EDJ1104BFSE-DJ-F [ELPIDA]

1G bits DDR3 SDRAM; 1G位DDR3 SDRAM
EDJ1104BFSE-DJ-F
型号: EDJ1104BFSE-DJ-F
厂家: ELPIDA MEMORY    ELPIDA MEMORY
描述:

1G bits DDR3 SDRAM
1G位DDR3 SDRAM

动态存储器 双倍数据速率
文件: 总147页 (文件大小:1783K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
1G bits DDR3 SDRAM  
EDJ1104BFSE (256M words × 4 bits)  
EDJ1108BFSE (128M words × 8 bits)  
Features  
Specifications  
Density: 1G bits  
Organization  
32M words × 4 bits × 8 banks (EDJ1104BFSE)  
16M words × 8 bits × 8 banks (EDJ1108BFSE)  
Package  
Double-data-rate architecture; two data transfers per  
clock cycle  
The high-speed data transfer is realized by the 8 bits  
prefetch pipelined architecture  
Bi-directional differential data strobe (DQS and /DQS)  
is transmitted/received with data for capturing data at  
the receiver  
78-ball FBGA  
Lead-free (RoHS compliant) and Halogen-free  
Power supply: VDD, VDDQ = 1.5V ± 0.075V  
Data rate  
DQS is edge-aligned with data for READs; center-  
aligned with data for WRITEs  
Differential clock inputs (CK and /CK)  
DLL aligns DQ and DQS transitions with CK  
1600Mbps/1333Mbps/1066Mbps (max.)  
1KB page size  
transitions  
Commands entered on each positive CK edge; data  
Row address: A0 to A13  
and data mask referenced to both edges of DQS  
Column address: A0 to A9, A11 (EDJ1104BFSE)  
Data mask (DM) for write data  
A0 to A9 (EDJ1108BFSE)  
Posted /CAS by programmable additive latency for  
Eight internal banks for concurrent operation  
Interface: SSTL_15  
Burst lengths (BL): 8 and 4 with Burst Chop (BC)  
Burst type (BT):  
Sequential (8, 4 with BC)  
Interleave (8, 4 with BC)  
/CAS Latency (CL): 5, 6, 7, 8, 9, 10, 11  
/CAS Write Latency (CWL): 5, 6, 7, 8  
better command and data bus efficiency  
On-Die Termination (ODT) for better signal quality  
Synchronous ODT  
Dynamic ODT  
Asynchronous ODT  
Multi Purpose Register (MPR) for pre-defined pattern  
read out  
ZQ calibration for DQ drive and ODT  
Programmable Partial Array Self-Refresh (PASR)  
Precharge: auto precharge option for each burst  
access  
/RESET pin for Power-up sequence and reset  
Driver strength: RZQ/7, RZQ/6 (RZQ = 240)  
Refresh: auto-refresh, self-refresh  
Refresh cycles  
function  
SRT range:  
Normal/extended  
Programmable Output driver impedance control  
Average refresh period  
7.8µs at 0°C TC ≤ +85°C  
3.9µs at +85°C < TC ≤ +95°C  
Operating case temperature range  
TC = 0°C to +95°C  
Document No. E1653E20 (Ver. 2.0)  
Date Published July 2010 (K) Japan  
Printed in Japan  
URL: http://www.elpida.com  
Elpida Memory, Inc. 2010  
EDJ1104BFSE, EDJ1108BFSE  
Ordering Information  
Die  
revision  
Organization  
(words × bits)  
Internal  
banks  
JEDEC speed bin  
(CL-tRCD-tRP)  
Part number  
Package  
EDJ1104BFSE-GL-F  
EDJ1104BFSE-GN-F  
EDJ1104BFSE-DJ-F  
EDJ1104BFSE-AE-F  
EDJ1108BFSE-GL-F  
EDJ1108BFSE-GN-F  
EDJ1108BFSE-DJ-F  
EDJ1108BFSE-AE-F  
DDR3-1600J (10-10-10)  
DDR3-1600K (11-11-11)  
DDR3-1333H (9-9-9)  
DDR3-1066F (7-7-7)  
DDR3-1600J (10-10-10)  
DDR3-1600K (11-11-11)  
DDR3-1333H (9-9-9)  
DDR3-1066F (7-7-7)  
F
256M × 4  
128M × 8  
8
78-ball FBGA  
Part Number  
E D J 11 04 B F SE - GL - F  
Elpida Memory  
Environment code  
F: Lead Free (RoHS compliant)  
and Halogen Free  
Type  
D: Monolithic Device  
Product Family  
J: DDR3  
Speed  
GL: DDR3-1600J (10-10-10)  
GN: DDR3-1600K (11-11-11)  
DJ: DDR3-1333H (9-9-9)  
AE: DDR3-1066F (7-7-7)  
Density / Bank  
11: 1Gb / 8-bank  
Organization  
04: x4  
08: x8  
Package  
SE: FBGA  
Power Supply, Interface  
B: 1.5V, SSTL_15  
Die Rev.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
2
EDJ1104BFSE, EDJ1108BFSE  
Pin Configurations  
/xxx indicates active low signal.  
78-ball FBGA (×4 configuration)  
78-ball FBGA (×8 configuration)  
1
2
3
7
8
9
1
2
3
7
8
9
A
B
A
B
VSS  
VDD  
NC  
NC  
VSS  
VDD  
VSS  
VDD  
NC  
NU/(/TDQS) VSS  
VDD  
VSS VSSQ DQ0  
DM VSSQ VDDQ  
VSS VSSQ DQ0  
VDDQ  
DM/TDQS VSSQ VDDQ  
C
D
C
D
VDDQ  
VSSQ  
DQ2 DQS  
NC /DQS  
DQ1  
VDD  
NC  
DQ3 VSSQ  
VSSQ  
NC VDDQ  
NC  
VDD CKE  
DQ2 DQS  
DQ1  
VDD  
DQ7  
DQ3 VSSQ  
VSSQ  
VSS  
VSSQ DQ6 /DQS  
VSS  
DQ5  
E
F
G
H
J
E
F
G
H
J
DQ4  
VREFDQ VDDQ NC  
NC VSS /RAS  
ODT VDD /CAS  
VREFDQ VDDQ  
VDDQ  
NC  
CK  
/CK  
VSS  
NC  
VSS /RAS  
CK  
/CK  
VSS  
ODT VDD /CAS  
VDD CKE  
A10(AP)  
A10(AP)  
NC  
/CS  
/WE  
ZQ  
NC  
NC  
/CS  
/WE  
ZQ  
NC  
VSS  
VDD  
VSS  
VDD  
VSS  
BA0  
A3  
BA2  
A0  
NC VREFCA VSS  
VSS  
VDD  
VSS  
VDD  
VSS  
BA0  
A3  
BA2  
A0  
NC VREFCA VSS  
K
L
K
L
A12(/BC) BA1  
VDD  
VSS  
VDD  
VSS  
A12(/BC) BA1  
VDD  
VSS  
VDD  
VSS  
A5  
A2  
A1  
A11  
NC  
A4  
A6  
A8  
A5  
A2  
A1  
A11  
NC  
A4  
A6  
A8  
M
N
M
N
A7  
A9  
A7  
A9  
/RESET A13  
/RESET A13  
(Top view)  
(Top view)  
Pin name  
Function  
Pin name  
/RESET*3  
Function  
Address inputs  
A10 (AP): Auto precharge  
A12(/BC): Burst chop  
A0 to A13*3  
Active low asynchronous reset  
Supply voltage for internal  
circuit  
BA0 to BA2*3  
Bank select  
VDD  
DQ0 to DQ7  
DQS, /DQS  
TDQS, /TDQS  
/CS*3  
Data input/output  
Differential data strobe  
Termination data strobe  
Chip select  
VSS  
Ground for internal circuit  
Supply voltage for DQ circuit  
Ground for DQ circuit  
VDDQ  
VSSQ  
VREFDQ  
VREFCA  
Reference voltage for DQ  
/RAS, /CAS, /WE*3  
Command input  
Reference voltage  
Reference pin for ZQ  
calibration  
No connection  
CKE*3  
Clock enable  
ZQ  
CK, /CK  
DM  
ODT*3  
Differential clock input  
Write data mask  
ODT control  
NC*1  
NU*2  
Not usable  
Notes: 1. Not internally connected with die.  
2. Don’t connect. Internally connected.  
3. Input only pins (address, command, CKE, ODT and /RESET) do not supply termination.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
3
EDJ1104BFSE, EDJ1108BFSE  
CONTENTS  
Specifications.................................................................................................................................................1  
Features.........................................................................................................................................................1  
Ordering Information......................................................................................................................................2  
Part Number ..................................................................................................................................................2  
Pin Configurations .........................................................................................................................................3  
Electrical Conditions......................................................................................................................................6  
Absolute Maximum Ratings .......................................................................................................................... 6  
Operating Temperature Condition ................................................................................................................ 6  
Recommended DC Operating Conditions (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)................... 7  
AC and DC Input Measurement Levels (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)....................... 7  
VREF Tolerances ......................................................................................................................................... 8  
Input Slew Rate Derating.............................................................................................................................. 9  
AC and DC Logic Input Levels for Differential Signals................................................................................ 15  
AC and DC Output Measurement Levels (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V).................. 20  
AC Overshoot/Undershoot Specification..................................................................................................... 22  
Output Driver Impedance............................................................................................................................ 23  
On-Die Termination (ODT) Levels and I-V Characteristics ......................................................................... 25  
ODT Timing Definitions............................................................................................................................... 27  
IDD Measurement Conditions (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)................................... 31  
Electrical Specifications...............................................................................................................................44  
DC Characteristics 1 (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V) ................................................. 44  
DC Characteristics 2 (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V) ................................................. 45  
Pin Capacitance (TC = 25°C, VDD, VDDQ = 1.5V ± 0.075V)..................................................................... 46  
Standard Speed Bins.................................................................................................................................. 47  
AC Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V, VSS, VSSQ = 0V)....................... 50  
Block Diagram .............................................................................................................................................63  
Pin Function.................................................................................................................................................64  
Command Operation ...................................................................................................................................66  
Command Truth Table................................................................................................................................ 66  
CKE Truth Table......................................................................................................................................... 70  
Simplified State Diagram.............................................................................................................................71  
RESET and Initialization Procedure............................................................................................................72  
Power-Up and Initialization Sequence........................................................................................................ 72  
Reset and Initialization with Stable Power .................................................................................................. 73  
Programming the Mode Register.................................................................................................................74  
Mode Register Set Command Cycle Time (tMRD) ..................................................................................... 74  
MRS Command to Non-MRS Command Delay (tMOD) ............................................................................. 74  
DDR3 SDRAM Mode Register 0 [MR0] ...................................................................................................... 75  
DDR3 SDRAM Mode Register 1 [MR1] ...................................................................................................... 76  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
4
EDJ1104BFSE, EDJ1108BFSE  
DDR3 SDRAM Mode Register 2 [MR2] ...................................................................................................... 77  
DDR3 SDRAM Mode Register 3 [MR3] ...................................................................................................... 78  
Burst Length (MR0) .................................................................................................................................... 79  
Burst Type (MR0) ....................................................................................................................................... 79  
DLL Enable (MR1)...................................................................................................................................... 80  
DLL-off Mode.............................................................................................................................................. 80  
DLL on/off switching procedure .................................................................................................................. 81  
Additive Latency (MR1)............................................................................................................................... 83  
Write Leveling (MR1) .................................................................................................................................. 84  
TDQS, /TDQS function (MR1) .................................................................................................................... 87  
Extended Temperature Usage (MR2)......................................................................................................... 88  
Multi Purpose Register (MR3)..................................................................................................................... 90  
Operation of the DDR3 SDRAM..................................................................................................................97  
Read Timing Definition................................................................................................................................ 97  
Read Operation ........................................................................................................................................ 101  
Write Timing Definition.............................................................................................................................. 108  
Write Operation......................................................................................................................................... 109  
Write Timing Violations ............................................................................................................................. 115  
Write Data Mask ....................................................................................................................................... 116  
Precharge ................................................................................................................................................. 117  
Auto Precharge Operation ........................................................................................................................ 118  
Auto-Refresh............................................................................................................................................. 119  
Self-Refresh.............................................................................................................................................. 120  
Power-Down Mode ................................................................................................................................... 122  
Input Clock Frequency Change during Precharge Power-Down............................................................... 129  
On-Die Termination (ODT)........................................................................................................................ 130  
ZQ Calibration........................................................................................................................................... 142  
Package Drawing ......................................................................................................................................144  
78-ball FBGA ............................................................................................................................................ 144  
Recommended Soldering Conditions........................................................................................................145  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
5
EDJ1104BFSE, EDJ1108BFSE  
Electrical Conditions  
All voltages are referenced to VSS (GND)  
Execute power-up and Initialization sequence before proper device operation is achieved.  
Absolute Maximum Ratings  
Parameter  
Symbol  
VDD  
Rating  
Unit  
V
Notes  
Power supply voltage  
Power supply voltage for output  
Input voltage  
0.4 to +1.975  
0.4 to +1.975  
0.4 to +1.975  
0.4 to +1.975  
0.4 to 0.6 × VDD  
0.4 to 0.6 × VDDQ  
55 to +100  
1.0  
1, 3  
1, 3  
1
VDDQ  
VIN  
V
V
Output voltage  
VOUT  
VREFCA  
VREFDQ  
Tstg  
V
1
Reference voltage  
Reference voltage for DQ  
Storage temperature  
Power dissipation  
V
3
V
3
°C  
W
mA  
1, 2  
1
PD  
Short circuit output current  
IOUT  
50  
1
Notes: 1. Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to  
the device. This is a stress rating only and functional operation of the device at these or any other  
conditions above those indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect reliability.  
2. Storage temperature is the case surface temperature on the center/top side of the DRAM.  
3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must be no greater than  
0.6 × VDDQ, When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV.  
Caution  
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Operating Temperature Condition  
Parameter  
Symbol  
TC  
Rating  
Unit  
Notes  
1, 2, 3  
Operating case temperature  
0 to +95  
°C  
Notes: 1. Operating temperature is the case surface temperature on the center/top side of the DRAM.  
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be  
supported. During operation, the DRAM case temperature must be maintained between 0°C to +85°C  
under all operating conditions.  
3. Some applications require operation of the DRAM in the Extended Temperature Range between +85°C  
and +95°C case temperature. Full specifications are guaranteed in this range, but the following additional  
conditions apply:  
a)  
Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to  
3.9µs. (This double refresh requirement may not apply for some devices.)  
b)  
If Self-refresh operation is required in the Extended Temperature Range, then it is mandatory to  
either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 bit  
[A6, A7] = [0, 1]) or enable the optional Auto Self-Refresh mode (MR2 bit [A6, A7] = [1, 0]).  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
6
EDJ1104BFSE, EDJ1108BFSE  
Recommended DC Operating Conditions (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)  
Parameter  
Symbol  
VDD  
min.  
typ.  
1.5  
1.5  
max.  
Unit  
V
Notes  
1, 2  
Supply voltage  
Supply voltage for DQ  
1.425  
1.425  
1.575  
1.575  
VDDQ  
V
1, 2  
Notes: 1. Under all conditions VDDQ must be less than or equal to VDD.  
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.  
AC and DC Input Measurement Levels (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)  
Single-Ended AC and DC Input Levels for Command and Address  
Parameter  
Symbol  
min.  
typ.  
max.  
Unit  
V
Notes  
DC input logic high  
DC input logic low  
AC input logic high  
AC input logic low  
AC input logic high  
AC input logic low  
VIHCA (DC100)  
VILCA (DC100)  
VIHCA (AC175)  
VILCA (AC175)  
VIHCA (AC150)  
VILCA (AC150)  
VREF + 0.100  
VSS  
VDD  
1
1
VREF 0.100  
V
2
1, 2  
1, 2  
VREF + 0.175  
*
V
2
*
VREF 0.175  
V
2
VREF + 0.150  
*
V
1, 2  
1, 2  
2
*
VREF 0.150  
V
Input reference voltage  
for address, command  
inputs  
VREFCA (DC)  
0.49 × VDD  
0.51 × VDD  
V
3, 4  
Notes: 1. For input only pins except /RESET; VREF = VREFCA (DC).  
2. See Overshoot and Undershoot Specifications section.  
3. The AC peak noise on VREF may not allow VREF to deviate from VREFCA (DC) by more than ±1% VDD  
(for reference: approx. ±15 mV).  
4. For reference: approx. VDD/2 ± 15 mV.  
Single-Ended AC and DC Input Levels for DQ and DM  
Parameter  
Symbol  
min.  
typ.  
max.  
Unit  
V
Notes  
1
DC input logic high  
VIHDQ (DC100)  
VREF + 0.100  
VSS  
VDD  
DC input logic low  
VILDQ (DC100)  
VIHDQ (AC175)  
VREF 0.100  
V
1
2
AC input logic high  
DDR3-1066  
DDR3-1333, 1600  
VREF + 0.175  
*
V
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
V
2
AC input logic high  
VIHDQ (AC150)  
VILDQ (AC175)  
VREF + 0.150  
*
2
AC input logic low  
DDR3-1066  
DDR3-1333, 1600  
*
VREF 0.175  
V
V
2
AC input logic low  
VILDQ (AC150)  
VREFDQ (DC)  
*
VREF 0.150  
0.51 × VDD  
Input reference  
voltage for DQ, DM  
inputs  
0.49 × VDD  
V
3, 4  
Notes: 1. For DQ and DM: VREF = VREFDQ (DC).  
2. See Overshoot and Undershoot Specifications section.  
3. The AC peak noise on VREF may not allow VREF to deviate from VREFDQ (DC) by more than ±1% VDD  
(for reference: approx. ±15 mV).  
4. For reference: approx. VDD/2 ± 15 mV.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
7
EDJ1104BFSE, EDJ1108BFSE  
VREF Tolerances  
The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are shown in Figure  
VREF(DC) Tolerance and VREF AC-Noise Limits. It shows a valid reference voltage VREF(t) as a function of time.  
(VREF stands for VREFCA and VREFDQ likewise).  
VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the  
min/max requirements in the table of(Single-Ended AC and DC Input Levels for Command and Address).  
Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than +/- 1% VDD.  
VREF(DC) Tolerance and VREF AC-Noise Limits  
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent  
on VREF.  
VREF shall be understood as VREF(DC), as defined in figure above, VREF(DC) Tolerance and VREF AC-Noise  
Limits.  
This clarifies that DC-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or  
low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to  
account for VREF(DC) deviations from the optimum position within the data-eye of the input signals.  
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage  
associated with VREF AC-noise. Timing and voltage effects due to ac-noise on VREF up to the specified limit (±1%  
of VDD) are included in DRAM timings and their associated deratings.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
8
EDJ1104BFSE, EDJ1108BFSE  
Input Slew Rate Derating  
For all input signals the total tIS, tDS (setup time) and tIH, tDH (hold time) required is calculated by adding the data  
sheet tIS (base), tDS (base) and tIH (base), tDH (base) value to the tIS, tDS and tIH, tDH derating value  
respectively.  
Example: tDS (total setup time) = tDS (base) + tDS.  
Setup (tIS, tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF  
(DC) and the first crossing of VIH (AC) min. Setup (tIS, tDS) nominal slew rate for a falling signal is defined as the  
slew rate between the last crossing of VREF (DC) and the first crossing of VIL (AC) max. If the actual signal is  
always earlier than the nominal slew rate line between shaded ‘VREF (DC) to AC region’, use nominal slew rate for  
derating value (See the figure of Slew Rate Definition Nominal).  
If the actual signal is later than the nominal slew rate line anywhere between shaded ‘VREF (DC) to AC region’, the  
slew rate of a tangent line to the actual signal from the AC level to DC level is used for derating value (see the figure  
of Slew Rate Definition Tangent).  
Hold (tIH, tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of  
VIL (DC) max. and the first crossing of VREF (DC). Hold (tIH, tDH) nominal slew rate for a falling signal is defined  
as the slew rate between the last crossing of VIH (DC) min. and the first crossing of VREF (DC). If the actual signal  
is always later than the nominal slew rate line between shaded ‘DC level to VREF (DC) region’, use nominal slew  
rate for derating value (See the figure of Slew Rate Definition Nominal).  
If the actual signal is earlier than the nominal slew rate line anywhere between shaded ‘DC to VREF (DC) region’,  
the slew rate of a tangent line to the actual signal from the DC level to VREF (DC) level is used for derating value  
(see the figure of Slew Rate Definition Tangent).  
For a valid transition the input signal has to remain above/below VIH/VIL(AC) for some time tVAC (see the table of  
Required time tVAC above VIH(AC) {below VIL(AC)} for valid transition).  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached  
VIH/IL (AC) at the time of the rising clock transition) a valid input signal is still required to complete the transition and  
reach VIH/IL (AC).  
For slew rates in between the values listed in the tables below, the derating values may obtained by linear  
interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
[Address/Command Setup and Hold Base-Values for 1V/ns]  
DDR3-1066  
DDR3-1333  
DDR3-1600  
45  
Unit  
ps  
Reference  
tIS(base) AC175  
tIH(base) DC100  
tIS(base) AC150  
125  
65  
VIH/VIL(AC)  
VIH/VIL(DC)  
VIH/VIL(AC)  
200  
140  
120  
ps  
125 + 150  
65 + 125  
45 + 125  
ps  
Notes: 1. AC/DC referenced for 1V/ns Address/Command slew rate and 2V/ns differential CK, /CK slew rate.  
2. The tHS (base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional  
100ps of derating to accommodate for the lower alternate threshold of 150mV and another 25ps to  
account for the earlier reference point [(175mV 150mV)/1V/ns]  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
9
EDJ1104BFSE, EDJ1108BFSE  
[Derating Values of tIS/tIH AC/DC based AC175 Threshold (DDR3-1066, 1333, 1600)]  
tIS, tIH derating in [ps] AC/DC based  
AC175 Threshold -> VIH(AC)=VREF(DC)+175mV, VIL(AC)=VREF(DC)-175mV  
CK, /CK differential slew rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH Unit  
2.0 +88 +50 +88 +50 +88 +50 +96 +58 +104 +66 +112 +74 +120 +84 +128 +100 ps  
1.5 +59 +34 +59 +34 +59 +34 +67 +42 +75 +50 +83 +58 +91 +68 +99 +84 ps  
1.0  
0
0
0
0
0
0
+8  
+6  
+8  
+4  
2  
8  
+16 +16 +24 +24 +32 +34 +40 +50 ps  
+14 +12 +22 +20 +30 +30 +38 +46 ps  
CMD,  
ADD  
slew  
0.9 2  
0.8 6  
4  
2  
4  
2  
4  
10 6  
10 6  
10 +2  
+10 +6  
+18 +14 +26 +24 +34 +40 ps  
+13 +8 +21 +18 +29 +34 ps  
10 +7 2 +15 +8 +23 +24 ps  
6 +5 +10 ps  
0.4 62 60 62 60 62 60 54 52 46 44 38 36 30 26 22 10 ps  
rate  
0.7 11 16 11 16 11 16 3  
0.6 17 26 17 26 17 26 9  
+5  
0
(V/ns)  
18 1  
0.5 35 40 35 40 35 40 27 32 19 24 11 16 2  
[Derating Values of tIS/tIH AC/DC based-Alternate AC150 Threshold (DDR3-1066, 1333, 1600)]  
tIS, tIH derating in [ps] AC/DC based  
Alternate AC150 Threshold -> VIH(AC)=VREF(DC)+150mV, VIL(AC)=VREF(DC)-150mV  
CK, /CK differential slew rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH Unit  
2.0 +75 +50 +75 +50 +75 +50 +83 +58 +91 +66 +99 +74 +107 +84 +115 +100 ps  
1.5 +50 +34 +50 +34 +50 +34 +58 +42 +66 +50 +74 +58 +82 +68 +90 +84 ps  
1.0  
0.9  
0.8  
0.7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
+8  
+8  
+8  
+4  
2  
8  
+16 +16 +24 +24 +32 +34 +40 +50 ps  
+16 +12 +24 +20 +32 +30 +40 +46 ps  
CMD,  
ADD  
slew  
4  
4  
4  
10  
16  
10  
16  
10 +8  
16 +8  
26 +7  
+16 +6  
+16  
+24 +14 +32 +24 +40 +40 ps  
+24 +8 +32 +18 +40 +34 ps  
rate  
0
(V/ns)  
0.6 1  
26 1  
26 1  
18 +15 10 +23 2  
32 +6 24 +14 16 +22 6  
0.4 25 60 25 60 25 60 17 52 9 44 1 36 +7  
+31 +8  
+39 +24 ps  
+30 +10 ps  
0.5 10 40 10 40 10 40 2  
26 +15 10 ps  
[Required time tVAC above VIH(AC) {below VIL(AC)} for Valid Transition]  
tVAC @ AC175 [ps]  
tVAC @ AC150 [ps]  
min. max.  
Slew rate (V/ns)  
min.  
max.  
>2.0  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
<0.5  
75  
57  
50  
38  
34  
29  
22  
13  
0
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
0
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
10  
EDJ1104BFSE, EDJ1108BFSE  
[Data Setup and Hold Base-Values]  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Unit  
ps  
Reference  
tDS(base) AC175  
tDS(base) AC150  
tDH(base) DC100  
25  
VIH/VIL(AC)  
VIH/VIL(AC)  
VIH/VIL(DC)  
75  
30  
65  
10  
45  
ps  
100  
ps  
Note: 1 AC/DC referenced for 1V/ns DQ slew rate and 2V/ns DQS slew rate  
[Derating Values of tDS/tDH AC/DC based, AC175 (DDR3-1066)]  
tDS, tDH derating in [ps] AC/DC based  
DQS, /DQS differential slew rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH Unit  
2.0 +88 +50 +88 +50 +88 +50  
ps  
1.5 +59 +34 +59 +34 +59 +34 +67 +42  
ps  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0
0
0
0
0
0
+8  
+6  
+8  
+4  
2  
8  
+16 +16  
ps  
DQ  
2  
4  
2  
6  
4  
+14 +12 +22 +20  
ps  
ps  
slew  
rate  
10 +2  
3  
+10 +6  
+18 +14 +26 +24  
(V/ns)  
+5  
0
+13 +8  
10 +7 2  
11 16 2  
30 26 22 10 ps  
+21 +18 +29 +34 ps  
1  
+15 +8  
6  
+23 +24 ps  
+5 +10 ps  
[Derating Values of tDS/tDH AC/DC based, AC150 (DDR3-1066, 1333, 1600)]  
tDS, tDH derating in [ps] AC/DC based  
DQS, /DQS differential slew rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH Unit  
2.0 +75 +50 +75 +50 +75 +50  
ps  
1.5 +50 +34 +50 +34 +50 +34 +58 +42  
ps  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0
0
0
0
0
0
0
0
0
+8  
+8  
+8  
+4  
2  
8  
+16 +16  
ps  
DQ  
4  
4  
+16 +12 +24 +20  
ps  
ps  
slew  
rate  
10 +8  
+16 +6  
+16  
+15 10 +23 2  
+14 16 +22 6  
+7  
+24 +14 +32 +24  
(V/ns)  
+8  
0
+24 +8  
+32 +18 +40 +34 ps  
+31 +8  
+39 +24 ps  
+30 +10 ps  
26 +15 10 ps  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
11  
EDJ1104BFSE, EDJ1108BFSE  
[Required time tVAC above VIH(AC) {below VIL(AC)} for valid transition]  
DDR3-1066 (AC175)  
DDR3-1066, 1333, 1600 (AC150)  
tVAC [ps]  
tVAC [ps]  
Slew rate (V/ns)  
min.  
75  
57  
50  
38  
34  
29  
22  
13  
0
max.  
min.  
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
max.  
>2.0  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
<0.5  
0
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
12  
EDJ1104BFSE, EDJ1108BFSE  
CK  
/CK  
tIS  
tIH  
tIS  
tIH  
VDD  
tVAC  
VIH (AC) min.  
VIH (DC) min.  
VREF (DC)  
VREF to AC  
region  
DC to VREF  
region  
nominal  
slew rate  
nominal  
slew rate  
DC to VREF  
region  
VIL (DC) max.  
VREF to AC  
region  
VIL (AC) max.  
VSS  
tVAC  
TFS  
TRH TRS  
TFH  
Slew Rate Definition Nominal (CK, /CK)  
/DQS  
DQS  
tDS  
tDH  
tDS  
tDH  
VDD  
tVAC  
VIH (AC) min.  
VIH (DC) min.  
VREF (DC)  
VREF to AC  
region  
DC to VREF  
region  
nominal  
slew rate  
nominal  
slew rate  
DC to VREF  
region  
VIL (DC) max.  
VREF to AC  
region  
VIL (AC) max.  
VSS  
tVAC  
TFS  
TRH TRS  
TFH  
Slew Rate Definition Nominal (DQS, /DQS)  
VREF (DC)  
-
VIL (AC) max.  
TFS  
VIL (DC) max.  
TRH  
VIH (AC) min.  
-
VREF (DC)  
TRS  
VIH (DC) min. VREF (DC)  
TFH  
Setup slew rate  
Falling signal  
Setup slew rate  
Rising signal  
=
=
=
=
VREF (DC)  
-
-
Hold slew rate  
Rising signal  
Hold slew rate  
Falling signal  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
13  
EDJ1104BFSE, EDJ1108BFSE  
CK  
/CK  
tIS  
tIH  
tIS  
tIH  
VDD  
tVAC  
VIH (AC) min.  
VIH (DC) min.  
VREF (DC)  
VREF to AC  
region  
nominal  
line  
nominal  
line  
DC to VREF  
region  
tangent  
line  
tangent  
line  
DC to VREF  
region  
nominal  
line  
VIL (DC) max.  
VREF to AC  
region  
nominal  
line  
VIL (AC) max.  
VSS  
tVAC  
TFS  
TRH  
TRS  
TFH  
Slew Rate Definition Tangent (CK, /CK)  
/DQS  
DQS  
tDS  
tDH  
tDS  
tDH  
VDD  
tVAC  
VIH (AC) min.  
VIH (DC) min.  
VREF (DC)  
VREF to AC  
region  
nominal  
line  
nominal  
line  
DC to VREF  
region  
tangent  
line  
tangent  
line  
DC to VREF  
region  
nominal  
line  
VIL (DC) max.  
VREF to AC  
region  
nominal  
line  
VIL (AC) max.  
VSS  
tVAC  
TFS  
TRH  
TRS  
TFH  
Slew Rate Definition Tangent (DQS, /DQS)  
tangent line [VREF (DC)  
-
-
VIL (AC) max.]  
tangent line [VIH (AC) min.  
-
-
VREF (DC)]  
VREF (DC)]  
Setup slew rate  
Falling signal  
Setup slew rate  
Rising signal  
=
=
=
=
TFS  
tangent line [VREF (DC)  
TRH  
TRS  
tangent line [VIH (DC) min.  
TFH  
VIL (DC) max.]  
Hold slew rate  
Rising signal  
Hold slew rate  
Falling signal  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
14  
EDJ1104BFSE, EDJ1108BFSE  
AC and DC Logic Input Levels for Differential Signals  
Differential signal definition  
Definition of Differential AC-swing and “time above AC-level” tDVAC  
[Differential AC and DC Input Levels]  
Parameter  
Symbol  
min.  
typ.  
max.  
Unit  
V
Notes  
3
Differential input logic high VIHdiff  
+0.200  
*
1
1
3
Differential input logic low  
Differential input logic AC  
Differential input logic AC  
VILdiff  
*
–0.200  
V
2 × (VIH (AC) −  
3
VIHdiff (AC)  
VILdiff (AC)  
*
V
2
2
VREF)  
3
*
2 × (VIL(AC) VREF) V  
Notes: 1. Used to define a differential signal slew-rate.  
2. For CK, /CK use VIH/VIL(AC) of address/command and VREFCA; for strobes (DQS, /DQS) use  
VIH/VIL(AC) of DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group, then  
the reduced level applies also here.  
3. These values are not defined, however the single ended components of differential signal CK, /CK, DQS,  
/DQS to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the  
limitations for overshoot and undershoot. Refer to Overshoot and Undershoot specifications.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
15  
EDJ1104BFSE, EDJ1108BFSE  
[Required time tVAC above VIH(AC) {below VIL(AC)} for valid transition]  
@[VIH/Ldiff (AC)] = 350 mV  
@[VIH/Ldiff (AC)] = 300 mV  
tDVAC [ps]  
tDVAC [ps]  
Slew rate (V/ns)  
min.  
75  
57  
50  
38  
34  
29  
22  
13  
0
max.  
min.  
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
max.  
>4.0  
4.0  
3.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
<1.0  
0
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
16  
EDJ1104BFSE, EDJ1108BFSE  
Single-Ended Requirements for Differential Signals  
Each individual component of a differential signal (CK, DQS, /CK, /DQS) has also to comply with certain  
requirements for single-ended signals.  
CK and /CK have to approximately reach VSEH min. / VSEL max. (approximately equal to the AC-levels (VIH(AC) /  
VIL(AC)) for Address/command signals) in every half-cycle.  
DQS, /DQS have to reach VSEH min./VSEL max. (approximately the AC-levels (VIH(AC) / VIL(AC)) for DQ signals)  
in every half-cycle preceding and following a valid transition.  
Note that the applicable ac-levels for Address/command and DQ’s might be different per speed-bin etc. E.g. if VIH  
150 (AC)/VIL 150 (AC) is used for Address/command signals, then these ac-levels apply also for the single ended  
