E52141A62CXX2 [ELMOS]

Transceiver compliant with PSI5 standard v1.3 and v2.1;
E52141A62CXX2
型号: E52141A62CXX2
厂家: ELMOS SEMICONDUCTOR AG    ELMOS SEMICONDUCTOR AG
描述:

Transceiver compliant with PSI5 standard v1.3 and v2.1

文件: 总89页 (文件大小:1865K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Features  
General Description  
Transceiver compliant with PSI5 standard v1.3 and  
v2.1  
Provides four independent master channels (up to 6  
sensors each)  
Supporting 125 Kbit/s and 189 Kbit/s protocols  
Supporting synchronous and asynchronous opera-  
tion modes  
The E521.41 was developed to manage the connection  
and communication between a microcontroller unit and  
up to 24 sensor satellites.  
Data transmission from the sensor to ECU is done by  
current modulation on the power supply lines with data  
rate of 125 Kbit/s or 189 Kbit/s (Manchester coded).  
Data transmission from ECU to sensor is done by  
voltage modulation on the power supply. It supports bid-  
irectional communication. Two methods are supported:  
Various diagnostic features  
Internal sync-voltage generation  
Programmable PSI5 channel-voltage 4.6V to 11V  
Automatic threshold adaption to sensor quiescent  
current  
Reverse polarity protected bus outputs up to 40V  
Enables operation in powertrain and chassis control  
systems  
tooth gap method  
pulse width method  
The device is a PSI5 V1.3 and V2.1 compliant trans-  
ceiver which provides four independently operating  
channels. The channels are able to communicate in low  
power-,  
Developed according to ISO 26262, based on safety standard-, synchronous- and asynchronous operating  
mode. The communication to µC is done via the SPI or  
UART interface.  
requirements rated up to ASIL C.  
Operating temperature range -40°C to +125°C  
Applications  
Ordering Information  
Safety (airbag) control systems  
Powertrain control systems  
Vehicle dynamics control system  
Ordering-No.:  
E52141A62CXX2  
E52141A55E  
Features  
4-channel  
4-channel  
Package  
QFN20L5  
SOIC20  
Typical Application Circuit  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
1 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Functional Diagram  
VSUPPLY  
VBUS  
LDO  
Control  
VG  
SYNC CTRL  
+
Reverse Prot  
Error  
Detection  
CSYNC  
Bus  
Enable  
+
SIF1  
SIF2  
CP2  
CP1  
VSYNC  
Charge  
Pump  
Reverse Prot  
VBUS  
VDD  
Current  
Limitation  
Active  
Discharge  
VDD_INT  
Bandgap  
References  
4
4
4
Oscillator  
Receiver  
Threshold  
Adaption  
SIF3  
SIF4  
NCS  
SDO / RXD  
SDI /TXD  
SCLK  
SYNC  
Control  
Manchester  
Decoder  
Timeslot  
Control  
UART / SPI  
Interface  
CFG  
Register  
Data  
Register  
Status  
Register  
NRES  
TRIG  
E521.41  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
2 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
1 Package Pinout QFN20L5,SO20  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
3 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
1.1 Pin Description QFN20L5  
Table 1.1-1: Pin Description  
No  
1
Name  
DGND  
VDD  
Type  
Description  
S
S
S
Digital voltage supply  
Digital voltage supply  
Analog ground  
2
3
AGND  
SIF1  
4
HV_A_O Sensor Interface 1  
HV_A_O Sensor Interface 3  
5
SIF3  
6
PGND  
CP2  
S
Power ground  
HV_A_O Sync charge pump fly capacitor  
HV_S VBUS voltage  
HV_A_O Sync charge pump fly capacitor  
HV_S Sync supply voltage  
7
8
VBUS  
CP1  
9
10  
11  
12  
13  
CSYNC  
SIF4  
HV_A_O Sensor Interface 4  
SIF2  
HV_A_O Sensor Interface 2  
VG  
HV_A_O Gate voltage for external transistor  
14 VSUPPPLY  
HV_S  
D_I  
D_I  
D_I  
D_I  
D_O  
D_I  
S
Supply voltage  
15  
16  
17  
18  
NRES  
TRIG  
Negative reset and test mode pin  
Sync pulse trigger input  
SPI chip select  
NCS  
SDI_RXD  
SPI or UART data input  
SPI or UART data output  
SPI clock input  
19 SDO_TXD  
20  
SCLK  
EP  
QFN20L5 package only  
Exposed Pad. Connect to large copper ground plane for optimal heat dissipation.  
Connect to GNDA and GNDD.  
Note: A = Analog, D = Digital, S = Supply, I = Input, O = Output, B = Bidirectional, HV = High Voltage  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
4 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
1.2 Pin Description SO20  
Table 1.2-1: Pin Description  
No  
1
Name  
SDO_TXD  
SCLK  
DGND  
VDD  
Type  
D_O  
D_I  
S
Description  
SPI or UART data output  
SPI clock input  
2
3
Digital ground  
4
S
Digital voltage supply  
Analog ground  
5
AGND  
SIF1  
S
6
HV_A_O Sensor Interface 1  
HV_A_O Sensor Interface 3  
7
SIF3  
8
PGND  
CP2  
S
Power ground  
HV_A_O Sync charge pump fly capacitor  
HV_S VBUS voltage  
HV_A_O Sync charge pump fly capacitor  
HV_S Sync supply voltage  
9
10  
11  
12  
13  
14  
15  
VBUS  
CP1  
CSYNC  
SIF4  
HV_A_O Sensor Interface 4  
SIF2  
HV_A_O Sensor Interface 2  
VG  
HV_A_O Gate voltage for external transistor  
16 VSUPPPLY  
HV_S  
D_I  
Supply voltage  
17  
18  
19  
20  
NRES  
TRIG  
Negative reset and test mode pin  
Sync pulse trigger input  
SPI chip select  
D_I  
NCS  
D_I  
SDI_RXD  
D_I  
SPI or UART data input  
Note: A = Analog, D = Digital, S = Supply, I = Input, O = Output, B = Bidirectional, HV = High Voltage  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
5 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
2 Application Description  
2.1 Application Circuits  
2.1.1 Application Circuits  
Pin NCS: terminate with GND for UART-mode only, otherwise is used internal pull-up for SPI-mode.  
Pin VSUPPLY: terminate with GND if LDO is not used.  
Pin VG: terminate with GND if LDO is not used.  
Pin CP1: no termination (OPEN) if charge pump is not used.  
Pin CP2: no termination (OPEN) if charge pump is not used (must not be connected to GND!!!).  
Pin CSYNC: short to VBUS for asynchronous mode.  
The CSYNC voltage can be supplied on pin CSYNC (if available on ECU) without using the charge pump.  
This option is not shown here.  
ECU  
NMOS  
VSUPPLY  
(
eg  
.
battery  
)
EMC filter  
(
C
EMC  
REMC  
C
K
C
BUS  
Power  
supply  
&
Reset  
CP  
1
CCP  
NRES  
VDD  
CP  
2
V
DD  
C
DD  
CSYNC  
C
SYNC  
Ch1_sensor1  
Wiring  
E521.41A  
SIF  
SIF  
1
2
LW  
LW  
/2  
RW /  
RW /  
2
2
RE  
2
CW  
ZS  
CE  
CL  
/2  
µ
C
TRIG  
SDI  
_
RXD  
TXD  
SIF  
SIF  
3
SDO  
_
Ch4_sensor1  
Wiring  
SPI  
SCLK  
NCS  
4
RW /  
2
LW  
LW  
/2  
RE  
2
CW  
ZS  
CE  
CL  
RW /2  
/2  
Ch4_sensor2  
ZS  
Figure 2.1.1-1: Application Circuit with LDO  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
6 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
ECU  
VSUPPLY  
(
)
eg . battery  
V
BUS_SUP  
C
BUS  
Power  
supply  
&
Reset  
CP  
1
CCP  
NRES  
VDD  
CP2  
V
DD  
C
DD  
CSYNC  
C
SYNC  
Ch1_sensor1  
Wiring  
E521.41A  
SIF  
SIF  
1
2
RW  
RW  
/
2
LW  
/2  
RE  
2
CW  
ZS  
CE  
CL  
/2  
LW  
/2  
µ
C
TRIG  
SDI  
_
RXD  
SIF  
3
4
Wiring  
SDO  
_
TXD  
Ch4_sensor1  
UART  
SCLK  
NCS  
SIF  
RW  
/
2
2
LW  
/
/
2
2
RE  
CW  
2
ZS  
CE  
CL  
RW/  
LW  
Ch4_sensor2  
ZS  
Figure 2.1.1-2: Application Circuit with VBUS Supplied from ECU  
Table 2.1.1-1: Application Circuit Electrical Parameter  
Description Condition  
Capacitance at VDD  
Symbol  
CVDD  
Min  
100  
Typ  
Max  
Unit  
nF  
220  
35  
ECU bus capacitance  
ECU resistor  
CE  
RE2  
CL  
15  
nF  
Ω
2.0  
Satellite capacitance  
Total bus capacitance  
2.2  
25  
nF  
nF  
CE+CL_X  
(x=1..3)  
107  
20  
LDO Output capacitor  
Ceramic capacitor,  
ESR<=100m  
Ceramic capacitor;  
ESR <= 100m  
Ceramic capacitor;  
ESR <= 100m  
CBUS  
4.7  
μF  
Ω
Charge pump fly capacitor  
Charge pump storage capacitor  
CCP  
270  
14.1  
nF  
Ω
CSYNC  
20  
μF  
Ω
VSUPPLY EMC capacitor  
VSUPPLY EMC resistor  
Single wire resistance  
Wire inductance  
CEMC  
REMC  
RW/2  
2*(LW/2)  
CW  
220  
0.5  
nF  
Ω
100  
Ω
0
0
8.7  
μH  
Wire capacitance  
600  
pF  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
7 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
The device can be supplied via pin VSUPPLY with an appropriate voltage. This voltage supplies an external NMOS  
transistor that is driven by an internal LDO via the pin VG.  
The following external NMOS transistor are recommended:  
IRFZ24NS,  
BUK7635-55A,  
HUFA76409D3ST,  
SQD15N06-42L.  
The stability of the output voltage can be achieved with an external compensation capacitor CK connected between  
pin VG and AGND. In the following table is shown a suitable compensation capacitor CK:  
Table 2.1.1-2: Recommended Compensation Capacitor  
Transistor  
CK  
IRFZ24NS  
100nF-220nF  
100nF-220nF  
100nF-220nF  
100nF-220nF  
BUK7635-55A  
HUFA76409D3ST  
SQD15N06-42L  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
8 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
3 Functional Safety  
3.1 Functional Safety Requirements  
The device fulfils the functional safety requirement up to ASIL-Level C (system) according to ISO 26262, depending  
on the safety mechanisms used.  
3.2 FMEDA  
The following toplevel safety requirements were analysed with FMEDA method:  
TSR1: Transceiver shall avoid transmission of corrupted data to the micro controller interface  
TSR2: Transceiver shall avoid storage of corrupted safety related data  
3.2.1 Safety Measures mandatory to reach ASIL Level C  
Table 3.2.1-1: mandatory safety mechanisms for ASIL C derived from FMEDA  
Safety Mechan-  
ism  
IC / System  
level  
Description  
SM1  
SM2  
SM3  
SM4  
IC  
IC  
Synchronous decoding of input data in Manchester decoder with fixed baud  
rate, fixed frame length and fixed bit count. Decoding errors will be indicated  
in the error status and potentially corrupted data will be invalidated.  
Data consistency check using parity bit or CRC error detection mechanism.  
Note: These mechanisms must be enabled by interface configuration options  
from system level.  
System  
Observe failure rate of Manchester decoder or parity/CRC errors on system  
level in order to detect channels with latent faults that could degrade the  
robustness of decoding or even cause spurious data corruption.  
System / IC  
Internal supplies and references are monitored cyclically with a sampling  
interval of typ. 2ms. Diagnosis block has a separate reference voltage gener-  
ation independent from the reference of analyzed signals. Supervisor function  
is implemented for the following signals: VBUS, VCSYNC, VSIF1, VSIF2, VSIF3, VSIF4  
VDD, VDD_INT, VCP_GATE  
,
.
SM5  
SM6  
SM7  
SM8  
System  
System  
System  
System  
Data consistencies check using CRC error detection mechanism for SPI and  
UART.  
Configuration data written to registers of the IC shall be (cyclically) verified by  
reading them back. Available configuration lock mechanisms shall be used.  
Compare the SPI response with the command ( address,  
command,CHID,BID, except frame data, register data & XCRC)  
Compare the frame ID, ch ID (if not all CH configurations are same) with  
respect to the configuration & calculate and compare the 3-bit CRC/parity for  
the sensor data  
SM9  
System  
System  
If interface/asic error indicated, read the error status registers  
SM10  
If start-or stop bit in UART is not detected in time uC can detect UART error  
on transceiver  
SM11  
System  
Loop Back Diagnosis: Check digital data processing (Manchester decoder /  
Data latch / MUX / XCRC / UART/SPI).  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
9 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
4 Operating Conditions  
Stresses beyond these absolute maximum ratings listed below may cause permanent damage to the device. These  
are stress ratings only; operation of the device at these or any other conditions beyond those listed in the opera-  
tional sections of this document is not implied. Exposure to absolute maximum rated conditions for extended peri-  
ods may affect device reliability. All voltages referred to V(GND). Currents flowing into terminals are positive, those  
drawn out of a terminal are negative.  
4.1 Absolute Maximum Ratings  
Table 4.1-1: ESD requirements  
No.  
Description  
Condition  
Symbol  
Min  
Max Unit  
1
ESD according Human Body Model (HBM),  
Q100-002  
for pins SIFx; VSUPPLY; (100pF/1.5kΩ)  
ESD pins  
SIFX,VSUPPL  
Y
4000  
V
2
3
4
ESD according Human Body Model (HBM),  
Q100-002  
for all other pins; (100pF/1,5kΩ)  
ESD all other 2000  
pins  
V
V
V
ESD according Charged Device Model (CDM),  
Q100-011  
Corner pins  
ESD corner  
pins CDM  
750  
450  
ESD according Charged Device Model (CDM),  
Q100-011  
Non-corner pins  
ESD non  
corner pins  
CDM  
5
6
7
8
9
Input voltage range (supply from ECU)  
VBUS voltage range  
VSUPPPLY  
VBUS  
VG  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
40  
40  
40  
40  
40  
40  
V
V
V
V
V
V
NMOS gate voltage at pin VG  
Voltage of charge pump fly cap. - negative pin  
Voltage of charge pump fly cap. - positive pin  
VCP1  
VCP2  
10 Voltage of charge pump storage capacitor or  
CSYNC voltage supply (from ECU)  
VSYNC  
11 Voltage at sensor interface  
X=1-4  
VSIF_X  
VDD  
-0.3  
-0.3  
40  
19  
V
V
12 Supply voltage for analog blocks and digital I/O  
pins  
13 Voltage of digital input pins  
14 Voltage of the digital outputs pins  
15 Voltage of NRES and testmode pin  
16 Junction temperature  
VIN_DIG  
VOUT_DIG  
VNRES  
TJ  
-0.3  
-0.3  
-0.3  
-40  
-40  
-40  
19  
19  
V
V
19  
V
150  
125  
125  
23  
oC  
oC  
oC  
K/W  
17 Storage temperature  
TSTG  
18 Ambient operating temperature range  
TAMB  
19 Thermal Resistance (junction-ambient) (refer to  
application notes of QFN-packages, thermal con-  
nection of exposed die pad very important)  
RTJA  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
10 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
4.2 Recommended Operating Conditions  
Parameters are guaranteed within the range of recommended operating conditions unless otherwise specified.  
All voltages are referred to ground (0V). Currents flowing into the circuit have positive values.  
The first electrical potential connected to the IC must be GND. (If not specified specify timing sequence of electrical  
contacts.)  
Table 4.2-1: Recommended Operation Conditions  
No.  
Description  
Condition  
Symbol  
Min  
Typ  
Max Unit  
1)  
1)  
1)  
1
Input voltage range at pin VSUPPLY  
Application with  
LDO and  
external NMOS  
transistor;  
low voltage  
mode;  
VSUPPLY_lp  
5.3  
19  
V
V
V
V
2
3
4
Input voltage range at pin VSUPPLY  
Application with  
LDO and  
external NMOS  
transistor;  
standard voltage  
mode;  
VSUPPLY_std  
VSUPPLY_inc  
VBUS_SUP_lr  
6.95  
8.0  
19  
Input voltage range at pin VSUPPLY  
Application with  
LDO and  
external NMOS  
transistor;  
increased  
19  
voltage mode;  
Input voltage range at pin VBUS limited  
range2)  
Application with  
(externally gen-  
erated) available  
4.6  
5.05  
VBUS voltage;  
@ ISIFX_OP=0-  
25mA  
LDO is disabled  
5
Input voltage range at pin VBUS full range3) Application with  
VBUS_SUP_fr  
5.05  
11  
V
(externally gen-  
erated) available  
VBUS voltage;  
@ ISIFX_OP=0-  
65mA  
LDO is disabled  
6
7
VBUS voltage ripple;  
50Hz<f<50kHz3)  
Application with  
(externally gen-  
erated) available  
VBUS voltage;  
VBUS_SUP_RPL  
100 mVpp  
LDO is disabled  
VBUS voltage ripple;  
50kHz<f<500kHz3)  
Application with  
(externally gen-  
erated) available  
VBUS voltage;  
VBUS_SUP_RPL  
40  
mVpp  
LDO is disabled  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
11 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
No.  
Description  
VCSYNC voltage input range4)  
Condition  
Symbol  
Min  
Typ  
Max Unit  
8
Application with  
available VCSYNC  
voltage;  
VCSYNC  
Vt3  
+VCSYN  
C_DR  
35  
V
9
VCSYNC voltage ripple  
Application with  
available VCSYNC  
voltage;  
VCSYNC_RPL  
500 mVpp  
10 Digital supply voltage  
11 Digital supply voltage  
3V3-mode  
5V-mode  
VDD  
VDD  
2.97  
4.5  
3.63  
5.5  
V
V
5)  
12  
VBUS voltage  
rising slew rate  
VBUS_RISE  
8/CSYN V/µs  
C
13 Sensor quiescent current  
14 Sensor quiescent current  
15 Sensor sink current  
Standard current  
Extended current  
Low power mode  
Common mode  
ILOW_std  
ILOW_ext  
IS_lp  
IS_ext  
-19.0  
-35.0  
-4  
-4  
mA  
mA  
mA  
mA  
mA  
mA  
MHz  
Δ
-15.0 -13.0 -11.0  
-30.0 -26.0 -22.0  
16 Sensor sink current  
Δ
17 Sensor interface current, low power mode ISIFX=-(Ilow+  
Δ
IS)  
IS)  
ISIFX_OP_lp  
ISIFX_OP_inc  
fSCLK_EXT  
-50.0  
-65.0  
13  
-4.0  
-4.0  
32  
18 Sensor interface current,increased mode ISIFX=-(Ilow+  
Δ
19 Clock frequency depending on UART data UART mode  
rate  
20 Baud rate  
UART mode  
fUART  
fSCLK_EX  
T/5  
bps  
21 Duty cycle of fSCLK_EXT  
UART mode  
DCSCLK_EXT  
30  
70  
%
%
22 Frequency deviation of fSCLK_EXT  
UART  
FDEVSCLK_EXT  
-1.5  
1.5  
mode,maximum  
deviation with  
one UART tele-  
gram (11 bit)  
23 SPI frequency  
50% duty cycle  
fSCLK  
0
5
MHz  
1) The following external NMOS transistors are recommended: IRFZ24NS, BUK7635-55A, HUFA76409D3ST  
and SQD15N06-42L.  
The max.input current of VSUPPLY is 350mA (operating mode). Max. value including: 4 sensor interfaces including current modulation, CSYNC  
charge pump avg.current, short circuit for one interface and internal current consumption.  
2) Limited range of ISIFX: VBUS_min=4.6V with ISIFX_OPM=25mA (ILOW=10mA and ISINK=15mA)  
3) Full range of ISIFX operating  
4)  
V
is the voltage drop between VCSYNC and VSIFx, Vt3 see Figure 6.1.3.6-1  
SYNC_DR  
5) To limit the current through schottky diodes and VCSYNC capacitor to 8A  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
12 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
5 Detailed Electrical Specification  
5.1 ANALOG PART  
5.1.1 SUPPLY  
Table 5.1.1-1: Current Consumption: Electrical Parameter Table  
No.  
Description  
VSUPPLY quiescent current consumption*) 1)  
Condition  
Symbol  
Min  
Typ  
Max Unit  
1
I
Application with  
LDO  
disabled  
IVSUPPLY_Q  
15  
µA  
2
3
IVSUPPLY current consumption operating1)  
IVBUS quiescent current consumption  
Application with  
LDO enabled  
IVSUPPLY_OP  
IVBUS_Q  
0.1  
1
1
4
mA  
mA  
Application with  
available VBUS  
voltage;  
interfaces off  
4
5
IVBUS current consumption operating  
Application with  
available VBUS  
voltage;  
interfaces on;  
without load;  
IVBUS_OP  
6
14  
5
mA  
mA  
I
CSYNC quiescent current consumption  
Application with  
available VCSYNC  
voltage;  
ICSYNC_Q  
0.05  
interfaces on;  
without load;  
6
7
Logic supply operating current  
Logic supply operating current  
VDD=5.5V;NRE  
S=0V  
IVDD_off  
IVDD_on  
4
1
10  
10  
mA  
mA  
VDD=5.5V;NRE  
S=VDD  
*) Not tested in production  
1)  
I
is the current consumption of the pin VSUPPLY  
VSUPPLY  
5.1.1.1 LDO Control Block  
5.1.1.1.1 Electrical Parameter of LDO  
Table 5.1.1.1.1-1: Electrical Parameter Table of LDO  
No.  
Description  
Condition  
Symbol  
Min  
Typ  
Max Unit  
1
Stabilized output voltage of LDO at pin  
1)  
VBUS  
low power mode;  
<
VBUS_LP  
5.15 - 5.15 5.15 +  
2% 2%  
V
5mA<=ILOAD_BUS  
=350mA;  
5.3V<=VSUPPLY<=  
19V  
2
Stabilized output voltage of LDO at pin  
1)  
VBUS  
standard power  
mode;  
VBUS_STD  
6.65 - 6.65 6.65 +  
3% 3%  
V
5mA<=ILOAD_BUS  
=350mA;  
<
6.95V<=VSUPPLY  
=19V  
<
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
13 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
No.  
Description  
Condition  
Symbol  
Min  
Typ  
Max Unit  
3
Stabilized output voltage of LDO at pin  
1)  
VBUS  
increased power  
mode;  
VBUS_INC  
7.7 -  
3%  
7.7  
7.7 +  
3%  
V
5mA<=ILOAD_BUS  
=350mA;  
<
8.0V<=VSUPPLY<=  
19V  
4
Input voltage ripple rejection ratio for low  
frequencies*)  
50Hz<=f<=20kH  
z;  
VBUS_RR_LF  
40  
dB  
VSUPPLY_AC=4VPP;  
VSUPPLY_DC>9V;  
CBUS=4.7µF;VBU  
S=6.65V-setting  
5mA<=IBUS<=350  
mA;  
5
Input voltage ripple rejection ration for high 100kHz<=f<=50  
frequencies*)  
VBUS_RR_HF  
20  
dB  
0kHz;  
VSUPPLY_AC=400m-  
VPP;  
5.6V<=VSUPPLY<=  
6.4V;  
C
BUS=4.7µF;VBU  
S=5.15V-setting  
5mA<=ILOAD_BUS  
=350mA;  
<
6
7
Line regulation (  
VSUPPLY voltage)  
Δ
VBUS voltage for variable ILOAD_BUS is con-  
stant during test:  
VBUS_LIR  
-25  
-25  
0
0
25  
25  
mV  
mV  
5mA<=ILOAD_BUS  
=350mA;  
VSUPPLY varies:  
<
5.6V<=VSUPPLY<=  
19V  
Load regulation (  
LOAD_BUS current)  
Δ
VBUS voltage for variable VSUPPLY is con-  
stant during test:  
5.6V<=VSUPPLY<=  
VBUS_LOR  
I
19V;ILOAD_BUS var-  
ies during test:  
5mA<=ILOAD_BUS  
=350mA  
<
8
9
VBUS voltage overshoot*)  
VBUS voltage start-up time*) 2)  
VBUS_OS  
tstart_LDO  
VCP_GATE  
10  
2)  
%
V
10 Internal charge pump for LDO  
LDO charge  
pump output  
voltage  
10  
19  
*) Not tested in production  
1) trimmed  
2) Start-Up time tstart_LDO can be calculated by following formula: tstart_LDO=(VTH+VGS_eff)*CK/IVG_DRV ; for VTH and VGS_eff see NMOS transistor data  
sheet; CK is the compensations capacitor connected between VG and AGND; IVG_DRV is the driver charge current.  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
14 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
5.1.1.1.2 Electrical Parameter Control Voltage  
Table 5.1.1.1.2-1: Gate Control Voltage at Pin VG  
No.  
Description  
Condition  
Symbol  
Min  
Typ  
Max Unit  
1
NMOS gate voltage at pin VG operating  
VSUPPLY=5.3V  
VG_ON  
VBUS  
4.5  
+
V
2
NMOS gate voltage at pin VG non operating RDG<=500k  
between VG and  
VSUPPLY  
Ω
VG_OFF  
1
V
,
250µA current  
sink at pin VBUS  
(source)  
3
4
5
Pull down current in off condition  
*)  
Clamp voltage VG - VBUS  
IVG_PD  
VGS_CLAMP  
IVG_DRV  
30  
7
50  
80  
70  
13  
µA  
V
Driver capability  
*) Not tested in production  
50  
100  
µA  
5.1.1.2 Charge Pump for Sync Voltage  
Table 5.1.1.2-1: Electrical Parameter Table of the Charge Pump for SYNC Voltage  
No.  
Description  
Condition  
Symbol  
Min  
Typ  
Max Unit  
1
Charge pump output voltage at pin CSYNC ILOAD=0mA  
without load*)  
VCSYNC_no_ld  
2*VBUS  
-1.35V  
2*VBUS  
V
V
V
2
3
Charge pump output voltage at pin CSYNC VBUS=5.05V;  
ILOAD=25mA  
VCSYNC_lp  
VCSYNC_lp  
8.65  
10.1  
in low power mode  
Charge pump output voltage at pin CSYNC VBUS=5.05V;  
in low power mode  
8.6  
10.1  
ILOAD=28mA  
(7mA per SIFx)  
4
5
6
Charge pump output voltage at pin CSYNC VBUS=6.45V;  
in standard mode LOAD=28mA  
(7mA per SIFx)  
Charge pump output voltage at pin CSYNC VBUS=7.47V;  
VCSYNC_std  
11.35  
13.34  
12.9  
14.94  
3
V
V
I
VCSYNC_inc  
in increased mode  
ILOAD=28mA  
(7mA per SIFx)  
Start-up time for voltage at pin CSYNC*)  
Test condition:  
80%*VSYNC at  
tSTART_CP_CSYNC  
ms  
tSTART_CP_SYNC  
without load at  
pin VSYNC  
;
;
*) Not tested in production  
5.1.2 POR AND POWER-UP SEQUENCE  
Table 5.1.2-1: Electrical Parameter Table of POR  
No.  
1
Description  
Power ON reset threshold value  
Power OFF reset threshold value  
Power ON reset hysteresis*)  
Minimum time NRES=low*)  
Condition  
Related to VDD  
Related to VDD  
Symbol  
VPOR_ON  
VPOR_OFF  
VPOR_HYS  
tNRES_LOW  
tPOR_D_LH  
Min  
2.3  
2.2  
0.1  
1
Typ  
Max Unit  
2.9  
2.7  
0.3  
10  
V
V
V
2
3
4
μs  
5
Power ON reset delay time*) 1)  
At power-up of  
VDD_INT  
50  
μs  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
15 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
No.  
6
Description  
Power OFF reset delay time*)  
Input threshold NRES low*)  
Input threshold NRES high*)  
Pull down resistor NRES  
Condition  
Symbol  
tPOR_D_HL  
Min  
0.5  
0.8  
Typ  
Max Unit  
μs  
7
VNRES_low  
V
8
VNRES_high  
2
V
9
RNRES_PULL_DOWN  
70  
100  
130  
kΩ  
*) Not tested in production  
1) The output voltage of the internal VDD-regulator  
5.1.3 PSI5 INTERFACE  
5.1.3.1 Interface Driver  
Table 5.1.3.1-1: Electrical Parameter Table of the Interface Driver  
No.  
Description  
Condition  
Symbol  
Min  
Typ  
Max Unit  
VBUS V  
1
Voltage at pin SIFx (x=1-4),  
low power mode*)  
Low voltage mode; VSIFx_lp_VBUS_min 4.543  
Test condition for  
VSIFX_min measure-  
ment:  
VBUS=5.05V;  
SIFX_OP=65mA and  
I
VBUS is supplied dir-  
ectly  
2
Voltage at pin SIFx (x=1-4), low power Low voltage mode;  
mode*)  
VSIFx_lp  
4.405  
5.05  
V
VBUS=4.6V..5.05V;  
Test condition for  
VSIFX_min measure-  
ment:  
V
BUS=4.6V;  
ISIFX_OP=25mA and  
VBUS is supplied dir-  
ectly  
3
Voltage at pin SIFx (x=1-4), common  
mode*)  
Standard mode;  
Condition for  
VSIFX_min measure-  
ment:  
VSIFx_std  
5.943  
VBUS  
V
VBUS=6.45V;  
ISIFX_OP=65mA and  
VBUS is supplied dir-  
ectly  
4
Voltage at pin SIFx (x=1-4), common  
mode*)  
Increased mode;  
Condition for  
VSIFX_min measure-  
ment:  
VSIFx_inc  
6.963  
VBUS  
V
VBUS=7.47V;  
ISIFX_OP=65mA and  
VBUS is supplied dir-  
ectly  
5
Resistance between pin VBUS and pins  
SIFx  
ISIFX_OP =65mA,  
