EDD1216AASE-7A-E [ELPIDA]

128M bits DDR SDRAM (8M words x 16 bits); 128M位的DDR SDRAM (8M字×16位)
EDD1216AASE-7A-E
型号: EDD1216AASE-7A-E
厂家: ELPIDA MEMORY    ELPIDA MEMORY
描述:

128M bits DDR SDRAM (8M words x 16 bits)
128M位的DDR SDRAM (8M字×16位)

动态存储器 双倍数据速率
文件: 总49页 (文件大小:564K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
128M bits DDR SDRAM  
EDD1216AASE (8M words × 16 bits)  
Description  
Pin Configurations  
The EDD1216AASE is a 128M bits Double Data Rate  
(DDR) SDRAM organized as 2,097,154 words × 16 bits  
× 4 banks. Read and write operations are performed at  
the cross points of the CK and the /CK. This high-  
speed data transfer is realized by the 2 bits prefetch-  
pipelined architecture. Data strobe (DQS) both for  
read and write are available for high speed and reliable  
data bus design. By setting extended mode register,  
the on-chip Delay Locked Loop (DLL) can be set  
enable or disable. It is packaged in 60-ball FBGA  
(µBGA) package.  
/xxx indicates active low signal.  
60-ball FBGA ( BGA)  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
VSSQ DQ15 VSS  
DQ14 VDDQ DQ13  
DQ12 VSSQ DQ11  
DQ10 VDDQ DQ9  
DQ8 VSSQ UDQS  
VREF VSS UDM  
VDD DQ0 VDDQ  
DQ2 VSSQ DQ1  
DQ4 VDDQ DQ3  
DQ6 VSSQ DQ5  
LDQS VDDQ DQ7  
Features  
Power supply : VDDQ = 2.5V ± 0.2V  
: VDD = 2.5V ± 0.2V  
Data rate: 333Mbps/266Mbps (max.)  
LDM VDD  
/WE /CAS  
/RAS /CS  
BA1 BA0  
NC  
G
H
J
CK  
NC  
A11  
A8  
/CK  
CKE  
A9  
Double Data Rate architecture; two data transfers per  
clock cycle  
Bi-directional, data strobe (DQS) is transmitted  
/received with data, to be used in capturing data at  
the receiver  
K
L
A7  
A0  
A2  
A10  
(AP)  
Data inputs, outputs, and DM are synchronized with  
DQS  
A6  
A5  
A1  
A3  
4 internal banks for concurrent operation  
M
DQS is edge aligned with data for READs; center  
A4  
VSS  
VDD  
aligned with data for WRITEs  
Differential clock inputs (CK and /CK)  
(Top view)  
Address inputs  
DLL aligns DQ and DQS transitions with CK  
A0 to A11  
transitions  
BA0, BA1  
DQ0 to DQ15  
UQQS/LDQS  
/CS  
/RAS  
/CAS  
/WE  
UDM/LDM  
CK  
/CK  
CKE  
VREF  
VDD  
VSS  
VDDQ  
VSSQ  
NC  
Bank select address  
Data-input/output  
Input and output data strobe  
Chip select  
Row address strobe  
Column address strobe  
Write enable  
Input mask  
Clock input  
Differential clock input  
Clock enable  
Input reference voltage  
Power for internal circuit  
Ground for internal circuit  
Power for DQ circuit  
Ground for DQ circuit  
No connection  
Commands entered on each positive CK edge; data  
and data mask referenced to both edges of DQS  
Data mask (DM) for write data  
Auto precharge option for each burst access  
SSTL_2 compatible I/O  
Programmable burst length (BL): 2, 4, 8  
Programmable /CAS latency (CL): 2, 2.5  
Programmable output driver strength: normal/weak  
Refresh cycles: 4096 refresh cycles/64ms  
15.6µs maximum average periodic refresh interval  
2 variations of refresh  
Auto refresh  
Self refresh  
FBGA (µBGA) package with lead free solder  
(Sn-Ag-Cu)  
Document No. E0614E20 (Ver. 2.0)  
Date Published March 2005 (K) Japan  
Printed in Japan  
URL: http://www.elpida.com  
Elpida Memory, Inc. 2004-2005  
EDD1216AASE  
Ordering Information  
Mask  
version  
Organization  
(words × bits)  
Internal  
banks  
Data rate  
Mbps (max.)  
JEDEC speed bin  
(CL-tRCD-tRP)  
Part number  
Package  
EDD1216AASE-6B-E  
EDD1216AASE-7A-E  
333  
266  
DDR-333B (2.5-3-3)  
DDR-266A (2-3-3)  
60-ball FBGA  
(µBGA)  
A
8M × 16  
4
Part Number  
E D D 12 16 A A SE - 6B - E  
Elpida Memory  
Type  
D: Monolithic Device  
Product Code  
D: DDR SDRAM  
Environment Code  
E: Lead Free  
Density / Bank  
12: 128M / 4-bank  
Speed  
6B: DDR333B (2.5-3-3)  
7A: DDR266A (2-3-3)  
Bit Organization  
16: x16  
Voltage, Interface  
A: 2.5V, SSTL_2  
Package  
SE: FBGA (µBGA with back cover)  
Die Rev.  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
2
EDD1216AASE  
CONTENTS  
Description.....................................................................................................................................................1  
Features.........................................................................................................................................................1  
Pin Configurations .........................................................................................................................................1  
Ordering Information......................................................................................................................................2  
Part Number ..................................................................................................................................................2  
Electrical Specifications.................................................................................................................................4  
Block Diagram .............................................................................................................................................10  
Pin Function.................................................................................................................................................11  
Command Operation ...................................................................................................................................13  
Simplified State Diagram.............................................................................................................................20  
Operation of the DDR SDRAM....................................................................................................................21  
Timing Waveforms.......................................................................................................................................40  
Package Drawing ........................................................................................................................................46  
Recommended Soldering Conditions..........................................................................................................47  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
3
EDD1216AASE  
Electrical Specifications  
All voltages are referenced to VSS (GND).  
After power up, wait more than 200 µs and then, execute power on sequence and CBR (Auto) refresh before  
proper device operation is achieved.  
Absolute Maximum Ratings  
Parameter  
Symbol  
VT  
Rating  
Unit  
V
Note  
Voltage on any pin relative to VSS  
Supply voltage relative to VSS  
Short circuit output current  
Power dissipation  
–1.0 to +3.6  
–1.0 to +3.6  
50  
VDD  
IOS  
PD  
V
mA  
W
1.0  
Operating ambient temperature  
Storage temperature  
TA  
0 to +70  
–55 to +125  
°C  
°C  
Tstg  
Caution  
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended Operating Conditions (TA = 0 to +70°C)  
Parameter  
Symbol  
min.  
2.3  
typ.  
2.5  
max.  
2.7  
Unit  
V
Notes  
1
VDD,  
VDDQ  
Supply voltage  
VSS,  
VSSQ  
0
0
0
V
Input reference voltage  
Termination voltage  
Input high voltage  
Input low voltage  
VREF  
0.49 × VDDQ  
VREF – 0.04  
VREF + 0.15  
–0.3  
0.50 × VDDQ 0.51 × VDDQ  
V
V
V
V
VTT  
VREF  
VREF + 0.04  
VDDQ + 0.3  
VREF – 0.15  
VIH (DC)  
VIL (DC)  
2
3
Input voltage level,  
VIN (DC)  
VIX (DC)  
VID (DC)  
–0.3  
VDDQ + 0.3  
V
V
V
4
CK and /CK inputs  
Input differential cross point  
voltage, CK and /CK inputs  
Input differential voltage,  
CK and /CK inputs  
0.5 × VDDQ 0.2V 0.5 × VDDQ  
0.36  
0.5 × VDDQ + 0.2V  
VDDQ + 0.6  
5, 6  
Notes: 1. VDDQ must be lower than or equal to VDD.  
2. VIH is allowed to exceed VDD up to 3.6V for the period shorter than or equal to 5ns.  
3. VIL is allowed to outreach below VSS down to –1.0V for the period shorter than or equal to 5ns.  
4. VIN (DC) specifies the allowable DC execution of each differential input.  
5. VID (DC) specifies the input differential voltage required for switching.  
6. VIH (CK) min assumed over VREF + 0.18V, VIL (CK) max assumed under VREF – 0.18V if measurement.  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
4
EDD1216AASE  
DC Characteristics 1 (TA = 0 to +70°C, VDD, VDDQ = 2.5V ± 0.2V, VSS, VSSQ = 0V)  
Parameter  
Symbol  
Grade  
max.  
110  
Unit  
mA  
Test condition  
Notes  
1, 2, 9  
CKE VIH,  
tRC = tRC (min.)  
Operating current (ACT-PRE) IDD0  
CKE VIH, BL = 4,  
Operating current  
IDD1  
140  
mA  
CL = 2.5,  
1, 2, 5  
(ACT-READ-PRE)  
tRC = tRC (min.)  
Idle power down standby  
IDD2P  
current  
3
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
CKE VIL  
4
CKE VIH, /CS VIH  
DQ, DQS, DM = VREF  
CKE VIH, /CS VIH  
DQ, DQS, DM = VREF  
Floating idle standby current  
IDD2F  
IDD2Q  
IDD3P  
IDD3N  
IDD4R  
IDD4W  
IDD5  
35  
4, 5  
Quiet idle standby current  
30  
4, 10  
3
Active power down standby  
current  
20  
CKE VIL  
CKE VIH, /CS VIH  
tRAS = tRAS (max.)  
