EC3292A [E-CMOS]

2A, 18V, 500KHz, Synchronous StepDown DC/DC Converter;
EC3292A
型号: EC3292A
厂家: E-CMOS Corporation    E-CMOS Corporation
描述:

2A, 18V, 500KHz, Synchronous StepDown DC/DC Converter

文件: 总10页 (文件大小:293K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EC3292A  
2A, 18V, 500KHz,  
Synchronous StepDown DC/DC Converter  
Features  
General Description  
4.7V to 18V input voltage  
The EC3292A is a high-frequency, synchronous,rectified, step-  
down, switch-mode converter with internal power MOSFETs.  
It offers a very compact solution to achieve a 2A continuous  
output current over a wide input supply range, with excellent  
load and line regulation.  
Output adjustable from 0.8V to 15V  
Output current up to 2A  
Integrated 160m/85mpower MOSFET switches  
Shutdown current 3A typical  
Efficiency up to 95%  
The EC3292A has synchronous-mode Operation for higher  
efficiency over the output current-load range. Current-mode  
operation provides fast transient response and eases loop  
stabilization.Protection features include over-current protection  
and thermal shutdown.  
Fixed frequency 500KHz  
Internal soft start  
Over current protection and Hiccup  
Over temperature protection  
RoHS Compliant and 100% Lead (Pb) Free  
The EC3292A requires a minimal number of readily available,  
standard external components and is available in space-saving  
TSOT23-6L package.  
Applications  
Distributed power systems  
Networking systems  
FPGA, DSP, ASIC power supplies  
Notebook computers  
Green electronics or appliance  
Pin Assignments  
Pins Description  
TSOT23-6L  
Symbol  
Description  
1
2
GND  
SW  
Ground.  
Power switching output.  
3
4
5
6
IN  
FB  
Power input.  
Feedback input.  
Enable input.  
EN  
BOOT  
High-side gate drive boost input.  
E-CMOS Corp. (www.ecmos.com.tw)  
Page 1 of 10  
3L03N-Rev.P001  
EC3292A  
2A, 18V, 500KHz,  
Synchronous StepDown DC/DC Converter  
Application Information  
Note: R5 and C7 are optional.  
Details please see the DVT report.  
Ordering Information  
Part Number  
Package  
TSOT23-6  
Marking  
Marking Information  
1. LLLLLLot No  
3292A  
LLLLL  
EC3292ANT3R  
E-CMOS Corp. (www.ecmos.com.tw)  
Page 2 of 10  
3L03N-Rev.P001  
EC3292A  
2A, 18V, 500KHz,  
Synchronous StepDown DC/DC Converter  
Functional Block Diagram  
Absolute Maximum Ratings  
Supply Voltage VIN ……………………–0.3V to +20V  
Switch Node VSW ……………… –0.3V to VIN+0.3V  
Boost VBOOT ………………… VSW–0.3V to VSW+6V  
All Other Pins ………………………… –0.3V to +6V  
Junction Temperature ………………………+150°C  
Lead Temperature ………………………… +260°C  
Storage Temperature Range ……–65°C to +150°C  
CAUTION: Stresses above those listed in “Absolute  
Maximum Ratings” may cause permanent damage to  
the device. This is a stress only rating and operation of  
the device at these or any other conditions above those  
indicated in the operational sections of this specification  
is not implied.  
Recommended Operating Conditions  
Supply Voltage VIN ……...…………...…….…4.7V to 18V  
Output Voltage VOUT ……...…………... 0.8V to VIN–3V  
Operating Temperature Range ……...…–40°C to +125°C  
Package Thermal Characteristics  
TSOT23-6L:  
Thermal Resistance, θJA ………………………100°C/W  
Thermal Resistance, θJC ………………………… 55°C/W  
E-CMOS Corp. (www.ecmos.com.tw)  
Page 3 of 10  
3L03N-Rev.P001  
EC3292A  
2A, 18V, 500KHz,  
Synchronous StepDown DC/DC Converter  
Electrical Characteristics  
(TA = +25°C, V IN = +12V, unless otherwise noted.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Symbol  
4.7  
0.8  
18  
15  
6
V
V
Supply Voltage  
Output Voltage  
VIN  
VOUT  
Shutdown Supply Current  
Supply Current  
3
µA  
mA  
V
VEN = 0V  
0.09  
VEN = 2.0V,VFB =0.85V  
0.776 0.8  
0.88  
0.824  
Feedback Voltage  
VFB  
4.7V VIN 18V  
Feedback Over-voltage Threshold  
V
1000  
160  
85  
V/V  
mꢀ  
mꢀ  
Error Amplifier Voltage Gain *  
AEA  