components of differential CK and /CK.  
Single-Ended Requirement for Differential Signals.  
Note that while Address/command and DQ signal requirements are with respect to VREF, the single-ended  
components of differential signals have a requirement with respect to VDD / 2; this is nominally the same. The  
transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended components  
of differential signals the requirement to reach VSEL max, VSEH min has no bearing on timing, but adds a restriction  
on the common mode characteristics of these signals.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
17  
EDJ1104BFSE, EDJ1108BFSE  
[Single-ended levels for CK, DQS, /CK, /DQS]  
Parameter  
Symbol min.  
typ.  
max.  
Unit  
V
Notes  
1, 2  
3
Single-ended high level for strobes  
Single-ended high level for CK, /CK  
Single-ended low level for strobes  
Single-ended low level for CK, /CK  
(VDD/2) + 0.175  
*
VSEH  
VSEL  
3
(VDD/2) + 0.175  
*
V
1, 2  
3
*
(VDD/2) 0.175 V  
(VDD/2) 0.175 V  
1, 2  
3
*
1, 2  
Notes: 1. For CK, /CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, /DQS) use VIH/VIL(AC) of DQs.  
2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VIH(AC)/VIL(AC) for address/command is based on  
VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies  
also here.  
3. These values are not defined, however the single ended components of differential signals CK, /CK, DQS,  
/DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well  
as the limitations for overshoot and undershoot. Refer to Overshoot and Undershoot specifications.  
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each  
cross point voltage of differential input signals (CK, /CK and DQS, /DQS) must meet the requirements in table above.  
The differential input cross point voltage VIX is measured from the actual cross point of true and complement signal  
to the midlevel between of VDD and VSS.  
VDD  
CK, DQS  
VIX  
VDD/2  
VIX  
VIX  
/CK, /DQS  
VSS  
VIX Definition  
[Cross point voltage for differential input signals (CK, DQS)]  
Parameter  
Symbol  
pins  
min.  
max.  
150  
Unit  
mV  
Note  
1
Differential input cross point voltage  
relative to VDD/2  
VIX  
CK, /CK  
150  
175  
175  
150  
mV  
mV  
VIX  
DQS, /DQS 150  
Note: 1. Extended range for VIX is only allowed for clock and if CK and /CK are monotonic, have a single-ended  
swing VSEL/VSEH of at least VDD/2 +/-250 mV, and the differential slew rate of CK - /CK is larger than 3  
V/ ns. Refer to the table of Cross point voltage for differential input signals (CK, DQS) for VSEL and VSEH  
standard values.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
18  
EDJ1104BFSE, EDJ1108BFSE  
[Differential Input Slew Rate Definition]  
Measured  
Description  
From  
To  
Defined by  
Applicable for Note  
Differential input slew rate  
for rising edge  
VIHdiff (min.) – VILdiff (max.)  
VILdiff (max.) VIHdiff (min.)  
VIHdiff (min.) VILdiff (max.)  
TRdiff  
(CK - /CK and DQS - /DQS)  
Differential input slew rate  
VIHdiff (min.) – VILdiff (max.)  
for falling edge  
TFdiff  
(CK - /CK and DQS - /DQS)  
Note: The differential signal (i.e. CK, /CK and DQS, /DQS) must be linear between these thresholds.  
VIHdiff(min.)  
0
VILdiff (max.)  
TRdiff  
TFdiff  
VIHdiff (min.)  
VILdiff (max.)  
VIHdiff (min.)  
VILdiff (max.)  
Falling slew =  
Rising slew =  
TFdiff  
TRdiff  
Differential Input Slew Rate Definition for DQS, /DQS and CK, /CK  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
19  
EDJ1104BFSE, EDJ1108BFSE  
AC and DC Output Measurement Levels (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)  
Parameter  
Symbol  
Specification  
Unit  
V
Notes  
DC output high measurement level  
(for IV curve linearity)  
VOH (DC)  
0.8 × VDDQ  
DC output middle measurement level  
VOM (DC)  
VOL (DC)  
VOH (AC)  
VOL (AC)  
VOHdiff  
0.5 × VDDQ  
V
V
V
V
V
(for IV curve linearity)  
DC output low measurement level  
(for IV curve linearity)  
AC output high measurement level  
(for output slew rate)  
AC output low measurement level  
(for output slew rate)  
AC differential output high measurement  
level (for output slew rate)  
0.2 × VDDQ  
VTT + 0.1 × VDDQ  
VTT 0.1 × VDDQ  
0.2 × VDDQ  
1
1
2
2
AC differential output low measurement  
level (for output slew rate)  
VOLdiff  
0.2 × VDDQ  
V
AC differential cross point voltage  
VOX (AC)  
TBD  
mV  
Notes: 1. The swing of ±0.1 × VDDQ is based on approximately 50% of the static single-ended output high or low  
swing with a driver impedance of 34and an effective test load of 25to VTT = VDDQ/2 at each of the  
differential outputs.  
2. The swing of ±0.2 × VDDQ is based on approximately 50% of the static single-ended output high or low  
swing with a driver impedance of 34and an effective test load of 25to VTT = VDDQ/2 at each of the  
differential outputs.  
Output Slew Rate Definitions  
[Single-Ended Output Slew Rate Definition]  
Measured  
Description  
From  
To  
Defined by  
VOH (AC) – VOL (AC)  
TRse  
Output slew rate for rising edge  
VOL (AC)  
VOH (AC)  
VOH (AC) – VOL (AC)  
Output slew rate for falling edge VOH (AC)  
VOL (AC)  
TFse  
VOH (AC)  
VTT  
VOL (AC)  
TRse  
TFse  
VOH (AC)  
VOL (AC)  
VOH (AC)  
VOL (AC)  
Falling slew =  
Rising slew =  
TFse  
TRse  
Input Slew Rate Definition for Single-Ended Signals  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
20  
EDJ1104BFSE, EDJ1108BFSE  
[Differential Output Slew Rate Definition]  
Measured  
Description  
From  
To  
Defined by  
VOHdiff(AC) – VOLdiff (AC)  
TRdiff  
Differential output slew rate  
for rising edge  
VOLdiff (AC)  
VOHdiff (AC)  
VOHdiff (AC) – VOLdiff (AC)  
Differential output slew rate  
for falling edge  
VOHdiff (AC)  
VOLdiff (AC)  
TFdiff  
VOHdiff (AC)  
0
VOLdiff (AC)  
TRdiff  
TFdiff  
VOHdiff (AC)  
VOLdiff (AC)  
VOHdiff (AC)  
VOLdiff (AC)  
Falling slew =  
Rising slew =  
TFdiff  
TRdiff  
Differential Input Slew Rate Definition for DQS, /DQS and CK, /CK  
Output Slew Rate (RON = RZQ/7 setting)  
Parameter  
Symbol  
Speed  
min.  
2.5  
max.  
5
Unit  
Notes  
1
DDR3-1066  
DDR3-1333  
DDR3-1600  
Output slew rate  
(Single-ended)  
SRQse  
V/ns  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Output slew rate  
(Differential)  
SRQdiff  
5
10  
V/ns  
1
Remark: SR = slew rate. se = single-ended signals. diff = differential signals. Q = Query output  
Note: 1. In two cases, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane.  
(a) is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from  
high to low or low to high) while all remaining DQ signals in the same byte lane are static (i.e. they stay at  
either high or low).  
(b) is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from  
high to low or low to high) while all remaining DQ signals in the same byte lane are switching into the  
opposite direction (i.e. from low to high or high to low respectively). For the remaining DQ signal  
switching into the opposite direction, the regular maximum limit of 5V/ns applies.  
Reference Load for AC Timing and Output Slew Rate  
VDDQ  
DUT  
DQ  
DQS,  
/DQS  
CK, /CK  
VTT = VDDQ/2  
25Ω  
Reference Output Load  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
21  
EDJ1104BFSE, EDJ1108BFSE  
AC Overshoot/Undershoot Specification  
Parameter  
Pins  
Specification  
Command, Address,  
CKE, ODT  
Maximum peak amplitude allowed for overshoot  
Maximum peak amplitude allowed for undershoot  
0.4V  
0.4V  
Maximum overshoot area above VDD  
DDR3-1600  
0.33V-ns  
DDR3-1333  
0.4V-ns  
0.5V-ns  
DDR3-1066  
Maximum undershoot area below VSS  
DDR3-1600  
0.33V-ns  
DDR3-1333  
0.4V-ns  
0.5V-ns  
0.4V  
DDR3-1066  
Maximum peak amplitude allowed for overshoot  
Maximum peak amplitude allowed for undershoot  
CK, /CK  
0.4V  
Maximum overshoot area above VDD  
DDR3-1600  
0.13V-ns  
DDR3-1333  
0.15V-ns  
0.19V-ns  
DDR3-1066  
Maximum undershoot area below VSS  
DDR3-1600  
0.13V-ns  
DDR3-1333  
0.15V-ns  
0.19V-ns  
DDR3-1066  
Maximum peak amplitude allowed for overshoot  
Maximum peak amplitude allowed for undershoot  
DQ, DQS, /DQS, DM 0.4V  
0.4V  
Maximum overshoot area above VDDQ  
DDR3-1600  
0.13V-ns  
DDR3-1333  
0.15V-ns  
0.19V-ns  
DDR3-1066  
Maximum undershoot area below VSSQ  
DDR3-1600  
0.13V-ns  
DDR3-1333  
0.15V-ns  
0.19V-ns  
DDR3-1066  
Maximum amplitude  
Overshoot area  
VDD, VDDQ  
Volts (V)  
VSS, VSSQ  
Undershoot area  
Time (ns)  
Overshoot/Undershoot Definition  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
22  
EDJ1104BFSE, EDJ1108BFSE  
Output Driver Impedance  
RON will be achieved by the DDR3 SDRAM after proper I/O calibration. Tolerance and linearity requirements are  
referred to the Output Driver DC Electrical Characteristics table.  
A functional representation of the output buffer is shown in the figure Output Driver: Definition of Voltages and  
Currents.  
RON is defined by the value of the external reference resistor RZQ as follows:  
RON40 = RZQ/6  
RON34 = RZQ/7  
The individual pull-up and pull-down resistors (RONPu and RONPd) are defined as follows:  
Parameter  
Symbol  
RONPu  
Conditions  
Definition  
VDDQ VOUT  
Output driver pull-up impedance  
RONPd is turned off  
IOUT  
VOUT  
IOUT  
Output driver pull-down impedance  
RONPd  
RONPu is turned off  
Chip in Drive Mode  
Output Driver  
VDDQ  
IPu  
To  
other  
circuitry  
like  
RCV,  
...  
RONPu  
DQ  
IOut  
RONPd  
IPd  
VOut  
VSSQ  
Output Driver: Definition of Voltages and Currents  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
23  
EDJ1104BFSE, EDJ1108BFSE  
Output Driver DC Electrical Characteristics  
(RZQ = 240, entire operating temperature range; after proper ZQ calibration)  
RONnom Resistor  
VOUT  
min.  
nom. max. Unit  
Notes  
VOL (DC) = 0.2 × VDDQ  
VOM (DC) = 0.5 × VDDQ 0.9  
VOH (DC) = 0.8 × VDDQ 0.9  
VOL (DC) = 0.2 × VDDQ  
VOM (DC) = 0.5 × VDDQ 0.9  
VOH (DC) = 0.8 × VDDQ 0.6  
0.6  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
40Ω  
RON40Pd  
RON40Pu  
RON34Pd  
RON34Pu  
RZQ/6 1, 2, 3  
0.9  
RZQ/6 1, 2, 3  
RZQ/7 1, 2, 3  
RZQ/7 1, 2, 3  
VOL (DC) = 0.2 × VDDQ  
0.6  
34Ω  
VOM (DC) = 0.5 × VDDQ 0.9  
VOH (DC) = 0.8 × VDDQ 0.9  
VOL (DC) = 0.2 × VDDQ  
VOM (DC) = 0.5 × VDDQ 0.9  
VOH (DC) = 0.8 × VDDQ 0.6  
0.9  
Mismatch between pull-up and pull down, MMPuPd VOM (DC) = 0.5 × VDDQ 10  
10  
%
1, 2, 4  
Notes: 1. The tolerance limits are specified after calibration with stable voltage and temperature.  
For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following  
section on voltage and temperature sensitivity.  
2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS.  
3. Pull-down and pull-up output driver impedances are recommended to be calibrated at 0.5 × VDDQ. Other  
calibration schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2 ×  
VDDQ and 0.8 × VDDQ.  
4. Measurement definition for mismatch between pull-up and pull-down, MMPuPd:  
Measure RONPu and RONPd, both at 0.5 × VDDQ:  
RONPu -RONPd  
MMPuPd =  
× 100  
RONnom  
Output Driver Temperature and Voltage Sensitivity  
If temperature and/or voltage change after calibration, the tolerance limits widen according to the table Output Driver  
Sensitivity Definition and Output Driver Voltage and Temperature Sensitivity.  
T = T T (@calibration); V= VDDQ VDDQ (@calibration); VDD = VDDQ  
Note: dRONdT and dRONdV are not subject to production test but are verified by design and characterization.  
[Output Driver Sensitivity Definition]  
min  
RONPu@VOH (DC) 0.6 dRONdTH × |T| dRONdVH × |V| 1.1 + dRONdTH × |T| + dRONdVH × |V| RZQ/7  
RON@ VOM (DC) 0.9 dRONdTM × |T| dRONdVM × |V| 1.1 + dRONdTM × |T| + dRONdVM × |V| RZQ/7  
max  
unit  
RONPd@VOL (DC) 0.6 dRONdTL × |T| dRONdVL × |V|  
1.1 + dRONdTL × |T| + dRONdVL × |V|  
RZQ/7  
[Output Driver Voltage and Temperature Sensitivity]  
DDR3-1333, 1066  
DDR3-1600  
min.  
max.  
1.5  
max.  
1.5  
Unit  
dRONdTM  
dRONdVM  
dRONdTL  
dRONdVL  
dRONdTH  
dRONdVH  
0
0
0
0
0
0
%/°C  
%/mV  
%/°C  
%/mV  
%/°C  
%/mV  
0.15  
1.5  
0.13  
1.5  
0.15  
1.5  
0.13  
1.5  
0.15  
0.13  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
24  
EDJ1104BFSE, EDJ1108BFSE  
On-Die Termination (ODT) Levels and I-V Characteristics  
On-Die Termination effective resistance RTT is defined by bits A9, A6 and A2 of the MR1 Register.  
ODT is applied to the DQ, DM, DQS, /DQS and TDQS, /TDQS (×8 devices only) pins.  
A functional representation of the on-die termination is shown in the figure On-Die Termination: Definition of Voltages  
and Currents.  
The individual pull-up and pull-down resistors (RTTPu and RTTPd) are defined as follows:  
Parameter  
Symbol  
RTTPu  
Definition  
Conditions  
VDDQ VOUT  
ODT pull-up resistance  
RTTPd is turned off  
IOUT  
VOUT  
IOUT  
ODT pull-down resistance  
RTTPd  
RTTPu is turned off  
Chip in Termination Mode  
ODT  
VDDQ  
IPu  
IOut = IPd - IPu  
To  
RTTPu  
other  
circuitry  
like  
RCV,  
...  
DQ  
IOut  
RTTPd  
IPd  
VOut  
VSSQ  
On-Die Termination: Definition of Voltages and Currents  
The value of the termination resistor can be set via MRS command to RTT60 = RZQ/4 (nom) or RTT120 = RZQ/2  
(nom).  
RTT60 or RTT120 will be achieved by the DDR3 SDRAM after proper I/O calibration has been performed.  
Tolerances requirements are referred to the ODT DC Electrical Characteristics table.  
Measurement Definition for RTT  
Apply VIH (AC) to pin under test and measure current I(VIH(AC)), then apply VIL(AC) to pin under test and measure  
current I(VIL(AC)) respectively.  
VIH(AC) VIL(AC)  
RTT =  
I(VIH(AC)) I(VIL(AC))  
Measurement Definition for VM  
Measure voltage (VM) at test pin (midpoint) with no load.  
2× VM  
VM =   
-1×100  
VDDQ  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
25  
EDJ1104BFSE, EDJ1108BFSE  
ODT DC Electrical Characteristics  
(RZQ = 240, entire operating temperature range; after proper ZQ calibration)  
MR1  
[A9, A6, A2] RTT Resistor  
VOUT  
min.  
nom.  
max.  
Unit  
Notes  
VOL (DC)  
VOM (DC)  
VOH (DC)  
0.6  
0.9  
0.9  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
[0, 1, 0]  
120RTT120Pd240  
RZQ  
1, 2, 3, 4  
VOL (DC)  
VOM (DC)  
VOH (DC)  
0.9  
0.9  
0.6  
1.0  
1.0  
1.0  
1.4  
1.1  
1.1  
RTT120Pu240  
RTT120  
RZQ  
1, 2, 3, 4  
VIL (AC) to VIH (AC) 0.9  
1.0  
1.6  
RZQ/2 1, 2, 5  
VOL (DC)  
VOM (DC)  
VOH (DC)  
VOL (DC)  
VOM (DC)  
VOH (DC)  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
[0, 0, 1]  
[0, 1.1]  
[1, 0, 1]  
[1, 0, 0]  
60RTT60Pd120  
RZQ/2 1, 2, 3, 4  
RTT60Pu120  
RTT60  
RZQ/2 1, 2, 3, 4  
RZQ/4 1, 2, 5  
VIL (AC) to VIH (AC) 0.9  
1.0  
1.6  
VOL (DC)  
VOM (DC)  
VOH (DC)  
VOL (DC)  
VOM (DC)  
VOH (DC)  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
40RTT40Pd80  
RZQ/3 1, 2, 3, 4  
RTT40Pu80  
RTT40  
RZQ/3 1, 2, 3, 4  
RZQ/6 1, 2, 5  
VIL (AC) to VIH (AC) 0.9  
1.0  
1.6  
VOL (DC)  
VOM (DC)  
VOH (DC)  
VOL (DC)  
VOM (DC)  
VOH (DC)  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
30RTT30Pd60  
RZQ/4 1, 2, 3, 4  
RTT30Pu60  
RTT30  
RZQ/4 1, 2, 3, 4  
RZQ/8 1, 2, 5  
VIL (AC) to VIH (AC) 0.9  
1.0  
1.6  
VOL (DC)  
VOM (DC)  
VOH (DC)  
VOL (DC)  
VOM (DC)  
VOH (DC)  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
20RTT20Pd40  
RZQ/6 1, 2, 3, 4  
RTT20Pu40  
RTT20  
RZQ/6 1, 2, 3, 4  
RZQ/12 1, 2, 5  
VIL (AC) to VIH (AC) 0.9  
1.0  
1.6  
Deviation of VM w.r.t. VDDQ/2, VM  
5  
5
%
1, 2, 5, 6  
Notes: 1. The tolerance limits are specified after calibration with stable voltage and temperature.  
For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following  
section on voltage and temperature sensitivity.  
2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS.  
3. Pull-down and pull-up output resistors are recommended to be calibrated at 0.5 × VDDQ. Other calibration  
schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2 × VDDQ and 0.8  
× VDDQ.  
4. Not a specification requirement, but a design guide line.  
5. Measurement Definition for RTT:  
Apply VIH (AC) to pin under test and measure current I(VIH(AC)), then apply VIL(AC) to pin under test  
and measure current I(VIL(AC)) respectively.  
VIH(AC) VIL(AC)  
RTT =  
I(VIH(AC)) I(VIL(AC))  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
26  
EDJ1104BFSE, EDJ1108BFSE  
6. Measurement Definition for VM and VM:  
Measure voltage (VM) at test pin (midpoint) with no load:  
2× VM  
VM =   
-1×100  
VDDQ  
ODT Temperature and Voltage Sensitivity  
If temperature and/or voltage change after calibration, the tolerance limits widen according to the table ODT  
Sensitivity Definition and ODT Voltage and Temperature Sensitivity.  
T = T T (@calibration); V= VDDQ VDDQ (@calibration); VDD = VDDQ  
Note: dRTTdT and dRTTdV are not subject to production test but are verified by design and characterization.  
[ODT Sensitivity Definition]  
min.  
max.  
Unit  
RTT  
0.9 dRTTdT × |T| - dRTTdV × |V| 1.6 + dRTTdT×|T| + dRTTdV × |V|  
RZQ/2, 4, 6, 8, 12  
[ODT Voltage and Temperature Sensitivity]  
min.  
max.  
1.5  
Unit  
dRTTdT  
dRTTdV  
0
0
%/°C  
%/mV  
0.15  
ODT Timing Definitions  
Test Load for ODT Timings  
Different than for timing measurements, the reference load for ODT timings are defined in ODT Timing Reference  
Load.  
VDDQ  
DUT  
DQ  
DQS,  
/DQS  
CK, /CK  
VTT = VSSQ  
RTT = 25Ω  
ODT Timing Reference Load  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
27  
EDJ1104BFSE, EDJ1108BFSE  
ODT Measurement Definitions  
Definitions for tAON, tAONPD, tAOF, tAOFPD and tADC are provided in the following table and subsequent figures.  
Symbol  
Begin Point Definition  
End Point Definition  
Figure  
Rising edge of CK - /CK defined by the end  
point of ODTLon  
tAON  
Extrapolated point at VSSQ  
Figure a)  
Rising edge of CK - /CK with ODT being first  
registered high  
Rising edge of CK - /CK defined by the end  
point of ODTLoff  
Rising edge of CK - /CK with ODT being first  
registered low  
Rising edge of CK - /CK defined by the end  
point of ODTLcnw, ODTLcwn4 or ODTLcwn8  
tAONPD  
tAOF  
Extrapolated point at VSSQ  
Figure b)  
Figure c)  
Figure d)  
Figure e)  
End point: Extrapolated point at VRTT_Nom  
tAOFPD  
tADC  
End point: Extrapolated point at VRTT_Nom  
End point: Extrapolated point at VRTT_WR  
and VRTT_Nom respectively  
Reference Settings for ODT Timing Measurements  
Measurement reference settings are provided in the following Table.  
Measured Parameter RTT_Nom Setting  
RTT_WR Setting  
VSW1 [V]  
VSW2 [V]  
0.10  
Note  
tAON  
RZQ/4  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
RZQ/2  
0.05  
RZQ/12  
RZQ/4  
0.10  
0.20  
tAONPD  
tAOF  
0.05  
0.10  
RZQ/12  
RZQ/4  
0.10  
0.20  
0.05  
0.10  
RZQ/12  
RZQ/4  
0.10  
0.20  
tAOFPD  
tADC  
0.05  
0.10  
RZQ/12  
RZQ/12  
0.10  
0.20  
0.20  
0.30  
Begin point: Rising edge of CK - /CK  
defined by the end point of ODTLon  
CK  
VTT  
/CK  
tAON  
tSW2  
tSW1  
DQ, DM  
DQS, /DQS  
VSW2  
TDQS, /TDQS  
VSW1  
VSSQ  
VSSQ  
End point: Extrapolated point at VSSQ  
a) Definition of tAON  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
28  
EDJ1104BFSE, EDJ1108BFSE  
Begin point: Rising edge of CK - /CK with  
ODT being first registered high  
CK  
VTT  
/CK  
tAONPD  
tSW2  
tSW1  
DQ, DM  
DQS, /DQS  
VSW2  
TDQS, /TDQS  
VSW1  
VSSQ  
VSSQ  
End point: Extrapolated point at VSSQ  
b) Definition of tAONPD  
Begin point: Rising edge of CK - /CK  
defined by the end point of ODTLoff  
CK  
VTT  
/CK  
tAOF  
End point: Extrapolated point at VRTT_Nom  
VRTT_Nom  
VSW2  
tSW2  
tSW1  
DQ, DM  
DQS, /DQS  
TDQS, /TDQS  
VSW1  
VSSQ  
c) Definition of tAOF  
Begin point: Rising edge of CK - /CK with  
ODT being first registered low  
CK  
VTT  
/CK  
tAOFPD  
End point: Extrapolated point at VRTT_Nom  
VRTT_Nom  
VSW2  
tSW2  
tSW1  
DQ, DM  
DQS, /DQS  
TDQS, /TDQS  
VSW1  
VSSQ  
d) Definition of tAOFPD  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
29  
EDJ1104BFSE, EDJ1108BFSE  
Begin point: Rising edge of CK - /CK  
defined by the end point of ODTLcnw  
Begin point: Rising edge of CK - /CK defined by  
the end point of ODTLcwn4 or ODTLcwn8  
CK  
VTT  
/CK  
tADC  
tADC  
VRTT_Nom  
TSW21  
VRTT_Nom  
End point:  
Extrapolated  
point at VRTT_Nom  
DQ, DM  
DQS, /DQS  
TDQS, /TDQS  
TSW22  
TSW12  
TSW11  
VSW1  
VSW2  
VRTT_Wr  
End point: Extrapolated point at VRTT_Wr  
VSSQ  
e) Definition of tADC  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
30  
EDJ1104BFSE, EDJ1108BFSE  
IDD Measurement Conditions (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)  
In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined.  
The figure Measurement Setup and Test Load for IDD and IDDQ Measurements shows the setup and test load for  
IDD and IDDQ measurements.  
IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W,  
IDD5B, IDD6, IDD6ET, IDD6TC and IDD7) are measured as time-averaged currents with all VDD balls of the  
DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD currents.  
IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of  
the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ currents.  
Note: IDDQ values cannot be directly used to calculate I/O power of the DDR3 SDRAM. They can be used to  
support correlation of simulated I/O power to actual I/O power as outlined in correlation from simulated channel I/O  
power to actual channel I/O power supported by IDDQ measurement.  
For IDD and IDDQ measurements, the following definitions apply:  
L and 0: VIN VIL (AC)(max.)  
H and 1: VIN VIH (AC)(min.)  
FLOATING: is defined as inputs are VREF = VDDQ / 2  
Timings used for IDD and IDDQ measurement-loop patterns are provided in Timings used for IDD and IDDQ  
Measurement-Loop Patterns table.  
Basic IDD and IDDQ measurement conditions are described in Basic IDD and IDDQ Measurement Conditions  
table.  
Note: The IDD and IDDQ measurement-loop patterns need to be executed at least one time before actual IDD or  
IDDQ measurement is started.  
Detailed IDD and IDDQ measurement-loop patterns are described in IDD0 Measurement-Loop Pattern table  
through IDD7 Measurement-Loop Pattern table.  
IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting.  
RON = RZQ/7 (34 in MR1);  
Qoff = 0B (Output Buffer enabled in MR1);  
RTT_Nom = RZQ/6 (40 in MR1);  
RTT_WR = RZQ/2 (120 in MR2);  
TDQS Feature disabled in MR1  
Define D = {/CS, /RAS, /CAS, /WE} : = {H, L, L, L}  
Define /D = {/CS, /RAS, /CAS, /WE} : = {H, H, H, H}  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
31  
EDJ1104BFSE, EDJ1108BFSE  
IDD  
IDDQ  
VDD  
/RESET  
VDDQ  
CK, /CK  
DDR3  
RTT = 25Ω  
DQS, /DQS,  
DQ, DM,  
TDQS, /TDQS  
SDRAM  
CKE  
/CS  
/RAS, /CAS, /WE  
VDDQ/2  
Address, BA  
ODT  
ZQ  
VSSQ  
VSS  
Measurement Setup and Test Load for IDD and IDDQ Measurements  
Application specific  
memory channel  
environment  
IDDQ  
Test load  
Channel  
I/O power  
simulation  
IDDQ  
measurement  
IDDQ  
simulation  
Correlation  
Correction  
Channel I/O power  
number  
Correlation from Simulated Channel I/O Power to Actual Channel I/O Power  
Supported by IDDQ Measurement.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
32  
EDJ1104BFSE, EDJ1108BFSE  
Timings used for IDD and IDDQ Measurement-Loop Patterns  
DDR3-1600  
DDR3-1333  
DDR3-1066  
Parameter  
CL  
10-10-10  
11-11-11  
9-9-9  
9
7-7-7  
7
Unit  
nCK  
ns  
10  
1.25  
10  
38  
28  
10  
24  
5
11  
1.25  
11  
39  
28  
11  
24  
5
tCK min.  
nRCD min.  
nRC min.  
nRAS min.  
nRP min.  
nFAW  
1.5  
9
1.875  
7
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
33  
24  
9
27  
20  
7
20  
4
20  
4
nRRD  
nRFC  
88  
88  
74  
59  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
33  
EDJ1104BFSE, EDJ1108BFSE  
Basic IDD and IDDQ Measurement Conditions  
Parameter  
Symbol  
Description  
CKE: H; External clock: on; tCK, nRC, nRAS, CL: see Timings used for IDD and  
IDDQ Measurement-Loop Patterns table; BL: 8*1; AL: 0; /CS: H between ACT and  
PRE; Command, address, bank address inputs: partially toggling according to  
IDD0 Measurement-Loop Pattern table; Data I/O: FLOATING; DM: stable at 0;  
Bank activity: cycling with one bank active at a time: 0,0,1,1,2,2,... (see IDD0  
Measurement-Loop Pattern table); Output buffer and RTT: enabled in MR*2; ODT  
signal: stable at 0; Pattern details: see IDD0 Measurement-Loop Pattern table  
Operating one bank  
active precharge  
current  
IDD0  
CKE: H; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Timings used for IDD  
and IDDQ Measurement-Loop Patterns table; BL: 8(1,7); AL: 0; /CS: H between  
ACT, READ and PRE; Command, address, bank address inputs, data I/O: partially  
toggling according to IDD1 Measurement-Loop Pattern table;  
DM: stable at 0; Bank activity: cycling with one bank active at a time: 0,0,1,1,2,2,...  
(see IDD1 Measurement-Loop Pattern table); Output buffer and RTT: enabled in  
MR*2; ODT Signal: stable at 0; Pattern details: see IDD1 Measurement-Loop  
Pattern table  
Operating one bank  
active-read-precharge  
current  
IDD1  
CKE: H; External clock: on; tCK, CL: see Timings used for IDD and IDDQ  
Measurement-Loop patterns table BL: 8*1; AL: 0; /CS: stable at 1;  
Command, address, bank address Inputs: partially toggling according to IDD2N and  
IDD3N Measurement-Loop Pattern table; data I/O: FLOATING; DM: stable at 0;  
bank activity: all banks closed; output buffer and RTT: enabled in mode registers*2;  
ODT signal: stable at 0; pattern details: see IDD2N and IDD3N Measurement-Loop  
Pattern table  
Precharge standby  
current  
IDD2N  
CKE: H; External clock: on; tCK, CL: see Timings used for IDD and IDDQ  
Measurement-Loop Patterns table; BL: 8*1; AL: 0; /CS: stable at 1;  
Precharge standby  
ODT current  
Command, address, bank address Inputs: partially toggling according to IDD2NT  
and IDDQ2NT Measurement-Loop Pattern table; data I/O: FLOATING; DM: stable  
at 0; bank activity: all banks closed; output buffer and RTT: enabled in MR*2; ODT  
signal: toggling according to IDD2NT and IDDQ2NT Measurement-Loop pattern  
table; pattern details: see IDD2NT and IDDQ2NT Measurement-Loop Pattern table  
IDD2NT  
Precharge standby  
ODT IDDQ current  
Same definition like for IDD2NT, however measuring IDDQ current instead of IDD  
IDDQ2NT  
IDD2P0  
current  
CKE: L; External clock: on; tCK, CL: see Timings used for IDD and IDDQ  
Measurement-Loop Patterns table; BL: 8*1; AL: 0; /CS: stable at 1;  
Command, address, bank address inputs: stable at 0; data I/O: FLOATING; DM:  
stable at 0; bank activity: all banks closed; output buffer and RTT: EMR *2; ODT  
signal: stable at 0; pecharge power down mode: slow exit*3  
Precharge power-down  
current slow exit  
CKE: L; External clock: on; tCK, CL: see Timings used for IDD and IDDQ  
Measurement-Loop Patterns table; BL: 8*1; AL: 0; /CS: stable at 1;  
Precharge power-down  
current fast exit  
IDD2P1  
IDD2Q  
Command, address, bank address Inputs: stable at 0; data I/O: FLOATING;  
DM:stable at 0; bank activity: all banks closed; output buffer and RTT: enabled in  
MR*2; ODT signal: stable at 0; pecharge power down mode: fast exit*3  
CKE: H; External clock: On; tCK, CL: see Timings used for IDD and IDDQ  
Measurement-Loop Patterns table; BL: 8*1; AL: 0; /CS: stable at 1;  
Command, address, bank address Inputs: stable at 0; data I/O: FLOATING;  
DM: stable at 0;bank activity: all banks closed; output buffer and RTT: enabled in  
MR*2; ODT signal: stable at 0  
Precharge quiet  
standby current  
CKE: H; External clock: on; tCK, CL: see Table Timings used for IDD and IDDQ  
Measurement-Loop Patterns table; BL: 8*1; AL: 0; /CS: stable at 1;  
Command, address, bank address Inputs: partially toggling according to IDD2N and  
IDD3N Measurement-Loop Pattern; data I/O: FLOATING; DM: stable at 0;  
bank activity: all banks open; output buffer and RTT: enabled in MR*2;  
ODT signal: stable at 0; pattern details: see IDD2N and IDD3N  
Measurement-Loop Pattern table  
CKE: L; External clock: on; tCK, CL: see Table Timings used for IDD and IDDQ  
Measurement-Loop Patterns table; BL: 8*1; AL: 0; /CS: stable at 1;  
Command, address, bank address inputs: stable at 0; data I/O: FLOATING;  
DM:stable at 0; bank activity: all banks open; output buffer and RTT:  
enabled in MR*2; ODT signal: stable at 0  
Active standby current  
IDD3N  
IDD3P  
Active power-down  
current  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
34  
EDJ1104BFSE, EDJ1108BFSE  
Parameter  
Symbol  
IDD4R  
Description  
CKE: H; External clock: on; tCK, CL: see Timings used for IDD and IDDQ  
Measurement-Loop Patterns table; BL: 8*1, 7; AL: 0; /CS: H between  
READ; Command, address, bank address Inputs: partially toggling according to  
IDD4R and IDDQ4R Measurement-Loop Pattern table; data I/O: seamless read  
data burst with different data between one burst and the next one according to  
IDD4R and IDDQ4R Measurement-Loop Pattern table; DM: stable at 0;  
bank activity: all banks open, READ commands cycling through banks:  
0,0,1,1,2,2,... (see IDD4R and IDDQ4R Measurement-Loop Pattern table); Output  
buffer and RTT: enabled in MR*2; ODT signal: stable at 0; pattern details: see  
IDD4R and IDDQ4R Measurement-Loop Pattern table  
Operating burst read  
current  
Operating burst read  
IDDQ current  
Same definition like for IDD4R, however measuring IDDQ current instead of IDD  
IDDQ4R  
IDD4W  
current  
CKE: H; External clock: on; tCK, CL: see Timings used for IDD and IDDQ  
Measurement-Loop Patterns table; BL: 8*1; AL: 0; /CS: H between WR; command,  
address, bank address inputs: partially toggling according to IDD4W  
Measurement-Loop Pattern table; data I/O: seamless write data burst with  
different data between one burst and the next one according to IDD4W  
Measurement-Loop Pattern table; DM: stable at 0; bank activity: all banks open,  
WR commands cycling through banks: 0,0,1,1,2,2,.. (see IDD4W Measurement-  
Loop Pattern table); Output buffer and RTT: enabled in MR*2; ODT signal: stable  
at H; pattern details: see IDD4W Measurement-Loop Pattern table  
Operating burst write  
current  
CKE: H; External clock: on; tCK, CL, nRFC: see Timings used for IDD and IDDQ  
Measurement-Loop Patterns table; BL: 8*1; AL: 0; /CS: H between REF;  
Command, address, bank address Inputs: partially toggling according to IDD5B  
Measurement-Loop Pattern table; data I/O: FLOATING; DM: stable at 0;  
bank activity: REF command every nRFC (IDD5B Measurement-Loop Pattern);  
output buffer and RTT: enabled in MR*2; ODT signal: stable at 0; pattern  
details: see IDD5B Measurement-Loop Pattern table  
Burst refresh current  
IDD5B  
IDD6  
TC: 0 to 85°C; ASR: disabled*4; SRT:  
Normal*5; CKE: L; External clock: off; CK and /CK: L; CL: see Timings used for  
IDD and IDDQ Measurement-Loop Patterns table; BL: 8*1;  
AL: 0; /CS, command, address, bank address, data I/O: FLOATING; DM: stable  
at 0; bank activity: Self-refresh operation; output buffer and RTT: enabled in MR*2;  
ODT signal: FLOATING  
Self-refresh current:  
normal temperature  
range  
TC: 0 to 95°C; ASR: Disabled*4; SRT: Extended*5; CKE: L; External clock: off; CK  
and /CK: L; CL: see Timings used for IDD and IDDQ Measurement-Loop Patterns  
table; BL: 8*1; AL: 0; /CS, command, address, bank address, data I/O: FLOATING;  
DM: stable at 0; bank activity: Extended temperature self-refresh operation; output  
buffer and RTT: enabled in MR*2; ODT signal: FLOATING  
Self-refresh current:  
extended temperature  
range  
IDD6ET  
IDD6TC  
TC: 0 to 95°C; ASR: Enabled*4; SRT: Normal*5; CKE: L; External clock: off;  
CK and /CK: L; CL: see Table Timings used for IDD and IDDQ Measurement-Loop  
Patterns table; BL: 8*1; AL: 0; /CS, command, address, bank address, data I/O:  
FLOATING; DM: stable at 0; bank activity: Auto self-refresh operation; output  
buffer and RTT: enabled in MR*2; ODT signal: FLOATNG  
Auto self-refresh current  
(Optional)  
CKE: H; External clock: on; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see  
Timings used for IDD and IDDQ Measurement-Loop Patterns table;  
BL: 8*1; AL: CL-1; /CS: H between ACT and READA; Command, address, bank  
address Inputs: partially toggling according to IDD7 Measurement-Loop Pattern  
table; data I/O: read data bursts with different data between one burst and the  
next one according to IDD7 Measurement-Loop Pattern table; DM: stable at 0;  
bank activity: two times interleaved cycling through banks (0, 1, ...7) with different  
addressing, see IDD7 Measurement-Loop Pattern table; output buffer and RTT:  
enabled in MR*2; ODT signal: stable at 0; pattern details: see IDD7 Measurement-  
Loop Pattern table  
/RESET: low; External clock: off; CK and /CK: low; CKE: FLOATING; /CS,  
command, address, bank address, Data IO: FLOATING; ODT signal: FLOATING  
RESET low current reading is valid once power is stable and /RESET has been  
low for at least 1ms.  
Operating bank  
interleave read  
current  
IDD7  
IDD8  
RESET low current  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
35  
EDJ1104BFSE, EDJ1108BFSE  
Notes: 1. Burst Length: BL8 fixed by MRS: MR0 bits [1,0] = [0,0].  
2. MR: Mode Register  
Output buffer enable: set MR1 bit A12 = 1 and MR1 bits [5, 1] = [0,1];  
RTT_Nom enable: set MR1 bits [9, 6, 2] = [0, 1, 1]; RTT_WR enable: set MR2 bits [10, 9] = [1,0].  
3. Precharge power down mode: set MR0 bit A12= 0 for Slow Exit or MR0 bit A12 = 1 for fast exit.  
4. Auto self-refresh (ASR): set MR2 bit A6 = 0 to disable or 1 to enable feature.  
5. Self-refresh temperature range (SRT): set MR0 bit A7= 0 for normal or 1 for extended temperature range.  
6. Read burst type: nibble sequential, set MR0 bit A3 = 0.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
36  
EDJ1104BFSE, EDJ1108BFSE  
IDD0 Measurement-Loop Pattern  
CK,  
/CK  
Sub Cycle  
Com-  
A11  
A7  
A3  
A0  
Data*2  
CKE  
-Loop number mand /CS /RAS /CAS /WE ODT BA*3 -A13 A10 -A9 -A6 -A2  
0
ACT  
D, D  
0
1
0
0
1
0
1
0
0
0
0
0
00  
00  
0
0
0
0
0
0
0
0
1, 2  
/D,  
/D  
3, 4  
1
1
1
1
0
0
00  
0
0
0
0
Repeat pattern 1...4 until nRAS 1, truncate if necessary  
nRAS  
PRE  
0
0
1
0
0
0
00  
0
0
0
0
Repeat pattern 1...4 until nRC 1, truncate if necessary  
1 × nRC  
0
ACT  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
F
F
F
0
0
0
+ 0  
1 × nRC  
+1, 2,  
1 × nRC /D,  
+ 3, 4  
1 × nRC  
+ nRAS  
...  
/D  
Toggling Static H  
Repeat pattern nRC + 1,...,4 until 1 × nRC + nRAS 1, truncate if necessary  
PRE 00  
Repeat nRC + 1,...,4 until 2 × nRC 1, truncate if necessary  
0
0
1