CKE VIH, BL = 2,  
CL = 2.5  
CKE VIH, BL = 2,  
CL = 2.5  
tRFC = tRFC (min.),  
Input VIL or VIH  
Active standby current  
55  
3, 5, 6  
1, 2, 5, 6  
1, 2, 5, 6  
Operating current  
(Burst read operation)  
Operating current  
(Burst write operation)  
205  
205  
200  
3
Auto Refresh current  
Input VDD – 0.2 V  
Input 0.2 V  
Self refresh current  
IDD6  
Operating current  
(4 banks interleaving)  
IDD7A  
350  
BL = 4  
1, 5, 6, 7  
Notes: 1. These IDD data are measured under condition that DQ pins are not connected.  
2. One bank operation.  
3. One bank active.  
4. All banks idle.  
5. Command/Address transition once per one clock cycle.  
6. DQ, DM and DQS transition twice per one clock cycle.  
7. 4 banks active. Only one bank is running at tRC = tRC (min.)  
8. The IDD data on this table are measured with regard to tCK = tCK (min.) in general.  
9. Command/Address transition once every two clock cycle.  
10. Command/Address stable at VIH or VIL.  
DC Characteristics 2 (TA = 0 to +70°C, VDD, VDDQ = 2.5V ± 0.2V, VSS, VSSQ = 0V)  
Parameter  
Symbol  
ILI  
min.  
–2  
max.  
2
Unit  
µA  
Test condition  
Note  
Input leakage current  
Output leakage current  
Output high current  
Output low current  
VDD VIN VSS  
VDDQ VOUT VSS  
VOUT = 1.95V  
ILO  
–5  
5
µA  
IOH  
IOL  
–15.2  
15.2  
mA  
mA  
VOUT = 0.35V  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
5
EDD1216AASE  
Pin Capacitance (TA = +25°C, VDD, VDDQ = 2.5V ± 0.2V)  
Parameter  
Symbol  
CI1  
Pins  
min.  
1.5  
1.5  
typ.  
max.  
3.0  
Unit  
pF  
pF  
pF  
pF  
pF  
pF  
Notes  
Input capacitance  
CK, /CK  
1
CI2  
All other input pins  
CK, /CK  
3.0  
1
Delta input capacitance  
Cdi1  
Cdi2  
CI/O  
Cdio  
0.25  
0.5  
1
All other input-only pins  
DQ, DM, DQS  
DQ, DM, DQS  
1
Data input/output capacitance  
Delta input/output capacitance  
3.0  
4.8  
1, 2,  
1
0.6  
Notes: 1. These parameters are measured on conditions: f = 100MHz, VOUT = VDDQ/2, VOUT = 0.2V,  
TA = +25°C.  
2. DOUT circuits are disabled.  
AC Characteristics (TA = 0 to +70°C, VDD, VDDQ = 2.5V ± 0.2V, VSS, VSSQ = 0V)  
-6B  
-7A  
Parameter  
Clock cycle time  
(CL = 2)  
Symbol  
tCK  
min.  
max.  
12  
min.  
max.  
12  
Unit  
ns  
Notes  
10  
7.5  
7.5  
(CL = 2.5)  
tCK  
tCH  
tCL  
6
12  
7.5  
12  
ns  
CK high-level width  
CK low-level width  
0.45  
0.45  
0.55  
0.55  
0.45  
0.45  
0.55  
0.55  
tCK  
tCK  
min  
min  
CK half period  
tHP  
tAC  
tCK  
ns  
(tCH, tCL)  
(tCH, tCL)  
DQ output access time from  
CK, /CK  
–0.7  
0.7  
–0.75  
0.75  
2, 11  
DQS output access time from CK, /CK  
tDQSCK –0.6  
0.6  
–0.75  
0.75  
0.5  
ns  
ns  
ns  
ns  
2, 11  
3
DQS to DQ skew  
tDQSQ  
tQH  
0.45  
DQ/DQS output hold time from DQS  
Data hold skew factor  
tHP – tQHS —  
tHP – tQHS —  
tQHS  
0.55  
0.75  
Data-out high-impedance time from CK,  
/CK  
Data-out low-impedance time from CK, /CK tLZ  
tHZ  
–0.7  
0.7  
–0.75  
0.75  
ns  
5, 11  
6, 11  
–0.7  
0.9  
0.7  
1.1  
0.6  
–0.75  
0.9  
0.75  
1.1  
0.6  
ns  
Read preamble  
tRPRE  
tCK  
tCK  
ns  
Read postamble  
tRPST  
tDS  
0.4  
0.4  
DQ and DM input setup time  
DQ and DM input hold time  
DQ and DM input pulse width  
Write preamble setup time  
Write preamble  
0.45  
0.45  
1.75  
0
0.5  
8
8
7
tDH  
0.5  
ns  
tDIPW  
tWPRES  
tWPRE  
tWPST  
1.75  
0
ns  
ns  
0.25  
0.4  
0.25  
0.4  
tCK  
tCK  
Write postamble  
0.6  
0.6  
9
Write command to first DQS latching  
transition  
tDQSS  
0.75  
1.25  
0.75  
1.25  
tCK  
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
DQS input high pulse width  
tDSS  
tDSH  
tDQSH  
tDQSL  
tIS  
0.2  
0.2  
tCK  
tCK  
tCK  
tCK  
ns  
0.2  
0.2  
0.35  
0.35  
0.75  
0.75  
0.35  
0.35  
0.9  
DQS input low pulse width  
Address and control input setup time  
Address and control input hold time  
8
8
tIH  
0.9  
ns  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
6
EDD1216AASE  
-6B  
-7A  
Parameter  
Symbol  
tIPW  
min.  
2.2  
2
max.  
min.  
2.2  
2
max.  
Unit  
ns  
Notes  
7
Address and control input pulse width  
Mode register set command cycle time  
Active to Precharge command period  
tMRD  
tRAS  
tCK  
ns  
42  
120000  
45  
120000  
Active to Active/Auto refresh command  
tRC  
60  
72  
67.5  
75  
ns  
ns  
period  
Auto refresh to Active/Auto refresh  
command period  
tRFC  
Active to Read/Write delay  
Precharge to active command period  
Active to Autoprecharge delay  
Active to active command period  
Write recovery time  
tRCD  
tRP  
18  
20  
ns  
ns  
ns  
ns  
ns  
18  
20  
tRAP  
tRRD  
tWR  
tRCD min.  
tRCD min.  
12  
15  
15  
15  
Auto precharge write recovery and  
precharge time  
(tWR/tCK)+  
(tRP/tCK)  
(tWR/tCK)+  
(tRP/tCK)  
tDAL  
tCK  
13  
Internal write to Read command delay  
tWTR  
tREF  
1
1
tCK  
µs  
Average periodic refresh interval  
15.6  
15.6  
Notes: 1. On all AC measurements, we assume the test conditions shown in the next page. For timing parameter  
definitions, see ‘Timing Waveforms’ section.  
2. This parameter defines the signal transition delay from the cross point of CK and /CK. The signal  
transition is defined to occur when the signal level crossing VTT.  
3. The timing reference level is VTT.  
4. Output valid window is defined to be the period between two successive transition of data out or DQS  
(read) signals. The signal transition is defined to occur when the signal level crossing VTT.  
5. tHZ is defined as DOUT transition delay from Low-Z to High-Z at the end of read burst operation. The  
timing reference is cross point of CK and /CK. This parameter is not referred to a specific DOUT voltage  
level, but specify when the device output stops driving.  
6. tLZ is defined as DOUT transition delay from High-Z to Low-Z at the beginning of read operation. This  
parameter is not referred to a specific DOUT voltage level, but specify when the device output begins  
driving.  
7. Input valid windows is defined to be the period between two successive transition of data input or DQS  
(write) signals. The signal transition is defined to occur when the signal level crossing VREF.  
8. The timing reference level is VREF.  
9. The transition from Low-Z to High-Z is defined to occur when the device output stops driving. A specific  
reference voltage to judge this transition is not given.  
10. tCK (max.) is determined by the lock range of the DLL. Beyond this lock range, the DLL operation is not  
assured.  
11. tCK = tCK (min) when these parameters are measured. Otherwise, absolute minimum values of these  
values are 10% of tCK.  
12. VDD is assumed to be 2.5V ± 0.2V. VDD power supply variation per cycle expected to be less than  
0.4V/400 cycle.  
13. tDAL = (tWR/tCK)+(tRP/tCK)  
For each of the terms above, if not already an integer, round to the next highest integer.  
Example: For –7A Speed at CL = 2.5, tCK = 7.5ns, tWR = 15ns and tRP= 20ns,  
tDAL = (15ns/7.5ns) + (20ns/7.5ns) = (2) + (3)  
tDAL = 5 clocks  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
7
EDD1216AASE  
Test Conditions  
Parameter  
Symbol  
VREF  
Value  
Unit  
V
Input reference voltage  
Termination voltage  
Input high voltage  
Input low voltage  
VDDQ/2  
VREF  
VTT  
V
VIH (AC)  
VIL (AC)  
VREF + 0.31  
VREF 0.31  
V
V
Input differential voltage, CK and /CK  
inputs  
VID (AC)  
0.62  
V
Input differential cross point voltage,  
CK and /CK inputs  
Input signal slew rate  
VIX (AC)  
SLEW  
VREF  
1
V
V/ns  
tCK  
VDD  
VREF  
VSS  
CK  
VID  
/CK  
tCL  
tCH  
VIX  
VDD  
VIH  
VREF  
VIL  
VSS  
t  
SLEW = (VIH (AC) – VIL (AC))/t  
VTT  
Measurement point  
DQ  
RT = 50Ω  
CL = 30pF  
Input Waveforms and Output Load  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
8
EDD1216AASE  
Timing Parameter Measured in Clock Cycle  
Number of clock cycle  
6ns  
tCK  
7.5ns  
Parameter  
Symbol  
tWPD  
tRPD  
min.  
max.  
min.  
max.  