including temperat-  
ure drift and long  
term drift  
RVBUS_SIFx  
4.5  
7.8  
Ω
*) Not tested in production  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
16 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
5.1.3.2 Over Current Detection and Limitation  
Table 5.1.3.2-1: Electrical Parameter Table of the Over Current Detection and Limitation  
No.  
1
Description  
Condition  
Symbol  
ILIM_SIFx  
Min  
Typ  
Max Unit  
Sensor interface current limitation  
-130 -100  
200  
-75  
mA  
mA  
2
Threshold value for detection of SCG "hard  
short"(low impedance to GND)*) 1)  
ISIFx_HaSh  
3
Activation time for over current limitation at  
pin SIFx at "hard short"*)  
Over current switch off delay*)  
t SIFx_ HaSh_act  
300  
566  
ns  
4
5
t SIFx_ LIM_act  
tOC_SIFx_5ms  
491  
544  
µs  
SIFx over current start up delay (default  
value:ASIC_CNFG_3:BL_CHANNEL_1-  
4=0000)*)  
5.007 5.248 5.458  
ms  
6
SIFx over current start up  
delay(ASIC_CNFG_3:BL_CHANNEL_1-  
4=1111)*)  
tOC_SIFx_10ms  
10.014 10.464 10.882 ms  
*) Not tested in production  
1) SCG:Short to GND  
5.1.3.3 Reverse Current Detection and Limitation  
5.1.3.3.1 Reverse Current Flow from SIFx to VBUS  
Table 5.1.3.3.1-1: Electrical Parameter Table of the Reverse Current Detection and Limitation (Revese Current  
Flow from SIFx to VBUS)  
No.  
Description  
Condition  
Symbol  
Min  
Typ  
Max Unit  
1
Reverse current into SIFx-pin in ON-state equal to  
ISIFx_REV_ON  
200  
mA  
ΔVREV_TRIG /RVBUS-  
SIFx  
2
3
Reverse current into SIFx-pin in OFF-state*)  
ISIFx_REV_OFF  
ISIFx_REV_THR  
1
mA  
mA  
Threshold value for detection of the  
reverse current1)  
10  
61  
30  
60  
4
5
Activation time for reverse protection at  
pins SIFx*)  
tSIFx_REV_act  
500  
100  
ns  
SIFx reverse current shut-off activation  
time (deglitcher)*)  
tSIFx_REV_CUR  
96  
μs  
*) Not tested in production  
1)  
Δ
VREV_TRIG=VBUS-VSIFx in short to VBAT condition  
5.1.3.3.2 Reverse Current Flow from SIFx to CSYNC  
Table 5.1.3.3.2-1: Electrical Parameter Table of the Reverse Current Detection and Limitation (Reverse Current  
Flow from SIFx to CSYNC)  
No.  
Description  
Condition  
Symbol  
Min  
Typ  
Max Unit  
1
Threshold value for detection of the  
reverse current  
ICSYNC_REV_THR  
-100  
-4  
mA  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
17 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
5.1.3.4 Data Comparator  
Table 5.1.3.4-1: Electrical Parameter Table of the Data Comparator  
No.  
Description  
Condition  
Symbol  
Min  
Typ  
Max Unit  
1
Data comparator threshold  
low->high transition  
Low power mode  
ICOMP_th_lp_lh  
-8.3  
-6.3  
-4.3  
mA  
mA  
mA  
mA  
2
3
4
Data comparator threshold  
high->low transition  
Low power mode  
Common mode  
Common mode  
ICOMP_th_lp_hl  
ICOMP_th_com_lh  
ICOMP_th_com_hl  
-7.7  
-5.7  
-3.7  
Data comparator threshold  
low->high transition  
-16.6 -12.6 -8.6  
-15.4 -11.4 -7.4  
Data comparator threshold  
high->low transition  
5
6
7
Data comparator hysteresis*)  
Data comparator hysteresis*)  
Data comparator filter time (deglitcher)*) Manchester code  
Low power mode  
Common mode  
ICOMP_hys_lp  
ICOMP_hys_com  
IDATA_DGL_lf  
0.6  
1.2  
mA  
mA  
ns  
480  
320  
750  
pattern 125kbps;  
2bit deglitcher; res-  
olution 250ns;  
8
Data comparator filter time (deglitcher)*) Manchester code  
IDATA_DGL_hf  
500  
ns  
pattern 189kbps;  
2bit deglitcher; res-  
olution 167ns;  
*) Not tested in production  
5.1.3.5 Sync Pulse Generation  
5.1.3.5.1 Sync Pulse Generation DC-Parameter  
Table 5.1.3.5.1-1: Sync Pulse Generation DC-Parameter  
No.  
Description  
Sync slope reference voltage*)  
Condition  
Symbol  
Min  
Typ  
Max Unit  
1
Referenced to VSIFx  
t2 defined by Vt2  
;
;
;
Vt0  
0.5  
V
2
Lower boundary of sync signal sustain Low power mode;  
voltage*)  
Vt2_lp  
2.5  
3.5  
V
V
Referenced to VSIFx  
t2 defined by Vt2  
3
4
5
6
Lower boundary of sync signal sustain Common mode;  
voltage*)  
Referenced to VSIFx  
Vt2_com  
Vt3_lp  
Vt3_com  
Vt3_rippple  
Upper boundary of sync signal sustain Low power mode  
voltage  
2.7+VS 3.7+VS 4.3+VS  
V
V
IFX  
IFX  
IFX  
Upper boundary of sync signal sustain Common mode  
voltage  
4.2+VS 4.8+VS 5.5+VS  
IFX  
IFX  
IFX  
Ripple of voltage Vt3 Test condition:  
(supply rejection between pins CSYNC t=close to end of  
and SIFx)*)  
100 mVPP  
short sync signal  
=>t=t0+15 s;  
μ
7
8
Current limitation during Sync pulse  
slope*)  
ICSYNC_LMT  
VCSYNC_DR  
-210.0 -150.0 -110.0 mA  
0.8  
CSYNC voltage drop between pin  
CSYNC and SIFx  
V
*) Not tested in production  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
18 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
5.1.3.5.2 Sync Pulse Generation AC Parameter  
Table 5.1.3.5.2-1: Sync Pulse Generation AC-Parameter  
No.  
Description  
Condition  
Symbol  
Min  
Typ  
Max Unit  
1
Sync slope rising slew rate  
Transition from  
Vt0 to Vt2;  
24nF<=CBUS<=10  
7nF;  
4mA<=ISIFx<=35  
mA  
SRrise  
0.43  
1.5  
V/µs  
V/µs  
µs  
2
3
Sync slope falling slew rate  
Transition from  
Vt2 to Vt0;  
24nF<=CBUS<=10  
7nF;  
4mA<=ISIFx<=35  
mA  
SRfall  
-1.5  
Reference time for Sync slope*) 1)  
Reference time  
base defined at  
Vt0  
t0  
0
4
5
6
7
8
9
Sync signal earlist start*) 1)  
Sync signal sustain time*) 1)  
Sync signal sustain time*) 1)  
Discharge time limit*) 1)  
t1  
t03  
t13  
t04  
t14  
-1  
16  
43  
µs  
µs  
µs  
µs  
µs  
µs  
Short sync pulse  
Long sync pulse  
Short sync pulse  
Long sync pulse  
35  
62  
Discharge time limit*) 1)  
Minimum idle time of Tx_LEN counter*)  
tTx_LEN_IDLE  
32  
*) Not tested in production  
1) see timing diagram Figure 6.1.3.6-1  
5.1.3.6 Sync Pulse Generation by Pin TRIG  
Table 5.1.3.6-1: Trigger via Pin TRIG  
No.  
Description  
Condition  
Symbol  
Min  
Typ  
Max Unit  
1
Schmitt-Trigger - low input level at pin  
TRIG  
VSMT_L  
0.8  
V
2
3
Schmitt-Trigger - high input level at pin  
TRIG  
VSMT_H  
2
V
Trigger pulse at pin TRIG - short SYNC  
pulse*)  
70% of rising  
slope to 30% of  
falling slope  
ttrig_sh_pulse  
10  
40  
15  
45  
50  
20  
μs  
4
5
Trigger pulse at pin TRIG - long SYNC  
pulse*)  
70% of rising  
slope to 30% of  
falling slope  
ttrig_lng_pulse  
50  
μs  
Trigger pulse rise and fall*)  
Trigger pulse filter time*)  
Transition from  
20% to 80%  
(and vice versa);  
ttrig_RI/RA  
ns  
6
7
3bit deglitcher;  
resolution 1µs  
tDGL_trig  
tDLY  
4.72  
5
5.2  
μ
s
s
Delay counter to distinguish between  
short/long SYNC pulse*)  
30  
μ
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
19 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
No.  
Description  
SYNC pulse delay timer*)  
Condition  
Symbol  
Min  
Typ  
Max Unit  
8
step size = 2µs;  
configuration via  
UART/SPI with  
10bit  
tSYNC_DLY  
0
8/fCLK_I  
NT*(210-  
1)  
μs  
9
SYNC pulse delay from counter*)  
tSYNC_DLY_CNT  
tSYNC_REP1  
32/fCLK_  
μs  
μs  
μs  
INT  
10 Time between two sync pulses on different  
SIFx channels*)  
0
11 Sync pulses repetition time on the SIFx  
channel*)  
limited if charge  
pump is used;  
Applies for ISIFx_Q  
=4...-19mA  
tSYNC_REP2_std  
200  
(standard cur-  
rent)  
12 Sync pulses repetition time on the SIFx  
channel*)  
limited if charge  
pump is used;  
Applies for ISIFx_Q  
=4...-35mA  
tSYNC_REP2_ext  
300  
μs  
(extended cur-  
rent)  
13 Pull down resistor pin TRIG, applies for  
voltage VTRIG<3.3V  
RTRIG_PULL_DOWN  
ITRIG_PULL_DOWN  
70  
10  
100  
150  
60  
kΩ  
14 Pull down current pin TRIG, applies for  
voltage VTRIG>3.3V  
*) Not tested in production  
μA  
5.1.4 CLOCK GENERATION  
Table 5.1.4-1: Electrical Parameter Table of the Internal Oscillator  
No.  
1
Description  
Internal oscillator clock frequency1)  
Condition  
Symbol  
fCLK_INT  
Min  
Typ  
Max Unit  
11.52 12.00 12.48 MHz  
*)  
2
Duty cycle of fCLK_INT  
DCCLK_INT  
40  
60  
%
*) Not tested in production  
1) trimmed  
5.1.5 DIAGNOSIS  
5.1.5.1 ADC Voltage Measurements  
Table 5.1.5.1-1: Electrical Parameter Table of the ADC.  
No.  
1
Description  
Condition  
Symbol  
VREFH  
Min  
2.6  
Typ  
Max Unit  
Positive reference voltage  
2.7  
2.75  
250  
V
2
Offset measurement of VBUS diagnosis  
voltage of ADC output  
VBUS=4.6V .. 11V  
VBUS=4.6V .. 11V  
VCSYNC=8V .. 33V  
VCSYNC=8V .. 33V  
VBUS_Offset  
-450  
mV  
3
4
5
Gain measurement of VBUS diagnosis  
voltage of ADC output  
VBUS_Gain  
VCSYNC_Offset  
VCSYNC_Gain  
0.94  
-1.8  
0.85  
1
1
1.06  
1.4  
VBUS  
V
Offset measurement of VCSYNC diagnosis  
voltage of ADC output  
Gain measurement of VCSYNC diagnosis  
voltage of ADC output  
1.15 VCSYNC  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
20 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
No.  
Description  
Condition  
Symbol  
Min  
Typ  
Max Unit  
6
Offset measurement of VDD diagnosis  
voltage of ADC output  
VDD=3.0V ..  
5.5V  
VDDOffset  
-400  
200  
mV  
7
8
9
Gain measurement of VDD diagnosis  
voltage of ADC output  
VDD=3.0V ..  
5.5V  
VDDGain  
VSIFX_Offset  
VSIFX_Gain  
VCP_LDO  
VCP_LDO  
VCP_LDO  
VDD_INT  
0.93  
-450  
0.94  
1
1.07 VDD  
Offset measurement of VSIFX diagnosis  
voltage of ADC output  
VBUS=4.6V .. 11V  
250  
mV  
VBUS  
V
Gain measurement of VSIFX diagnosis  
voltage of ADC output  
VBUS=4.6V .. 11V  
1
1.06  
10 Measurement of VCP_LDO diagnosis voltage VSUPPPLY=5.3V,VB  
of ADC output US=7V  
11 Measurement of VCP_LDO diagnosis voltage VSUPPPLY=6.95V,V  
of ADC output BUS=7V  
12 Measurement of VCP_LDO diagnosis voltage VSUPPPLY=8V,VBUS  
of ADC output =7V  
10.2 12.2 14.2  
12.2 14.2 16.2  
13.2 15.2 17.2  
V
V
13 Measurement of VDD_INT diagnosis voltage VDD=3.3V  
of ADC output  
3.0  
3.0  
3.2  
3.2  
3.4  
3.4  
V
14 Measurement of VDD_INT diagnosis voltage VDD=5V  
of ADC output  
VDD_INT  
V
5.1.5.2 Over Temperature Monitoring (OT)  
Table 5.1.5.2-1: Electrical Parameter Table of the Over temperature Sensing:  
No.  
Description  
Condition  
Symbol  
Min  
Typ  
Max Unit  
1
Junction temperature threshold value; low-  
>high transition*)  
TJ_HI  
154  
165  
174  
°C  
2
Junction temperature threshold value; high-  
>low transition*)  
TJ_LI  
145  
155  
165  
°C  
3
4
Junction temperature hysteresis*)  
TJ_HYS  
tOT  
10  
°C  
Over temperature filter time (deglitcher)*)  
8.1  
ms  
*) Not tested in production  
5.1.5.3 VBUS Over Voltage Monitoring  
Table 5.1.5.3-1: VBUS over voltage monitoring  
No.  
Description  
Condition  
Symbol  
Min  
Typ  
Max Unit  
1
VBUS over voltage comparator - threshold  
value  
VBUS_OV_THR  
11.8  
13  
V
2
3
VBUS over voltage comparator - hysteresis*)  
VBUS over voltage filter time (deglitcher)*)  
VBUS_OV_HYS  
tVBUS_OV  
0.5  
61  
V
96  
100  
μs  
*) Not tested in production  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
21 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
5.2 DIGITAL PART  
5.2.1 SPI  
5.2.1.1 DC Electrical Parameter Table of SPI IOs  
Table 5.2.1.1-1: DC Electrical Parameter Table of the Digital Inputs and Outputs  
No.  
1
Description  
Condition  
Symbol  
VTHDIG_L  
Min  
Typ  
Max Unit  
Input threshold low SDI_RXD, NCS,SCLK  
Input threshold high SDI_RXD, NCS,SCLK  
Output voltage SDO_TXD low  
0.8  
V
2
VTHDIG_H  
2
V
V
V
3
ISDO_TXD_L=3.2mA  
ISDO_TXD_H=-2mA  
VSDO_TXD_L  
VSDO_TXD_H  
0.4  
VDD  
4
Output voltage SDO_TXD high  
VDD-  
0.4V  
5
6
Pull Up resistor NCS  
Pull Up resistor RXD  
RNCS_PULL_UP  
70  
100  
100  
130  
130  
k
Ω
Ω
RSDO_RXD_PULL_UP 70  
k
5.2.1.2 AC Electrical Parameter Table of SPI I/Os  
Table 5.2.1.2-1: Electrical Parameter Table of SPI  
No.  
1
Description  
Condition  
Symbol  
fSCLK  
Min  
0
Typ  
Max Unit  
SPI frequency*)  
5
MHz  
ns  
2
SDO_TXD rise and fall time*)  
20pF...150pF  
load  
tsdo_trans  
5
35  
3
4
5
Minimum time CLK=LOW*)  
Minimum time CLK=HIGH*)  
tclh  
tcll  
75  
75  
ns  
ns  
ns  
Propagation delay (SCLK to data at SDO 150pF load; from  
active)*)  
tpcld  
50  
75  
SCLK=2.3V to  
SDO=0.5*VDD_SUP  
, applies for  
3.3V/5V;  
6
7
NCS low to output SDO active*)  
150pF load  
tcsdv  
tsclch  
ns  
ns  
SCLK low before NCS low (setup time  
SCLK to NCS change H/L)*)  
75  
8
9
SCLK change L/H after NCS=low*)  
thclcl_app  
tscld  
600  
15  
ns  
ns  
SDI input setup time (SCLK change H/L  
after SDI data valid)*)  
10 SDI input hold time (SDI data holdafter  
SCLK change H/L)*)  
thcld  
15  
ns  
11 SCLK low before NCS high*)  
12 SCLK high after NCS high*)  
13 NCS L/H to SDO@high impedance*)  
tsclcl  
thclhc  
tpchdz  
ton_NCS  
100  
100  
ns  
ns  
ns  
ns  
75  
40  
14 NCS min. high time between two consecut-  
ive commands*)  
15 NCS filter time*)  
*) Not tested in production  
700  
10  
tfNCS  
ns  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
22 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6 Functional Description  
6.1 ANALOG PART  
6.1.1 SUPPLY  
Various supply voltage concepts are supported by the device due to the various possible applications. The device  
is supplied via the pin VSUPPLY with an appropriate voltage. This voltage supplies an external transistor that is driven  
by an internal LDO via the pin VG. The output of the external transistor is fed back via the pin VBUS to the LDO con-  
trol block.  
If an external NMOS transistor is used, the internal error amplifier has to be compensated with an external com-  
pensation capacitor CK connected between VG and AGND. For low supply voltages VBUS on the ECU, the ASIC can  
be supplied directly at pin VBUS with the voltage provided by VSUPPLY, when no voltage drop between the pins VSUP-  
PLY and VBUS can be accepted. In this case the LDO must be disabled.  
The voltage VCSYNC , which is necessary for providing the sync pulse is generated in the block CHARGE PUMP  
FOR SYNC VOLTAGE (CP). The voltage VCSYNC is available at the pin CSYNC. Alternatively, the CSYNC voltage  
can be supplied directly at the pin CSYNC with external voltage VCSYNC. The VCSYNC charge pump must be disabled  
in this case. The following table gives an overview of possible supply voltage concepts, which can be chosen via  
SPI or UART commands.  
Table 6.1.1-1: Overview Supply Voltage Concepts  
Config  
Options  
VDD  
VSUPPLY  
VBUS  
VCSYNC  
LDO CP  
enabled enabled  
A
B
C
D
VDD supplied  
directly  
VSUPPLY  
supplied directly  
Generated by LDO Generated by  
charge pump  
YES  
YES  
NO  
YES  
NO  
VDD supplied  
directly  
VSUPPLY  
supplied directly  
Generated by LDO VSYNC supplied  
from ECU  
VDD supplied  
directly  
N.A.  
VBUS supplied dir-  
ectly  
Generated by  
charge pump  
YES  
NO  
VDD supplied  
directly  
N.A.  
VBUS supplied dir-  
ectly  
VSYNC supplied  
from ECU  
NO  
6.1.1.1 LDO Control Block  
A low drop out regulator (LDO) with external NMOS and compensation capacitor CK is implemented to generate a  
stable VBUS voltage out of the input voltage VSUPPLY. A LDO control circuit is implemented to drive the external NMOS  
transistor. Three voltage levels for VBUS are configurable via bit combination ASIC_CNFG_1[V_BUS] (see descrip-  
tion of register ASIC_CNFG_1 for details). The LDO control circuit is disabled by default value  
ASIC_CNFG_1[V_BUS]="00". The voltage loop has be to compensated with an external compensation capacitor  
CK at pin VG for stability reasons. The LDO charge pump provides an appropriate voltage VCP_GATE for control of the  
external NMOS transistor at pin VG. A gate source voltage clamping to the voltage VGS_CLMP is implemented.  
6.1.1.2 Charge Pump for Sync Voltage  
A charge pump is used to generate the SYNC pulse voltage from the voltage VBUS. The charge pump consists of  
two external capacitors, the fly capacitor CP connected to pins CP1 and CP2, the storage capacitor CSYNC con-  
nected to pin CSYNC, two diodes and two high voltage switches inside the IC. The charge pump is configurable via  
bit ASIC_CNFG_3[EN_CP_SYNC] (see description of register ASIC_CNFG_3).  
EN_CP_SYNC='0' means disabled  
EN_CP_SYNC='1' means enabled  
The charge pump circuit is disabled for the asynchronous mode. If the charge pump is not used, then it is not  
allowed to connect the pin CSYNC with ground. The diode path from VBUS to CSYNC will result in high current and  
destruction of IC.  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
23 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.1.2 POR AND POWER-UP SEQUENCE  
The POR-block observes the voltages VDD_INT, VANA, NRES, VAGND and VPGND. It generates the POR-signal. During  
the power up time, the following actions take place:  
The voltage regulators VDD_INT and VANA provide the voltage VDD_INT and VANA  
The bandgap/biasing block provides the voltage VBG and the bias  
The internal oscillator starts up and provides a stable clock frequency for the digital part After power-up time, the  
rising edge of the NRES determines the interface mode (SPI/UART), depending on the state of the pin NCS.  
When NCS is LOW the UART interface is selected. When NCS is HIGH the SPI is chosen. During the power up  
time is not allowed to change the logic level of NRES.  
6.1.3 PSI5 INTERFACE  
6.1.3.1 Interface Driver  
Each of the four interfaces provide a voltage VSIFx and a current ISIFx for the connected satellite sensors by "switch-  
ing" voltage VBUS to the pin SIFx via internal transistor switches and shunt. The interfaces are short-circuit protected  
to VBAT and GND. The four interfaces operate independent from each other. The interfaces can be en-/disabled via  
an UART/SPI command with the bits EN_CHx , described in register ASIC_CNFG_3. The default state of the inter-  
face is disabled. The current sensing block includes an IBASE tracking function and the DATA-comparator.  
Any time a channel is enable by [EN_CHx], a blanking time is started. During this delay time tSIFx_BLANKING, the  
Manchester decoder, SYNC pulse generator and overcurrent filter time tOC_SIFx are disabled.  
No channel enable possible if following error bits are set to '1':  
- ERROR_STATUS_1[VBUS_OV]  
- ERROR_STATUS_x[REV_CUR_CHx] if REV_CUR_CH_DIS='1'  
- ERROR_STATUS_x[OC_CHx]  
- ERROR_STATUS_1[DIAG_OT]  
6.1.3.2 Over Current Detection and Limitation  
The circuit provides an over current limitation and protection of the interfaces. The current limitation for ISIFx is imple-  
mented with a voltage measurement over the shunt resistor RSH and with the control of the transistor T2. If the cur-  
rent ISIFx exceeds the threshold current ILMT_SIFx, the comparator output signal isifx_oc_det is set to high. This signal is  
filtered in the digital block by a deglitcher with the filter time tSIFX_LIM_act, latched in the register  
ERROR_STATUS_x[OC_CHx] and the appropriate channel is disabled ,that means the affected EN_CHx bits are  
reset by the device automatically. To switch on the channel again it is essential to read out the appropriate error  
register ("clear on read"). To ensure proper over current detection, the threshold value for overcurrent limitation is  
higher than the over current detection threshold.  
In order to avoid over current switch off during start up (enable of channels), a blanking time of tOC_SIFX_5ms resp.  
tOC_SIFX_10ms is implemented. During this time the over current switch off is disabled. The blanking time can be pro-  
grammed in the Register ASIC_CONFG_3 BL_ChannelX.  
6.1.3.3 Reverse Current Detection and Limitation  
The IC provides two different paths of the reverse current protection:  
from pin SIFx to pin VBUS  
from pin SIFx to pin CSYNC  
6.1.3.3.1 Reverse Current Flow from SIFx to VBUS  
The circuit provides the reverse current detection from SIFx pin to VBUS pin. The reverse current detection is  
implemented with a voltage measurement over the shunt resistor RSH (like described in the chapter Over current  
Detection). If a reverse current is detected the comparator output signal will be set to high. The signal will be  
deglitched and latched in the register ERROR_STATUS_x[REV_CUR_CHx]. The affected channel will be disabled  
if configuration bit ASIC_CNFG_2 [REV_CUR_CH_DIS] is set to high and the affected EN_CHx bits are reset by  
the device automatically.  
To switch on the channel again it is essential to read out the appropriate error register ("clear on read").  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
24 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.1.3.3.2 Reverse Current Flow from SIFx to CSYNC  
The circuit provides the reverse current detection from pin SIFx to pin CSYNC. The reverse current detection is  
implemented with a MOS-transistor. The reverse current protection circuit stops the reverse current from SIFx pin  
to CSYNC pin when SIFx becomes higher then CSYNC.  
6.1.3.4 Quiescent Current Threshold Tracking  
The quiescent current of the circuit is measured and adapted continously during during operation, to avoid corrup-  
ted data transmission because of drift or aging processes.  
6.1.3.5 Data Comparator  
The satellite sensors modulate the current in order to realize a Manchester coded data transmission.  
The "low" level of the current is represented by the quiescent current ISAT_Q_range of the sensor, while a "high" level is  
created by switching on a current sink to the line, which increases the current to ISAT_OP  
.
A current transition in the middle of the bit time represents the logical value of the transferred data. A "high cur-  
rent-low current" transition stand for a logical '1', a "low current-high current" transition for a logical '0'.  
This current can be detected by measuring the voltage drop via an internal shunt. The current threshold is automat-  
ically adapted to the quiescent current of the sensors.  
The threshold value is configured with register ASIC_CNFG_1[ΔIs_CHx] with 1bit per SIFx (changed individually).  
The default value is Is='0' (common mode). Is='1' means the threshold value for low power mode is choosen  
(see register description of ASIC_CNFG1).  
ISAT  
BIT1  
“0”  
BIT2  
“1”  
BIT3  
“1”  
ISAT_OP  
I
ISAT_TH  
ISAT_Q_range  
t
TBit  
Figure 6.1.3.5-1: Current Modulation  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
25 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.1.3.6 Sync Pulse Generation  
For PSI5 synchronous mode, the IC generates the SYNC pulse to synchronize the sensors. During SYNC pulse  
the voltage level at pins SIFx will be increased for a defined time and then decreased before the sensor to ECU  
communication (current modulation) starts. The SYNC pulse is shaped to limit emissions. The SYNC voltage is  
either generated by SYNC pulse charge pump or supplied from external via pin CSYNC.  
The voltage level Vt3 is configured with the register ASIC_CNFG_1[VSYNC_V3_CHx] with 1 bit per SIFx (channel  
individually).  
The IC provide a reverse protection for the short circuit to the battery at the interfaces and current limitation of the  
SYNC pulse. The current limitation is active during SYNC sustain time only. The current limitation is disabled during  
rising/falling slope to guarantee slope at max. load.  
There are two ways to generate an event triggered SYNC pulse:  
by trigger voltage pulse at pin TRIG  
by UART/SPI command  
Long sync pulse [1]  
Short sync pulse [0]  
Phase  
1
Sync  
Start  
Phase  
2
Sync  
Slope  
Phase  
3
Sync  
Sustain  
Phase  
4
Sync  
Discharge  
VCE max  
Upper Boundary  
Vt3  
Vt2  
Lower Boundary  
VTRIG  
Vt0  
VCE Base  
t1  
t14  
t13  
t0  
t04  
t03  
t2  
Trigger  
Point  
Figure 6.1.3.6-1: Sync Pulse Timing Diagram  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
26 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.1.3.7 Sync Pulse Generation by Pin TRIG  
Following diagram shows the timing requirements for the trigger voltage pulse at pin TRIG with:  
high time ttrig_sh_pulse for a short SYNC pulse  
high time ttrig_lo_pulse for a long SYNC pulse  
Example: long SYNC pulse  
70%  
VTRIG  
(Pin TRIG)  
30%  
ttrig_lo_pulse  
i_trig  
tDGL_itrig  
tDGL_itrig  
i_trig_f  
long pulse (t13 + t1)  
SYNC_time  
tSYNC_DLY  
ATIC158  
timer  
SYNC_DLY  
VSIFx  
t
(
tDGL_itrig + 1/fCLK)  
Figure 6.1.3.7-1: Long SYNC Pulse Trigger via Pin TRIG  
Example: short SYNC pulse  
70%  
VTRIG  
(Pin TRIG)  
30%  
ttrig_sh_pulse  
i_trig  
tDGL_itrig  
tDGL_itrig  
i_trig_f  
tSYNC_DLY  
short pulse (t03 + t1)  
SYNC_time  
ATIC158  
timer  
SYNC_DLY  
VSIFx  
t
(
tDGL_itrig + 1/fCLK)  
Figure 6.1.3.7-2: Short SYNC Pulse Trigger via Pin TRIG  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
27 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.1.3.8 Sync Pulse Generation by UART/SPI Command  
Following timing diagrams show the SYNC pulse generation triggered by a UART or SPI command.  
syncronizer  
1/(fCLK_EXT) + 4/(fCLK_INT  
