EBD26UC6AMSA-6B-E [ELPIDA]

暂无描述;
EBD26UC6AMSA-6B-E
型号: EBD26UC6AMSA-6B-E
厂家: ELPIDA MEMORY    ELPIDA MEMORY
描述:

暂无描述

存储 内存集成电路 动态存储器 双倍数据速率 时钟
文件: 总19页 (文件大小:236K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
256MB DDR SDRAM SO-DIMM  
EBD26UC6AMSA (32M words × 64 bits, 2 Ranks)  
Description  
Features  
The EBD26UC6AMSA is 32M words × 64 bits, 2 ranks  
200-pin socket type small outline dual in line memory  
module (SO-DIMM)  
Double Data Rate (DDR) SDRAM Small Outline Dual  
In-line Memory Module, mounting 8 pieces of 256M  
bits DDR SDRAM sealed in TSOP package. Read and  
write operations are performed at the cross points of  
the CK and the /CK. This high-speed data transfer is  
realized by the 2 bits prefetch-pipelined architecture.  
Data strobe (DQS) both for read and write are available  
for high speed and reliable data bus design. By setting  
extended mode register, the on-chip Delay Locked  
Loop (DLL) can be set enable or disable. This module  
provides high density mounting without utilizing surface  
mount technology. Decoupling capacitors are mounted  
beside each TSOP on the module board.  
PCB height: 31.75mm  
Lead pitch: 0.6mm  
2.5V power supply  
Data rate: 333Mbps/266Mbps (max.)  
2.5 V (SSTL_2 compatible) I/O  
Double Data Rate architecture; two data transfers per  
clock cycle  
Bi-directional, data strobe (DQS) is transmitted  
/received with data, to be used in capturing data at  
the receiver  
Data inputs, outputs and DM are synchronized with  
DQS  
4 internal banks for concurrent operation  
(Components)  
DQS is edge aligned with data for READs; center  
aligned with data for WRITEs  
Differential clock inputs (CK and /CK)  
DLL aligns DQ and DQS transitions with CK  
transitions  
Commands entered on each positive CK edge; data  
referenced to both edges of DQS  
Data mask (DM) for write data  
Auto precharge option for each burst access  
Programmable burst length: 2, 4, 8  
Programmable /CAS latency (CL): 2, 2.5  
Refresh cycles: (8192 refresh cycles /64ms)  
7.8µs maximum average periodic refresh interval  
2 variations of refresh  
Auto refresh  
Self refresh  
Document No. E0499E10 (Ver. 1.0)  
Date Published April 2004 (K) Japan  
URL: http://www.elpida.com  
Elpida Memory , Inc. 2004  
EBD26UC6AMSA  
Ordering Information  
Component  
Data rate  
Mbps (max.)  
JEDEC speed bin  
(CL-tRCD-tRP)  
Contact  
pad  
Part number  
Package  
Mounted devices  
EBD26UC6AMSA-6B  
EBD26UC6AMSA-7B  
333  
266  
DDR333B (2.5-3-3)  
DDR266B (2.5-3-3)  
200-pin SO-DIMM Gold  
EDD2516AMTA-6B  
EDD2516AMTA-6B, -7A, -7B  
Pin Configurations  
Front side  
39 pin 41 pin  
1 pin  
2 pin  
199 pin  
200 pin  
42 pin  
40 pin  
Back side  
Pin No.  
1
Pin name  
VREF  
VSS  
Pin No.  
51  
Pin name  
VSS  
DQ19  
DQ24  
VDD  
DQ25  
DQS3  
VSS  
DQ26  
DQ27  
VDD  
NC  
Pin No.  
Pin name  
VREF  
VSS  
DQ4  
DQ5  
VDD  
DM0  
DQ6  
VSS  
DQ7  
DQ12  
VDD  
DQ13  
DM1  
VSS  
DQ14  
DQ15  
VDD  
VDD  
VSS  
VSS  
DQ20  
DQ21  
VDD  
DM2  
DQ22  
A8  
Pin No.  
52  
Pin name  
VSS  
DQ23  
DQ28  
VDD  
DQ29  
DM3  
VSS  
DQ30  
DQ31  
VDD  
NC  
2
3
53  
4
54  
5
DQ0  
DQ1  
VDD  
DQS0  
DQ2  
VSS  
55  
6
56  
7
57  
8
58  
9
59  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
102  
104  
106  
108  
60  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
101  
103  
105  
107  
61  
62  
63  
64  
65  
66  
DQ3  
DQ8  
VDD  
DQ9  
DQS1  
VSS  
67  
68  
69  
70  
71  
72  
73  
NC  
74  
NC  
75  
VSS  
NC  
76  
VSS  
NC  
77  
78  
DQ10  
DQ11  
VDD  
CK0  
79  
NC  
80  
NC  
81  
VDD  
NC  
82  
VDD  
NC  
83  
84  
85  
NC  
86  
NC  
/CK0  
VSS  
87  
VSS  
CK2  
88  
VSS  
VSS  
VDD  
VDD  
CKE0  
NC  
89  
90  
DQ16  
DQ17  
VDD  
DQS2  
DQ18  
A9  
91  
/CK2  
VDD  
CKE1  
NC  
92  
93  
94  
95  
96  
97  
98  
99  
A12  
100  
152  
154  
156  
158  
A11  
151  
153  
155  
157  
DQ42  
DQ43  
VDD  
VDD  
DQ46  
DQ47  
VDD  
/CK1  
VSS  
VSS  
A6  
A7  
A5  
A4  
Preliminary Data Sheet E0499E10 (Ver. 1.0)  
2
EBD26UC6AMSA  
Pin No.  
109  
111  
113  
115  
117  
119  
121  
123  
125  
127  
129  
131  
133  
135  
137  
139  
141  
143  
145  
147  
149  
Pin name  
A3  
Pin No.  
159  
161  
163  
165  
167  
169  
171  
173  
175  
177  
179  
181  
183  
185  
187  
189  
191  
193  
195  
197  
199  
Pin name  
VSS  
Pin No.  
110  
112  
114  
116  
118  
120  
122  
124  
126  
128  
130  
132  
134  
136  
138  
140  
142  
144  
146  
148  
150  
Pin name  
A2  
Pin No.  
160  
162  
164  
166  
168  
170  
172  
174  
176  
178  
180  
182  
184  
186  
188  
190  
192  
194  
196  
198  
200  
Pin name  
CK1  
A1  
VSS  
A0  
VSS  
VDD  
A10/AP  
BA0  
DQ48  
DQ49  
VDD  
VDD  
BA1  
DQ52  
DQ53  
VDD  
DM6  
DQ54  
VSS  
/RAS  
/CAS  
/CS1  
NC  
/WE  
DQS6  
DQ50  
VSS  
/CS0  
NC  
VSS  
DQ51  
DQ56  
VDD  
VSS  