0
0
0
0
0
F
0
1
2
3
4
5
6
7
2 × nRC Repeat Sub-Loop 0, use BA= 1 instead  
4 × nRC Repeat Sub-Loop 0, use BA= 2 instead  
6 × nRC Repeat Sub-Loop 0, use BA= 3 instead  
8 × nRC Repeat Sub-Loop 0, use BA= 4 instead  
10 × nRC Repeat Sub-Loop 0, use BA= 5 instead  
12 × nRC Repeat Sub-Loop 0, use BA= 6 instead  
14 × nRC Repeat Sub-Loop 0, use BA= 7 instead  
Notes: 1. DM must be driven low all the time. DQS, /DQS are FLOATING.  
2. DQ signals are FLOATING.  
3. BA: BA0 to BA2.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
37  
EDJ1104BFSE, EDJ1108BFSE  
IDD1 Measurement-Loop Pattern  
CK,  
/CK  
Sub Cycle  
Com-  
A11  
A7  
A3  
A0  
Data*2  
CKE  
-Loop number mand /CS /RAS /CAS /WE ODT BA*3 -A13 A10 -A9 -A6 -A2  
0
ACT  
D, D  
0
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
1, 2  
3, 4  
/D, /D 1  
Repeat pattern 1...4 until nRCD 1, truncate if necessary  
READ 0 00  
Repeat pattern 1...4 until nRAS 1, truncate if necessary  
nRCD  
1
0
1
0
0
0
0
0
0
0
0
00000000  
nRAS  
PRE  
0
0
1
0
0
0
00  
0
0
Repeat pattern 1...4 until nRC 1, truncate if necessary  
1 × nRC  
ACT  
D, D  
0
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
F
F
F
0
0
0
+ 0  
0
1 × nRC  
+ 1, 2  
1 × nRC  
+ 3, 4  
/D, /D 1  
Toggling Static H  
...  
Repeat pattern nRC + 1,..., 4 until nRC + nRCD 1, truncate if necessary  
READ 0 00  
Repeat pattern nRC + 1,..., 4 until nRC +nRAS 1, truncate if necessary  
PRE 00  
Repeat pattern nRC + 1,..., 4 until 2 * nRC 1, truncate if necessary  
1 × nRC  
+ nRCD  
...  
1 × nRC  
+ nRAS  
1
0
1
0
0
0
0
F
0
00110011  
0
0
1
0
0
0
0
0
F
0
1
2
3
4
5
6
7
2 × nRC Repeat Sub-Loop 0, use BA= 1 instead  
4 × nRC Repeat Sub-Loop 0, use BA= 2 instead  
6 × nRC Repeat Sub-Loop 0, use BA= 3 instead  
8 × nRC Repeat Sub-Loop 0, use BA= 4 instead  
10 × nRC Repeat Sub-Loop 0, use BA= 5 instead  
12 × nRC Repeat Sub-Loop 0, use BA= 6 instead  
14 × nRC Repeat Sub-Loop 0, use BA= 7 instead  
Notes: 1. DM must be driven low all the time. DQS, /DQS are used according to read commands, otherwise  
FLOATING.  
2. Burst sequence driven on each DQ signal by read command. Outside burst operation, DQ signals  
are FLOATING.  
3. BA: BA0 to BA2.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
38  
EDJ1104BFSE, EDJ1108BFSE  
IDD2N and IDD3N Measurement-Loop Pattern  
CK,  
/CK  
Sub Cycle  
Com-  
A11  
A7  
A3  
A0  
Data*2  
CKE  
-Loop number mand /CS /RAS /CAS /WE ODT BA*3 -A13 A10 -A9 -A6 -A2  
0
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
1
D
0
2
/D  
/D  
3
1
2
3
4
5
6
7
4 to 7  
8 to 11  
Repeat Sub-Loop 0, use BA= 1 instead  
Repeat Sub-Loop 0, use BA= 2 instead  
Toggling Static H  
12 to 15 Repeat Sub-Loop 0, use BA= 3 instead  
16 to 19 Repeat Sub-Loop 0, use BA= 4 instead  
20 to 23 Repeat Sub-Loop 0, use BA= 5 instead  
24 to 27 Repeat Sub-Loop 0, use BA= 6 instead  
28 to 31 Repeat Sub-Loop 0, use BA= 7 instead  
Notes: 1. DM must be driven low all the time. DQS, /DQS are FLOATING.  
2. DQ signals are FLOATING.  
3. BA: BA0 to BA2.  
IDD2NT and IDDQ2NT Measurement-Loop Pattern  
CK,  
/CK  
Sub Cycle  
Com-  
A11  
A7  
A3  
A0  
Data*2  
CKE  
-Loop number mand /CS /RAS /CAS /WE ODT BA*3 -A13 A10 -A9 -A6 -A2  
0
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
1
D
0
2
/D  
/D  
3
1
2
3
4
5
6
7
4 to 7  
8 to 11  
Repeat Sub-Loop 0, but ODT = 0 and BA= 1  
Repeat Sub-Loop 0, but ODT = 1 and BA= 2  
Toggling Static H  
12 to 15 Repeat Sub-Loop 0, but ODT = 1 and BA= 3  
16 to 19 Repeat Sub-Loop 0, but ODT = 0 and BA= 4  
20 to 23 Repeat Sub-Loop 0, but ODT = 0 and BA= 5  
24 to 27 Repeat Sub-Loop 0, but ODT = 1 and BA= 6  
28 to 31 Repeat Sub-Loop 0, but ODT = 1 and BA= 7  
Notes: 1. DM must be driven low all the time. DQS, /DQS are FLOATING.  
2. DQ signals are FLOATING.  
3. BA: BA0 to BA2.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
39  
EDJ1104BFSE, EDJ1108BFSE  
IDD4R and IDDQ4R Measurement-Loop Pattern  
CK,  
/CK  
Sub Cycle  
Com-  
A11  
A7 A3 A0  
Data*2  
CKE  
-Loop number mand /CS /RAS /CAS /WE ODT BA*3 -A13 A10 -A9 -A6 -A2  
0
READ  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
1
2, 3  
4
/D, /D  
READ  
D
0
00110011  
5
6, 7  
/D, /D  
Toggling Static H  
1
2
3
4
5
6
7
8 to 15 Repeat Sub-Loop 0, but BA= 1  
16 to 23 Repeat Sub-Loop 0, but BA= 2  
24 to 31 Repeat Sub-Loop 0, but BA= 3  
32 to 39 Repeat Sub-Loop 0, but BA= 4  
40 to 47 Repeat Sub-Loop 0, but BA= 5  
48 to 55 Repeat Sub-Loop 0, but BA= 6  
56 to 63 Repeat Sub-Loop 0, but BA= 7  
Notes: 1. DM must be driven low all the time. DQS, /DQS are used according to read commands, otherwise  
FLOATING.  
2. Burst sequence driven on each DQ signal by read command. Outside burst operation, DQ signals  
are FLOATING.  
3. BA: BA0 to BA2.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
40  
EDJ1104BFSE, EDJ1108BFSE  
IDD4W Measurement-Loop Pattern  
CK,  
/CK  
Sub Cycle  
Com-  
A11  
A7 A3  
A0  
Data*2  
CKE  
-Loop number mand /CS /RAS /CAS /WE ODT BA*3 -A13 A10 -A9 -A6 -A2  
0
WRIT  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
1
1
1
1
1
2, 3  
4
/D, /D  
WRIT  
D
0
00110011  
5
6, 7  
8 to 15  
/D, /D  
Toggling Static H  
1
2
3
4
5
6
7
Repeat Sub-Loop 0, but BA= 1  
16 to 23 Repeat Sub-Loop 0, but BA= 2  
24 to 31 Repeat Sub-Loop 0, but BA= 3  
32 to 39 Repeat Sub-Loop 0, but BA= 4  
40 to 47 Repeat Sub-Loop 0, but BA= 5  
48 to 55 Repeat Sub-Loop 0, but BA= 6  
56 to 63 Repeat Sub-Loop 0, but BA= 7  
Notes: 1. DM must be driven low all the time. DQS, /DQS are used according to write commands, otherwise  
FLOATING.  
2. Burst sequence driven on each DQ signal by write command. Outside burst operation, DQ signals are  
FLOATING.  
3. BA: BA0 to BA2.  
IDD5B Measurement-Loop Pattern  
CK,  
/CK  
Sub Cycle  
Com-  
A11  
A7  
A3  
A0  
Data*2  
CKE  
-Loop number mand /CS /RAS /CAS /WE ODT BA*3 -A13 A10 -A9 -A6 -A2  
0
REF  
D
0
1
0
0
1
0
0
1
1
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1, 2  
1
3, 4  
/D, /D 1  
5 to 8  
9 to 12  
Repeat cycles 1...4, but BA= 1  
Repeat cycles 1...4, but BA= 2  
13 to 16 Repeat cycles 1...4, but BA= 3  
17 to 20 Repeat cycles 1...4, but BA= 4  
21 to 24 Repeat cycles 1...4, but BA= 5  
25 to 28 Repeat cycles 1...4, but BA= 6  
Toggling Static H  
1
2
29 to 32 Repeat cycles 1...4, but BA= 7  
33 to  
Repeat Sub-Loop 1, until nRFC 1. Truncate, if necessary.  
nRFC 1  
Notes: 1. DM must be driven low all the time. DQS, /DQS are FLOATING.  
2. DQ signals are FLOATING.  
3. BA: BA0 to BA2.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
41  
EDJ1104BFSE, EDJ1108BFSE  
IDD7 Measurement-Loop Pattern  
CK,  
/CK  
Sub  
Cycle  
Com-  
mand  
A11  
A7 A3 A0  
Data*2  
CKE  
-Loop number  
0
/CS /RAS /CAS /WE ODT BA*3 -A13 A10 -A9 -A6 -A2  
ACT  
READA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
00  
00  
00  
0
1
0
0
0
0
0
0
0
0
0
0
1
00000000  
0
2
Repeat above D Command until nRRD 1  
nRRD  
ACT  
0
0
1
1
0
1
00  
0
0
F
0
nRRD + 1  
1
READA  
D
0
1
1
0
0
0
1
0
0
0
0
0
00  
00  
1
0
0
0
F
F
0
0
00110011  
nRRD + 2  
Repeat above D Command until 2 × nRRD - 1  
Repeat Sub-Loop 0, but BA= 2  
2
3
2 × nRRD  
3 × nRRD  
Repeat Sub-Loop 1, but BA= 3  
D
1
0
0
0
0
3
00  
0
0
F
0
4
4 × nRRD  
Assert and repeat above D Command until nFAW - 1, if necessary  
Repeat Sub-Loop 0, but BA= 4  
5
6
nFAW  
nFAW  
+ nRRD  
nFAW  
+ 2 × nRRD  
nFAW  
+ 3 × nRRD  
Repeat Sub-Loop 1, but BA= 5  
Repeat Sub-Loop 0, but BA= 6  
Repeat Sub-Loop 1, but BA= 7  
7
8
D
1
0
0
0
0
7
00  
0
0
F
0
nFAW  
+ 4nRRD  
9
Assert and repeat above D Command until 2 × nFAW - 1, if necessary  
2 × nFAW  
+ 0  
ACT  
0
0
1
1
0
1
00  
0
0
F
0
Toggling Static H  
2 × nFAW  
READA  
D
0
1
1
0
0
0
1
0
0
0
0
0
00  
00  
1
0
0
0
F
F
0
0
00110011  
00000000  
10  
+ 1  
2 × nFAW  
+ 2  
Repeat above D Command until 2 × nFAW + nRRD - 1  
2 × nFAW  
+ nRRD  
2 × nFAW  
+ nRRD + 1  
ACT  
0
0
1
1
0
0
00  
0
0
0
0
READA  
D
0
1
1
0
0
0
1
0
0
0
0
0
00  
00  
1
0
0
0
0
0
0
0
11  
2 × nFAW  
+ nRRD + 2  
Repeat above D Command until 2 × nFAW + 2 × nRRD 1  
2 × nFAW  
12  
13  
Repeat Sub-Loop 10, but BA= 2  
+2 × nRRD  
2 × nFAW  
+ 3 × nRRD  
Repeat Sub-Loop 11, but BA= 3  
D
1
0
0
0
0
3
00  
0
0
0
0
2 × nFAW  
+ 4 × nRRD  
14  
Assert and repeat above D Command until 3 × nFAW 1, if necessary  
15  
16  
3 × nFAW  
3 ×nFAW  
+nRRD  
3 × nFAW  
+ 2 × nRRD  
3 × nFAW  
+ 3 × nRRD  
Repeat Sub-Loop 10, but BA= 4  
Repeat Sub-Loop 11, but BA= 5  
Repeat Sub-Loop 10, but BA= 6  
Repeat Sub-Loop 11, but BA= 7  
17  
18  
D
1
0
0
0
0
7
00  
0
0
0
0
3 × nFAW  
+ 4 × nRRD  
19  
Assert and repeat above D Command until 4 × nFAW 1, if necessary  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
42  
EDJ1104BFSE, EDJ1108BFSE  
Notes: 1. DM must be driven low all the time. DQS, /DQS are used according to read commands, otherwise  
FLOATING.  
2. Burst sequence driven on each DQ signal by read command. Outside burst operation,  
DQ signals are FLOATING.  
3. BA: BA0 to BA2.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
43  
EDJ1104BFSE, EDJ1108BFSE  
Electrical Specifications  
DC Characteristics 1 (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)  
× 4  
× 8  
Parameter  
Symbol  
IDD0  
Data rate (Mbps) max.  
max.  
Unit  
mA  
Notes  
1600  
1333  
1066  
105  
95  
85  
105  
95  
85  
Operating current  
(ACT-PRE)  
1600  
1333  
1066  
1600  
1333  
1066  
1600  
1333  
1066  
1600  
1333  
1066  
1600  
1333  
1066  
1600  
1333  
1066  
1600  
1333  
1066  
1600  
1333  
1066  
120  
110  
100  
45  
40  
35  
15  
14  
13  
65  
60  
55  
65  
60  
55  
60  
55  
50  
45  
40  
35  
75  
65  
60  
120  
110  
100  
45  
40  
35  
15  
14  
13  
65  
60  
55  
65  
60  
55  
60  
55  
50  
45  
40  
35  
75  
65  
60  
Operating current  
(ACT-READ-PRE)  
IDD1  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD2P1  
IDD2P0  
IDD2N  
IDD2NT  
IDD2Q  
IDD3P  
IDD3N  
IDD4R  
IDD4W  
IDD5B  
Fast PD Exit  
Slow PD Exit  
Precharge power-down  
standby current  
Precharge standby  
current  
Precharge standby  
ODT current  
Precharge quiet standby  
current  
Active power-down  
current  
(Always fast exit)  
Active standby current  
1600  
1333  
1066  
1600  
1333  
1066  
1600  
1333  
1066  
230  
200  
160  
240  
210  
170  
280  
270  
260  
230  
200  
160  
240  
210  
170  
280  
270  
260  
Operating current  
(Burst read operating)  
Operating current  
(Burst write operating)  
Burst refresh current  
1600  
1333  
1066  
350  
310  
270  
350  
310  
270  
All bank interleave read  
current  
IDD7  
IDD8  
mA  
mA  
RESET low current  
8
8
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
44  
EDJ1104BFSE, EDJ1108BFSE  
Self-Refresh Current (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)  
× 4  
× 8  
Unit  
mA  
mA  
mA  
Notes  
Parameter  
Symbol  
IDD6  
Grade  
max.  
max.  
Self-refresh current  
normal temperature range  
Self-refresh current  
extended temperature range  
Auto self-refresh current  
(Optional)  
10  
18  
10  
18  
IDD6ET  
IDD6TC  
DC Characteristics 2 (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V)  
Parameter  
Symbol  
ILI  
Value  
Unit Notes  
Input leakage current  
Output leakage current  
2
5
µA  
µA  
VDD VIN VSS  
ILO  
VDDQ VOUT VSS  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
45  
EDJ1104BFSE, EDJ1108BFSE  
Pin Capacitance (TC = 25°C, VDD, VDDQ = 1.5V ± 0.075V)  
Parameter  
Input pin capacitance, CK and /CK  
DDR3-1600, 1333  
DDR3-1066  
Delta input pin capacitance, CK and /CK  
DDR3-1600, 1333  
DDR3-1066  
Input pin capacitance, control pins  
DDR3-1600, 1333  
Symbol  
Pins  
min.  
0.8  
0.8  
0
max.  
1.4  
Unit  
pF  
pF  
pF  
pF  
pF  
pF  
Notes  
1, 3  
1, 3  
1, 2  
1, 2  
1
CCK  
1.6  
CK, /CK  
0.15  
0.15  
1.3  
CDCK  
0
0.75  
0.75  
CIN_CTRL  
/CS, CKE, ODT  
DDR3-1066  
1.35  
1
Input pin capacitance, address and  
command pins  
0.75  
1.3  
pF  
1
/RAS, /CAS, /WE,  
Address  
CIN_ADD_CMD  
CDIN_CTRL  
DDR3-1600, 1333  
DDR3-1066  
Delta input pin capacitance, control pins  
DDR3-1600, 1333  
0.75  
0.4  
0.5  
1.35  
0.2  
pF  
pF  
pF  
1
1, 4  
1, 4  
/CS, CKE, ODT  
DDR3-1066  
0.3  
Delta input pin capacitance, address and  
command pins  
0.4  
0.4  
pF  
1, 5  
/RAS, /CAS, /WE,  
Address  
CDIN_ADD_CMD  
DDR3-1600, 1333  
DDR3-1066  
Input/output pin capacitance  
DDR3-1600  
0.5  
0.5  
2.3  
pF  
pF  
1, 5  
1, 6  
1.5  
CIO  
DDR3-1333  
1.5  
1.5  
2.5  
2.7  
pF  
pF  
1, 6  
1, 6  
DQ, DQS, /DQS,  
TDQS, /TDQS  
DM  
DDR3-1066  
Delta input/output pin capacitance  
DDR3-1600, 1333  
DDR3-1066  
Delta input/output pin capacitance  
DDR3-1600, 1333  
0.5  
0.5  
0
0.3  
pF  
pF  
pF  
1, 7, 8  
1, 7, 8  
1, 10  
CDIO  
0.3  
0.15  
CDDQS  
CZQ  
DQS, /DQS  
ZQ  
DDR3-1066  
0
0.2  
3
pF  
pF  
1, 10  
1, 9  
Input/output pin capacitance of ZQ  
Notes: 1. VDD, VDDQ, VSS, VSSQ applied and all other pins (except the pin under test) floating.  
VDD = VDDQ =1.5V, VBIAS=VDD/2.  
2. Absolute value of CCK(CK-pin) CCK(/CK-pin).  
3. CCK (min.) will be equal to CIN (min.)  
4. CDIN_CTRL = CIN_CTRL 0.5 × (CCK(CK-pin) + CCK(/CK-pin))  
5. CDIN_ADD_CMD = CIN_ADD_CMD 0.5 × (CCK(CK-pin) + CCK(/CK-pin))  
6. Although the DM, TDQS and /TDQS pins have different functions, the loading matches DQ and DQS.  
7. DQ should be in high impedance state.  
8. CDIO = CIO (DQ, DM) 0.5 × (CIO(DQS-pin) + CIO(/DQS-pin)).  
9. Maximum external load capacitance on ZQ pin: 5pF.  
10. Absolute value of CIO(DQS) CIO(/DQS).  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
46  
EDJ1104BFSE, EDJ1108BFSE  
Standard Speed Bins  
[DDR3-1600 Speed Bins]  
Speed Bin  
DDR3-1600J  
10-10-10  
DDR3-1600K  
11-11-11  
CL-tRCD-tRP  
/CAS write  
latency  
Symbol  
tAA  
min.  
12.5  
12.5  
12.5  
47.5  
35  
max.  
20  
min.  
max.  
20  
Unit Notes  
13.125  
13.125  
13.125  
48.125  
35  
ns  
ns  
ns  
ns  
ns  
10  
10  
10  
10  
9
tRCD  
tRP  
tRC  
tRAS  
9 × tREFI  
9 × tREFI  
1, 2, 3,  
4, 8  
4
tCK (avg) @CL=5  
tCK (avg) @CL=6  
CWL = 5  
2.5  
3.3  
3.0  
3.3  
ns  
CWL = 6, 7, 8  
CWL = 5  
Reserved  
2.5  
Reserved  
3.3  
Reserved  
2.5  
Reserved  
3.3  
ns  
ns  
ns  
ns  
ns  
1, 2, 3, 8  
CWL = 6  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
4
4
4
CWL = 7, 8  
CWL = 5  
tCK (avg) @CL=7  
1, 2, 3, 4,  
8
CWL = 6  
1.875  
< 2.5  
1.875  
< 2.5  
ns  
CWL = 7  
CWL = 8  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 8  
CWL = 5, 6  
CWL= 7  
Reserved  
Reserved  
Reserved  
1.875  
Reserved  
Reserved  
Reserved  
< 2.5  
Reserved  
Reserved  
Reserved  
1.875  
Reserved  
Reserved  
Reserved  
< 2.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
4
tCK (avg) @CL=8  
tCK (avg) @CL=9  
4
1, 2, 3, 8  
Reserved  
Reserved  
Reserved  
1.5  
Reserved  
Reserved  
Reserved  
< 1.875  
Reserved  
Reserved  
< 1.875  
< 1.5  
Reserved  
Reserved  
Reserved  
1.5  
Reserved  
Reserved  
Reserved  
< 1.875  
4
4
4
1, 2, 3, 4  
CWL= 8  
Reserved  
Reserved  
1.5  
Reserved  
Reserved  
1.5  
Reserved  
Reserved  
< 1.875  
4
tCK (avg) @CL=10 CWL = 5, 6  
4
CWL= 7  
CWL= 8  
1, 2, 3  
1.25  
Reserved  
Reserved  
1.25  
Reserved  
Reserved  
< 1.5  
5
tCK (avg) @CL=11 CWL = 5, 6, 7  
CWL= 8  
Reserved  
1.25  
Reserved  
< 1.5  
4
1, 2, 3  
Supported CL  
5, 6, 7, 8, 9, 10  
5, 6, 7, 8  
5, 6, 7, 8, 9, 10, 11  
5, 6, 7, 8  
nCK  
nCK  
settings  
Supported CWL  
settings  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
47  
EDJ1104BFSE, EDJ1108BFSE  
[DDR3-1333 Speed Bins]  
Speed Bin  
DDR3-1333H  
9-9-9  
CL-tRCD-tRP  
/CAS write  
latency  
Symbol  
min.  
max.  
20  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
tAA  
13.125  
13.125  
13.125  
49.125  
36  
10  
tRCD  
10  
tRP  
10  
tRC  
10  
tRAS  
9 × tREFI  
3.3  
9
tCK (avg) @CL=5  
CWL = 5  
CWL = 6, 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5, 6  
CWL= 7  
3.0  
1, 2, 3, 4, 7  
Reserved  
2.5  
Reserved  
3.3  
4
tCK (avg) @CL=6  
tCK (avg) @CL=7  
tCK (avg) @CL=8  
tCK (avg) @CL=9  
1, 2, 3, 7  
Reserved  
Reserved  
Reserved  
1.875  
Reserved  
Reserved  
Reserved  
< 2.5  
4
4
4
1, 2, 3, 4, 7  
Reserved  
Reserved  
1.875  
Reserved  
Reserved  
< 2.5  
4
4
1, 2, 3, 7  
Reserved  
Reserved  
1.5  
Reserved  
Reserved  
< 1.875  
Reserved  
< 1.875  
4
4
1, 2, 3, 4  
4
tCK (avg) @CL=10 CWL = 5, 6  
Reserved  
1.5  
CWL= 7  
1, 2, 3  
Supported CL  
settings  
Supported CWL  
settings  
5, 6, 7, 8, 9, 10  
5, 6, 7  
nCK  
nCK  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
48  
EDJ1104BFSE, EDJ1108BFSE  
[DDR3-1066 Speed Bins]  
Speed Bin  
DDR3-1066F  
7-7-7  
CL-tRCD-tRP  
/CAS write  
Symbol  
latency  
min.  
max.  
20  
Unit  
ns  
Notes  
tAA  
13.125  
13.125  
13.125  
50.625  
37.5  
10  
tRCD  
ns  
10  
tRP  
ns  
10  
tRC  
ns  
10  
tRAS  
9 × tREFI  
3.3  
ns  
9
tCK (avg) @CL=5  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
3.0  
ns  
1, 2, 3, 4, 6  
Reserved  
2.5  
Reserved  
3.3  
ns  
4
tCK (avg) @CL=6  
tCK (avg) @CL=7  
tCK (avg) @CL=8  
ns  
1, 2, 3, 6  
Reserved  
Reserved  
1.875  
Reserved  
Reserved  
< 2.5  
ns  
4
ns  
4
ns  
1, 2, 3, 4  
4
Reserved  
1.875  
Reserved  
< 2.5  
ns  
ns  
1, 2, 3  
Supported CL settings  
Supported CWL settings  
5, 6, 7, 8  
5, 6  
nCK  
nCK  
Notes: 1. The CL setting and CWL setting result in tCK (avg) (min.) and tCK (avg) (max.) requirements. When  
making a selection of tCK (avg), both need to be fulfilled: Requirements from CL setting as well as  
requirements from CWL setting.  
2. tCK (avg) (min.) limits: Since /CAS latency is not purely analog - data and strobe output are synchronized  
by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the  
next smaller JEDEC standard tCK (avg) value (2.5, 1.875, 1.5, or 1.25ns) when calculating  
CL (nCK) = tAA (ns) / tCK (avg)(ns), rounding up to the next ‘Supported CL’.  
3. tCK (avg) (max.) limits: Calculate tCK (avg) + tAA (max.)/CL selected and round the resulting tCK (avg)  
down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875ns or 1.25ns). This result is tCK (avg) (max.)  
corresponding to CL selected.  
4. ‘Reserved’ settings are not allowed. User must program a different value.  
5. 'Optional' settings allow certain devices in the industry to support this setting, however, it is not a  
mandatory feature.  
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table  
DDR3-1066 Speed Bins which are not subject to production tests but verified by design/characterization.  
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table  
DDR3-1333 Speed Bins which is not subject to production tests but verified by design/characterization.  
8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table  
DDR3-1600 Speed Bins which is not subject to production tests but verified by design/characterization.  
9. tREFI depends on operating case temperature (TC).  
10. For devices supporting optional down binning to CL = 7 and CL = 9, tAA/tRCD/tRP(min.) must be  
13.125 ns or lower. SPD settings must be programmed to match.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
49  
EDJ1104BFSE, EDJ1108BFSE  
AC Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.5V ± 0.075V, VSS, VSSQ = 0V)  
New units tCK(avg) and nCK, are introduced in DDR3.  
tCK(avg): actual tCK(avg) of the input clock under operation.  
nCK: one clock cycle of the input clock, counting the actual clock edges.  
AC Characteristics [DDR3-1600, 1333]  
-GL, -GN  
-DJ  
Data rate (Mbps)  
Parameter  
1600  
min.  
1333  
min.  
1500  
Symbol  
max.  
3333  
max.  
3333  
Unit  
ps  
Notes  
6
Average clock cycle time  
Minimum clock cycle time  
(DLL-off mode)  
tCK (avg)  
1250  
tCK (DLL-off)  
8
8
ns  
Average CK high-level width  
tCH (avg)  
tCL (avg)  
0.47  
0.47  
0.53  
0.53  
0.47  
0.47  
0.53  
0.53  
tCK (avg)  
tCK (avg)  
Average CK low-level width  
Active to read or write  
command delay  
12.5 (GL)  
tRCD  
tRP  
13.125  
13.125  
49.125  
36  
ns  
ns  
ns  
ns  
26  
26  
26  
26  
13.125 (GN)  
12.5 (GL)  
13.125 (GN)  
47.5 (GL)  
48.125 (GN)  
Precharge command period  
Active to active/auto-refresh  
command time  
tRC  
9 ×  
tREFI  
9 ×  
tREFI  
Active to precharge command  
tRAS  
35  
tRRD  
tRRD  
tFAW  
6
6
ns  
26, 27  
26, 27  
26  
Active bank A to active bank B  
command period  
4
4
nCK  
ns  
Four active window  
30  
30  
Address and control input hold  
time  
tIH (base)  
DC100  
120  
140  
ps  
ps  
ps  
16, 23  
16, 23  
(VIH/VIL (DC100) levels)  
Address and control input  
tIS (base)  
AC175  
setup time  
45  
65  
(VIH/VIL (AC175) levels)  
Address and control input  
tIS (base)  
AC150  
16, 23,  
31  
setup time  
45 + 125  
65 + 125  
(VIH/VIL (AC150) levels)  
DQ and DM input hold time  
tDH (base)  
tDS (base)  
tIPW  
45  
65  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
17, 25  
17, 25  
32  
(VIH/VIL (DC) levels)  
DQ and DM input setup time  
(VIH/VIL (AC) levels)  
Control and Address input pulse  
width for each input  
DQ and DM input pulse width for  
each input  
10  
30  
560  
360  
620  
400  
tDIPW  
32  
12, 13,  
14, 37  
12, 13,  
14, 37  
12, 13,  
14, 37  
12, 13,  
14, 37  
DQ high-impedance time  
tHZ (DQ)  
tLZ (DQ)  
tHZ (DQS)  
tLZ (DQS)  
225  
225  
225  
225  
100  
250  
250  
250  
250  
125  
DQ low-impedance time  
450  
450  
500  
500  
DQS, /DQS high-impedance time  
(RL + BL/2 reference)  
DQS, /DQS low-impedance time  
(RL 1 reference)  
DQS, /DQS to DQ skew,  
per group, per access  
/CAS to /CAS command delay  
tDQSQ  
tCCD  
tQH  
ps  
12, 13  
4
4
nCK  
DQ output hold time from  
DQS, /DQS  
12, 13,  
38  
0.38  
0.38  
tCK (avg)  
DQS, /DQS rising edge output  
access time from rising CK, /CK  
12, 13,  
37  
tDQSCK  
225  
225  
255  
255  
ps  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
50  
EDJ1104BFSE, EDJ1108BFSE  
-GL, -GN  
1600  
-DJ  
Data rate (Mbps)  
Parameter  
1333  
Symbol  
tDQSS  
min.  
max.  
0.27  
min.  
max.  
0.25  
Unit  
Notes  
DQS latching rising transitions  
to associated clock edges  
DQS falling edge hold time from  
rising CK  
DQS falling edge setup time to  
rising CK  
0.27  
0.18  
0.18  
0.25  
tCK (avg) 24  
tDSH  
tDSS  
0.2  
0.2  
tCK (avg) 24, 36  
tCK (avg) 24, 36  
DQS input high pulse width  
tDQSH  
tDQSL  
0.45  
0.45  
0.55  
0.55  
0.45  
0.45  
0.55  
0.55  
tCK (avg) 34, 35  
tCK (avg) 33, 35  
DQS input low pulse width  
12, 13,  
tCK (avg)  
38  
12, 13,  
tCK (avg)  
38  
DQS output high time  
DQS output low time  
tQSH  
tQSL  
tMRD  
0.40  
0.40  
4
0.40  
0.40  
4
Mode register set command  
cycle time  
nCK  
Mode register set command  
tMOD  
tMOD  
tRPRE  
15  
12  
0.9  
15  
12  
0.9  
ns  
27  
27  
1, 19,  
38  
11, 12,  
13, 38  
update delay  
nCK  
Read preamble  
Read postamble  
tCK (avg)  
tRPST  
0.3  
0.3  
tCK (avg)  
Write preamble  
tWPRE  
tWPST  
tWR  
0.9  
0.3  
15  
0.9  
0.3  
15  
tCK (avg) 1  
Write postamble  
tCK (avg) 1  
Write recovery time  
ns  
26  
Auto precharge write recovery  
+ precharge time  
WR + RU  
(tRP/tCK (avg))  
WR + RU  
(tRP/tCK (avg))  
tDAL  
nCK  
Multi-Purpose register  
tMPRR  
tRTW  
tRTW  
tWTR  
tWTR  
1
1
nCK  
29  
recovery time  
Read to write command delay  
(BC4MRS, BC4OTF)  
RL + tCCD/2  
+ 2nCK WL  
RL + tCCD  
+ 2nCK WL  
RL + tCCD/2  
+ 2nCK WL  
RL + tCCD  
+ 2nCK WL  
(BL8MRS, BL8OTF)  
Internal write to read  
command delay  
18, 26,  
27  
18, 26,  
27  
7.5  
7.5  
ns  
4
4
nCK  
tRTP  
tRTP  
7.5  
4
7.5  
4
ns  
26, 27  
26, 27  
Internal read to precharge  
command delay  
nCK  
Active to READ with auto  
precharge command delay  
Minimum CKE low width for self-  
refresh entry to exit timing  
tRAP  
tRCD min  
tRCD min  
28  
tCKE (min.)  
+1nCK  
tCKE (min.)  
+1nCK  
tCKESR  
Valid clock requirement after  
self-refresh entry or power-down  
entry  
Valid clock requirement before  
self-refresh exit or power-down  
exit  
tCKSRE  
tCKSRE  
tCKSRX  
tCKSRX  
10  
10  
ns  
27  
27  
27  
27  
5
5
nCK  
ns  
10  
5
10  
5
nCK  
Exit self-refresh to commands  
not requiring a locked DLL  
tRFC (min.)  
+ 10  
5
tRFC (min.)  
tXS  
tXS  
ns  
27  
27  
+ 10  
5
nCK  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
51  
EDJ1104BFSE, EDJ1108BFSE  
-GL, -GN  
1600  
-DJ  
Data rate (Mbps)  
Parameter  
1333  
Symbol  
tXSDLL  
min.  
max.  
min.  
max.  
Unit  
nCK  
Notes  
Exit self-refresh to commands  
requiring a locked DLL  
Auto-refresh to active/auto-refresh  
command time  
tDLLK (min.)  
110  
tDLLK (min.)  
tRFC  
110  
ns  
Average periodic refresh interval  
tREFI  
7.8  
3.9  
7.8  
3.9  
µs  
(0°C TC +85°C)  
(+85°C < TC +95°C)  
CKE minimum pulse width  
(high and low pulse width)  
tREFI  
tCKE  
µs  
5
5.625  
ns  
27  
27  
27  
27  
tCKE  
3
3
nCK  
ns  
Exit reset from CKE high to a valid  
command  
tXPR  
tRFC (min.)+10  
tRFC (min.)+10  
tXPR  
5
5
nCK  
nCK  
DLL locking time  
tDLLK  
tPD  
512  
512  
Power-down entry to exit time  
tCKE (min.)  
9 × tREFI tCKE (min.)  
9 × tREFI  
15  
2
Exit precharge power-down with  
DLL frozen to commands requiring  
a locked DLL  
tXPDLL  
tXPDLL  
24  
10  
24  
10  
ns  
nCK  
2
Exit power-down with DLL on to  
any valid command; Exit precharge  
power- down with DLL frozen to  
commands not requiring a locked  
DLL  
tXP  
tXP  
6
3
6
3
ns  
27  
27  
nCK  
Command pass disable/enable  
tCPDED  
1
1
nCK  
nCK  
nCK  
nCK  
delay  
Timing of last ACT command to  
power-down entry  
Timing of last PRE command to  
power-down entry  
Timing of last READ/READA  
command to power-down entry  
tACTPDEN  
tPRPDEN  
tRDPDEN  
1
1
20  
20  
1
1
RL + 4 + 1  
RL + 4 + 1  
Timing of last WRIT command to  
WL + 4 +  
WL + 4 +  
power-down entry  
tWRPDEN  
tWRPDEN  
tWRAPDEN  
nCK  
nCK  
nCK  
9
tWR/tCK (avg)  
tWR/tCK (avg)  
(BL8MRS, BL8OTF, BC4OTF)  
WL + 2 +  
tWR/tCK (avg)  
WL + 2 +  
tWR/tCK (avg)  
(BC4MRS)  
9
Timing of last WRITA command to  
power-down entry  
(BL8MRS, BL8OTF, BC4OTF)  
WL + 4 +  
WR + 1  
WL + 4 +  
WR + 1  
10  
WL + 2 +  
WR + 1  
WL + 2 +  
WR + 1  
(BC4MRS)  
tWRAPDEN  
tREFPDEN  
nCK  
nCK  
10  
Timing of last REF command to  
power-down entry  
1
1
20, 21  
Timing of last MRS command to  
power-down entry  
tMRSPDEN tMOD (min.)  
tMOD (min.)  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
52  
EDJ1104BFSE, EDJ1108BFSE  
ODT AC Electrical Characteristics [DDR3-1600, 1333]  
-GL, -GN  
-DJ  
Data rate (Mbps)  
Parameter  
1600  
min.  
1333  
Symbol  
tAON  
max.  
225  
min.  
max.  
250  
Unit  
ps  
Notes  
RTT turn-on  
225  
250  
7, 12, 37  
Asynchronous RTT turn-on delay  
tAONPD  
tAOF  
2
8.5  
0.7  
8.5  
2
8.5  
0.7  
8.5  
ns  
(Power-down with DLL frozen)  
RTT_Nom and RTT_WR turn-off  
time from ODTLoff reference  
Asynchronous RTT turn-off delay  
(Power-down with DLL frozen)  
ODT to power-down entry/exit  
latency  
0.3  
0.3  
tCK (avg) 8, 12, 37  
tAOFPD  
tANPD  
2
2
ns  
WL – 1.0  
WL – 1.0  
nCK  
ODT turn-on Latency  
ODTLon  
ODTLoff  
WL – 2  
WL – 2  
WL – 2  
WL – 2  
WL – 2.0 WL – 2.0  
WL – 2.0 WL – 2.0  
nCK  
nCK  
ODT turn-off Latency  
ODT Latency for changing from  
RTT_Nom to RTT_WR  
ODT Latency for change from  
RTT_WR to RTT_Nom  
(BC4)  
ODTLcnw WL – 2  
ODTLcwn4  
WL – 2  
WL – 2.0 WL – 2.0  
nCK  
4 + ODTLoff  
4 + ODTLoff nCK  
ODT Latency for change from  
RTT_WR to RTT_Nom  
(BL8)  
ODTLcwn8  
6 + ODTLoff  
6 + ODTLoff nCK  
ODT high time without WRIT  
command or with WRIT  
command and BC4  
ODT high time with WRIT  
command and BL8  
RTT dynamic change skew  
Power-up and reset calibration  
time  
Normal operation full calibration  
time  
Normal operation short  
calibration time  
ODTH4  
4
4
nCK  
nCK  
ODTH8  
tADC  
6
6
0.3  
512  
0.7  
0.3  
512  
0.7  
tCK (avg) 12, 37  
tZQinit  
nCK  
nCK  
nCK  
tZQoper  
tZQCS  
256  
64  
256  
64  
30  
Write Leveling Characteristics [DDR3-1600, 1333]  
-GL, -GN  
-DJ  
Data rate (Mbps)  
Parameter  
1600  
1333  
min.  
Symbol  
min.  
40  
max.  
max.  
Unit  
nCK  
Notes  
3
First DQS pulse rising edge after  
write leveling mode is  
programmed  
tWLMRD  
40  
DQS, /DQS delay after write  
tWLDQSEN 25  
25  
nCK  
ps  
3
leveling mode is programmed  
Write leveling setup time from  
rising CK, /CK crossing to rising tWLS  
165  
165  
195  
DQS, /DQS crossing  
Write leveling hold time from  
rising DQS, /DQS crossing to  
rising CK, /CK crossing  
tWLH  
195  
ps  
Write leveling output delay  
tWLO  
0
0
7.5  
2
0
0
9
2
ns  
ns  
Write leveling output error  
tWLOE  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
53  
EDJ1104BFSE, EDJ1108BFSE  
AC Characteristics [DDR3-1066]  
-AE  
Data rate (Mbps)  
1066  
min.  
1875  
Parameter  
Symbol  
max.  
3333  
Unit  
ps  
Notes  
6
Clock cycle time Average CL = X  
tCK(avg)  
Minimum clock cycle time  
(DLL-off mode)  
tCK  
(DLL-off)  
8
ns  
Average duty cycle high-level  
tCH (avg)  
0.47  
0.47  
0.53  
0.53  
tCK (avg)  
tCK (avg)  
Average duty cycle low-level  
tCL (avg)  
Active to read or write  
command delay  
Precharge command period  
Active to active/auto-refresh  
command time  
tRCD  
tRP  
13.125  
13.125  
50.625  
ns  
ns  
ns  
26  
26  
26  
tRC  
Active to precharge command  
tRAS  
tRRD  
tRRD  
tFAW  
37.5  
7.5  
4
9 × tREFI  
ns  
26  
ns  
26, 27  
26, 27  
26  
Active bank A to active bank B  
command period  
nCK  
ns  
Four active window  
37.5  
Address and control input hold time tIH (base)  
200  
ps  
16, 23  
(VIH/VIL (DC100) levels)  
DC100  
Address and control input  
tIS (base)  
AC175  
setup time  
125  
ps  
16, 23  
(VIH/VIL (AC175) levels)  
Address and control input  
tIS (base)  
AC150  
16, 23,  
31  
setup time  
125 + 150  
ps  
(VIH/VIL (AC150) levels)  
DQ and DM input hold time  
tDH (base)  
tDS (base)  
100  
25  
ps  
ps  
17, 25  
17, 25  
(VIH/VIL (DC) levels)  
DQ and DM input setup time  
(VIH/VIL (AC) levels)  
Control and Address input pulse  
width  
tIPW  
780  
490  
ps  
32  
32  
for each input  
DQ and DM input pulse width for  
each input  
tDIPW  
ps  
ps  
ps  
ps  
ps  
12, 13,  
14, 37  
12, 13, 14,  
37  
12, 13, 14,  
37  
12, 13,  
14, 37  
DQ high-impedance time  
DQ low-impedance time  
tHZ (DQ)  
tLZ (DQ)  
tHZ (DQS)  
tLZ (DQS)  
300  
300  
300  
300  
150  
600  
600  
DQS, /DQS high-impedance time  
(RL + BL/2 reference)  
DQS, /DQS low-impedance time  
(RL 1 reference)  
DQS, /DQS -DQ skew, per group,  
per access  
/CAS to /CAS command delay  
tDQSQ  
tCCD  
tQH  
ps  
12, 13  
4
nCK  
DQ output hold time from  
DQS, /DQS  
12, 13,  
38  
0.38  
tCK (avg)  
DQS, /DQS rising edge output  
access time from rising CK, /CK  
DQS latching rising transitions to  
associated clock edges  
DQS falling edge hold time from  
rising CK  
DQS falling edge setup time to  
rising CK  
tDQSCK  
tDQSS  
tDSH  
300  
0.25  
0.2  
+300  
ps  
12, 13, 37  
0.25  
tCK (avg)  
tCK (avg)  
tCK (avg)  
24  
24, 36  
24, 36  
tDSS  
0.2  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
54  
EDJ1104BFSE, EDJ1108BFSE  
-AE  
Data rate (Mbps)  
1066  
min.  
0.45  
0.45  
0.38  
0.38  
Parameter  
Symbol  
tDQSH  
tDQSL  
tQSH  
max.  
0.55  
0.55  
Unit  
Notes  
DQS input high pulse width  
DQS input low pulse width  
DQS output high time  
DQS output low time  
tCK (avg)  
tCK (avg)  
tCK (avg)  
tCK (avg)  
34, 35  
33, 35  
12, 13, 38  
12, 13, 38  
tQSL  
Mode register set command  
cycle time  
tMRD  
4
nCK  
Mode register set command  
update delay  
tMOD  
tMOD  
tRPRE  
15  
12  
0.9  
ns  
27  
27  
1, 19,  
38  
11, 12, 13,  
38  
nCK  
Read preamble  
Read postamble  
tCK (avg)  
tRPST  
0.3  
tCK (avg)  
Write preamble  
tWPRE  
tWPST  
tWR  
0.9  
0.3  
15  
tCK (avg)  
tCK (avg)  
ns  
1
Write postamble  
1
Write recovery time  
26  
Auto precharge write recovery  
+ precharge time  
Multi-Purpose register  
recovery time  
Read to write command delay  
(BC4MRS, BC4OTF)  
WR + RU  
tDAL  
nCK  
nCK  
(tRP/tCK (avg))  
tMPRR  
tRTW  
tRTW  
1
29  
RL + tCCD/2  
+ 2nCK WL  
RL + tCCD  
+ 2nCK WL  
(BL8MRS, BL8OTF)  
Internal write to read  
command delay  
tWTR  
tWTR  
tRTP  
tRTP  
tRAP  
7.5  
ns  
18, 26, 27  
18, 26, 27  
26, 27  
4
nCK  
ns  
Internal read to precharge  
command delay  
7.5  
4
nCK  
26, 27  
Active to READ with auto  
precharge command delay  
tRCD min  
28  
Minimum CKE low width for self-  
refresh entry to exit timing  
tCKE (min.)  
+1nCK  
tCKESR  
Valid clock requirement after self-  
refresh entry or power-down entry  
tCKSRE  
tCKSRE  
tCKSRX  
tCKSRX  
tXS  
10  
ns  
27  
27  
27  
27  
27  
27  
5
nCK  
ns  
Valid clock requirement before  
self-refresh exit or power-down exit  
10  
5
nCK  
ns  
Exit self-refresh to commands not  
requiring a locked DLL  
tRFC (min.) + 10  
5
tXS  
nCK  
nCK  
Exit self-refresh to commands  
requiring a locked DLL  
tXSDLL  
tDLLK (min.)  
Auto-refresh to active/auto-refresh  
command time  
tRFC  
110  
ns  
Average periodic refresh interval  
tREFI  
tREFI  
7.8  
3.9  
µs  
µs  
(0°C TC +85°C)  
(+85°C < TC +95°C)  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
55  
EDJ1104BFSE, EDJ1108BFSE  
-AE  
Data rate (Mbps)  
Parameter  
1066  
min.  
Symbol  
tCKE  
tCKE  
tXPR  
tXPR  
tDLLK  
tPD  
max.  
Unit  
ns  
Notes  
27  
CKE minimum pulse width  
(high and low pulse width)  
5.625  
3
nCK  
ns  
27  
Exit reset from CKE high to a  
valid command  
tRFC (min.) +10  
27  
5
nCK  
nCK  
27  
DLL locking time  
512  
Power-down entry to exit time  
tCKE (min.)  
9 × tREFI  
15  
2
Exit precharge power-down with  
DLL frozen to commands  
requiring a locked DLL  
tXPDLL  
tXPDLL  
tXP  
24  
10  
7.5  
3
ns  
nCK  
ns  
2
Fast exit/active precharge  
power down to any command  
27  
27  
tXP  
nCK  
Command pass disable/enable  
delay  
Timing of last ACT command to  
power-down entry  
Timing of last PRE command to  
power-down entry  
Timing of last READ/READA  
command to power-down entry  
tCPDED  
1
nCK  
nCK  
nCK  
nCK  
tACTPDEN  
tPRPDEN  
tRDPDEN  
1
20  
20  
1
RL + 4 + 1  
Timing of last WRIT command to  
power-down entry  
WL + 4 +  
tWRPDEN  
tWRPDEN  
tWRAPDEN  
nCK  
nCK  
nCK  
9
tWR/tCK (avg)  
(BL8MRS, BL8OTF, BC4OTF)  
WL + 2 +  
tWR/tCK (avg)  
(BC4MRS)  
9
Timing of last WRITA command to  
power-down entry  
(BL8MRS, BL8OTF, BC4OTF)  
WL + 4 + WR + 1  
10  
(BC4MRS)  
Timing of last REF command to  
power-down entry  
tWRAPDEN  
tREFPDEN  
WL + 2 + WR + 1  
1
nCK  
nCK  
10  
20, 21  
Timing of last MRS command to  
power-down entry  
tMRSPDEN  