RDS(ON)1  
RDS(ON)2  
High-Side Switch-On Resistance *  
Low-side Switch-On Resistance *  
VEN = 0V, VSW = 0V,  
TA = +125°C  
High-Side Switch Leakage Current  
10  
µA  
Upper Switch Current Limit  
Lower Switch Current Limit  
Minimum Duty Cycle  
3
3.6  
0
A
A
From Drain to Source  
400  
100  
500  
125  
90  
600  
150  
KHz  
KHz  
%
Oscillation Frequency  
FOSC1  
FOSC2  
DMAX  
Short Circuit Oscillation Frequency  
Maximum Duty Cycle  
VFB = 0V  
VFB = 0.5V  
Minimum On Time *  
120  
1.22  
1.32  
3.75  
ns  
V
EN Falling Threshold Voltage  
EN Rising Threshold Voltage  
Input Under Voltage Lockout Threshold  
VEN Falling  
VEN Rising  
VIN Rising  
V
V
Input Under Voltage Lockout Threshold  
Hysteresis  
200  
mV  
Soft-Start Period  
1
ms  
°C  
Thermal Shutdown *  
150  
* Guaranteed by design, not tested.  
E-CMOS Corp. (www.ecmos.com.tw)  
Page 4 of 10  
3L03N-Rev.P001  
EC3292A  
2A, 18V, 500KHz,  
Synchronous StepDown DC/DC Converter  
Typical Characteristics  
VIN = 12V, VO = 3.3V, L1 = 4.7H, C1 = 10F, C2 = 10F x 2, TA = +25°C, unless otherwise noted.  
Start UP & Inrush Current 12V3.3V (Load 1A)  
Output Ripple (12V => 3.3V, Load=2A)  
Output Ripple (12V => 3.3V, Load=0A)  
Shut Down (Iout 1AShut down)  
Output Ripple (12V => 3.3V, Load=1A)  
Dynamic Load (Iload=0.2A_1.2A;Vout=3.3V)  
E-CMOS Corp. (www.ecmos.com.tw)  
Page 5 of 10  
3L03N-Rev.P001  
EC3292A  
2A, 18V, 500KHz,  
Synchronous StepDown DC/DC Converter  
Short Circuit Protection  
Efficiency(L=4.7uA)  
E-CMOS Corp. (www.ecmos.com.tw)  
Page 6 of 10  
3L03N-Rev.P001  
EC3292A  
2A, 18V, 500KHz,  
Synchronous StepDown DC/DC Converter  
Application Information  
Overview  
Setting the Output Voltage  
The EC3292A is a synchronous rectified, current-mode,  
step-down regulator. It regulates input voltages from  
4.7V to 18V down to an output voltage as low as  
0.8V, and supplies up to 2A of load current.  
The EC3292A uses current-mode control to regulate  
the output voltage. The output voltage is measured  
The external resistor divider sets output voltage. The  
feedback resistor R1 also sets the feedback loop  
bandwidth through the internal compensation capacitor.  
(see the typical application circuit). Choose the R1 around  
10KΩ,and R2 by  
R2=R1/(Vout/0.8V-1)  
at FB through  
a
resistive  
voltage divider and  
Use T-type network for when Vout is low.  
amplified through the internal transconductance error  
amplifier.  
The converter uses internal N-Channel MOSFET switches  
to step-down the input voltage to the regulated output  
voltage. Since the high side MOSFET requires a  
gate voltage greater than the input voltage, a boost  
capacitor connected between SW and BOOT is  
needed to drive the high side gate. The boost capacitor  
is charged from the internal 5V rail when SW is low.  
When the EC3292A FB pin exceeds 10% of the  
nominal regulation voltage of 0.8V, the over voltage  
comparator is tripped forcing the high-side switch off.  
Figure 1T-type network  
Table 1 lists the recommended T-type resistors value for  
common output voltages.  
Pins Description  
BOOT: High-Side Gate Drive Boost Input. BOOT supplies  
the drive for the high-side N-Channel MOSFET switch.  
Connect a 0.1F or greater capacitor from SW to BOOT  
to power the high side switch.  
IN: Power Input. IN supplies the power to the IC, as well  
as the step-down converter switches. Drive IN with a  
4.7V to 18V power source. Bypass IN to GND with  
a suitably large capacitor to eliminate noise on the input  
to the IC.  
Table 1: Resistor selection for common output voltages.  
Inductor  
SW: Power Switching Output. SW is the switching node  
that supplies power to the output. Connect the output  
LC filter from SW to the output load. Note that  
a capacitor is required from SW to BOOT to power  
the high-side switch.  
The inductor is required to supply constant current to  