DQ55  
DQ60  
VDD  
DQ61  
DM7  
VSS  
DQ32  
DQ33  
VDD  
DQS4  
DQ34  
VSS  
DQ36  
DQ37  
VDD  
DM4  
DQ38  
VSS  
DQ57  
DQS7  
VSS  
DQ58  
DQ59  
VDD  
DQ62  
DQ63  
VDD  
SA0  
DQ35  
DQ40  
VDD  
DQ41  
DQS5  
VSS  
DQ39  
DQ44  
VDD  
DQ45  
DM5  
VSS  
SDA  
SCL  
SA1  
VDDSPD  
VDDID  
SA2  
NC  
Preliminary Data Sheet E0499E10 (Ver. 1.0)  
3
EBD26UC6AMSA  
Pin Description  
Pin name  
Function  
Address input  
Row address  
Column address  
A0 to A12  
A0 to A12  
A0 to A8  
BA0, BA1  
DQ0 to DQ63  
/RAS  
Bank select address  
Data input/output  
Row address strobe command  
Column address strobe command  
Write enable  
/CAS  
/WE  
/CS0, /CS1  
CKE0, CKE1  
CK0 to CK2  
/CK0 to /CK2  
DQS0 to DQS7  
DM0 to DM7  
SCL  
Chip select  
Clock enable  
Clock input  
Differential clock input  
Input and output data strobe  
Input mask  
Clock input for serial PD  
Data input/output for serial PD  
Serial address input  
Power for internal circuit  
Power for serial EEPROM  
Input reference voltage  
Ground  
SDA  
SA0 to SA2  
VDD  
VDDSPD  
VREF  
VSS  
VDDID  
VDD identification flag  
No connection  
NC  
Preliminary Data Sheet E0499E10 (Ver. 1.0)  
4
EBD26UC6AMSA  
Serial PD Matrix  
Byte No. Function described  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value  
Comments  
128 bytes  
Number of bytes utilized by module  
0
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
80H  
08H  
manufacturer  
Total number of bytes in serial PD  
256 bytes  
device  
2
3
4
5
6
7
8
Memory type  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
1
0
0
0
1
1
1
0
0
0
0
07H  
0DH  
09H  
02H  
40H  
00H  
04H  
DDR SDRAM  
Number of row address  
Number of column address  
Number of DIMM ranks  
Module data width  
13  
9
2
64 bits  
0
Module data width continuation  
Voltage interface level of this assembly  
SSTL2  
DDR SDRAM cycle time, CL = X  
-6B  
-7B  
SDRAM access from clock (tAC)  
-6B  
-7B  
9
0
0
0
1
1
1
1
1
1
0
1
1
0
0
0
0
1
0
0
0
0
0
1
0
60H  
75H  
70H  
CL = 2.5*1  
10  
0.7ns*1  
0
0
1
0
1
0
1
0
0
0
1
0
0
0
1
0
75H  
00H  
0.75ns*1  
None  
7.8µs  
Self refresh  
11  
12  
DIMM configuration type  
Refresh rate/type  
1
0
0
0
0
0
1
0
82H  
13  
14  
Primary SDRAM width  
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
10H  
00H  
× 16  
Error checking SDRAM width  
Not used  
SDRAM device attributes:  
Minimum clock delay back-to-back  
column access  
15  
0
0
0
0
0
0
0
1
01H  
1 CLK  
SDRAM device attributes:  
16  
17  
0
0
0
0
0
0
0
0
1
0
1
1
1
0
0
0
0EH  
04H  
2,4,8  
4
Burst length supported  
SDRAM device attributes: Number of  
banks on SDRAM device  
18  
19  
20  
21  
22  
SDRAM device attributes: /CAS latency 0  
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0CH  
01H  
02H  
20H  
C0H  
2, 2.5  
SDRAM device attributes: /CS latency  
SDRAM device attributes: /WE latency  
SDRAM module attributes  
0
0
0
1
0
1
Unbuffered  
VDD ± 0.2V  
SDRAM device attributes: General  
Minimum clock cycle time at  
CL = X –0.5  
-6B  
23  
0
1
0
1
0
1
1
1
1
1
0
1
0
0
0
1
0
0
0
0
0
1
0
0
75H  
A0H  
70H  
CL = 2*1  
-7B  
Maximum data access time (tAC) from  
clock at CL = X –0.5  
-6B  
24  
0.7ns*1  
-7B  
0
0
1
0
1
0
1
0
0
0
1
0
0
0
1
0
75H  
00H  
0.75ns*1  
25 to 26  
27  
Minimum row precharge time (tRP)  
-6B  
-7B  
0
0
1
1
0
0
0
1
1
0
0
0
0
0
0
0
48H  
50H  
18ns  
20ns  
Minimum row active to row active delay  
28  
(tRRD)  
-6B  
0
0
0
0
1
1
1
1
0
1
0
1
0
0
0
0
30H  
3CH  
12ns  
15ns  
-7B  
Preliminary Data Sheet E0499E10 (Ver. 1.0)  
5
EBD26UC6AMSA  
Byte No. Function described  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value  
Comments  
18ns  
Minimum /RAS to /CAS delay (tRCD)  
-6B  
29  
0
0
1
1
0
0
0
1
1
0
0
0
0
0
0
0
48H  
50H  
-7B  
20ns  
Minimum active to precharge time  
(tRAS)  
30  
0
0
1
0
1
0
1
0
2AH  
42ns  
-6B  
-7B  
0
0
0
0
1
0
0
0
1
0
1
0
0
1
1
0
2DH  
20H  
45ns  
31  
32  
Module rank density  
128M bytes  
Address and command setup time  
before clock (tIS)  
-6B  
0
1
0
1
0
1
1
0
1
1
1
1
0
0
0
1
0
1
0
0
0
1
0
1
75H  
90H  
75H  
0.75ns*1  
0.9ns*1  
-7B  
Address and command hold time after  
clock (tIH)  
-6B  
33  
0.75ns*1  
-7B  
1
0
0
0
0
1
1
1
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
0
1
0
1
90H  
45H  
50H  
45H  
0.9ns*1  
0.45ns*1  
0.5ns*1  
0.45ns*1  
Data input setup time before clock (tDS)  
-6B  
34  
35  
-7B  
Data input hold time after clock (tDH)  
-6B  
-7B  
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
50H  
00H  
0.5ns*1  
36 to 40 Superset information  
Future use  
Active command period (tRC)  
-6B  
41  
0
0
0
1
1
0
1
0
1
0
1
0
0
0
0
1
3CH  
41H  
60ns*1  
65ns*1  
-7B  
Auto refresh to active/  
Auto refresh command cycle (tRFC)  
-6B  
42  
0
1
0
0
1
0
0
0
48H  
72ns*1  
-7B  
0
0
1
0
0
1
0
1
1
0
0
0
1
0
1
0
4BH  
30H  
75ns*1  
12ns*1  
43  