tMOD (min.)  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
56  
EDJ1104BFSE, EDJ1108BFSE  
ODT AC Electrical Characteristics [DDR3-1066]  
-AE  
Data rate (Mbps)  
1066  
min.  
–300  
Parameter  
Symbol  
tAON  
max.  
300  
Unit  
ps  
Notes  
RTT turn-on  
7, 12, 37  
Asynchronous RTT turn-on delay  
(Power-down with DLL frozen)  
tAONPD  
2
8.5  
ns  
RTT_Nom and RTT_WR turn-off time  
from ODTLoff reference  
ODT turn-off (Power-down mode)  
ODT to power-down entry/exit  
latency  
tAOF  
0.3  
0.7  
8.5  
tCK (avg) 8, 12, 37  
tAOFPD  
tANPD  
2
ns  
WL – 1.0  
nCK  
ODT turn-on Latency  
ODTLon  
ODTLoff  
WL – 2.0  
WL – 2.0  
WL – 2.0  
WL – 2.0  
nCK  
nCK  
ODT turn-off Latency  
ODT Latency for changing from  
RTT_Nom to RTT_WR  
ODTLcnw  
WL – 2.0  
WL – 2.0  
nCK  
ODT Latency for change from  
RTT_WR to RTT_Nom  
(BC4)  
ODTLcwn4  
4 + ODTLoff  
nCK  
ODT Latency for change from  
RTT_WR to RTT_Nom  
(BL8)  
ODT high time without WRIT  
command or with WRIT command  
and BC4  
ODT high time with WRIT command  
and BL8  
RTT dynamic change skew  
ODTLcwn8  
ODTH4  
6 + ODTLoff  
nCK  
4
6
nCK  
nCK  
ODTH8  
tADC  
0.3  
0.7  
tCK (avg) 12, 37  
nCK  
Power-up and reset calibration time tZQinit  
512  
Normal operation full calibration  
tZQoper  
256  
64  
nCK  
time  
Normal operation short  
tZQCS  
nCK  
30  
calibration time  
Write Leveling Characteristics [DDR3-1066]  
-AE  
Data rate (Mbps)  
1066  
min.  
Parameter  
Symbol  
max.  
Unit  
nCK  
Notes  
3
First DQS pulse rising edge after  
write leveling mode is programmed  
DQS, /DQS delay after write leveling  
mode is programmed  
Write leveling setup time from rising  
CK, /CK crossing to rising DQS,  
/DQS crossing  
Write leveling hold time from rising  
DQS, /DQS crossing to rising CK,  
/CK crossing  
tWLMRD  
40  
25  
tWLDQSEN  
tWLS  
nCK  
ps  
3
245  
245  
tWLH  
ps  
Write leveling output delay  
tWLO  
0
0
9
2
ns  
ns  
Write leveling output error  
tWLOE  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
57  
EDJ1104BFSE, EDJ1108BFSE  
Notes for AC Electrical Characteristics  
Notes: 1. Actual value dependent upon measurement level definitions that are TBD.  
2. Commands requiring locked DLL are: READ (and READA) and synchronous ODT commands.  
3. The max values are system dependent.  
4. WR as programmed in mode register.  
5. Value must be rounded-up to next integer value.  
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.  
7. ODT turn on time (min.) is when the device leaves high impedance and ODT resistance begins to turn on.  
ODT turn on time (max.) is when the ODT resistance is fully on. Both are measured from ODTLon.  
8. ODT turn-off time (min.) is when the device starts to turn-off ODT resistance. ODT turn-off time (max.) is  
when the bus is in high impedance. Both are measured from ODTLoff.  
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR/tCK to the next integer.  
10. WR in clock cycles as programmed in MR0.  
11. The maximum read postamble is bound by tDQSCK(min.) plus tQSH(min.) on the left side and  
tHZ(DQS)(max.) on the right side.  
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input  
clock jitter, this parameter needs to be derated by TBD.  
13. Value is only valid for RON34.  
14. Single ended signal parameter. Refer to the section of tLZ (DQS), tLZ (DQ), tHZ (DQS), tHZ (DQ) Notes  
for definition and measurement method.  
15. tREFI depends on operating case temperature (TC).  
16. tIS(base) and tIH(base) values are for 1V/ns command/address single-ended slew rate and 2V/ns CK,  
/CK differential slew rate. Note for DQ and DM signals, VREF(DC) = VREFDQ(DC). For input only pins  
except /RESET, VREF(DC) = VREFCA(DC). See Address / Command Setup, Hold and Derating section  
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, /DQS  
differential slew rate. Note for DQ and DM signals, VREF(DC) = VREFDQ(DC). For input only pins except  
/RESET, VREF(DC) = VREFCA(DC). See Data Setup, Hold and Slew Rate Derating section.  
18. Start of internal write transaction is definited as follows:  
For BL8 (fixed by MRS and on- the-fly): Rising clock edge 4 clock cycles after WL.  
For BC4 (on-the-fly): Rising clock edge 4 clock cycles after WL.  
For BC4 (fixed by MRS): Rising clock edge 2 clock cycles after WL.  
19. The maximum read preamble is bound by tLZ(DQS)(min.) on the left side and tDQSCK(max.) on the right  
side.  
20. CKE is allowed to be registered low while operations such as row activation, precharge, auto precharge or  
refresh are in progress, but power-down IDD spec will not be applied until finishing those operations.  
21. Although CKE is allowed to be registered low after a refresh command once tREFPDEN(min.) is satisfied,  
there are cases where additional time such as tXPDLL(min.) is also required. See Figure Power-Down  
Entry/Exit Clarifications - Case 2.  
22. tJIT(duty) = ± { 0.07 × tCK(avg) – [(0.5 - (min (tCH(avg), tCL(avg))) × tCK(avg)] }.  
For example, if tCH/tCL was 0.48/0.52, tJIT(duty) would calculate out to ±125ps for DDR3-800.  
The tCH(avg) and tCL(avg) values listed must not be exceeded.  
23. These parameters are measured from a command/address signal (CKE, /CS, /RAS, /CAS, /WE, ODT,  
BA0, A0, A1, etc.) transition edge to its respective clock signal (CK, /CK) crossing. The spec values are  
not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as the setup and hold are  
relative to the clock signal crossing that latches the command/address. That is, these parameters should  
be met whether clock jitter is present or not.  
24. These parameters are measured from a data strobe signal (TDQS, /DQS) crossing to its respective clock  
signal (CK, /CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e.  
tJIT(per), tJIT(cc), etc.), as these are relative to the clock signal crossing. That is, these parameters  
should be met whether clock jitter is present or not.  
25. These parameters are measured from a data signal (DM, DQ0, DQ1, etc.) transition edge to its respective  
data strobe signal (TDQS, /DQS) crossing.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
58  
EDJ1104BFSE, EDJ1108BFSE  
26. For these parameters, the DDR3 SDRAM device is characterized and verified to support  
tnPARAM [nCK] = RU{tPARAM [ns] / tCK(avg)}, which is in clock cycles, assuming all input clock jitter  
specifications are satisfied.  
For example, the device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock  
jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the device will  
support tnRP =RU{tRP / tCK(avg)} = 6, i.e. as long as the input clock jitter specifications are met,  
precharge command at Tm and active command at Tm+6 is valid even if (Tm+6 Tm) is less than 15ns  
due to input clock jitter.  
27. These parameters should be the larger of the two values, analog (ns) and number of clocks (nCK).  
28. The tRAS lockout circuit internally delays the Precharge operation until the array restore operation has  
been completed so that the auto precharge command may be issued with any read or write command.  
29. Defined between end of MPR read burst and MRS which reloads MPR or disables.  
30. One ZQCS command can effectively correct a minimum of 0.5% (ZQCorrection) of RON and RTT  
impedance error within 64nCK for all speed bins assuming the maximum sensitivities specified in the  
‘Output Driver Voltage and Temperature Sensitivity’ and ‘ODT Voltage and Temperature Sensitivity’  
tables. The appropriate interval between ZQCS commands can be determined from these tables and  
other application-specific parameters.  
One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and  
voltage (Vdriftrate) drift rates that the SDRAM is subject to in the application, is illustrated. The interval  
could be defined by the following formula:  
×
×
where TSens = max.(dRTTdT, dRONdTM) and VSens = max.(dRTTdV, dRONdVM) define the SDRAM  
temperature and voltage sensitivities. For example, if TSens = 1.5%/°C, VSens = 0.15%/mV, Tdriftrate =  
1°C/sec and Vdriftrate = 15mV/sec, then the interval between ZQCS commands is calculated as:  
×
×
31. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional  
100ps of derating to accommodate for the lower alternate threshold of 150mV and another 25ps to  
account for the earlier reference point [(175mV 150mV)/1V/ns].  
32. Pulse width of a input signal is defined as the width between the first crossing of VREF(DC) and the  
consecutive crossing of VREF(DC).  
33. tDQSL describes the instantaneous differential input low pulse width on DQS /DQS, as measured from  
one falling edge to the next consecutive rising edge.  
34. tDQSH describes the instantaneous differential input high pulse width on DQS /DQS, as measured from  
one rising edge to the next consecutive falling edge.  
35. tDQSH,act + tDQSL,act = 1tCK,act ; with tXYZ,act being the actual measured value of the respective  
timing parameter in the application.  
36. tDSH,act + tDSS,act = 1tCK,act ; with tXYZ,act being the actual measured value of the respective timing  
parameter in the application.  
37. When the device is operated with input clock jitter, this parameter needs to be derated by the actual  
tERR(mper),act of the input clock, where 2 m 12. (output deratings are relative to the SDRAM input  
clock.)  
For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = 172ps and  
tERR(mper),act,max = +193ps, then tDQSCK,min(derated) = tDQSCK,min tERR(mper),act,max =  
400ps 193ps = 593ps and tDQSCK,max(derated) =tDQSCK,max tERR(mper),act,min = 400ps +  
172ps = +572ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) = 800ps 193ps =  
993ps and tLZ(DQ),max(derated) = 400ps + 172ps = +572ps. Note that tERR(mper),act,min is the  
minimum measured value of tERR(nper) where 2 n 12, and tERR(mper),act,max is the maximum  
measured value of tERR(nper) where 2 n 12.  
38. When the device is operated with input clock jitter, this parameter needs to be derated by the actual  
tJIT(per),act of the input clock. (output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act = 2500ps, tJIT(per),act,min  
= 72ps and tJIT(per),act,max = +93ps, then tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9  
× tCK(avg),act + tJIT(per),act,min = 0.9 × 2500ps 72ps = +2178ps. Similarly, tQH,min(derated) =  
tQH,min + tJIT(per),act,min = 0.38 × tCK(avg),act + tJIT(per),act,min = 0.38 × 2500ps 72ps = + 878ps.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
59  
EDJ1104BFSE, EDJ1108BFSE  
Clock Jitter [DDR3-1600, 1333]  
-GL, -GN  
1600  
-DJ  
Data rate (Mbps)  
Parameter  
1333  
Symbol  
min.  
max.  
3333  
min.  
max.  
3333  
Unit Notes  
Average clock period  
tCK (avg)  
1250  
1500  
ps  
ps  
ps  
ps  
ps  
ps  
1
2
6
6
7
7
tCK(avg)min + tCK(avg)max+ tCK(avg)min + tCK(avg)max+  
Absolute clock period  
tCK (abs)  
tJIT (per)  
tJIT(per)min  
70  
tJIT(per)max  
70  
tJIT(per)min  
80  
tJIT(per)max  
80  
Clock period jitter  
Clock period jitter during  
DLL locking period  
Cycle to cycle period Jitter  
Cycle to cycle clock period jitter  
during DLL locking period  
tJIT (per, lck) 60  
tJIT (cc)  
60  
70  
70  
140  
120  
160  
140  
tJIT (cc, lck)  
Cumulative error across  
2 cycles  
Cumulative error across  
3 cycles  
Cumulative error across  
4 cycles  
Cumulative error across  
5 cycles  
Cumulative error across  
6 cycles  
Cumulative error across  
7 cycles  
Cumulative error across  
8 cycles  
Cumulative error across  
9 cycles  
Cumulative error across  
10 cycles  
Cumulative error across  
11 cycles  
Cumulative error across  
12 cycles  
Cumulative error across  
n = 13, 14…49, 50 cycles  
tERR (2per) 103  
tERR (3per) 122  
tERR (4per) 136  
tERR (5per) 147  
tERR (6per) 155  
tERR (7per) 163  
tERR (8per) 169  
tERR (9per) 175  
tERR (10per) 180  
tERR (11per) 184  
tERR (12per) 188  
103  
122  
136  
147  
155  
163  
169  
175  
180  
184  
188  
118  
140  
155  
168  
177  
186  
193  
200  
205  
210  
215  
118  
140  
155  
168  
177  
186  
193  
200  
205  
210  
215  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
8
8
8
8
8
8
8
8
8
8
8
9
3
4
tERR (nper) min. = (1+0.68in(n)) x tJIT(per) min  
tERR (nper) max. = (1+0.68in(n)) x tJIT(per) max  
tERR (nper)  
tCH (avg)  
tCL (avg)  
tCK  
(avg)  
tCK  
(avg)  
tCK 10,  
(avg) 11  
tCK 10,  
(avg) 12  
Average high pulse width  
Average low pulse width  
0.47  
0.47  
0.43  
0.43  
0.53  
0.47  
0.47  
0.43  
0.43  
0.53  
0.53  
0.53  
Absolute clock high pulse width tCH (abs)  
Absolute clock low pulse width tCL (abs)  
Duty cycle jitter  
tJIT (duty)  
ps  
5
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
60  
EDJ1104BFSE, EDJ1108BFSE  
Clock Jitter [DDR3-1066]  
-AE  
Data rate (Mbps)  
Parameter  
1066  
min.  
1875  
Symbol  
max.  
3333  
Unit  
ps  
Notes  
1
Average clock period  
tCK (avg)  
tCK(avg)min +  
tJIT(per)min  
90  
tCK(avg)max+  
tJIT(per)max  
90  
Absolute clock period  
tCK (abs)  
tJIT (per)  
ps  
ps  
ps  
ps  
ps  
2
6
6
7
7
Clock period jitter  
Clock period jitter during  
DLL locking period  
Cycle to cycle period jitter  
Cycle to cycle clock period jitter  
during DLL locking period  
tJIT (per, lck) 80  
tJIT (cc)  
80  
180  
160  
tJIT (cc, lck)  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
Cumulative error across 6 cycles  
Cumulative error across 7 cycles  
Cumulative error across 8 cycles  
Cumulative error across 9 cycles  
tERR (2per) 132  
tERR (3per) 157  
tERR (4per) 175  
tERR (5per) 188  
tERR (6per) 200  
tERR (7per) 209  
tERR (8per) 217  
tERR (9per) 224  
132  
157  
175  
188  
200  
209  
217  
224  
231  
237  
242  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
8
8
8
8
8
8
8
8
8
8
8
Cumulative error across 10 cycles tERR (10per) 231  
Cumulative error across 11 cycles tERR (11per) 237  
Cumulative error across 12 cycles tERR (12per) 242  
Cumulative error across  
n=13, 14…49,50 cycles  
tERR (nper) min. = (1+0.68in(n)) x tJIT(per) min  
tERR (nper) max. = (1+0.68in(n)) x tJIT(per) max  
tERR (nper)  
tCH (avg)  
tCL (avg)  
tCH (abs)  
ps  
9
tCK  
(avg)  
tCK  
(avg)  
tCK  
(avg)  
tCK  
(avg)  
Average high pulse width  
0.47  
0.47  
0.43  
0.43  
0.53  
3
Average low pulse width  
0.53  
4
Absolute clock high pulse width  
10, 11  
Absolute clock low pulse width  
Duty cycle jitter  
tCL (abs)  
10, 12  
5
tJIT (duty)  
ps  
Notes: 1. tCK (avg) is calculated as the average clock period across any consecutive 200cycle window, where each  
clock period is calculated from rising edge to rising edge.  
N
tCK  
N
j
Σ
j = 1  
N = 200  
2. tCK (abs) is the absolute clock period, as measured from one rising edge to the next consecutive rising  
edge. tCK (abs) is not subject to production test.  
3. tCH (avg) is defined as the average high pulse width, as calculated across any consecutive 200 high  
pulses.  
N
(N × t  
)
tCH  
CK(avg)  
j
Σ
j = 1  
N = 200  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
61  
EDJ1104BFSE, EDJ1108BFSE  
4. tCL (avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses.  
N
tCL  
(N × t  
)
j
CK(avg)  
Σ
j = 1  
N = 200  
5. tJIT (duty) is defined as the cumulative set of tCH jitter and tCL jitter. tCH jitter is the largest deviation of  
any single tCH from tCH (avg). tCL jitter is the largest deviation of any single tCL from tCL (avg).  
tJIT (duty) is not subject to production test.  
tJIT (duty) = Min./Max. of {tJIT (CH), tJIT (CL)}, where:  
tJIT (CH) = {tCHj- tCH (avg) where j = 1 to 200}  
tJIT (CL) = {tCLj- tCL (avg) where j = 1 to 200}  
6. tJIT (per) is defined as the largest deviation of any single tCK from tCK (avg).  
tJIT (per) = Min./Max. of { tCKj tCK (avg) where j = 1 to 200}  
tJIT (per) defines the single period jitter when the DLL is already locked. tJIT (per, lck) uses the same  
definition for single period jitter, during the DLL locking period only. tJIT (per) and tJIT (per, lck) are not  
subject to production test.  
7. tJIT (cc) is defined as the absolute difference in clock period between two consecutive clock cycles:  
tJIT (cc) = Max. of {tCKj+1 - tCKj}  
tJIT (cc) is defines the cycle when the DLL is already locked. tJIT (cc, lck) uses the same definition for  
cycle-to-cycle jitter, during the DLL locking period only. tJIT (cc) and tJIT (cc, lck) are not subject to  
production test.  
8. tERR (nper) is defined as the cumulative error across n multiple consecutive cycles from tCK (avg).  
tERR (nper) is not subject to production test.  
9. n = from 13 cycles to 50 cycles. This row defines 38 parameters.  
10. These parameters are specified per their average values, however it is understood that the following  
relationship between the average timing and the absolute instantaneous timing hold at all times.  
(minimum and maximum of spec values are to be used for calculations in the table below.)  
Parameter  
Symbol  
min.  
max.  
Unit  
ps  
tCK (avg), min. +  
tJIT (per),min.  
tCK (avg), max. +  
tJIT (per),max.  
Absolute clock period  
tCK (abs)  
Absolute clock high pulse  
width  
Absolute clock low pulse  
width  
tCH (avg), min. × tCK  
tCH (avg), max. × tCK  
tCH (abs)  
tCL (abs)  
ps  
ps  
(avg),min. + tJIT (duty),min. (avg),max. + tJIT (duty),max.  
tCL (avg), min. × tCK  
(avg),min. + tJIT (duty),min. (avg),max. + tJIT (duty),max.  
tCL (avg), max. × tCK  
11. tCH (abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the  
following falling edge.  
12. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the  
following rising edge.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
62  
EDJ1104BFSE, EDJ1108BFSE  
Block Diagram  
CK  
/CK  
CKE  
Bank 7  
Bank 6  
Bank 5  
Bank 4  
Bank 3  
Bank 2  
Bank 1  
Address,  
BA0, BA1, BA2  
Row  
address  
buffer  
and  
Memory cell array  
Bank 0  
refresh  
counter  
Mode  
register  
Sense amp.  
Column decoder  
Column  
address  
buffer  
and  
/CS  
/RAS  
/CAS  
/WE  
burst  
counter  
Data control circuit  
Latch circuit  
DQS, /DQS  
TDQS, /TDQS  
CK, /CK  
DLL  
Input & Output buffer  
ODT  
DM  
DQ  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
63  
EDJ1104BFSE, EDJ1108BFSE  
Pin Function  
CK, /CK (input pins)  
CK and /CK are differential clock inputs. All address and control input signals are sampled on the crossing of the  
positive edge of CK and negative edge of /CK. Output (read) data is referenced to the crossings of CK and /CK  
(both directions of crossing).  
/CS (input pin)  
All commands are masked when /CS is registered high. /CS provides for external rank selection on systems with  
multiple ranks. /CS is considered part of the command code.  
/RAS, /CAS, /WE (input pins)  
/RAS, /CAS and /WE (along with /CS) define the command being entered.  
A0 to A13 (input pins)  
Provided the row address for active commands and the column address for read/write commands to select one  
location out of the memory array in the respective bank. (A10(AP) and A12(/BC) have additional functions, see  
below) The address inputs also provide the op-code during mode register set commands.  
[Address Pins Table]  
Address (A0 to A13)  
Part number  
Page size  
1KB  
Row address (RA)  
AX0 to AX13  
Column address (CA)  
AY0 to AY9, AY11  
AY0 to AY9  
Note  
EDJ1104BFSE  
EDJ1108BFSE  
AX0 to AX13  
A10(AP) (input pin)  
A10 is sampled during read/write commands to determine whether auto precharge should be performed to the  
accessed bank after the read/write operation. (high: auto precharge; low: no auto precharge)  
A10 is sampled during a precharge command to determine whether the precharge applies to one bank (A10 = low)  
or all banks (A10 = high). If only one bank is to be precharged, the bank is selected by bank addresses (BA).  
A12(/BC) (input pin)  
A12 is sampled during read and write commands to determine if burst chop (on-the-fly) will be performed.  
(A12 = high: no burst chop, A12 = low: burst chopped.) See command truth table for details.  
BA0 to BA2 (input pins)  
BA0, BA1 and BA2 define to which bank an active, read, write or precharge command is being applied. BA0 and  
BA1 also determine which Mode Register (MR0 to MR3) is to be accessed during a MRS cycle.  
[Bank Select Signal Table]  
BA0  
L
BA1  
L
BA2  
L
Bank 0  
Bank 1  
H
L
L
L
Bank 2  
H
H
L
L
Bank 3  
H
L
L
Bank 4  
H
H
H
H
Bank 5  
H
L
L
Bank 6  
H
H
Bank 7  
H
Remark: H: VIH. L: VIL.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
64  
EDJ1104BFSE, EDJ1108BFSE  
CKE (input pin)  
CKE high activates, and CKE low deactivates, internal clock signals and device input buffers and output drivers.  
Taking CKE low provides precharge power-down and self-refresh operation (all banks idle), or active power-down  
(row active in any bank). CKE is asynchronous for self-refresh exit. After VREF has become stable during the  
power-on and initialization sequence, it must be maintained for proper operation of the CKE receiver. For proper  
self-refresh entry and exit, VREF must be maintained to this input. CKE must be maintained high throughout read  
and write accesses. Input buffers, excluding CK, /CK, ODT and CKE are disabled during power-down. Input buffers,  
excluding CKE, are disabled during self-refresh.  
DM (input pins)  
DM is an input mask signal for write data. Input data is masked when DM is sampled high coincident with that input  
data during a write access. DM is sampled on both edges of DQS. For ×8 configuration, the function of DM or  
TDQS, /TDQS is enabled by mode register A11 setting in MR1.  
DQ (input/output pins)  
Bi-directional data bus.  
DQS, /DQS (input/output pins)  
Output with read data, input with write data. Edge-aligned with read data, center-aligned with write data.  
The data strobe DQS is paired with differential signal /DQS to provide differential pair signaling to the system during  
READs and WRITEs.  
TDQS, /TDQS (output pins)  
TDQS and /TDQS is applicable for ×8 configuration only. When enabled via mode register A11 = 1 in MR1, DRAM  
will enable the same termination resistance function on TDQS, /TDQS as is applied to DQS, /DQS. When disabled  
via mode register A11 = 0 in MR1, DM/TDQS will provide the data mask function and /TDQS is not used.  
In ×4 configuration, the TDQS function must be disabled via mode register A11 = 0 in MR1.  
/RESET (input pin)  
/RESET is a CMOS rail to rail signal with DC high and low at 80% and 20% of VDD (1.20V for DC high and 0.30V  
for DC low).  
It is negative active signal (active low) and is referred to GND. There is no termination required on this signal. It will  
be heavily loaded across multiple chips. /RESET is destructive to data contents.  
ODT (input pin)  
ODT (registered high) enables termination resistance internal to the DDR3 SDRAM. When enabled, ODT is only  
applied to each DQ, DQS, /DQS, DM/TDQS, NU(/TDQS) (when TDQS is enabled via mode register A11 = 1 in MR1)  
signal. The ODT pin will be ignored if the Mode Register (MR1) is programmed to disable ODT.  
ZQ (supply)  
Reference pin for ZQ calibration.  
VDD, VSS, VDDQ, VSSQ (power supply pins)  
VDD and VSS are power supply pins for internal circuits. VDDQ and VSSQ are power supply pins for the output  
buffers.  
VREFCA, VREFDQ (power supply pins)  
Reference voltage  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
65  
EDJ1104BFSE, EDJ1108BFSE  
Command Operation  
Command Truth Table  
The DDR3 SDRAM recognizes the following commands specified by the /CS, /RAS, /CAS, /WE and address pins.  
CKE  
Previous Current  
BA0 to A12  
/CS /RAS /CAS /WE BA2 (/BC)  
A10  
Address  
Function  
Symbol cycle  
cycle  
H
(AP)  
Notes  
Mode register set  
Auto-refresh  
MRS  
REF  
H
H
L
L
L
L
L
L
L
BA  
V
op-code  
V
H
H
V
V
V
V
6, 8,  
11  
6, 7,  
8, 11  
Self-refresh entry  
Self-refresh exit  
SELF  
SREX  
H
L
L
L
L
L
H
V
V
H
H
×
×
×
×
×
×
×
L
H
H
H
H
H
H
H
L
L
L
L
L
L
L
H
L
H
H
H
H
L
H
L
L
H
L
L
L
V
V
V
L
V
V
V
Single bank precharge  
Precharge all banks  
Bank activate  
PRE  
H
H
H
H
H
H
BA  
V
V
PALL  
ACT  
L
V
H
L
BA  
BA  
BA  
BA  
RA  
V
12  
Write (Fixed BL)  
WRIT  
WRS4  
WRS8  
H
H
H
L
L
L
CA  
CA  
CA  
Write (BC4, on the fly)  
Write (BL8, on the fly)  
L
L
L
H
Write with auto precharge  
WRITA  
H
H
H
H
L
L
L
H
H
H
L
L
L
L
L
L
BA  
BA  
BA  
V
L
H
H
H
CA  
CA  
CA  
(Fixed BL)  
Write with auto precharge  
(BC4, on the fly)  
Write with auto precharge  
(BL8, on the fly)  
WRAS4 H  
WRAS8 H  
H
Read (Fixed BL)  
READ  
RDS4  
RDS8  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
BA  
BA  
BA  
V
L
L
L
L
CA  
CA  
CA  
Read (BC4, on the fly)  
Read (BL8, on the fly)  
H
Read with auto precharge  
READA  
RDAS4  
RDAS8  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
BA  
BA  
BA  
V
L
H
H
H
CA  
CA  
CA  
(Fixed BL)  
Read with auto precharge  
(BC4, on the fly)  
Read with auto precharge  
(BL8, on the fly)  
H
No operation  
NOP  
H
H
H
H
L
H
H
L
L
H
H
L
H
×
H
×
H
×
V
×
×
V
×
V
×
×
V
×
×
V
×
V
×
×
V
×
V
×
×
V
×
V
×
×
9
Device deselect  
DESL  
PDEN  
10  
Power-down mode entry  
×
×
×
×
5, 11  
L
H
×
H
×
H
×
V
×
Power-down mode exit  
PDEX  
H
H
H
H
H
L
5, 11  
L
H
H
H
H
H
H
H
L
V
H
L
ZQ calibration long  
ZQ calibration short  
ZQCL  
ZQCS  
H
H
L
L
L
Remark: H = VIH. L = VIL. × = Don't care (defined or undefined (including floating around VREF)) logic level.  
V = VIH or VIL (defined logic level).  
BA = Bank addresses. RA = Row Address. CA = Column Address. /BC = Burst Chop.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
66  
EDJ1104BFSE, EDJ1108BFSE  
Notes: 1. All DDR3 commands are defined by states of /CS, /RAS, /CAS, /WE and CKE at the rising edge of the  
clock. The most significant bit (MSB) of BA, RA, and CA are device density and configuration dependent.  
2. /RESET is an active low asynchronous signal that must be driven high during normal operation  
3. Bank Addresses (BA) determine which bank is to be operated upon. For MRS, BA selects an mode  
register.  
4. Burst READs or WRITEs cannot be terminated or interrupted and fixed/on the fly BL will be defined by  
MRS.  
5. The power-down mode does not perform any refresh operations.  
6. The state of ODT does not affect the states described in this table. The ODT function is not available  
during self-refresh.  
7. Self-refresh exit is asynchronous.  
8. VREF (both VREFDQ and VREFCA) must be maintained during self-refresh operation. VREFDQ supply  
may be turned off and VREFDQ may take any value between VSS and VDD during self-refresh operation,  
provided that VREFDQ is valid and stable prior to CKE going back high and that first write operation or  
first write leveling activity may not occur earlier than 512 nCK after exit from self-refresh.  
9. The No Operation command (NOP) should be used in cases when the DDR3 SDRAM is in an idle or a  
wait state. The purpose of the NOP command is to prevent the DDR3 SDRAM from registering any  
unwanted commands between operations. A NOP command will not terminate a previous operation that is  
still executing, such as a burst read or write cycle.  
10. The DESL command performs the same function as a NOP command.  
11. Refer to the CKE Truth Table for more detail with CKE transition.  
12. No more than 4 banks may be activated in a rolling tFAW window. Converting to clocks is done by  
dividing tFAW (ns) by tCK (ns) and rounding up to next integer value. As an example of the rolling  
window, if (tFAW/tCK) rounds up to 10 clocks, and an activate command is issued in clock N, no more  
than three further activate commands may be issued in clock N+1 through N+9.  
No Operation Command [NOP]  
The No Operation command (NOP) should be used in cases when the DDR3 SDRAM is in an idle or a wait state.  
The purpose of the NOP command is to prevent the DDR3 SDRAM from registering any unwanted commands  
between operations. A NOP command will not terminate a previous operation that is still executing, such as a burst  
read or write cycle.  
The no operation (NOP) command is used to instruct the selected DDR3 SDRAM to perform a NOP (/CS low, /RAS,  
/CAS, /WE high). This prevents unwanted commands from being registered during idle or wait states. Operations  
already in progress are not affected.  
Device Deselect Command [DESL]  
The deselect function (/CS high) prevents new commands from being executed by the DDR3 SDRAM. The DDR3  
SDRAM is effectively deselected. Operations already in progress are not affected.  
Mode Register Set Command [MR0 to MR3]  
The mode registers are loaded via row address inputs. See mode register descriptions in the Programming the  
Mode Register section. The mode register set command can only be issued when all banks are idle, and a  
subsequent executable command cannot be issued until tMRD is met.  
Bank Activate Command [ACT]  
This command is used to open (or activate) a row in a particular bank for a subsequent access. The values on the  
BA inputs select the bank, and the address provided on row address inputs selects the row. This row remains active  
(or open) for accesses until a precharge command is issued to that bank. A precharge command must be issued  
before opening a different row in the same bank.  
Note: No more than 4 banks may be activated in a rolling tFAW window. Converting to clocks is done by dividing  
tFAW (ns) by tCK (ns) and rounding up to next integer value. As an example of the rolling window, if  
(tFAW/tCK) rounds up to 10 clocks, and an activate command is issued in clock N, no more than three further  
activate commands may be issued in clock N+1 through N+9.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
67  
EDJ1104BFSE, EDJ1108BFSE  
Read Command [READ, RDS4, RDS8, READA, RDAS4, RDAS8]  
The read command is used to initiate a burst read access to an active row. The values on the BA inputs select the  
bank, and the address provided on column address inputs selects the starting column location. The value on input  
A10 determines whether or not auto precharge is used. If auto precharge is selected, the row being accessed will be  
precharged at the end of the read burst; if auto precharge is not selected, the row will remain open for subsequent  
accesses.  
Write Command [WRIT, WRS4, WRS8, WRITA, WRAS4, WRAS8]  
The write command is used to initiate a burst write access to an active row. The values on the BA inputs select the  
bank, and the address provided on column address inputs selects the starting column location. The value on input  
A10 determines whether or not auto precharge is used. If auto precharge is selected, the row being accessed will be  
precharged at the end of the write burst; if auto precharge is not selected, the row will remain open for subsequent  
accesses. Input data appearing on the DQ is written to the memory array subject to the DM input logic level  
appearing coincident with the data. If a given DM signal is registered low, the corresponding data will be written to  
memory; if the DM signal is registered high, the corresponding data inputs will be ignored, and a write will not be  
executed to that byte/column location.  
Precharge Command [PRE, PALL]  
The precharge command is used to deactivate the open row in a particular bank or the open row in all banks. The  
bank(s) will be available for a subsequent row access a specified time (tRP) after the precharge command is issued.  
Input A10 determines whether one or all banks are to be precharged, and in the case where only one bank is to be  
precharged, inputs BA select the bank. Otherwise BA are treated as "Don't Care." Once a bank has been  
precharged, it is in the idle state and must be activated prior to any read or write commands being issued to that  
bank. A precharge command will be treated as a NOP if there is no open row in that bank (idle state), or if the  
previously open row is already in the process of precharging.  
Auto precharge Command [READA, WRITA]  
Before a new row in an active bank can be opened, the active bank must be precharged using either the precharge  
command or the auto precharge function. When a read or a write command is given to the DDR3 SDRAM, the /CAS  
timing accepts one extra address, column address A10, to allow the active bank to automatically begin precharge at  
the earliest possible moment during the burst read or write cycle. If A10 is low when the read or write command is  
issued, then normal read or write burst operation is executed and the bank remains active at the completion of the  
burst sequence. If A10 is high when the read or write command is issued, then the auto precharge function is  
engaged. During auto precharge, a read command will execute as normal with the exception that the active bank  
will begin to precharge on the rising edge which is (AL* + tRTP) cycles later from the read with auto precharge  
command.  
Auto precharge can also be implemented during write commands. The precharge operation engaged by the Auto  
precharge command will not begin until the last data of the burst write sequence is properly stored in the memory  
array.  
This feature allows the precharge operation to be partially or completely hidden during burst read cycles (dependent  
upon /CAS latency) thus improving system performance for random data access. The tRAS lockout circuit internally  
delays the Precharge operation until the array restore operation has been completed so that the auto precharge  
command may be issued with any read or write command.  
Note: AL (Additive Latency), refer to Posted /CAS description in the Register Definition section.  
Auto-Refresh Command [REF]  
Auto-refresh is used during normal operation of the DDR3 SDRAM and is analogous to /CAS-before-/RAS (CBR)  
refresh in FPM/EDO DRAM. This command is nonpersistent, so it must be issued each time a refresh is required.  
The addressing is generated by the internal refresh controller. This makes the address bits a "Don't Care" during an  
auto-refresh command.  
A maximum of eight auto-refresh commands can be posted to any given DDR3, meaning that the maximum absolute  
interval between any auto-refresh command and the next auto-refresh command is 9 × tREFI. This maximum  
absolute interval is to allow DDR3 output drivers and internal terminators to automatically recalibrate compensating  
for voltage and temperature changes.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
68  
EDJ1104BFSE, EDJ1108BFSE  
Self-Refresh Command [SELF]  
The self-refresh command can be used to retain data in the DDR3, even if the rest of the system is powered down.  
