register (soft reset)  
1:Resetexecution  
IO Latching Enable During I2C Write Inter  
face  
-
0: Disable  
1: Enable  
4065  
4066  
4067  
Reserved  
0: Disable  
1: Enable  
1FС  
protect mode enable  
4068  
4069  
4070  
4071  
Reserved  
register protection mode bit 0  
register protection mode bit 1  
register protection mode bit 2  
000: all open read/write (mode 0); 001: partly lock read  
(mode1);010:partlylockread2(mode2);011:partlylock  
read2/write (mode 3);100: all lock read (mode 4); 101:  
all lock write (mode 5); 110: all lock read/write (mode 6).  
Datasheet  
25-Feb-2021  
Revision 3.12  
341 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Table 56: Register Map (Continued)  
Address  
Register Bit  
Signal Function  
Register Bit Definition  
Byte  
4072  
4073  
4074  
4075  
4076  
4077  
4078  
4079  
4080  
4081  
4082  
4083  
1: mask  
0: overwrite  
1FD  
I2C write mask bits  
I2C slave address  
0: I2C operation enable; matrix in 34(35) select I2C_vir  
tual_0(1) Input  
-
I2C operation disable bit  
1FE  
4084  
1: I2C operation disable; matrix in 34(35) select GPI2(3)  
digital input  
4085  
4086  
Reserved  
Reserved  
0: from Register  
1: from Pin  
4087  
slave address selection  
4088  
4089  
4090  
4091  
4092  
4093  
4094  
4095  
1FF  
Reserved  
Datasheet  
25-Feb-2021  
Revision 3.12  
342 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
22 Package Top Marking System Definition  
PPPPPPPPP  
Part Code  
NNNNNNNNNN  
Lot Code  
PIN1 Identifier  
Date Code  
YYWW  
Datasheet  
25-Feb-2021  
Revision 3.12  
343 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
23 Package Information  
STQFN 32L 4 mm x 4 mm 0.4P Package  
JEDEC MO-220, Variation WECE  
Marking View  
BTM View  
Side view  
Datasheet  
25-Feb-2021  
Revision 3.12  
344 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
23.1 STQFN HANDLING  
Be sure to handle STQFN package only in a clean, ESD-safe environment. Tweezers or vacuum pick-up tools are suitable for  
handling. Do not handle STQFN package with fingers as this can contaminate the package pins and interface with solder reflow.  
23.2 SOLDERING INFORMATION  
Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 3.85 mm3 (nominal). More  
information can be found at www.jedec.org.  
24 Ordering Information  
Part Number  
Type  
SLG46880V  
32-Pin STQFN  
SLG46880VTR  
SLG46881V  
32-Pin STQFN - Tape and Reel (5k units)  
32-Pin STQFN  
SLG46881VTR  
32-Pin STQFN - Tape and Reel (5k units)  
24.1 TAPE AND REEL SPECIFICATIONS  
Max Units  
per Reel per Box  
Leader (min)  
Length  
Trailer (min)  
Nominal  
Package Size  
(mm)  
Reel &  
Hub Size  
(mm)  
Tape  
Width Pitch  
(mm) (mm)  
Part  
Package # of  
Length  
Type  
Pins  
Pockets  
Pockets  
(mm)  
(mm)  
STQFN 32L  
4 mm x4mm 32  
4 x 4 x 0.55  
5,000  
10,000  
330/100  
42  
336  
42  
336  
12  
8
0.4P Green  
24.2 CARRIER TAPE DRAWING AND DIMENSIONS  
PocketBTMPocketBTM Pocket Index Hole Pocket Index Hole  
Index Hole Index Hole  
to Tape  
Edge  
to Pocket Tape Width  
Center  
(mm)  
Length  
(mm)  
Width  
(mm)  
Depth  
(mm)  
Pitch  
(mm)  
Pitch  
(mm)  
Diameter  
(mm)  
Package  
Type  
(mm)  
(mm)  
A0  
B0  
K0  
P0  
P1  
D0  
E
F
W
STQFN 32L  
4 mm x4mm  
0.4P Green  
4.25  
4.25  
0.75  
4
8
1.5  
1.75  
5.5  
12  
Datasheet  
25-Feb-2021  
Revision 3.12  
345 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Refer to EIA-481 specification  
Datasheet  
25-Feb-2021  
Revision 3.12  
346 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
25 Layout Guidelines  
Units: µm  
Datasheet  
25-Feb-2021  
Revision 3.12  
347 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Glossary  
A
ACK  
Acknowledge bit  
ACMP  
ACMPH  
ACMPL  
ASM  
Analog Comparator  
Analog Comparator High Speed  
Analog Comparator Low Power  
Asynchronous State Machine  
B
BG  
Bandgap  
C
CLK  
CMO  
CNT  
Clock  
Connection matrix output  
Counter  
D
DFF  
DLY  
DM  
D Flip-Flop  
Delay  
Dynamic Memory  
E
EC  
Electrical Characteristics  
Erase Enable  
ERSE  
ERSR  
ESD  
EV  
Erase Register  
Electrostatic discharge  
End Value  
F
FSM  
Finite State Machine  
G
GPI  
General Purpose Input  
GPIO  
GPO  
General Purpose Input/Output  
General Purpose Output  
I
IN  
IO  
Input  
Input/Output  
L
LPF  
LSB  
LUT  
LV  
Low Pass Filter  
Least Significant Bit  
Look Up Table  
Low Voltage  
Datasheet  
25-Feb-2021  