44  
SDRAM tCK cycle max. (tCK max.)  
Dout to DQS skew  
-6B  
0
0
0
0
0
1
1
1
0
0
1
1
1
0
0
1
0
1
0
1
0
1
0
1
2DH  
32H  
55H  
0.45ns*1  
0.5ns*1  
-7B  
Data hold skew (tQHS)  
-6B  
45  
0.55ns*1  
-7B  
0
0
0
1
0
0
1
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
75H  
00H  
00H  
0.75ns*1  
46 to 61 Superset information  
Future use  
62  
63  
SPD Revision  
Checksum for bytes 0 to 62  
-6B  
1
1
0
1
1
1
1
0
1
0
0
1
1
1
1
0
0
1
0
1
1
0
0
1
E8H  
CAH  
7FH  
-7B  
Continuation  
code  
64 to 65 Manufacturer’s JEDEC ID code  
66  
Manufacturer’s JEDEC ID code  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
FEH  
00H  
Elpida Memory  
67 to 71 Manufacturer’s JEDEC ID code  
(ASCII-8bit  
code)  
72  
Manufacturing location  
×
×
×
×
×
×
×
×
××  
73  
74  
75  
76  
Module part number  
Module part number  
Module part number  
Module part number  
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
1
0
0
1
0
1
1
0
0
0
45H  
42H  
44H  
32H  
E
B
D
2
Preliminary Data Sheet E0499E10 (Ver. 1.0)  
6
EBD26UC6AMSA  
Byte No. Function described  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value  
Comments  
77  
78  
79  
80  
81  
82  
83  
84  
85  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
Module part number  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
1
1
0
1
0
0
1
0
0
0
0
1
1
1
0
1
0
0
1
0
0
0
0
0
0
0
1
0
0
1
1
1
0
1
0
1
0
0
1
1
0
1
1
0
0
1
0
0
0
1
1
0
1
1
1
1
1
36H  
55H  
43H  
36H  
41H  
4DH  
53H  
41H  
2DH  
6
U
C
6
A
M
S
A
Module part number  
-6B  
-7B  
Module part number  
-6B, -7B  
86  
0
0
0
0
0
1
1
1
0
1
1
0
0
0
0
1
1
0
1
1
1
0
1
0
36H  
37H  
42H  
6
7
B
87  
88 to 90 Module part number  
0
0
0
0
0
0
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
20H  
30H  
20H  
(Space)  
Initial  
91  
92  
Revision code  
Revision code  
(Space)  
Year code  
93  
94  
Manufacturing date  
Manufacturing date  
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
××  
××  
(HEX)  
Week code  
(HEX)  
95 to 98 Module serial number  
99 to 127 Manufacture specific data  
Note: These specifications are defined based on component specification, not module.  
Preliminary Data Sheet E0499E10 (Ver. 1.0)  
7
EBD26UC6AMSA  
Block Diagram  
/CS1  
/CS0  
R
R
S
S
/CS  
/CS  
/CS  
/CS  
DQS0  
DQS4  
LDQS  
LDM  
LDQS  
LDM  
LDQS  
LDM  
LDQS  
LDM  
R
R
R
S
R
S
R
S
S
DM0  
DM4  
8
8
8
8
S
I/O0 to I/O7  
UDQS  
I/O0 to I/O7  
UDQS  
DQ0 to DQ7  
DQ32 to DQ39  
I/O0 to I/O7  
I/O0 to I/O7  
R
S
D2  
D6  
DQS1  
DQS5  
UDQS  
UDQS  
D0  
D4  
R
R
R
R
S
S
UDM  
UDM  
DM1  
DM5  
UDM  
UDM  
S
S
DQ8 to DQ15  
I/O8 to I/O15  
I/O8 to I/O15  
DQ40 to DQ47  
I/O8 to I/O15  
I/O8 to I/O15  
R
S
R
S
/CS  
/CS  
/CS  
/CS  
DQS2  
DQS6  
LDQS  
LDQS  
LDQS  
LDQS  
R
R
R
R
R
S
S
S
S
LDM  
LDM  
DM2  
DM6  
LDM  
LDM  
8
8
8
8
S
I/O0 to I/O7  
UDQS  
I/O0 to I/O7  
UDQS  
DQ16 to DQ23  
DQ48 to DQ55  
I/O0 to I/O7  
I/O0 to I/O7  
R
S
D3  
D7  
DQS3  
DQS7  
UDQS  
UDQS  
D1  
D5  
R
R
R
R
S
S
UDM  
UDM  
DM3  
DM7  
UDM  
UDM  
S
S
DQ24 to DQ31  
I/O8 to I/O15  
I/O8 to I/O15  
DQ56 to DQ63  
I/O8 to I/O15  
I/O8 to I/O15  
* D0 to D7 : 256M bits DDR SDRAM  
U0 : 2k bits EEPROM  
Rs : 22Ω  
Serial PD  
BA0 to BA1  
A0 to AN  
/RAS  
SDRAMs (D0 to D7)  
SDRAMs (D0 to D7)  
SDRAMs (D0 to D7)  
SDRAMs (D0 to D7)  
SDRAMs (D0 to D7)  
SDRAMs (D0 to D3)  
SDRAMs (D4 to D7)  
SDA  
SDA  
SCL  
SA0  
SA1  
SA2  
SCL  
A0  
A1  
A2  
U0  
/CAS  
/WE  
WP  
CKE0  
CKE1  
CK0  
4 loads  
4 loads  
VDDSPD  
VREF  
SPD  
SDRAMs (D0 to D7)  
/CK0  
CK1  
/CK1  
VDD  
SDRAMs (D0 to D7), VDD and VDDQ  
SDRAMs (D0 to D7), SPD  
CK2  
10 pF  
/CK2  
VSS  
Notes :  
VDDID  
Open  
1. DQ wiring may differ from that described  
in this drawing; however DQ/DM/DQS  
relationships are maintained as shown.  
VDDID strap connections:  
(for memory device VDD, VDDQ)  
Strap out (open): VDD = VDDQ  
Strap in (closed): VDD VDDQ  
2. The SDA pull-up registor is reguired due to  
the open-drain/open-collector output.  
3. The SCL pull-up registor is recommended,  
because of the normal SCL lime inactive  
"high" state.  
Preliminary Data Sheet E0499E10 (Ver. 1.0)  
8
EBD26UC6AMSA  
Logical Clock Net Structure  
4DRAM loads  
DRAM1  
DRAM2  
120Ω  
DIMM  
connector  
DRAM3  
DRAM4  
Preliminary Data Sheet E0499E10 (Ver. 1.0)  
9
EBD26UC6AMSA  
Electrical Specifications  
All voltages are referenced to VSS (GND).  
Absolute Maximum Ratings  
Parameter  
Symbol  
VT  
Value  
Unit  
V
Note  
Voltage on any pin relative to VSS  
Supply voltage relative to VSS  
Short circuit output current  
Power dissipation  
–0.5 to +3.7  
–0.5 to +3.7  
50  
VDD  
IOS  
PD  
V
mA  
W
8
Operating temperature  
Storage temperature  
TA  
0 to +70  
–55 to +125  
°C  
°C  
1
Tstg  
Note: DDR SDRAM component specification.  
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