the output load while being driven by the switched  
input voltage. A larger value inductor will result in less  
ripple current that will result in lower output ripple  
voltage. However, the larger value inductor will have a  
larger physical size, higher series resistance, and/or  
lower saturation current. A good rule for determining  
the inductance to use is to allow the peak-to-peak ripple  
current in the inductor to be approximately 30% of the  
maximum switch current limit. Also, make sure that the  
GND: Ground.  
FB: Feedback Input. FB senses the output voltage to  
regulate that voltage. Drive FB with  
a
resistive  
voltage divider from the output voltage. The feedback  
threshold is 0.8V.  
EN: Enable Input. EN is a digital input that turns the  
regulator on or off. Drive EN high to turn on  
the regulator, drive it low to turn it off. Pull up with 100kꢀ  
resistor for automatic startup.  
E-CMOS Corp. (www.ecmos.com.tw)  
Page 7 of 10  
3L03N-Rev.P001  
EC3292A  
2A, 18V, 500KHz,  
Synchronous StepDown DC/DC Converter  
peak inductor current is below the maximum switch  
be estimated by:  
IC1 = ILOAD × [ (VOUT/VIN) × (1 − VOUT/VIN) ]1/2  
current limit. The inductance value can be calculated by:  
L = [ VOUT / (fS × IL) ] × (1 − VOUT/VIN)  
The worst-case condition occurs at VIN = 2VOUT, where  
IC1= ILOAD/2. For simplification, choose the input  
capacitor whose RMS current rating greater than  
half of the maximum load current.  
Where VOUT is the output voltage, VIN is the input voltage,  
fS is the switching frequency, and IL is the peak-to-peak  
inductor ripple current.  
The input capacitor can be electrolytic, tantalum or  
ceramic. When using electrolytic or tantalum capacitors,  
a small, high quality ceramic capacitor, i.e. 0.1F, should  
be placed as close to the IC as possible. When  
using ceramic capacitors, make sure that they have  
enough capacitance to provide sufficient charge to  
prevent excessive voltage ripple at input. The input  
voltage ripple for low ESR capacitors can be estimated by:  
VIN = [ ILOAD/(C1 × fS) ] × (VOUT/VIN) × (1 − VOUT/VIN)  
Where C1 is the input capacitance value.  
Choose an inductor that will not saturate under the  
maximum  
inductor  
inductor  
peak  
current.  
The  
peak  
current can be calculated by:  
LP = ILOAD + [ VOUT / (2 × fS × L) ] × (1 − VOUT/VIN)  
Where ILOAD is the load current.  
I
The choice of which style inductor to use mainly  
depends on the price vs. size requirements and any EMI  
requirements.  
Output Capacitor  
The output capacitor is required to maintain the DC  
output voltage. Ceramic, tantalum, or low ESR  
electrolytic capacitors are recommended. Low ESR  
capacitors are preferred to keep the output voltage  
ripple low. The output voltage ripple can be estimated  
by:  
Optional Schottky Diode  
During the transition between high-side switch and  
low-side switch, the body diode of the low-side power  
MOSFET conducts the inductor current. The forward  
voltage of this body diode is high. An optional Schottky  
diode may be paralleled between the SW pin and GND  
pin to improve overall efficiency. Table 2 lists example  
Schottky diodes and their Manufacturers.  
ΔVOUT = [ VOUT/(fS × L) ] × (1 − VOUT/VIN)  
× [ RESR + 1 / (8 × fS × C2) ]  
Where C2 is the output capacitance value and RESR is the  
equivalent series resistance (ESR) value of the output  
capacitor.  
In the case of ceramic capacitors, the impedance at the  
switching frequency is dominated by the capacitance.  
The output voltage ripple is mainly caused by  
the capacitance. For simplification, the output voltage  
ripple can be estimated by:  
Table 2: Diode selection guide.  
ΔVOUT = [ VOUT/(8xfS2 xLxC2)] × (1 − VOUT/VIN)  
In the case of tantalum or electrolytic capacitors, the  
ESR dominates the impedance at the switching  