When in the self-refresh mode, the DDR3 retains data without external clocking. The self-refresh command is  
initiated like an auto-refresh command except CKE is disabled (low). The DLL is automatically disabled upon  
entering self-refresh and is automatically enabled and reset upon exiting self-refresh. The active termination is also  
disabled upon entering self-refresh and enabled upon exiting self-refresh. (512 clock cycles must then occur before  
a read command can be issued). Input signals except CKE are "Don't Care" during self-refresh. The procedure for  
exiting self-refresh requires a sequence of commands. First, CK and /CK must be stable prior to CKE going back  
high. Once CKE is high, the DDR3 must have NOP commands issued for tXSDLL because time is required for the  
completion of any internal refresh in progress. A simple algorithm for meeting both refresh, DLL requirements and  
out-put calibration is to apply NOPs for 512 clock cycles before applying any other command to allow the DLL to lock  
and the output drivers to recalibrate.  
ZQ calibration Command [ZQCL, ZQCS]  
ZQ calibration command (short or long) is used to calibrate DRAM RON and ODT values over PVT.  
ZQ Calibration Long (ZQCL) command is used to perform the initial calibration during power-up initialization  
sequence.  
ZQ Calibration Short (ZQCS) command is used to perform periodic calibrations to account for VT variations.  
All banks must be precharged and tRP met before ZQCL or ZQCS commands are issued by the controller.  
ZQ calibration commands can also be issued in parallel to DLL lock time when coming out of self-refresh.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
69  
EDJ1104BFSE, EDJ1108BFSE  
CKE Truth Table  
CKE  
Previous  
Current  
Command (n)*3  
/CS, /RAS, /CAS, /WE Operation (n)*3  
Current state*2  
Power-down  
cycle (n-1)*1 cycle (n)*1  
Notes  
14, 15  
11, 14  
15, 16  
8, 12, 16  
11, 13, 14  
11, 13, 14, 17  
11, 13, 14, 17  
11, 13, 14, 17  
L
L
L
L
H
H
H
H
H
H
H
L
H
L
H
L
L
L
L
L
L
L
×
Maintain power-down  
Power-down exit  
DESL or NOP  
×
Self-refresh  
Maintain self-refresh  
Self-refresh exit  
Active power-down entry  
Power-down entry  
Power-down entry  
Power-down entry  
DESL or NOP  
DESL or NOP  
DESL or NOP  
DESL or NOP  
DESL or NOP  
DESL or NOP  
DESL or NOP  
REFRESH  
Bank Active  
Reading  
Writing  
Precharging  
Refreshing  
All banks idle  
Precharge power-down entry 11  
Precharge power-down entry 11, 13, 14, 18  
Self-refresh entry  
9, 13, 18  
Any state other than  
listed above  
H
H
Refer to the Command Truth Table  
10  
Remark: H = VIH. L = VIL. × = Don’t care  
Notes: 1. CKE (n) is the logic state of CKE at clock edge n; CKE (n1) is the state of CKE at the previous clock  
edge.  
2. Current state is the state of the DDR3 SDRAM immediately prior to clock edge n.  
3. Command (n) is the command registered at clock edge n, and operation (n) is a result of Command (n).  
ODT is not included here.  
4. All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this  
document.  
5. The state of ODT does not affect the states described in this table. The ODT function is not available  
during self-refresh.  
6. CKE must be registered with the same value on tCKE (min.) consecutive positive clock edges. CKE must  
remain at the valid input level the entire time it takes to achieve the tCKE (min.) clocks of registration.  
Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS +  
tCKE (min.) + tIH.  
7. DESL and NOP are defined in the Command Truth Table.  
8. On self-refresh exit, DESL or NOP commands must be issued on every clock edge occurring during the  
tXS period. Read or ODT command may be issued only after tXSDLL is satisfied.  
9. Self-refresh mode can only be entered from the all banks idle state.  
10. Must be a legal command as defined in the Command Truth Table.  
11. Valid commands for power-down entry and exit are NOP and DESL only.  
12. Valid commands for self-refresh exit are NOP and DESL only.  
13. Self-refresh can not be entered while read or write operations, (extended) mode register set operations or  
precharge operations are in progress. See section Power-Down and self-refresh Command for a detailed  
list of restrictions.  
14. The power-down does not perform any refresh operations.  
15. “×” means “don’t care” (including floating around VREF) in self-refresh and power-down. It also applies to  
address pins.  
16. VREF (both VREFDQ and VREFCA) must be maintained during self-refresh operation. VREFDQ supply  
may be turned off and VREFDQ may take any value between VSS and VDD during self-refresh operation,  
provided that VREFDQ is valid and stable prior to CKE going back high and that first write operation or  
first write leveling activity may not occur earlier than 512 nCK after exit from self-refresh.  
17. If all banks are closed at the conclusion of the read, write or precharge command, the precharge power-  
down is entered, otherwise active power-down is entered.  
18. Idle state means that all banks are closed (tRP, tDAL, etc. satisfied), no data bursts are in progress. CKE  
is high and all timings from previous operation are satisfied (tMRD, tMOD, tRFC, tZQinit, tZQoper, tZQCS,  
etc.) as well as all self-refresh exit and power-down exit parameters are satisfied (tXS, tXP, tXPDLL, etc).  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
70  
EDJ1104BFSE, EDJ1108BFSE  
Simplified State Diagram  
CKE_L  
MRS, MPR,  
WRITE  
LEVELING  
POWER  
SELF  
REFRESH  
APPLIED  
POWER  
ON  
RESET  
PROCEDURE  
INITIALIZATION  
SELF  
MRS  
SELFX  
ZQCL  
ZQCS  
FROM ANY  
STATE  
RESET  
REF  
ZQ  
REFRESHING  
IDLE  
CALIBRATION  
PDEN  
ACT  
PDEX  
ACTIVE  
POWER  
DOWN  
ACTIVATING  
PRECHARGE  
POWER  
DOWN  
CKE_L  
PDEX  
CKE_L  
PDEN  
WRIT  
BANK  
ACTIVE  
READ  
WRIT  
READ  
READA  
WRITA  
WRIT  
READ  
WRITING  
READING  
READA  
WRITA  
WRITA  
READA  
PRE, PALL  
WRITING  
READING  
PRE, PALL  
PRE, PALL  
PRECHARGING  
Automatic sequence  
Command sequence  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
71  
EDJ1104BFSE, EDJ1108BFSE  
RESET and Initialization Procedure  
Power-Up and Initialization Sequence  
1. Apply power (/RESET is recommended to be maintained below 0.2 × VDD, (all other inputs may be undefined). )  
/RESET needs to be maintained for minimum 200µs with stable power. CKE is pulled low anytime before  
/RESET being de-asserted (min. time 10ns). The power voltage ramp time between 300mV to VDD (min.) must  
be no greater than 200ms; and during the ramp, VDD > VDDQ and (VDD VDDQ) < 0.3V.  
VDD and VDDQ are driven from a single power converter output  
AND  
The voltage levels on all pins other than VDD, VDDQ, VSS, VSSQ must be less than or equal to VDDQ and VDD  
on one side and must be larger than or equal to VSSQ and VSS on the other side. In addition, VTT is limited to  
0.95V max once power ramp is finished,  
AND  
VREF tracks VDDQ/2.  
OR  
Apply VDD without any slope reversal before or at the same time as VDDQ.  
Apply VDDQ without any slope reversal before or at the same time as VTT and VREF.  
The voltage levels on all pins other than VDD, VDDQ, VSS, VSSQ must be less than or equal to VDDQ and VDD  
on one side and must be larger than or equal to VSSQ and VSS on the other side.  
2. After /RESET is de-asserted, wait for another 500µs until CKE become active. During this time, the DRAM will  
start internal state initialization; this will be done independently of external clocks.  
3. Clocks (CK, /CK) need to be started and stabilized for at least 10ns or 5tCK (which is larger) before CKE goes  
active. Since CKE is a synchronous signal, the corresponding set up time to clock (tIS) must be met. Also a NOP  
or DESL command must be registered (with tIS set up time to clock) before CKE goes active. Once the CKE  
registered “high” after Reset, CKE needs to be continuously registered high until the initialization sequence is  
finished, including expiration of tDLLK and tZQinit.  
4. The DDR3 SDRAM will keep its on-die termination in high-impedance state during /RESET being asserted at  
least until CKE being registered high. Therefore, the ODT signal may be in undefined state until tIS before CKE  
being registered high. After that, the ODT signal must be kept inactive (low) until the power-up and initialization  
sequence is finished, including expiration of tDLLK and tZQinit.  
5. After CKE being registered high, wait minimum of tXPR, before issuing the first MRS command to load mode  
register. (tXPR = max. (tXS ; 5 × tCK)  
6. Issue MRS command to load MR2 with all application settings. (To issue MRS command for MR2, provide low to  
BA0 and BA2, high to BA1.)  
7. Issue MRS command to load MR3 with all application settings. (To issue MRS command for MR3, provide low to  
BA2, high to BA0 and BA1.)  
8. Issue MRS command to load MR1 with all application settings and DLL enabled. (To issue DLL Enable  
command, provide low to A0, high to BA0 and low to BA1 and BA2).  
9. Issue MRS command to load MR0 with all application settings and DLL reset. (To issue DLL reset command,  
provide high to A8 and low to BA0 to BA2).  
10.Issue ZQCL command to start ZQ calibration.  
11.Wait for both tDLLK and tZQinit completed.  
12.The DDR3 SDRAM is now ready for normal operation.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
72  
EDJ1104BFSE, EDJ1108BFSE  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
Tg  
Th  
Ti  
Tj  
Tk  
CK, /CK  
VDD, VDDQ  
/RESET  
tCKSRX  
max. (10 ns; 5tCK)  
200 s  
500 s  
tIS  
10ns  
CKE  
2
*
tDLLK  
ZQcal  
tXPR  
tIS  
tMRD  
tMRD  
MRS  
MR3  
tMRD  
tMOD  
tZQinit  
Command  
BA  
1
MRS  
MR2  
MRS  
MR1  
MRS  
MR0  
*
tIS  
ODT  
DRAM_RTT  
Notes: 1. From time point "Td" until "Tk", NOP or DESL commands must be  
applied between MRS and ZQcal commands.  
2. tXPR = max. (tXS; 5tCK)  
: VIH or VIL  
Reset and Initialization Sequence at Power-On Ramping  
Reset and Initialization with Stable Power  
The following sequence is required for /RESET at no power interruption initialization.  
1. Assert /RESET below 0.2 × VDD anytime when reset is needed (all other inputs may be undefined). /RESET  
needs to be maintained for minimum 100ns. CKE is pulled low before /RESET being de-asserted (minimum time  
10ns).  
2. Follow Power-Up Initialization Sequence steps 2 to 11.  
3. The reset sequence is now completed; DDR3 SDRAM is ready for normal operation.  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
Tg  
Th  
Ti  
Tj  
Tk  
CK, /CK  
VDD, VDDQ  
/RESET  
tCKSRX  
max. (10 ns; 5tCK)  
100ns  
500 s  
tIS  
10ns  
CKE  
2
*
tDLLK  
ZQCL  
tXPR  
tIS  
tMRD  
tMRD  
MRS  
MR3  
tMRD  
tMOD  
tZQinit  
Command  
BA  
1
MRS  
MR2  
MRS  
MR1  
MRS  
MR0  
*
tIS  
ODT  
DRAM_RTT  
Notes: 1. From time point "Td" until"Tk", NOP or DESL commands must be  
applied between MRS and ZQCL commands.  
2. tXPR = max. (tXS; 5tCK)  
: VIH or VIL  
Reset Procedure at Power Stable Condition  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
73  
EDJ1104BFSE, EDJ1108BFSE  
Programming the Mode Register  
For application flexibility, various functions, features and modes are programmable in four mode registers, provided  
by the DDR3 SDRAM, as user defined variables, and they must be programmed via a Mode Register Set (MRS)  
command. As the default values of the Mode Registers (MR#) are not defined, content of mode registers must be  
fully initialized and/or re-initialized, i.e. written, after Power-up and/or reset for proper operation. Also the contents of  
the mode registers can be altered by re-executing the MRS command during normal operation. When programming  
the mode registers, even if the user chooses to modify only a sub-set of the MRS fields, all address fields within the  
accessed mode register must be redefined when the MRS command is issued. MRS command and DLL Reset  
does not affect array contents, which means these commands can be executed any time after power-up without  
affecting the array contents.  
The mode register set command cycle time, tMRD is required to complete the write operation to the mode register  
and is the minimum time required between two MRS commands. The MRS command to non-MRS command delay,  
tMOD, is required for the DRAM to update the features except DLL reset and is the minimum time required from an  
MRS command to a non-MRS command excluding NOP and DESL. The mode register contents can be changed  
using the same command and timing requirements during normal operation as long as the DRAM is in idle state, i.e.  
all banks are in the precharged state with tRP satisfied, all data bursts are completed and CKE is already high prior  
to writing into the mode register. The mode registers are divided into various fields depending on the functionality  
and/or modes.  
Mode Register Set Command Cycle Time (tMRD)  
tMRD is the minimum time required from an MRS command to the next MRS command. As DLL enable and DLL  
reset are both MRS commands, tMRD is applicable between MRS to MR1 for DLL enable and MRS to MR0 for DLL  
reset, and not tMOD.  
/CK  
CK  
Command  
MRS  
NOP  
MRS  
NOP  
tMRD  
tMRD Timing  
MRS Command to Non-MRS Command Delay (tMOD)  
tMOD is the minimum time required from an MRS command to a non-MRS command excluding NOP and DESL.  
Note that additional restrictions may apply, for example, MRS to MR0 for DLL reset followed by read.  
/CK  
CK  
Command  
MRS  
NOP  
non-MRS  
NOP  
tMOD  
Old  
setting  
Updating  
New Setting  
tMOD Timing  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
74  
EDJ1104BFSE, EDJ1108BFSE  
DDR3 SDRAM Mode Register 0 [MR0]  
The Mode Register MR0 stores the data for controlling various operating modes of DDR3 SDRAM.  
It controls burst length, read burst type, /CAS latency, test mode, DLL reset, WR and DLL control for precharge  
power-down, which include various vendor specific options to make DDR3 SDRAM useful for various applications.  
The mode register is written by asserting low on /CS, /RAS, /CAS, /WE, BA0 and BA1, while controlling the states of  
address pins according to the table below.  
BA2 BA1 BA0 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
Address field  
0*1  
0
0
0*1 PPD  
WR  
DLL TM /CAS latency RBT CL  
BL  
Mode register 0  
Burst length  
A8  
0
DLL reset  
No  
A7  
0
Mode  
Normal  
Test  
A3 Read burst type  
A1  
0
BL  
8 (Fixed)  
A0  
0
0
1
Nibble sequential  
Interleave  
1
Yes  
1
0
4 or 8 (on the fly)  
4 (Fixed)  
1
BA1 BA0  
MRS mode  
MR0  
1
0
0
0
1
1
0
1
0
1
1
Reserved  
1
Write recovery for autoprecharge  
/CAS latency  
MR1  
A11 A10 A9  
WR  
A6  
0
A5  
0
A4  
0
A2  
Latency  
MR2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
0
0
0
0
0
0
0
0
Reserved  
MR3  
2
5*  
6*  
7*  
8*  
0
0
1
5
6
2
2
2
0
1
0
A12 DLL Control for Precharge PD  
0
1
1
7
0
1
Slow exit (DLL off)  
Fast exit (DLL on)  
1
0
0
8
2
10  
12  
*
*
1
0
1
9
2
1
1
0
10  
11  
Reserved  
1
1
1
Notes: 1. BA2 and A13 are reserved for future use and must be programmed to 0 during MRS.  
2. WR (min.) (Write Recovery for autoprecharge) is determined by tCK (max.) and WR (max.) is determined by tCK (min.).  
WR in clock cycles is calculated by dividing tWR (in ns) by tCK (in ns) and rounding up to the next integer  
(WR (min.) [cycles] = roundup tWR (ns) / tCK (ns)).  
(The WR value in the mode register must be programmed to be equal or larger than WR (min.)  
This is also used with tRP to determine tDAL.  
MR0 Programming  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
75  
EDJ1104BFSE, EDJ1108BFSE  
DDR3 SDRAM Mode Register 1 [MR1]  
The Mode Register MR1 stores the data for enabling or disabling the DLL, output driver strength, RTT_Nom  
impedance, additive latency, write leveling enable, TDQS enable and Qoff. The Mode Register 1 is written by  
asserting low on /CS, /RAS, /CAS, /WE, high on BA0 and low on BA1, while controlling the states of address pins  
according to the table below  
BA2 BA1 BA0 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
Address field  
0*1  
0
1
0*1  
0*1  
0*1 Level Rtt_Nom D.I.C  
AL  
D.I.C DLL  
Mode register 1  
Rtt_Nom  
Rtt_Nom  
Qoff  
TDQS  
A11 TDQS enable  
5
RTT_Nom*  
ODT Disabled  
RZQ/4  
A9 A6 A2  
0
1
Disabled  
Enabled  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
A0  
0
1
DLL enable  
Enable  
Disable  
RZQ/2  
RZQ/6  
4
RZQ/12  
*
Write leveling enable  
Disabled  
A7  
0
1
4
RZQ/8  
*
Reserved  
Reserved  
Enabled  
Output driver  
impedance control  
RZQ/6  
Qoff  
Output buffers enabled  
A12  
0
1
A5  
0
0
A1  
0
1
A3  
0
1
A4  
0
0
Additive Latency  
0 (AL disabled)  
CL-1  
2
Output buffers disabled  
*
RZQ/7  
1
1
0
1
RZQ/TBD  
RZQ/TBD  
0
1
1
1
CL-2  
Reserved  
Notes: 1. BA2, A8, A10 and A13 are reserved for future use (RFU) and must be programmed to 0 during MRS.  
2. Outputs disabled - DQ, DQS, /DQS.  
3. RZQ = 240  
4. If RTT_Nom is used during writes, only the values RZQ/2, RZQ/4 and RZQ/6 are allowed.  
5. In write leveling mode (MR1[bit7] = 1) with MR1[bit12]=1, all RTT_Nom settings are allowed;  
In write leveling mode (MR1[bit7] =1) with MR1[bit12]=0, only RTT_Nom settings of RZQ/2,  
RZQ/4 and RZQ/6 are allowed  
MR1 Programming  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
76  
EDJ1104BFSE, EDJ1108BFSE  
DDR3 SDRAM Mode Register 2 [MR2]  
The Mode Register MR2 stores the data for controlling refresh related features, RTT_WR impedance and /CAS write  
latency (CWL). The Mode Register 2 is written by asserting low on /CS, /RAS, /CAS, /WE, high on BA1 and low on  
BA0, while con-trolling the states of address pins according to the table below.  
Address field  
BA2 BA1 BA0 A13 A12 A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0*1  
1
0
Mode register 2  
0*1  
Rtt_WR*2  
0*1 SRT ASR  
CWL  
PASR* 2  
A7  
Self-refresh range  
Normal self-refresh  
Partial array self-refresh  
A2 A1 A0  
0
Refresh array  
Extend temperature  
self-refresh  
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Full  
(BA [2:0]  
(BA [2:0]  
(BA [2:0]  
(BA [2:0]  
(BA [2:0]  
(BA [2:0]  
(BA [2:0]  
=
=
=
=
=
=
=
000, 001, 010, 011)  
000, 001)  
Half  
: Bank 0 to Bank 3  
Quarter: Bank 0 and Bank 1  
000)  
1/8  
3/4  
Half  
: Bank 0  
A6 Auto self-refresh method  
010, 011, 100, 101,110 ,111)  
100, 101, 110, 111)  
110, 111)  
: Bank 2 to Bank 7  
: Bank 4 to Bank 7  
Manual SR reference  
0
(SRT)  
ASR enable  
1
Quarter: Bank 6 and Bank 7  
1/8 : Bank 7  
(Optional)  
111)  
A5  
0
0
0
0
A4  
0
0
1
1
A3  
0
1
0
1
CAS write Latency (CWL)  
5 (tCK 2.5ns)  
6 (2.5ns > tCK 1.875ns)  
7 (1.875ns > tCK 1.5ns)  
8 (1.5ns > tCK 1.25ns)  
Reserved  
A10 A9  
Rtt_WR  
0
0
Dynamic ODT off (write does not  
affect Rtt value)  
0
1
1
1
0
1
RZQ/4  
RZQ/2  
Reserved  
1
1
0
0
0
1
Reserved  
1
1
0
Reserved  
1
1
1
Reserved  
Notes: 1. BA2, A8, and A11 to A13 are RFU and must be programmed to 0 during MRS.  
2. The Rtt_WR value can be applied during writes even when Rtt_Nom is desabled.  
During write leveling, Dynamic ODT is not available.  
3. Optional in DDR3 SDRAM: If PASR (Partial Array Self-Refresh) is enabled, data located in areas of the array beyond  
the specified address range will be lost if self-refresh is entered. Data integrity will be maintained if tREF conditions are  
met and no self-refresh command is issued.  
MR2 Programming  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
77  
EDJ1104BFSE, EDJ1108BFSE  
DDR3 SDRAM Mode Register 3 [MR3]  
The Mode Register MR3 controls Multi Purpose Registers (MPR). The Mode Register 3 is written by asserting low  
on /CS, /RAS, /CAS, /WE, high on BA1 and BA0, while controlling the states of address pins according to the table  
below.  
Address field  
BA2 BA1 BA0 A13 A12 A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Mode register 3  
0*1  
0*1  
1
1
MPR MPR Loc  
MPR Address  
A1 A0  
MPR location  
2
MPR Operation  
A2  
0
0
1
1
0
1
0
1
Predefined pattern*  
MPR  
RFU  
RFU  
RFU  
3
Normal operation  
*
0
1
Data flow from MPR  
N
otes : 1. BA2,A3 toA13 are reserved for future use (RFU) and must be programmed to 0 during MRS.  
2. The predefined pattern will be used for read synchronization.  
3 . When MPR control is set for normal operation, MR3 A[2]=0, MR3 A[1:0] will be ignored.  
MR3 Programming  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
78  
EDJ1104BFSE, EDJ1108BFSE  
Burst Length (MR0)  
Read and write accesses to the DDR3 are burst oriented, with the burst length being programmable, as shown in the  
figure MR0 Programming. The burst length determines the maximum number of column locations that can be  
accessed for a given read or write command. Burst length options include fixed BC4, fixed BL8, and on the fly which  
allows BC4 or BL8 to be selected coincident with the registration of a read on write command Via A12 (/BC).  
Reserved states should not be used, as unknown operation or incompatibility with future versions may result.  
Burst Chop  
In case of burst length being fixed to 4 by MR0 setting, the internal write operation starts two clock cycles earlier than  
for the BL8 mode. This means that the starting point for tWR and tWTR will be pulled in by two clocks. In case of  
burst length being selected on the fly via A12(/BC), the internal write operation starts at the same point in time like a  
burst of 8 write operation. This means that during on-the-fly control, the starting point for tWR and tWTR will not be  
pulled in by two clocks.  
Burst Type (MR0)  
[Burst Length and Sequence]  
Starting address  
(A2, A1, A0)  
Sequential addressing  
(decimal)  
Interleave addressing  
(decimal)  
Burst length  
Operation  
4 (Burst chop)  
READ  
000  
001  
010  
011  
100  
101  
110  
111  
0VV  
1VV  
000  
001  
010  
011  
100  
101  
110  
111  
VVV  
0, 1, 2, 3, T, T, T, T  
1, 2, 3, 0, T, T, T, T  
2, 3, 0, 1, T, T, T, T  
3, 0, 1, 2, T, T, T, T  
4, 5, 6, 7, T, T, T, T  
5, 6, 7, 4, T, T, T, T  
6, 7, 4, 5, T, T, T, T  
7, 4, 5, 6, T, T, T, T  
0, 1, 2, 3, X, X, X, X  
4, 5, 6, 7, X, X, X, X  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 0, 5, 6, 7, 4  
2, 3, 0, 1, 6, 7, 4, 5  
3, 0, 1, 2, 7, 4, 5, 6  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 4, 1, 2, 3, 0  
6, 7, 4, 5, 2, 3, 0, 1  
7, 4, 5, 6, 3, 0, 1, 2  
0, 1, 2, 3, 4, 5, 6, 7  
0, 1, 2, 3, T, T, T, T  
1, 0, 3, 2, T, T, T, T  
2, 3, 0, 1, T, T, T, T  
3, 2, 1, 0, T, T, T, T  
4, 5, 6, 7, T, T, T, T  
5, 4, 7, 6, T, T, T, T  
6, 7, 4, 5, T, T, T, T  
7, 6, 5, 4, T, T, T, T  
0, 1, 2, 3, X, X, X, X  
4, 5, 6, 7, X, X, X, X  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
0, 1, 2, 3, 4, 5, 6, 7  
WRITE  
READ  
8
WRITE  
Remark: T: Output driver for data and strobes are in high impedance.  
V: A valid logic level (0 or 1), but respective buffer input ignores level on input pins.  
X: Don’t Care.  
Notes: 1. Page length is a function of I/O organization and column addressing  
2. 0...7 bit number is value of CA [2:0] that causes this bit to be the first read during a burst.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
79  
EDJ1104BFSE, EDJ1108BFSE  
DLL Enable (MR1)  
The DLL must be enabled for normal operation. DLL enable is required during power-up initialization, and upon  
returning to normal operation after having the DLL disabled. The DLL is automatically disabled when entering self-  
refresh operation and is automatically re-enabled upon exit of self-refresh operation. Any time the DLL is enabled  
and subsequently reset, tDLLK clock cycles must occur before a read or synchronous ODT command can be issued  
to allow time for the internal clock to be synchronized with the external clock. Failing to wait for synchronization to  
occur may result in a violation of the tDQSCK, tAON or tAOF parameters. During tDLLK, CKE must continuously be  
registered high.  
DDR3 SDRAM does not require DLL for any write operation. DDR3 does not require DLL to be locked prior to any  
write operation. DDR3 requires DLL to be locked only for read operation and to achieve synchronous ODT timing.  
DLL-off Mode  
DDR3 DLL-off mode is entered by setting MR1 bit A0 to 1; this will disable the DLL for subsequent operations until  
A0 bit set back to 0. The MR1 A0 bit for DLL control can be switched either during initialization or later.  
The DLL-off mode operations listed below are an optional feature for DDR3. The maximum clock frequency for DLL-  
off mode is specified by the parameter tCKDLL_OFF. There is no minimum frequency limit besides the need to  
satisfy the refresh interval, tREFI.  
Due to latency counter and timing restrictions, only one value of /CAS Latency (CL) in MR0 and CAS Write Latency  
(CWL) in MR2 are supported. The DLL-off mode is only required to support setting of both CL = 6 and CWL = 6.  
DLL-off mode will affect the Read data Clock to Data Strobe relationship (tDQSCK) but not the Data Strobe to Data  
relationship (tDQSQ, tQH, tQHS). Special attention is needed to line up Read data to controller time domain.  
Comparing with DLL-on mode, where tDQSCK starts from the rising clock edge (AL + CL) cycles after the Read  
command, the DLL-off mode tDQSCK starts (AL + CL 1) cycles after the read command. Another difference is that  
tDQSCK may not be small compared to tCK (it might even be larger than tCK) and the difference between tDQSCK  
(min.). and tDQSCK (max.) is significantly larger than in DLL-on mode.  
The timing relations on DLL-off mode READ operation are shown at following Timing Diagram (CL = 6, BL8):  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CK, /CK  
Command  
READ  
A
BA  
DQSdiff_DLL-on  
RL = AL + CL = 6 (CL = 6, AL = 0)  
CL = 6  
DQ_DLL-on  
CA0 CA1 CA2 CA3 CA4 CA5 CA6 CA7  
RL (DLL-off) = AL + (CL - 1) = 5  
tDQSCK(DLL-off)_min  
DQSdiff_DLL-off  
DQ_DLL-off  
CA0 CA1 CA2 CA3 CA4 CA5 CA6 CA7  
tDQSCK(DLL-off)_max  
DQSdiff_DLL-off  
DQ_DLL-off  
CA0 CA1 CA2 CA3 CA4 CA5 CA6 CA7  
DLL-Off Mode Read Timing Operation  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
80  
EDJ1104BFSE, EDJ1108BFSE  
DLL on/off switching procedure  
DDR3 DLL-off mode is entered by setting MR1 bit A0 to “1”; this will disable the DLL for subsequent operations until  
A0 bit set back to “0”.  
DLL “on” to DLL “off” Procedure  
To switch from DLL “on” to DLL “off” requires the frequency to be changed during self-refresh outlined in the  
following procedure:  
1. Starting from Idle state (all banks pre-charged, all timings fulfilled, and DRAMs On-die Termination resistors,  
RTT, must be in high impedance state before MRS to MR1 to disable the DLL.)  
2. Set MR1 Bit A0 to “1” to disable the DLL.  
3. Wait tMOD.  
4. Enter self-refresh mode; wait until (tCKSRE) satisfied.  
5. Change frequency, in guidance with Input Clock Frequency Change during Precharge Power-Down section.  
6. Wait until a stable clock is available for at least (tCKSRX) at DRAM inputs. After stable clock, wait tCKSRX  
before issuing SRX command.  
7. Starting with the self-refresh exit command, CKE must continuously be registered high until all tMOD timings from  
any MRS command are satisfied. In addition, if any ODT features were enabled in the mode registers when self-  
refresh mode was entered, the ODT signal must continuously be registered low until all tMOD timings from any  
MRS command are satisfied. If both ODT features were disabled in the mode registers when self-refresh mode  
was entered, ODT signal can be registered low or high.  
8. Wait tXS, then set mode registers with appropriate values (especially an update of CL, CWL and WR may be  
necessary. A ZQCL command may also be issued after tXS).  
9. Wait for tMOD, then DRAM is ready for next command.  
Ta  
Tb  
Tc Tc+1Tc+2  
Td  
Te  
Tf Tf+1 Tf+2  
Tg Tg+1  
Th  
CK  
/CK  
tMOD  
tCKSRE  
tCKSRX  
tXS  
tMOD  
MRS  
SRE NOP  
SRX  
MRS  
Valid  
Command  
CKE  
tCKESR  
ODT  
Change Frequency  
DLL Switch Sequence from DLL-on to DLL-off  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
81  
EDJ1104BFSE, EDJ1108BFSE  
DLL “off” to DLL “on” Procedure  
To Switch from DLL “off” to DLL “on” (with required frequency change) during Self-Refresh:  
1. Starting from Idle state (all banks pre-charged, all timings fulfilled and DRAMs On-die Termination resistors (RTT)  
must be in high impedance state before Self-Refresh mode is entered.)  
2. Enter Self-refresh Mode, wait until tCKSRE satisfied.  
3. Change frequency, in guidance with Input Clock Frequency Change during Precharge Power-Down section.  
4. Wait until a stable clock is available for at least (tCKSRX) at DRAM inputs.  
5. Starting with the self-refresh exit command, CKE must continuously be registered high until all tDLLK timing from  
subsequent DLL Reset command is satisfied. In addition, if any ODT features were enabled in the mode  
registers when Self-refresh mode was entered, the ODT signal must continuously be registered low until tDLLK  
timings from subsequent DLL Reset command is satisfied. If both ODT features are disabled in the mode  
registers when Self-refresh mode was entered, ODT signal can be registered low or high.  
6. Wait tXS, then set MR1 bit A0 to “0” to enable the DLL.  
7. Wait tMRD, then set MR0 bit A8 to “1” to start DLL Reset.  
8. Wait tMRD, and then set mode registers with appropriate values (especially an update of CL, CWL and WR may  
be necessary. After tMOD is satisfied from any proceeding MRS command, a ZQCL command may also be  
issued during or after tDLLK.)  
9. Wait for tMOD, and then DRAM is ready for next command (remember to wait tDLLK after DLL Reset before  
applying command requiring a locked DLL). In addition, wait also for tZQoper in case a ZQCL command was  
issued.  
Ta  
Tb  
Tc Tc+1Tc+2  
Td  
Te  
Tf Tf+1Tf+2  
Tg  
CK  
/CK  
tCKSRE  
tCKSRX  
tDLLK  
MRS  
tXS  
tMRD tMRD  
SRE NOP  
SRX  
MRS  
MRS  
Valid  
Command  
CKE  
tCKESR  
ODTLoff + 1x tCK  
ODT  
Change Frequency  
DLL Switch Sequence from DLL-Off to DLL-On  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
82  
EDJ1104BFSE, EDJ1108BFSE  
Additive Latency (MR1)  
A posted /CAS read or write command when issued is held for the time of the Additive Latency (AL) before it is  
issued inside the device. The read or write posted /CAS command may be issued with or without auto precharge.  
The Read Latency (RL) is controlled by the sum of AL and the /CAS latency (CL).  
The value of AL is also added to compute the overall Write Latency (WL).  
MRS (1) bits A4 and A3 are used to enable Additive latency.  
MRS1  
A4  
0
A3  
0
AL*  
0 (posted CAS disabled)  
CL 1  
0
1
1
0
CL 2  
1
1
Reserved  
Note: AL has a value of CL 1 or CL 2 as per the CL value programmed in the /CAS latency MRS setting.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
83  
EDJ1104BFSE, EDJ1108BFSE  
Write Leveling (MR1)  
For better signal integrity, DDR3 memory module adopts fly by topology for the commands, addresses, control  
signals and clocks. The fly by topology has benefits for reducing number of stubs and their length but in other  
aspect, causes flight time skew between clock and strobe at every DRAM on DIMM. It makes Controller hard to  
maintain tDQSS, tDSS and tDSH specification. Therefore, the controller should support ’write leveling’ in DDR3  
SDRAM to compensate the skew.  
Write leveling is a scheme to adjust DQS to CK relationship by the controller, with a simple feedback provided by the  
DRAM. The memory controller involved in the leveling must have adjustable delay setting on DQS to align the rising  
edge of DQS with that of the clock at the DRAM pin. DRAM asynchronously feeds back CK, sampled with the rising  
edge of DQS, through the DQ bus. The controller repeatedly delays DQS until a transition from 0 to 1 is detected.  
The DQS delay established through this exercise would ensure tDQSS, tDSS and tDSH specification. A conceptual  
timing of this scheme is shown as below.  
diff_Clock  
Source  
diff_DQS  
Destination  
diff_Clock  
diff_DQS  
DQ  
X
0
0
Push DQS to  
capture 0-1 transition  
DQ  
X
1
1
Write Leveling Concept  
DQS, /DQS driven by the controller during leveling mode must be terminated by the DRAM, based on the ranks  
populated. Similarly, the DQ bus driven by the DRAM must also be terminated at the controller.  
One or more data bits should carry the leveling feedback to the controller across the DRAM configurations ×4 and  
×8.  
DRAM Setting for Write Leveling and DRAM Termination Function in That Mode  
DRAM enters into write leveling mode if A7 in MR1 set 1. And after finishing leveling, DRAM exits from write leveling  
mode if A7 in MR1 set 0 (MR1 Setting Involved in the Leveling Procedure table).  
Note that in write leveling mode, only DQS/DQS terminations are activated and deactivated via ODT pin, not like  
normal operation (refer to the DRAM Termination Function in The Leveling Mode table)  
[MR1 Setting Involved in the Leveling Procedure]  
Function  
MR1 bit  
Enable  
Disable  
Note  
1
Write leveling enable  
Output buffer mode (Qoff)  
A7  
1
0
0
1
A12  
Note: 1. Output buffer mode definition is consistent with DDR2  
[DRAM Termination Function in The Leveling Mode]  
ODT pin@DRAM  
De-asserted  
Asserted  
DQS, /DQS termination  
DQs termination  
Off  
On  
Off  
Off  
Note: In write leveling mode with its output buffer disabled (MR1 [bit7] = 1 with MR1 [bit12] = 1) all RTT_Nom  
settings are allowed; in write leveling mode with its output buffer enabled (MR1 [bit7] = 1 with MR1 [bit12] = 0)  
only RTT_Nom settings of RZQ/2, RZQ/4 and RZQ/6 are allowed.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
84  
EDJ1104BFSE, EDJ1108BFSE  
Write Leveling Procedure  
Memory controller initiates leveling mode of all DRAMs by setting bit 7 of MR1 to 1. Since the controller levelizes  
rank at a time, the output of other rank must be disabled by setting MR1 bit A12 to 1. Controller may assert ODT  
after tMOD, time at which DRAM is ready to accept the ODT signal.  
Controller may drive DQS low and /DQS high after a delay of tWLDQSEN, at which time DRAM has applied on-die  
termination on these signals. After tWLMRD, controller provides a single DQS, /DQS edge which is used by the  
DRAM to sample CK driven from controller. tWLMRD timing is controller dependent.  
DRAM samples CK status with rising edge of DQS and provides feedback on all the DQ bits asynchronously after  
tWLO timing. There is a DQ output uncertainty of tWLOE defined to allow mismatch on DQ bits; there are no read  