DC Operating Conditions (TA = 0 to +70°C) (DDR SDRAM Component Specification)  
Parameter  
Symbol  
VDD, VDDQ  
VSS  
min.  
typ.  
2.5  
0
max.  
2.7  
0
Unit  
V
Notes  
1
Supply voltage  
2.3  
0
V
Input reference voltage  
Termination voltage  
Input high voltage  
Input low voltage  
VREF  
0.49 × VDDQ  
VREF – 0.04  
VREF + 0.15  
–0.3  
0.50 × VDDQ 0.51 × VDDQ  
V
VTT  
VREF  
VREF + 0.04  
VDDQ + 0.3  
VREF – 0.15  
V
VIH (DC)  
VIL (DC)  
V
2
3
V
Input voltage level,  
VIN (DC)  
VIX (DC)  
VID (DC)  
–0.3  
VDDQ + 0.3  
V
V
V
4
CK and /CK inputs  
Input differential cross point  
voltage, CK and /CK inputs  
Input differential voltage,  
CK and /CK inputs  
0.5 × VDDQ 0.2V 0.5 × VDDQ  
0.36  
0.5 × VDDQ + 0.2V  
VDDQ + 0.6  
5, 6  
Notes: 1. VDDQ must be lower than or equal to VDD.  
2. VIH is allowed to exceed VDD up to 3.6V for the period shorter than or equal to 5ns.  
3. VIL is allowed to outreach below VSS down to –1.0V for the period shorter than or equal to 5ns.  
4. VIN (DC) specifies the allowable DC execution of each differential input.  
5. VID (DC) specifies the input differential voltage required for switching.  
6. VIH (CK) min assumed over VREF + 0.18V, VIL (CK) max assumed under VREF – 0.18V  
if measurement.  
Preliminary Data Sheet E0499E10 (Ver. 1.0)  
10  
EBD26UC6AMSA  
DC Characteristics 1 (TA = 0 to 70°C, VDD = 2.5V ± 0.2V, VSS = 0V)  
Parameter  
Symbol  
IDD0  
Grade  
max.  
Unit  
mA  
Test condition  
Notes  
1, 2, 9  
-6B  
-7B  
1040  
960  
CKE VIH,  
tRC = tRC (min.)  
Operating current (ACTV-PRE)  
CKE VIH, BL = 4,  
Operating current  
(ACTV-READ-PRE)  
-6B  
-7B  
1360  
1240  
IDD1  
mA  
CL = 2.5,  
1, 2, 5  
tRC = tRC (min.)  
Idle power down standby current  
Floating idle standby current  
IDD2P  
IDD2F  
64  
560  
480  
mA  
mA  
CKE VIL  
CKE VIH, /CS VIH,  
DQ, DQS, DM = VREF  
4
-6B  
-7B  
4, 5  
-6B  
560  
480  
400  
320  
720  
640  
2360  
1760  
1960  
1600  
2320  
2240  
CKE VIH, /CS VIH,  
Quiet idle standby current  
IDD2Q  
IDD3P  
IDD3N  
IDD4R  
IDD4W  
IDD5  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
4, 10  
-7B  
DQ, DQS, DM = VREF  
Active power down  
standby current  
-6B  
-7B  
-6B  
-7B  
-6B  
-7B  
-6B  
-7B  
CKE VIL  
3
CKE VIH, /CS VIH  
tRAS = tRAS (max.)  
CKE VIH, BL = 2,  
CL = 2.5  
CKE VIH, BL = 2,  
CL = 2.5  
tRFC = tRFC (min.),  
Input VIL or VIH  
Active standby current  
3, 5, 6  
1, 2, 5, 6  
1, 2, 5, 6  
Operating current  
(Burst read operation)  
Operating current  
(Burst write operation)  
-6B  
-7B  
Auto refresh current  
Input VDD – 0.2 V  
Input 0.2 V  
Self refresh current  
IDD6  
48  
Operating current  
(4 banks interleaving)  
-6B  
-7B  
3000  
2720  
IDD7A  
BL = 4  
1, 5, 6, 7  
Notes. 1. These IDD data are measured under condition that DQ pins are not connected.  
2. One bank operation.  
3. One bank active.  
4. All banks idle.  
5. Command/Address transition once per one cycle.  
6. DQ, DM, DQS transition twice per one cycle.  
7. 4 banks active. Only one bank is running at tRC = tRC (min.)  
8. The IDD data on this table are measured with regard to tCK = tCK (min.) in general.  
9. Command/Address transition once every two clock cycles.  
10. Command/Address stable at VIH or VIL.  
DC Characteristics 2 (TA = 0 to 70°C, VDD, VDDQ = 2.5V ± 0.2V, VSS = 0V)  
Parameter  
Symbol  
ILI  
min.  
–16  
max.  
16  
Unit  
µA  
Test condition  
Note  
Input leakage current  
Output leakage current  
Output high current  
Output low current  
VDD VIN VSS  
VDD VOUT VSS  
VOUT = 1.95V  
ILO  
–10  
10  
µA  
IOH  
IOL  
–16.2  
16.2  
mA  
mA  
1
1
VOUT = 0.35V  
Note: 1. DDR SDRAM component specification.  
Preliminary Data Sheet E0499E10 (Ver. 1.0)  
11  
EBD26UC6AMSA  
Pin Capacitance (TA = 25°C, VDD = 2.5V ± 0.2V)  
Parameter  
Symbol  
CI1  
Pins  
max.  
TBD  
TBD  
Unit  
pF  
Notes  
Input capacitance  
Input capacitance  
Address, /RAS, /CAS, /WE  
CK, /CK, CKE, /CS  
CI2  
pF  
Data and DQS input/output  
capacitance  
CO  
DQ, DQS, DM  
TBD  
pF  
AC Characteristics (TA = 0 to +70°C, VDD, VDDQ = 2.5V ± 0.2V, VSS = 0V)  
(DDR SDRAM Component Specification)  
-6B  
-7B  
Parameter  
Symbol  
tCK  
min.  
max.  
12  
min.  
max  
12  
Unit  
Notes  
10  
Clock cycle time  
(CL = 2)  
7.5  
10  
ns  
(CL = 2.5)  
tCK  
tCH  
tCL  
6
12  
7.5  
12  
ns  
CK high-level width  
CK low-level width  
0.45  
0.55  
0.55  
0.45  
0.55  
0.55  
tCK  
tCK  
0.45  
0.45  
min  
min  
CK half period  
tHP  
tAC  
tCK  
ns  
(tCH, tCL)  
(tCH, tCL)  
DQ output access time from  
CK, /CK  
–0.7  
0.7  
–0.75  
0.75  
2, 11  
DQS output access time from CK, /CK  
tDQSCK  
tDQSQ  
tQH  
–0.6  
0.6  
–0.75  
0.75  
0.5  
ns  
2, 11  
3
DQS to DQ skew  
0.45  
ns  
DQ/DQS output hold time from DQS  
Data hold skew factor  
tHP – tQHS —  
tHP – tQHS —  
ns  
tQHS  
0.55  
0.75  
ns  