Unit  
tCK  
tCK  
tCK  
Write to pre-charge command delay (same bank)  
Read to pre-charge command delay (same bank)  
Write to read command delay (to input all data)  
4 + BL/2  
BL/2  
3 + BL/2  
BL/2  
tWRD  
2 + BL/2  
2 + BL/2  
Burst stop command to write command delay  
(CL = 2)  
(CL = 2.5)  
Burst stop command to DQ High-Z  
(CL = 2)  
(CL = 2.5)  
tBSTW  
tBSTW  
tBSTZ  
tBSTZ  
3
2.5  
2
2
tCK  
tCK  
tCK  
tCK  
3
2.5  
2
2.5  
2.5  
Read command to write command delay  
(to output all data)  
(CL = 2)  
tRWD  
2 + BL/2  
tCK  
(CL = 2.5)  
Pre-charge command to High-Z  
(CL = 2)  
tRWD  
tHZP  
3 + BL/2  
3 + BL/2  
2
2
tCK  
tCK  
(CL = 2.5)  
tHZP  
2.5  
1
2.5  
1
2.5  
1
2.5  
1
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
Write command to data in latency  
Write recovery  
tWCD  
tWR  
3
0
2
0
DM to data in latency  
tDMD  
tMRD  
tSNR  
tSRD  
tPDEN  
tPDEX  
0
0
Mode register set command cycle time  
Self refresh exit to non-read command  
Self refresh exit to read command  
Power down entry  
2
1
2
1
12  
200  
1
10  
200  
1
Power down exit to command input  
1
1
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
9
EDD1216AASE  
Block Diagram  
CK  
/CK  
CKE  
Bank 3  
Bank 2  
Bank 1  
A0 to A11, BA0, BA1  
Row  
address  
buffer  
and  
Memory cell array  
Bank 0  
refresh  
counter  
Mode  
register  
Sense amp.  
Column decoder  
Column  
address  
buffer  
and  
/CS  
/RAS  
/CAS  
/WE  
burst  
counter  
Data control circuit  
Latch circuit  
DQS  
DM  
DLL  
Input & Output buffer  
CK, /CK  
DQ  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
10  
EDD1216AASE  
Pin Function  
CK, /CK (input pins)  
The CK and the /CK are the master clock inputs. All inputs except DM, DQS and DQs are referred to the cross point  
of the CK rising edge and the /CK falling edge. When a read operation, DQS and DQs are referred to the cross point  
of the CK and the /CK. When a write operation, DQS and DQs are referred to the cross point of the DQS and the  
VREF level. DQS for write operation is referred to the cross point of the CK and the /CK. CK is the master clock  
input to this pin. The other input signals are referred at CK rising edge.  
/CS (input pin)  
When /CS is Low, commands and data can be input. When /CS is High, all inputs are ignored. However, internal  
operations (bank active, burst operations, etc.) are held.  
/RAS, /CAS, and /WE (input pins)  
These pins define operating commands (read, write, etc.) depending on the combinations of their voltage levels.  
See "Command operation".  
A0 toA11 (input pins)  
Row address (AX0 to AX11) is determined by the A0 to the A11 level at the cross point of the CK rising edge and the  
/CK falling edge in a bank active command cycle. Column address (See “Address Pins Table”) is loaded via the A0  
to the A8 at the cross point of the CK rising edge and the /CK falling edge in a read or a write command cycle. This  
column address becomes the starting address of a burst operation.  
[Address Pins Table]  
Address (A0 to A11)  
Part number  
Row address  
AX0 to AX11  
Column address  
AY0 to AY8  
EDD1216AASE  
A10 (AP) (input pin)  
A10 defines the precharge mode when a precharge command, a read command or a write command is issued. If  
A10 = High when a precharge command is issued, all banks are precharged. If A10 = Low when a precharge  
command is issued, only the bank that is selected by BA1/BA0 is precharged. If A10 = High when read or write  
command, auto-precharge function is enabled. While A10 = Low, auto-precharge function is disabled.  
BA0 and BA1 (input pins)  
BA0, BA1 are bank select signals (BA). The memory array is divided into bank 0, bank 1, bank 2 and bank 3. (See  
Bank Select Signal Table)  
[Bank Select Signal Table]  
BA0  
L
BA1  
L
Bank 0  
Bank 1  
H
L
Bank 2  
L
H
Bank 3  
H
H
Remark: H: VIH. L: VIL.  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
11  
EDD1216AASE  
CKE (input pin)  
This pin determines whether or not the next CK is valid. If CKE is High, the next CK rising edge is valid. If CKE is  
Low. CKE controls power down and self-refresh. The power down and the self-refresh commands are entered  
when the CKE is driven Low and exited when it resumes to High. CKE must be maintained high throughout read or  
write access.  
The CKE level must be kept for 1 CK cycle at least, that is, if CKE changes at the cross point of the CK rising edge  
and the /CK falling edge with proper setup time tIS, by the next CK rising edge CKE level must be kept with proper  
hold time tIH.  
UDM, LDM (input pin)  
DMs are the reference signals of the data input mask function. DMs are sampled at the cross point of DQS and  
VREF. DMs provide the byte mask function. In × 16 products, LDM controls the lower byte (DQ0 to DQ7) and UDM  
controls the upper byte (DQ8 to DQ15) of write data. When DM = High, the data input at the same timing are  
masked while the internal burst counter will be count up.  
DQ0 toDQ15 (input/output pins)  
Data is input to and output from these pins.  
UDQS, LDQS (input and output pin)  
DQS provide the read data strobes (as output) and the write data strobes (as input). In ×16 products, LDQS is the  
lower byte (DQ0 to DQ7) data strobe signal, UDQS is the upper byte (DQ8 to DQ15) data strobe signal.  
VDD, VSS, VDDQ, VSSQ (Power supply)  
VDD and VSS are power supply pins for internal circuits. VDDQ and VSSQ are power supply pins for the output  
buffers.  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
12  
EDD1216AASE  
Command Operation  
Command Truth Table  
DDR SDRAM recognize the following commands specified by the /CS, /RAS, /CAS, /WE and address pins. All other  
combinations than those in the table below are illegal.  
CKE  
Command  
Symbol  
DESL  
NOP  
n – 1  
H
n
/CS /RAS /CAS /WE BA1 BA0 AP  
Address  
Ignore command  
H
H
H
H
H
H
H
H
H
H
H
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
×
H
H
H
H
H
H
L
×
H
H
L
×
×
×
×
V
V
V
V
V
V
×
×
×
L
L
×
×
×
V
V
V
V
V
V
×
×
×
L
×
×
×
L
H
L
H
V
L
H
×
×
L
L
×
×
×
V
V
V
V
V
×
×
×
×
V
V
No operation  
H
H
L
Burst stop in read command  
Column address and read command  
Read with auto-precharge  
Column address and write command  
Write with auto-precharge  
Row address strobe and bank active  
Precharge select bank  
Precharge all bank  
BST  
H
READ  
READA  
WRIT  
WRITA  
ACT  
H
H
H
L
H
L
H
L
H
L
L
H
H
H
H
L
H
L
PRE  
H
L
PALL  
REF  
H
L
L
Refresh  
H
L
H
H
L
SELF  
MRS  
H
L
L
Mode register set  
H
H
H
L
L
EMRS  
H
L
L
L
H
Remark: H: VIH. L: VIL. ×: VIH or VIL V: Valid address input  
Note: The CKE level must be kept for 1 CK cycle at least.  
Ignore command [DESL]  
When /CS is High at the cross point of the CK rising edge and the VREF level, every input are neglected and internal  
status is held.  
No operation [NOP]  
As long as this command is input at the cross point of the CK rising edge and the VREF level, address and data  
input are neglected and internal status is held.  
Burst stop in read operation [BST]  
This command stops a burst read operation, which is not applicable for a burst write operation.  
Column address strobe and read command [READ]  
This command starts a read operation. The start address of the burst read is determined by the column address  
(See “Address Pins Table” in Pin Function) and the bank select address. After the completion of the read operation,  
the output buffer becomes High-Z.  
Read with auto-precharge [READA]  
This command starts a read operation. After completion of the read operation, precharge is automatically executed.  
Column address strobe and write command [WRIT]  
This command starts a write operation. The start address of the burst write is determined by the column address  
(See “Address Pins Table” in Pin Function) and the bank select address.  
Write with auto-precharge [WRITA]  
This command starts a write operation. After completion of the write operation, precharge is automatically executed.  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
13  
EDD1216AASE  
Row address strobe and bank activate [ACT]  
This command activates the bank that is selected by BA0, BA1 and determines the row address (AX0 to AX11).  
(See Bank Select Signal Table)  
Precharge selected bank [PRE]  
This command starts precharge operation for the bank selected by BA0, BA1. (See Bank Select Signal Table)  
[Bank Select Signal Table]  
BA0  
L
BA1  
L
Bank 0  
Bank 1  
H
L
Bank 2  
L
H
Bank 3  
H
H
Remark: H: VIH. L: VIL.  
Precharge all banks [PALL]  
This command starts a precharge operation for all banks.  