)
Srt D0 …. D7  
P
Stp  
UART  
long pulse (t13 + t1)  
short pulse (t03 + t1)  
tSYNC_DLY  
ATIC158  
timer  
SYNC_DLY  
SYNC_time  
VSIFx  
Figure 6.1.3.8-1: Short SYNC Ptrigger via UART  
3*1/(fCLK_INT  
)
SPI NCS  
SPI  
...SYNC_PULSE  
long pulse (t13 + t1)  
short pulse (t03 + t1)  
tSYNC_DLY  
ATIC158  
timer  
SYNC_DLY  
SYNC_time  
VSIFx  
Figure 6.1.3.8-2: Short SYNC Pulse Trigger via SPI  
6.1.4 CLOCK GENERATION  
The internal oscillator is the central clock source for the digital part and provides the clock signal required for the  
internal charge pumps. The oscillator starts up automatically as soon as VDD_INT and VANA are stable.  
An external clock has to be supplied via pin SCLK for UART communication. The ratio between external clock and  
UART baud rate is 5/1 ( = 5 times oversampling for UART telegrams on SDI_RXD).  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
28 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.1.5 DIAGNOSIS  
6.1.5.1 ADC Voltage Measurements  
Several voltage levels can be measured by the ASIC with an analog-digital converter for diagnostic purposes. The  
digital values will be written into status registers after conversion. These registers can be read out by the micro con-  
troller via UART/SPI.  
An 8-bit ADC (Successive Approximation Register concept) is implemented for diagnosis purposes. In total 9  
internal voltages are measured sequentially in a repeating (endless) loop. The measurement of one voltage is  
called a cycle.  
Steps within a cycle:  
Voltage is selected via MUX  
ADC conversion is performed  
Data is transferred into register DIAGNOSIS_ADC_1_2 to DIAGNOSIS_ADC_9_10  
One sequence is performed within tCYC. Each measured voltage is stored in a dedicated register. The update rate of  
the register values is given by number of voltages multiplied with cycle time -> 9 x tCYC.The ADC sequence starts  
with release of reset automatically. For synchronous mode the values at "pin SIFx" can vary between VSIFx and Vt3,  
depending whether a SYNC pulse was generated during conversion time or not. For asynchronous mode the  
voltage at pin SIFx is measured properly.  
The following table shows the voltage divider ratio of the different voltages.  
Table 6.1.5.1-1: Voltage Divider Ratio  
Voltage  
VBUS  
Divider ratio  
1/5  
1/13  
1/7  
1/5  
1/2  
1/3  
VSYNC  
VCP_GATE  
VSIFx  
VDD_INT  
VDD  
6.1.5.2 Over Temperature Monitoring (OT)  
chThe junction temperature is monitored with a temperature sensor to detect excessive temperature levels. If the  
junction temperature exceeds TJ_HI then following protection actions will be processed automatically:  
All SIFx will be disabled -> reset bit ASIC_CNFG_3[EN_CHx]='0'  
The affected EN_CHx bits are reset by the device automatically. To switch on the channel again it is essential to  
read out the appropriate error register ("clear on read").  
SYNC pulse charge pump will be disabled -> reset bit ASIC_CNFG_3[EN_CP_SYNC]='0'  
over temperature event is latched in status register ERROR_STATUS_1[DIAG_OT] after tOT (clear on read)  
With read of ERROR_STATUS_1[DIAG_OT], the filter timer for tOT is reseted (deglitcher reset), independently of  
the current error status.  
If the read cycle of ERROR_STATUS_1[DIAG_OT] is shorter than tOT, the ERROR_STATUS_1[DIAG_OT] bit  
will never be set.  
The channel will not be enabled automatically, if the error condition disappears.  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
29 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.1.5.3 VBUS Over Voltage Monitoring  
A comparator for VBUS over voltage monitoring is implemented to avoid any damage of PSI5 sensors by exceeding  
their input voltage range.  
If VBUS exceeds the value of VBUS_OV_THR then following protection actions are processed automatically:  
All SIFx will be disabled -> reset bit ASIC_CNFG_3[EN_CHx]='0'  
The affected EN_CHx bits are reset by the device automatically. To switch on the channel again it is essential to  
read out the appropriate error register ("clear on read").  
SYNC pulse charge pump will be disabled -> reset bit ASIC_CNFG_3[EN_CP_SYNC]='0'  
The over voltage event is latched in status register ERROR_STATUS_1[VBUS_OV] after tVBUS_OV (clear on read)  
With read of ERROR_STATUS_1[VBUS_OV], the filter timer for tVBUS_OV is reseted (deglitcher reset), independ-  
ently of the current error status.  
If the read cycle of ERROR_STATUS_1[VBUS_OV] is shorter than tVBUS_OV, the ERROR_STATUS_1[VBUS_OV]  
bit will never be set.  
The channel will not be enabled automatically, if the error condition disappears.  
6.1.5.4 Leakage to GND, Leakage to VBAT and Open Load  
The detection of leakage To GND, leakage to VBAT and open load are implemented in the digital logic, based on  
the Ibase tracking function.  
The digital counter for IBASE indicates a leakage to GND for high counter values (high quiescent current) and the  
actual state is latched in status register ERROR_STATUS_x[DIAG_CHx].  
For low counter values either a leakage to VBAT or an open load condition is indicated (low or no quiescent curret).  
The actual state is latched in status register ERROR_STATUS_x[DIAG_CHx].  
The differentiation of leakage to VBAT / open load failure has to be done by the micro controller  
via the status of reverse current protection ERROR_STATUS_x[REV_CUR_CHx]  
Reverse current protection not active [REV_CUR_CHx]='0' -> Open Load  
Reverse current protection active [REV_CUR_CHx]='1' -> Leakage to VBAT or via ADC voltage measurement at  
pins SIFx (if flag [REV_CUR_CHx]='0'),  
VSIFx = VBUS -> Open Load  
VSIFx > VBUS -> Leakage to VBAT  
6.1.5.5 GND Loss Detection  
A comparator for GND loss detection is implemented to detect missing GND connections.  
A detected GND loss results in a reset of the IC.  
Following GNDs will be monitored:  
AGND  
PGND  
6.1.5.6 Transfer of Error- and Diagnosis Information to Controller  
6.1.5.6.1 Error Information  
All error analog/digital information are flagged in status registers ERROR_STATUS_1 ... ERROR_STATUS _10.  
Every error is latched and is cleared by a read request by SPI or UART.  
An overall error information is transmitted to the micro controller, included in some frames (see below) within bits  
Err[1:0]. For detailed error information the dedicated status registers shall be read.  
UART: Bits Err[1:0] included in header (UART frame1)  
SPI: Bits Err[1:0] included in the first response frame (SPI frame2)  
The error information, bits Err[1:0], are transmitted in following messages to the micro controller:  
UART  
Response to Read Command  
Transfer PSI5 Data  
SPI  
Responses to commands "cmd_get data_xxbit"  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
30 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
These responses allows the μController to know which kind of an error occurred.  
(All interface errors, shown in the table below, are flagged in registers ERROR_STATUS_3 to  
ERROR_STATUS_10.  
Register ERROR_STATUS_2 includes an OR-combination of all interface errors, one bit per channel.  
E.g. ERROR_STATUS_2[0] includes the OR-combination of bits in registers ERROR_STATUS_3 and  
ERROR_STATUS_4 (=error information of channel 1).)  
For detailed information see register table.  
Note:  
It is recommended to read out register ERROR_STATUS_2 if bit Err[0] (interface error) is set in a response of the  
transceiver to determine which channels are affected. In register ERROR_STATUS_2 the four LSBs [3:0] belongs  
to channel 4, channel 3, channel 2 and channel 1 and the appropriate channel bit is set in case of an interface error  
on the affected channel.  
Afterwards the micro controller shall read the dedicated registers ERROR_STATUS_3 .. ERROR_STATUS_10  
(depend of the affected channels) to get the detailed error information. There are two detailed error registers avail-  
able per channel.  
If bit Err[1] (asic error) is set in a message to the micro controller register ERROR_STATUS_1 shall be read for  
more information.  
It is not recommended to read out the appropriate ERROR_STATUS_X with a cycle time of less than 9ms.  
Table 6.1.5.6.1-1: Overview of Possible Error Information  
TYPE OF ERROR  
ASIC  
INTERFACE  
FRAME 1-6  
ERROR STATUS REGISTER  
ERROR BIT FLAG  
CH1-CH4  
UART parity error. x  
ASIC  
ERROR_STATUS_1[0]  
Err[1]  
UART framing  
error (invalid stop  
bit).  
x
ERROR_STATUS_1[1]  
Err[1]  
ASIC  
UART/SPI invalid  
command  
received. ASIC  
x
ERROR_STATUS_1[2]  
Err[1]  
UART/SPI colli-  
sion. ASIC  
x
x
x
x
ERROR_STATUS_1[3]  
ERROR_STATUS_1[4]  
ERROR_STATUS_1[5]  
ERROR_STATUS_1[6]  
Err[1]  
Err[1]  
Err[1]  
Err[1]  
SPI clock error.  
ASIC  
over temperature  
shut down. ASIC  
VBUS overvoltage.  
ASIC  
MCD CRC/Parity  
Error. Interface  
x
x
Ch1: ERROR_STATUS_3[0]/[4]/[8]/[12], Ch1: ERROR_  
ERROR_STATUS_4[0]/[4] STATUS_2[0]  
Ch2: ERROR_STATUS_5[0]/[4]/[8]/[12], Ch2: ERROR_  
ERROR_STATUS_6[0]/[4] STATUS_2[1]  
Ch3: ERROR_STATUS_7[0]/[4]/[8]/[12], Ch3: ERROR_  
ERROR_STATUS_8[0]/[4] STATUS_2[2]  
Ch4: ERROR_STATUS_9[0]/[4]/[8]/[12], Ch4: ERROR_  
ERROR_STATUS_10[0]/[4] STATUS_2[3]  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
31 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
TYPE OF ERROR  
ASIC  
INTERFACE  
CH1-CH4  
FRAME 1-6  
ERROR STATUS REGISTER  
ERROR BIT FLAG  
MD framing error  
(frame too  
x
x
Ch1: ERROR_STATUS_3[1]/[5]/[9]/[13], Ch1: ERROR_  
ERROR_STATUS_4[1]/[5] STATUS_2[0]  
Ch2: ERROR_STATUS_5[1]/[5]/[9]/[13], Ch2: ERROR_  
ERROR_STATUS_6[1]/[5] STATUS_2[1]  
Ch3: ERROR_STATUS_7[1]/[5]/[9]/[13], Ch3: ERROR_  
ERROR_STATUS_8[1]/[5] STATUS_2[2]  
Ch4: ERROR_STATUS_9[1]/[5]/[9]/[13], Ch4: ERROR_  
ERROR_STATUS_10[1]/[5] STATUS_2[3]  
Ch1: ERROR_STATUS_3[2]/[6]/[10]/[14], Ch1: ERROR_  
ERROR_STATUS_4[2]/[6] STATUS_2[0]  
Ch2: ERROR_STATUS_5[2]/[6]/[10]/[14], Ch2: ERROR_  
ERROR_STATUS_6[2]/[6] STATUS_2[1]  
Ch3: ERROR_STATUS_7[2]/[6]/[10]/[14], Ch3: ERROR_  
ERROR_STATUS_8[2]/[6] STATUS_2[2]  
Ch4: ERROR_STATUS_9[2]/[6]/[10]/[14], Ch4: ERROR_  
ERROR_STATUS_10[2]/[6] STATUS_2[3]  
Ch1: ERROR_STATUS_3[3]/[7]/[11]/[15], Ch1: ERROR_  
ERROR_STATUS_4[3]/[7] STATUS_2[0]  
Ch2: ERROR_STATUS_5[3]/[7]/[11]/[15, Ch2: ERROR_  
ERROR_STATUS_6[3]/[7] STATUS_2[1]  
Ch3: ERROR_STATUS_7[3]/[7]/[11]/[15, Ch3: ERROR_  
ERROR_STATUS_8[3]/[7] STATUS_2[2]  
Ch4: ERROR_STATUS_9[3]/[7]/[11]/[15, Ch4: ERROR_  
long(short, MC  
code violation,  
compensation win-  
dow violation).  
Interface  
MD no frame  
received. Interface  
x
x
x
x
x
x
MD unexpected  
frame. Interface  
x
ERROR_STATUS_10[3]/[7]  
STATUS_2[3]  
Diagnosis: leakage  
to GND / VBAT.  
Interface  
Ch1: ERROR_STATUS_4[9:8]  
Ch2:  
ERROR_STATUS_6[9:8]  
Ch3:  
ERROR_STATUS_8[9:8]  
Ch4:  
ERROR_STATUS_10[9:8]  
Ch1: ERROR_  
STATUS_2[0]  
Ch2: ERROR_  
STATUS_2[1]  
Ch3: ERROR_  
STATUS_2[2]  
Ch4: ERROR_  
STATUS_2[3]  
overcurrent. Inter-  
face  
Ch1: ERROR_STATUS_4[10]  
Ch2:  
ERROR_STATUS_6[10]  
Ch3:  
ERROR_STATUS_8[10]  
Ch4:  
ERROR_STATUS_10[10]  
Ch1: ERROR_  
STATUS_2[0]  
Ch2: ERROR_  
STATUS_2[1]  
Ch3: ERROR_  
STATUS_2[2]  
Ch4: ERROR_  
STATUS_2[3]  
Data buffer config-  
uration error  
(width=96bit).  
Interface  
Ch1: ERROR_STATUS_4[11]  
Ch2:  
ERROR_STATUS_6[11]  
Ch3:  
ERROR_STATUS_8[11]  
Ch4:  
ERROR_STATUS_10[11]  
Ch1: ERROR_  
STATUS_2[0]  
Ch2: ERROR_  
STATUS_2[1]  
Ch3: ERROR_  
STATUS_2[2]  
Ch4: ERROR_  
STATUS_2[3]  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
32 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
TYPE OF ERROR  
ASIC  
INTERFACE  
CH1-CH4  
FRAME 1-6  
ERROR STATUS REGISTER  
ERROR BIT FLAG  
Reverse current.  
Interface  
x
Ch1: ERROR_STATUS_4[12]  
Ch2:  
ERROR_STATUS_6[12]  
Ch3:  
ERROR_STATUS_8[12]  
Ch4:  
ERROR_STATUS_10[12]  
Ch1: ERROR_  
STATUS_2[0]  
Ch2: ERROR_  
STATUS_2[1]  
Ch3: ERROR_  
STATUS_2[2]  
Ch4: ERROR_  
STATUS_2[3]  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
33 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.2 DIGITAL PART  
6.2.1 COMMUNICATION INTERFACE TO MICRO CONTROLLER  
As interface to the micro controller, either an UART or SPI interface can be selected. The pins for both interfaces  
are shared.  
The interface is configurable from μC  
with rising edge of NRES the UART / SPI interface is latched  
depending on state of pin NCS either UART or SPI is selected  
NCS = low means UART  
NCS = high means SPI  
Following pins are used for UART communication:  
SDI_RXD  
SDO_TXD  
SCLK  
Following pins are used for SPI communication:  
SDI_RXD  
SDO_TXD  
SCLK  
NCS  
6.2.2 MANCHESTER DECODER  
The manchester decoder is compliant to PSI5 1.3 and 2.1. The following interface diagnosis features are suppor-  
ted:  
wrong data rate  
wrong start bit combination  
wrong number of data bits  
CRC or parity failure  
wrong interframe time  
no or unexpected frame  
6.2.2.1 Manchester Data Handling and Buffer Architecture  
For each channel are a MCD_data_buffer with a width of 36bits and a data_buffer with a width of 96bits  
implemented.  
Data_buffer (96bit) is used in different configurations for UART / SPI mode (see figure below).  
Data_buffer and MCD_data_buffer will be set to default bit value = '1' if the channel is disabled.  
Disabled either by writing bits ASIC_CNFG_3[EN_CHx] via UART/SPI Write_Register command or  
by automatically switch-off in an error condition (e.g. over current error).  
Channel4  
Channel3  
Channel2  
Channel1  
MCD  
(manchester  
decoder )  
bitupload  
(withendof  
decodedbit )  
MCD_  
data_buffer  
PSI5 DataFrame  
(fromsensor)  
parallel upload  
(endofvalidframe )  
data_buffer  
width =96bit  
width =36bit  
Figure 6.2.2.1-1: Buffer Architecture Overview  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
34 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.2.2.1.1 UART DATA BUFFER  
UART buffer behavior:  
One frame will be stored  
Data will be filled up starting at bit0 (LSB) of buffer  
Empty bits will be filled up with default bit value = '1' ('1' not used as frame ID)  
Min data length = Fid0...Fid2 + Err0...Err1 + D0...D7 + parity;  
Max data length = Fid0...Fid2 + Err0...Err1 + D0...D27 + CRC;  
Σ
= 14bit  
= 36bit  
Σ
'''With an appropriate UART baud rate, the IC transmits the data to the  
overwriting.'''  
μ
Controller without any  
S1 S2  
D0 ...Dn  
CRC/PAR  
PSI5 Data Frame  
(from sensor)  
MCD shall...  
-removestartbits  
- addframeidentifier Fid [0:2]  
- adderror bitsErr [0:1]  
Manchester decoder  
MCD_data_buffer  
Fid [0..2] Err [0..1]  
D0 ...Dn  
CRC/PAR  
parallel uploadwithvalidstop  
conditionofMCD  
(endof validframe )  
LSB  
MSB  
data_buffer –  
UART configuration  
0
data  
13...35  
14...36  
default = ’1'  
95  
Figure 6.2.2.1.1-1: UART Data Buffer  
6.2.2.1.2 SPI DATA BUFFER  
SPI data buffer behavior:  
MCD_data_buffer has a length of 36bit; only the configured nb of bits (according TSx_FLEN) + Err[0:1] + Fid[0:2]  
are uploaded into SPI_data_buffer; the remaining bits of MCD_data_buffer are filled up (stuffed) with '1'. A spe-  
cial case occurs for SPI_BUFFER_CONFIG =0b00 (48bit): after upload of MCD_data_buffer, bits [0:35] includes  
data + stuffing '1', whereas bits [36:47] are stuffed with '0' (described as don't care bits in Figure Figure 6.2.3.9.4-  
1). This doesn't matters for other SPI_BUFFER_CONFIG configuration as buffer length is smaller than  
MCD_data_buffer length.  
The data_buffer has to be configured during IC start up, by bits CHx_CFG7[SPI_BUFFER_CONFIG]. The buffer  
is divided in blocks with equal number of bits.  
Data will be filled up starting at LSB of every individual block  
Unused buffer identifiers (BID[x]) are filled up with value = '1' (per default). A read request will result in  
μC can detect that no data were written into this block (wrong BID[x] was  
Frame identifier - Fid[2:0] ='111'->  
read).  
Error Bits - Err[1:0] = '11' -> μC has to discard (default values instead of error information)  
It's mandatory to read block wise via commands SPI_Get_Data_xxb according the appropriate buffer  
configuration. This means for SPI_BUFFER_CONFIG="11" the command SPI_Get_Data_16b is mandat-  
ory.  
After reading, all bits per block will be filled up with default bit value = '1'  
During transfer from MCD_data_buffer to data_buffer, an error is flagged in ERROR_STATUS_4/6/8/10[11] =  
BUFF_ERR_CHx if number of bits(MCD_data_buffer) > number of bits per BID. In this case no data is trans-  
ferred.  
The data_buffer is completely erased (filled up with default value ='1') if a channel is disabled, e.g. by  
ASIC_CNFG_3[EN_CHx]='0', VBUS overvoltage, overtemperature or overcurrent shut down.  
The number of PSI5 data bits (payload) per buffer identifier (BID) is shown in the table below for all configurations.  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
35 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Figure 6.2.2.1.2-1: SPI Data Buffer  
If number of frames higher than number of configured buffers (Fid > BID):  
A buffer has to be used for several frames  
Controller has to ensure to read buffer data before new data is loaded, otherwise it's overwritten.  
μ
Following example shows buffer configuration CHx_CFG7[SPI_BUFFER_CONFIG]=0b01 with 4 identical PSI5  
frames:  
Example: 4 frames, including (Fid[0:2] + Err[0:1] + D[0:19] + CRC); = 28bit  
frame1  
BID[0]  
frame2  
frame3  
frame4  
CHx_CFG7  
[SPI_BUFFER_CONFIG]  
0
0
27 stuffing 32  
3132  
BID[1]  
59 stuffing 64  
63 64  
BID[2]  
91 stuffing  
95  
0b01  
Figure 6.2.2.1.2-2: SPI Data Buffer incl. 4 Frames  
Table 6.2.2.1.2-1: SPI Buffer Configuration  
CHx_CFG7 [SPI_BUFFER_CONFIG]  
Σ per BID [bit]  
FiD + Err [bit]  
max payload = PSI5  
data w/o start bits  
[bit]  
0b00  
0b01  
0b10  
0b11  
48*  
32*  
24*  
16*  
5
5
5
5
43  
27  
19  
11  
*: Please note the appropriate SPI_Get_Data_xxb-command selected by the number of bits in this column.  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
36 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.2.2.2 Manchester Bit Encoding  
6.2.2.2.1 Definition of data edge / compensation edge  
According PSI5 standard, a current transition in the middle of the bit time represents the logical value of the trans-  
ferred data (Manchester code) with  
"high current -> low current" transition for a logical '1',  
"low current -> high current" transition for a logical '0'.  
Within this specification, this transition is called data edge; transitions at start / end of the bits are called compens-  
ation edge.  
6.2.2.2.2 Interpretation with Manchester Decoder  
The implemented Manchester Decoder (MCD) state machine converts PSI5 data (transmitted by sensors in  
Manchester code) into NRZ code.  
The input signal is filtered by the analog datacomparator.  
The user is able to configure the time slot in which a data edge / compensation edge is accepted via register  
ASIC_CNFG_1[MCD_DATA_CMP_WINDOWS].  
In principle, the default configuration is recommended with MCD_DATA_CMP_WINDOWS=0b00.  
For certain pattern of electro-magnetic disturbers (from environment) the configuration of MCD_DATA_CMP_WIN-  
DOWS=0b01 could improve immunity by decreasing the data edge window, but reduces the range of MCD duty  
cycle.  
6.2.2.2.3 Definition of Duty Cycle  
PSI5 frame @ 125kBit/s  
Clock 4MHz 25  
Thigh  
D0 = '0'  
D1='1'  
26 27 28 29 30 31 32  
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
10 11 12 13 14 15 16 17 18 19 20 21 22  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
Duty cycle  
[nb of  
samples of 32]  
[%]  
16  
16  
11  
21  
16  
11  
21  
50  
16  
21  
35  
65  
11,2  
20,8  
11  
Figure 6.2.2.2.3-1: Example MCD Duty Cycle  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
37 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.2.2.2.4 Decoder Error Flags  
The following chapter gives some details about the setting of flags MD_PERR_CHx_Fx, MD_FERR_CHx_Fx,  
MD_NO_FR_CHx_Fx and MD_UNEX_FR_CHx_Fx.  
slot counter  
111  
000  
001  
frame  
error  
PSI5 data  
MCD: valid start bit  
MD_FERR_CHx_Fx  
MD_NO_FR_CHx_Fx  
latched  
Figure 6.2.2.2.4-1: MD_FERR_CHx_F1  
Note that for a special failure condition two error flags for one frame can be set.  
Failure condition:  
e.g. default IC configuration; PSI5 sensor with 189kbps connected (instead of 125kbps); depending on PSI5 data,  
either 1 or 2 error bits are flagged.  
slot counter  
111  
000  
001  
frame  
error  
PSI5 data  
MCD: valid start bit  
MD_FERR_CHx_Fx  
MD_NO_FR_CHx_Fx  
no start bits detected  
in slot 0‚ 00 '  
latched  
latched  
Figure 6.2.2.2.4-2: Set Of Error Flags (2errors; data=0x3FF)  
6.2.3 SPI  
The SPI communication between one master and multiple slaves can be operated in parallel or in daisy chain.  
Parallel Operation  
Several SPI-slaves can be connected to one SPI channel. The communication lines SDI_RXD, SDO_TXD and CLK  
are shared and every slave has its own chip select line (NCS).  
Daisy Chain Operation  
Several slaves can be connected to the C in daisy chain operation to save C interface pins (one common chip  
select line for all slaves in the chain).  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
38 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
tON_NCS  
Data Flow  
tSPI_switch  
NCS  
tsclcl  
thclch  
tsclch  
thclcl_an  
tclh  
tcll  
thclcl_app  
SCLK  
tpcld  
tpchdz  
tSPI_switch  
tSDO_trans  
SDO_  
TXD  
MSB  
LSB  
thcld  
tcsdv  
tscld  
SDI_  
RXD  
MSB  
LSB  
tSPI_switch  
SPI-ECU12-V3.0.vsd  
Figure 6.2.3-1: Data Flow Graphic  
In case NCS is high, any signals (e.g. very high clock frequencies e.g. 20MHz max.) at the SCLK and SDI_RXD  
pins are ignored, and SDO_TXD remains in a high impedance state. After an NCS High to Low transition, the SPI  
response word is multiplexed from the latches that were specified by the last command into the shift register, i.e.  
the SDO_TXD changes from high impedance state to the state of the MSB of the last addressed SPI register, inde-  
pendent of the SPI clock state.  
The SCLK pin must be low when NCS switches to low.  
At each rising edge of the clock pulse after NCS goes low, the response word is serially shifted out on the  
SDO_TXD pin.  
At each falling edge of the clock pulse (after NCS goes low) the new control word is serially shifted in on the  
SDI_RXD pin. The SPI command bits are decoded to determine the destination address for the data bits. After the  
16th (or multiple of 16, for daisy chains) clock cycle, at the next NCS low to high transition, the SPI shift register  
data bits are transferred into the latch whose address was decoded from the SPI shift register command bits.  
A command is executed after 16 SCLK (or a multiple of 16) and NCS goes high.  
During reset, SDO_TXD is forced into a high impedance state and any inputs from SCLK and SDI_RXD are  
ignored.  
SPI Format  
Each device is controlled with a 16 bit control command, see following chapters.  
The command is stored in a command register after the rising edge of NCS. The response consists of a 16 bit word  
which contains the before requested information like e.g. diagnostic or output state.  
Response after Reset or Communication Error  
In case of reset or communication error (not valid commands, number of clocks not multiples of 16) following  
response will be sent in the next valid SPI frame: "0x0000". The execution of not valid commands is blocked and  
command with NCS low without clock are ignored.  
Order of MSB/LSB Bit  
MSB is sent first.  
CRC  
SPI Packet Frames from transceiver to μController include a XCRC (see 6.2.5).  
Daisy Chain  
Daisy chain operation is supported.  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
39 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.2.3.1 Error Handling  
Figure 6.2.3.1-1: SPI Error Handling Example 1  
1: Examples invalid command for 'Read Sensor Data 16bit':  
Figure 6.2.3.1-2: SPI Error Handling Example 2  
4a: Example: Command 'SPI_Read_Register' including invalid address A[5:0]:  
Figure 6.2.3.1-3: SPI Error Handling Example 3  
4b: Example: Command 'SPI_Read_Register' including Stuff  
0 (frame n):  
Figure 6.2.3.1-4: SPI Error Handling Example 4  
4c: Example: Command 'SPI_Read_Register' including Stuff 0 (frame n+1):  
Table 6.2.3.1-1: SPI Communication Error  
1
invalid commands  
ERROR_STATUS_1  
[UART_SPI_INV_CMD]  
number of clocks NOT multiples ERROR_STATUS_1  
of 16 [SPI_CLK_ERR]  
command rejected  
command rejected  
command rejected  
2
3a  
command 'SPI_Write_Register' ERROR_STATUS_1  
including invalid address A[5:0] [UART_SPI_INV_ADDRESS] &  
[UART_SPI_INV_CMD]  
3b  
command 'SPI_Write_Register' No flag  
0 (in frame  
frame n+1: correct response  
frame n+2: wrong XCRC (6bit  
stuff is used for calculation)  