Revision 3.12  
348 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
LWD  
Loop with Delay  
M
MSB  
MTP  
MUX  
Most Significant Bit  
Multiple-Time-Programmable  
Multiplexer  
N
NPR  
nRST  
NVM  
Non-Volatile Memory Read/Write/Erase Protection  
Reset  
Non-Volatile Memory  
O
OD  
OE  
Open-Drain  
Output Enable  
Oscillator  
OSC  
OUT  
Output  
P
PD  
Power-down  
PGen  
POR  
PP  
Pattern Generator  
Power-On Reset  
Push-Pull  
PRL  
PWR  
P DLY  
Protect Lock Bit  
Power  
Programmable Delay  
R
RPR  
Register Read/Write Protection  
Register Read/Write Protection Bit  
Register Protection Read/Write/Erase Lock  
Read/Write  
RPRB  
RPRL  
R/W  
S
SCL  
SDA  
SLA  
SMT  
SV  
I2C Clock Input  
I2C Data Input/Output  
Slave Address  
With Schmitt Trigger  
nSET Value  
T
TS  
Temperature Sensor  
Voltage Reference  
V
Vref  
Datasheet  
25-Feb-2021  
Revision 3.12  
349 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
W
WOSMT  
WPB  
Without Schmitt Trigger  
Write Protect Bit  
WPR  
Write Protection Register  
Write Protect Enable  
Wake and Sleep Controller  
WPRE  
WS  
Datasheet  
25-Feb-2021  
Revision 3.12  
350 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Revision History  
Revision  
Date  
Description  
Corrected registers [425:420]  
Updated ACMP0H Block Diagram  
Added description for Internal 100 µA current source  
Added note in EC table  
3.12  
25-Feb-2021  
Corrected Figure TS Output vs Temperature  
Updated section CNT/DLY/FSM Timing Diagrams  
Added note for CNTs  
Corrected I2C Byte Write Bit Masking subsection  
Fixed typos  
Corrected Reset Command Timing figure  
Updated PIN Block Diagrams  
Updated Typical Counter/Delay Offset  
Corrected EC of the I2C Pins Table  
Fixed typos  
3.11  
11-Dec-2019  
Corrected Edge Detection Mode Timing Diagram  
Corrected Delayed Edge Detection Mode Timing Diagram  
Updated subsection Reading Counter Data via I2C  
3.10  
3.9  
3-Jul-2019  
4-Jun-2019  
Corrected registers [731:730], [737:736], [3831:3768], [4084]  
Updated Analog Temperature sensor section  
Updated according to Dialog’s Writing Guideline  
Fixed typos  
Corrected Oscillators names  
Updated Ordering Information  
Changed I2C Serial Communications Macrocell section structure  
Corrected 2-bit LUT1 or PGen Figure  
Updated registers [535], [3765:3764]  
Added new subsection Electrostatic Discharge Ratings  
Fixed typos  
3.8  
3.7  
16-Apr-2019  
1-Mar-2019  
Removed information about SCL and SDA Pins’ Schmitt Trigger  
Corrected Deglitch Filter/Edge Detector Block Diagram  
Updated Analog Temperature Sensor Structure Diagram  
Corrected register definitions  
Fixed typos  
Added subsection f(1) Performance  
Added subsection IO Pins Performance  
Added ACMPs’ hysteresis information  
Added additional information about VDD2 to IO Pins section  
Added table Typical Delay Estimated for F(1)  
Added graph for ACMP Input Current Source  
Updated Input Current Source Spec  
Added section ACMP Typical Performance  
Updated Analog Temperature Sensor Electrical Spec  
Added sections Oscillators Power-On Delay and Oscillators Accuracy  
Corrected Absolute Maximum Ratings  
Updated Typical Delay table  
3.6  
4-Jan-2019  
Updated DM Block Diagrams  
Updated ACMP section  
Fixed typos  
Fixed typos  
3.5  
14-Sept-2018  
Updated Analog Temperature Sensor Structure Diagram  
Updated Example of I2C Byte Write Bit Masking  
Updated EC for SLG46881  
Fixed typos  
3.4  
3.3  
20-Aug-2018  
9-Aug-2018  
Fixed typos  
Datasheet  
25-Feb-2021  
Revision 3.12  
351 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Revision  
Date  
Description  
Updated TS Structure Diagram  
Added STQFN Handling section  
Updated ACMP Electrical Spec  
Fixed formatting  
3.2  
27-Jul-2018  
Updated RPULL in Electrical Spec  
3.1  
3.0  
30-Apr-2018  
18-Apr-2018  
Updated TS Electrical Spec  
Final version  
Datasheet  
25-Feb-2021  
Revision 3.12  
352 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  
SLG46880/81  
GreenPAK Programmable Mixed-Signal Matrix with Asynchronous  
State Machine and Dual Supply  
Status Definitions  
Revision Datasheet Status  
Product Status  
Definition  
1.<n>  
Target  
Development  
This datasheet contains the design specifications for product development.  
Specifications may change in any manner without notice.  
2.<n>  
Preliminary  
Qualification  
Production  
This datasheet contains the specifications and preliminary characterization  