frequency. For simplification, the output ripple can be  
approximated to:  
Part  
Number  
Voltage and  
Current Rating  
Vendor  
B130  
SK13  
30V, 1A  
30V, 1A  
30V, 1A  
Diodes Inc.  
Diodes Inc.  
ΔVOUT = [ VOUT/(fS × L) ] × (1 − VOUT/VIN) × RESR  
The characteristics of the output capacitor also affect  
the stability of the regulation system. The EC3292A can  
be optimized for a wide range of capacitance and  
ESR values.  
MBRS130  
International Rectifier  
Input Capacitor  
The input current to the step-down converter is  
discontinuous, therefore a capacitor is required to  
supply the AC current to the step-down converter while  
maintaining the DC input voltage. Use low ESR  
capacitors for the best performance. Ceramic capacitors  
are preferred, but tantalum or low-ESR electrolytic  
capacitors may also suffice. Choose X5R or X7R  
dielectrics when using ceramic capacitors.  
External Bootstrap Diode  
An external bootstrap diode may enhance the efficiency  
of the regulator, the applicable conditions of external  
BOOT diode are:  
VOUT = 5V or 3.3V; and  
Duty cycle is high: D = VOUT/VIN > 65%  
In these cases, an external BOOT diode is recommended  
from the output of the voltage regulator to BOOT pin, as  
shown in Figure 2.  
Since the input capacitor (C1) absorbs the input  
switching current it requires an adequate ripple current  
rating. The RMS current in the input capacitor can  
E-CMOS Corp. (www.ecmos.com.tw)  
Page 8 of 10  
3L03N-Rev.P001  
EC3292A  
2A, 18V, 500KHz,  
Synchronous StepDown DC/DC Converter  
PCB Layout Guide  
PCB layout is very important to achieve stable operation.  
Please follow the guidelines below.  
1) Keep the path of switching current short  
and minimize the loop area formed by Input capacitor,  
high-side MOSFET and low-side MOSFET.  
2) Bypass ceramic capacitors are suggested to be  
put close to the VIN Pin.  
3) Ensure all feedback connections are short and direct.  
Place the feedback resistors and compensation  
components as close to the chip as possible.  
4) Rout SW away from sensitive analog areas such  
as FB.  
5) Connect IN, SW, and especially GND respectively to a  
large copper area to cool the chip to improve thermal  
performance and long-term reliability.  
Figure 2: Add optional external bootstrap diode to  
enhance efficiency.  
The recommended external BOOT diode is IN4148, and  
the BOOT capacitor is 0.1 ~ 1F.  
BOM of EC3292A  
When VIN 6V, for the purpose of promote the  
efficiency, it can add an externalSchottky diode  
between IN and BOOT pins, as shown in Figure 2.  
Please refer to the Typical Application Circuit.  
When VIN 6V, for the purpose of promote the  
Efficiency ,it can add an externalSchottky diode  
between IN and BOOT pins, as shown in Figure 3.  
Item  
1
Reference  
Part  
10F  
100nF  
0.1F  
100K  
C1  
C5  
C7  
R4  
2
3
4
Table 3: BOM selection table I.  
Figure 3: Add a Schottky diode to promote efficiency  
when VIN 6V.  
L1  
R1  
R2  
C2  
Vout = 5.0V  
Vout = 3.3V  
Vout = 2.5V  
Vout = 1.8V  
Vout = 1.2V  
6.8H  
4.7H  
3.3H  
2.2H  
2.2H  
40.2K  
40.2K  
40.2K  
40.2K  
20.5K  
7.68K  
13K  
10F×2  
10F×2  
10F×2  
10F×2  
10F×2  
19.1K  
32.4K  
41.2K  
Table 4: BOM selection table II  
E-CMOS Corp. (www.ecmos.com.tw)  
Page 9 of 10  
3L03N-Rev.P001  
EC3292A  
2A, 18V, 500KHz,  
Synchronous StepDown DC/DC Converter  
Package Information  
TSOT23-6L  
Dimensions in mm  
Dimensions in Inch  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
B
0.700  
0.000  
1.600  
0.350  
2.650  
2.820  
0.900  
0.100  
1.700  
0.500  
2.950  
3.020  
0.028  
0.000  
0.063  
0.014  
0.104  
0.111  
0.035  
0.004  
0.067  
0.020  
0.116  
0.119  
b
C
D
e
0.950 BSC  
0.037 BSC  
H
L
0.080  
0.300  
0.200  
0.600  
0.003  
0.012  
0.008  
0.024  
E-CMOS Corp. (www.ecmos.com.tw)  
Page 10 of 10  
3L03N-Rev.P001  