Refresh [REF/SELF]  
This command starts a refresh operation. There are two types of refresh operation, one is auto-refresh, and another  
is self-refresh. For details, refer to the CKE truth table section.  
Mode register set/Extended mode register set [MRS/EMRS]  
The DDR SDRAM has the two mode registers, the mode register and the extended mode register, to defines how it  
works. The both mode registers are set through the address pins (the A0 to the A11, BA0 to BA1) in the mode  
register set cycle. For details, refer to "Mode register and extended mode register set".  
CKE Truth Table  
CKE  
Current state  
Command  
n – 1  
H
n
/CS  
L
/RAS /CAS /WE  
Address  
Notes  
Idle  
Idle  
Idle  
Auto-refresh command (REF)  
Self-refresh entry (SELF)  
Power down entry (PDEN)  
H
L
L
L
H
H
H
×
×
×
×
×
×
×
×
×
2
2
H
L
L
L
H
L
L
H
×
H
×
H
L
H
L
Self refresh  
Power down  
Self refresh exit (SELFX)  
Power down exit (PDEX)  
L
H
H
H
H
H
×
H
×
H
×
L
H
L
L
H
×
H
×
H
×
L
H
Remark: H: VIH. L: VIL. ×: VIH or VIL.  
Notes: 1. All the banks must be in IDLE before executing this command.  
2. The CKE level must be kept for 1 CK cycle at least.  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
14  
EDD1216AASE  
Function Truth Table  
The following tables show the operations that are performed when each command is issued in each state of the  
DDR SDRAM.  
Current state  
Precharging*1  
/CS  
H
L
/RAS /CAS /WE Address  
Command  
DESL  
Operation  
NOP  
Next state  
ldle  
ldle  
×
×
×
×
H
H
H
H
L
H
H
L
H
L
×
NOP  
NOP  
L
×
BST  
ILLEGAL*11  
ILLEGAL*11  
ILLEGAL*11  
ILLEGAL*11  
NOP  
L
H
L
BA, CA, A10  
BA, CA, A10  
BA, RA  
BA, A10  
×
READ/READA  
WRIT/WRITA  
ACT  
L
L
L
H
H
L
H
L
L
L
PRE, PALL  
ldle  
L
L
×
ILLEGAL  
NOP  
Idle*2  
H
L
×
×
×
×
DESL  
ldle  
ldle  
H
H
H
H
L
H
H
L
H
L
×
NOP  
NOP  
L
×
BST  
ILLEGAL*11  
ILLEGAL*11  
ILLEGAL*11  
Activating  
NOP  
L
H
L
BA, CA, A10  
BA, CA, A10  
BA, RA  
BA, A10  
READ/READA  
WRIT/WRITA  
ACT  
L
L
L
H
H
H
L
Active  
ldle  
L
L
PRE, PALL  
Refresh/  
ldle/  
L
L
H
L
L
×
L
L
×
H
L
×
REF, SELF  
MRS  
Self refresh*12  
Self refresh  
MODE  
Mode register set*12  
ldle  
Refresh  
×
×
DESL  
NOP  
ldle  
(auto-refresh)*3  
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
H
H
H
L
H
H
L
H
L
×
NOP  
BST  
NOP  
ldle  
×
ILLEGAL  
ILLEGAL  
ILLEGAL  
NOP  
×
×
×
×
×
Activating*4  
×
×
×
×
DESL  
Active  
Active  
H
H
H
H
L
H
H
L
H
L
×
NOP  
NOP  
×
BST  
ILLEGAL*11  
ILLEGAL*11  
ILLEGAL*11  
ILLEGAL*11  
ILLEGAL*11  
ILLEGAL  
NOP  
H
L
BA, CA, A10  
READ/READA  
WRIT/WRITA  
ACT  
L
BA, CA, A10  
H
H
L
H
L
BA, RA  
L
BA, A10  
PRE, PALL  
L
×
×
Active*5  
×
×
×
×
DESL  
Active  
Active  
Active  
H
H
H
H
H
L
H
L
×
NOP  
NOP  
×
BST  
ILLEGAL  
H
BA, CA, A10  
READ/READA  
Starting read operation Read/READA  
Write  
Starting write operation recovering/  
precharging  
L
H
L
L
BA, CA, A10  
WRIT/WRITA  
L
L
L
L
L
L
H
H
L
H
L
BA, RA  
BA, A10  
×
ACT  
ILLEGAL*11  
Pre-charge  
ILLEGAL  
PRE, PALL  
Idle  
×
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
15  
EDD1216AASE  
Current state  
Read*6  
/CS  
H
/RAS /CAS /WE Address  
Command  
DESL  
NOP  
Operation  
NOP  
Next state  
Active  
×
×
×
H
L
×
×
×
L
H
H
H
H
NOP  
Active  
L
BST  
BST  
Active  
Interrupting burst read  
operation to  
L
H
L
H
BA, CA, A10  
READ/READA  
Active  
start new read  
L
L
H
L
L
L
BA, CA, A10  
BA, RA  
WRIT/WRITA  
ACT  
ILLEGAL*13  
ILLEGAL*11  
H
H
Interrupting burst  
read operation to  
start pre-charge  
L
L
H
L
BA, A10  
PRE, PALL  
Precharging  
L
L
L
×
×
×
×
ILLEGAL  
Read with auto-pre-  
charge*7  
H
×
×
DESL  
NOP  
Precharging  
L
L
L
L
L
L
L
H
H
H
H
L
H
H
L
H
L
×
NOP  
NOP  
Precharging  
×
BST  
ILLEGAL  
H
L
BA, CA, A10  
BA, CA, A10  
BA, RA  
BA, A10  
×
READ/READA  
WRIT/WRITA  
ACT  
ILLEGAL*14  
ILLEGAL*14  
ILLEGAL*11, 14  
ILLEGAL*11, 14  
ILLEGAL  
L
H
H
L
H
L
L
PRE, PALL  
L
×
Write  
recovering  
Write*8  
H
×
×
×
×
DESL  
NOP  
Write  
L
L
H
H
H
H
H
L
×
×
NOP  
BST  
NOP  
recovering  
ILLEGAL  
Interrupting burst write  
operation to  
L
H
L
H
BA, CA, A10  
BA, CA, A10  
READ/READA  
Read/ReadA  
start read operation.  
Interrupting burst write  
operation to  
L
H
L
L
WRIT/WRITA  
Write/WriteA  
start new write  
operation.  
L
L
L
L
H
H
H
L
BA, RA  
ACT  
ILLEGAL*11  
Interrupting write  
operation to start pre-  
charge.  
BA, A10  
PRE, PALL  
Idle  
L
H
L
L
L
L
L
×
×
ILLEGAL  
Write recovering*9  
×
×
×
×
DESL  
NOP  
Active  
Active  
H
H
H
H
H
L
H
L
×
NOP  
NOP  
×
BST  
ILLEGAL  
H
BA, CA, A10  
READ/READA  
Starting read operation. Read/ReadA  
Starting new write  
Write/WriteA  
operation.  
L
H
L
L
BA, CA, A10  
WRIT/WRITA  
L
L
L
L
L
L
H
H
L
H
L
BA, RA  
BA, A10  
×
ACT  
ILLEGAL*11  
ILLEGAL*11  
ILLEGAL  
PRE/PALL  
×
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
16  
EDD1216AASE  
Current state  
/CS  
H
/RAS /CAS /WE Address  
Command  
DESL  
Operation  
NOP  
Next state  
Write with auto-  
×
×
×
×
Precharging  
pre-charge*10  
L
L
L
L
L
L
L
H
H
H
H
L
H
H
L
H
L
×
NOP  
NOP  
Precharging  
×
BST  
ILLEGAL  
H
L
BA, CA, A10  
BA, CA, A10  
BA, RA  
BA, A10  
×
READ/READA  
WRIT/WRIT A  
ACT  
ILLEGAL*14  
ILLEGAL*14  
ILLEGAL*11, 14  
ILLEGAL*11, 14  
ILLEGAL  
L
H
H
L
H
L
L
PRE, PALL  
L
×
Remark: H: VIH. L: VIL. ×: VIH or VIL  
Notes: 1. The DDR SDRAM is in "Precharging" state for tRP after precharge command is issued.  
2. The DDR SDRAM reaches "IDLE" state tRP after precharge command is issued.  
3. The DDR SDRAM is in "Refresh" state for tRFC after auto-refresh command is issued.  
4. The DDR SDRAM is in "Activating" state for tRCD after ACT command is issued.  
5. The DDR SDRAM is in "Active" state after "Activating" is completed.  
6. The DDR SDRAM is in "READ" state until burst data have been output and DQ output circuits are turned  
off.  
7. The DDR SDRAM is in "READ with auto-precharge" from READA command until burst data has been  
output and DQ output circuits are turned off.  
8. The DDR SDRAM is in "WRITE" state from WRIT command to the last burst data are input.  
9. The DDR SDRAM is in "Write recovering" for tWR after the last data are input.  
10. The DDR SDRAM is in "Write with auto-precharge" until tWR after the last data has been input.  
11. This command may be issued for other banks, depending on the state of the banks.  
12. All banks must be in "IDLE".  
13. Before executing a write command to stop the preceding burst read operation, BST command must be  
issued.  
14. The DDR SDRAM supports the concurrent auto-precharge feature, a read with auto-precharge enabled,or  
a write with auto-precharge enabled, may be followed by any column command to other banks, as long as  
that command does not interrupt the read or write data transfer, and all other related limitations apply.  