Data-out high-impedance time from CK, /CK tHZ  
Data-out low-impedance time from CK, /CK tLZ  
–0.7  
–0.7  
0.9  
0.7  
0.7  
1.1  
0.6  
–0.75  
–0.75  
0.9  
0.75  
0.75  
1.1  
0.6  
ns  
5, 11  
6, 11  
ns  
Read preamble  
tRPRE  
tCK  
tCK  
ns  
Read postamble  
tRPST  
tDS  
0.4  
0.4  
DQ and DM input setup time  
DQ and DM input hold time  
DQ and DM input pulse width  
Write preamble setup time  
Write preamble  
0.45  
0.45  
1.75  
0
0.5  
8
8
7
tDH  
0.5  
ns  
tDIPW  
tWPRES  
tWPRE  
tWPST  
1.75  
0
ns  
ns  
0.25  
0.4  
0.25  
0.4  
tCK  
tCK  
Write postamble  
0.6  
0.6  
9
Write command to first DQS latching  
transition  
tDQSS  
0.75  
1.25  
0.75  
1.25  
tCK  
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
DQS input high pulse width  
tDSS  
tDSH  
tDQSH  
tDQSL  
tIS  
0.2  
0.2  
0.35  
0.35  
0.75  
0.75  
2.2  
2
0.2  
0.2  
0.35  
0.35  
0.9  
0.9  
2.2  
2
tCK  
tCK  
tCK  
tCK  
ns  
DQS input low pulse width  
Address and control input setup time  
Address and control input hold time  
Address and control input pulse width  
Mode register set command cycle time  
Active to Precharge command period  
8
8
7
tIH  
ns  
tIPW  
tMRD  
tRAS  
ns  
tCK  
ns  
42  
120000  
45  
120000  
Active to Active/Auto refresh command  
period  
tRC  
60  
65  
ns  
Preliminary Data Sheet E0499E10 (Ver. 1.0)  
12  
EBD26UC6AMSA  
-6B  
-7B  
Parameter  
Symbol  
tRFC  
min.  
max.  
min.  
max  
Unit  
ns  
Notes  
Auto refresh to Active/Auto refresh command  
period  
72  
75  
Active to Read/Write delay  
Precharge to active command period  
Active to Autoprecharge delay  
Active to active command period  
Write recovery time  
tRCD  
tRP  
18  
20  
ns  
ns  
ns  
ns  
ns  
18  
20  
tRAP  
tRRD  
tWR  
tRCD min.  
tRCD min.  
12  
15  
15  
15  
Auto precharge write recovery and precharge  
time  
(tWR/tCK)+  
(tRP/tCK)  
(tWR/tCK)+  
(tRP/tCK)  
tDAL  
tCK  
13  
Internal write to Read command delay  
tWTR  
tREF  
1
1
tCK  
µs  
Average periodic refresh interval  
7.8  
7.8  
Notes: 1. All the AC parameters listed in this data sheet is component specifications. For AC testing conditions,  
refer to the corresponding component data sheet.  
2. This parameter defines the signal transition delay from the cross point of CK and /CK. The signal  
transition is defined to occur when the signal level crossing VTT.  
3. The timing reference level is VTT.  
4. Output valid window is defined to be the period between two successive transition of data out or DQS  
(read) signals. The signal transition is defined to occur when the signal level crossing VTT.  
5. tHZ is defined as DOUT transition delay from Low-Z to High-Z at the end of read burst operation. The  
timing reference is cross point of CK and /CK. This parameter is not referred to a specific DOUT voltage  
level, but specify when the device output stops driving.  
6. tLZ is defined as DOUT transition delay from High-Z to Low-Z at the beginning of read operation. This  
parameter is not referred to a specific DOUT voltage level, but specify when the device output begins  
driving.  
7. Input valid windows is defined to be the period between two successive transition of data input or DQS  
(write) signals. The signal transition is defined to occur when the signal level crossing VREF.  
8. The timing reference level is VREF.  
9. The transition from Low-Z to High-Z is defined to occur when the device output stops driving. A specific  
reference voltage to judge this transition is not given.  
10. tCK (max.) is determined by the lock range of the DLL. Beyond this lock range, the DLL operation is not  
assured.  
11. tCK = tCK (min.) when these parameters are measured. Otherwise, absolute minimum values of these  
values are 10% of tCK.  
12. VDD is assumed to be 2.5V ± 0.2V. VDD power supply variation per cycle expected to be less than  
0.4V/400 cycle.  
13. tDAL = (tWR/tCK)+(tRP/tCK)  
For each of the terms above, if not already an integer, round to the next highest integer.  
Example: For –7B Speed at CL = 2.5, tCK = 7.5ns, tWR = 15ns and tRP= 20ns,  
tDAL = (15ns/7.5ns) + (20ns/7.5ns) = (2) + (3)  
tDAL = 5 clocks  
Preliminary Data Sheet E0499E10 (Ver. 1.0)  
13  
EBD26UC6AMSA  
Timing Parameter Measured in Clock Cycle for unbuffered DIMM  
Number of clock cycle  
6ns  
min.  
tCK  
7.5ns  
Parameter  
Symbol  
max.  
min.  
max.  
Unit  
tCK  
tCK  
tCK  
Write to pre-charge command delay (same bank) tWPD  
Read to pre-charge command delay (same bank) tRPD  
4 + BL/2  
BL/2  
3 + BL/2  
BL/2  
Write to read command delay (to input all data)  
Burst stop command to write command delay  
(CL = 2)  
(CL = 2.5)  
Burst stop command to DQ High-Z  
(CL = 2)  
tWRD  
tBSTW  
tBSTW  
tBSTZ  
tBSTZ  
2 + BL/2  
2 + BL/2  
3
2.5  
2
2
tCK  
tCK  
tCK  
tCK  
3
2.5  
2
(CL = 2.5)  
2.5  
2.5  
Read command to write command delay  