strobes (DQS, /DQS) needed for these DQs. Controller samples incoming DQ and decides to increment or  
decrement DQS delay setting and launches the next DQS, /DQS pulse after some time, which is controller  
dependent.  
Once a 0 to 1 transition is detected, the controller locks DQS delay setting and write leveling is achieved for the  
device. The below figure describes detailed timing diagram for overall procedure and the timing parameters are  
shown in below figure.  
T2  
T1  
tWLS  
tWLS  
tWLH  
tWLH  
NOP  
5
*
CK  
/CK  
2
3
4
2
3
*
*
*
*
*
Command MRS  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tMOD  
6
6
*
*
ODT  
tDQSH (min.)  
tDQSL (min.) tDQSH (min.) tDQSL (min.)  
tWLDQSEN  
diff_DQS*4  
All DQs*1  
tWLOE  
tWLO  
tWLMRD  
tWLO  
Notes:1. DDR3 SDRAM drives leveling feedback on all DQs.  
2. MRS : Load MR1 to enter write leveling mode.  
3. NOP : NOP or deselec  
4. diff_DQS is the differential data strobe (DQS, /DQS). Timing reference points are the zero crossing. DQS is  
shown with solid line, /DQS is shown with dotted line.  
5. CK, /CK : CK is shown with solid dark line, where as /CK is drawn with dotted line.  
6. DQS needs to fulfill minimum pulse width requirements tDQSH (min.) and tDQSL (min.) as defined for regular  
writes; the max pulse width is system dependent.  
Timing Details Write Leveling Sequence  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
85  
EDJ1104BFSE, EDJ1108BFSE  
Write Leveling Mode Exit  
The following sequence describes how the write leveling mode should be exited:  
1. After the last rising strobe edge(see T111), stop driving the strobe signals (see ~T128). Note: From now on, DQ  
pins are in undefined driving mode, and will remain undefined, until tMOD after the respective MR command  
(T145).  
2. Drive ODT pin low (tIS must be satisfied) and continue registering low (see T128).  
3. After the RTT is switched off: disable Write Level Mode via MR command (see T132).  
4. After tMOD is satisfied (T145), any valid commands may be registered. (MR commands may already be issued  
after tMRD (T136).  
T111  
T112  
T116  
T117  
T128 T131  
T132  
T136  
MRS  
T145  
Valid  
CK, /CK  
Command  
WL_off  
1
tMOD  
BA  
Valid  
VVaalidlid  
tIS  
tMRD  
ODT  
tODTL_off  
RTT_DQS-/DQS  
DQS-/DQS  
RTT_DQ  
tWLO + tWLOE  
DQ  
Result = 1  
Timing Details Write Leveling Exit  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
86  
EDJ1104BFSE, EDJ1108BFSE  
TDQS, /TDQS function (MR1)  
TDQS (Termination Data Strobe) is a feature of ×8 DDR3 SDRAM that provides additional termination resistance  
outputs that may be useful in some system configurations.  
TDQS is not supported in ×4 configurations. When enabled via the mode register, the same termination resistance  
function is applied to the TDQS and /TDQS pins that are applied to the DQS and /DQS pins.  
In contrast to the RDQS function of DDR2 SDRAM, TDQS provides the termination resistance function only. The  
data strobe function of RDQS is not provided by TDQS.  
The TDQS and DM functions share the same pin. When the TDQS function is enabled via the mode register, the DM  
function is not supported. When the TDQS function is disabled, the DM function is provided and the /TDQS pin is  
not used. See Table TDQS, /TDQS function for details.  
The TDQS function is available in ×8 DDR3 SDRAM only and must be disabled via the mode register A11 = 0 in  
MR1 for ×4 configurations.  
[TDQS, /TDQS function]  
A11@MR1  
TDQS enable  
Disable  
0
1
Enable  
Notes: 1. If TDQS is enabled, the DM function is disabled.  
2. When not used, TDQS function can be disabled to save termination power.  
3. TDQS function is only available for ×8 DRAM and must be disabled for ×4.  
[Function matrix]  
A11@MR1 (TDQS enable)  
DM/TDQS  
DM  
NU/ /TDQS  
High-Z  
0
1
TDQS  
/TDQS  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
87  
EDJ1104BFSE, EDJ1108BFSE  
Extended Temperature Usage (MR2)  
[Mode Register Description]  
Field Bits Description  
Description  
Auto self-refresh (ASR) (Optional)  
when enabled, DDR3 SDRAM automatically  
provides self-refresh power management  
functions for all supported operating  
0
1
Manual SR Reference (SRT)  
ASR A6  
SRT A7  
ASR enable (Optional)  
temperature values. If not enabled, the SRT  
bit must be programmed to indicate TC during  
subsequent self-refresh operation  
Self-Refresh Temperature (SRT) Range  
If ASR = 0, the SRT bit must be programmed  
to indicate TC during subsequent self-refresh  
operation  
0
1
Normal operating temperature range  
Extended operating temperature range  
If ASR = 1, SRT bit must be set to 0  
Partial Array Self-Refresh (PASR)  
Optional in DDR3 SDRAM: Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine  
if DDR3 SDRAM devices support the following options or requirements referred to in this material. If PASR (Partial  
Array Self-Refresh) is enabled, data located in areas of the array beyond the specified address range shown in  
figure of MR2 programming will be lost if Self-Refresh is entered. Data integrity will be maintained if tREFI  
conditions are met and no Self-Refresh command is issued.  
/CAS Write Latency (CWL)  
The /CAS Write Latency is defined by MR2 bits [A3, A5], as shown in figure of MR2 programming. /CAS Write  
Latency is the delay, in clock cycles, between the internal Write command and the availability of the first bit of input  
data. DDR3 SDRAM does not support any half-clock latencies. The overall Write Latency (WL) is defined as  
Additive Latency (AL) + /CAS Write Latency (CWL); WL = AL + CWL. For more information on the sup-ported CWL  
and AL settings based on the operating clock frequency, refer to “Standard Speed Bins”. For detailed Write operation  
refer to “WRITE Operation”.  
Auto Self-Refresh Mode - ASR Mode (optional)  
DDR3 SDRAM provides an Auto Self-Refresh mode (ASR) for application ease. ASR mode is enabled by setting  
MR2 bit A6 = 1 and MR2 bit A7 = 0. The DRAM will manage self-refresh entry in either the Normal or Extended  
(optional) Temperature Ranges. In this mode, the DRAM will also manage self-refresh power consumption when the  
DRAM operating temperature changes, lower at low temperatures and higher at high temperatures.  
If the ASR option is not supported by the DRAM, MR2 bit A6 must be set to 0.  
If the ASR mode is not enabled (MR2 bit A6 = 0), the SRT bit (MR2 A7) must be manually programmed with the  
operating temperature range required during self-refresh operation.  
Support of the ASR option does not automatically imply support of the Extended Temperature Range.  
Self- Refresh Temperature Range - SRT  
If ASR = 0, the Self-Refresh Temperature (SRT) Range bit must be programmed to guarantee proper self-refresh  
operation. If SRT = 0, then the DRAM will set an appropriate refresh rate for self-refresh operation in the Normal  
Temperature Range. If SRT = 1 then the DRAM will set an appropriate, potentially different, refresh rate to allow  
self-refresh operation in either the Normal or Extended Temperature Ranges. The value of the SRT bit can effect  
self-refresh power consumption, please refer to the IDD table for details.  
For parts that do not support the Extended Temperature Range, MR2 bit A7 must be set to 0 and the DRAM should  
not be operated outside the Normal Temperature Range.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
88  
EDJ1104BFSE, EDJ1108BFSE  
[Self-Refresh Mode Summary]  
MR2  
Allowed operating temperature  
range for self-refresh mode  
A6  
0
A7  
0
Self-refresh operation  
Self-refresh rate appropriate for the Normal Temperature  
Range  
Normal (0°C to +85°C)  
Self-refresh rate appropriate for either the Normal or  
Extended Temperature Ranges. The DRAM must support  
Extended Temperature Range. The value of the SRT bit  
can effect self-refresh power consumption, please refer to  
the Self- refresh Current for details.  
ASR enabled (for devices supporting ASR and Normal  
Temperature Range). Self-refresh power consumption is  
temperature dependent  
Normal and Extended  
0
1
1
0
(0°C to +95°C)  
Normal (0°C to +85°C)  
ASR enabled (for devices supporting ASR and Extended  
Temperature Range). Self-refresh power consumption is  
temperature dependent  
Normal and Extended  
(0°C to +95°C)  
1
1
0
1
Illegal  
Dynamic ODT (Rtt_WR)  
DDR3 SDRAM introduces a new feature “Dynamic ODT”. In certain application cases and to further enhance signal  
integrity on the data bus, it is desirable that the termination strength of the DDR3 SDRAM can be changed without  
issuing an MRS command. MR2 register locations A9 and A10 configure the Dynamic ODT settings. In write  
leveling mode, only RTT_Nom is available. For details on Dynamic ODT operation, refer to “Dynamic ODT”.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
89  
EDJ1104BFSE, EDJ1108BFSE  
Multi Purpose Register (MR3)  
The Multi Purpose Register (MPR) function is used to read out predefined system timing calibration bit sequence.  
Conceptual Block Diagram of Multi Purpose Register  
To enable the MPR, a Mode Register set (MRS) command must be issued to MR3 register with bit A2 = 1. Prior to  
issuing the MRS command, all banks must be in the idle state (all banks precharged and tRP/tRPA met). Once the  
MPR is enabled, any subsequent READ or READA commands will be redirected to the multi purpose register. The  
resulting operation when a READ or READA command is issued is defined by MR3 bits [A1: A0] when the MPR is  
enabled. When the MPR is enabled, only READ or READA commands are allowed until a subsequent MRS  
command is issued with the MPR disabled (MR3 bit A2=0). Power-down mode, self-refresh, and any other non-  
READ/READA command are not allowed during MPR enable mode. The /RESET function is supported during MPR  
enable mode.  
[Functional Description of MR3 Bits for MPR]  
MR3  
A2  
A [1:0]  
MPR  
MPR-Loc  
Function  
Notes  
1
Normal operation, no MPR transaction.  
All subsequent reads will come from DRAM array.  
All subsequent WRITEs will go to DRAM array.  
Enable MPR mode, subsequent READ/READA commands defined by MR3  
A [1:0] bits.  
Don’t care  
(0 or 1)  
0
1
MR3 A [1:0]  
Note: 1. See Available Data Locations and Burst Order Bit Mapping for Multi Purpose Register table  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
90  
EDJ1104BFSE, EDJ1108BFSE  
One bit wide logical interface via all DQ pins during READ operation  
Register Read on ×4:  
DQ [0] drives information from MPR.  
DQ [3:1] drive the same information as DQ [0].  
Register Read on ×8:  
DQ [0] drives information from MPR.  
DQ [7:1] drive the same information as DQ [0].  
Note: A standardization of which DQ is used by DDR3 SDRAM for MPR reads is strongly recommended to ensure  
functionality also for AMB2 on DDR3 FB-DIMM.  
Addressing during Multi Purpose Register reads for all MPR agents:  
BA [2:0]: don’t care.  
A [1:0]: A [1:0] must be equal to ‘00’b. Data read burst order in nibble is fixed  
A [2]:  
For BL8, A [2] must be equal to 0.  
Burst order is fixed to [0,1,2,3,4,5,6,7] *1  
For Burst Chop 4 cases, the burst order is switched on nibble base  
A [2] = 0, Burst order: 0,1,2,3 *1  
A [2] = 1, Burst order: 4,5,6,7 *1  
A [9:3]: don’t care  
A10(AP): don’t care  
A12(/BC): Selects burst chop mode on-the-fly, if enabled within MR0  
A11: don’t care  
Regular interface functionality during register reads:  
Support two burst ordering which are switched with A2 and A [1:0] = 00.  
Support of read burst chop (MRS and on-the-fly via A12(/BC).  
All other address bits (remaining column address bits including A10, all bank address bits) will be ignored by the  
DDR3 SDRAM.  
Regular read latencies and AC timings apply.  
DLL must be locked prior to MPR Reads.  
Note: Burst order bit 0 is assigned to LSB and burst order bit 7 is assigned to MSB of the selected MPR agent.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
91  
EDJ1104BFSE, EDJ1108BFSE  
Functional Block Diagrams  
Figures below provide functional block diagrams for the multi purpose register in ×4 and ×8 DDR3 SDRAM.  
Memory Array  
4×8  
4×8  
32  
Copy to  
DQ[3:0]  
DQ[3:0]  
8
Q
Read Path  
DQS  
MPR  
/DQS  
DM  
NibbleLane  
Functional Block Diagram of Multi Purpose Register in ×4 DDR3 SDRAM  
Memory Array  
8×8  
8×8  
64  
Copy to  
DQ[7:0]  
DQ[7:0]  
8
Q
Read Path  
DQS  
MPR  
/DQS  
DM  
ByteLane  
Functional Block Diagram of Multi Purpose Register in ×8 DDR3 SDRAM  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
92  
EDJ1104BFSE, EDJ1108BFSE  
Register Address Table  
The table below provides an overview of the available data locations, how they are addressed by MR3 A [1:0] during  
a MR0 to MR3, and how their individual bits are mapped into the burst order bits during a multi purpose register  
read.  
[Available Data Locations and Burst Order Bit Mapping for Multi Purpose Register]  
Read  
MR3  
A [2]  
MR3  
A [1:0]  
Burst  
Length  
Function  
Address Burst Order and Data Pattern  
A [2:0]  
Notes  
Burst order 0,1,2,3,4,5,6,7  
BL8  
BC4  
BC4  
000  
1
1
1
Read  
Pre-defined pattern [0,1,0,1,0,1,0,1]  
predefined  
pattern for  
system  
Burst order 0,1,2,3,  
Pre-defined pattern [0,1,0,1]  
Burst order 4,5,6,7  
Pre-defined pattern [0,1,0,1]  
1
00  
000  
calibration  
100  
BL8  
BC4  
BC4  
BL8  
BC4  
BC4  
BL8  
BC4  
BC4  
000  
000  
100  
000  
000  
100  
000  
000  
100  
Burst order 0,1,2,3,4,5,6,7  
1
1
1
1
1
1
1
1
1
1
1
1
01  
10  
11  
RFU  
RFU  
RFU  
Burst order 0,1,2,3  
Burst order 4,5,6,7  
Burst order 0,1,2,3,4,5,6,7  
Burst order 0,1,2,3  
Burst order 4,5,6,7  
Burst order 0,1,2,3,4,5,6,7  
Burst order 0,1,2,3,  
Burst order 4,5,6,7  
Note: 1. Burst order bit 0 is assigned to LSB and burst order bit 7 is assigned to MSB of the selected MPR agent.  
Relevant Timing Parameters  
The following AC timing parameters are important for operating the Multi Purpose Register: tRP, tMRD, tMOD and  
tMPRR.  
Besides these timings, all other timing parameters needed for proper operation of the DDR3 SDRAM need to be  
observed.  
[MPR Recovery Time tMPRR]  
Symbol  
Description  
tMPRR  
Multi Purpose Register Recovery Time, defined between end of MPR read burst and MRS which  
reloads MPR or disables MPR function  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
93  
EDJ1104BFSE, EDJ1108BFSE  
Protocol Examples  
Protocol Example: Read Out Predetermined Read-Calibration Pattern  
Multiple reads from Multi Purpose Register, in order to do system level read timing calibration based on  
predetermined and standardized pattern.  
Protocol Steps:  
Precharge All  
Wait until tRP is satisfied  
MRS MR3, op-code “A2 = 1 “ and “A[1:0] = 00“  
Redirect all subsequent reads into the Multi Purpose Register, and load Pre-defined pattern into MPR.  
Wait until tMRD and tMOD are satisfied (Multi Purpose Register is then ready to be read). During the period  
MR3 A2 =1, no data write operation is allowed.  
Read:  
A [1:0] = ‘00’ (Data burst order is fixed starting at nibble, always 00 here)  
A [2] = ‘0’ (For BL8, burst order is fixed as 0,1,2,3,4,5,6,7)  
A12(/BC) = 1 (use regular burst length of 8)  
All other address pins (including BA [2:0] and A10(AP)): don’t care.  
After RL = AL + CL, DRAM bursts out the predefined Read Calibration Pattern.  
Memory controller repeats these calibration reads until read data capture at memory controller is optimized.  
After end of last MPR read burst wait until tMPRR is satisfied.  
MRS MR3, op-code “A2 = 0“ and “A[1:0] = valid data but value are don’t care“  
All subsequent read and write accesses will be regular READs and WRITEs from/to the DRAM array.  
Wait until tMRD and tMOD are satisfied  
Continue with “regular” DRAM commands, like activate a memory bank for regular read or write access,  
T0  
T4 T5  
T9  
T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31  
T39  
CK  
/CK  
tMRD  
tMOD  
1
*
Command  
PALL  
MRS  
READ  
MRS  
tMPRR  
NOP  
tRP  
NOP  
NOP  
NOP  
tMOD  
3
0
Valid  
3
BA  
2
*
0
0
Valid  
A[1:0]  
2
*
1
0
A[2]  
00  
Valid  
Valid  
Valid  
00  
A[9:3]  
1
0
0
0
0
0
0
0
0
A10(AP)  
A[11]  
1
*
A12(/BC)  
A[15:13]  
Valid  
Valid  
DQS, /DQS  
DQ  
RL  
Notes: 1. READ with BL8 either by MRS or OTF  
2. Memory Control must drive 0 on A[2:0]  
VIH or VIL  
MPR Readout of Predefined Pattern, BL8 fixed Burst Order, Single Readout  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
94  
EDJ1104BFSE, EDJ1108BFSE  
T0  
T4 T5  
T9  
T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31  
T43  
CK  
/CK  
tMRD  
tMOD  
MRS  
tMPRR  
1
1
*
*
Command  
PALL NOP MRS  
tRP  
NOP  
READ  
NOP  
READ  
NOP  
NOP  
tMOD  
tCCD  
BA  
3
3
Valid  
Valid  
2
2
*
*
A[1:0]  
A[2]  
0
1
0
0
0
0
Valid  
0
2
2
*
*
00  
00  
0
A[9:3]  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
1
0
0
0
0
A10, AP  
A[11]  
0
0
0
1
1
*
*
A12(/BC)  
A[15:13]  
Valid  
Valid  
Valid  
Valid  
DQS, /DQS  
RL  
RL  
DQ  
Notes: 1. READ with BL8 either by MRS or OTF  
2. Memory Control must drive 0 on A[2:0]  
VIH or VIL  
T43  
MPR Readout of Predefined Pattern, BL8 Fixed Burst Order, Back-to-Back Readout  
T0  
T4 T5  
T9  
T17 T18 T19 T20 T21 T22  
T23 T24 T25 T26 T27 T28 T29 T30 T31  
CK  
/CK  
tMRD  
tMOD  
1
1
*
*
Command  
PALL NOP MRS  
tRP  
NOP  
READ  
READ  
MRS  
tMPRR  
NOP  
NOP  
NOP  
tMOD  
tCCD  
3
0
3
Valid  
Valid  
BA  
A[1:0]  
2
2
*
*
0
0
Valid  
0
0
1
3
4
*
*
1
A[2]  
00  
00  
0
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
A[9:3]  
1
0
0
0
0
A10(AP)  
A[11]  
0
0
0
1
1
*
*
A12(/BC)  
A[15:13]  
Valid  
Valid  
Valid  
Valid  
DQS, /DQS  
DQ  
RL  
RL  
VIH or VIL  
Notes:1. READ with BC4 either by MRS or OTF  
2. Memory Control must drive 0 on A[1:0]  
3. A[2] = 0 selects lower 4 nibble bits 0 ... 3  
4. A[2] = 1 selects upper 4 nibble bits 4 ... 7  
MPR Readout Predefined Pattern, BC4, Lower Nibble Then Upper Nibble  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
95  
EDJ1104BFSE, EDJ1108BFSE  
T0  
T4 T5  
T9  
T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31  
T43  
CK, /CK  
tMRD  
tMOD  
1
1
*
*
Command  
PALL NOP MRS  
tRP  
NOP  
READ  
NOP  
READ  
MRS  
tMPRR  
NOP  
NOP  
tMOD  
tCCD  
3
0
3
Valid  
0
Valid  
Valid  
BA  
A[1:0]  
2
*
2
*
0
1
0
0
4
*
3
*
1
A[2]  
00  
00  
0
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
A[9:3]  
1
0
0
0
0
A10, AP  
A[11]  
0
0
0
1
1
*
*
A12(/BC)  
A[15:13]  
Valid  
Valid  
Valid  
Valid  
DQS, /DQS  
DQ  
RL  
RL  
Notes:1. READ with BC4 either by MRS or OTF  
2. Memory Control must drive 0 on A[1:0]  
3. A[2] = 0 selects lower 4 nibble bits 0 ... 3  
4. A[2] = 1 selects upper 4 nibble bits 4 ... 7  
VIH or VIL  
MPR Readout of Predefined Pattern, BC4, Upper Nibble Then Lower Nibble  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
96  
EDJ1104BFSE, EDJ1108BFSE  
Operation of the DDR3 SDRAM  
Read Timing Definition  
Read timing is shown in the following Figure and is applied when the DLL is enabled and locked.  
Rising data strobe edge parameters:  
tDQSCK min/max describes the allowed range for a rising data strobe edge relative to CK, /CK.  
tDQSCK is the actual position of a rising strobe edge relative to CK, /CK.  
tQSH describes the DQS, /DQS differential output high time.  
tDQSQ describes the latest valid transition of the associated DQ pins.  
tQH describes the earliest invalid transition of the associated DQ pins.  
Falling data strobe edge parameters:  
tQSL describes the DQS, /DQS differential output low time.  
tDQSQ describes the latest valid transition of the associated DQ pins.  
tQH describes the earliest invalid transition of the associated DQ pins.  
tDQSQ; both rising/falling edges of DQS, no tAC defined.  
/CK  
CK  
tDQSCK(min.)  
tDQSCK(max.)  
tDQSCK(min.)  
tDQSCK(max.)  
Rising Strobe  
Region  
Rising Strobe  
Region  
tDQSCK  
tDQSCK  
tQSL  
tQSH  
/DQS  
DQS  
tQH  
tQH  
tDQSQ  
tDQSQ  
Associated  
DQ Pins  
Read Timing Definition  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
97  
EDJ1104BFSE, EDJ1108BFSE  
CK, /CK crossing to DQS, /DQS crossing  
tDQSCK; rising edges only of CK and DQS  
tQSH; rising edges of DQS to falling edges of DQS  
tQSL; rising edges of / DQS to falling edges of /DQS  
tLZ (DQS), tHZ (DQS) for preamble/postamble (see tHZ (DQS), tLZ (DQS)  
RL Measured to this point  
CK  
/CK  
tDQSCK(min.)  
tDQSCK(min.)  
tDQSCK(min.)  
tDQSCK(min.)  
tLZ(DQS)(min.)  
tQSL  
tQSH  
tRPRE  
tRPST  
DQS, /DQS  
Early strobe  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
tDQSCK(max.)  
tDQSCK(max.)  
tQSL  
tDQSCK(max.) tDQSCK(max.)  
tLZ(DQS)(max.)  
tHZ(DQS)(max.)  
tQSH  
tRPRE  
tRPST  
DQS, /DQS  
Late strobe  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
Notes: 1. Within a burst, rising strobe edge is not necessarily fixed to be always at tDQSCK (min.) or tDQSCK (max.). Instead, rising  
strobe edge can vary between tDQSCK (min.) and tDQSCK (max.).  
2. Notwithstanding note 1, a rising strobe edge with tDQSCK (max) at T (n) can not be immediately followed by a rising strobe  
edge with tDQSCK (min.) at T (n+1). This is because other timing  
relationships (tQSH, tQSL) exist:  
if tDQSCK(n+1) < 0:  
tDQSCK(n) < 1.0 tCK - (tQSHmin + tQSLmin) - | tDQSCK (n+1) |  
3. The DQS, /DQS differential output high time is defined by tQSH and the DQS, /DQS differential output low time is defined by tQSL.  
4. Likewise, tLZ (DQS)min and tHZ (DQS)min are not tied to tDQSCKmin (early strobe case) and tLZ (DQS) max and tHZ (DQS) max  
are not tied to tDQSCKmax (late strobe case).  
5. The minimum pulse width of read preamble is defined by tRPRE (min).  
6. The maximum read postamble is bound by tDQSCK(min.) plus tQSH (min.) on the left side and tHZ(DQS)(max.) on the right side.  
7. The minimum pulse width of read postamble is defined by tRPST (min.).  
8. The maximum read preamble is bound by tLZ (DQS)(min.) on the left side and tDQSCK (max.) on the right side.  
DDR3 Clock to Data Strobe Relationship  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
98  
EDJ1104BFSE, EDJ1108BFSE  
DQS, /DQS crossing to Data Output  
tDQSQ; both rising/falling edges of DQS, no tAC defined  
T0  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
/CK  
CK  
Command*3  
READ  
NOP  
RL = AL + CL  
Bank  
Coln  
Address*4  
tRPRE  
tQH  
tQH  
tRPST  
DQS, /DQS  
tDQSQ(max.)  
tDQSQ(max.)  
tLZ(DQ)(max.)  
tHZ(DQ)(max.)  
Dout Dout  
n+1  
Dout Dout  
n+2 n+3  
Dout Dout Dout Dout  
n+4 n+5 n+6 n+7  
DQ*2  
n
tLZ(DQ)(min.)  
(Last data valid)  
Dout Dout  
n+1  
Dout Dout  
n+2 n+3  
Dout Dout Dout Dout  
n+4 n+5 n+6 n+7  
DQ*2  
n
(First data no longer valid)  
Dout  
n
Dout  
n+1  
Dout  
n+2  
Dout  
n+3  
Dout  
n+4  
Dout  
n+5  
Dout  
n+6  
Dout  
n+7  
All DQS collectively  
Data valid  
Data valid  
VIH or VIL  
Notes: 1. BL8, RL = 5(AL = 0, CL = 5).  
2. Dout n = data-out from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 0] and A12 = 1 during READ command at T0.  
5. Output timings are referenced to VDDQ/2, and DLL on for locking.  
6. tDQSQ defines the skew between DQS, /DQS to data and does not define DQS, /DQS to clock.  
7. Early data transitions may not always happen at the same DQ.  
Data transitions of a DQ can vary(either early or late) within a busy.  
DDR3 Data Strobe to Data Relationship  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
99  
EDJ1104BFSE, EDJ1108BFSE  
tLZ (DQS), tLZ (DQ), tHZ (DQS), tHZ (DQ) Notes  
tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to  
a specific voltage level which specifies when the device output is no longer driving tHZ(DQS) and tHZ(DQ), or begins  
driving tLZ(DQS), tLZ(DQ). The figure below shows a method to calculate the point when device is no longer driving  
tHZ(DQS) and tHZ(DQ), or begins driving tLZ(DQS), tLZ(DQ) by measuring the signal at two different voltages. The  
actual voltage measurement points are not critical as long as the calculation is consistent. The parameters  
tLZ(DQS), tLZ(DQ), tHZ(DQS), and tHZ(DQ) are defined as singled ended.  
tLZ (DQS): CK-/CK rising crossing at RL-1  
tLZ (DQ): CK-/CK rising crossing at RL  
tHZ (DQS), tHZ (DQ) with BL8: CK-/CK rising crossing at RL + 4nCK  
tHZ (DQS), tHZ (DQ) with BL4: CK-/CK rising crossing at RL + 2nCK  
VTT + 2x mV  
VOH x mV  
VOH 2x mV  
VTT + x mV  
tLZ (DQS), tLZ (DQ)  
tHZ (DQS), tHZ (DQ)  
VTT x mV  
VOL + 2x mV  
T1  
T2  
VTT 2x mV  
VOL + x mV  
T2  
T1  
tLZ (DQS), tLZ (DQ) begin point = 2 T1 - T2  
tHZ (DQS), tHZ (DQ) end point = 2 T1 - T2  
Method for Calculating Transitions and Endpoints  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
100  
EDJ1104BFSE, EDJ1108BFSE  
Read Operation  
During read or write command DDR3 will support BC4 and BL8 on the fly using address A12 during the READ or  
WRITE (auto precharge can be enabled or disabled).  
A12 = 0, BC4 (BC4 = burst chop, tCCD = 4)  
A12 = 1, BL8  
A12 will be used only for burst length control, not a column address.  
The Burst Read command is initiated by having /CS and /CAS low while holding /RAS and /WE high at the rising  
edge of the clock. The address inputs determine the starting column address for the burst. The delay from the start  
of the command to when the data from the first cell appears on the outputs is equal to the value of the read latency  
(RL). The data strobe output (DQS) is driven low 1 clock cycle before valid data (DQ) is driven onto the data bus.  
The first bit of the burst is synchronized with the rising edge of the data strobe (DQS). Each subsequent data-out  
appears on the DQ pin in phase with the DQS signal in a source synchronous manner.  
The RL is equal to an additive latency (AL) plus /CAS latency (CL). The CL is defined by the Mode Register 0 (MR0),  
similar to the existing SDR and DDR-I SDRAMs. The AL is defined by the Mode Register 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
/CK  
Command*3  
Address*4  
READ  
NOP  
Bank  
Col n  
tRPST  
tRPRE  
DQS, /DQS  
DQ*2  
Dout Dout Dout  
n+1 n+2 n+3  
Dout Dout Dout  
n+5 n+6 n+7  
Dout  
n
Dout  
n+4  
CL = 5  
RL = AL + CL  
VIH or VIL  
Notes: 1. BL8, AL = 0, RL = 5, CL = 5  
2. Dout n = data-out from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at T0.  
Burst Read Operation, RL = 5  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
101  
EDJ1104BFSE, EDJ1108BFSE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
CK  
/CK  
Command*3  
Address*4  
READ  
NOP  
Bank  
Col n  
tRPST  
tRPRE  
DQS, /DQS*2  
DQ  
Dout Dout Dout Dout Dout Dout Dout Dout  
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
n
AL = 4  
CL = 5  
RL = AL + CL  
VIH or VIL  
Notes: 1. BL8, RL = 9, AL = (CL 1), CL = 5  
2. Dout n = data-out from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by either MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at T0.  
Burst Read Operation, RL = 9  
T0  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14  
CK  
/CK  
Command*3  
READ  
READ  
NOP  
NOP  
tCCD  
Address*4  
Bank  
Col n  
Bank  
Col b  
tRPST  
tRPRE  
DQS, /DQS  
DQ*2  
Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout  
n
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
b
b+1 b+2 b+3 b+4 b+5 b+6 b+7  
RL = 5  
RL = 5  
VIH or VIL  
Notes: 1. BL8, RL = 5 (CL = 5, AL = 0).  
2. Dout n (or b) = data-out from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at T0 and T4.  
Read (BL8) to Read (BL8)  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
102  
EDJ1104BFSE, EDJ1108BFSE  
T0  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14  
CK  
/CK  
Command*3  
Address*4  
READ  
READ  
NOP  
NOP  
tCCD  
Bank  
Col b  
Bank  
Col n  
tRPST  
tRPST  
tRPRE  
tRPRE  
DQS, /DQS  
DQ*2  
Dout Dout Dout Dout  
Dout Dout Dout Dout  
b+1 b+2 b+3  
n
n+1 n+2 n+3  
b
RL = 5  
RL = 5  
VIH or VIL  
Notes: 1. BC4, RL = 5 (CL = 5, AL = 0).  
2. Dout n (or b) = data-out from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [1, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 0 during READ command at T0 and T4.  
Read (BC4) to Read (BC4)  
T0  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14 T15  
CK  
/CK  
Command*3  
READ  
WRIT  
NOP  
NOP  
tWR  
READ to WRIT command delay = RL + tCCD + 2tCK WL  
tBL = 4 clocks  
tWTR  
Address*4  
Bank  
Col n  
Bank  
Col b  
tRPRE  
tRPST  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Dout Dout Dout Dout Dout Dout Dout Dout  
Din Din Din Din  
Din Din Din Din  
n
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
b
b+1 b+2 b+3 b+4 b+5 b+6 b+7  
RL = 5  
WL = 5  
VIH or VIL  
Notes: 1. BL8, RL = 5 (CL = 5, AL = 0), WL = 5 (CWL = 5, AL = 0).  
2. Dout n = data-out from column n, Din b= data-in from column b.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at T0 and WRIT command T6.  
Read (BL8) to Write (BL8)  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
103  
EDJ1104BFSE, EDJ1108BFSE  
T0  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14 T15  
CK  
/CK  
Command*3  
READ  
WRIT  
NOP  
NOP  
tWR  
READ to WRIT Command delay = RL + tCCD/2 + 2tCK WL  
tBL = 4 clocks  
tWTR  
Bank  
Col n  
Bank  
Col b  
Address*4  
tRPRE  
tRPST  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Dout Dout Dout Dout  
n+1 n+2 n+3  
Din Din Din Din  
b+1 b+2 b+3  
n
b
RL = 5  
WL = 5  
VIH or VIL  
Notes: 1. BC4, RL = 5 (CL = 5, AL = 0), WL = 5 (CWL = 5, AL = 0).  
2. Dout n = data-out from column n, Din b= data-in from column b.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during READ command at T0 and WRIT command T4.  
Read (BC4) to Write (BC4) OTF  
T0  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14  
CK  
/CK  
Command*3  
READ  
READ  
NOP  
NOP  
tCCD  
Bank  
Col n  
Bank  
Col b  
Address*4  
tRPST  
tRPRE  
DQS, /DQS  
DQ*2  
Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout Dout  
n
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
b
b+1 b+2 b+3  
RL = 5  
RL = 5  
VIH or VIL  
Notes: 1. RL = 5 (CL = 5, AL = 0).  
2. Dout n (or b) = data-out from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during READ command at T4.  
BL8 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at T0.  
Read (BL8) to Read (BC4) OTF  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
104  
EDJ1104BFSE, EDJ1108BFSE  
T0  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14  
CK  
/CK  
Command*3  
Address*4  
READ  
READ  
NOP  
NOP  
tCCD  
Bank  
Col n  
Bank  
Col b  
tRPST  
tRPRE  
tRPRE  
tRPST  
DQS, /DQS  
DQ*2  
Dout Dout Dout Dout  
Dout Dout Dout Dout Dout Dout Dout Dout  
b+1 b+2 b+3 b+4 b+5 b+6 b+7  
n
n+1 n+2 n+3  
b
RL = 5  
RL = 5  
VIH or VIL  
Notes: 1. RL = 5 (CL = 5, AL = 0).  
2. Dout n (or b) = data-out from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during READ command at T0.  
BL8 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at T4.  
Read (BC4) to Read (BL8) OTF  
T0  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14 T15  
CK  
/CK  
Command*3  
READ  
WRIT  
NOP  
NOP  
tWR  
tBL = 4 clocks  
READ to WRIT command delay = RL + tCCD/2 + 2tCK WL  
tWTR  
Address*4  
Bank  
Col n  
Bank  
Col b  
tRPST  
tWPST  
tWPRE  
tRPRE  
DQS, /DQS  
DQ*2  
Dout Dout Dout Dout  
n+1 n+2 n+3  
Din Din Din Din  
Din Din Din  
Din  
n
b
b+1 b+2 b+3 b+4 b+5 b+6 b+7  
RL = 5  
WL = 5  
VIH or VIL  
Notes: 1. RL = 5 (CL = 5, AL = 0), WL = 5 (CWL = 5, AL = 0).  
2. Dout n = data-out from column n , Din b= data-in from column b.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during READ command at T0.  
BL8 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRIT command at T4.  
Read (BC4) to Write (BL8) OTF  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
105  
EDJ1104BFSE, EDJ1108BFSE  
T0  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14 T15  
CK  
/CK  
Command*3  
READ  
WRIT  
NOP  
NOP  
tWR  
READ to WRIT command delay = RL + tCCD + 2tCK WL  
tBL = 4 clocks  
tWTR  
Bank  
Col n  
Bank  
Col b  
Address*4  
tRPRE  
tRPST  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Dout Dout Dout Dout Dout Dout Dout Dout  
Din Din Din Din  
n
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
b
b+1 b+2 b+3  
RL = 5  
WL = 5  
VIH or VIL  
Notes: 1. RL = 5 (CL = 5, AL = 0), WL = 5 (CWL = 5, AL = 0).  
2. Dout n = data-out from column n, n Din b= data-in from column b.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at T0.  
BC4 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during WRIT command at T6.  
Read (BL8) to Write (BC4) OTF  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
/CK  
Command*3  
Address*4  
PRE  
READ  
NOP  
NOP  
tRTP = 4 nCK  
tRP  
Bank  
Col n  
tRPST  
tRPRE  
DQS, /DQS  
DQ*2  
Dout Dout Dout  
n+1 n+2 n+3  
Dout Dout Dout  
n+5 n+6 n+7  
Dout  
n
Dout  
n+4  
CL = 5  
RL = AL + CL  
VIH or VIL  
Notes: 1. BL8, AL = 0, RL = 5, CL = 5  
2. Dout n = data-out from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at T0.  
Burst Read Precharge Operation, RL = 5  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
106  
EDJ1104BFSE, EDJ1108BFSE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
CK  
/CK  
Command*3  
Address*4  
READ  
NOP  
NOP  
PRE  
tRTP = 4 nCK  
tRP  
Bank  
Col n  
tRPST  
tRPRE  
DQS, /DQS*2  
DQ  
Dout Dout Dout Dout Dout Dout Dout Dout  
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
n
AL = 4  
CL = 5  
RL = AL + CL  
Internal Read command starls here  
VIH or VIL  
Notes: 1. BL8, RL = 9, AL = (CL 1), CL = 5  
2. Dout n = data-out from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by either MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during READ command at T0.  
Burst Read Precharge Operation, RL = 9  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
107  
EDJ1104BFSE, EDJ1108BFSE  
Write Timing Definition  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
1
/CK*  
CK  
3
WRIT  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command*  
WL = AL + CWL  
Bank,  
Col n  
4
Address*  
tDQSS tDSH  
tDSH  
tDSH  
tDSH  
tWPRE (min)  
tWPST (min)  
tDQSS(min)  
DQS, /DQS  
tDQSH  
tDQSL tDQSL  
tDQSH  
tDQSH  
tDQSH  
tDQSL  
tDQSH (min)  
tDQSL  
tDQSL (min)  
tDSS  
tDSS  
tDSS  
tDSS  
tDSS  
Din  
Din  
Din  
Din  
Din  
Din  
Din  
Din  
n
2
DQ*  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
tDSH  
tDSH  
tDSH  
tDSH  
tWPRE (min)  
tWPST (min)  
tDQSL (min)  
DQS, /DQS  
tDQSH  
tDQSH  
tDQSH  
tDQSH  
tDQSL  
tDQSH (min)  
tDQSL  
tDQSL  
tDQSL  
tDSS  
tDSS  
tDSS  
tDSS  
tDSS  
Din  
Din  
Din  
Din  
Din  
Din  
Din  