including stuff  
n+1)  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
40 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
4b  
4c  
command 'SPI_Read_Register' see #1  
including stuff 0 (in frame n)  
command 'SPI_Read_Register' no flag  
command rejected  
frame n+1: correct response  
frame n+2: send zero response  
including inverted XCRC to uC  
including stuff  
n+1)  
0 (in frame  
5a  
5b  
5c  
commands 'SPI_Get_Data_xxb' ERROR_STATUS_1  
- NOT according buffer config- [UART_SPI_INV_ADDRESS]  
uration  
command rejected  
command rejected  
command rejected  
e.g.  
SPI_BUFFER_CONFIG="00"  
and "SPI_Get_Data_16/24/32b"  
commands 'SPI_Get_Data_xxb' see #5a  
- according buffer configuration  
- including invalid ChID[2:0]  
Invalid channel identifier  
ChID[2:0]: '000' / '101' / '110' /  
'111'  
commands 'SPI_Get_Data_  
xxb' - according buffer configur-  
ation - including invalid BID[2:0]  
see #5a  
Invalid buffer identifier BID[2:0]  
depends on configuration:  
e.g.  
SPI_BUFFER_CONFIG=0b00  
-> '010' / '011' / '100' / '101' /  
'110' / '111'  
5d  
5e  
commands 'SPI_Get_Data_  
0 (in  
see #1  
no flag  
command rejected  
xxb' - including stuff  
frame n)  
commands 'SPI_Get_Data_  
0 (in  
frame n+1: correct response  
frame n+2 till before the end of  
command response: communic-  
ation error  
xxb' - including stuff  
frame n+1)  
Last command response: send  
zero response including inver-  
ted XCRC to uC  
5f  
commands 'SPI_Get_Data_  
xxb' - including correct  
SPI_SYNC_PULSE cm with  
see #1  
frame n+1: correct response  
frame n+2 till before the end of  
command response: communic-  
ation error  
4bit stuff  
0 (in frame n+1)  
Last command response: send  
zero response including inver-  
ted XCRC to uC  
6
command 'SPI_SYNC_PULSE' see #1  
- including stuff 0 (in frame n)  
command rejected  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
41 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
9
command 'SPI_SW_RESET' - see #1  
including stuff 0 (in frame n)  
command rejected  
6.2.3.2 Overview of Communication Frames  
Table 6.2.3.2-1: Overview of SPI Communication Frames  
Communication Commands/Response  
SPI Frame n [SPI Packet  
SPI Frame n+1 [SPI Packet Frame]  
SPI Frame n+2 [SPI  
Packet Frame]  
SPI Frame n+3 [SPI  
Packet Frame]  
SPI Frame n+4 [SPI  
Packet Frame]  
Path  
s
Frame]  
μC->transceiver  
μC->transceiver  
μC->transceiver  
SPI_NOP  
Response  
cmd[3:0]; Stuff [11:0]  
next cmd  
response to previous cmd  
cmd[3:0]; A[5:0]; D[15:10]  
cmd[3:0]; Stuff [11:0]  
D[9:0]; Stuff [5:0]  
SPI_Write_Register  
SPI_WRITE_Register  
SPI_READ_Register  
SPI_SYNC_Pulse  
SPI_NOP  
SPI_SW_Reset  
μC->transceiver  
Response to  
response to previous cmd  
cmd[3:0]; A[5:0]; D[15:10];  
D[9:0]; XCRC[5:0]  
SPI_Write_reg  
μ
C->transceiver  
C->transceiver  
SPI_read_reg  
cmd[3:0]; A[5:0]; Stuff[5:0]  
response to previous cmd  
Stuff[15:0]  
next cmd  
μ
Response to  
cmd[3:0]; A[5:0]; D[15:10]  
D[9:0]; XCRC[5:0]  
SPI_Read_Register  
μC->transceiver  
SPI_SYNC_Pulse  
cmd[3:0]; ChT[3:0]; ChL[3:0];  
Stuf f[3:0]  
next cmd  
μ
μ
μ
C->transceiver  
C->transceiver  
C->transceiver  
Response  
response to previous cmd  
response to previous cmd  
cmd[3:0]; ChT[3:0]; ChL[3:0]; Stuff[3:0]  
cmd[3:0]; Stuff [11:0]  
Response  
SPI_Get_Data_16b  
cmd[3:0]; ChID[2:0]; BID[2:0];  
Stuff[5:0]  
Stuff[15:0] Optional: SPI_SYNC_Pulse next cmd  
cmd[3:0]; ChID[2:0]; BID[2:0]; Stuff[5:0] D[9:0]; XCRC[5:0]  
Stuff [15:0] Optional: SPI_SYNC_Pulse Stuff [15:0]  
μC->transceiver  
μC->transceiver  
μC->transceiver  
μC->transceiver  
μC->transceiver  
μC->transceiver  
μC->transceiver  
Response to  
response to previous cmd  
SPI_Get_Data_16b  
SP_Get_Data_24b  
cmd[3:0]; ChID[2:0]; BID[2:0];  
Stuff[5:0]  
next cmd  
Response to  
response to previous cmd  
cmd[3:0]; CHID[2:0]; BID[2:0] Fid[2:0]; D[17:2]  
Err[1:0]; D[18]  
D[1:0]; Stuff [7:0];  
XCRC[5:0]  
SPI_Get_Data_24b  
SPI_Get_Data_32b  
cmd[3:0]; ChID[2:0]; BID[2:0];  
Stuff [5:0]  
Stuff [15:0] Optional: SPI_SYNC_Pulse Stuff [15:0]  
next cmd  
Response to  
response to previous cmd  
cmd[3:0]; CHID[2:0]; BID[2:0] Fid[2:0]; D[25:10]  
Err[1:0]; D[26]  
D[9:0]; XCRC[5:0]  
Stuff [15:0]  
D[25:10]  
SPI_Get_Data_32b  
SPI_Get_Data_48b  
cmd[3:0]; ChID[2:0]; BID[2:0];  
Stuff [5:0]  
Stuff [15:0] Optional: SPI_SYNC_Pulse Stuff [15:0]  
next cmd  
Response to  
response to previous cmd  
cmd[3:0]; CHID[2:0]; BID[2:0] Fid[2:0]; D[41:26]  
Err[1:0]; D[42]  
D[9:0]; XCRC[5:0]  
SPI_Get_Data_48b  
μ
C->transceiver  
C->transceiver  
SPI_SW_Reset  
Response  
cmd[3:0]; Stuff [11:0]  
next cmd  
μ
response to previous cmd  
cmd[3:0]; Stuff [11:0]  
BID = Buffer Identifier  
CHID = Channel Identifier  
ChTx = Channel Trigger for sync pulse (0=disabled; 1=enabled)  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
42 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
ChLx = Sync pulse length (0=short; 1=long)  
Note:  
For 'Read Sensor Data xxbit' commands the SPI frame n+1 includes optional the 'SYNC Pulse command'  
instead of NOP command to optimize the SPI bandwidth  
The idle time between consecutive SPI frames has to fulfill parameter ton_NCS.  
6.2.3.3 Overview of SPI commands  
All valid SPI commands are shown in the table below.  
Any other combinations (commands from micro controller) are rejected but flagged in register  
ERROR_STATUS_1[UART_SPI_INV_CMD] for diagnosis purpose.  
In case of reset or communication error the following response will be sent: 0x0000 in the following valid SPI frame.  
Execution of command is blocked.  
Chip select (NCS) low without any clock pulses at SCLK will be ignored. Next response to previous valid frame.  
Table 6.2.3.3-1: Overview SPI commands  
SPI command  
SPI_Write_Register  
command  
bits[15:12]  
remaining bits [11:0]  
0000 0000 0000  
0001  
0010  
0011  
0100  
0101  
0111  
1000  
1110  
1111  
SPI_Read_Register  
SPI_Sync_Pulse  
SPI_Get_Data_16b  
SPI_Get_Data_24b  
SPI_Get_Data_32b  
SPI_Get_Data_48b  
SPI_NOP  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
SPI_SW_Reset  
6.2.3.4 No Operation Command  
Receiving a NOP command, the IC will perform no operation.  
It shall be used to get the last frame of a SPI communication sequence.  
The bit configuration of this one frame command is shown in the figure below:  
MSB  
SPI frame n  
LSB  
MSB  
SPI frame n+1  
LSB  
idle  
idle  
1
1
1
0
x
0
x
0
0
0
0
0
x
0
0
x
0
x
0
x
0
x
0
idle  
idle  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
idle  
idle  
SDI_RXD  
SDO_TXD  
SPI_NOP  
Stuff  
next cmd  
x
x
x
x
x
x
x
x
x
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
SPI_NOP  
Response to previous cmd  
Stuff  
Figure 6.2.3.4-1: SPI NOP Command  
6.2.3.5 Write Configuration Register Command  
With the command "Write Configuration Register" any 16bit register can be written.  
Every command consists of three consecutive SPI frames, shown in the figure below.  
As SPI frame n+2 on SDI_RXD are following cmds allowed: SPI_Write_Register, SPI_Read_Register,  
SPI_SYNC_Pulse, SPI_NOP or a SPI_SW_Reset.  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
43 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
MSB  
SPI frame n  
A2 A1  
Address  
LSB  
MSB  
SPI frame n+1  
LSB  
idle  
idle  
0
0
0
1
A5  
x
A4  
A3  
A0 D15 D14 D13 D12 D11 D10 idle  
D9  
D8  
0
D7  
0
D6  
1
D5  
D4  
A4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
idle  
SDI_RXD  
SDO_TXD  
SPI_Write_Register  
Stuff  
Data  
Data  
MSB  
LSB  
MSB  
LSB  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
idle  
idle  
0
A5  
A3 A2  
Address  
A1  
A0 D15 D14 D13 D12 D11 D10 idle  
Response to previous cmd  
SPI_Write_Register  
Data  
MSB  
SPI frame n+2  
LSB  
idle  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
SDI_RXD  
SDO_TXD  
next cmd  
MSB  
LSB  
idle D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X5  
X4  
X3  
X2  
X1  
X0 idle  
XCRC  
Data  
Figure 6.2.3.5-1: SPI Write Register Command  
6.2.3.6 Software Reset Command  
With the first execution of the software reset command, all configuration registers are initialized to default values if  
bit ASIC_CNFG_1[CNFG_LOCK]='0'.  
If bit ASIC_CNFG_1[CNFG_LOCK]='1' all configuration registers are initialized to default values except register  
ASIC_CNFG_1 and ASIC_CNFG_2.  
With the second execution of the software reset command, the bit ASIC_CNFG_1[CNFG_LOCK] is reset to '0'.  
The Software Reset Command includes one SPI Frame only:  
MSB  
SPI frame n  
LSB  
MSB  
SPI frame n+1  
LSB  
idle  
idle  
1
1
1
1
x
0
x
0
0
0
0
0
0
0
x
0
x
0
x
0
x
0
idle  
idle  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
idle  
idle  
SDI_RXD  
SDO_TXD  
SPI_SW_Reset  
Stuff  
next cmd  
x
x
x
x
x
x
x
x
x
x
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
SPI_SW_Reset  
Response to previous cmd  
Stuff  
Figure 6.2.3.6-1: SPI Software Reset Command  
6.2.3.7 Read Configuration Register Command  
With the command "Read Configuration Register" any 16bit register can be read.  
Every command consists of three consecutive SPI frames.  
MSB  
SPI frame n  
LSB  
MSB  
SPI frame n+1  
LSB  
idle  
idle  
0
0
1
0
A5  
x
A4  
A3  
A2  
A1  
A0  
0
0
x
0
0
0
x
0
idle  
idle  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
idle  
SDI_RXD  
SDO_TXD  
SPI_Read_Register  
Address  
Stuff  
Stuff  
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
1
0
A5  
A4  
A3  
A2  
A1  
A0 D15 D14 D13 D12 D11 D10 idle  
Data  
Response to previous cmd  
SPI_Read_Register  
Address  
MSB  
SPI frame n+2  
LSB  
idle  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
idle  
SDI_RXD  
SDO_TXD  
next cmd  
idle D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X5  
X4  
X3  
X2  
X1  
X0 idle  
XCRC  
Data  
Figure 6.2.3.7-1: SPI Read Register Command  
6.2.3.8 SYNC Pulse Command  
Sync pulses with different widths can be triggered by sending the sync pulse command.  
For configuration of the sync pulses there are the two bits ChTx and ChLx available.  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
44 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Bit ChTx determines the generation of the sync pulse on the desired channel and ChLx determines the width of the  
pulse, whereas a logical '0' leads to a short and a logical '1' leads to a long sync pulse.  
The detailed bit setting is shown in the table below:  
Table 6.2.3.8-1: SYNC Pulse Command  
SPI command  
SYNC Pulse  
Command[15:12]  
0011  
SYNC trigger ChT[11:8]+SYNC length  
ChLx[7:4]  
Stuffing[3:0]  
ChT3 & ChT2 & ChT1 & ChT0 & ChL3 & 0000  
ChL2 & ChL1 & ChL0  
Long Sync Pulse all Ch  
Long Sync Pulse Ch1  
Long Sync Pulse Ch2  
Long Sync Pulse Ch3  
Long Sync Pulse Ch4  
Short Sync Pulse all Ch  
Short Sync Pulse Ch1  
Short Sync Pulse Ch2  
Short Sync Pulse Ch3  
Short Sync Pulse Ch4  
0011  
0011  
0011  
0011  
0011  
0011  
0011  
0011  
0011  
0011  
11111111  
00010001  
00100010  
01000100  
10001000  
11110000  
00010000  
00100000  
01000000  
10000000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
Example: e.g. '0011 1001 1001 0000' (MSB->LSB) defines two long SYNC pulses on channel 1 and channel 4.  
Note: The application shall ensure to trigger the SYNC pulse generator only once during TSYNC by max. 1 "SYNC  
Pulse command" per TSYNC. More trigger commands overwrite the former command (if SYNC pulse delay counter  
has not exceeded) or trigger a new SYNC pulse.  
MSB  
SPI frame n  
LSB  
MSB  
SPI frame n+1  
LSB  
idle  
idle  
0
0
1
1
x
x
x
x
x
x
x
x
0
x
0
0
0
idle  
idle  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
idle  
idle  
SDI_RXD  
SDO_TXD  
ChT3 ChT2 ChT1 ChT0 ChL3 ChL2 ChL1 ChL0  
Stuff  
next cmd  
SPI_SYNC_Pulse  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
1
1
x
x
x
x
x
x
x
x
0
0
0
0
ChT3 ChT2 ChT1 ChT0 ChL3 ChL2 ChL1 ChL0  
Response to previous cmd  
Stuff  
SPI_SYNC_Pulse  
Figure 6.2.3.8-1: SPI SYNC Pulse Command  
6.2.3.9 Read Sensor Data  
Sensor data is requested by executing the "Read Sensor Data" command. The number of SPI frames increases  
with the number of requested sensor data bits.  
For example, a request of 16 sensor data bits results in a communication with three SPI frames.  
The SPI frame 2 has to be filled with stuffing bits or (optional) it can contain the "SYNC Pulse command" to optim-  
ize the SPI bandwidth by "Read Sensor Data" command.  
It's mandatory to read block wise via commands SPI_Get_Data_xxb according the appropriate buffer con-  
figuration. This means for SPI_BUFFER_CONFIG="11" the command SPI_Get_Data_16b is mandatory (see  
6.2.2.1.2).  
For details of the bit position of PSI5 parity/CRC see 6.2.3.9.1.  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
45 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
For synchronous PSI5 mode the "SPI_data_buffer" has to be synchronized with the PSI5 data.  
It is recommended to read PSI5 data buffer after all PSI5 slots within the current cycle where received.  
The SPI read access shall start later than "latest PSI5-slot end" + 3 · tGAP and shall end before "earliest  
PSI5-slot end" of the next PSI5 slot.  
latest end  
SYNC  
earliest end  
3 · tGAP  
PSI5 Bus  
voltage  
PSI5 Bus  
current  
slot 2  
slot n  
slot 1  
slot 2  
Read sensor data command shall not  
start before latest end + 3 · tGAP  
Read command shall end  
before earliest end  
Valid read sensor  
data window  
NCS  
SDI  
CMD:  
read_sensor_data  
slot 1  
CMD:  
read_sensor_data  
slot n  
SPI frame  
SPI frame  
SPI frame  
SPI frame  
Additional  
sensor data  
SDO  
Previous  
response  
Previous  
response  
Response 1.1  
Response 1.2  
Response n.1  
Response n.2  
t
Figure 6.2.3.9-1: Valid read sensor data window 1  
If data buffer has to be read interleaved within the PSI5 cycle the same constrains have to be considered.  
The SPI read access shall start later than "latest PSI5-slot end" + 3 · tGAP and shall end before "earliest  
PSI5-slot end" of the next PSI5 slot.  
latest end  
SYNC  
SYNC  
earliest end  
3 · tGAP  
PSI5 Bus  
voltage  
PSI5 Bus  
current  
slot 1  
slot 2  
slot n  
Read sensor data command shall not  
start before latest end + 3 · tGAP  
Read command shall end  
before earliest end  
Valid read sensor  
data window  
NCS  
SDI  
CMD: read_sensor_data_16b  
Previous CMD response  
SPI frame  
SPI frame  
SDO  
Response 1  
Response 2  
t
Figure 6.2.3.9-2: Valid read sensor data window 2  
For asynchronous sensor mode it is not possible to access the data buffer synchronous to PSI5 data.  
In this case it is recommended to use the UART mode.  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
46 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.2.3.9.1 Read of 16bit (11bit sensor data)  
Communication template for 16bit (= 3xFrameID + 2xErrBits + 11 DataBits) is shown in the figure above.  
Note: Position of PSI5 parity/CRC bits in data frame is represented by highest 'used' data bit Dx of SPI buffer. See  
following examples:  
10 bit data + 1 parity bit -> D10 = parity bit  
8 bit data + 1 parity bit -> D8 = parity bit  
8 bit data + 3 crc bits -> D10=C0, D9=C1, D8=C2  
optional to Stuff  
MSB  
SPI frame n  
LSB  
MS
LSB  
idle  
idle  
0
1
0
0
x
x
x
x
x
x
0
0
x
0
0
0
x
0
id
idle  
x
0
x
0
0
idle  
SDI_RXD  
SDO_TXD  
CHID2 CHID1CHID0 BID2 BID1 BID0  
0  
Stuff  
Stuff  
SPI_Get_Data_16b  
S
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
1
0
0
x
x
x
x
x
x
x
x
x
D10 idle  
CHID2 CHID1CHID0 BID2 BID1 BID0 Fid2 Fid1 Fid0 Err1 Err0  
Response to previous cmd  
SPI_Get_Data_16b  
Cmd Response (copy from read request)  
SPI data buffer  
MSB  
SPI frame n+2  
LSB  
idle  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
idle  
SDI_RXD  
SDO_TXD  
next cmd  
idle D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X5  
X4  
X3  
X2  
X1  
X0 idle  
SPI data buffer  
XCRC  
Figure 6.2.3.9.1-1: SPI Read Sensor Data 16bit  
MSB  
LSB  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
SPI_Get_Data_16b;  
cmd3  
cmd2  
cmd1  
cmd0  
ChId2  
ChId1  
ChId0  
BID2  
BID1  
BID0  
frame1; SDI_RXD  
Command  
Channel ID  
Buffer ID  
Stuff  
Identifier Ch1  
0
0
0
1
0
1
1
0
1
0
1
0
Identifier Ch2  
Identifier Ch3  
Identifier Ch4  
Identifier Buffer0  
Identifier Buffer1  
Identifier Buffer2  
Identifier Buffer3  
Identifier Buffer4  
Identifier Buffer5  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
Figure 6.2.3.9.1-2: SPI Read Sensor Data 16bit-request at SDI_RXD -1st SPI frame-  
MSB  
LSB  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
SPI_Get_Data_16b;  
frame2; SDO_TXD  
cmd3  
cmd2  
cmd1  
cmd0  
ChId2  
ChId1  
ChId0  
BID2  
BID1  
BID0  
Fid2  
Fid1  
Fid0  
Err1  
Err0  
D0  
Command  
Channel ID  
Buffer ID  
Frame ID  
Error bits  
Data  
Identifier Ch1  
0
0
0
1
0
1
1
0
1
0
1
0
Identifier Ch2  
Identifier Ch3  
Identifier Ch4  
Identifier Buffer0  
Identifier Buffer1  
Identifier Buffer2  
Identifier Buffer3  
Identifier Buffer4  
Identifier Buffer5  
Identifier Frame1  
Identifier Frame2  
Identifier Frame3  
Identifier Frame4  
Identifier Frame5  
Identifier Frame6  
Error bit - no error  
Error bit - Interface error  
Error bit - ASIC error  
Error bit - Interf. + ASIC error  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
0
x
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
0
1
1
0
1
0
1
Figure 6.2.3.9.1-3: Response to SPI Read Sensor Data 16bit at SDO_TXD -2nd SPI frame-  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
47 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.2.3.9.2 Read of 24bit (19bit sensor data)  
Communication template for 24bit (= 3xFrameID + 2xErrBits + 19 DataBits):  
optional to Stuff  
MSB  
SPI frame n  
LSB  
MSB  
LSB  
idle  
idle  
0
1
0
1
x
x
x
x
x
x
0
0
x
0
0
0
x
0
idle  
idle  
x
0
x
0
0
idle  
SDI_RXD  
SDO_TXD  
CHID2CHID1CHID0 BID2 BID1 BID0  
Stuff  
Stuff  
SPI_Get_Data_24b  
SP
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
1
0
1
x
x
x
x
x
x
x
x
x
D18 idle  
Data  
CHID2 CHID1CHID0 BID2 BID1 BID0 Fid2 Fid1 Fid0 Err1 Err0  
Cmd Response (copy from read request)  
Response to previous cmd  
SPI_Get_Data_24b  
SPI data buffer  
MSB  
SPI frame n+2  
LSB  
MSB  
SPI frame n+3  
LSB  
idle  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
idle  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
idle  
SDI_RXD  
SDO_TXD  
Stuff  
next cmd  
idle D17 D16 D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2 idle D1  
D0  
0
0
0
0
0
0
0
0
X5  
X4  
X3  
X2  
X1  
X0 idle  
Stuff  
XCRC  
SPI data buffer  
SPI data buffer  
Figure 6.2.3.9.2-1: Read Sensor Data 24bit command  
6.2.3.9.3 Read of 32bit (27bit sensor data)  
Communication template for 32bit (= 3xFrameID + 2xErrBits + 27 DataBits):  
optional to Stuff  
MSB  
SPI frame n  
LSB  
MSB  
LSB  
idle  
idle  
0
1
1
1
x
x
x
x
x
x
0
0
x
0
0
0
x
0
idle  
idle  
x
0
0
x
0
idle  
SDI_RXD  
CHID2CHID1CHID0 BID2 BID1 BID0  
Stuff  
Stuff  
SPI_Get_Data_32b  
SPI
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
1
1
1
x
x
x
x
x
x
x
x
x
D26 idle  
Data  
SDO_TXD  
CHID2 CHID1CHID0 BID2 BID1 BID0 Fid2 Fid1 Fid0 Err1 Err0  
Response to previous cmd  
SPI_Get_Data_32b  
Cmd Response (copy from read request)  
SPI data buffer  
MSB  
SPI frame n+2  
LSB  
MSB  
SPI frame n+3  
LSB  
idle  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
idle  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
idle  
SDI_RXD  
Stuff  
next cmd  
idle D25 D24 D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 idle  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X5  
X4  
X3  
X2  
X1  
X0 idle  
SDO_TXD  
XCRC  
SPI data buffer  
SPI data buffer  
Figure 6.2.3.9.3-1: Read Sensor Data 32bit command  
6.2.3.9.4 Read of 48bit (43bit sensor data)  
Position of PSI5 parity/CRC bits -> see 'Read Sensor Data 16bit'  
Communication template for 48bit (= 3xFrameID + 2xErrBits + 43 DataBits):  
Figure 6.2.3.9.4-1: Read Sensor Data 48bit command  
Note: For bits 'don't care' in frame n+1 / n+2 on SDO_TXD there are two scenarios: all 12 bits are either '0' or '1';  
for more details see chapter 6.2.2.1.2.  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
48 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.2.4 UART  
The UART data rate is derived from an external clock signal fSCLK_UART with DCSCLK_UART at pin SCLK and is calculated  
with the following formula fUART  
=
.
The external clock has to be supplied permanent.  
The bit shift direction supports "Little Endian" format with LSB sent first.  
6.2.4.1 Error Handling  
Read Register Command  
Frame1:  
ChID /Cmd  
Frame2:  
Address /Stuff  
SDI_RXD  
Invalid  
address  
Response to Read Register Command  
Frame3:  
D[7:0]= 0x00  
Frame1:  
ChID/ Fid/Err  
Frame2:Copy  
fromreadrequest  
Frame4:  
D[15:8]= 0x00  
Frame5:  
Stuff /XCRC  
SDO_TXD  
Modified data  
Figure 6.2.4.1-1: UART Error Handling Example 1  
see #3: Command 'UART_Read_Register' including invalid address A[5:0]:  
The 'Response to Read Register Command' is uploaded with with data bits D[15:0] = 0x0000.  
Read Register Command  
Read Register Command  
SDI_RXD  
Frame1  
Frame2  
Frame1  
Frame2  
NO collision;  
read reg .cmd decoded  
after response finished  
Response to Read Register Command  
SDO_TXD  
Frame4  
Frame5  
Frame1  
Frame2  
Frame1  
Frame2  
Frame3  
Read Register Command  
Read Register Command  
SDI_RXD  
Frame1  
Frame2  
Frame1  
Frame2  
collision;  
read reg .cmd decoded  
before responsefinished  
Response to Read Register Command  
Frame5  
SDO_TXD  
Frame1  
Frame2  
Frame3  
Frame4  
Figure 6.2.4.1-2: UART Error Handling Example 2  
see #6: Collision of 'UART_Read_Register' commands:  
While read register request command a collision with frames sent by the transceiver might occur.  
In case of frames sent to the transceiver at pin RXD while the transceiver is transmitting data on pin TXD the RXD  
frame is ignored. To ensure a response from E521.4x device to a "Read Register cmd", the SDO_TXD has to be  
idle during decoding of "Read Register cmd". This is feasible if "Transfer of PSI5 data" is predictable.  
For systems with asynchronous sensors it is recommended to use only one asynchronous sensor per chip. The  
probability of a response to "Read Register cmd" increases with decreased payload on SDO_TXD. The probability  
of a response to "Read Register cmd" increases with increased UART baud rate.  
To decrease payload the UART idle time can be increased by Register ASIC_CNFG_2 / UART_IDLE_TIME[3:0]  
set to maximum value.  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
49 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
If synchronous mode is used the UART idle time can be predicted.  
Example for UART =4MBaud:  
t1 = tnEE (earliest end of frame) = 142us  
3 x staggering + 1 UART frame = 3*10us + 55bit*0.25us = 44us => idle time = t1 + t2 = 98us  
t2  
Figure 6.2.4.1-3: Syncpulse staggering  
Table 6.2.4.1-1: UART Error Handling  
1
invalid commands  
command  
ERROR_STATUS_1  
[UART_SPI_INV_CMD]  
Command rejected  
Command rejected  
2a  
ERROR_STATUS_1  
'UART_Write_Register' includ- [UART_SPI_INV_ADDRESS]  
ing invalid address A[5:0]  
2b  
2c  
3a  
3b  
command ERROR_STATUS_1  
'UART_Write_Register' includ- [UART_SPI_INV_CMD]  
Command rejected  
Command rejected  
Command rejected  
Command rejected  
ing ChId  
0
command ERROR_STATUS_1  
'UART_Write_Register' includ- [UART_SPI_INV_ADDRESS]  
ing stuff  
0
Command  
ERROR_STATUS_1  
'UART_Read_Register' includ- [UART_SPI_INV_ADDRESS]  
ing invalid address A[5:0]  
Command  
'UART_Read_Register' includ- [UART_SPI_INV_CMD]  
ing ChId  
ERROR_STATUS_1  
0
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
50 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
3c  
Command  
'UART_Read_Register' includ- [UART_SPI_INV_ADDRESS]  
ing stuff  
ERROR_STATUS_1  
Command rejected  
0
4
5
6
Wrong parity bit received  
ERROR_STATUS_1  
[UART_PERR]  
Command rejected  
Command rejected  
Frame error = invalid stop bit  
ERROR_STATUS_1  
[UART_FERR]  
Collision of  
'UART_Read_Register' com-  
mands  
ERROR_STATUS_1  
[UART_SPI_COLLISION]  
2nd Command rejected  
e.g. read request received while  
last read was not completed yet  
7
Command 'Short SYNC pulse' ERROR_STATUS_1  
including ChId >4 [UART_SPI_INV_CMD]  
Command 'Long SYNC pulse' ERROR_STATUS_1  
Command rejected  
Command rejected  
Command rejected  
Command rejected  
8
including ChId >4  
[UART_SPI_INV_CMD]  
9
Command 'No SYNC pulse'  
0
ERROR_STATUS_1  
[UART_SPI_INV_CMD]  
including ChId  
11  
Command 'SW reset' including ERROR_STATUS_1  
ChId [UART_SPI_INV_CMD]  
0
6.2.4.2 Packet Frame Definition  
A frame on the PSI5 interface is represented by a Packet Frame on the transmission line from the transceiver to  