(to output all data)  
(CL = 2)  
tRWD  
2 + BL/2  
tCK  
(CL = 2.5)  
Pre-charge command to High-Z  
(CL = 2)  
tRWD  
tHZP  
3 + BL/2  
3 + BL/2  
2
2
tCK  
tCK  
(CL = 2.5)  
tHZP  
2.5  
1
2.5  
1
2.5  
1
2.5  
1
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
Write command to data in latency  
Write recovery  
tWCD  
tWR  
3
0
2
0
DM to data in latency  
tDMD  
tMRD  
tSNR  
tSRD  
tPDEN  
tPDEX  
0
0
Mode register set command cycle time  
Self refresh exit to non-read command  
Self refresh exit to read command  
Power down entry  
2
1
2
1
12  
200  
1
10  
200  
1
Power down exit to command input  
1
1
Preliminary Data Sheet E0499E10 (Ver. 1.0)  
14  
EBD26UC6AMSA  
Pin Functions  
CK, /CK (input pin)  
The CK and the /CK are the master clock inputs. All inputs except DMs, DQSs and DQs are referred to the cross  
point of the CK rising edge and the VREF level. When a read operation, DQSs and DQs are referred to the cross  
point of the CK and the /CK. When a write operation, DMs and DQs are referred to the cross point of the DQS and  
the VREF level. DQSs for write operation are referred to the cross point of the CK and the /CK.  
/CS (input pin)  
When /CS is low, commands and data can be input. When /CS is high, all inputs are ignored. However, internal  
operations (bank active, burst operations, etc.) are held.  
/RAS, /CAS, and /WE (input pins)  
These pins define operating commands (read, write, etc.) depending on the combinations of their voltage levels.  
See "Command operation".  
A0 to A12 (input pins)  
Row address (AX0 to AX12) is determined by the A0 to the A12 level at the cross point of the CK rising edge and the  
VREF level in a bank active command cycle. Column address (AY0 to AY8) is loaded via the A0 to the A8 at the  
cross point of the CK rising edge and the VREF level in a read or a write command cycle. This column address  
becomes the starting address of a burst operation.  
A10 (AP) (input pin)  
A10 defines the precharge mode when a precharge command, a read command or a write command is issued. If  
A10 = high when a precharge command is issued, all banks are precharged. If A10 = low when a precharge  
command is issued, only the bank that is selected by BA1, BA0 is precharged. If A10 = high when read or write  
command, auto-precharge function is enabled. While A10 = low, auto-precharge function is disabled.  
BA0, BA1 (input pin)  
BA0, BA1 are bank select signals (BA). The memory array is divided into bank 0, bank 1, bank 2 and bank 3. (See  
Bank Select Signal Table)  
[Bank Select Signal Table]  
BA0  
BA1  
Bank 0  
L
L
Bank 1  
H
L
L
Bank 2  
H
H
Bank 3  
H
Remark: H: VIH. L: VIL.  
CKE (input pin)  
CKE controls power down and self-refresh. The power down and the self-refresh commands are entered when the  
CKE is driven low and exited when it resumes to high.  
The CKE level must be kept for 1 CK cycle at least, that is, if CKE changes at the cross point of the CK rising edge  
and the VREF level with proper setup time tIS, at the next CK rising edge CKE level must be kept with proper hold  
time tIH.  
DQ (input and output pins)  
Data are input to and output from these pins.  
DQS (input and output pin)  
DQS provide the read data strobes (as output) and the write data strobes (as input).  
Preliminary Data Sheet E0499E10 (Ver. 1.0)  
15  
EBD26UC6AMSA  
DM (input pins): DM is the reference signal of the data input mask function. DMs are sampled at the cross point of  
DQS and VREF  
VDD (power supply pins)  
2.5V is applied. (VDD is for the internal circuit.)  
VDDSPD (power supply pin)  
2.5V is applied (For serial EEPROM).  
VSS (power supply pin)  
Ground is connected.  
Detailed Operation Part and Timing Waveforms  
Refer to the EDD2508AMTA, EDD2516AMTA datasheet (E0405E).  
Preliminary Data Sheet E0499E10 (Ver. 1.0)  
16  
EBD26UC6AMSA  
Physical Outline  
Unit: mm  
67.60  
63.60  
11.55  
18.45  
3.80  
(DATUM -A-)  
4x Full R  
Component area  
(Front)  
A
B
11.40  
11.40  
47.40  
47.40  
2.15  
2.45  
4.20  
1.00 ± 0.10  
4.20  
1.50  
2.15  
2.45  
R0.50 ± 0.20  
R0.50 ± 0.20  
2x φ 1.80  
Component area  
(Back)  
(DATUM -A-)  
2.00 Min.  
Detail A  
Detail B  
(DATUM -A-)  
FULL R  
0.60  
0.45 ± 0.03  
1.80  
1.00 ± 0.10  
ECA-TS2-0019-01  
Preliminary Data Sheet E0499E10 (Ver. 1.0)  
17  
EBD26UC6AMSA  
CAUTION FOR HANDLING MEMORY MODULES  
When handling or inserting memory modules, be sure not to touch any components on the modules, such as  
the memory ICs, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on  
these components to prevent damaging them.  
In particular, do not push module cover or drop the modules in order to protect from mechanical defects,  
which would be electrical defects.  
When re-packing memory modules, be sure the modules are not touching each other.  