Din  
n
2
DQ*  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
tDQSS  
tDSH  
tWPRE (min)  
tDSH  
tDSH  
tDSH  
tDQSS(max)  
tWPST (min)  
DQS, /DQS  
tDQSH  
tDQSL  
tDQSH  
tDQSH  
tDQSH  
tDQSL  
tDQSL  
tDQSL  
tDQSL (min)  
tDQSH (min)  
tDSS  
tDSS  
tDSS  
tDSS  
tDSS  
Din  
n
Din  
Din  
Din  
Din  
Din  
Din  
Din  
2
DQ*  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
Notes: 1.  
BL8, WL = 5 (AL = 0, CWL = 5)  
Din n = data-in from column n.  
VIH or VIL  
2.  
3.  
NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRIT command at T0.  
5. tDQSS must be met at each rising clock edge.  
Write Timing Definition  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
108  
EDJ1104BFSE, EDJ1108BFSE  
Write Operation  
During read or write command DDR3 will support BC4 and BL8 on the fly using address A12 during the READ or  
WRITE (auto precharge can be enabled or disabled).  
A12 = 0, BC4 (BC4 = burst chop, tCCD = 4)  
A12 = 1, BL8  
A12 will be used only for burst length control, not a column address.  
The Burst Write command is initiated by having /CS, /CAS and /WE low while holding /RAS high at the rising edge of  
the clock. The address inputs determine the starting column address. Write latency (WL) is equal to (AL + CWL). A  
data strobe signal (DQS) should be driven low (preamble) one clock prior to the WL. The first data bit of the burst  
cycle must be applied to the DQ pins at the first rising edge of the DQS following the preamble. The tDQSS  
specification must be satisfied for write cycles. The subsequent burst bit data are issued on successive edges of the  
DQS until the burst length of 4 is completed. When the burst has finished, any additional data supplied to the DQ  
pins will be ignored. The DQ Signal is ignored after the burst write operation is complete. The time from the  
completion of the burst write to bank precharge is the write recovery time (tWR).  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
CK  
/CK  
Command*3  
Address*4  
NOP  
WRIT  
WL = AL + CWL  
Bank  
Col n  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din Din Din Din Din Din Din Din  
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
n
VIH or VIL  
Notes: 1. BL8, WL = 5 (AL = 0, CWL = 5)  
2. Din n = data-in from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by either MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRIT command at T0.  
Burst Write Operation, WL = 5  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
109  
EDJ1104BFSE, EDJ1108BFSE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
CK  
/CK  
Command*3  
Address*4  
NOP  
WRIT  
Bank  
Col n  
tWPST  
tWPRE  
DQS, /DQS  
DQ*2  
Din Din Din Din Din Din Din Din  
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
n
AL = 4  
CWL = 5  
WL = AL + CWL  
VIH or VIL  
Notes: 1. BL8, WL = 9 (AL = (CL 1), CL = 5, CWL = 5)  
2. Din n = data-in from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRITcommand at T0.  
Burst Write Operation, WL = 9  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
Tn Tn+1 Tn+2  
CK  
/CK  
Command*3  
Address*4  
NOP  
WRIT  
READ  
tWTR*5  
Bank  
Col n  
Bank  
Col b  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din  
n
Din Din Din  
n+1 n+2 n+3  
WL = 5  
RL = 5  
Notes: 1. BC4, WL = 5, RL = 5.  
2. Din n = data-in from column n; Dout b = data-out from column b.  
VIH or VIL  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [1, 0] during WRIT command at T0 and READ command at Tn.  
5. tWTR controls the write to read delay to the same device and starts with the first rising clock edge after the  
last write data shown at T7.  
Write (BC4) to Read (BC4) Operation  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
110  
EDJ1104BFSE, EDJ1108BFSE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
Tn Tn+1 Tn+2  
CK  
/CK  
Command*3  
Address*4  
WRIT  
PRE  
NOP  
tWR*5  
Bank  
Col n  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din  
n
Din Din Din  
n+1 n+2 n+3  
WL = 5  
VIH or VIL  
Notes: 1. BC4, WL = 5, RL = 5.  
2. Din n = data-in from column n.  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [1, 0] during WRIT command at T0.  
5. The write recovery time (tWR) referenced from the first rising clock edge after the last write data shown at T7.  
tWR specifies the last burst write cycle until the precharge command can be issued to the same bank .  
Write (BC4) to Precharge Operation  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
CK  
/CK  
Command*3  
Address*4  
WRIT  
NOP  
WRIT  
NOP  
tCCD  
tWR  
tBL = 4 clocks  
tWTR  
Bank  
Col n  
Bank  
Col b  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din Din Din Din Din Din Din Din Din Din Din Din Din Din Din Din  
n
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
b
b+1 b+2 b+3 b+4 b+5 b+6 b+7  
WL = 5  
WL = 5  
Notes: 1. BL8, WL = 5 (CWL = 5, AL = 0)  
2. Din n (or b) = data-in from column n (or column b).  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
VIH or VIL  
4. BL8 setting activated by either MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRIT command at T0 and T4.  
Write (BL8) to Write (BL8) OTF  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
111  
EDJ1104BFSE, EDJ1108BFSE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
CK  
/CK  
Command*3  
Address*4  
NOP  
tCCD  
NOP  
WRIT  
WRIT  
tWR  
tBL = 4 clocks  
tWTR  
Bank  
Col n  
Bank  
Col b  
tWPRE  
tWPST  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din Din Din Din  
n+1 n+2 n+3  
Din Din Din Din  
b+1 b+2 b+3  
n
b
WL = 5  
WL = 5  
Notes: 1. BC4, WL = 5 (CWL = 5, AL = 0)  
2. Din n (or b) = data-in from column n (or column b).  
VIH or VIL  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by either MR0 bit [A1, A0] = [0, 1] and A12 = 0 during WRIT command at T0 and T4.  
Write (BC4) to Write (BC4) OTF  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
T14  
CK  
/CK  
Command*3  
Address*4  
WRIT  
READ  
NOP  
NOP  
tWTR  
Bank  
Col n  
Bank  
Col b  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din Din Din Din Din Din Din Din  
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
n
WL = 5  
RL = 5  
Notes: 1. RL = 5 (CL = 5, AL = 0), WL = 5 (CWL = 5, AL = 0)  
2. Din n = data-in from column n; DOUT b = data-out from column b.  
VIH or VIL  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 0] or MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRIT command at T0.  
READ command at T13 can be either BC4 or BL8 depending on MR0 bit [A1, A0] and A12 status at T13.  
Write (BL8) to Read (BC4/BL8) OTF  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
112  
EDJ1104BFSE, EDJ1108BFSE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
T14  
CK  
/CK  
Command*3  
Address*4  
WRIT  
READ  
NOP  
tBL = 4 clocks  
NOP  
tWTR  
Bank  
Col b  
Bank  
Col n  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din Din Din Din  
n+1 n+2 n+3  
n
RL = 5  
WL = 5  
Notes: 1. BC4, RL = 5 (CL = 5, AL = 0), WL = 5 (CWL = 5, AL = 0)  
2. Din n = data-in from column n; Dout b = data-out from column b.  
VIH or VIL  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during WRIT command at T0.  
READ command at T13 can be either BC4 or BL8 depending on MR0 bit [A1, A0] and A12 status at T13.  
Write (BC4) to Read (BC4/BL8) OTF  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
T14  
CK  
/CK  
Command*3  
Address*4  
WRIT  
WRIT  
NOP  
tCCD  
NOP  
tBL = 4 clocks  
tWR  
tWTR  
Bank  
Col n  
Bank  
Col b  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din Din Din Din Din Din Din Din Din Din Din Din  
n
n+1 n+2 n+3 n+4 n+5 n+6 n+7  
b
b+1 b+2 b+3  
WL = 5  
WL = 5  
Notes: 1. WL = 5 (CWL = 5, AL = 0)  
2. Din n (or b) = data-in from column n (or column b).  
VIH or VIL  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BL8 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRIT command at T0.  
BC4 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during WRIT command at T4.  
Write (BL8) to Write (BC4) OTF  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
113  
EDJ1104BFSE, EDJ1108BFSE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11 T12  
T13  
T14  
CK  
/CK  
Command*3  
Address*4  
NOP  
tCCD  
NOP  
tBL = 4 clocks  
WRIT  
WRIT  
tWR  
tWTR  
Bank  
Col n  
Bank  
Col b  
tWPRE  
tWPST  
tWPRE  
tWPST  
DQS, /DQS  
DQ*2  
Din Din Din Din  
Din Din Din Din Din Din Din Din  
b+1 b+2 b+3 b+4 b+5 b+6 b+7  
n
n+1 n+2 n+3  
b
WL = 5  
WL = 5  
Notes: 1. WL = 5 (CWL = 5, AL = 0)  
2. Din n (or b) = data-in from column n (or column b).  
VIH or VIL  
3. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
4. BC4 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 0 during WRIT command at T0.  
BL8 setting activated by MR0 bit [A1, A0] = [0, 1] and A12 = 1 during WRIT command at T4.  
Write (BC4) to Write (BL8) OTF  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
114  
EDJ1104BFSE, EDJ1108BFSE  
Write Timing Violations  
Motivation  
Generally, if timing parameters are violated, a complete reset/initialization procedure has to be initiated to make sure  
the DRAM works properly.  
However it is desirable for certain minor violations, that the DRAM is guaranteed not to "hang up" and error to be  
limited to that particular operation.  
For the following it will be assumed that there are no timing violations w.r.t to the write command itself (including  
ODT etc.) and that it does satisfy all timing requirements not mentioned below.  
Data Setup and Hold Violations  
Should the data to strobe timing requirements (tDS, tDH) be violated, for any of the strobe edges associated with a  
write burst, then wrong data might be written to the memory location addressed with this write command.  
In the example (Figure Write Timing Parameters) the relevant strobe edges for write burst A are associated with the  
clock edges: T5, T5.5, T6, T6.5, T7, T7.5, T8, T8.5.  
Subsequent reads from that location might result in unpredictable read data, however the DRAM will work properly  
otherwise.  
Strobe to Strobe and Strobe to Clock Violations  
Should the strobe timing requirements (tDQSH, tDQSL, tWPRE, tWPST) or the strobe to clock timing requirements  
(tDSS, tDSH tDQSS) be violated for any of the strobe edges associated with a write burst, then wrong data might be  
written to the memory location addressed with the offending write command. Subsequent reads from that location  
might result in unpredictable read data, however the DRAM will work properly otherwise.  
In the example (Figure Write (BL8) to Write (BL8) OTF) the relevant strobe edges for write burst n are associated  
with the clock edges: T4, T4.5, T5, T5.5, T6, T6.5, T7, T7.5, T8, T8.5 and T9. Any timing requirements starting and  
ending on one of these strobe edges are T8, T8.5, T9, T9.5, T10, T10.5, T11, T11.5, T12, T12.5 and T13. Some  
edges are associated with both bursts.  
T0  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13 T14  
CK  
/CK  
Command*3  
WRIT  
A
WRIT  
B
NOP  
NOP  
Address*4  
/CS  
ODTL  
BL/2 + 2 + ODTL  
WL  
tDQSS  
tDSS  
tDSH  
tDQSL  
tWPST  
tWPRE  
tDQSH  
DQS, /DQS  
DQ*2  
tDH  
tDS  
VIH or VIL  
Write Timing Parameters  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
115  
EDJ1104BFSE, EDJ1108BFSE  
Write Data Mask  
One write data mask (DM) pin for each 8 data bits (DQ) will be supported on DDR3 SDRAMs, Consistent with the  
implementation on DDR-I SDRAMs. It has identical timings on write operations as the data bits, and though used in  
a uni-directional manner, is internally loaded identically to data bits to ensure matched system timing. DM is not  
used during read cycles.  
T1  
T2  
T3  
T4  
T5  
T6  
DQS  
/DQS  
DQ  
DM  
in  
in  
in  
in  
in  
in  
in  
in  
Write mask latency = 0  
Data Mask Timing  
/CK  
CK  
[tDQSS(min.)]  
tWR  
WRIT  
Command  
NOP  
WL  
tDQSS  
DQS, /DQS  
DQ  
in0  
in2 in3  
DM  
WL  
tDQSS  
[tDQSS(max.)]  
DQS, /DQS  
DQ  
in0  
in2 in3  
DM  
Data Mask Function, WL = 5, AL = 0 shown  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
116  
EDJ1104BFSE, EDJ1108BFSE  
Precharge  
The precharge command is used to precharge or close a bank that has been activated. The precharge command is  
triggered when /CS, /RAS and /WE are low and /CAS is high at the rising edge of the clock. The precharge  
command can be used to precharge each bank independently or all banks simultaneously. Four address bits A10,  
BA0, BA1 and BA2 are used to define which bank to precharge when the command is issued.  
[Bank Selection for Precharge by Address Bits]  
A10  
BA0  
BA1  
BA2  
L
Precharged Bank(s)  
Bank 0 only  
L
L
L
L
H
L
L
L
Bank 1 only  
L
H
H
L
L
Bank 2 only  
L
H
L
L
Bank 3 only  
L
H
H
H
H
×
Bank 4 only  
L
H
L
L
Bank 5 only  
L
H
H
×
Bank 6 only  
L
H
×
Bank 7 only  
H
All banks 0 to 7  
Remark: H: VIH, L: VIL, ×: VIH or VIL  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
117  
EDJ1104BFSE, EDJ1108BFSE  
Auto Precharge Operation  
Before a new row in an active bank can be opened, the active bank must be precharged using either the precharge  
command or the auto precharge function. When a read or a write command is given to the DDR3 SDRAM, the /CAS  
timing accepts one extra address, column address A10, to allow the active bank to automatically begin precharge at  
the earliest possible moment during the burst read or write cycle. If A10 is low when the read or write Command is  
issued, then normal read or write burst operation is executed and the bank remains active at the completion of the  
burst sequence. If A10 is high when the Read or Write Command is issued, then the auto precharge function is  
engaged. During auto precharge, a read Command will execute as normal with the exception that the active bank  
will begin to precharge on the rising edge which is /CAS latency (CL) clock cycles before the end of the read burst.  
Auto precharge can also be implemented during Write commands. The precharge operation engaged by the Auto  
precharge command will not begin until the last data of the burst write sequence is properly stored in the memory  
array.  
This feature allows the precharge operation to be partially or completely hidden during burst read cycles (dependent  
upon /CAS latency) thus improving system performance for random data access. The /RAS lockout circuit internally  
delays the Precharge operation until the array restore operation has been completed so that the auto precharge  
command may be issued with any read or write command.  
Burst Read with Auto Precharge  
If A10 is high when a Read Command is issued, the Read with Auto precharge function is engaged. The DDR3  
SDRAM starts an auto precharge operation on the rising edge which is (AL + tRTP) cycles later from the read with  
AP command when tRAS (min.) is satisfied. If tRAS (min.) is not satisfied at the edge, the start point of auto  
precharge operation will be delayed until tRAS (min.) is satisfied. A new bank active (command) may be issued to  
the same bank if the following two conditions are satisfied simultaneously.  
(1) The /RAS precharge time (tRP) has been satisfied from the clock at which the auto precharge begins.  
(2) The /RAS cycle time (tRC) from the previous bank activation has been satisfied.  
Burst Write with Auto precharge  
If A10 is high when a write command is issued, the Write with auto precharge function is engaged. The DDR3  
SDRAM automatically begins precharge operation after the completion of the burst writes plus write recovery time  
(tWR). The bank-undergoing auto precharge from the completion of the write burst may be reactivated if the  
following two conditions are satisfied.  
(1) The data-in to bank activate delay time (tWR + tRP) has been satisfied.  
(2) The /RAS cycle time (tRC) from the previous bank activation has been satisfied.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
118  
EDJ1104BFSE, EDJ1108BFSE  
Auto-Refresh  
The refresh command (REF) is used during normal operation of the DDR3 SDRAMs. This command is non  
persistent, so it must be issued each time a refresh is required. The DDR3 SDRAM requires refresh cycles at an  
average periodic interval of tREFI. When /CS, /RAS and /CAS are held low and /WE high at the rising edge of the  
clock, the chip enters a refresh cycle. All banks of the SDRAM must be precharged and idle for a minimum of the  
precharge time tRP(min) before the refresh command can be applied. The refresh addressing is generated by the  
internal refresh controller. This makes the address bits “Don’t Care” during a refresh command. An internal address  
counter supplies the addresses during the refresh cycle. No control of the external address bus is required once this  
cycle has started. When the refresh cycle has completed, all banks of the SDRAM will be in the precharged (idle)  
state. A delay between the refresh command and the next valid command, except NOP or DESL, must be greater  
than or equal to the minimum refresh cycle time tRFC(min) as shown in the following figure. Note that the tRFC  
timing parameter depends on memory density.  
In general, a refresh command needs to be issued to the DDR3 SDRAM regularly every tREFI interval. To allow for  
improved efficiency in scheduling and switching between tasks, some flexibility in the absolute refresh interval is  
provided. A maximum of 8 refresh commands can be postponed during operation of the DDR3 SDRAM, meaning  
that at no point in time more than a total of 8 refresh commands are allowed to be postponed. In case that 8 refresh  
commands are postponed in a row, the resulting maximum interval between the surrounding refresh commands is  
limited to 9 × tREFI. A maximum of 8 additional refresh commands can be issued in advance (“pulled in”), with each  
one reducing the number of regular refresh commands required later by one. Note that pulling in more than  
8 refresh commands in advance does not further reduce the number of regular refresh commands required later, so  
that the resulting maximum interval between two surrounding refresh commands is limited to 9 × tREFI. At any given  
time, a maximum of 16 REF commands can be issued within 2 × tREFI. Self-refresh mode may be entered with a  
maximum of eight refresh commands being postponed. After exiting self-refresh mode with one or more refresh  
commands postponed, additional refresh commands may be postponed to the extent that the total number of  
postponed refresh commands (before and after the self refresh) will never exceed eight. During self-refresh mode,  
the number of postponed or pulled-in REF commands does not change.  
T0  
T1  
T2  
T3  
/CK  
CK  
VIH  
tRP  
tRFC  
tRFC  
CKE  
Any  
Command  
PRE  
NOP  
REF  
REF  
NOP  
Command  
Refresh Command Timing  
tREFI  
9 × tREFI  
t
tRFC  
8 × REF-Commands postponed  
Postponing Refresh Command  
tREFI  
9 × tREFI  
t
tRFC  
8 × REF-Commands pulled-in  
Pulling-in Refresh Command  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
119  
EDJ1104BFSE, EDJ1108BFSE  
Self-Refresh  
The self-refresh command can be used to retain data in the DDR3 SDRAM, even if the rest of the system is  
powered down. When in the self-refresh mode, the DDR3 SDRAM retains data without external clocking. The DDR3  
SDRAM device has a built-in timer to accommodate self-refresh operation. The self-refresh entry (SELF) command  
is defined by having /CS, /RAS, /CAS and CKE held low with /WE high at the rising edge of the clock.  
Before issuing the self-refresh entry command, the DDR3 SDRAM must be idle with all bank precharge state with  
tRP satisfied. ‘Idle state’ is defined as all banks are closed (tRP, tDAL, etc. satisfied), no data bursts are in progress,  
CKE is high, and all timings from previous operations are satisfied (tMRD, tMOD, tRFC, tZQinit, tZQoper, tZQCS,  
etc.) Also, on-die termination must be turned off before issuing self-refresh entry command, by either registering  
ODT pin low “ODTL + 0.5tCK” prior to the self-refresh entry command or using MRS to MR1 command. Once the  
self-refresh entry command is registered, CKE must be held low to keep the device in self-refresh mode. During  
normal operation (DLL on), MR1 (A0 = 0), the DLL is automatically disabled upon entering self-refresh and is  
automatically enabled (including a DLL-Reset) upon exiting self-refresh.  
When the DDR3 SDRAM has entered self-refresh mode all of the external control signals, except CKE and /RESET,  
are “don’t care”. For proper self-refresh operation, all power supply and reference pins (VDD, VDDQ, VSS, VSSQ,  
VREFCA and VREFDQ) must be at valid levels. VREFDQ supply may be turned OFF and VREFDQ may take any  
value between VSS and VDD during self-refresh operation, provided that VREFDQ is valid and stable prior to CKE  
going back high and that first write operation or first write leveling activity may not occur earlier than 512 nCK after  
exit from self refresh. The DRAM initiates a minimum of one refresh command internally within tCKESR period once  
it enters self-refresh mode.  
The clock is internally disabled during self-refresh operation to save power. The minimum time that the DDR3  
SDRAM must remain in self-refresh mode is tCKESR. The user may change the external clock frequency or halt the  
external clock tCKSRE cycles after self-refresh entry is registered, however, the clock must be restarted and stable  
tCKSRX clock cycles before the device can exit self-refresh operation. To protect DRAM internal delay on CKE line  
to block the input signals, one NOP (or DESL) command is needed after self-refresh entry.  
The procedure for exiting self-refresh requires a sequence of events. First, the clock must be stable prior to CKE  
going back high. Once a self-refresh exit command (SREX, combination of CKE going high and either NOP or  
DESL on command bus) is registered, a delay of at least tXS must be satisfied before a valid command not requiring  
a locked DLL can be issued to the device to allow for any internal refresh in progress.  
Before a command that requires a locked DLL can be applied, a delay of at least tXSDLL must be satisfied.  
Depending on the system environment and the amount of time spent in self-refresh, ZQ calibration commands may  
be required to compensate for the voltage and temperature drift as described in ZQ Calibration section. To issue ZQ  
calibration commands, applicable timing requirements must be satisfied (See Figure ZQ Calibration).  
CKE must remain high for the entire self-refresh exit period tXSDLL for proper operation except for self-refresh  
re-entry. Upon exit from self-refresh, the DDR3 SDRAM can be put back into self-refresh mode after waiting at least  
tXS period and issuing one refresh command (refresh period of tRFC). NOP or DESL commands must be registered  
on each positive clock edge during the self-refresh exit interval tXS. ODT must be turned off during tXSDLL.  
The use of self-refresh mode introduces the possibility that an internally timed refresh event can be missed when  
CKE is raised for exit from self-refresh mode. Upon exit from self-refresh, the DDR3 SDRAM requires a minimum of  
one extra refresh command before it is put back into self-refresh mode.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
120  
EDJ1104BFSE, EDJ1108BFSE  
Ta  
Tb  
Tc Tc+1Tc+2  
Td  
Te  
Tf Tf+1 Tf+2  
Tg Tg+1  
Th Th+1  
CK, /CK  
tCKSRE  
tCKSRX  
tXSDLL  
tRP  
tXS  
4
2
2
3
3
*
*
*
* *  
Valid Valid  
1
*
Command  
Valid Valid  
PALL  
SELF NOP  
SREX  
tCKESR  
CKE  
ODT  
ODTLoff + 0.5 x tCK  
Notes: 1. Only NOP or DESL commands.  
2. Valid commands not requiring a locked DLL.  
3. Valid commands requiring a locked DLL.  
4. One NOP or DESL commands.  
Self-Refresh Entry and Exit Timing  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
121  
EDJ1104BFSE, EDJ1108BFSE  
Power-Down Mode  
Power-down is synchronously entered when CKE is registered low (along with NOP or DESL command). CKE is not  
allowed to go low while mode register set command, MPR operations, ZQCAL operations, DLL locking or read/write  
operation are in progress. CKE is allowed to go low while any of other operations such as row activation, precharge  
or auto precharge and refresh are in progress, but power-down IDD spec will not be applied until finishing those  
operations.  
The DLL should be in a locked state when power-down is entered for fastest power-down exit timing. If the DLL is  
not locked during power-down entry, the DLL must be reset after exiting power-down mode for proper read operation  
and synchronous ODT operation. DRAM design provides all AC and DC timing and voltage specification as well  
proper DLL operation with any CKE intensive operations as long as DRAM controller complies with DRAM  
specifications.  
During power-down, if all banks are closed after any in-progress commands are completed, the device will be in  
precharge power-down mode; if any bank is open after in-progress commands are completed, the device will be in  
active power-down mode.  
Entering power-down deactivates the input and output buffers, excluding CK, /CK, ODT, CKE and /RESET. To  
protect DRAM internal delay on CKE line to block the input signals, multiple NOP or DESL commands are needed  
during the CKE switch off and cycle(s) after this timing period are defined as tCPDED. CKE_low will result in  
deactivation of command and address receivers after tCPDED has expired.  
[Power-Down Entry Definitions]  
Status of DRAM  
MR0 bit A12  
DLL  
On  
PD Exit  
Fast  
Relevant Parameters  
Active  
(A bank or more open)  
Don’t Care  
tXP to any valid command  
tXP to any valid command. Since it is in  
precharge state, commands here will be  
ACT, AR, MRS, PRE or PALL .  
tXPDLL to commands who need DLL to  
operate, such as READ, READA or ODT  
control line.  
Precharged  
0
1
Off  
On  
Slow  
Fast  
(All banks precharged)  
Precharged  
(All banks precharged)  
tXP to any valid command  
Also the DLL is disabled upon entering precharge power-down for slow exit mode, but the DLL is kept enabled  
during precharge power-down for fast exit mode or active power-down. In power-down mode, CKE low, RESET high  
and a stable clock signal must be maintained at the inputs of the DDR3 SDRAM, and ODT should be in a valid state  
but all other input signals are “Don’t Care” (If RESET goes low during power-down, the DRAM will be out of PD  
mode and into reset state). CKE low must be maintained until tPD has been satisfied. Power-down duration is  
limited by 9 times tREFI of the device.  
The power-down state is synchronously exited when CKE is registered high (along with a NOP or DESL command).  
CKE high must be maintained until tCKE has been satisfied. A valid, executable command can be applied with  
power-down exit latency, tXP and/or tXPDLL after CKE goes high. Power-down exit latency is defined at AC  
Characteristics table of this data sheet.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
122  
EDJ1104BFSE, EDJ1108BFSE  
Timing Diagrams for Proposed CKE with Power-Down Entry, Power-Down Exit  
T0  
T1  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
Tx  
Tx+1  
/CK  
CK  
Command  
READ  
Valid  
NOP  
NOP  
BA  
tCPDED  
tRDPDEN  
tIS  
VIH  
CKE  
RL = CL + AL = 5 (AL = 0)  
tPD  
out out out out out out out out  
DQ(BL8)  
DQ(BC4)  
0
1
2
3
4
5
6
7
out out out out  
0
1
2
3
Power-Down Entry after Read and Read with Auto Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10 T14 T15  
T16 T17 T18 Tn  
CK  
/CK  
Command  
NOP  
NOP  
NOP  
WRITA  
Valid  
BA  
tCPDED  
tIS  
CKE  
tWRAPDEN  
WL=5  
tWR*  
tPD  
in in in in in in in in  
DQ(BL8)  
DQ(BC4)  
0
1
2
3
4
5
6
7
in in in in  
0
1
2
3
Start Internal  
Precharge  
Note: tWR is programmed through MRS.  
Power-Down Entry After Write with Auto Precharge  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
123  
EDJ1104BFSE, EDJ1108BFSE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10 Tx Tx+1 Tx+2 Tx+3  
CK  
/CK  
Command  
WRITE  
Valid  
NOP  
NOP  
BA  
tCPDED  
tIS  
CKE  
tWRPDEN  
WL=5  
tWR  
tPD  
in in in in in in in in  
DQ(BL8)  
DQ(BC4)  
0
1
2
3
4
5
6
7
in in in in  
0
1
2
3
Power-Down Entry after Write  
T0  
T1  
Tn Tn+1  
Tx  
Ty  
CK  
/CK  
tPD  
tIH  
tIH  
CKE  
tIS  
tIS  
tCPDED  
Valid NOP NOP  
tCKE (min.)  
Command  
NOP NOP NOP NOP NOP Valid NOP NOP NOP NOP  
N
tXP  
Enter power-down mode  
Exit power-down  
Note: Valid command at T0 is ACT, NOP, DESL or precharge with still one bank remaining open after completion of  
precharge command.  
Active Power-Down Entry and Exit Timing Diagram  
T0  
T1  
Tn Tn+1  
Tx  
Ty  
CK  
/CK  
tPD  
tIH  
tIH  
CKE  
tIS  
tCPDED  
tIS  
tCKE (min.)  
Command  
NOP NOP  
NOP NOP NOP NOP NOP Valid NOP NOP NOP1NOP N  
tXP  
Enter power-down mode  
Exit power-down  
Precharge Power-Down (Fast Exit Mode) Entry and Exit  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
124  
EDJ1104BFSE, EDJ1108BFSE  
T0  
T1  
Tn Tn+1  
Tx  
Ty  
CK  
/CK  
tIH  
tIH  
CKE  
tIS  
tIS  
tPD  
tCPDED  
tCKE (min.)  
NOP NOP NOP NOP NOP NOP Valid NOP Valid NOP NO  
tXP  
Command  
NOP NOP NOP  
tXPDLL  
Exit power-down  
Enter power-down mode  
Precharge Power-Down (Slow Exit Mode) Entry and Exit  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
/CK  
Command  
REF  
NOP  
NOP  
tCPDED  
tREFPDEN  
tIS  
CKE  
Refresh Command to Power-Down Entry  
T0  
T1  
T2  
T3  
T4  
Tn  
Tn+1 Tn+2  
End  
CK  
/CK  
Command  
NOP  
NOP  
ACT  
tCPDED  
tPD  
tACTPDEN  
tIS  
CKE  
Active Command to Power-Down Entry  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
125  
EDJ1104BFSE, EDJ1108BFSE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
End  
CK  
/CK  
PRE/  
PALL  
Command  
NOP  
NOP  
tCPDED  
tPREPDEN  
tIS  
CKE  
Precharge/Precharge All Command to Power-Down Entry  
T0  
T1  
T2  
T3  
Tn  
Tn+1  
NOP  
Tn+2  
NOP  
Tn+3 Tn+4 Tn+5  
Tn+6 Tn+7  
CK  
/CK  
Command  
MRS  
NOP  
NOP  
NOP  
tCPDED  
tMRSPDEN  
tIS  
CKE  
MRS Command to Power-Down Entry  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
126  
EDJ1104BFSE, EDJ1108BFSE  
Timing Values tXXXPDEN Parameters  
Status of DRAM  
Idle or Active  
Idle or Active  
Active  
Last Command before CKE_low  
Parameter  
tACTPDEN  
tPRPDEN  
tRDPDEN  
Parameter Value  
Unit  
nCK  
nCK  
nCK  
Activate  
1
1
Precharge  
READ/READA  
RL + 4 + 1  
WL + 4 + (tWR/tCK (avg))  
Active  
Active  
WRIT for BL8MRS, BL8OTF, BC4OTF tWRPDEN  
nCK  
nCK  
1
*
WL + 2 + (tWR/tCK  
WRIT for BC4MRS  
tWRPDEN  
(avg))*1  
Active  
Active  
Idle  
WRITA for BL8MRS, BL8OTF, BC4OTF tWRAPDEN  
WL + 4 + WR*2 + 1  
nCK  
nCK  
nCK  
WRITA for BC4MRS  
Refresh  
tWRAPDEN  
tREFPDEN  
tMRSPDEN  
WL + 2 + WR*2 + 1  
1
Idle  
Mode Register Set  
tMOD  
Notes: 1. tWR is defined in ns, for calculation of tWRPDEN, it is necessary to round up tWR / tCK to next integer.  
2. WR in clock cycles as programmed in mode register.  
Power-Down Entry and Exit Clarification  
Case 1:  
When CKE registered low for power-down entry, tPD must be satisfied before CKE can be registered high for power-  
down exit.  
Case 1a:  
After power-down exit, tCKE must be satisfied before CKE can be registered low again.  
T0  
T1  
Tn  
Tn+1  
Tx  
Ty  
CK  
/CK  
tIH  
tIH  
CKE  
tIS  
tIS  
tPD  
tCPDED  
NOP NOP NOP  
tCKE  
NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP  
N
Command  
Exit power-down  
Enter power-down  
Power-Down Entry/Exit Clarifications (1)  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
127  
EDJ1104BFSE, EDJ1108BFSE  
Case 2:  
For certain CKE intensive operations, for example, repeated "PD Exit - Refresh - PD Entry" sequence, the number of  
clock cycles between PD Exit and PD Entry may be insufficient to keep the DLL updated. Therefore the following  
conditions must be met in addition to tPD in order to maintain proper DRAM operation when Refresh commands is  
issued in between PD Exit and PD Entry.  
Power-down mode can be used in conjunction with Refresh command if the following conditions are met:  
1. tXP must be satisfied before issuing the command  
2. tXPDLL must be satisfied (referenced to registration of PD exit) before next power-down can be entered.  
T0 T1  
Tn Tn+1  
tIH  
Tx  
Ty  
CK  
/CK  
tIH  
CKE  
tIS  
tCPDED  
tIS  
tXPDLL (min.)  
tCKE (min.)  
tPD  
Command  
NOP NOP NOP  
NOP  
NOP  
tXP  
REF NOP NOP NOP NOP NOP NOP NOP  
Exit power-down  
Enter power-down  
Power-Down Entry/Exit Clarifications (2)  
Case 3:  
If an early PD Entry is issued after Refresh command, once PD Exit is issued, NOP or DESL with CKE high must be  
issued until tRFC from the refresh command is satisfied. This means CKE cannot be de-asserted twice within tRFC  
window.  
T0  
T1  
Tn  
Tn+1  
Tx  
Ty  
CK  
/CK  
tIH  
tIH  
CKE  
tIS  
tIS  
tPD  
tXPDLL  
tCPDED  
REF NOP NOP  
tCKE (min.)  
Command  
NOP NOP NOP NOP NOP NOP NOP NOP NOP Valid  
N
tRFC (min.)  
Exit power-down  
Enter power-down  
Note: * Synchronous ODT Timing starts at the end of tXPDLL (min.)  
Power-Down Entry/Exit Clarifications (3)  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
128  
EDJ1104BFSE, EDJ1108BFSE  
Input Clock Frequency Change during Precharge Power-Down  
Once the DDR3 SDRAM is initialized, the DDR3 SDRAM requires the clock to be “stable” during almost all states of  
normal operation. This means once the clock frequency has been set and is to be in the “stable state”, the clock  
period is not allowed to deviate except for what is allowed for by the clock jitter and SSC (Spread Spectrum  
Clocking) specifications.  
The input clock frequency can be changed from one stable clock rate to another stable clock rate under two  
conditions: (1) self-refresh mode and (2) precharge power-down mode. Outside of these two modes, it is illegal to  
change the clock frequency. For the first condition, once the DDR3 SDRAM has been successfully placed in to Self-  
Refresh mode and tCKSRE has been satisfied, the state of the clock becomes a don’t care. Once a don’t care,  
changing the clock frequency is permissible, provided the new clock frequency is stable prior to tCKSRX. When  
entering and exiting Self-Refresh mode for the sole purpose of changing the clock frequency, the self-refresh entry  
and exit specifications must still be met as outlined in Self-Refresh section.  
The second condition is when the DDR3 SDRAM is in Precharge Power-down mode (either fast exit mode or slow  