the Controller.  
Also the commands on the transmission line from the Controller to the transceiver ASIC, as well as the responses,  
are represented by a Packet Frame.  
A Packet Frame can be a concatenation of 1 to 6 UART Frames.  
For ASIC->uC: An idle time from 1 to 16 idle bits (configurable in register ASIC_CNFG_2) is implemented between  
consecutive Packet Frames from the UART in order to enable a re-synchronization of the next Packet Frame. The  
UART frame following an idle time which is equal or greater than the minimum idle time thus is always be assumed  
as the header of the next Packet Frame (default configuration: one bit minimum idle time between two Packet  
Frames).  
For uC->ASIC: frames can be sent w/o idle time (back-to-back transfer possible)  
6.2.4.3 UART Frame Definition  
For transceiver to  
optional parity bit and 1 stop bit.  
For C to transceiver communication a UART frame (inside a packet frame) is composed of 1 start bit, 8 data bits, 1  
μC communication a UART frame (inside a packet frame) is composed of 1 start bit, 8 data bits,  
μ
parity bit and 1 stop bit.  
Odd parity is enabled by default. For transceiver to μC communication the usage of a parity bit is configurable.  
There is no idle time between UART frames inside a packet frame (i.e. a stop bit of a UART frame is followed by  
the start bit of a potentially following UART frame without any gap).  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
51 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Data Transmission  
Communication Path  
UARTframe  
Start (L)  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
P(odd) Stop (H) idle (H)  
idle (H)  
µC -> transceiver  
LSB  
MSB  
t
UARTframe (config1)  
Start (L)  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Stop (H) idle (H)  
idle (H)  
LSB  
MSB  
transceiver -> µC  
UARTframe (config2)  
Start (L)  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
P(odd) Stop (H) idle (H)  
idle (H)  
LSB  
MSB  
t
Figure 6.2.4.3-1: UART Data Transmission  
6.2.4.4 Overview of Communication Frames  
The defined UART commands and responses, with number of UART frames per packet frame, are shown in the  
table below.  
Packet frames from  
Packet frames from transceiver to  
μ
C to transceiver means downstream  
C means upstream  
μ
Table 6.2.4.4-1: Overview of Communication Frames  
Communication  
Commands/Responses  
UART Frame 1 [Packet-  
UART Frame 2  
UART Frame 3  
[PacketFrame1]  
UART Frame 4  
[PacketFrame1]  
UART Frame 5 [Pack-  
etFrame1]  
UART Frame 6  
[PacketFrame1]  
Path  
Frame1]  
[PacketFrame1]  
μ
μ
μ
μ
μ
μ
C -> transceiver  
C -> transceiver  
C -> transceiver  
C -> transceiver  
C -> transceiver  
C -> transceiver  
UART_Write_Register  
UART_Read_Register  
UART_Short_SYNC_Pulse  
UART_Long_SYNC Pulse  
UART_No_SYNC_Pulse  
UART_Software_Reset  
Response to Read Register  
Upload PSI5 data  
cmd[4:0], ChId[2:0]  
cmd[4:0], ChId[2:0]  
cmd[4:0], ChId[2:0]  
cmd[4:0], ChId[2:0]  
cmd[4:0], ChId[2:0]  
Stuff[1:0], A[5:0]  
Stuff[1:0], A[5:0]  
D[7:0]  
D[15:8]  
cmd[4:0], ChId[2:0]  
Err[1:0], Fid[2:0], ChId[2:0]  
Err[1:0], Fid[2:0], ChId[2:0]  
transceiver ->  
transceiver ->  
μ
C
C
CmdRes[7:0]  
D[7:0]  
D[7:0]  
D[15:8]  
XCRC[5:0], Stuff[1:0]  
μ
x*  
x*  
x*  
x*  
Note: x* = depending on definition of the corresponding PSI5 frame  
6.2.4.5 Overview of UART Commands  
All valid UART commands are shown in the table below. These commands have a hamming distance  
other. Any other command from Controller is rejected but flagged in register  
ERROR_STATUS_1[UART_SPI_INV_CMD] for diagnosis purpose.  
2 to each  
μ
Table 6.2.4.5-1: UART Command Table  
UART Command  
UART_Write_Register  
UART_Read_Register  
Command[7:3]  
Channel ID[2:0]  
00001  
00010  
000  
000  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
52 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
UART Command  
Command[7:3]  
00100  
Channel ID[2:0]  
UART_Short_Sync_Pulse all Ch  
UART_Short_Sync_Pulse Ch1  
UART_Short_Sync_Pulse Ch2  
UART_Short_Sync_Pulse Ch3  
UART_Short_Sync_Pulse Ch4  
UART_Long_Sync_Pulse all Ch  
UART_Long_Sync_Pulse Ch1  
UART_Long_Sync_Pulse Ch2  
UART_Long_Sync_Pulse Ch3  
UART_Long_Sync_Pulse Ch4  
UART_No_Sync_Pulse  
000  
001  
010  
011  
100  
000  
001  
010  
011  
100  
000  
000  
00100  
00100  
00100  
00100  
00111  
00111  
00111  
00111  
00111  
10011  
10101  
UART_Software_Reset  
6.2.4.6 Write Register Command  
The write register sequence includes 4 UART frames:  
UART Frame 1: Command bits cmd[4:0]; Channel Identifier ChId[2:0]  
UART Frame 2: Stuffing bits[1:0], Address bits A[5:0]  
UART Frame 3: Data Low Byte D[7:0]  
UART Frame 4: Data Low Byte D[15:8]  
Table 6.2.4.6-1: Write Register Command  
Write Register Command  
Command [7:3]  
Channel ID [2:0]  
Write Register Command  
00001  
000  
UART Frame 1  
UART Frame 2  
UART Frame 3  
Parity Stp Srt D0 D1 D2 D3 D4 D5 D6 D7 Parity Stp  
Srt  
0
0
0
1
0
0
0
0
Parity Stp Srt A0 A1 A2 A3 A4 A5  
0
0
C
h
Id  
0
C
h
Id  
1
C
h
Id  
2
C
m
d
0
C
m
d
1
C
m
d
2
C
m
d
3
C m d 4  
UART_Write_Register  
Address  
Data Lo-Byte  
Stuff Stuff  
UART Frame 4  
Srt D8 D9 D10 D11 D12 D13 D14 D15 Parity Stp idle  
Data Hi-Byte  
Figure 6.2.4.6-1: Write Register Command Packet Frame  
6.2.4.7 Read Register Command  
The read register sequence includes 2 UART frames:  
UART Frame 1: Command bits cmd[4:0]; Channel Identifier ChId[2:0]  
UART Frame 2: Stuffing bits[1:0], Address bits A[5:0]  
Table 6.2.4.7-1: Read Register Command  
Read Register Command  
Command [7:3]  
Channel ID [2:0]  
Read Register Command  
00010  
000  
UART Frame 1  
UART Frame 2  
Parity Stp Srt A0 A1 A2 A3 A4 A5  
Srt  
0
0
0
0
1
0
0
0
0
0
Parity Stp idle  
C
h
Id  
0
C
h
Id  
1
C
h
Id  
2
C
m
d
0
C
m
d
1
C
m
d
2
C
m
d
3
C m d 4  
UART_Read_Register  
Address  
Stuff Stuff  
Figure 6.2.4.7-1: Read Register Command Packet Frame  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
53 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.2.4.8 Short SYNC Pulse Command  
The Short SYNC Pulse Command includes 1 UART Frame only:  
UART Frame 1: Command bits cmd[4:0]; Channel Identifier ChId[2:0]  
Following table shows the configuration of Channel IDs:  
Table 6.2.4.8-1: Short SYNC Pulse Command  
Short SYNC Pulse Command  
Short Sync Pulse all Ch  
Command [7:3]  
00100  
Channel ID [2:0]  
000  
001  
010  
011  
100  
Short Sync Pulse Ch1  
00100  
Short Sync Pulse Ch2  
00100  
Short Sync Pulse Ch3  
00100  
Short Sync Pulse Ch4  
00100  
UART Frame  
Srt  
x
x
x
0
0
1
0
0
Parity Stp idle  
C
h
Id  
0
C
h
Id  
1
C
h
Id  
2
C
m
d
0
C
m
d
1
C
m
d
2
C
m
d
3
C m d 4  
UART_Short_SYNC_Pulse  
Figure 6.2.4.8-1: Short SYNC Command Packet Frame  
6.2.4.9 Long SYNC Pulse Command  
The Long SYNC Pulse Command includes 1 UART frame only:  
UART Frame 1: Command bits cmd[4:0]; Channel Identifier ChId[2:0]  
Following table shows the configuration of Channel IDs:  
Table 6.2.4.9-1: Long SYNC Pulse Command  
Long SYNC Pulse Command  
Long Sync Pulse all Ch  
Command [7:3]  
00111  
Channel ID [2:0]  
000  
001  
010  
011  
100  
Long Sync Pulse Ch1  
00111  
Long Sync Pulse Ch2  
00111  
Long Sync Pulse Ch3  
00111  
Long Sync Pulse Ch4  
00111  
UART Frame  
Srt  
x
x
x
1
1
1
0
0
Parity Stp idle  
C
h
Id  
0
C
h
Id  
1
C
h
Id  
2
C
m
d
0
C
m
d
1
C
m
d
2
C
m
d
3
C m d 4  
UART_Long_SYNC_Pulse  
Figure 6.2.4.9-1: Long SYNC Command Packet Frame  
6.2.4.10 No SYNC Pulse Command  
For the tooth gap method, if a logical '0' (=absence of SYNC pulse) for ECU to sensor communication is required,  
a no sync pulse command can be send by the Controller.  
μ
The no sync pulse command includes 1 UART frame only.  
UART Frame 1: Command bits cmd[4:0]; Channel Identifier ChId[2:0]  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
54 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Table 6.2.4.10-1: No SYNC Pulse Command  
No SYNC Pulse Command  
Command [7:3]  
Channel ID [2:0]  
000  
No sync pulse  
10011  
UART Frame  
Srt  
0
0
0
1
1
0
0
1
Parity Stp idle  
C
h
Id  
0
C
h
Id  
1
C
h
Id  
2
C
m
d
0
C
m
d
1
C
m
d
2
C
m
d
3
C m d 4  
UART_No_SYNC_Pulse  
Figure 6.2.4.10-1: No SYNC Pulse Command Packet Frame  
6.2.4.11 Software Reset Command  
With the first execution of the software reset command, all configuration registers are initialized to default values if  
bit ASIC_CNFG_1[CNFG_LOCK]='0'.  
If bit ASIC_CNFG_1[CNFG_LOCK]='1' all configuration registers are initialized to default values except register  
ASIC_CNFG_1 and ASIC_CNFG_2.  
With the second execution of the software reset command, the bit ASIC_CNFG_1[CNFG_LOCK] is reset to '0'.  
The Software Reset Command includes 1 UART frame only:  
UART Frame 1: Command bits cmd[4:0]; Channel Identifier ChId[2:0]  
Table 6.2.4.11-1: Software Reset Command  
Software Reset Command  
Command [7:3]  
Channel ID [2:0]  
Software Reset  
10101  
000  
UART Frame  
Srt  
0
0
0
1
0
1
0
1
Parity Stp idle  
C
h
Id  
0
C
h
Id  
1
C
h
Id  
2
C
m
d
0
C
m
d
1
C
m
d
2
C
m
d
3
C m d 4  
UART_SW_Reset  
Figure 6.2.4.11-1: Software Reset Command Frame  
6.2.4.12 Response to Read Register Command  
Each valid read command, received by the transceiver ASIC, results in a response sequence including 5 UART  
Frames.  
UART Frame 1: Channel Identifier ChId[2:0]; Frame Identifier Fid[2:0]; Error bits Err[1:0]  
UART Frame 2: Command response CmdRes[4:0]; Channel Identifier[2:0]= copy from UART frame 1 of read  
request  
UART Frame 3: Data Low Byte D[7:0]  
UART Frame 4: Data Low Byte D[15:8]  
UART Frame 5: Stuffing bits Stuff[1:0]; 6bit checksum XCRC[5:0]  
Following table shows the bit configuration of UART Frame 1 including ChId, Fid and Err bits.  
Table 6.2.4.12-1: Response To Read Command Bit Configuration  
Response to Read Register: Configura-  
tion of UART Frame 1  
Error bits[7:6]  
Frame ID[5:3]  
Channel ID[2:0]  
Error bit - no ASIC error  
Error bit - interface error  
Error bit - ASIC error  
00  
01  
10  
11  
000  
000  
000  
000  
000  
000  
000  
000  
Error bit - ASIC and interface error  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
55 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
UART Frame 1  
UART Frame 2  
UART Frame 3  
Srt  
0
0
0
0
0
0
0
Err1 Stp Srt  
0
0
0
0
1
0
0
0
Stp Srt D0 D1 D2 D3 D4 D5 D6 D7 Stp  
idle  
C
h
Id 0  
C
h
Id  
1
C
h
Id  
2
F
id  
0
F
id  
1
F
id  
2
E
r r 0  
C
h
Id  
0
C
h
Id  
1
C
h
Id  
2
C
m
d
0
C
m
d
1
C
m
d
2
C
m
d
3
C m d 4  
Packet Frame Header  
Data Lo-Byte  
Cmd Response (copy from read request)  
UART Frame 4  
UART Frame 5  
Srt D8 D9 D10 D11 D12 D13 D14 D15 Stp Srt  
Data Hi-Byte  
0
0
X0 X1 X2 X3 X4 X5 Stp idle  
XCRC  
Stuff Stuff  
Figure 6.2.4.12-1: Response to Read Register Command Packet Frame  
6.2.4.13 Transfer PSI5 Data  
Incoming PSI5 data frames are processed and transmitted to the μController in UART frames.  
The sequence includes 3 - 6 UART frames, depending on the length of the corresponding PSI5 frame.  
Example: Frame configuration for minimum packet frame (according to v1.3):  
UART Frame 1: Channel Identifier ChId[2:0]; Frame Identifier Fid[2:0]; Error bits Err[1:0]  
UART Frame 2: Data bits D[7:0]  
UART Frame 3: Parity; Stuffing bit Stuff; 6bit checksum XCRC[5:0]  
UART Frame 1  
UART Frame 2  
UART Frame 3  
X0 X1 X2 X3 X4 X5 Stp idle  
Srt ChId0 ChId1 ChId2 Fid0 Fid1 Fid2 Err0 Err1 Stp Srt D0 D1 D2 D3 D4 D5 D6 D7 Stp Srt Parity  
0
idle  
Packet Frame Header  
PSI5 Message  
Stuff  
XCRC  
Figure 6.2.4.13-1: Example: Upload PSI5 Data Minimum Packet Frame  
Example: Frame configuration for maximum Packet Frame (according to v2.0):  
UART Frame 1: Channel Identifier ChId[2:0]; Frame Identifier Fid[2:0]; Error bits Err[1:0]  
UART Frame 2: Data bits D[7:0]  
UART Frame 3: Data bits D[15:8]  
UART Frame 4: Data bits D[23:16]  
UART Frame 5: Data bits D[27:24]; 3bit checksum C[2:0]; Stuffing bit Stuff  
UART Frame 6: Stuffing bits Stuff[1:0]; 6bit checksum XCRC[5:0]  
UART Frame 1  
UART Frame 2  
UART Frame 3  
Srt ChId0 ChId1 ChId2 Fid0 Fid1 Fid2 Err0 Err1 Stp Srt D0 D1 D2 D3 D4 D5 D6 D7 Stp Srt D8 D9 D10 D11 D12 D13 D14 D15 Stp  
idle  
Packet Frame Header  
UART Frame 4  
PSI5 Message  
UART Frame 5  
PSI5 Message  
UART Frame 6  
Srt D16 D17 D18 D19 D20 D21 D22 D23 Stp Srt D24 D25 D26 D27 C2 C1 C0  
0
Stp Srt  
0
0
X0 X1 X2 X3 X4 X5 Stp idle  
PSI5 Message  
PSI5 Message  
XCRC  
Stuff  
Stuff Stuff  
Figure 6.2.4.13-2: Example: Upload PSI5 Data Maximum Packet Frame  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
56 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Following table shows the bit configuration of UART Frame 1 including ChId, Fid and Err bits.  
Table 6.2.4.13-1: PSI5 Data UART Frame1 Bit Configuration  
PSI5 data: Configuration of UART Frame 1  
Identifier for channel0 (diagnosis)  
Identifier for channel1  
Error bits  
xx  
Frame ID  
xxx  
Channel ID  
000  
001  
010  
011  
100  
xxx  
xxx  
xxx  
xxx  
xxx  
xxx  
xxx  
xxx  
xxx  
xxx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
00  
01  
10  
11  
xxx  
xxx  
xxx  
xxx  
000  
001  
010  
011  
100  
101  
xxx  
xxx  
xxx  
xxx  
Identifier for channel2  
Identifier for channel3  
Identifier for channel4  
Identifier for frame1  
Identifier for frame2  
Identifier for frame3  
Identifier for frame4  
Identifier for frame5  
Identifier for frame6  
Error bit - no error  
Error bit - Interface error  
Error bit - ASIC error  
Error bit - Interface + ASIC error  
6.2.5 XCRC[5:0] Calculation  
A 6-bit XCRC for error detection is calculated and added at the last UART/SPI frame, transferred from transceiver  
to C at pin SDO_TXD, for the defined packet frames.  
The generator polynomial of the six bit CRC is g(x) = + 1 with a binary CRC initialization value "010101".  
μ
+
+
The transmitter extends the data bits by six zeros (= XCRC default condition) as shown in the figures above. This  
augmented data word is fed (LSB first) into the shift registers of the CRC generator.  
C0  
T
C1  
T
C2  
T
C3  
T
C4  
T
C5  
T
Input data  
1*1  
+
0*X  
+
0*X2  
+
1*X3  
+
1*X4  
+
0*X5  
+
1*X6  
= 1 + X3 + X4 + X6  
Figure 6.2.5-1: XCRC-calculation for SPI frames  
UART Packet Frames:  
The sequence of bit shift into the register for the CRC calculation is shown in below, starting with LSB first. The  
number of stuffing bits varies with the payload (not shown in the figures below).  
1. Transfer PSI5 Data  
LSB  
x
MSB  
x x  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
0
x
x
x
x
D0 D1 D2 …… Dn-2 Dn-1 C2 C1 C0  
….  
X0  
X5  
Channel ID  
Frame ID  
Error bits  
PSI5 frame data P/CRC  
Stuffing  
XCRC; default = zeros  
Figure 6.2.5-2: XCRC: Example Transfer PSI5 Data  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
57 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
2. Response to Read Register Command  
LSB  
MSB  
0
0
0
0
0
0
0
x
0
0
Channel ID  
0
0
1
0
Cmd  
0
0
x
x
x
x
x
x
0
0
x
x
x
x
x
x
D0 D1 D2 …… D14 D15  
register data  
X0  
X5  
Channel ID  
Frame ID  
Error bits  
Stuffing  
XCRC; default = zeros  
Cmd Response (copy from read request)  
Figure 6.2.5-3: XCRC: Example Response to Read Command  
SPI Packet Frames:  
The sequence is done in the similar way than for UART Packet frames, except  
Starting with MSB first  
Changed payload (e.g. additional Buffer ID, SYNC_LONG bits)  
Example Read Sensor Data 24bit:  
LSB  
MSB  
x x  
0
0
0
0
0
0
0
x
0
0
0
Channel ID  
0
1
0
Cmd  
0
0
x
x
x
x
x
x
0
0
x
x
x
x
D0 D1 D2 …… D14 D15  
register data  
X0  
X5  
Channel ID  
Frame ID  
Error bits  
Stuffing  
XCRC; default = zeros  
Cmd Response (copy from read request)  
Figure 6.2.5-4: XCRC Example Read Sensor Data 24bit  
6.2.6 CONFIGURATION  
6.2.6.1 ASIC Configuration  
The device can be configured and maintained with configuration, diagnosis and error registers.  
Every register contains 16 bits, so only 16 bit read/write requests are processed.  
Any of the four device channels can be configured independently by writing the read/write (R/W) configuration  
registers ASIC_CNFG_1, ASIC_CNFG_2 and ASIC_CNFG_3.  
The following parameters can be modified per channel:  
current threshold for the data comparator (ΔIs_CHx)  
sync sustain voltage V3 (VSYNC_V3_CHx)  
channel configuration of synchronous / asynchronous mode (ASYNC_CHx)  
PSI5 bit time [kbps] / Baud rate per channel (PSI5_BIT_TIME_CHx)  
enabling of interfaces SIF_CHx (EN_CHx)  
The detailed settings are described in the register table below:  
Table 6.2.6.1-1: ASIC CONFIGURATION  
Register Name  
ASIC_CNFG_1  
ASIC_CNFG_2  
ASIC_CNFG_3  
Address  
0x00  
Description  
ASIC Configuration Register 1  
ASIC Configuration Register 2  
ASIC Configuration Register 3  
0x01  
0x02  
Reading of unused bits will always return '0' and writing of unused bits don't care. Writing of read-only- or read-on  
clear-registers, don't care. For SPI accesses the response via SDO_TXD is the echo of the write request (identic-  
ally behaviour than for write on read/write-registers).  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
58 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Table 6.2.6.1-2: Register ASIC_CNFG_1 (0x00) ASIC Configuration Register 1  
MSB  
LSB  
Content  
CNFG -  
_LOC  
K
-
-
MCD_DATA_ VSYN VSYN VSYN VSYN  
CMP_W[1:0] C_V3 C_V3 C_V3 C_V3 H4  
_CH4 _CH3 _CH2 _CH1  
Δ
IS_C  
Δ
IS_C  
Δ
IS_C  
Δ
IS_C V_BUS[1:0]  
H3  
H2  
H1  
Reset value  
Access  
0
0
0
0
00  
0
0
0
0
0
0
0
0
00  
R/W  
R
R
R
R/W  
R/W R/W R/W R/W R/W R/W R/W R/W R/W  
Bit Description  
CNFG_LOCK : lock bit for configuration registers  
0b0: registers ASIC_CNFG_1 and ASIC_CNFG_2 are not locked, an update is possible  
0b1: registers ASIC_CNFG_1 and ASIC_CNFG_2 are locked, no update possible (exception: The 2nd SW_reset com-  
mand resets the lock and allows this two registers to be updated)  
MCD_DATA_CMP_W[1:0] : Manchester data compare window setting  
0b00: DATA_EDGE = 18 clock counts (low sensitive) & COMPENSATION_WINDOW = 23 clock counts  
@4MHz: DATA_E=(18*250ns = 4.5us; CMP=23*250ns=5.75us; => Total=10.25us  
@6MHz: DATA_E=18*167ns = 3us; CMP=23*167ns=3.83us; => Total = 6.83us  
0b01: DATA_EDGE = 12 clock counts (low sensitive) & COMPENSATION_WINDOW = 26 clock counts  
@4MHz: DATA_E=12*250ns = 3us; CMP=26*250ns=6.5us; => Total=9.5us  
@6MHz: DATA_E=12*167ns = 2us; CMP=26*167ns=4.33us; => Total = 6.33us  
0b10: DATA_EDGE = 8 clock counts (low sensitive) & COMPENSATION_WINDOW = 28 clock counts  
@4MHz: DATA_E=8*250ns = 2us; CMP=28*250ns=7us; => Total=9us  
@6MHz: DATA_E=8*167ns = 1.33us; CMP=28*167ns=4.67us; => Total = 6us  
VSYNC_V3_CH4 : sync sustain voltage V3 (VSYNC_V3_CHx)  
0b0: V3 = 4.8V typical (common mode)  
0b1: V3 = 3.7V typical (low power mode)  
VSYNC_V3_CH3 : sync sustain voltage V3 (VSYNC_V3_CHx)  
0b0: V3 = 4.8V typical (common mode)  
0b1: V3 = 3.7V typical (low power mode)  
VSYNC_V3_CH2 : sync sustain voltage V3 (VSYNC_V3_CHx)  
0b0: V3 = 4.8V typical (common mode)  
0b1: V3 = 3.7V typical (low power mode)  
VSYNC_V3_CH1 : sync sustain voltage V3 (VSYNC_V3_CHx)  
0b0: V3 = 4.8V typical (common mode)  
0b1: V3 = 3.7V typical (low power mode)  
IS_CH4 : current threshold for the data comparator (  
Δ
Δ
Δ
Δ
Is_CHx)  
Is_CHx)  
Is_CHx)  
Is_CHx)  
0b0:  
0b1:  
Δ
IS = 26mA  
IS = 13mA  
Δ
IS_CH3 : current threshold for the data comparator (  
0b0:  
0b1:  
Δ
IS = 26mA  
IS = 13mA  
Δ
IS_CH2 : current threshold for the data comparator (  
0b0:  
0b1:  
Δ
IS = 26mA  
IS = 13mA  
Δ
IS_CH1 : current threshold for the data comparator (  
0b0:  
0b1:  
Δ
IS = 26mA  
IS = 13mA  
Δ
V_BUS[1:0] : VBUS selection  
0b00: LDO disabled; VBUS must be supplied externaly  
0b01: VBUS = 5.15V  
0b10: VBUS = 6.65V  
0b11: VBUS = 7.7V  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
59 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Table 6.2.6.1-3: Register ASIC_CNFG_2 (0x01) ASIC Configuration Register 2  
MSB  
LSB  
Content  
-
-
UART_IDLE_TIME[3:0]  
REV_ IDAC_ PSI5_ PSI5_ PSI5_ PSI5_ ASYN ASYN ASYN ASYN  
CUR_ RES BIT_TI BIT_TI BIT_TI BIT_TI C_CH C_CH C_CH C_CH  
CH_DI  
S
ME_C ME_C ME_C ME_C 4  
H2  
3
2
1
H4  
H3  
H1  
Reset value  
Access  
0
0
0000  
R/W  
0
0
0
0
0
0
0
0
0
0
R
R
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
Bit Description  
UART_IDLE_TIME[3:0] : UART idle time between two consecutive UART packet frames (to enable a re-synchronization)  
0b0000: minimum idle time = DEFAULT  
0b1111: maximum idle time  
REV_CUR_CH_DIS : Disable of channels for reverse current condition  
0b0: disabled -> no switch-off of channels by IC (default)  
0b1: enabled -> switch-off dedicated channel if REV_CUR_CHx='1'  
IDAC_RES : IDAC resolution  
0b0: 300 uA per LSB (default)  
0b1: 200 uA per LSB  
PSI5_BIT_TIME_CH4 : PSI5 bit time  
0b0: bit time equal to 8us (=125kbps)  
0b1: bit time equal to 5.3us (=189kbps)  
PSI5_BIT_TIME_CH3 : PSI5 bit time  
0b0: bit time equal to 8us (=125kbps)  
0b1: bit time equal to 5.3us (=189kbps)  
PSI5_BIT_TIME_CH2 : PSI5 bit time  
0b0: bit time equal to 8us (=125kbps)  
0b1: bit time equal to 5.3us (=189kbps)  
PSI5_BIT_TIME_CH1 : PSI5 bit time  
0b0: bit time equal to 8us (=125kbps)  
0b1: bit time equal to 5.3us (=189kbps)  
ASYNC_CH4 : channel mode configuration  
0b0: channel in synchronous configuration  
0b1: channel in asynchronous configuration  
ASYNC_CH3 : channel mode configuration  
0b0: channel in synchronous configuration  
0b1: channel in asynchronous configuration  
ASYNC_CH2 : channel mode configuration  
0b0: channel in synchronous configuration  
0b1: channel in asynchronous configuration  
ASYNC_CH1 : channel mode configuration  
0b0: channel in synchronous configuration  
0b1: channel in asynchronous configuration  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
60 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Table 6.2.6.1-4: Register ASIC_CNFG_3 (0x02) ASIC Configuration Register 3  
MSB  
LSB  
Content  
-
BL_C BL_C BL_C BL_C GEN_ EN_LOOP[2:0]  
HAN- HAN- HAN- HAN- FUSE  
NEL4 NEL3 NEL2 NEL1 _RD  
EN_C EN_U EN_U EN_C EN_C EN_C EN_C  
H2  
NC  
P_SY ART_ ART_ H4  
TXD_ RXD_  
PAR- PAR-  
H3  
H1  
ITY  
ITY  
Reset value  
Access  
0
0
0
0
0
0
000  
0
1
0
0
0
0
0
R
R
R
R
R
R/W R/W  
R/W R/W R/W R/W R/W R/W R/W  
Bit Description  
BL_CHANNEL4 : blanking time of MCD/SYNC generation/ovc after channel enable  
0=5ms  
1=10ms  
BL_CHANNEL3 : blanking time of MCD/SYNC generation/ovc after channel enable  
0=5ms  
1=10ms  
BL_CHANNEL2 : blanking time of MCD/SYNC generation/ovc after channel enable  
0=5ms  
1=10ms  
BL_CHANNEL1 : blanking time of MCD/SYNC generation/ovc after channel enable  
0=5ms  
1=10ms  
GEN_FUSE_RD : Start fuse read out via UART/SPI  
0b0: no fuse read out  
0b1: start additional fuse read out  
EN_LOOP[2:0] : enable channel in loop back test mode  
0b000: all Channel in normal operation  
0b001: Channel1 loop back test mode enabled  
0b010: Channel2 loop back test mode enabled  
0b011: Channel3 loop back test mode enabled  
0b100: Channel4 loop back test mode enabled  
EN_CP_SYNC : Enable Sync pulse charge pump  
0b0:disabled  
0b1:enabled  
EN_UART_TXD_PARITY : Enable parity bit addition for UART Tx frames  
0b0:disabled  
0b1:enabled  
EN_UART_RXD_PARITY : Enable parity check for UART received frames  
0b0:disabled  
0b1:enabled  
EN_CH4 : Enable Interface SIFx  
0b0: Disable PSI5 Interface  
0b1: Enable PSI5 Interface  
EN_CH3 : Enable Interface SIFx  
0b0: Disable PSI5 Interface  
0b1: Enable PSI5 Interface  
EN_CH2 : Enable Interface SIFx  
0b0: Disable PSI5 Interface  
0b1: Enable PSI5 Interface  
EN_CH1 : Enable Interface SIFx  
0b0: Disable PSI5 Interface  
0b1: Enable PSI5 Interface  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
61 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.2.6.1.1 Asynchronous mode  
Note: Only one sensor allowed per SIFx.  
With enable of SIFx via configuration register ASIC_CNFG_3[EN_CHx], the sensor is supplied with voltage VSIFx  
and starts to transmit PSI5 sensor frames.  
For received frames, the implemented Manchester decoder adds to each valid frame the Fid ="0b001".  
For UART interface, the Packet frame is transferred to uC automatically. With appropriate UART baud rate, the IC  
transmits the data to the uC without any overwriting.  
For SPI interface, the decoded frame is available in BID[0] of SPI data buffer. The uC has to ensure to read BID[0]  
before a new PSI5 frame is decoded; otherwise it's overwritten.  
6.2.6.2 Timeslot Configuration  
For every channel there are seven configuration registers available to configure the following parameters:  
six independent configurable PSI5 timeslots  
timeslot length  
frame length  
parity or crc selection  
error check enabling  
desired delay of sync pulse generation  