Modules in contact with other modules may cause excessive mechanical stress, which may damage the  
modules.  
MDE0202  
NOTES FOR CMOS DEVICES  
PRECAUTION AGAINST ESD FOR MOS DEVICES  
1
Exposing the MOS devices to a strong electric field can cause destruction of the gate  
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop  
generation of static electricity as much as possible, and quickly dissipate it, when once  
it has occurred. Environmental control must be adequate. When it is dry, humidifier  
should be used. It is recommended to avoid using insulators that easily build static  
electricity. MOS devices must be stored and transported in an anti-static container,  
static shielding bag or conductive material. All test and measurement tools including  
work bench and floor should be grounded. The operator should be grounded using  
wrist strap. MOS devices must not be touched with bare hands. Similar precautions  
need to be taken for PW boards with semiconductor MOS devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES  
No connection for CMOS devices input pins can be a cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input level may be  
generated due to noise, etc., hence causing malfunction. CMOS devices behave  
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected  
to VDD or GND with a resistor, if it is considered to have a possibility of being an output  
pin. The unused pins must be handled in accordance with the related specifications.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Power-on does not necessarily define initial status of MOS devices. Production process  
of MOS does not define the initial operation status of the device. Immediately after the  
power source is turned ON, the MOS devices with reset function have not yet been  
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or  
contents of registers. MOS devices are not initialized until the reset signal is received.  
Reset operation must be executed immediately after power-on for MOS devices having  
reset function.  
CME0107  
Preliminary Data Sheet E0499E10 (Ver. 1.0)  
18  
EBD26UC6AMSA  
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of Elpida Memory, Inc.  
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights  
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or  
third parties by or arising from the use of the products or information listed in this document. No license,  
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property  
rights of Elpida Memory, Inc. or others.  
Descriptions of circuits, software and other related information in this document are provided for  
illustrative purposes in semiconductor product operation and application examples. The incorporation of  
these circuits, software and information in the design of the customer's equipment shall be done under  
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses  
incurred by customers or third parties arising from the use of these circuits, software and information.  
[Product applications]  
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.  
However, users are instructed to contact Elpida Memory's sales office before using the product in  
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment,  
medical equipment for life support, or other such application in which especially high quality and  
reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury.  
[Product usage]  
Design your application so that the product is used within the ranges and conditions guaranteed by  
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation  
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no  
responsibility for failure or damage when the product is used beyond the guaranteed ranges and  
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure  
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so  
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other  
consequential damage due to the operation of the Elpida Memory, Inc. product.  
[Usage environment]  
This product is not designed to be resistant to electromagnetic waves or radiation. This product must be  
used in a non-condensing environment.  
If you export the products or technology described in this document that are controlled by the Foreign  
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance  
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by  
U.S. export control regulations, or another country's export control laws or regulations, you must follow  
the necessary procedures in accordance with such laws or regulations.  
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted  
license to use these products, that third party must be made aware that they are responsible for  
compliance with the relevant laws and regulations.  
M01E0107  
Preliminary Data Sheet E0499E10 (Ver. 1.0)  
19  