(E.g. Conflict between READ data and WRITE data must be avoided.)  
The minimum delay from a read or write command with auto precharge enabled, to a command to a  
different bank, is summarized below.  
To command (different bank, non-  
interrupting command)  
Minimum delay  
From command  
Read w/AP  
(Concurrent AP supported)  
Units  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
Read or Read w/AP  
Write or Write w/AP  
Precharge or Activate  
Read or Read w/AP  
Write or Write w/AP  
Precharge or Activate  
BL/2  
CL(rounded up)+ (BL/2)  
1
Write w/AP  
1 + (BL/2) + tWTR  
BL/2  
1
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
17  
EDD1216AASE  
Command Truth Table for CKE  
Current State  
CKE  
n – 1 n  
/CS /RAS /CAS /WE Address  
Operation  
Notes  
Self refresh  
H
L
×
×
H
L
L
L
×
H
L
L
L
H
L
L
L
×
H
L
×
H
L
L
L
L
H
L
L
L
L
×
×
×
×
×
H
H
L
×
×
H
H
L
×
H
H
L
×
×
H
×
×
H
L
L
L
×
H
L
L
L
×
×
×
×
×
H
L
×
×
×
H
L
×
×
H
L
×
×
×
H
×
×
×
H
L
L
×
×
H
L
L
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
H
×
×
×
×
H
L
×
×
×
H
L
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
INVALID, CK (n-1) would exit self refresh  
Self refresh recovery  
Self refresh recovery  
ILLEGAL  
H
H
H
H
L
L
L
L
ILLEGAL  
L
Maintain self refresh  
Idle after tRC  
Self refresh recovery  
H
H
H
H
H
H
H
H
H
L
H
H
H
H
L
Idle after tRC  
ILLEGAL  
ILLEGAL  
ILLEGAL  
L
ILLEGAL  
L
ILLEGAL  
L
ILLEGAL  
Power down  
All banks idle  
×
INVALID, CK (n – 1) would exit power down  
EXIT power down Idle  
H
H
L
×
×
×
L
L
Maintain power down mode  
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
L
Refer to operations in Function Truth Table  
Refer to operations in Function Truth Table  
Refer to operations in Function Truth Table  
CBR (auto) refresh  
×
OPCODE Refer to operations in Function Truth Table  
Refer to operations in Function Truth Table  
Refer to operations in Function Truth Table  
Refer to operations in Function Truth Table  
L
L
L
×
Self refresh  
1
1
1
L
OPCODE Refer to operations in Function Truth Table  
×
×
×
×
Power down  
Row active  
H
L
×
Refer to operations in Function Truth Table  
Power down  
×
Remark: H: VIH. L: VIL. ×: VIH or VIL  
Note: Self refresh can be entered only from the all banks idle state. Power down can be entered only from all  
banks idle or row active state.  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
18  
EDD1216AASE  
Auto-refresh command [REF]  
This command executes auto-refresh. The banks and the ROW addresses to be refreshed are internally determined  
by the internal refresh controller. The average refresh cycle is 15.6 µs. The output buffer becomes High-Z after  
auto-refresh start. Precharge has been completed automatically after the auto-refresh. The ACT or MRS command  
can be issued tRFC after the last auto-refresh command.  
Self-refresh entry [SELF]  
This command starts self-refresh. The self-refresh operation continues as long as CKE is held Low. During the self-  
refresh operation, all ROW addresses are repeated refreshing by the internal refresh controller. A self-refresh is  
terminated by a self-refresh exit command.  
Power down mode entry [PDEN]  
tPDEN (= 1 cycle) after the cycle when [PDEN] is issued. The DDR SDRAM enters into power-down mode. In  
power down mode, power consumption is suppressed by deactivating the input initial circuit. Power down mode  
continues while CKE is held Low. No internal refresh operation occurs during the power down mode. [PDEN] do not  
disable DLL.  
Self-refresh exit [SELFX]  
This command is executed to exit from self-refresh mode. To issue non-read commands, tSNR has to be satisfied.  
((tSNR =)10 cycles for tCK = 7.5 ns or 12 cycles for tCK = 6.0 ns after [SELFX]) To issue read command, tSRD has  
to be satisfied to adjust DOUT timing by DLL. (200 cycles after [SELFX]) After the exit, input auto-refresh command  
within 15.6 µs.  
Power down exit [PDEX]  
The DDR SDRAM can exit from power down mode tPDEX (1 cycle min.) after the cycle when [PDEX] is issued.  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
19  
EDD1216AASE  
Simplified State Diagram  
SELF  
REFRESH  
SR ENTRY  
SR EXIT  
MRS  
*1  
REFRESH  
AUTO  
MRS  
EMRS  
IDLE  
REFRESH  
CKE  
CKE_  
IDLE  
POWER  
DOWN  
ACTIVE  
ACTIVE  
POWER  
DOWN  
CKE_  
CKE  
ROW  
ACTIVE  
BST  
READ  
WRITE  
Write  
WRITE  
WITH  
AP  
READ  
WITH  
AP  
Read  
WRITE  
READ  
READ  
READ  
WITH AP  
WRITE  
WITH AP  
READ  
WITH AP  
PRECHARGE  
WRITEA  
READA  
PRECHARGE PRECHARGE  
POWER  
APPLIED  
POWER  
ON  
PRECHARGE  
PRECHARGE  
Automatic transition after completion of command.  
Transition resulting from command input.  
Note: 1. After the auto-refresh operation, precharge operation is performed automatically  
and enter the IDLE state.  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
20  
EDD1216AASE  
Operation of the DDR SDRAM  
Power-up Sequence  
(1)Apply power and maintain CKE at an LVCMOS low state (all other inputs are undefined).  
Apply VDD before or at the same time as VDDQ.  
Apply VDDQ before or at the same time as VTT and VREF.  
(2) Start clock and maintain stable condition for a minimum of 200 µs.  
(3) After the minimum 200 µs of stable power and clock (CK, /CK), apply NOP and take CKE high.  
(4) Issue precharge all command for the device.  
(5) Issue EMRS to enable DLL.  
(6) Issue a mode register set command (MRS) for "DLL reset" with bit A8 set to high (An additional 200 cycles of  
clock input is required to lock the DLL after every DLL reset).  
(7) Issue precharge all command for the device.  
(8) Issue 2 or more auto-refresh commands.  
(9) Issue a mode register set command to initialize device operation with bit A8 set to low in order to avoid resetting  
the DLL.  
(4)  
(5)  
(6)  
(7)  
(8)  
(9)  
/CK  
CK  
Any  
command  
Command  
PALL  
EMRS  
MRS  
PALL  
REF  
REF  
MRS  
t
t
t
RFC  
2 cycles (min.) 2 cycles (min.) 2 cycles (min.)  
DLL enable  
DLL reset with A8 = High  
2 cycles (min.)  
RP  
RFC  
Disable DLL reset with A8 = Low  
200 cycles (min)  
Power-up Sequence after CKE Goes High  
Mode Register and Extended Mode Register Set  
There are two mode registers, the mode register and the extended mode register so as to define the operating  
mode. Parameters are set to both through the A0 to the A11 and BA0, BA1 pins by the mode register set command  
[MRS] or the extended mode register set command [EMRS]. The mode register and the extended mode register are  
set by inputting signal via the A0 to the A11 and BA0, BA1 during mode register set cycles. BA0 and BA1 determine  
which one of the mode register or the extended mode register are set. Prior to a read or a write operation, the mode  
register must be set.  
Remind that no other parameters shown in the table bellow are allowed to input to the registers.  
BA0 BA1 A11 A10 A9 A8 A7 A6 A5 A4  
DR LMODE  
A3  
BT  
A2 A1  
BL  
A0  
0
0
0
0
0
0
MRS  
A6 A5 A4 CAS Latency  
A8 DLL Reset  
A3 Burst Type  
Burst Length  
BT=0 BT=1  
A2 A1 A0  
2
0
1
1
1
0
0
0
1
No  
0
1
Sequential  
Interleave  
2.5  
2
4
8
2
4
8
0
0
0
0
1
1
1
0
1
Yes  
Mode Register Set [MRS] (BA0 = 0, BA1 = 0)  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
21  
EDD1216AASE  
BA0 BA1 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
DS DLL  
1
0
0
0
0
0
0
0
0
0
0
0
EMRS  
A0 DLL Control  
A1  
0
Driver Strength  
Normal  
0
1
DLL Enable  
DLL Disable  
1
Weak  
Extended Mode Register Set [EMRS] (BA0 = 1, BA1 = 0)  
Burst Operation  
The burst type (BT) and the first three bits of the column address determine the order of a data out.  
Burst length = 2  
Burst length = 4  
Starting Ad. Addressing(decimal)  
Starting Ad. Addressing(decimal)  
A0  
0
Sequence Interleave  
A1  
0
A0 Sequence  
Interleave  
0, 1,  
1, 0,  
0, 1,  
1, 0,  
0
1
0
1
0, 1, 2, 3,  
0, 1, 2, 3,  
1, 0, 3, 2,  
2, 3, 0, 1,  
3, 2, 1, 0,  
1
0
1, 2, 3, 0,  
2, 3, 0, 1,  
1
1
3,  
0, 1, 2,  
Burst length = 8  
Starting Ad.  