mandatory buffer for SPI access Details are described in the following register table.  
Table 6.2.6.2-1: CHANNEL_CONFIGURATION  
Register Name  
CH1_CFG1  
CH1_CFG2  
CH1_CFG3  
CH1_CFG4  
CH1_CFG5  
CH1_CFG6  
CH1_CFG7  
CH2_CFG1  
CH2_CFG2  
CH2_CFG3  
CH2_CFG4  
CH2_CFG5  
CH2_CFG6  
CH2_CFG7  
CH3_CFG1  
CH3_CFG2  
CH3_CFG3  
CH3_CFG4  
CH3_CFG5  
CH3_CFG6  
CH3_CFG7  
Address  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
Description  
Channel 1 Configuration Register 1  
Channel 1 Configuration Register 2  
Channel 1 Configuration Register 3  
Channel 1 Configuration Register 4  
Channel 1 Configuration Register 5  
Channel 1 Configuration Register 6  
Channel 1 Configuration Register 7  
Channel 2 Configuration Register 1  
Channel 2 Configuration Register 2  
Channel 2 Configuration Register 3  
Channel 2 Configuration Register 4  
Channel 2 Configuration Register 5  
Channel 2 Configuration Register 6  
Channel 2 Configuration Register 7  
Channel 3 Configuration Register 1  
Channel 3 Configuration Register 2  
Channel 3 Configuration Register 3  
Channel 3 Configuration Register 4  
Channel 3 Configuration Register 5  
Channel 3 Configuration Register 6  
Channel 3 Configuration Register 7  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
62 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Register Name  
CH4_CFG1  
CH4_CFG2  
CH4_CFG3  
CH4_CFG4  
CH4_CFG5  
CH4_CFG6  
CH4_CFG7  
Address  
0x18  
Description  
Channel 4 Configuration Register 1  
0x19  
Channel 4 Configuration Register 2  
Channel 4 Configuration Register 3  
Channel 4 Configuration Register 4  
Channel 4 Configuration Register 5  
Channel 4 Configuration Register 6  
Channel 4 Configuration Register 7  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
It is highly recommended, not to change the registers CHX_CFG1(IDAC_CNT_MODE, IDAC_CNT_INC2[1:0],  
IDAC_CNT_INC1[1:0]) and CHX_CFG2(IDAC_CNT_DEC2[1:0], IDAC_CNT_DEC1[1:0]) since these registers  
control the Ibase tracking function!  
Table 6.2.6.2-2: Register CH1_CFG1 (0x03) Channel 1 Configuration Register 1  
MSB  
LSB  
Content  
IDAC_ IDAC_CNT_I IDAC_CNT_I EN_E T1_C TS1_FLEN[4:0]  
R_CH RC  
K
T1_LEN[3:0]  
CNT_ NC2[1:0]  
MODE  
NC1[1:0]  
Reset value  
Access  
0
00  
00  
0
0
00011  
0100  
R/W  
R/W R/W  
R/W  
R/W R/W R/W  
Bit Description  
IDAC_CNT_MODE : reserved  
IDAC_CNT_INC2[1:0] : reserved  
IDAC_CNT_INC1[1:0] : reserved  
EN_ER_CHK : Enable parity/CRC check functionality  
0b0: disable functionality  
0b1: enable functionality  
T1_CRC : PSI5 frame error detection mode of frames starting in timeslot 1  
0b0: PSI5 Sensor in parity mode  
0b1: PSI5 Sensor in CRC mode  
TS1_FLEN[4:0] : PSI5 frame length of frames starting in timeslot 1  
frame length includes start bit + data + parity/crc  
[TSx_FLEN]16 = [Frame length]10 - [10]10  
0x0 = bit length of zero (=no frame)  
0x01 - 0x17: Frame length => [11..33] 0x18 - 0x1F: reserved  
Default: P10P (Airbag) = 2 + 10 + 1 = 13->0x3  
T1_LEN[3:0] : Timeslot 1 Length  
0b_nnnn: nnnn x 32 us => [0us..480us]  
Default: t = 4*32us = 128us  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
63 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Table 6.2.6.2-3: Register CH1_CFG2 (0x04) Channel 1 Configuration Register 2  
MSB  
LSB  
Content  
-
IDAC_CNT_D IDAC_CNT_D EN_E T2_C TS2_FLEN[4:0]  
R_CH RC  
K
T2_LEN[3:0]  
EC2[1:0]  
EC1[1:0]  
Reset value  
Access  
0
01  
01  
0
0
00011  
0101  
R/W  
R/W R/W  
R/W  
R/W R/W R/W  
Bit Description  
IDAC_CNT_DEC2[1:0] : reserved  
IDAC_CNT_DEC1[1:0] : reserved  
EN_ER_CHK : Enable parity/CRC check functionality  
0b0: disable functionality  
0b1: enable functionality  
T2_CRC : PSI5 frame error detection mode of frames starting in timeslot 2  
0b0: PSI5 Sensor in parity mode  
0b1: PSI5 Sensor in CRC mode  
TS2_FLEN[4:0] : PSI5 frame length of frames starting in timeslot 2  
frame length includes start bit + data + parity/crc  
[TSx_FLEN]16 = [Frame length]10 - [10]10  
0x0 = bit length of zero (=no frame)  
0x01 - 0x17: Frame length => [11..33] 0x18-0x1F:reserved Default: P10P (Airbag) = 2 + 10 + 1 = 13->0x3  
T2_LEN[3:0] : Timeslot 2 Length  
0b_nnnn: nnnn x 32 us => [0us..480us]  
Default: t = 5*32us = 160us  
Table 6.2.6.2-4: Register CH1_CFG3 (0x05) Channel 1 Configuration Register 3  
MSB  
LSB  
Content  
-
-
-
-
-
EN_E T3_C TS3_FLEN[4:0]  
R_CH RC  
K
T3_LEN[3:0]  
Reset value  
Access  
0
0
0
0
0
0
0
00011  
0101  
R/W  
R/W R/W R/W R/W R/W R/W R/W R/W  
Bit Description  
EN_ER_CHK : Enable parity/CRC check functionality  
0b0: disable functionality  
0b1: enable functionality  
T3_CRC : PSI5 frame error detection mode of frames starting in timeslot 3  
0b0: PSI5 Sensor in parity mode  
0b1: PSI5 Sensor in CRC mode  
TS3_FLEN[4:0] : PSI5 frame length of frames starting in timeslot 3  
frame length includes start bit + data + parity/crc  
[TSx_FLEN]16 = [Frame length]10 - [10]10  
0x0 = bit length of zero (=no frame)  
0x01 - 0x17: Frame length => [11..33]  
0x18 - 0x1F: reserved  
Default: P10P (Airbag) = 2 + 10 + 1 = 13->0x3  
T3_LEN[3:0] : Timeslot 3 Length  
0b_nnnn: nnnn x 32 us => [0us..480us]  
Default: t = 5*32us = 160us  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
64 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Table 6.2.6.2-5: Register CH1_CFG4 (0x06) Channel 1 Configuration Register 4  
MSB  
LSB  
Content  
-
-
-
-
-
EN_E T4_C TS4_FLEN[4:0]  
R_CH RC  
K
T4_LEN[3:0]  
Reset value  
Access  
0
0
0
0
0
0
0
00000  
0000  
R/W  
R/W R/W R/W R/W R/W R/W R/W R/W  
Bit Description  
EN_ER_CHK : Enable parity/CRC check functionality  
0b0: disable functionality  
0b1: enable functionality  
T4_CRC : PSI5 frame error detection mode of frames starting in timeslot 4  
0b0: PSI5 Sensor in parity mode  
0b1: PSI5 Sensor in CRC mode  
TS4_FLEN[4:0] : PSI5 frame length of frames starting in timeslot 4  
frame length includes start bit + data + parity/crc  
[TSx_FLEN]16 = [Frame length]10 - [10]10  
0x0 = bit length of zero (=no frame)  
0x01 - 0x17: Frame length => [11..33]  
0x18-0x1F:reserved Default: = 0  
T4_LEN[3:0] : Timeslot 4 Length  
0b_nnnn: nnnn x 32 us => [0us..480us]  
Default: t = 0*32us = 0us  
Table 6.2.6.2-6: Register CH1_CFG5 (0x07) Channel 1 Configuration Register 5  
MSB  
LSB  
Content  
-
-
-
-
-
EN_E T5_C TS5_FLEN[4:0]  
R_CH RC  
K
T5_LEN[3:0]  
Reset value  
Access  
0
0
0
0
0
0
0
00000  
0000  
R/W  
R/W R/W R/W R/W R/W R/W R/W R/W  
Bit Description  
EN_ER_CHK : Enable parity/CRC check functionality  
0b0: disable functionality  
0b1: enable functionality  
T5_CRC : PSI5 frame error detection mode of frames starting in timeslot 5  
0b0: PSI5 Sensor in parity mode  
0b1: PSI5 Sensor in CRC mode  
TS5_FLEN[4:0] : PSI5 frame length of frames starting in timeslot 5  
frame length includes start bit + data + parity/crc  
[TSx_FLEN]16 = [Frame length]10 - [10]10  
0x0 = bit length of zero (=no frame)  
0x01 - 0x17: Frame length => [11..33]  
0x18 - 0x1F: reserved  
Default: = 0  
T5_LEN[3:0] : Timeslot 5 Length  
0b_nnnn: nnnn x 32 us => [0us..480us]  
Default: t = 0*32us = 0us  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
65 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Table 6.2.6.2-7: Register CH1_CFG6 (0x08) Channel 1 Configuration Register 6  
MSB  
LSB  
Content  
-
-
-
-
-
EN_E T6_C TS6_FLEN[4:0]  
R_CH RC  
K
T6_LEN[3:0]  
Reset value  
Access  
0
0
0
0
0
0
0
00000  
0000  
R/W  
R/W R/W R/W R/W R/W R/W R/W R/W  
Bit Description  
EN_ER_CHK : Enable parity/CRC check functionality  
0b0: disable functionality  
0b1: enable functionality  
T6_CRC : PSI5 frame error detection mode of frames starting in timeslot 6  
0b0: PSI5 Sensor in parity mode  
0b1: PSI5 Sensor in CRC mode  
TS6_FLEN[4:0] : PSI5 frame length of frames starting in timeslot 6  
frame length includes start bit + data + parity/crc  
[TSx_FLEN]16 = [Frame length]10 - [10]10  
0x0 = bit length of zero (=no frame)  
0x01 - 0x17: Frame length => [11..33]  
0x18-0x1F:reserved Default:= 0  
T6_LEN[3:0] : Timeslot 6 Length  
0b_nnnn: nnnn x 32 us => [0us..480us]  
Default: t = 0*32us = 0us  
Table 6.2.6.2-8: Register CH1_CFG7 (0x09) Channel 1 Configuration Register 7  
MSB  
LSB  
Content  
-
-
-
-
SPI_BUF-  
FER_CNFG[1  
:0]  
SYNC_DLY[9:0]  
Reset value  
Access  
0
0
0
0
11  
0000  
R/W  
R/W R/W R/W R/W R/W  
Bit Description  
SPI_BUFFER_CNFG[1:0] : SPI buffer (=96bit) configuration  
0b00: 48bit/buffer;2 partial buffers; Buffer identifiers[0,1]  
0b01: 32bit/buffer;3 partial buffers; Buffer identifiers[0,1,2]  
0b10: 24bit/buffer;4 partial buffers; Buffer identifiers[0,1,2,3]  
0b11: 16bit/buffer;6 partial buffers; Buffer identifiers[0,1,2,3,4,5](=default)  
SYNC_DLY[9:0] : Sync pulse delay  
0xnnn: nnn x 8/fCLK_INT =>[0us..682us]  
Table 6.2.6.2-9: Register CH2_CFG1 (0x0A) Channel 2 Configuration Register 1  
MSB  
LSB  
Content  
IDAC_ IDAC_CNT_I IDAC_CNT_I EN_E T1_C TS1_FLEN[4:0]  
R_CH RC  
K
T1_LEN[3:0]  
CNT_ NC2[1:0]  
MODE  
NC1[1:0]  
Reset value  
Access  
0
00  
00  
0
0
00011  
0100  
R/W  
R/W R/W  
R/W  
R/W R/W R/W  
Bit Description  
IDAC_CNT_MODE : reserved  
IDAC_CNT_INC2[1:0] : reserved  
IDAC_CNT_INC1[1:0] : reserved  
EN_ER_CHK : see CH1_CFG1  
T1_CRC : see CH1_CFG1  
TS1_FLEN[4:0] : see CH1_CFG1  
T1_LEN[3:0] : see CH1_CFG1  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
66 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Table 6.2.6.2-10: Register CH2_CFG2 (0x0B) Channel 2 Configuration Register 2  
MSB  
LSB  
Content  
-
IDAC_CNT_D IDAC_CNT_D EN_E T2_C TS2_FLEN[4:0]  
R_CH RC  
K
T2_LEN[3:0]  
EC2[1:0]  
EC1[1:0]  
Reset value  
Access  
0
01  
01  
0
0
00011  
0101  
R/W  
R/W R/W  
R/W  
R/W R/W R/W  
Bit Description  
IDAC_CNT_DEC2[1:0] : reserved  
IDAC_CNT_DEC1[1:0] : reseved  
EN_ER_CHK : see CH1_CFG2  
T2_CRC : see CH1_CFG2  
TS2_FLEN[4:0] : see CH1_CFG2  
T2_LEN[3:0] : see CH1_CFG2  
Table 6.2.6.2-11: Register CH2_CFG3 (0x0C) Channel 2 Configuration Register 3  
MSB  
LSB  
Content  
-
-
-
-
-
EN_E T3_C TS3_FLEN[4:0]  
R_CH RC  
K
T3_LEN[3:0]  
Reset value  
Access  
0
0
0
0
0
0
0
00011  
0101  
R/W  
R/W R/W R/W R/W R/W R/W R/W R/W  
Bit Description  
EN_ER_CHK : see CH1_CFG3  
T3_CRC : see CH1_CFG3  
TS3_FLEN[4:0] : see CH1_CFG3  
T3_LEN[3:0] : see CH1_CFG3  
Table 6.2.6.2-12: Register CH2_CFG4 (0x0D) Channel 2 Configuration Register 4  
MSB  
LSB  
Content  
-
-
-
-
-
EN_E T4_C TS4_FLEN[4:0]  
R_CH RC  
K
T4_LEN[3:0]  
Reset value  
Access  
0
0
0
0
0
0
0
00000  
0000  
R/W  
R/W R/W R/W R/W R/W R/W R/W R/W  
Bit Description  
EN_ER_CHK : see CH1_CFG4  
T4_CRC : see CH1_CFG4  
TS4_FLEN[4:0] : see CH1_CFG4  
T4_LEN[3:0] : see CH1_CFG4  
Table 6.2.6.2-13: Register CH2_CFG5 (0x0E) Channel 2 Configuration Register 5  
MSB  
LSB  
Content  
-
-
-
-
-
EN_E T5_C TS5_FLEN[4:0]  
R_CH RC  
K
T5_LEN[3:0]  
Reset value  
Access  
0
0
0
0
0
0
0
00000  
0000  
R/W  
R/W R/W R/W R/W R/W R/W R/W R/W  
Bit Description  
EN_ER_CHK : see CH1_CFG5  
T5_CRC : see CH1_CFG5  
TS5_FLEN[4:0] : see CH1_CFG5  
T5_LEN[3:0] : see CH1_CFG5  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
67 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Table 6.2.6.2-14: Register CH2_CFG6 (0x0F) Channel 2 Configuration Register 6  
MSB  
LSB  
Content  
-
-
-
-
-
EN_E T6_C TS6_FLEN[4:0]  
R_CH RC  
K
T6_LEN[3:0]  
Reset value  
Access  
0
0
0
0
0
0
0
00000  
0000  
R/W  
R/W R/W R/W R/W R/W R/W R/W R/W  
Bit Description  
EN_ER_CHK : see CH1_CFG6  
T6_CRC : see CH1_CFG6  
TS6_FLEN[4:0] : see CH1_CFG6  
T6_LEN[3:0] : see CH1_CFG6  
Table 6.2.6.2-15: Register CH2_CFG7 (0x10) Channel 2 Configuration Register 7  
MSB  
LSB  
Content  
-
-
-
-
SPI_BUF-  
FER_CNFG[1  
:0]  
SYNC_DLY[9:0]  
Reset value  
Access  
0
0
0
0
11  
0000  
R/W  
R/W R/W R/W R/W R/W  
Bit Description  
SPI_BUFFER_CNFG[1:0] : see CH1_CFG7  
SYNC_DLY[9:0] : see CH1_CFG7  
Table 6.2.6.2-16: Register CH3_CFG1 (0x11) Channel 3 Configuration Register 1  
MSB  
LSB  
Content  
IDAC_ IDAC_CNT_I IDAC_CNT_I EN_E T1_C TS1_FLEN[4:0]  
R_CH RC  
K
T1_LEN[3:0]  
CNT_ NC2[1:0]  
MODE  
NC1[1:0]  
Reset value  
Access  
0
00  
00  
0
0
00011  
0100  
R/W  
R/W R/W  
R/W  
R/W R/W R/W  
Bit Description  
IDAC_CNT_MODE : reserved  
IDAC_CNT_INC2[1:0] : reserved  
IDAC_CNT_INC1[1:0] : reserved  
EN_ER_CHK : see CH1_CFG1  
T1_CRC : see CH1_CFG1  
TS1_FLEN[4:0] : see CH1_CFG1  
T1_LEN[3:0] : see CH1_CFG1  
Table 6.2.6.2-17: Register CH3_CFG2 (0x12) Channel 3 Configuration Register 2  
MSB  
LSB  
Content  
-
IDAC_CNT_D IDAC_CNT_D EN_E T2_C TS2_FLEN[4:0]  
R_CH RC  
K
T2_LEN[3:0]  
EC2[1:0]  
EC1[1:0]  
Reset value  
Access  
0
01  
01  
0
0
00011  
0101  
R/W  
R/W R/W  
R/W  
R/W R/W R/W  
Bit Description  
IDAC_CNT_DEC2[1:0] : reserved  
IDAC_CNT_DEC1[1:0] : reserved  
EN_ER_CHK : see CH1_CFG2  
T2_CRC : see CH1_CFG2  
TS2_FLEN[4:0] : see CH1_CFG2  
T2_LEN[3:0] : see CH1_CFG2  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
68 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Table 6.2.6.2-18: Register CH3_CFG3 (0x13) Channel 3 Configuration Register 3  
MSB  
LSB  
Content  
-
-
-
-
-
EN_E T3_C TS3_FLEN[4:0]  
R_CH RC  
K
T3_LEN[3:0]  
Reset value  
Access  
0
0
0
0
0
0
0
00011  
0101  
R/W  
R/W R/W R/W R/W R/W R/W R/W R/W  
Bit Description  
EN_ER_CHK : see CH1_CFG3  
T3_CRC : see CH1_CFG3  
TS3_FLEN[4:0] : see CH1_CFG3  
T3_LEN[3:0] : see CH1_CFG3  
Table 6.2.6.2-19: Register CH3_CFG4 (0x14) Channel 3 Configuration Register 4  
MSB  
LSB  
LSB  
LSB  
Content  
-
-
-
-
-
EN_E T4_C TS4_FLEN[4:0]  
R_CH RC  
K
T4_LEN[3:0]  
Reset value  
Access  
0
0
0
0
0
0
0
00000  
0000  
R/W  
R/W R/W R/W R/W R/W R/W R/W R/W  
Bit Description  
EN_ER_CHK : see CH1_CFG4  
T4_CRC : see CH1_CFG4  
TS4_FLEN[4:0] : see CH1_CFG4  
T4_LEN[3:0] : see CH1_CFG4  
Table 6.2.6.2-20: Register CH3_CFG5 (0x15) Channel 3 Configuration Register 5  
MSB  
Content  
-
-
-
-
-
EN_E T5_C TS5_FLEN[4:0]  
R_CH RC  
K
T5_LEN[3:0]  
Reset value  
Access  
0
0
0
0
0
0
0
00000  
0000  
R/W  
R/W R/W R/W R/W R/W R/W R/W R/W  
Bit Description  
EN_ER_CHK : see CH1_CFG5  
T5_CRC : see CH1_CFG5  
TS5_FLEN[4:0] : see CH1_CFG5  
T5_LEN[3:0] : see CH1_CFG5  
Table 6.2.6.2-21: Register CH3_CFG6 (0x16) Channel 3 Configuration Register 6  
MSB  
Content  
-
-
-
-
-
EN_E T6_C TS6_FLEN[4:0]  
R_CH RC  
K
T6_LEN[3:0]  
Reset value  
Access  
0
0
0
0
0
0
0
00000  
0000  
R/W  
R/W R/W R/W R/W R/W R/W R/W R/W  
Bit Description  
EN_ER_CHK : see CH1_CFG6  
T6_CRC : see CH1_CFG6  
TS6_FLEN[4:0] : see CH1_CFG6  
T6_LEN[3:0] : see CH1_CFG6  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
69 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Table 6.2.6.2-22: Register CH3_CFG7 (0x17) Channel 3 Configuration Register 7  
MSB  
LSB  
Content  
-
-
-
-
SPI_BUF-  
FER_CNFG[1  
:0]  
SYNC_DLY[9:0]  
Reset value  
Access  
0
0
0
0
11  
0000  
R/W  
R/W R/W R/W R/W R/W  
Bit Description  
SPI_BUFFER_CNFG[1:0] : see CH3_CFG7  
SYNC_DLY[9:0] : see CH3_CFG7  
Table 6.2.6.2-23: Register CH4_CFG1 (0x18) Channel 4 Configuration Register 1  
MSB  
LSB  
LSB  
LSB  
Content  
IDAC_ IDAC_CNT_I IDAC_CNT_I EN_E T1_C TS1_FLEN[4:0]  
R_CH RC  
K
T1_LEN[3:0]  
CNT_ NC2[1:0]  
MODE  
NC1[1:0]  
Reset value  
Access  
0
00  
00  
0
0
00011  
0100  
R/W  
R/W R/W  
R/W  
R/W R/W R/W  
Bit Description  
IDAC_CNT_MODE : reserved  
IDAC_CNT_INC2[1:0] : reserved  
IDAC_CNT_INC1[1:0] : reserved  
EN_ER_CHK : see CH1_CFG1  
T1_CRC : see CH1_CFG1  
TS1_FLEN[4:0] : see CH1_CFG1  
T1_LEN[3:0] : see CH1_CFG1  
Table 6.2.6.2-24: Register CH4_CFG2 (0x19) Channel 4 Configuration Register 2  
MSB  
Content  
-
IDAC_CNT_D IDAC_CNT_D EN_E T2_C TS2_FLEN[4:0]  
R_CH RC  
K
T2_LEN[3:0]  
EC2[1:0]  
EC1[1:0]  
Reset value  
Access  
0
01  
01  
0
0
00011  
0101  
R/W  
R/W R/W  
R/W  
R/W R/W R/W  
Bit Description  
IDAC_CNT_DEC2[1:0] : reserved  
IDAC_CNT_DEC1[1:0] : reserved  
EN_ER_CHK : see CH1_CFG2  
T2_CRC : see CH1_CFG2  
TS2_FLEN[4:0] : see CH1_CFG2  
T2_LEN[3:0] : see CH1_CFG2  
Table 6.2.6.2-25: Register CH4_CFG3 (0x1A) Channel 4 Configuration Register 3  
MSB  
Content  
-
-
-
-
-
EN_E T3_C TS3_FLEN[4:0]  
R_CH RC  
K
T3_LEN[3:0]  
Reset value  
Access  
0
0
0
0
0
0
0
00011  
0101  
R/W  
R/W R/W R/W R/W R/W R/W R/W R/W  
Bit Description  
EN_ER_CHK : see CH1_CFG3  
T3_CRC : see CH1_CFG3  
TS3_FLEN[4:0] : see CH1_CFG3  
T3_LEN[3:0] : see CH1_CFG3  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
70 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Table 6.2.6.2-26: Register CH4_CFG4 (0x1B) Channel 4 Configuration Register 4  
MSB  
LSB  
Content  
-
-
-
-
-
EN_E T4_C TS4_FLEN[4:0]  
R_CH RC  
K
T4_LEN[3:0]  
Reset value  
Access  
0
0
0
0
0
0
0
00000  
0000  
R/W  
R/W R/W R/W R/W R/W R/W R/W R/W  
Bit Description  
EN_ER_CHK : see CH1_CFG4  
T4_CRC : see CH1_CFG4  
TS4_FLEN[4:0] : see CH1_CFG4  
T4_LEN[3:0] : see CH1_CGF4  
Table 6.2.6.2-27: Register CH4_CFG5 (0x1C) Channel 4 Configuration Register 5  
MSB  
LSB  
LSB  
LSB  
Content  
-
-
-
-
-
EN_E T5_C TS5_FLEN[4:0]  
R_CH RC  
K
T5_LEN[3:0]  
Reset value  
Access  
0
0
0
0
0
0
0
00000  
0000  
R/W  
R/W R/W R/W R/W R/W R/W R/W R/W  
Bit Description  
EN_ER_CHK : see CH1_CFG5  
T5_CRC : see CH1_CFG5  
TS5_FLEN[4:0] : see CH1_CFG5  
T5_LEN[3:0] : see CH1_CFG5  
Table 6.2.6.2-28: Register CH4_CFG6 (0x1D) Channel 4 Configuration Register 6  
MSB  
Content  
-
-
-
-
-
EN_E T6_C TS6_FLEN[4:0]  
R_CH RC  
K
T6_LEN[3:0]  
Reset value  
Access  
0
0
0
0
0
0
0
00000  
0000  
R/W  
R/W R/W R/W R/W R/W R/W R/W R/W  
Bit Description  
EN_ER_CHK : see CH1_CFG6  
T6_CRC : see CH1_CFG6  
TS6_FLEN[4:0] : see CH1_CFG6  
T6_LEN[3:0] : see CH1_CFG6  
Table 6.2.6.2-29: Register CH4_CFG7 (0x1E) Channel 4 Configuration Register 7  
MSB  
Content  
-
-
-
-
SPI_BUF-  
FER_CNFG[1  
:0]  
SYNC_DLY[9:0]  
Reset value  
Access  
0
0
0
0
11  
0000  
R/W  
R/W R/W R/W R/W R/W  
Bit Description  
SPI_BUFFER_CNFG[1:0] : see CH1_CGF7  
SYNC_DLY[9:0] : see CH1_CGF7  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
71 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.2.6.2.1 Timeslot Length  
The timeslotx length (Bit TX_LEN) is used to assign the frame identifier (Fid) to received PSI5 frames.  
Tx_LEN is implemented as a counter. Once loaded, it's counting down to 0.  
T1_LEN is loaded with start of SYNC pulse (after SYNC_DLY has expired). If T1_LEN has expired, the following  
counter T2_LEN is loaded ... until T6_LEN has expired.  
For TSX_LEN=0x00(=no frame) the TX_LEN counter is also loaded with 0 and expires with the next 2μs clock  
cycle.  
The timeslot length (bit TX_LEN) is used to assign the frame identifier (fid) to decoded PSI5 frames. Following two  
examples based on PSI5-P10P-500/3L (Airbag), show the correlation of Fid to TX_LEN counter. The Fid is added  
to the PSI5 sensor data by the Manchester decoder (MD) once the first start bit (rising slope) is detected.  
Example 1, default configuration; T3_LEN expires within frame3.  
Figure 6.2.6.2.1-1: Example1: TxLEN Configuration  
Example 2 default configuration;T3_LEN expires after frame3;MD_UNEX_FR_CHX_FX is possible:  
Note that unexpected frame errors MD_UNEX_FR_CHx_F[4...6] are flagged if 2 valid start bits  
are decoded with 2nd start bit occures in T[4...6]_LEN (error condition, either frame too late, unexpected frame or  
TX_LEN configured wrong).  
Figure 6.2.6.2.1-2: Example2: TxLEN Configuration  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
72 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
For active Tx_LEN counter any SYNC pulse trigger is masked to prevent an abort of Tx_LEN counter. This allows a  
faster ECU-2-sensor communication w/o change of register configuration.  
The time slot ends with the last edge of the Data protocol.  
Note: Decoded Manchester data will be discarded for a SYNC pulse trigger during active Tx_LEN counter to avoid  
storage / upload of corrupted data to uC. Error will be flagged in ERROR_STATUS_x[SYNC_DATA_INV_CH1].  
With next regular SYNC trigger - after Tx_LEN counter is again in idle state - sensor data is stored / uploaded to  
uC.  
unexp.  
SYNC  
t0  
SYNC  
frame1  
frame2  
NOResetof FID dueto  
unexpectedSYNCpulse  
Fid  
0b011  
idle  
0b000  
0b001  
0b010  
Clear onread  
Flag  
SYNC_DATA_INV_CHx = '1'  
Extention possible  
until MDC in idle  
state  
'1' -> discard decoded MCD data  
Target: no storage / upload of data to µC with wrong FID  
Figure 6.2.6.2.1-3: Example2: TxLEN Configuration: Unexptected Sync Pulse  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
73 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.2.6.3 Error Registers  
There are ten error status registers available for reading, which are cleared on read (clear on read, RC).  
The following error information is available:  
MD Unexpected frame for each frame and channel  
MD No frames for each frame and channel  
MD Frame error for each frame and channel  
MD Parity error for each frame and channel  
Reverse current status of each channel  
Buffer configuration error of each channel  
Diagnosis status of each channel  
Over current status of each channel  
UART/SPI status information (invalid address, invalid command, SPI clock erreor, UART read request collision)  
Details are described in the following register table.  
Table 6.2.6.3-1: Error Status Register  
Register Name  
ERROR_STATUS_1  
ERROR_STATUS_2  
ERROR_STATUS_3  
ERROR_STATUS_4  
ERROR_STATUS_5  
ERROR_STATUS_6  
ERROR_STATUS_7  
ERROR_STATUS_8  
ERROR_STATUS_9  
ERROR_STATUS_10  
Address  
Description  
0x25  
Global ASIC errors  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
Channel errors  
Four error bits per frame (1-4) channel 1  
Four error bits per frame (5-6) channel 1 and analog errors  
Four error bits per frame (1-4)channel 2  
Four error bits per frame (5-6)channel 2 and analog errors  
Four error bits per frame (1-4)channel 3  
Four error bits per frame (5-6)channel 3 and analog errors  
Four error bits per frame (1-4)channel 4  
Four error bits per frame (5-6)channel 4 and analog errors  
Reading of unused bits will always return '0' and writing of unused bits don't care. Writing to read only or read on  
clear registers don't care. The SPI echo response to a write request is independently of register type (R/W, R, RC).  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
74 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Table 6.2.6.3-2: Register ERROR_STATUS_1 (0x25) Global ASIC errors  
MSB  
LSB  
Content  
-
-
-
-
-
-
-
-
UART VBUS DIAG_ SPI_C UART UART UART UART  
LK_E _SPI_ _SPI_I _FER _PER  
_SPI_I _OV OT  
NV_A  
DDRE  
SS  
RR  
COL- NV_C R  
MD  
R
LI-  
SION  
Reset value  
Access  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/C  
R/C  
R/C1 R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
Bit Description  
UART_SPI_INV_ADDRESS : UART/SPI address check  
0b0: valid address  
0b1: invalid address  
VBUS_OV : VBUS over voltage bit  
0b0: no over voltage; signal vbus_ov_f = 0  
0b1: over voltage; signal vbus_ov_f = 1  
DIAG_OT : Overtemperatur bit  
0b0: no overtemperature; signal i_ot = 0  
0b1: overtemperature; signal i_ot = 1  
SPI_CLK_ERR : SPI clock error  
0b0: no clock error  
0b1: SPI clock error (number of clock cycles  
16)  
UART_SPI_COLLISION : UART/SPI read request collision status latch (clear on read)  
0b0: no collision happend  
0b1: UART/SPI read request received while last read was not completed yet  
UART_SPI_INV_CMD : UART/SPI command error status latch (clear on read)  
0b0: no command error  
0b1: invalid command  
UART_FERR : UART frame error status latch (clear on read)  
0b0: no frame error seen  
0b1: frame error detected  
UART_PERR : UART parity error status latch (clear on read)  
0b0: no parity error seen  
0b1: parity error detected  
Table 6.2.6.3-3: Register ERROR_STATUS_2 (0x26) Channel errors  
MSB  
LSB  
Content  
-
-
-
-
-
-
-
-
-
-
-
-
CH_E CH_E CH_E CH_E  
RR_4 RR_3 RR_2 RR_1  
Reset value  
Access  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
Bit Description  
CH_ERR_4 : Channel 4 error status (overall)  
0b000: all bits of ERROR_STATUS_3 + ERROR_STATUS_4 are equal to '0' (= OR combination of these bits)  
0b001: number of bits with '1' of ERROR_STATUS_3 + ERROR_STATUS_4 is higher or equal to 1 (= OR combination of  
these bits)  
CH_ERR_3 : Channel 3 error status (overall)  
0b000: all bits of ERROR_STATUS_7 + ERROR_STATUS_8 are equal to '0' (= OR combination of these bits)  
0b001: number of bits with '1' of ERROR_STATUS_7 + ERROR_STATUS_8 is higher or equal to 1 (= OR combination of  
these bits)  
CH_ERR_2 : Channel 2 error status (overall)  
0b000: all bits of ERROR_STATUS_5 + ERROR_STATUS_6 are equal to '0' (= OR combination of these bits)  
0b001: number of bits with '1' of ERROR_STATUS_5 + ERROR_STATUS_6 is higher or equal to 1 (= OR combination of  
these bits)  
CH_ERR_1 : Channel 1 error status (overall)  