exit mode.) ODT must be at a logic low ensuring RTT is in an off state prior to entering Precharge Power-down mode  
and CKE must be at a logic low. A minimum of tCKSRE must occur after CKE goes low before the clock frequency  
may change. The DDR3 SDRAM input clock frequency is allowed to change only within the minimum and maximum  
operating frequency specified for the particular speed grade. During the input clock frequency change, ODT and  
CKE must be held at stable low levels. Once the input clock frequency is changed, stable new clocks must be  
provided to the DRAM tCKSRX before Precharge Power-down may be exited; after Precharge Power-down is exited  
and tXP has expired, the DLL must be RESET via MRS. Depending on the new clock frequency additional MRS  
commands may need to be issued to appropriately set the WR, CL, and CWL with CKE continuously registered high.  
During DLL relock period, ODT must remain low. After the DLL lock time, the DRAM is ready to operate with new  
clock frequency. This process is depicted in the figure Clock Frequency Change in Precharge Power-Down Mode.  
Previous clock frequency  
New clock frequency  
T0  
T1  
tIS  
T2  
Ta  
Tb  
Tc  
Tc+1 Td  
Td+1  
Te  
Te+1  
/CK  
CK  
tIH  
tCKSRE  
tCKSRX  
CKE  
tCPDED  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
Address  
MRS  
NOP  
Valid  
Valid  
DLL  
RESET  
tXP  
tAOFPD/tAOF  
ODT  
tDLLK  
High-Z  
High-Z  
DQS, /DQS  
DQ  
DM  
Enter precharge  
power-down mode  
Exit precharge  
power-down mode  
Frequency  
change  
Notes: 1. Applicable for both slow exit and fast exit precharge power-down.  
2. tCKSRE and tCKSRX are self-refresh mode specifications but the values  
they represent are applicable here.  
3. tAOFPD and tAOF must be satisfied and outputs high-z prior to T1;  
refer to ODT timing for exact requirements.  
Clock Frequency Change in Precharge Power-Down Mode  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
129  
EDJ1104BFSE, EDJ1108BFSE  
On-Die Termination (ODT)  
ODT (On-Die Termination) is a feature of the DDR3 SDRAM that allows the DRAM to turn on/off termination  
resistance for each DQ, DQS, /DQS and DM for ×4 and ×8 configuration (and TDQS, /TDQS for ×8 configuration,  
when enabled via A11=1 in MR1) via the ODT control pin. The ODT feature is designed to improve signal integrity of  
the memory channel by allowing the DRAM controller to independently turn on/off termination resistance for any or  
all DRAM devices.  
The ODT feature is turned off and not supported in Self-Refresh mode.  
A simple functional representation of the DRAM ODT feature is shown in figure Functional Representation of ODT.  
ODT  
VDDQ/2  
To other  
circuitry  
like  
RTT  
RCV, ...  
Switch  
DQ, DQS, DM, TDQS  
Functional Representation of ODT  
The switch is enabled by the internal ODT control logic, which uses the external ODT pin and other control  
information, see below. The value of RTT is determined by the settings of mode register bits (see MR1  
programming figure in the section Programming the Mode Register). The ODT pin will be ignored if the Mode  
Register MR1 is programmed to disable ODT and in self-refresh mode.  
ODT Mode Register and ODT Truth Table  
The ODT Mode is enabled if either of MR1 bits A2 or A6 or A9 are non-zero. In this case the value of RTT is  
determined by the settings of those bits.  
Application: Controller sends WRIT command together with ODT asserted.  
One possible application: The rank that is being written to provide termination.  
DRAM turns ON termination if it sees ODT asserted (except ODT is disabled by MR)  
DRAM does not use any write or read command decode information  
The Termination Truth Table is shown in the Termination Truth Table  
[Termination Truth Table]  
ODT pin  
DRAM Termination State  
0
1
OFF  
ON, (OFF, if disabled by MR1 bits A2, A6 and A9 in general)  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
130  
EDJ1104BFSE, EDJ1108BFSE  
Synchronous ODT Mode  
Synchronous ODT mode is selected whenever the DLL is turned on and locked. Based on the power-down  
definition, these modes are:  
Active mode  
Idle mode with CKE high  
Active power-down mode (regardless of MR0 bit A12)  
Precharge power-down mode if DLL is enabled during precharge power-down by MR0 bit A12.  
In synchronous ODT mode, RTT will be turned on or off ODTLon clock cycles after ODT is sampled high by a rising  
clock edge and turned off ODTLoff clock cycles after ODT is registered low by a rising clock edge. The ODT latency  
is tied to the write latency (WL) by: ODTLon = WL – 2; ODTLoff = WL – 2.  
ODT Latency and Posted ODT  
In Synchronous ODT mode, the Additive Latency (AL) programmed into the Mode Register (MR1) also applies to the  
ODT signal. The DRAM internal ODT signal is delayed for a number of clock cycles defined by the Additive Latency  
(AL) relative to the external ODT signal.  
ODTLon = CWL + AL 2; ODTLoff = CWL + AL 2. For details, refer to DDR3 SDRAM latency definitions.  
[ODT Latency Table]  
Parameter  
Symbol  
ODTLon  
ODTLoff  
Value  
Unit  
nCK  
nCK  
ODT turn-on Latency  
ODT turn-off Latency  
WL – 2 = CWL + AL – 2  
WL – 2 = CWL + AL – 2  
Synchronous ODT Timing Parameters  
In synchronous ODT mode, the following timing parameters apply (see Synchronous ODT Timing Examples (1)):  
ODTLLow, ODTLLoff, tAON,(min.), (max.), tAOF,(min.),(max.) Minimum RTT turn-on time (tAON min) is the point in  
time when the device leaves high impedance and ODT resistance begins to turn on. Maximum RTT turn-on time  
(tAON max) is the point in time when the ODT resistance is fully on. Both are measured from ODTLon.  
Minimum RTT turn-off time (tAOF min ) is the point in time when the device starts to turn-off the ODT resistance.  
Maximum RTT turn-off time (tAOF max) is the point in time when the on-die termination has reached high  
impedance. Both are measured from ODTLoff.  
When ODT is asserted, it must remain high until ODTH4 is satisfied. If a Write command is registered by the  
SDRAM with ODT high, then ODT must remain high until ODTH4 (BL4) or ODTH8 (BL8) after the Write command  
(see figure Synchronous ODT Timing Examples (2)). ODTH4 and ODTH8 are measured from ODT registered high  
to ODT registered low or from the registration of a Write command until ODT is registered low.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
131  
EDJ1104BFSE, EDJ1108BFSE  
T0 T1 T2 T3 T4 T5 T6 T7  
T8 T9 T10 T11 T12 T13 T14 T15 END  
CK  
/CK  
CKE  
ODTH4 (min.)  
AL = 3  
ODT  
AL = 3  
IntODT  
ODTLon = CWL + AL 2  
ODTLoff = CWL + AL 2  
CWL 2  
tAON (max.)  
tAOF (max.)  
tAOF (min.)  
tAON (min.)  
RTT  
RTT  
Synchronous ODT Timing Examples (1): AL=3, CWL = 5;  
ODTLon = AL + CWL - 2 = 6; ODTLoff = AL + CWL - 2 = 6  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18  
CK  
/CK  
CKE  
Command  
WRS4  
ODTH4  
ODTH4  
ODTH4  
ODT  
ODTLoff = WL 2  
ODTLon = WL 2  
ODTLoff = WL 2  
ODTLon = WL 2  
tAON (max.)  
tAON (min.)  
tAOF (max.)  
tAOF (min.)  
tAOF (max.)  
tAOF (min.)  
DRAM_RTT  
RTT  
RTT  
tAON (max.)  
tAON (min.)  
Synchronous ODT Timing Examples (2)*: BC4, WL = 7  
ODT must be held high for at least ODTH4 after assertion (T1); ODT must be kept high ODTH4 (BC4) or ODTH8  
(BL8) after write command (T7). ODTH is measured from ODT first registered high to ODT first registered low, or  
from registration of write command with ODT high to ODT registered low. Note that although ODTH4 is satisfied  
from ODT registered high at T6 ODT must not go low before T11 as ODTH4 must also be satisfied from the  
registration of the write command at T7.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
132  
EDJ1104BFSE, EDJ1108BFSE  
ODT during Reads  
As the DDR3 SDRAM cannot terminate and drive at the same time, RTT must be disabled at least half a clock cycle  
before the read preamble by driving the ODT pin low appropriately. RTT may nominally not be enabled until one  
clock cycle after the end of the post-amble as shown in the example in the figure below.  
Note that ODT may be disabled earlier before the Read and enabled later after the Read than shown in this example  
in the figure below.  
ODT must be disabled externally during Reads by driving ODT low.  
(example: CL = 6; AL = CL - 1 = 5; RL = AL + CL = 11; CWL = 5; ODTLon = CWL + AL -2 = 8;  
ODTLoff = CWL + AL - 2 = 8)  
T0 T1 T2 T3 T4 T5 T6 T7  
T8 T9 T10 T11 T12 T13 T14 T15 T16 End  
CK  
/CK  
READ  
Command  
Address  
A
RL = AL + CL  
ODT  
ODTLoff = WL 2 = CWL + AL 2  
ODTLon = WL 2 = CWL + AL 2  
tAOF (max.)  
tAOF (min.)  
tAON (min.)  
tAON (max.)  
RTT  
RTT  
DRAM_RTT  
DQS, /DQS  
DQ  
out out out out out out out out  
0
1
2
3
4
5
6
7
Example of ODT during Reads  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
133  
EDJ1104BFSE, EDJ1108BFSE  
Dynamic ODT  
In certain application cases and to further enhance signal integrity on the data bus, it is desirable that the termination  
strength of the DDR3 SDRAM can be changed without issuing an MRS command. This requirement is supported by  
the “Dynamic ODT” feature as described as follows:  
Functional Description:  
The Dynamic ODT mode is enabled if bit A9 or A10 of MR2 is set to ’1’. The function and is described as follows:  
Two RTT values are available: RTT_Nom and RTT_WR.  
The value for RTT_Nom is pre-selected via bits A[9,6,2] in MR1  
The value for RTT_WR is pre-selected via bits A[10,9] in MR2  
During operation without write commands, the termination is controlled as follows:  
Nominal termination strength RTT_Nom is selected.  
Termination on/off timing is controlled via ODT pin and latencies ODTLon and ODTLoff.  
When a write command (WRIT, WRITA, WRS4, WRS8, WRAS4, WRAS8) is registered, and if Dynamic ODT is  
enabled, the termination is controlled as follows:  
A latency ODTLcnw after the write command, termination strength RTT_WR is selected.  
A latency ODTLcwn8 (for BL8, fixed by MRS or selected OTF) or ODTLcwn4 (for BC4, fixed by MRS or selected  
OTF) after the write command, termination strength RTT_Nom is selected.  
Termination on/off timing is controlled via ODT pin and ODTLon, ODTLoff.  
Table Latencies and Timing Parameters Relevant for Dynamic ODT shows latencies and timing parameters, which  
are relevant for the on-die termination control in Dynamic ODT mode:  
When ODT is asserted, it must remain high until ODTH4 is satisfied. If a write command is registered by the SDRAM  
with ODT high, then ODT must remain high until ODTH4 (BC4) or ODTH8 (BL8) after the write command (see the  
figure Synchronous ODT Timing Examples (2)). ODTH4 and ODTH8 are measured from ODT registered high to  
ODT registered low or from the registration of a write command until ODT is registered low.  
[Latencies and Timing Parameters Relevant for Dynamic ODT]  
Definition for all  
Parameters  
Symbols  
ODTLon  
Defined from  
Defined to  
DDR3 speed bins  
Unit  
nCK  
Registering  
external ODT  
signal high  
ODT turn-on Latency  
Turning termination on ODTLon = WL – 2.0  
Registering  
external ODT  
signal low  
Registering  
external write  
command  
ODT turn-off Latency  
ODTLoff  
Turning termination off ODTLoff = WL – 2.0 nCK  
Change RTT strength  
ODT latency for changing  
from RTT_Nom to RTT_WR  
ODTLcnw  
from RTT_Nom to  
RTT_WR  
ODTLcnw = WL – 2.0 nCK  
ODT latency for change  
Registering  
Change RTT strength  
from RTT_WR to  
RTT_Nom  
ODTLcwn4 =  
nCK  
from RTT_WR to RTT_Nom ODTLcwn4 external write  
4 + ODTLoff  
(BC4)  
command  
ODT latency for change  
Registering  
Change RTT strength  
from RTT_WR to  
RTT_Nom  
ODTLcwn8 =  
nCK  
from RTT_WR to RTT_Nom ODTLcwn8 external write  
6 + ODTLoff  
(BL8)  
command  
Minimum ODT high time  
registering ODT  
ODTH4  
ODTH4  
ODTH8  
tADC  
ODT registered low  
ODT registered low  
ODT registered low  
RTT valid  
ODTH4 (min.) = 4  
ODTH4 (min.) = 4  
ODTH8 (min.) = 6  
0.3ns to 0.7ns  
nCK  
nCK  
nCK  
after ODT assertion  
high  
Minimum ODT high time  
after Write (BC4)  
Minimum ODT high time  
after Write (BL8)  
registering Write  
with ODT high  
registering Write  
with ODT high  
ODTLcnw  
ODTLcwn  
tCK  
(avg)  
RTT change skew  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
134  
EDJ1104BFSE, EDJ1108BFSE  
Mode Register Settings for Dynamic ODT Mode:  
The table Mode Register for RTT Selection shows the mode register bits to select RTT_Nom and RTT_WR values.  
[Mode Register for RTT Selection]  
MR1  
MR2  
RTT_Nom  
(RZQ)  
RTT_Nom  
RTT_WR  
(RZQ)  
Dynamic ODT OFF: Write does not  
affect RTT value  
RTT_WR*1  
A9  
0
A6  
0
A2  
0
()  
A10  
0
A9  
0
()  
off  
off  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
RZQ/4  
60  
0
1
1
1
0
1
RZQ/4  
60  
RZQ/2  
120  
RZQ/2  
120  
RZQ/6  
40  
Reserved  
Reserved  
RZQ/12*2  
RZQ/8*2  
Reserved  
Reserved  
20  
30  
Reserved  
Reserved  
Notes: 1. RZQ = 240.  
2. If RTT_Nom is used during WRITEs, only the values RZQ/2, RZQ/4 and RZQ/6 are allowed.  
ODT Timing Diagrams  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19  
CK  
/CK  
ODTLcnw  
WRS4  
Command  
ODTH4  
ODTH4  
ODT  
RTT  
ODTLon  
ODTLoff  
tADC (min.)  
RTT_Nom  
tADC (max.)  
tAON (min.)  
RTT_Nom  
tADC (min.)  
RTT_WR  
tAOF (min.)  
tAOF (max.)  
tAON (max.)  
tADC (max.)  
ODTLcwn4  
DQS, /DQS  
DQ  
in in in in  
0
1
2
3
WL  
Dynamic ODT: Behavior with ODT Being Asserted Before and after the Write*  
Note: Example for BC4 (via MRS or OTF), AL = 0, CWL = 5. ODTH4 applies to first registering ODT high and to the  
registration of the write command. In this example ODTH4 would be satisfied if ODT is low at T8 (4 clocks  
after the write command).  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
135  
EDJ1104BFSE, EDJ1108BFSE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
/CK  
Command  
ODTH4  
ODT  
ODTLon  
ODTLoff  
tAON (min.)  
tAOF (min.)  
tAOF (max.)  
RTT_Nom  
RTT  
tAON (max.)  
DQS, /DQS  
DQ  
Dynamic ODT*: Behavior without Write Command; AL = 0, CWL = 5  
Note: ODTH4 is defined from ODT registered high to ODT registered low, so in this example ODTH4 is satisfied;  
ODT registered low at T5 would also be legal.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
/CK  
ODTLcnw  
ODTLon  
Command  
ODT  
WRS8  
ODTH8  
ODTLoff  
tAON (min.)  
tAOF (min.)  
tAOF (max.)  
RTT_WR  
RTT  
tADC (max.)  
ODTLcwn8  
DQS, /DQS  
DQ  
in  
0
in  
in  
in  
in  
in  
in  
6
in  
1
2
3
4
5
7
WL  
Dynamic ODT*: Behavior with ODT Pin Being Asserted Together with Write Command  
for Duration of 6 Clock Cycles  
Note: Example for BL8 (via MRS or OTF), AL = 0, CWL = 5. In this example ODTH8 = 6 is exactly satisfied.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
136  
EDJ1104BFSE, EDJ1108BFSE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
/CK  
ODTLcnw  
WRS4  
Command  
ODTH4  
ODT  
RTT  
ODTLon  
ODTLoff  
tAON (min.)  
tAOF (min.)  
tAOF (max.)  
tADC (min.)  
RTT_Nom  
RTT_WR  
tADC (max.)  
tADC (max.)  
ODTLcwn4  
DQS, /DQS  
DQ  
in  
in  
in  
2
in  
0
1
3
WL  
Dynamic ODT*: Behavior with ODT Pin Being Asserted Together with Write Command  
for a Duration of 6 Clock Cycles, Example for BC4 (via MRS or OTF), AL = 0, CWL = 5.  
Note: ODTH4 is defined from ODT registered high to ODT registered low, so in this example ODTH4 is satisfied;  
ODT registered low at T5 would also be legal.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CK  
/CK  
ODTLcnw  
ODTH4  
Command  
ODT  
WRS4  
ODTLon  
ODTLoff  
tAON (min.)  
tAOF (min.)  
tAOF (max.)  
RTT_WR  
RTT  
tADC (max.)  
ODTLcwn4  
DQS, /DQS  
DQ  
in  
0
in  
1
in  
in  
2
3
WL  
Dynamic ODT*: Behavior with ODT Pin Being Asserted Together with Write Command  
for Duration of 4 Clock Cycles  
Note: Example for BC4 (via MRS or OTF), AL = 0, CWL = 5. In this example ODTH4 = 4 is exactly satisfied.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
137  
EDJ1104BFSE, EDJ1108BFSE  
Asynchronous ODT Mode  
Asynchronous ODT mode is selected when DRAM runs in DLL-on mode, but DLL is temporarily disabled (i.e. frozen)  
in precharge power-down (by MR0 bit A12).  
Precharge power-down mode if DLL is disabled during precharge power-down by MR0 bit A12.  
In asynchronous ODT timing mode, internal ODT command is not delayed by Additive Latency (AL) relative to the  
external ODT command.  
In asynchronous ODT mode, the following timing parameters apply (see figure Asynchronous ODT Timings):  
tAONPD (min.), (max.), tAOFPD (min.),(max.)  
Minimum RTT turn-on time (tAONPD (min.)) is the point in time when the device termination circuit leaves high  
impedance state and ODT resistance begins to turn on. Maximum RTT turn-on time (tAONPD (max.)) is the point in  
time when the ODT resistance is fully on. tAONPD (min.) and tAONPD (max.) are measured from ODT being  
sampled high.  
Minimum RTT turn-off time (tAOFPD (min.)) is the point in time when the devices termination circuit starts to turn off  
the ODT resistance. Maximum ODT turn-off time (tAOFPD (max.)) is the point in time when the on-die termination  
has reached high impedance. tAOFPD (min.) and tAOFPD (max.) are measured from ODT being sampled low.  
CK  
/CK  
CKE  
tIH  
tIH  
tIS  
tIS  
ODT  
tAOFPD (min.)  
tAONPD (max.)  
RTT  
DRAM_RTT  
tAONPD (min.)  
tAOFPD (max.)  
Asynchronous ODT Timings on DDR3 SDRAM with Fast ODT Transition: AL is Ignored  
In precharge power-down, ODT receiver remains active, however no read or write command can be issued, as the  
respective address/command receivers may be disabled.  
[Asynchronous ODT Timing Parameters for All Speed Bins]  
Symbol  
tAONPD  
tAOFPD  
Parameters  
min.  
max.  
8.5  
Unit  
ns  
Asynchronous RTT turn-on delay (power-down with DLL frozen) 2  
Asynchronous RTT turn-off delay (power-down with DLL frozen) 2  
8.5  
ns  
[ODT for Power-Down (with DLL Frozen) Entry and Exit Transition Period]  
Description  
min.  
max.  
ODT to RTT turn-on delay  
min {ODTLon × tCK + tAON(min.); max {ODTLon × tCK + tAON(max.);  
tAONPD(min.) }  
tAONPD(max.) }  
min { (WL 2.0) × tCK +  
max {(WL 2.0) × tCK + tAON(max.);  
tAONPD(max.) }  
tAON(min.);  
tAONPD(min.) }  
min { ODTLoff × tCK +tAOF(min.); max { ODTLoff × tCK + tAOF(max.);  
ODT to RTT turn-off delay  
tAOFPD(min.) }  
tAOFPD(max.) }  
min { (WL 2.0) × tCK  
max {(WL 2.0) × tCK + tAOF(max.);  
tAOFPD(max.) }  
+tAOF(min.);  
tAOFPD(min.) }  
tANPD  
WL 1.0  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
138  
EDJ1104BFSE, EDJ1108BFSE  
Synchronous to Asynchronous ODT Mode Transition during Power-Down Entry  
If DLL is selected to be frozen in precharge power-down mode by the setting of bit A12 in MR0 to 0 there is a  
transition period around power-down entry, where the DDR3 SDRAM may show either synchronous or  
asynchronous ODT behavior.  
This transition period ends when CKE is first registered low and starts tANPD before that. If there is a Refresh  
command in progress while CKE goes low, then the transition period ends tRFC after the refresh command. tANPD  
is equal to (WL 1.0) and is counted (backwards) from the clock cycle where CKE is first registered low.  
ODT assertion during the transition period may result in an RTT change as early as the smaller of tAONPD(min.)  
and (ODTLon × tCK + tAON(min.)) and as late as the larger of tAONPD(max.) and (ODTLon × tCK + tAON(max.)).  
ODT de-assertion during the transition period may result in an RTT change as early as the smaller of tAOFPD(min.)  
and (ODTLoff × tCK + tAOF(min.)) and as late as the larger of tAOFPD(max.) and (ODTLoff × tCK + tAOF(max.)).  
Note that, if AL has a large value, the range where RTT is uncertain becomes quite large.  
The figure below shows the three different cases: ODT_A, synchronous behavior before tANPD; ODT_B has a state  
change during the transition period; ODT_C shows a state change after the transition period.  
CK  
/CK  
REF  
NOP NOP  
Command  
CKE  
PD entry transition period  
tANPD  
ODT  
tRFC  
ODT_A_sync  
ODTLoff  
tAOF (max.)  
tAOF (min.)  
RTT  
DRAM_RTT_A_sync  
ODT_B_tran  
ODTLoff + tAOFPD (max.)  
tAOFPD (max.)  
ODTLoff + tAOFPD (min.)  
tAOFPD (min.)  
DRAM_RTT_B_tran  
ODT_C_async  
tAOFPD (max.)  
tAOFPD (min.)  
RTT  
DRAM_RTT_C_async  
Synchronous to Asynchronous Transition During Precharge Power-Down (with DLL Frozen) Entry  
(AL = 0; CWL = 5; tANPD = WL 1 = 4)  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
139  
EDJ1104BFSE, EDJ1108BFSE  
Asynchronous to Synchronous ODT Mode Transition during Power-Down Exit  
If DLL is selected to be frozen in precharge power-down mode by the setting of bit A12 in MR0 to 0, there is also a  
transition period around power-down exit, where either synchronous or asynchronous response to a change in ODT  
must be expected from the DDR3 SDRAM.  
This transition period starts tANPD before CKE is first registered high, and ends tXPDLL after CKE is first registered  
high. tANPD is equal to (WL 1.0) and is counted backward from the clock cycle where CKE is first registered high.  
ODT assertion during the transition period may result in an RTT change as early as the smaller of tAONPD(min.)  
and (ODTLon × tCK + tAON(min.)) and as late as the larger of tAONPD(max.) and (ODTLon × tCK + tAON(max.)).  
ODT de-assertion during the transition period may result in an RTT change as early as the smaller of tAOFPD(min.)  
and (ODTLoff × tCK + tAOF(min.)) and as late as the larger of tAOFPD(max.) and (ODTLoff × tCK + tAOF(max.)).  
See ODT for Power-Down (with DLL Frozen) Entry and Exit Transition Period table.  
Note that, if AL has a large value, the range where RTT is uncertain becomes quite large. The figure below shows  
the three different cases: ODT_C, asynchronous response before tANPD; ODT_B has a state change of ODT during  
the transition period; ODT_A shows a state change of ODT after the transition period with synchronous response.  
T1 T3 T5 T7 T9 T11 T13 T15 T17 T19 T21 T23 T25 T27 T29 T31 T33 T35  
CK  
/CK  
Command  
NOP NOP  
CKE  
PD exit transition period  
tANPD  
tXPDLL  
ODT_C_async  
tAOFPD (max.)  
tAOFPD (min.)  
DRAM_RTT_C_async  
ODT_B_tran  
RTT  
tAOFPD (min.)  
ODTLoff + tAOF (min.)  
ODTLoff + tAOF (max.)  
tAOFPD (max.)  
DRAM_RTT_B_tran  
ODT_A_sync  
ODTLoff  
tAOF (max.)  
tAOF (min.)  
RTT  
DRAM_RTT_A_sync  
Asynchronous to Synchronous Transition during Precharge Power-Down (with DLL Frozen) Exit  
(CL = 6; AL = CL - 1; CWL = 5; tANPD= WL 1 = 9)  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
140  
EDJ1104BFSE, EDJ1108BFSE  
Asynchronous to Synchronous ODT Mode during Short CKE high and Short CKE Low Periods  
If the total time in precharge power-down state or idle state is very short, the transition periods for power-down entry  
and power-down exit may overlap. In this case the response of the DDR3 SDRAM RTT to a change in ODT state at  
the input may be synchronous OR asynchronous from the start of the power-down entry transition period to the end  
of the PD exit transition period (even if the entry period ends later than the exit period).  
If the total time in idle state is very short, the transition periods for power-down exit and power-down entry may  
overlap. In this case the response of the DDR3 SDRAM RTT to a change in ODT state at the input may be  
synchronous OR asynchronous from the start of the power-down exit transition period to the end of the power-down  
entry transition period.  
Note that in the bottom part of figure below it is assumed that there was no refresh command in progress when idle  
state was entered.  
CK  
/CK  
Command  
REF  
NOP NOP  
NOP NOP  
CKE  
tANPD  
tRFC  
PD entry transition period  
PD exit transition period  
tXPDLL  
tANPD  
short CKE low transition period  
CKE  
tANPD  
tXPDLL  
tXPDLL  
tANPD  
short CKE high transition period  
Transition Period for Short CKE Cycles with Entry and Exit Period Overlapping  
(AL = 0, WL = 5, tANPD = WL 1 = 4)  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
141  
EDJ1104BFSE, EDJ1108BFSE  
ZQ Calibration  
ZQ calibration command is used to calibrate DRAM RON and ODT values. DDR3 SDRAM needs longer time to  
calibrate RON and ODT at initialization and relatively smaller time to perform periodic calibrations.  
ZQCL command is used to perform the initial calibration during power-up initialization sequence. This command may  
be issued at any time by the controller depending on the system environment. ZQCL command triggers the  
calibration engine inside the DRAM and once calibration is achieved the calibrated values are transferred from  
calibration engine to DRAM I/O which gets reflected as updated RON and ODT values.  
The first ZQCL command issued after reset is allowed a timing period of tZQinit to perform the full calibration and the  
transfer of values. All other ZQCL commands except the first ZQCL command issued after RESET is allowed a  
timing period of tZQoper.  
ZQCS command is used to perform periodic calibrations to account for voltage and temperature variations. A shorter  
timing window is provided to perform the calibration and transfer of values as defined by timing parameter tZQCS.  
One ZQCS command can effectively correct a minimum of 0.5% (ZQCorrection) of RON and RTT impedance error  
within 64nCK for all speed bins assuming the maximum sensitivities specified in the ‘Output Driver Voltage and  
Temperature Sensitivity’ and ‘ODT Voltage and Temperature Sensitivity’ tables. The appropriate interval between  
ZQCS commands can be determined from these tables and other application-specific parameters. One method for  
calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift  
rates that the SDRAM is subject to in the application, is illustrated. The interval could be defined by the following  
formula:  
×
×
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature  
and voltage sensitivities.  
For example, if TSens = 1.5%/°C, VSens = 0.15%/mV, Tdriftrate = 1°C/sec and Vdriftrate = 15mV/sec, then the  
interval between ZQCS commands is calculated as:  
×
×
No other activities should be performed on the DRAM channel by the controller for the duration of tZQinit, tZQoper or  
tZQCS. The quiet time on the DRAM channel allows in accurate calibration of RON and ODT. Once DRAM  
calibration is achieved the DRAM should disable ZQ current consumption path to reduce power.  
All banks must be precharged and tRP met before ZQCL or ZQCS commands are issued by the controller.  
ZQ calibration commands can also be issued in parallel to DLL lock time when coming out of self-refresh. Upon self-  
refresh exit, DDR3 SDRAM will not perform an I/O calibration without an explicit ZQ calibration command. The  
earliest possible time for ZQ Calibration command (short or long) after self-refresh exit is tXS.  
In systems that share the ZQ resistor between devices, the controller must not allow any overlap of tZQoper, tZQinit  
or tZQCS between the devices.  
CK  
Valid  
Valid  
Command  
A10  
ZQCL  
NOP/DESL  
ZQCS  
NOP/DESL  
A10 = H  
X
A10 = L  
X
Address  
CKE  
tZQinit or tZQ oper  
Hi-Z  
tZQCS  
Hi-Z  
DQ Bus*2  
Activities  
Activities  
Notes: 1. CKE must be continuously registered high during the calibration procedure.  
2. ODT must be disabled via ODT signal or MRS during calibration procedure.  
3. All device connected to DQ bus should be High impedance during calibration.  
ZQ Calibration  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
142  
EDJ1104BFSE, EDJ1108BFSE  
ZQ External Resistor Value and Tolerance  
DDR3 SDRAM has a 240, ±1% tolerance external resistor connecting from the DDR3 SDRAM ZQ pin to ground.  
The resister can be used as single DRAM per resistor.  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
143  
EDJ1104BFSE, EDJ1108BFSE  
Package Drawing  
78-ball FBGA  
Solder ball: Lead free (Sn-Ag-Cu)  
Unit: mm  
7.50 ± 0.10  
0.20 S B  
INDEX MARK  
0.20 S A  
0.20 S  
1.20 max.  
S
0.32 ± 0.05  
0.10 S  
M
S A B  
78-φ0.45 ± 0.05  
φ0.15  
B
A
INDEX MARK  
1.6 0.8  
6.4  
ECA-TS2-0305-01  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
144  
EDJ1104BFSE, EDJ1108BFSE  
Recommended Soldering Conditions  
Please consult with our sales offices for soldering conditions of the EDJ1104BFSE and EDJ1108BFSE.  
Type of Surface Mount Device  
EDJ1104BFSE, EDJ1108BFSE: 78-ball FBGA < Lead free (Sn-Ag-Cu) >  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
145  
EDJ1104BFSE, EDJ1108BFSE  
NOTES FOR CMOS DEVICES  
PRECAUTION AGAINST ESD FOR MOS DEVICES  
1
Exposing the MOS devices to a strong electric field can cause destruction of the gate  
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop  
generation of static electricity as much as possible, and quickly dissipate it, when once  
it has occurred. Environmental control must be adequate. When it is dry, humidifier  
should be used. It is recommended to avoid using insulators that easily build static  
electricity. MOS devices must be stored and transported in an anti-static container,  
static shielding bag or conductive material. All test and measurement tools including  
work bench and floor should be grounded. The operator should be grounded using  
wrist strap. MOS devices must not be touched with bare hands. Similar precautions  
need to be taken for PW boards with semiconductor MOS devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES  
No connection for CMOS devices input pins can be a cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input level may be  
generated due to noise, etc., hence causing malfunction. CMOS devices behave  
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected  
to VDD or GND with a resistor, if it is considered to have a possibility of being an output  
pin. The unused pins must be handled in accordance with the related specifications.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Power-on does not necessarily define initial status of MOS devices. Production process  
of MOS does not define the initial operation status of the device. Immediately after the  
power source is turned ON, the MOS devices with reset function have not yet been  
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or  
contents of registers. MOS devices are not initialized until the reset signal is received.  
Reset operation must be executed immediately after power-on for MOS devices having  
reset function.  
CME0107  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
146  
EDJ1104BFSE, EDJ1108BFSE  
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of Elpida Memory, Inc.  
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights  
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or  
third parties by or arising from the use of the products or information listed in this document. No license,  
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property  
rights of Elpida Memory, Inc. or others.  
Descriptions of circuits, software and other related information in this document are provided for  
illustrative purposes in semiconductor product operation and application examples. The incorporation of  
these circuits, software and information in the design of the customer's equipment shall be done under  
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses  
incurred by customers or third parties arising from the use of these circuits, software and information.  
[Product applications]  
Be aware that this product is for use in typical electronic equipment for general-purpose applications.  
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.  
However, users are instructed to contact Elpida Memory's sales office before using the product in  
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment,  
medical equipment for life support, or other such application in which especially high quality and  
reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury.  
[Product usage]  
Design your application so that the product is used within the ranges and conditions guaranteed by  
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation  
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no  
responsibility for failure or damage when the product is used beyond the guaranteed ranges and  
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure  
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so  
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other  
consequential damage due to the operation of the Elpida Memory, Inc. product.  
[Usage environment]  
Usage in environments with special characteristics as listed below was not considered in the design.  
Accordingly, our company assumes no responsibility for loss of a customer or a third party when used in  
environments with the special characteristics listed below.  
Example:  
1) Usage in liquids, including water, oils, chemicals and organic solvents.  
2) Usage in exposure to direct sunlight or the outdoors, or in dusty places.  
3) Usage involving exposure to significant amounts of corrosive gas, including sea air, CL2, H2S, NH3,  
SO2, and NO .  
x
4) Usage in environments with static electricity, or strong electromagnetic waves or radiation.  
5) Usage in places where dew forms.  
6) Usage in environments with mechanical vibration, impact, or stress.  
7) Usage near heating elements, igniters, or flammable items.  
If you export the products or technology described in this document that are controlled by the Foreign  
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance  
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by  
U.S. export control regulations, or another country's export control laws or regulations, you must follow  
the necessary procedures in accordance with such laws or regulations.  
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted  
license to use these products, that third party must be made aware that they are responsible for  
compliance with the relevant laws and regulations.  
M01E0706  
Preliminary Data Sheet E1653E20 (Ver. 2.0)  
147  

相关型号:

EDJ1104BFSE-GL-F

1G bits DDR3 SDRAM
ELPIDA

EDJ1104BFSE-GN-F

1G bits DDR3 SDRAM
ELPIDA

EDJ1108BABG

1G bits DDR3 SDRAM
ELPIDA

EDJ1108BABG-8A-E

1G bits DDR3 SDRAM
ELPIDA

EDJ1108BABG-8C-E

1G bits DDR3 SDRAM
ELPIDA

EDJ1108BABG-AC-E

1G bits DDR3 SDRAM
ELPIDA

EDJ1108BABG-AE-E

1G bits DDR3 SDRAM
ELPIDA

EDJ1108BABG-AG-E

1G bits DDR3 SDRAM
ELPIDA

EDJ1108BABG-DG-E

1G bits DDR3 SDRAM
ELPIDA

EDJ1108BABG-DJ-E

1G bits DDR3 SDRAM
ELPIDA

EDJ1108BABG-GL-E

1G bits DDR3 SDRAM
ELPIDA

EDJ1108BABG-GN-E

1G bits DDR3 SDRAM
ELPIDA