相关型号:

EBD26UC6AMSA-7B

256MB DDR SDRAM SO-DIMM
ELPIDA

EBD26UC6AMSA-7B-E

DDR DRAM Module, 32MX64, 0.75ns, CMOS, SODIMM-200
ELPIDA

EBD51RC4AAFA

512MB Registered DDR SDRAM DIMM
ELPIDA

EBD51RC4AAFA-7A

512MB Registered DDR SDRAM DIMM
ELPIDA

EBD51RC4AAFA-7A-E

DDR DRAM Module, 64MX72, 0.75ns, CMOS, DIMM-184
ELPIDA

EBD51RC4AAFA-7B

512MB Registered DDR SDRAM DIMM
ELPIDA

EBD51RC4AKFA

512MB Registered DDR SDRAM DIMM (64M words X 72 bits, 1 Rank)
ELPIDA

EBD51RC4AKFA-6B

512MB Registered DDR SDRAM DIMM (64M words X 72 bits, 1 Rank)
ELPIDA

EBD51RC4AKFA-6B-E

512MB Registered DDR SDRAM DIMM (64M words x 72 bits, 1 Rank)
ELPIDA

EBD51RC4AKFA-7A

512MB Registered DDR SDRAM DIMM (64M words X 72 bits, 1 Rank)
ELPIDA

EBD51RC4AKFA-7A-E

512MB Registered DDR SDRAM DIMM (64M words x 72 bits, 1 Rank)
ELPIDA

EBD51RC4AKFA-7B

512MB Registered DDR SDRAM DIMM (64M words X 72 bits, 1 Rank)
ELPIDA