0b000: all bits of ERROR_STATUS_3 + ERROR_STATUS_4 are equal to '0' (= OR combination of these bits)  
0b001: number of bits with '1' of ERROR_STATUS_3 + ERROR_STATUS_4 is higher or equal to 1 (= OR combination of  
these bits)  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
75 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Table 6.2.6.3-4: Register ERROR_STATUS_3 (0x27) Four error bits per frame (1-4) channel 1  
MSB  
LSB  
Content  
MD_U MD_N MD_F MD_P MD_U MD_N MD_F MD_P MD_U MD_N MD_F MD_P MD_U MD_N MD_F MD_P  
NEX_ O_FR ERR_ ERR_ NEX_ O_FR ERR_ ERR_ NEX_ O_FR ERR_ ERR_ NEX_ O_FR ERR_ ERR_  
FR_C _CH1 FR_C FR_C FR_C _CH1 FR_C FR_C FR_C _CH1 FR_C FR_C FR_C _CH1 FR_C FR_C  
H1_F4 _F4  
H1_F4 H1_F4 H1_F3 _F3  
H1_F3 H1_F3 H1_F2 _F2  
H1_F2 H1_F2 H1_F1 _F1  
H1_F1 H1_F1  
Reset value  
Access  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
Bit Description  
MD_UNEX_FR_CH1_F4 : Manchester Decoder unexpected frame received  
0b0: no unexpected frame received  
0b1: unexpected frame received  
MD_NO_FR_CH1_F4 : Manchester Decoder no frame received (clear on read)  
0b0: frame received (in expected time slot)  
0b1: no frame received (in expected time slot)  
MD_FERR_FR_CH1_F4 : Manchester Decoder frame error status latch (clear on read)  
0b0: no frame error seen  
0b1: frame error detected  
MD_PERR_FR_CH1_F4 : Manchester Decoder Parity/CRC error status latch (clear on read)  
0b0: no parity/CRC error seen  
0b1: parity/CRC error detected  
MD_UNEX_FR_CH1_F3 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH1_F3 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH1_F3 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH1_F3 : see MD_PERR_FR_CH1_F4  
MD_UNEX_FR_CH1_F2 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH1_F2 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH1_F2 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH1_F2 : see MD_PERR_FR_CH1_F4  
MD_UNEX_FR_CH1_F1 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH1_F1 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH1_F1 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH1_F1 : see MD_PERR_FR_CH1_F4  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
76 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Table 6.2.6.3-5: Register ERROR_STATUS_4 (0x28) Four error bits per frame (5-6) channel 1 and analog errors  
MSB  
LSB  
Content  
-
-
SYNC REV_ BUFF OC_C DIAG_CH1[1: MD_U MD_N MD_F MD_P MD_U MD_N MD_F MD_P  
NEX_ O_FR ERR_ ERR_ NEX_ O_FR ERR_ ERR_  
FR_C _CH1 FR_C FR_C FR_C _CH1 FR_C FR_C  
_DAT CUR_ _ERR H1  
CH1 _CH1  
0]  
A_  
INV_C  
H1  
H1_F6 _F6  
H1_F6 H1_F6 H1_F5 _F5  
H1_F5 H1_F5  
Reset value  
Access  
0
0
0
0
0
0
00  
0
0
0
0
0
0
0
0
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
Bit Description  
SYNC_DATA_ INV_CH1 : Reverse current status of channel 1  
0b0: no SYNC pulse trigger during active Tx_LEN counter  
0b1: SYNC pulse trigger during active Tx_LEN counter occurred  
REV_CUR_CH1 : Reverse current status of channel 1  
0b0: no reverse current detected  
0b1: reverse current detected  
BUFF_ERR_CH1 : Data buffer (96bit) configuration error  
0b0: no configuration error  
0b1: configuration error  
OC_CH1 : Channel 1 over current status  
0b0: no over current  
0b1: over current  
DIAG_CH1[1:0] : Channel 1 diagnosis status code (clear on read)  
0b00: no error  
0b01 leakage to GND  
0b10: leakage to VBAT (soft short) / open load  
MD_UNEX_FR_CH1_F6 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH1_F6 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH1_F6 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH1_F6 : see MD_PERR_FR_CH1_F4  
MD_UNEX_FR_CH1_F5 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH1_F5 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH1_F5 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH1_F5 : see MD_PERR_FR_CH1_F4  
Table 6.2.6.3-6: Register ERROR_STATUS_5 (0x29) Four error bits per frame (1-4)channel 2  
MSB  
LSB  
Content  
MD_U MD_N MD_F MD_P MD_U MD_N MD_F MD_P MD_U MD_N MD_F MD_P MD_U MD_N MD_F MD_P  
NEX_ O_FR ERR_ ERR_ NEX_ O_FR ERR_ ERR_ NEX_ O_FR ERR_ ERR_ NEX_ O_FR ERR_ ERR_  
FR_C _CH2 FR_C FR_C FR_C _CH2 FR_C FR_C FR_C _CH2 FR_C FR_C FR_C _CH2 FR_C FR_C  
H2_F4 _F4  
H2_F4 H2_F4 H2_F3 _F3  
H2_F3 H2_F3 H2_F2 _F2  
H2_F2 H2_F2 H2_F1 _F1  
H2_F1 H2_F1  
Reset value  
Access  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
Bit Description  
MD_UNEX_FR_CH2_F4 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH2_F4 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH2_F4 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH2_F4 : see MD_PERR_FR_CH1_F4  
MD_UNEX_FR_CH2_F3 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH2_F3 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH2_F3 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH2_F3 : see MD_PERR_FR_CH1_F4  
MD_UNEX_FR_CH2_F2 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH2_F2 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH2_F2 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH2_F2 : see MD_PERR_FR_CH1_F4  
MD_UNEX_FR_CH2_F1 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH2_F1 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH2_F1 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH2_F1 : see MD_PERR_FR_CH1_F4  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
77 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Table 6.2.6.3-7: Register ERROR_STATUS_6 (0x2A) Four error bits per frame (5-6)channel 2 and analog errors  
MSB  
LSB  
Content  
-
-
SYNC REV_ BUF- OC_C DIAG_CH2[1: MD_U MD_N MD_F MD_P MD_U MD_N MD_F MD_P  
NEX_ O_FR ERR_ ERR_ NEX_ O_FR ERR_ ERR_  
FR_C _CH2 FR_C FR_C FR_C _CH2 FR_C FR_C  
_DAT CUR_ FER_ H2  
CH2 ERR_  
CH2  
0]  
A_  
INV_C  
H2  
H2_F6 _F6  
H2_F6 H2_F5 H2_F5 _F5  
H2_F5 H2_F5  
Reset value  
Access  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
Bit Description  
SYNC_DATA_ INV_CH2 : Reverse current status of channel 2  
0b0: no SYNC pulse trigger during active Tx_LEN counter  
0b1: SYNC pulse trigger during active Tx_LEN counter occurred  
REV_CUR_CH2 : Reverse current status of channel 2  
0b0: no reverse current detected  
0b1: reverse current detected  
BUFFER_ERR_CH2 : Data buffer (96bit) configuration error  
0b0: no configuration error  
0b1: configuration error  
OC_CH2 : Channel 2 over current status  
0b0: no over current  
0b1: over current  
DIAG_CH2[1:0] : Channel 1 diagnosis status code (clear on read)  
0b00: no error  
0b01 leakage to GND  
0b10: leakage to VBAT (soft short) / open load  
MD_UNEX_FR_CH2_F6 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH2_F6 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH2_F6 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH2_F5 : see MD_PERR_FR_CH1_F4  
MD_UNEX_FR_CH2_F5 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH2_F5 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH2_F5 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH2_F5 : see MD_PERR_FR_CH1_F4  
Table 6.2.6.3-8: Register ERROR_STATUS_7 (0x2B) Four error bits per frame (1-4)channel 3  
MSB  
LSB  
Content  
MD_U MD_N MD_F MD_P MD_U MD_N MD_F MD_P MD_U MD_N MD_F MD_P MD_U MD_N MD_F MD_P  
NEX_ O_FR ERR_ ERR_ NEX_ O_FR ERR_ ERR_ NEX_ O_FR ERR_ ERR_ NEX_ O_FR ERR_ ERR_  
FR_C _CH3 FR_C FR_C FR_C _CH3 FR_C FR_C FR_C _CH3 FR_C FR_C FR_C _CH3 FR_C FR_C  
H3_F4 _F4  
H3_F4 H3_F4 H3_F3 _F3  
H3_F3 H3_F3 H3_F2 _F2  
H3_F2 H3_F2 H3_F1 _F1  
H3_F1 H3_F1  
Reset value  
Access  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
Bit Description  
MD_UNEX_FR_CH3_F4 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH3_F4 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH3_F4 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH3_F4 : see MD_PERR_FR_CH1_F4  
MD_UNEX_FR_CH3_F3 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH3_F3 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH3_F3 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH3_F3 : see MD_PERR_FR_CH1_F4  
MD_UNEX_FR_CH3_F2 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH3_F2 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH3_F2 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH3_F2 : see MD_PERR_FR_CH1_F4  
MD_UNEX_FR_CH3_F1 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH3_F1 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH3_F1 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH3_F1 : see MD_PERR_FR_CH1_F4  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
78 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Table 6.2.6.3-9: Register ERROR_STATUS_8 (0x2C) Four error bits per frame (5-6)channel 3 and analog errors  
MSB  
LSB  
Content  
-
-
SYNC REV_ BUFF OC_C DIAG_CH3[1: MD_U MD_N MD_F MD_P MD_U MD_N MD_F MD_P  
NEX_ O_FR ERR_ ERR_ NEX_ O_FR ERR_ ERR_  
FR_C _CH3 FR_C FR_C FR_C _CH3 FR_C FR_C  
_DAT CUR_ _ERR H3  
CH3 _CH3  
0]  
A_  
INV_C  
H3  
H3_F6 _F6  
H3_F6 H3_F6 H3_F5 _F5  
H3_F5 H3_F5  
Reset value  
Access  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
Bit Description  
SYNC_DATA_ INV_CH3 : Reverse current status of channel 3  
0b0: no SYNC pulse trigger during active Tx_LEN counter  
0b1: SYNC pulse trigger during active Tx_LEN counter occurred  
REV_CUR_CH3 : Reverse current status of channel 3  
0b0: no reverse current detected  
0b1: reverse current detected  
BUFF_ERR_CH3 : Data buffer (96bit) configuration error  
0b0: no configuration error  
0b1: configuration error  
OC_CH3 : Channel 3 over current status  
0b0: no over current  
0b1: over current  
DIAG_CH3[1:0] : Channel 3 diagnosis status code (clear on read)  
0b00: no error  
0b01 leakage to GND  
0b10: leakage to VBAT (soft short) / open load  
MD_UNEX_FR_CH3_F6 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH3_F6 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH3_F6 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH3_F6 : see MD_PERR_FR_CH1_F4  
MD_UNEX_FR_CH3_F5 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH3_F5 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH3_F5 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH3_F5 : see MD_PERR_FR_CH1_F4  
Table 6.2.6.3-10: Register ERROR_STATUS_9 (0x2D) Four error bits per frame (1-4)channel 4  
MSB  
LSB  
Content  
MD_U MD_N MD_F MD_P MD_U MD_N MD_F MD_P MD_U MD_N MD_F MD_P MD_U MD_N MD_F -  
NEX_ O_FR ERR_ ERR_ NEX_ O_FR ERR_ ERR_ NEX_ O_FR ERR_ ERR_ NEX_ O_FR ERR_ MD_P  
FR_C _CH4 FR_C FR_C FR_C _CH4 FR_C FR_C FR_C _CH4 FR_C FR_C FR_C _CH4 FR_C ERR_  
H4_F4 _F4  
H4_F4 H4_F4 H4_F3 _F3  
H4_F3 H4_F3 H4_F2 _F2  
H4_F2 H4_F2 H4_F1 _F1  
H4_F1 FR_C  
H4_F1  
Reset value  
Access  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit Description  
MD_UNEX_FR_CH4_F4 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH4_F4 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH4_F4 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH4_F4 : see MD_PERR_FR_CH1_F4  
MD_UNEX_FR_CH4_F3 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH4_F3 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH4_F3 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH4_F3 : see MD_PERR_FR_CH1_F4  
MD_UNEX_FR_CH4_F2 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH4_F2 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH4_F2 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH4_F2 : see MD_PERR_FR_CH1_F4  
MD_UNEX_FR_CH4_F1 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH4_F1 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH4_F1 : see MD_FERR_FR_CH1_F4  
-MD_PERR_FR_CH4_F1 : see MD_PERR_FR_CH1_F4  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
79 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Table 6.2.6.3-11: Register ERROR_STATUS_10 (0x2E) Four error bits per frame (5-6)channel 4 and analog errors  
MSB  
LSB  
Content  
-
-
SYNC REV_ BUFF OC_C DIAG_CH4[1: MD_U MD_N MD_F MD_P MD_U MD_N MD_F MD_P  
NEX_ O_FR ERR_ ERR_ NEX_ O_FR ERR_ ERR_  
FR_C _CH4 FR_C FR_C FR_C _CH4 FR_C FR_C  
_DAT CUR_ _ERR H4  
CH4 _CH4  
0]  
A_  
INV_C  
H4  
H4_F6 _F6  
H4_F6 H4_F6 H4_F5 _F5  
H4_F5 H4_F5  
Reset value  
Access  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
Bit Description  
SYNC_DATA_ INV_CH4 : Reverse current status of channel 4  
0b0: no SYNC pulse trigger during active Tx_LEN counter  
0b1: SYNC pulse trigger during active Tx_LEN counter occurred  
REV_CUR_CH4 : Reverse current status of channel 4  
0b0: no reverse current detected  
0b1: reverse current detected  
BUFF_ERR_CH4 : Data buffer (96bit) configuration error  
0b0: no configuration error  
0b1: configuration error  
OC_CH4 : Channel 4 over current status  
0b0: no over current  
0b1: over current  
DIAG_CH4[1:0] : Channel 4 diagnosis status code (clear on read)  
0b00: no error  
0b01 leakage to GND  
0b10: leakage to VBAT (soft short) / open load  
MD_UNEX_FR_CH4_F6 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH4_F6 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH4_F6 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH4_F6 : see MD_PERR_FR_CH1_F4  
MD_UNEX_FR_CH4_F5 : see MD_UNEX_FR_CH1_F4  
MD_NO_FR_CH4_F5 : see MD_NO_FR_CH1_F4  
MD_FERR_FR_CH4_F5 : see MD_FERR_FR_CH1_F4  
MD_PERR_FR_CH4_F5 : see MD_PERR_FR_CH1_F4  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
80 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.2.6.4 Diagnosis Registers  
There are 8 (read only, R) registers available for diagnosis purposes.  
Following diagnosis informations are available:  
Voltages VDD,VBUS,VSYNC,VDD_INT  
Voltages SIFX  
Table 6.2.6.4-1: Diagnosis register  
Register Name  
DIAGNOSIS_ADC_1_2  
DIAGNOSIS_ADC_3_4  
Address  
0x2F  
Description  
ADC data:VDD_INT,VDD  
ADC data:VSIF2,VSIF1  
ADC data:VSIF4,VSIF3  
ADC data:VSYNC,VBUS  
ADC data:VCP_GATE  
0x30  
DIAGNOSIS:_ADC_5_6 0x31  
DIAGNOSIS_ADC_7_8 0x32  
DIAGNOSIS_ADC_9_10 0x33  
Reading of unused bits will always return '0' and writing of unused bits don't care. Writing to read only or read on  
clear registers don't care. The SPI echo response to a write request is independently of register type (R/W, R, RC).  
Table 6.2.6.4-2: Register DIAGNOSIS_ADC_1_2 (0x2F) ADC data:VDD_INT,VDD  
MSB  
LSB  
LSB  
LSB  
Content  
ADC_DATA_2[7:0]  
ADC_DATA_1[7:0]  
Reset value  
Access  
0
0
R
R
Bit Description  
ADC_DATA_2[7:0] : ADC data  
Voltage level VDD_INT  
ADC_DATA_1[7:0] : ADC data  
Voltage level VDD  
Table 6.2.6.4-3: Register DIAGNOSIS_ADC_3_4 (0x30) ADC data:VSIF2,VSIF1  
MSB  
Content  
ADC_DATA_4[7:0]  
ADC_DATA_3[7:0]  
Reset value  
Access  
0
0
R
R
Bit Description  
ADC_DATA_4[7:0] : ADC data  
Voltage level VSIF2  
ADC_DATA_3[7:0] : ADC data  
Voltage level VSIF1  
Table 6.2.6.4-4: Register DIAGNOSIS:_ADC_5_6 (0x31) ADC data:VSIF4,VSIF3  
MSB  
Content  
ADC_DATA_6[7:0]  
ADC_DATA_5[7:0]  
Reset value  
Access  
0
0
R
R
Bit Description  
ADC_DATA_6[7:0] : ADC data  
Voltage level VSIF4  
ADC_DATA_5[7:0] : ADC data  
Voltage level VSIF3  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
81 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Table 6.2.6.4-5: Register DIAGNOSIS_ADC_7_8 (0x32) ADC data:VSYNC,VBUS  
MSB  
LSB  
Content  
ADC_DATA_8[7:0]  
ADC_DATA_7[7:0]  
Reset value  
Access  
0
0
R
R
Bit Description  
ADC_DATA_8[7:0] : ADC data  
Voltage level VSYNC  
ADC_DATA_7[7:0] : ADC data  
Voltage level VBUS  
Table 6.2.6.4-6: Register DIAGNOSIS_ADC_9_10 (0x33) ADC data:VCP_GATE  
MSB  
LSB  
Content  
-
-
-
-
-
-
-
-
ADC_DATA_9[7:0]  
Reset value  
Access  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
Bit Description  
ADC_DATA_9[7:0] : ADC data  
Voltage level VCP_GATE  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
82 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
7 Package Information  
7.1 QFN20L5  
All devices are available in a Pb free, RoHs compliant QFN20L5 plastic package according to JEDEC MO-220 K,  
variant VHHC-2. The package is classified to Moisture Sensitivity Level 3 (MSL 3) according to JEDEC J-STD-020  
with a soldering peak temperature of (260+5)°C.  
mm  
typ  
0.90  
inch  
typ  
0.035  
Description  
Symbol  
min  
0.80  
max  
1.00  
min  
0.031  
max  
0.039  
Package height  
Stand off  
A
A1  
0.00  
--  
0.02  
0.20 REF  
0.30  
0.05  
--  
0.000  
--  
0.00079  
0.0079 REF  
0.012  
0.002  
--  
Thickness of terminal leads, including lead finish  
Width of terminal leads  
A3  
b
0.25  
--  
0.35  
--  
0.010  
--  
0.014  
--  
Package length / width  
D / E  
D2 / E2  
e
5.00 BSC  
3.65  
0.197 BSC  
0.144  
Length / width of exposed pad  
Lead pitch  
3.50  
--  
3.80  
--  
0.138  
--  
0.150  
--  
0.65 BSC  
0.40  
0.026 BSC  
0.016  
Length of terminal for soldering to substrate  
L
0.35  
0.45  
0.014  
0.018  
Step cut depth (incl. plating layer)  
Step cut length (incl. plating layer)  
Number of terminal positions  
SCD  
SCL  
N
0.075  
0.025  
0.100  
0.050  
20  
0.125  
0.075  
0.003  
0.001  
0.004  
0.002  
20  
0.005  
0.003  
Note: the mm values are valid, the inch values contains rounding errors  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
83 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
7.2 SOIC20  
All devices are available in a Pb free, RoHs compliant SOIC20 plastic package according to JEDEC MS-013-E,  
variant AC. The package is classified to Moisture Sensitivity Level 3 (MSL 3) according to JEDEC J-STD-020 with a  
soldering peak temperature of (260+5)°C.  
Description  
Symbol  
mm  
typ  
inch  
typ  
min  
max  
min  
max  
Package height  
Stand off  
A
--  
--  
2.65  
0.30  
--  
--  
--  
0.104  
0.012  
--  
A1  
0.10  
2.05  
0.31  
0.20  
--  
0.004  
0.081  
0.012  
0.008  
--  
Package body thickness  
Width of terminal leads, inclusive lead finish  
Thickness of terminal leads, inclusive lead finish  
Package length  
A2  
--  
--  
b
--  
0.51  
0.33  
--  
0.020  
0.013  
c
--  
--  
D
12.80 BSC  
0.504 BSC  
Package width  
E
10.30 BSC  
0.406 BSC  
Package body width  
E1  
7.50 BSC  
0.295 BSC  
Lead pitch  
e
1.27 BSC  
0.050 BSC  
Length of terminal for soldering to substrate  
body chamfer (45°)  
L
h
0.4  
0.25  
0
--  
--  
1.27  
0.75  
8
0.016  
0.010  
0
--  
--  
0.050  
0.030  
8
Angle of lead mounting area  
mold release angle  
phi [°]  
phi1 [°]  
N
--  
--  
5
--  
15  
5
--  
15  
Number of terminal positions  
20  
20  
Note: the mm values are valid, the inch values contains rounding errors  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
84 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
WARNING – Life Support Applications Policy  
Elmos Semiconductor AG is continually working to improve the quality and reliability of its products. Nevertheless,  
semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability  
to physical stress. It is the responsibility of the buyer, when utilizing Elmos Semiconductor AG products, to observe  
standards of safety, and to avoid situations in which malfunction or failure of an Elmos Semiconductor AG Product  
could cause loss of human life, body injury or damage to property. In the development of your design, please  
ensure that Elmos Semiconductor AG products are used within specified operating ranges as set forth in the most  
recent product specifications.  
General Disclaimer  
Information furnished by Elmos Semiconductor AG is believed to be accurate and reliable. However, no responsib-  
ility is assumed by Elmos Semiconductor AG for its use, nor for any infringements of patents or other rights of third  
parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent  
rights of Elmos Semiconductor AG. Elmos Semiconductor AG reserves the right to make changes to this document  
or the products contained therein without prior notice, to improve performance, reliability, or manufacturability.  
Application Disclaimer  
Circuit diagrams may contain components not manufactured by Elmos Semiconductor AG, which are included as  
means of illustrating typical applications. Consequently, complete information sufficient for construction purposes is  
not necessarily given. The information in the application examples has been carefully checked and is believed to be  
entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not  
convey to the purchaser of the semiconductor devices described any license under the patent rights of Elmos  
Semiconductor AG or others.  
Contact Information  
Headquarters  
Elmos Semiconductor AG  
Heinrich-Hertz-Str. 1 • D-44227 Dortmund (Germany)  
: www.elmos.com  
: +492317549100  
: +12488653200  
: sales-germany@elmos.com  
Sales and Application Support Office North America  
Elmos NA. Inc.  
32255 Northwestern Highway • Suite 220 Farmington Hills  
MI 48334 (USA)  
: sales-usa@elmos.com  
: sales-china@elmos.com  
Sales and Application Support Office China  
Elmos Semiconductor Technology (Shanghai) Co., Ltd.  
Unit 16B, 16F Zhao Feng World Trade Building,  
No. 369 Jiang Su Road, Chang Ning District,  
Shanghai, PR China, 200050  
: +86216210 0908  
: +82317141131  
Sales and Application Support Office Korea  
Elmos Korea  
B-1007, U-Space 2, #670 Daewangpangyo-ro,  
Sampyoung-dong, Bunddang-gu, Sungnam-si  
Kyounggi-do 463-400 Korea  
: sales-korea@elmos.com  
Sales and Application Support Office Japan  
Elmos Japan K.K.  
BR Shibaura N Bldg. 7F  
3-20-9 Shibaura, Minato-ku,  
Tokyo 108-0023 Japan  
: +81334517101  
: +65 6908 1261  
: sales-japan@elmos.com  
Sales and Application Support Office Singapore  
Elmos Semiconductor Singapore Pte Ltd.  
3A International Business Park  
#09-13 ICON@IBP • 609935 Singapore  
: sales-singapore@elmos.com  
© Elmos Semiconductor AG, 2016. Reproduction, in part or whole, without the prior written consent of Elmos Semiconductor AG, is prohibited.  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
85 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
8 Index  
Table of Content  
Features.........................................................................................................................................................................1  
Applications...................................................................................................................................................................1  
General Description.......................................................................................................................................................1  
Ordering Information......................................................................................................................................................1  
Typical Application Circuit.............................................................................................................................................1  
Functional Diagram........................................................................................................................................................2  
1 Package Pinout QFN20L5,SO20...............................................................................................................................3  
1.1 Pin Description QFN20L5...................................................................................................................................4  
1.2 Pin Description SO20.........................................................................................................................................5  
2 Application Description...............................................................................................................................................6  
2.1 Application Circuits.............................................................................................................................................6  
2.1.1 Application Circuits.....................................................................................................................................6  
3 Functional Safety........................................................................................................................................................9  
3.1 Functional Safety Requirements........................................................................................................................9  
3.2 FMEDA...............................................................................................................................................................9  
3.2.1 Safety Measures mandatory to reach ASIL Level C..................................................................................9  
4 Operating Conditions................................................................................................................................................10  
4.1 Absolute Maximum Ratings..............................................................................................................................10  