data for products in pre-production. Specifications may be changed at any  
time without notice in order to improve the design.  
3.<n>  
4.<n>  
Final  
This datasheet contains the final specifications for products in volume  
production. The specifications may be changed at any time in order to  
improve the design, manufacturing and supply. Major specification changes  
are communicated via Customer Product Notifications. Datasheet changes  
are communicated via www.dialog-semiconductor.com.  
Obsolete  
Archived  
This datasheet contains the specifications for discontinued products. The  
information is provided for reference only.  
Disclaimer  
Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or warranted  
to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product (or  
associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers  
accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion  
and/or use is at the customer's own risk.  
Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or implied, as  
to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any  
information source outside of Dialog Semiconductor.  
Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the design of  
the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device, Dialog Semiconductor  
reserves the right to change the information published in this document, including, without limitation, the specification and the design of the related semiconductor products,  
software and applications, in accordance with its standard automotive change notification process.  
Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty  
that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing,  
such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.  
Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such  
license must be separately sought by customer with Dialog Semiconductor.  
All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions  
of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.  
Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are  
the property of their respective owners.  
© 2021 Dialog Semiconductor. All rights reserved.  
RoHS Compliance  
Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction  
of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.  
Contacting Dialog Semiconductor  
United Kingdom (Headquarters)  
Dialog Semiconductor (UK) LTD  
Phone: +44 1793 757700  
North America  
Dialog Semiconductor Inc.  
Phone: +1 408 845 8500  
Hong Kong  
Dialog Semiconductor Hong Kong  
Phone: +852 2607 4271  
China (Shenzhen)  
Dialog Semiconductor China  
Phone: +86 755 2981 3669  
Germany  
Japan  
Korea  
China (Shanghai)  
Dialog Semiconductor GmbH  
Phone: +49 7021 805-0  
Dialog Semiconductor K. K.  
Phone: +81 3 5769 5100  
Dialog Semiconductor Korea  
Phone: +82 2 3469 8200  
Dialog Semiconductor China  
Phone: +86 21 5424 9058  
The Netherlands  
Taiwan  
353  
Dialog Semiconductor B.V.  
Phone: +31 73 640 8822  
Dialog Semiconductor Taiwan  
Phone: +886 281 786 222  
Email:  
Web site:  
enquiry@diasemi.com  
www.dialog-semiconductor.com  
Datasheet  
25-Feb-2021  
Revision 3.12  
353 of 353  
CFR0011-120-00  
© 2021 Dialog Semiconductor  

相关型号:

SLG46880V

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine and Dual Supply
DIALOG

SLG46880VTR

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine and Dual Supply
DIALOG

SLG46881

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine and Dual Supply
DIALOG

SLG46881V

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine and Dual Supply
DIALOG

SLG46881VTR

GreenPAK Programmable Mixed-Signal Matrix with Asynchronous State Machine and Dual Supply
DIALOG

SLG47004

GreenPAK Programmable Mixed-Signal Matrix with In-System Programmability and Advanced Analog Features
DIALOG

SLG47004V

GreenPAK Programmable Mixed-Signal Matrix with In-System Programmability and Advanced Analog Features
DIALOG

SLG47004VTR

GreenPAK Programmable Mixed-Signal Matrix with In-System Programmability and Advanced Analog Features
DIALOG

SLG47105

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features
DIALOG

SLG47105V

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features
DIALOG

SLG47105VTR

GreenPAK Programmable Mixed-Signal Matrix with High Voltage Features
DIALOG

SLG47502

Low Voltage GreenPAK Programmable Mixed-Signal Matrix
DIALOG