Addressing(decimal)  
A2 A1 A0 Sequence  
Interleave  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0, 1, 2, 3, 4, 5, 6, 7,  
1, 2, 3, 4, 5, 6, 7, 0,  
2, 3, 4, 5, 6, 7, 0, 1,  
3, 4, 5, 6, 7, 0, 1, 2,  
4, 5, 6, 7, 0, 1, 2, 3,  
5, 6, 7, 0, 1, 2, 3, 4,  
6, 7, 0, 1, 2, 3, 4, 5,  
7, 0, 1, 2, 3, 4, 5, 6,  
0, 1, 2, 3, 4, 5, 6, 7,  
1, 0, 3, 2, 5, 4, 7, 6,  
2, 3, 0, 1, 6, 7, 4, 5,  
3, 2, 1, 0, 7, 6, 5, 4,  
4, 5, 6, 7, 0, 1, 2, 3,  
5, 4, 7, 6, 1, 0, 3, 2,  
6, 7, 4, 5, 2, 3, 0, 1,  
7, 6, 5, 4, 3, 2, 1, 0,  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
22  
EDD1216AASE  
Read/Write Operations  
Bank active  
A read or a write operation begins with the bank active command [ACT]. The bank active command determines a  
bank address and a row address. For the bank and the row, a read or a write command can be issued tRCD after  
the ACT is issued.  
Read operation  
The burst length (BL), the /CAS latency (CL) and the burst type (BT) of the mode register are referred when a read  
command is issued. The burst length (BL) determines the length of a sequential output data by the read command  
that can be set to 2, 4, or 8. The starting address of the burst read is defined by the column address, the bank select  
address which are loaded via the A0 to A11 and BA0, BA1 pins in the cycle when the read command is issued. The  
data output timing are characterized by CL and tAC. The read burst start CL tCK + tAC (ns) after the clock rising  
edge where the read command are latched. The DDR SDRAM output the data strobe through DQS simultaneously  
with data. tRPRE prior to the first rising edge of the data strobe, the DQS are driven Low from VTT level. This low  
period of DQS is referred as read preamble. The burst data are output coincidentally at both the rising and falling  
edge of the data strobe. The DQ pins become High-Z in the next cycle after the burst read operation completed.  
tRPST from the last falling edge of the data strobe, the DQS pins become High-Z. This low period of DQS is  
referred as read postamble.  
t0  
t1  
t4  
t5  
t6  
t7  
t8  
t9  
CK  
/CK  
tRCD  
NOP  
Command  
Address  
NOP  
ACT  
Row  
READ  
NOP  
Column  
tRPRE  
out0 out1  
BL = 2  
tRPST  
DQS  
DQ  
out0 out1 out2 out3  
BL = 4  
BL = 8  
out0 out1 out2 out3 out4 out5 out6 out7  
CL = 2  
BL: Burst length  
Read Operation (Burst Length)  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
23  
EDD1216AASE  
t0  
t0.5  
t1  
t1.5  
t2  
t2.5  
t3  
t3.5  
t4  
t4.5  
t5  
t5.5  
CK  
/CK  
READ  
NOP  
Command  
DQS  
tRPRE  
tRPST  
VTT  
CL = 2  
tAC,tDQSCK  
tRPRE  
VTT  
VTT  
out0 out1 out2 out3  
DQ  
tRPST  
DQS  
CL = 2.5  
tAC,tDQSCK  
VTT  
out0 out1 out2 out3  
DQ  
Read Operation (/CAS Latency)  
Write operation  
The burst length (BL) and the burst type (BT) of the mode register are referred when a write command is issued.  
The burst length (BL) determines the length of a sequential data input by the write command that can be set to 2, 4,  
or 8. The latency from write command to data input is fixed to 1. The starting address of the burst read is defined by  
the column address, the bank select address which are loaded via the A0 to A11, BA0 to BA1 pins in the cycle when  
the write command is issued. DQS should be input as the strobe for the input-data and DM as well during burst  
operation. tWPRE prior to the first rising edge of the DQS should be set to Low and tWPST after the last falling edge  
of the data strobe can be set to High-Z. The leading low period of DQS is referred as write preamble. The last low  
period of DQS is referred as write postamble.  
t0  
t1  
tn tn+0.5 tn+1  
tn+2  
tn+3  
tn+4  
tn+5  
CK  
/CK  
tRCD  
NOP  
Command  
Address  
NOP  
ACT  
Row  
WRITE  
NOP  
Column  
tWPRE  
tWPRES  
in0 in1  
BL = 2  
tWPST  
DQS  
DQ  
in0 in1 in2 in3  
BL = 4  
BL = 8  
in0 in1 in2 in3 in4 in5 in6 in7  
BL: Burst length  
Write Operation  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
24  
EDD1216AASE  
Burst Stop  
Burst stop command during burst read  
The burst stop (BST) command is used to stop data output during a burst read. The BST command stops the burst  
read and sets the output buffer to High-Z. tBSTZ (= CL) cycles after a BST command issued, the DQ pins become  
High-Z. The BST command is not supported for the burst write operation. Note that bank address is not referred  
when this command is executed.  
t0  
t0.5  
t1  
t1.5  
t2  
t2.5  
t3  
t3.5  
t4  
t4.5  
t5  
t5.5  
CK  
/CK  
READ  
Command  
BST  
NOP  
tBSTZ  
2 cycles  
DQS  
CL = 2  
out0 out1  
tBSTZ  
DQ  
2.5 cycles  
DQS  
DQ  
CL = 2.5  
out0 out1  
CL: /CAS latency  
Burst Stop during a Read Operation  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
25  
EDD1216AASE  
Auto Precharge  
Read with auto-precharge  
The precharge is automatically performed after completing a read operation. The precharge starts tRPD (BL/2)  
cycle after READA command input. tRAP specification for READA allows a read command with auto precharge to be  
issued to a bank that has been activated (opened) but has not yet satisfied the tRAS (min) specification. A column  
command to the other active bank can be issued the next cycle after the last data output. Read with auto-precharge  
command does not limit row commands execution for other bank. Refer to ‘Function truth table and related  
note(Notes.*14).  
CK  
/CK  
tRP (min)  
tRAP (min) = tRCD (min)  
tRPD  
2 cycles (= BL/2)  
ACT  
READA  
NOP  
ACT  
Command  
DQS  
tAC,tDQSCK  
DQ  
out0 out1 out2 out3  
Note: Internal auto-precharge starts at the timing indicated by " ".  
Read with auto-precharge  
Write with auto-precharge  
The precharge is automatically performed after completing a burst write operation. The precharge operation is  
started (BL/ 2 + 3) cycles after WRITA command issued. A column command to the other banks can be issued the  
next cycle after the internal precharge command issued. Write with auto-precharge command does not limit row  
commands execution for other bank. Refer to the ‘Read with Auto-Precharge Enabled, Write with Auto-Precharge  
Enabled’ section. Refer to ‘Function truth table and related note(Notes.*14)‘.  
CK  
/CK  
tRAS (min)  
tRP  
tRCD (min)  
ACT  
NOP  
WRITA  
NOP  
ACT  
Command  
BL/2 + 3 cycles  
DM  
DQS  
DQ  
in1 in2 in3 in4  
BL = 4  
Note: Internal auto-precharge starts at the timing indicated by " ".  
Burst Write (BL = 4)  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
26  
EDD1216AASE  
Command Intervals  
A Read command to the consecutive Read command Interval  
Destination row of the  
consecutive read command  
Bank  
address  
Row address State  
Operation  
The consecutive read can be performed after an interval of no less than 1 cycle to  
interrupt the preceding read operation.  
Precharge the bank to interrupt the preceding read operation. tRP after the  
precharge command, issue the ACT command. tRCD after the ACT command, the  
consecutive read command can be issued. See ‘A read command to the  
consecutive precharge interval’ section.  
The consecutive read can be performed after an interval of no less than 1 cycle to  
interrupt the preceding read operation.  
Precharge the bank without interrupting the preceding read operation. tRP after  
the precharge command, issue the ACT command. tRCD after the ACT command,  
the consecutive read command can be issued.  
1. Same  
Same  
Different  
Any  
ACTIVE  
2. Same  
3. Different  
ACTIVE  
IDLE  
t0  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
CK  
/CK  
Command  
NOP  
ACT  
Row  
NOP  
READ  
READ  
Column A Column B  
Address  
BA  
out out out out out out  
A0 A1 B0 B1 B2 B3  
DQ  
Column = A Column = B  
Read  
Read  
Column = A  
Dout  
Column = B  
Dout  
DQS  
CL = 2  
BL = 4  
Bank0  
Bank0  
Active  
READ to READ Command Interval (same ROW address in the same bank)  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
27  
EDD1216AASE  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
CK  
/CK  
Command  
READ  
READ  
NOP  
ACT  
NOP  
ACT  
NOP  
Row0  
Row1  
Column A Column B  
Address  
BA  
out out out out out out  
A0 A1 B0 B1 B2 B3  
DQ  
Column = A Column = B  
Read  
Read  
Bank0  
Dout  
Bank3  
Dout  
DQS  
CL = 2  
BL = 4  
Bank0  
Active  
Bank3  
Active  
Bank0  
Read  
Bank3  
Read  
READ to READ Command Interval (different bank)  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
28  
EDD1216AASE  
A Write command to the consecutive Write command Interval  
Destination row of the consecutive write  
command  
Bank  
address  
Row address State  
Operation  
The consecutive write can be performed after an interval of no less than 1 cycle to  
interrupt the preceding write operation.  
Precharge the bank to interrupt the preceding write operation. tRP after the  
precharge command, issue the ACT command. tRCD after the ACT command, the  
consecutive write command can be issued. See ‘A write command to the  
consecutive precharge interval’ section.  