相关型号:

EC3292ANT3R

2A, 18V, 500KHz, Synchronous StepDown DC/DC Converter
E-CMOS

EC3292B

18V/2A High Efficiency Synchronous Rectified Step-Down DC/DC Converter
E-CMOS

EC3292BNB3R

18V/2A High Efficiency Synchronous Rectified Step-Down DC/DC Converter
E-CMOS

EC3292NNMHR

2A, 18V, Synchronous Step-down DC/DC Converter
E-CMOS

EC3293

3A, 18V, Synchronous Step-down DC/DC Converter
E-CMOS

EC3293A

3A, 18V, 500KHz, Synchronous Step Down DC/DC Converter
E-CMOS

EC3293ANT3R

3A, 18V, 500KHz, Synchronous Step Down DC/DC Converter
E-CMOS

EC3293B

3A, 18V, 500KHz, Synchronous Step Down DC/DC Converter
E-CMOS

EC3293BNT3R

3A, 18V, 500KHz, Synchronous Step Down DC/DC Converter
E-CMOS

EC3293NNMHR

3A, 18V, Synchronous Step-down DC/DC Converter
E-CMOS

EC33

OSCILLATOR
ECLIPTEK

EC3300SJ-FREQ

CRYSTAL OSCILLATOR, CLOCK, 1.544 MHz - 50 MHz, HCMOS OUTPUT
ECLIPTEK