4.2 Recommended Operating Conditions..............................................................................................................11  
5 Detailed Electrical Specification...............................................................................................................................13  
5.1 ANALOG PART................................................................................................................................................13  
5.1.1 SUPPLY...................................................................................................................................................13  
5.1.1.1 LDO Control Block...........................................................................................................................13  
5.1.1.1.1 Electrical Parameter of LDO....................................................................................................13  
5.1.1.1.2 Electrical Parameter Control Voltage......................................................................................15  
5.1.1.2 Charge Pump for Sync Voltage.......................................................................................................15  
5.1.2 POR AND POWER-UP SEQUENCE.......................................................................................................15  
5.1.3 PSI5 INTERFACE....................................................................................................................................16  
5.1.3.1 Interface Driver.................................................................................................................................16  
5.1.3.2 Over Current Detection and Limitation............................................................................................17  
5.1.3.3 Reverse Current Detection and Limitation.......................................................................................17  
5.1.3.3.1 Reverse Current Flow from SIFx to VBUS..............................................................................17  
5.1.3.3.2 Reverse Current Flow from SIFx to CSYNC...........................................................................18  
5.1.3.4 Data Comparator..............................................................................................................................18  
5.1.3.5 Sync Pulse Generation....................................................................................................................18  
5.1.3.5.1 Sync Pulse Generation DC-Parameter....................................................................................18  
5.1.3.5.2 Sync Pulse Generation AC Parameter....................................................................................19  
5.1.3.6 Sync Pulse Generation by Pin TRIG...............................................................................................19  
5.1.4 CLOCK GENERATION............................................................................................................................20  
5.1.5 DIAGNOSIS.............................................................................................................................................21  
5.1.5.1 ADC Voltage Measurements...........................................................................................................21  
5.1.5.2 Over Temperature Monitoring (OT).................................................................................................21  
5.1.5.3 VBUS Over Voltage Monitoring.......................................................................................................22  
5.2 DIGITAL PART.................................................................................................................................................23  
5.2.1 SPI............................................................................................................................................................23  
5.2.1.1 DC Electrical Parameter Table of SPI IOs.......................................................................................23  
5.2.1.2 AC Electrical Parameter Table of SPI I/Os......................................................................................23  
6 Functional Description .............................................................................................................................................24  
6.1 ANALOG PART................................................................................................................................................24  
6.1.1 SUPPLY...................................................................................................................................................24  
6.1.1.1 LDO Control Block...........................................................................................................................24  
6.1.1.2 Charge Pump for Sync Voltage.......................................................................................................24  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
86 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.1.2 POR AND POWER-UP SEQUENCE.......................................................................................................25  
6.1.3 PSI5 INTERFACE....................................................................................................................................25  
6.1.3.1 Interface Driver.................................................................................................................................25  
6.1.3.2 Over Current Detection and Limitation............................................................................................25  
6.1.3.3 Reverse Current Detection and Limitation.......................................................................................25  
6.1.3.3.1 Reverse Current Flow from SIFx to VBUS..............................................................................25  
6.1.3.3.2 Reverse Current Flow from SIFx to CSYNC...........................................................................26  
6.1.3.4 Quiescent Current Threshold Tracking............................................................................................26  
6.1.3.5 Data Comparator..............................................................................................................................26  
6.1.3.6 Sync Pulse Generation....................................................................................................................27  
6.1.3.7 Sync Pulse Generation by Pin TRIG...............................................................................................28  
6.1.3.8 Sync Pulse Generation by UART/SPI Command............................................................................29  
6.1.4 CLOCK GENERATION............................................................................................................................29  
6.1.5 DIAGNOSIS.............................................................................................................................................30  
6.1.5.1 ADC Voltage Measurements...........................................................................................................30  
6.1.5.2 Over Temperature Monitoring (OT).................................................................................................30  
6.1.5.3 VBUS Over Voltage Monitoring.......................................................................................................31  
6.1.5.4 Leakage to GND, Leakage to VBAT and Open Load......................................................................31  
6.1.5.5 GND Loss Detection........................................................................................................................31  
6.1.5.6 Transfer of Error- and Diagnosis Information to μController............................................................31  
6.1.5.6.1 Error Information......................................................................................................................31  
6.2 DIGITAL PART.................................................................................................................................................35  
6.2.1 COMMUNICATION INTERFACE TO MICRO CONTROLLER...............................................................35  
6.2.2 MANCHESTER DECODER.....................................................................................................................35  
6.2.2.1 Manchester Data Handling and Buffer Architecture........................................................................35  
6.2.2.1.1 UART DATA BUFFER.............................................................................................................36  
6.2.2.1.2 SPI DATA BUFFER.................................................................................................................36  
6.2.2.2 Manchester Bit Encoding.................................................................................................................38  
6.2.2.2.1 Definition of data edge / compensation edge..........................................................................38  
6.2.2.2.2 Interpretation with Manchester Decoder..................................................................................38  
6.2.2.2.3 Definition of Duty Cycle...........................................................................................................38  
6.2.2.2.4 Decoder Error Flags.................................................................................................................39  
6.2.3 SPI............................................................................................................................................................39  
6.2.3.1 Error Handling..................................................................................................................................41  
6.2.3.2 Overview of Communication Frames...............................................................................................43  
6.2.3.3 Overview of SPI commands.............................................................................................................44  
6.2.3.4 No Operation Command..................................................................................................................44  
6.2.3.5 Write Configuration Register Command..........................................................................................44  
6.2.3.6 Software Reset Command...............................................................................................................45  
6.2.3.7 Read Configuration Register Command..........................................................................................45  
6.2.3.8 SYNC Pulse Command...................................................................................................................45  
6.2.3.9 Read Sensor Data............................................................................................................................46  
6.2.3.9.1 Read of 16bit (11bit sensor data)............................................................................................48  
6.2.3.9.2 Read of 24bit (19bit sensor data)............................................................................................49  
6.2.3.9.3 Read of 32bit (27bit sensor data)............................................................................................49  
6.2.3.9.4 Read of 48bit (43bit sensor data)............................................................................................49  
6.2.4 UART........................................................................................................................................................50  
6.2.4.1 Error Handling .................................................................................................................................50  
6.2.4.2 Packet Frame Definition...................................................................................................................52  
6.2.4.3 UART Frame Definition....................................................................................................................52  
6.2.4.4 Overview of Communication Frames...............................................................................................53  
6.2.4.5 Overview of UART Commands........................................................................................................53  
6.2.4.6 Write Register Command.................................................................................................................54  
6.2.4.7 Read Register Command................................................................................................................54  
6.2.4.8 Short SYNC Pulse Command..........................................................................................................55  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
87 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
6.2.4.9 Long SYNC Pulse Command..........................................................................................................55  
6.2.4.10 No SYNC Pulse Command............................................................................................................55  
6.2.4.11 Software Reset Command.............................................................................................................56  
6.2.4.12 Response to Read Register Command.........................................................................................56  
6.2.4.13 Transfer PSI5 Data........................................................................................................................57  
6.2.5 XCRC[5:0] Calculation.............................................................................................................................58  
6.2.6 CONFIGURATION...................................................................................................................................59  
6.2.6.1 ASIC Configuration..........................................................................................................................59  
6.2.6.1.1 Asynchronous mode................................................................................................................63  
6.2.6.2 Timeslot Configuration.....................................................................................................................63  
6.2.6.2.1 Timeslot Length.......................................................................................................................73  
6.2.6.3 Error Registers.................................................................................................................................75  
6.2.6.4 Diagnosis Registers.........................................................................................................................82  
7 Package Information.................................................................................................................................................84  
7.1 QFN20L5..........................................................................................................................................................84  
7.2 SOIC20.............................................................................................................................................................85  
8 Index.........................................................................................................................................................................87  
Illustration Index  
Figure 2.1.1-1: Application Circuit with LDO.................................................................................................................6  
Figure 2.1.1-2: Application Circuit with VBUS Supplied from ECU...............................................................................7  
Figure 6.1.3.5-1: Current Modulation..........................................................................................................................25  
Figure 6.1.3.6-1: Sync Pulse Timing Diagram............................................................................................................26  
Figure 6.1.3.7-1: Long SYNC Pulse Trigger via Pin TRIG..........................................................................................27  
Figure 6.1.3.7-2: Short SYNC Pulse Trigger via Pin TRIG.........................................................................................27  
Figure 6.1.3.8-1: Short SYNC Ptrigger via UART.......................................................................................................28  
Figure 6.1.3.8-2: Short SYNC Pulse Trigger via SPI..................................................................................................28  
Figure 6.2.2.1-1: Buffer Architecture Overview...........................................................................................................34  
Figure 6.2.2.1.1-1: UART Data Buffer.........................................................................................................................35  
Figure 6.2.2.1.2-1: SPI Data Buffer.............................................................................................................................36  
Figure 6.2.2.1.2-2: SPI Data Buffer incl. 4 Frames.....................................................................................................36  
Figure 6.2.2.2.3-1: Example MCD Duty Cycle............................................................................................................37  
Figure 6.2.2.2.4-1: MD_FERR_CHx_F1.....................................................................................................................38  
Figure 6.2.2.2.4-2: Set Of Error Flags (2errors; data=0x3FF).....................................................................................38  
Figure 6.2.3-1: Data Flow Graphic..............................................................................................................................39  
Figure 6.2.3.1-1: SPI Error Handling Example 1.........................................................................................................40  
Figure 6.2.3.1-2: SPI Error Handling Example 2.........................................................................................................40  
Figure 6.2.3.1-3: SPI Error Handling Example 3.........................................................................................................40  
Figure 6.2.3.1-4: SPI Error Handling Example 4.........................................................................................................40  
Figure 6.2.3.4-1: SPI NOP Command.........................................................................................................................43  
Figure 6.2.3.5-1: SPI Write Register Command..........................................................................................................44  
Figure 6.2.3.6-1: SPI Software Reset Command........................................................................................................44  
Figure 6.2.3.7-1: SPI Read Register Command.........................................................................................................44  
Figure 6.2.3.8-1: SPI SYNC Pulse Command.............................................................................................................45  
Figure 6.2.3.9-1: Valid read sensor data window 1.....................................................................................................46  
Figure 6.2.3.9-2: Valid read sensor data window 2.....................................................................................................46  
Figure 6.2.3.9.1-1: SPI Read Sensor Data 16bit.........................................................................................................47  
Figure 6.2.3.9.1-2: SPI Read Sensor Data 16bit-request at SDI_RXD -1st SPI frame-.............................................47  
Figure 6.2.3.9.1-3: Response to SPI Read Sensor Data 16bit at SDO_TXD -2nd SPI frame-..................................47  
Figure 6.2.3.9.2-1: Read Sensor Data 24bit command...............................................................................................48  
Figure 6.2.3.9.3-1: Read Sensor Data 32bit command...............................................................................................48  
Figure 6.2.3.9.4-1: Read Sensor Data 48bit command...............................................................................................48  
Figure 6.2.4.1-1: UART Error Handling Example 1.....................................................................................................49  
Figure 6.2.4.1-2: UART Error Handling Example 2.....................................................................................................49  
Figure 6.2.4.1-3: Syncpulse staggering.......................................................................................................................50  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
88 / 89  
QM-No.: 25DS0109E.06  
4 Channel Multi-Mode PSI5 Transceiver  
PRODUCTION DATA – Apr 27, 2016  
E521.41  
Figure 6.2.4.3-1: UART Data Transmission................................................................................................................52  
Figure 6.2.4.6-1: Write Register Command Packet Frame.........................................................................................53  
Figure 6.2.4.7-1: Read Register Command Packet Frame.........................................................................................53  
Figure 6.2.4.8-1: Short SYNC Command Packet Frame............................................................................................54  
Figure 6.2.4.9-1: Long SYNC Command Packet Frame.............................................................................................54  
Figure 6.2.4.10-1: No SYNC Pulse Command Packet Frame....................................................................................55  
Figure 6.2.4.11-1: Software Reset Command Frame.................................................................................................55  
Figure 6.2.4.12-1: Response to Read Register Command Packet Frame.................................................................56  
Figure 6.2.4.13-1: Example: Upload PSI5 Data Minimum Packet Frame...................................................................56  
Figure 6.2.4.13-2: Example: Upload PSI5 Data Maximum Packet Frame..................................................................56  
Figure 6.2.5-1: XCRC-calculation for SPI frames.......................................................................................................57  
Figure 6.2.5-2: XCRC: Example Transfer PSI5 Data..................................................................................................57  
Figure 6.2.5-3: XCRC: Example Response to Read Command.................................................................................58  
Figure 6.2.5-4: XCRC Example Read Sensor Data 24bit...........................................................................................58  
Figure 6.2.6.2.1-1: Example1: TxLEN Configuration..................................................................................................72  
Figure 6.2.6.2.1-2: Example2: TxLEN Configuration..................................................................................................72  
Figure 6.2.6.2.1-3: Example2: TxLEN Configuration: Unexptected Sync Pulse.........................................................73  
Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
Elmos Semiconductor AG  
Data Sheet  
89 / 89  
QM-No.: 25DS0109E.06  

相关型号:

E522

Engineering Catalog 169
GILWAY

E522.31

SWITCH-MODE CONSTANT CURRENT LED CONTROLLER FAMILY
ELMOS

E522.31_16

CHANNEL SWITCHED MODE CONSTANT CURRENT CONTROLLER
ELMOS

E522.32

SWITCH-MODE SONSTANT CURRENT LED CONTROLLER FAMILY
ELMOS

E522.32_16

2 CHANNEL SWITCHED MODE CONSTANT CURRENT CONTROLLER
ELMOS

E522.33

SWITCH-MODE CONSTANT CURRENT LED CONTROLLER FAMILY
ELMOS

E522.34

SWITCH-MODE SONSTANT CURRENT LED CONTROLLER FAMILY
ELMOS

E522.71

LOW POWER STEP DOWN CONVERTER
ELMOS

E522.72

LOW POWER STEP DOWN CONVERTER
ELMOS

E522.73

LOW POWER STEP DOWN CONVERTER
ELMOS

E522.74

LOW POWER STEP DOWN CONVERTER
ELMOS

E522.75

LOW POWER STEP DOWN CONVERTER
ELMOS