The consecutive write can be performed after an interval of no less than 1 cycle to  
interrupt the preceding write operation.  
Precharge the bank without interrupting the preceding write operation. tRP after  
the precharge command, issue the ACT command. tRCD after the ACT command,  
the consecutive write command can be issued.  
1. Same  
Same  
Different  
Any  
ACTIVE  
2. Same  
3. Different  
ACTIVE  
IDLE  
t0  
tn  
tn+1  
tn+2  
tn+3  
tn+4  
tn+5  
tn+6  
CK  
/CK  
Command  
NOP  
ACT  
Row  
NOP  
WRIT  
WRIT  
Column A Column B  
Address  
BA  
DQ  
inA0 inA1 inB0 inB1 inB2 inB3  
Column = A  
Write  
Column = B  
Write  
DQS  
Bank0  
Active  
BL = 4  
Bank0  
WRITE to WRITE Command Interval (same ROW address in the same bank)  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
29  
EDD1216AASE  
t0  
t1  
t2  
tn  
tn+1  
tn+2  
tn+3  
tn+4  
tn+5  
CK  
/CK  
Command  
NOP  
ACT  
NOP  
ACT  
NOP  
WRIT  
WRIT  
Row0  
Row1  
Column A Column B  
Address  
BA  
DQ  
inA0 inA1 inB0 inB1 inB2 inB3  
Bank0  
Write  
Bank3  
Write  
DQS  
Bank0  
Active  
Bank3  
Active  
BL = 4  
Bank0, 3  
WRITE to WRITE Command Interval (different bank)  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
30  
EDD1216AASE  
A Read command to the consecutive Write command interval with the BST command  
Destination row of the consecutive write  
command  
Bank  
address  
Row address State  
Operation  
Issue the BST command. tBSTW (tBSTZ) after the BST command, the  
1. Same  
Same  
Different  
Any  
ACTIVE  
consecutive write command can be issued.  
Precharge the bank to interrupt the preceding read operation. tRP after the  
precharge command, issue the ACT command. tRCD after the ACT command, the  
consecutive write command can be issued. See ‘A read command to the  
consecutive precharge interval’ section.  
Issue the BST command. tBSTW (tBSTZ) after the BST command, the  
consecutive write command can be issued.  
Precharge the bank independently of the preceding read operation. tRP after the  
precharge command, issue the ACT command. tRCD after the ACT command, the  
consecutive write command can be issued.  
2. Same  
3. Different  
ACTIVE  
IDLE  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CK  
/CK  
Command  
READ  
WRIT  
BST  
NOP  
NOP  
tBSTW (tBSTZ)  
DM  
tBSTZ (= CL)  
DQ  
out0 out1  
in0 in1 in2 in3  
High-Z  
DQS  
OUTPUT  
INPUT  
BL = 4  
CL = 2  
READ to WRITE Command Interval  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
31  
EDD1216AASE  
A Write command to the consecutive Read command interval: To complete the burst operation  
Destination row of the consecutive read  
command  
Bank  
Row address State  
address  
Operation  
To complete the burst operation, the consecutive read command should be  
performed tWRD (= BL/ 2 + 2) after the write command.  
Precharge the bank tWPD after the preceding write command. tRP after the  
precharge command, issue the ACT command. tRCD after the ACT command, the  
consecutive read command can be issued. See ‘A read command to the  
consecutive precharge interval’ section.  
To complete a burst operation, the consecutive read command should be  
performed tWRD (= BL/ 2 + 2) after the write command.  
Precharge the bank independently of the preceding write operation. tRP after the  
precharge command, issue the ACT command. tRCD after the ACT command, the  
consecutive read command can be issued.  
1. Same  
2. Same  
3. Different  
Same  
Different  
Any  
ACTIVE  
ACTIVE  
IDLE  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
CK  
/CK  
Command  
WRIT  
NOP  
READ  
NOP  
tWRD (min)  
tWTR*  
BL/2 + 2 cycle  
DM  
out2  
DQ  
out0 out1  
in0  
in1  
in2  
in3  
DQS  
INPUT  
OUTPUT  
BL = 4  
CL = 2  
Note: tWTR is referenced from the first positive CK edge after the last desired data in pair tWTR.  
WRITE to READ Command Interval  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
32  
EDD1216AASE  
A Write command to the consecutive Read command interval: To interrupt the write operation  
Destination row of the consecutive read  
command  
Bank  
Row address State  
address  
Operation  
DM must be input 1 cycle prior to the read command input to prevent from being  
written invalid data. In case, the read command is input in the next cycle of the  
write command, DM is not necessary.  
1. Same  
2. Same  
3. Different  
Same  
Different  
Any  
ACTIVE  
—*1  
DM must be input 1 cycle prior to the read command input to prevent from being  
written invalid data. In case, the read command is input in the next cycle of the  
write command, DM is not necessary.  
ACTIVE  
IDLE  
—*1  
Note: 1. Precharge must be preceded to read command. Therefore read command can not interrupt the write  
operation in this case.  
WRITE to READ Command Interval (Same bank, same ROW address)  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CK  
/CK  
Command  
WRIT  
READ  
NOP  
1 cycle  
CL=2  
DM  
High-Z  
High-Z  
DQ  
out0 out1 out2 out3  
in0 in1  
in2  
DQS  
BL = 4  
CL= 2  
Data masked  
[WRITE to READ delay = 1 clock cycle]  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
33  
EDD1216AASE  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CK  
/CK  
Command  
WRIT  
NOP  
READ  
NOP  
2 cycle  
CL=2  
DM  
High-Z  
DQ  
in0 in1  
in2  
in3  
out0 out1 out2 out3  
High-Z  
DQS  
Data masked  
BL = 4  
CL= 2  
[WRITE to READ delay = 2 clock cycle]  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CK  
/CK  
Command  
WRIT  
NOP  
3 cycle  
READ  
NOP  
CL=2  
tWTR*  
DM  
out0 out1 out2 out3  
DQ  
in0 in1  
in2  
in3  
DQS  
BL = 4  
CL= 2  
Data masked  
Note: tWTR is referenced from the first positive CK edge after the last desired data in pair tWTR.  
[WRITE to READ delay = 3 clock cycle]  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
34  
EDD1216AASE  
A Read command to the consecutive Precharge command interval (same bank): To output all data  
To complete a burst read operation and get a burst length of data, the consecutive precharge command must be  
issued tRPD (= BL/ 2 cycles) after the read command is issued.  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CK  
/CK  
Command  
PRE/  
PALL  
NOP  
NOP  
NOP  
READ  
DQ  
out0 out1 out2 out3  
DQS  
tRPD = BL/2  
READ to PRECHARGE Command Interval (same bank): To output all data (CL = 2, BL = 4)  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CK  
/CK  
PRE/  
PALL  
Command  
DQ  
NOP  
NOP  
NOP  
READ  
out0 out1 out2 out3  
DQS  
tRPD = BL/2  
READ to PRECHARGE Command Interval (same bank): To output all data (CL = 2.5, BL = 4)  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
35  
EDD1216AASE  
READ to PRECHARGE Command Interval (same bank): To stop output data  
A burst data output can be interrupted with a precharge command. All DQ pins and DQS pins become High-Z tHZP  
(= CL) after the precharge command.  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CK  
/CK  
Command  
DQ  
NOP  
NOP  
PRE/PALL  
READ  
High-Z  
High-Z  
out0 out1  
DQS  
tHZP  
READ to PRECHARGE Command Interval (same bank): To stop output data (CL = 2, BL = 2, 4, 8)  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
CK  
/CK  
PRE/PALL  
CL = 2.5  
Command  
DQ  
NOP  
NOP  
READ  
High-Z  
High-Z  
out0 out1  
DQS  
tHZP  
READ to PRECHARGE Command Interval (same bank): To stop output data (CL = 2.5, BL = 2, 4, 8)  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
36  
EDD1216AASE  
A Write command to the consecutive Precharge command interval (same bank)  
The minimum interval tWPD is necessary between the write command and the precharge command.  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
CK  
/CK  
Command  
PRE/PALL  
WRIT  
NOP  
tWPD  
NOP  
tWR  
DM  
DQS  
DQ  
in0  
in1  
in2  
in3  
Last data input  
WRITE to PRECHARGE Command Interval (same bank) (BL = 4)  
Precharge Termination in Write Cycles  
During a burst write cycle without auto precharge, the burst write operation is terminated by a precharge command  
of the same bank. In order to write the last input data, tWR (min) must be satisfied. When the precharge command  
is issued, the invalid data must be masked by DM.  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
CK  
/CK  
Command  
PRE/PALL  
WRIT  
NOP  
NOP  
tWR  
DM  
DQS  
DQ  
in0  
in1  
Data masked  
Precharge Termination in Write Cycles (same bank) (BL = 4)  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
37  
EDD1216AASE  
Bank active command interval  
Destination row of the consecutive ACT  
command  
Bank  
address  
Row address  
State  
Operation  
Two successive ACT commands can be issued at tRC interval. In between two  
1. Same  
2. Different  
Any  
Any  
ACTIVE  
successive ACT operations, precharge command should be executed.  
Precharge the bank. tRP after the precharge command, the consecutive ACT  
command can be issued.  
tRRD after an ACT command, the next ACT command can be issued.  
ACTIVE  
IDLE  
CK  
/CK  
Command  
A
C
T
ACT  
NOP  
PRE  
NOP  
ACT  
NOP  
Address  
BA  
ROW: 0  
ROW: 1  
ROW: 0  
Bank0  
Active  
Bank3  
Active  
Bank0  
Precharge  
Bank0  
Active  
tRRD  
tRC  
Bank Active to Bank Active  
Mode register set to Bank-active command interval  
The interval between setting the mode register and executing a bank-active command must be no less than tMRD.  
CK  
/CK  
Command  
MRS  
NOP  
ACT  
NOP  
Address  
CODE  
BS and ROW  
Mode Register Set  
Bank3  
Active  
tMRD  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
38  
EDD1216AASE  
DM Control  
DM can mask input data. In ×16 products, UDM and LDM can mask the upper and lower byte of input data,  
respectively. By setting DM to Low, data can be written. When DM is set to High, the corresponding data is not  
written, and the previous data is held. The latency between DM input and enabling/disabling mask function is 0.  
t1  
t2  
t3  
t4  
t5  
t6  
DQS  
DQ  
Mask  
Mask  
DM  
Write mask latency = 0  
DM Control  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
39  
EDD1216AASE  
Timing Waveforms  
Command and Addresses Input Timing Definition  
CK  
/CK  
tIS  
tIS  
tIH  
tIH  
Command  
(/RAS, /CAS,  
/WE, /CS)  
VREF  
VREF  
Address  
Read Timing Definition  
tCK  
/CK  
CK  
tCL  
tRPRE  
tCH  
tDQSCK  
tDQSCK  
tDQSCK  
tDQSCK tRPST  
DQS  
tDQSQ  
tDQSQ  
tQH  
tHZ  
tQH  
tAC  
tLZ  
tAC  
tAC  
DQ  
(Dout)  
tDQSQ  
tDQSQ  
tQH  
tQH  
Write Timing Definition  
tCK  
/CK  
CK  
tDQSS  
tDSS  
tDSH  
tDSS  
VREF  
VREF  
VREF  
DQS  
tWPRES  
tDQSL  
tDQSH  
tWPST  
tWPRE  
DQ  
(Din)  
tDIPW  
tDS  
tDS  
tDH  
tDH  
DM  
tDIPW  
tDIPW  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
40  
EDD1216AASE  
Read Cycle  
tCK  
tCH tCL  
CK  
/CK  
tRC  
VIH  
CKE  
tRAS  
tRP  
tRCD  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
/CS  
tIS tIH  
tIS tIH  
/RAS  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
/CAS  
tIS tIH  
/WE  
BA  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
A10  
tIS tIH  
tIS tIH  
tIS tIH  
Address  
DM  
tRPST  
tRPRE  
High-Z  
DQS  
High-Z  
DQ (output)  
Bankk 00  
Actiivvee  
B
ank  
0
Bank 0  
Precharge  
CL = 2  
BL = 4  
Bank0 Access  
= VIH or VIL  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
41  
EDD1216AASE  
Write Cycle  
tCK  
tCH  
tCL  
CK  
/CK  
tRC  
VIH  
CKE  
/CS  
tRAS  
tRP  
tRCD  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
/RAS  
/CAS  
/WE  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS  
tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
tIS tIH  
BA  
tIS tIH  
A10  
tIS tIH  
tIS tIH  
tIS tIH  
Address  
tDQSS  
tDQSL  
tWPST  
tDH  
DQS  
(input)  
tDQSH  
tDS  
tDS  
DM  
tDS  
tDH  
DQ (input)  
tWR  
tDH  
CL = 2  
BL = 4  
Bank0 Access  
= VIH or VIL  
Bank 0  
Active  
Bank 0  
Write  
Bank 0  
Precharge  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
42  
EDD1216AASE  
Mode Register Set Cycle  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
/CK  
CK  
VIH  
CKE  
/CS  
/RAS  
/CAS  
/WE  
BA  
Address  
DM  
code  
code  
C: b  
R: b  
valid  
High-Z  
High-Z  
DQS  
b
DQ (output)  
tMRD  
tRP  
Bank 3  
Read  
Bank 3  
Precharge  
Mode  
register  
set  
Bank 3  
Active  
CL = 2  
BL = 4  
Precharge  
If needed  
= VIH or VIL  
Read/Write Cycle  
/CK  
CK  
VIH  
CKE  
/CS  
/RAS  
/CAS  
/WE  
BA  
Address  
R:a  
C:b''  
C:a R:b  
C:b  
DM  
DQS  
a
b’’  
DQ (output)  
DQ (input)  
High-Z  
b
tRWD  
tWRD  
Bank 0  
Active  
Bank 0 Bank 3  
Read Active  
Bank 3  
Write  
Bank 3  
Read  
Read cycle  
CL = 2  
BL = 4  
=VIH or VIL  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
43  
EDD1216AASE  
Auto Refresh Cycle  
/CK  
CK  
VIH  
CKE  
/CS  
/RAS  
/CAS  
/WE  
BA  
Address  
A10=1  
R: b  
C: b  
DM  
DQS  
b
DQ (output)  
DQ (input)  
High-Z  
tRP  
tRFC  
Precharge  
If needed  
Auto  
Refresh  
Bank 0  
Active  
Bank 0  
Read  
CL = 2  
BL = 4  
= VIH or VIL  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
44  
EDD1216AASE  
Self Refresh Cycle  
/CK  
CK  
tIS  
tIH  
CKE = low  
CKE  
/CS  
/RAS  
/CAS  
/WE  
BA  
Address  
A10=1  
R: b  
C: b  
DM  
DQS  
DQ (output)  
DQ (input)  
High-Z  
tSNR  
tSRD  
tRP  
Precharge  
If needed  
Self  
refresh  
entry  
Self refresh  
exit  
Bank 0  
Active  
Bank 0  
Read  
CL = 2.5  
BL = 4  
= VIH or VIL  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
45  
EDD1216AASE  
Package Drawing  
60-ball FBGA (µBGA)  
Solder ball: Lead free (Sn-Ag-Cu)  
Unit: mm  
8.0 ± 0.1  
S
B
0.2  
INDEX MARK  
S
A
0.2  
S
0.1  
1.14 max.  
S
S
0.1  
0.35 ± 0.05  
B
M
φ0.10  
S A B  
60-φ0.45 ± 0.05  
A
INDEX MARK  
1.6  
6.4  
0.8  
ECA-TS2-0140-01  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
46  
EDD1216AASE  
Recommended Soldering Conditions  
Please consult with our sales offices for soldering conditions of the EDD1216AASE.  
Type of Surface Mount Device  
EDD1216AASE: 60-ball FBGA (µBGA) < Lead free (Sn-Ag-Cu) >  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
47  
EDD1216AASE  
NOTES FOR CMOS DEVICES  
PRECAUTION AGAINST ESD FOR MOS DEVICES  
1
Exposing the MOS devices to a strong electric field can cause destruction of the gate  
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop  
generation of static electricity as much as possible, and quickly dissipate it, when once  
it has occurred. Environmental control must be adequate. When it is dry, humidifier  
should be used. It is recommended to avoid using insulators that easily build static  
electricity. MOS devices must be stored and transported in an anti-static container,  
static shielding bag or conductive material. All test and measurement tools including  
work bench and floor should be grounded. The operator should be grounded using  
wrist strap. MOS devices must not be touched with bare hands. Similar precautions  
need to be taken for PW boards with semiconductor MOS devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES  
No connection for CMOS devices input pins can be a cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input level may be  
generated due to noise, etc., hence causing malfunction. CMOS devices behave  
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected  
to VDD or GND with a resistor, if it is considered to have a possibility of being an output  
pin. The unused pins must be handled in accordance with the related specifications.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Power-on does not necessarily define initial status of MOS devices. Production process  
of MOS does not define the initial operation status of the device. Immediately after the  
power source is turned ON, the MOS devices with reset function have not yet been  
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or  
contents of registers. MOS devices are not initialized until the reset signal is received.  
Reset operation must be executed immediately after power-on for MOS devices having  
reset function.  
CME0107  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
48  
EDD1216AASE  
µBGA is a registered trademark of Tessera, Inc.  
All other trademarks are the intellectual property of their respective owners.  
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of Elpida Memory, Inc.  
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights  
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or  
third parties by or arising from the use of the products or information listed in this document. No license,  
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property  
rights of Elpida Memory, Inc. or others.  
Descriptions of circuits, software and other related information in this document are provided for  
illustrative purposes in semiconductor product operation and application examples. The incorporation of  
these circuits, software and information in the design of the customer's equipment shall be done under  
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses  
incurred by customers or third parties arising from the use of these circuits, software and information.  
[Product applications]  
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.  
However, users are instructed to contact Elpida Memory's sales office before using the product in  
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment,  
medical equipment for life support, or other such application in which especially high quality and  
reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury.  
[Product usage]  
Design your application so that the product is used within the ranges and conditions guaranteed by  
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation  
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no  
responsibility for failure or damage when the product is used beyond the guaranteed ranges and  
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure  
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so  
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other  
consequential damage due to the operation of the Elpida Memory, Inc. product.  
[Usage environment]  
This product is not designed to be resistant to electromagnetic waves or radiation. This product must be  
used in a non-condensing environment.  
If you export the products or technology described in this document that are controlled by the Foreign  
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance  
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by  
U.S. export control regulations, or another country's export control laws or regulations, you must follow  
the necessary procedures in accordance with such laws or regulations.  
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted  
license to use these products, that third party must be made aware that they are responsible for  
compliance with the relevant laws and regulations.  
M01E0107  
Preliminary Data Sheet E0614E20 (Ver. 2.0)  
49  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY