EDS5116ABTA [ELPIDA]

512M bits SDRAM; 512M位的SDRAM
EDS5116ABTA
型号: EDS5116ABTA
厂家: ELPIDA MEMORY    ELPIDA MEMORY
描述:

512M bits SDRAM
512M位的SDRAM

动态存储器
文件: 总52页 (文件大小:558K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
512M bits SDRAM  
EDS5104ABTA (128M words × 4 bits)  
EDS5108ABTA (64M words × 8 bits)  
EDS5116ABTA (32M words × 16 bits)  
Pin Configurations  
Description  
The EDS5104AB is a 512M bits SDRAM organized as  
33,554,432 words × 4 bits × 4 banks. The EDS5108AB  
is a 512M bits SDRAM organized as 16,777,216 words  
× 8 bits × 4 banks. The EDS5116AB is a 512M bits  
SDRAM organized as 8,388,608 words × 16 bits × 4  
banks. All inputs and outputs are referred to the rising  
edge of the clock input. It is packaged in standard 54-  
pin plastic TSOP (II).  
/xxx indicates active low signal.  
54-pin TSOP  
VDD VDD VDD  
NC DQ0 DQ0  
VDDQ VDDQ VDDQ  
VSS VSS VSS  
DQ15 DQ7 NC  
VSSQ VSSQ VSSQ  
DQ14 NC NC  
DQ13 DQ6 DQ3  
VDDQ VDDQ VDDQ  
DQ12 NC NC  
DQ11 DQ5 NC  
VSSQ VSSQ VSSQ  
DQ10 NC NC  
DQ9 DQ4 DQ2  
VDDQ VDDQ VDDQ  
DQ8 NC NC  
VSS VSS VSS  
1
2
3
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
NC  
NC DQ1  
4
DQ0 DQ1 DQ2  
VSSQ VSSQ VSSQ  
5
6
NC  
NC DQ3  
7
NC DQ2 DQ4  
8
VDDQ VDDQ VDDQ  
9
Features  
NC  
NC DQ5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
DQ1 DQ3 DQ6  
VSSQ VSSQ VSSQ  
NC  
VDD VDD VDD  
NC NC LDQM  
/WE /WE /WE  
/CAS /CAS /CAS  
/RAS /RAS /RAS  
3.3V power supply  
Clock frequency: 166MHz/133MHz (max.)  
LVTTL interface  
NC DQ7  
NC  
NC NC  
UDQM DQM DQM  
CLK CLK CLK  
CKE CKE CKE  
A12 A12 A12  
A11 A11 A11  
Single pulsed /RAS  
4 banks can operate simultaneously and  
independently  
/CS /CS  
/CS  
BA0 BA0 BA0  
BA1 BA1 BA1  
A10 A10 A10  
A0  
A1  
A2  
A3  
Burst read/write operation and burst read/single write  
operation capability  
A9  
A8  
A7  
A6  
A5  
A4  
A9  
A8  
A7  
A6  
A5  
A4  
A9  
A8  
A7  
A6  
A5  
A4  
A0  
A1  
A2  
A3  
A0  
A1  
A2  
A3  
Programmable burst length (BL): 1, 2, 4, 8, full page  
2 variations of burst sequence  
Sequential (BL = 1, 2, 4, 8, full page)  
Interleave (BL = 1, 2, 4, 8)  
VDD VDD VDD  
VSS VSS VSS  
X 16  
X 8  
Programmable /CAS latency (CL): 2, 3  
Byte control by DQM  
: DQM (EDS5104AB, EDS5108AB)  
: UDQM, LDQM (EDS5116AB)  
X 4  
(Top view)  
Refresh cycles: 8192 refresh cycles/64ms  
2 variations of refresh  
Auto refresh  
A0 to A12, Address input  
BA0, BA1 Bank select address  
DQ0 to DQ15 Data-input/output  
DQM Input/output mask  
CKE Clock enable  
CLK Clock input  
VDD Power for internal circuit  
VSS Ground for internal circuit  
/CS  
Chip select  
Self refresh  
/RAS  
/CAS  
/WE  
Row address strobe  
Column address strobe VDDQ Power for DQ circuit  
Write enable VSSQ Ground for DQ circuit  
NC  
No connection  
Document No. E0250E10 (Ver. 1.0)  
Date Published March 2002 (K) Japan  
URL: http://www.elpida.com  
Elpida Memory, Inc. 2002  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Ordering Information  
Mask  
Organization  
(words × bits)  
Clock frequency  
MHz (max.)  
Part number  
Version  
B
Internal Banks  
4
/CAS latency Package  
3
EDS5104ABTA-6B  
EDS5104ABTA-7A  
EDS5104ABTA-75*  
166  
133  
133  
54-pin Plastic  
128M × 4  
2, 3  
3
TSOP (II)  
EDS5108ABTA-6B  
EDS5108ABTA-7A  
EDS5108ABTA-75*  
166  
133  
133  
3
2, 3  
3
64M × 8  
EDS5116ABTA-6B  
EDS5116ABTA-7A  
EDS5116ABTA-75*  
166  
133  
133  
3
2, 3  
3
32M × 16  
Note: 100MHz operation at /CAS latency = 2.  
Part Number  
E D S 51 04 A B TA - 6B  
Elpida Memory  
Material Type  
D: Mono  
Function  
S: SDRAM  
Density & Bank  
51: 512M/4 Banks  
Bit Organization  
04: x4  
08: x8  
16: x16  
Interface  
A: 3.3V, LVTTL  
Mask Revision  
Package  
TA: TSOP (II)  
Speed  
6B: 166MHz/CL3  
7A: 133MHz/CL2, 3  
75: 133MHz/CL3  
100MHz/CL2  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
2
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
CONTENTS  
Description ....................................................................................................................................................1  
Features ........................................................................................................................................................1  
Pin Configurations.........................................................................................................................................1  
Ordering Information .....................................................................................................................................2  
Part Number..................................................................................................................................................2  
Electrical Specifications.................................................................................................................................4  
Block Diagram...............................................................................................................................................8  
Pin Function ................................................................................................................................................13  
Command Operation...................................................................................................................................15  
Simplified State Diagram.............................................................................................................................23  
Mode Register Configuration ......................................................................................................................24  
Power-up Sequence....................................................................................................................................25  
Operation of the SDRAM ............................................................................................................................27  
Timing Waveforms ......................................................................................................................................43  
Package Drawing ........................................................................................................................................49  
Recommended Soldering Conditions..........................................................................................................50  
Revision History ..........................................................................................................................................53  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
3
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Electrical Specifications  
All voltages are referenced to VSS (GND).  
After power up (refer to the Power-up Sequence).  
Absolute Maximum Ratings  
Parameter  
Symbol  
VT  
Rating  
Unit  
V
Note  
Voltage on any pin relative to VSS  
Supply voltage relative to VSS  
Short circuit output current  
Power dissipation  
–0.5 to VDD + 0.5 (4.6 (max.))  
VDD  
IOS  
PD  
–0.5 to +4.6  
V
50  
mA  
W
1.0  
Operating temperature  
Storage temperature  
TA  
0 to +70  
–55 to +125  
°C  
°C  
Tstg  
Caution  
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended Operating Conditions (TA = 0 to 70°C)  
Parameter  
Symbol  
VDD, VDDQ  
VSS, VSSQ  
VIH  
min.  
3.0  
0
max.  
Unit  
V
Notes  
Supply voltage  
3.6  
1
2
3
4
0
V
Input high voltage  
Input low voltage  
2.0  
–0.3  
VDD + 0.3  
0.8  
V
VIL  
V
Notes: 1. The supply voltage with all VDDand VDDQ pins must be on the same level.  
2. The supply voltage with all VSS and VSSQ pins must be on the same level.  
3. VIH (max.) = VDD + 2.0 V for pulse width 3ns at VDD.  
4. VIL (min.) = VSS – 2.0 V for pulse width 3ns at VSS.  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
4
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
DC Characteristics 1 (TA = 0 to +70°C, VDD, VDDQ = 3.3V 0.3V, VSS, VSSQ = 0V)  
Parameter  
max.  
/CAS latency  
Symbol  
ICC1  
Grade  
× 4  
× 8  
× 16  
Unit  
mA  
Test condition  
Notes  
1, 2, 3  
-6B,-7A 160  
-75  
165  
145  
175  
155  
Burst length = 1  
tRC = tRC (min.)  
Operating current  
140  
Standby current in power  
down  
CKE = VIL,  
tCK = tCK (min.)  
ICC2P  
ICC2PS  
ICC2N  
3
3
2
3
2
mA  
mA  
mA  
6
7
4
Standby current in power  
down (input signal stable)  
2
CKE = VIL, tCK = ∞  
Standby current in non  
power down  
-6B  
30  
30  
25  
30  
25  
CKE, /CS = VIH,  
tCK = tCK (min.)  
-7A, -75 25  
Standby current in non  
power down (input signal ICC2NS  
stable)  
Active standby current in  
power down  
CKE = VIH, tCK = ,  
/CS = VIH  
9
9
4
3
9
4
3
mA  
mA  
mA  
mA  
mA  
8
CKE = VIL,  
tCK = tCK (min.)  
ICC3P  
4
3
1, 2, 6  
2, 7  
Active standby current in  
power down (input signal ICC3PS  
stable)  
CKE = VIL, tCK = ∞  
Active standby current in  
non power down  
-6B  
45  
45  
40  
45  
40  
CKE, /CS = VIH,  
tCK = tCK (min.)  
ICC3N  
1, 2, 4  
2, 8  
-7A, -75 40  
Active standby current in  
non power down (input  
signal stable)  
CKE = VIH, tCK = ,  
/CS = VIH  
ICC3NS  
20  
20  
20  
-6B  
-7A, -75 130  
160  
170  
140  
190  
160  
Burst operating current  
Refresh current  
ICC4  
ICC5  
ICC6  
mA  
mA  
mA  
tCK = tCK (min.), BL = 4 1, 2, 5  
-6B,-7A 320  
-75  
320  
280  
320  
280  
tRC = tRC (min.)  
3
280  
VIH VDD – 0.2V  
VIL 0.2V  
Self refresh current  
4
4
4
Notes: 1. ICC depends on output load condition when the device is selected. ICC (max.) is specified at the output  
open condition.  
2. One bank operation.  
3. Input signals are changed once per one clock.  
4. Input signals are changed once per two clocks.  
5. Input signals are changed once per four clocks.  
6. After power down mode, CLK operating current.  
7. After power down mode, no CLK operating current.  
8. Input signals are VIH or VIL fixed.  
DC Characteristics 2 (TA = 0 to +70°C, VDD, VDDQ = 3.3V 0.3V, VSS, VSSQ = 0V)  
Parameter  
Symbol  
ILI  
min.  
–1  
max.  
1
Unit  
µA  
µA  
V
Test condition  
Notes  
Input leakage current  
Output leakage current  
Output high voltage  
Output low voltage  
0 VIN VDD  
ILO  
–1.5  
2.4  
1.5  
0 VOUT VDD, DQ = disable  
IOH = –4 mA  
VOH  
VOL  
0.4  
V
IOL = 4 mA  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
5
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Pin Capacitance (TA = 25°C, VDD, VDDQ = 3.3V 0.3V)  
Notes  
1, 2, 4  
1, 2, 4  
Parameter  
Symbol  
CI1  
Pins  
CLK  
min.  
2.5  
Typ  
max.  
3.5  
Unit  
pF  
Input capacitance  
Address, CKE, /CS, /RAS,  
/CAS, /WE, DQM,  
CI2  
2.5  
4
3.8  
6.5  
pF  
pF  
1, 2, 3, 4  
Data input/output capacitance  
CI/O  
DQ  
Notes: 1. Capacitance measured with Boonton Meter or effective capacitance measuring method.  
2. Measurement condition: f = 1MHz, 1.4V bias, 200mV swing.  
3. DQM = VIH to disable DOUT.  
4. This parameter is sampled and not 100% tested.  
AC Characteristics (TA = 0 to +70°C, VDD, VDDQ = 3.3V 0.3V, VSS, VSSQ = 0V)  
-6B  
-7A  
min.  
7.5  
2.5  
2.5  
-75  
min.  
7.5  
2.5  
2.5  
Parameter  
Symbol min.  
max.  
max.  
max.  
Unit Notes  
System clock cycle time  
CLK high pulse width  
CLK low pulse width  
Access time from CLK  
Data-out hold time  
tCK  
tCH  
tCL  
tAC  
tOH  
tLZ  
tHZ  
tSI  
6.0  
2.5  
2.5  
ns  
ns  
1
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
5.0  
5.4  
5.4  
1, 2  
1, 2  
1, 2, 3  
1, 4  
1
2.5  
1
3.0  
1
3.0  
1
CLK to Data-out low impedance  
CLK to Data-out high impedance  
Input setup time  
5.4  
5.4  
5.4  
1.5  
0.8  
1.5  
0.8  
1.5  
0.8  
Input hold time  
tHI  
1
Ref/Active to Ref/Active command  
period  
tRC  
60  
42  
18  
18  
12  
60  
45  
15  
15  
15  
67.5  
45  
ns  
ns  
ns  
ns  
ns  
1
1
1
1
1
Active to Precharge command  
period  
tRAS  
tRCD  
tRP  
120000  
120000  
120000  
Active command to column  
command (same bank)  
20  
Precharge to active command  
period  
20  
Write recovery or data-in to  
precharge lead time  
tDPL  
tDAL  
15  
2CLK +  
18ns  
2CLK +  
15ns  
2CLK +  
20ns  
Last data into active latency  
Active (a) to Active (b) command  
period  
tRRD  
tT  
12  
0.5  
5
15  
0.5  
5
15  
0.5  
5
ns  
ns  
ms  
1
Transition time (rise and fall)  
Refresh period  
(8192 refresh cycles)  
tREF  
64  
64  
64  
Notes: 1. AC measurement assumes tT = 0.5ns. Reference level for timing of input signals is 1.4V.  
2. Access time is measured at 1.4V. Load condition is CL = 50pF.  
3. tLZ (min.) defines the time at which the outputs achieves the low impedance state.  
4. tHZ (max.) defines the time at which the outputs achieves the high impedance state.  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
6
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Test Conditions  
Input and output timing reference levels: 1.4V  
Input waveform and output load: See following figures  
2.4 V  
I/O  
2.0 V  
input  
0.8 V  
0.4 V  
CL  
t
T
tT  
Output load  
Relationship Between Frequency and Minimum Latency  
Parameter  
-6B  
166  
6.0  
-7A  
133  
7.5  
-75  
Frequency (MHz)  
tCK (ns)  
Symbol  
lRCD  
7.5  
3
Notes  
1
Active command to column command  
(same bank)  
Active command to active command  
(same bank)  
3
2
8
6
2
2
lRC  
10  
7
9
6
3
2
1
1
1
1
Active command to precharge command  
(same bank)  
lRAS  
lRP  
Precharge command to active command  
(same bank)  
Write recovery or data-in to precharge  
command (same bank)  
3
lDPL  
2
Active command to active command  
(different bank)  
lRRD  
lSREX  
lDAL  
2
1
5
2
1
4
2
1
5
1
Self refresh exit time  
2
Last data in to active command  
(Auto precharge, same bank)  
= [lDPL + lRP]  
= [lRC]  
3
Self refresh exit to command input  
lSEC  
10  
8
9
Precharge command to high impedance  
(CL = 2)  
lHZP  
lHZP  
3
2
3
2
3
(CL = 3)  
Last data out to active command  
(Auto precharge, same bank)  
lAPR  
1
1
1
Last data out to precharge (early precharge)  
(CL = 2)  
lEP  
lEP  
–1  
–2  
–1  
–2  
(CL = 3)  
–2  
Column command to column command  
Write command to data in latency  
DQM to data in  
lCCD  
lWCD  
lDID  
1
0
0
2
1
2
0
1
1
0
0
2
1
2
0
1
1
0
0
2
1
2
0
1
DQM to data out  
lDOD  
lCLE  
lMRD  
lCDD  
lPEC  
CKE to CLK disable  
Register set to active command  
/CS to command disable  
Power down exit to command input  
Notes: 1. IRCD to IRRD are recommended value.  
2. Be valid [DESL] or [NOP] at next command of self refresh exit.  
3. Except [DESL] and [NOP]  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
7
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
VIL/VIH Clamp  
This SDRAM component has VIL and VIH clamp for CLK, CKE, /CS, DQM and DQ pins.  
[Minimum VIL Clamp Current]  
VIL (V)  
I (mA)  
–32  
–25  
–19  
–13  
–8  
–2  
–1.8  
–1.6  
–1.4  
–1.2  
–1  
–4  
–0.9  
–0.8  
–0.6  
–0.4  
–0.2  
0
–2  
–0.6  
0
0
0
0
0
–2  
–1.5  
–1  
–0.5  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
VIL (V)  
Minimum VIL Clamp Current  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
8
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
[Minimum VIH Clamp Current]  
VIH (V)  
I (mA)  
10  
8
VDD + 2  
VDD + 1.8  
VDD + 1.6  
VDD + 1.4  
VDD + 1.2  
VDD + 1  
5.5  
3.5  
1.5  
0.3  
0
VDD + 0.8  
VDD + 0.6  
VDD + 0.4  
VDD + 0.2  
VDD + 0  
0
0
0
0
10  
8
6
4
2
0
VDD + 0  
VDD + 0.5  
VDD + 1  
VIH (V)  
VDD + 1.5  
VDD + 2  
Minimum VIH Clamp Current  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
9
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
IOL/IOH Characteristics  
[Output Low Current (IOL)]  
IOL  
IOL  
VOUT (V)  
0
min. (mA)  
0
max. (mA)  
0
0.4  
27.5  
41.8  
51.6  
58.0  
70.7  
72.9  
75.4  
77.0  
77.6  
80.3  
81.4  
70.2  
0.65  
0.85  
1
107.5  
133.8  
151.2  
187.7  
194.4  
202.5  
208.6  
212.0  
219.6  
222.6  
1.4  
1.5  
1.65  
1.8  
1.95  
3
3.45  
250  
200  
150  
100  
min.  
max.  
50  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VOUT (V)  
Output Low Current (IOL)  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
10  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
[Output High Current (IOH)]  
IOH  
IOH  
VOUT (V)  
min. (mA)  
max. (mA)  
3.45  
3.3  
3
0
2.4  
27.3  
74.1  
2.6  
2.4  
2
21.1  
34.1  
58.7  
67.3  
73.0  
77.9  
80.8  
88.6  
93.0  
129.2  
153.3  
197.0  
226.2  
248.0  
269.7  
284.3  
344.5  
502.4  
1.8  
1.65  
1.5  
1.4  
1
0
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
–100  
–200  
–300  
min.  
max.  
–400  
–500  
–600  
VOUT(V)  
Output High Current (IOH)  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
11  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Block Diagram  
CLK  
Clock  
Generator  
CKE  
Bank 3  
Bank 2  
Bank 1  
Row  
Address  
Address  
Buffer  
&
Refresh  
Counter  
Mode  
Register  
Bank 0  
Sense Amplifier  
DQM  
/CS  
Column Decoder &  
Latch Circuit  
Column  
Address  
Buffer  
&
Burst  
/RAS  
/CAS  
/WE  
Data Control Circuit  
DQ  
Counter  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
12  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Pin Function  
CLK (input pin)  
CLK is the master clock input to this pin. The other input signals are referred at CLK rising edge.  
/CS (input pin)  
When /CS is Low, the command input cycle becomes valid. When /CS is High, all inputs are ignored. However,  
internal operations (bank active, burst operations, etc.) are held.  
/RAS, /CAS, and /WE (input pins)  
Although these pin names are the same as those of conventional DRAMs, they function in a different way. These  
pins define operation commands (read, write, etc.) depending on the combination of their voltage levels. For details,  
refer to the command operation section.  
A0 toA12 (input pins)  
Row address (AX0 to AX12) is determined by A0 to A12 at the bank active command cycle CLK rising edge.  
Column address is determined by A0 to A9, A11 or A12 (see Address Pins Table) at the read or write command  
cycle CLK rising edge. And this column address becomes burst access start address.  
[Address Pins Table]  
Address (A0 to A12)  
Part number  
EDS5104AB  
EDS5108AB  
EDS5116AB  
Row address  
AX0 to AX12  
AX0 to AX12  
AX0 to AX12  
Column address  
AY0 to AY9, AY11, AY12  
AY0 to AY9, AY11  
AY0 to AY9  
A10 defines the precharge mode. When A10 = High at the precharge command cycle, all banks are precharged.  
But when A10 = Low at the precharge command cycle, only the bank that is selected by BA0 and BA1 (BS) is  
precharged. For details refer to the command operation section.  
BA0 and BA1 (input pin)  
BA0 and BA1 are bank select signal (BS). (See Bank Select Signal Table)  
[Bank Select Signal Table]  
BA0  
BA1  
L
Bank 0  
L
Bank 1  
H
L
Bank 2  
L
H
Bank 3  
H
H
Remark: H: VIH. L: VIL.  
CKE (input pin)  
This pin determines whether or not the next CLK is valid. If CKE is High, the next CLK rising edge is valid. If CKE is  
Low, the next CLK rising edge is invalid. This pin is used for power-down mode, clock suspend mode and self  
refresh mode.  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
13  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
DQM, UDQM and LDQM (input pins)  
DQM controls input/output buffers. In 32M × 16 products, UDQM and LDQM control upper byte (DQ8 to DQ15) and  
lower byte (DQ0 to DQ7).  
Read operation: If DQM is High, the output buffer becomes High-Z. If the DQM is Low, the output buffer becomes  
Low-Z. (The latency of DQM during reading is 2 clocks.)  
Write operation: If DQM is High, the previous data is held (the new data is not written). If DQM is Low, the data is  
written. (The latency of DQM during writing is 0 clock.)  
DQ0 toDQ15 (input/output pins)  
Data is input to and output from these pins (DQ0 to DQ3; EDS5104AB , DQ0 to DQ7; EDS5108AB, DQ0 to DQ15;  
EDS5116AB).  
VDD, VSS, VDDQ, VSSQ (Power supply)  
VDD and VSS are power supply pins for internal circuits. VDDQ and VSSQ are power supply pins for the output  
buffers.  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
14  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Command Operation  
Command Truth Table  
The SDRAM recognizes the following commands specified by the /CS, /RAS, /CAS, /WE and address pins.  
CKE  
Function  
Symbol  
DESL  
NOP  
n – 1  
H
n
×
×
×
×
×
×
×
×
×
×
×
/CS  
H
L
/RAS  
×
/CAS  
×
/WE  
×
BA1,BA0 A10  
A0 to A12  
Device deselect  
No operation  
×
×
×
V
V
V
V
V
V
×
L
×
×
×
L
×
×
×
V
V
V
V
V
×
×
V
H
H
H
H
H
H
H
L
H
H
L
H
L
Burst stop  
BST  
H
L
Read  
READ  
READA  
WRIT  
WRITA  
ACT  
H
L
H
H
L
Read with auto precharge  
Write  
H
L
L
H
L
H
L
L
Write with auto precharge  
Bank activate  
H
L
L
L
H
V
L
H
L
H
H
H
L
H
L
Precharge select bank  
Precharge all banks  
Mode register set  
PRE  
H
L
L
PALL  
MRS  
H
L
L
L
H
L
H
L
L
L
Remark: H: VIH. L: VIL. ×: VIH or VIL. V: Valid address input.  
Device deselect command [DESL]  
When this command is set (/CS is High), the SDRAM ignore command input at the clock. However, the internal  
status is held.  
No operation [NOP]  
This command is not an execution command. However, the internal operations continue.  
Burst stop command [BST]  
This command can stop the current burst operation.  
Column address strobe and read command [READ]  
This command starts a read operation. In addition, the start address of burst read is determined by the column  
address (see Address Pins Table in Pin Function) and the bank select address (BA0, BA1). After the read operation,  
the output buffer becomes High-Z.  
Read with auto-precharge [READA]  
This command automatically performs a precharge operation after a burst read with a burst length of 1, 2, 4 or 8.  
Column address strobe and write command [WRIT]  
This command starts a write operation. When the burst write mode is selected, the column address (see Address  
Pins Table in Pin Function) and the bank select address (BA0, BA1) become the burst write start address. When the  
single write mode is selected, data is only written to the location specified by the column address (see Address Pins  
Table in Pin Function) and the bank select address (BA0, BA1).  
Write with auto-precharge [WRITA]  
This command automatically performs a precharge operation after a burst write with a length of 1, 2, 4 or 8, or after a  
single write operation.  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
15  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Row address strobe and bank activate [ACT]  
This command activates the bank that is selected by BA0, BA1 and determines the row address (AX0 to AX12).  
(See Bank Select Signal Table)  
Precharge selected bank [PRE]  
This command starts precharge operation for the bank selected by BA0, BA1. (See Bank Select Signal Table)  
[Bank Select Signal Table]  
BA0  
L
BA1  
L
Bank 0  
Bank 1  
H
L
Bank 2  
L
H
Bank 3  
H
H
Remark: H: VIH. L: VIL.  
Precharge all banks [PALL]  
This command starts a precharge operation for all banks.  
Refresh [REF/SELF]  
This command starts the refresh operation. There are two types of refresh operation, the one is auto-refresh, and  
the other is self-refresh. For details, refer to the CKE truth table section.  
Mode register set [MRS]  
The SDRAM has a mode register that defines how it operates. The mode register is specified by the address pins  
(A0 to A12, BA0 and BA1) at the mode register set cycle. For details, refer to the mode register configuration. After  
power on, the contents of the mode register are undefined, execute the mode register set command to set up the  
mode register.  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
16  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
DQM Truth Table  
CKE  
DQM  
Commands  
Symbol  
ENB  
n – 1  
H
n
×
×
×
×
×
×
UDQM  
LDQM  
Write enable/output enable  
L
Write inhibit/output disable  
MASK  
ENBU  
ENBL  
H
H
L
Upper byte write enable/output enable  
Lower byte write enable/output enable  
Upper byte write inhibit/output disable  
Lower byte write inhibit/output disable  
H
×
L
×
H
H
×
H
×
MASKU  
MASKL  
H
H
Remark: H: VIH. L: VIL. ×: VIH or VIL  
Write: IDID is needed.  
Read: IDOD is needed.  
CKE Truth Table  
CKE  
Current state  
Activating  
Any  
Function  
Symbol  
n – 1  
H
L
n
/CS  
×
/RAS  
×
/CAS  
×
/WE  
Address  
Clock suspend mode entry  
Clock suspend mode  
Clock suspend mode exit  
CBR (auto) refresh command  
Self refresh entry  
L
×
×
×
×
×
×
×
×
×
×
×
×
L
×
×
×
×
Clock suspend  
Idle  
L
H
H
L
×
×
×
×
REF  
H
H
L
L
L
L
H
H
H
×
Idle  
SELF  
L
L
L
Self refresh  
Self refresh exit  
H
H
L
L
H
×
H
×
L
H
L
Idle  
Power down entry  
Power down exit  
H
H
L
H
×
H
×
H
×
L
H
H
L
Power down  
H
H
×
×
×
L
H
H
H
Remark: H: VIH. L: VIL. ×: VIH or VIL  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
17  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Function Truth Table  
The following table shows the operations that are performed when each command is issued in each mode of the  
SDRAM.  
The following table assumes that CKE is high.  
Current state  
/CS  
/RAS /CAS /WE  
Address  
Command  
Operation  
Precharge  
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
×
×
×
×
DESL  
Enter IDLE after tRP  
Enter IDLE after tRP  
ILLEGAL  
ILLEGAL*3  
ILLEGAL*3  
ILLEGAL*3  
NOP*5  
H
H
H
H
L
H
H
L
H
L
×
NOP  
×
BST  
H
L
BA, CA, A10  
READ/READA  
WRIT/WRITA  
ACT  
L
BA, CA, A10  
H
H
L
H
L
BA, RA  
L
BA, A10  
PRE, PALL  
REF, SELF  
MRS  
L
H
L
×
ILLEGAL  
L
L
MODE  
ILLEGAL  
Idle  
×
×
×
×
DESL  
NOP  
H
H
H
H
L
H
H
L
H
L
×
NOP  
NOP  
×
BST  
ILLEGAL  
H
L
BA, CA, A10  
READ/READA  
WRIT/WRITA  
ACT  
ILLEGAL*4  
ILLEGAL*4  
Bank and row active  
NOP  
L
BA, CA, A10  
H
H
L
H
L
BA, RA  
L
BA, A10  
PRE, PALL  
REF, SELF  
MRS  
L
H
L
×
Refresh  
Mode register set*8  
L
L
MODE  
Row active  
×
×
×
×
DESL  
NOP  
H
H
H
H
H
H
L
H
L
×
NOP  
NOP  
×
BST  
ILLEGAL  
H
L
BA, CA, A10  
BA, CA, A10  
READ/READA  
WRIT/WRITA  
Begin read*6  
Begin write*6  
L
Other bank active  
L
L
H
H
BA, RA  
ACT  
ILLEGAL on same bank*2  
L
L
L
H
L
L
L
H
L
L
BA, A10  
PRE, PALL  
REF, SELF  
MRS  
Precharge*7  
L
H
L
×
ILLEGAL  
L
L
MODE  
ILLEGAL  
Read  
×
H
H
×
×
H
L
×
×
×
DESL  
Continue burst to end  
Continue burst to end  
Burst stop  
H
H
NOP  
BST  
Continue burst read to /CAS  
latency and New read  
L
L
L
H
H
L
L
L
H
L
BA, CA, A10  
BA, CA, A10  
BA, RA  
READ/READA  
WRIT/WRITA  
ACT  
Term burst read/start write  
Other bank active  
H
H
ILLEGAL on same bank*2  
L
L
L
L
L
L
H
L
L
L
H
L
BA, A10  
×
PRE, PALL  
REF, SELF  
MRS  
Term burst read and Precharge  
ILLEGAL  
MODE  
ILLEGAL  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
18  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Current state  
/CS  
H
/RAS /CAS /WE  
Address  
Command  
DESL  
Operation  
Read with auto-  
precharge  
Continue burst to end and  
precharge  
×
×
×
×
Continue burst to end and  
precharge  
L
H
H
H
×
NOP  
L
L
L
H
H
H
H
L
L
H
L
×
BST  
ILLEGAL  
BA, CA, A10  
BA, CA, A10  
READ/READA  
WRIT/WRITA  
ILLEGAL*3  
ILLEGAL*3  
L
Other bank active  
L
L
H
H
BA, RA  
ACT  
ILLEGAL on same bank*2  
L
L
L
H
L
L
L
L
L
H
L
L
BA, A10  
PRE, PALL  
REF, SELF  
MRS  
ILLEGAL*3  
L
H
L
×
ILLEGAL  
L
L
MODE  
ILLEGAL  
Write  
×
×
H
H
L
×
H
L
×
DESL  
Continue burst to end  
Continue burst to end  
Burst stop  
H
H
H
H
×
NOP  
×
BST  
H
L
BA, CA, A10  
BA, CA, A10  
READ/READA  
WRIT/WRITA  
Term burst and New read  
Term burst and New write  
L
Other bank active  
L
L
H
H
BA, RA  
ACT  
ILLEGAL on same bank*3  
L
L
L
L
L
L
H
L
L
L
H
L
BA, A10  
×
PRE, PALL  
REF, SELF  
MRS  
Term burst write and Precharge*1  
ILLEGAL  
ILLEGAL  
MODE  
Write with auto-  
precharge  
Continue burst to end and  
precharge  
H
L
×
×
×
×
×
DESL  
NOP  
Continue burst to end and  
precharge  
H
H
H
L
L
L
H
H
H
H
L
L
H
L
×
BST  
ILLEGAL  
BA, CA, A10  
BA, CA, A10  
READ/READA  
WRIT/WRITA  
ILLEGAL*3  
ILLEGAL*3  
L
Other bank active  
L
L
H
H
BA, RA  
ACT  
ILLEGAL on same bank*3  
L
L
L
H
L
L
L
L
L
L
L
L
L
H
L
L
BA, A10  
PRE, PALL  
REF, SELF  
MRS  
ILLEGAL*3  
L
H
L
×
ILLEGAL  
L
L
MODE  
ILLEGAL  
Refresh (auto-refresh)  
×
H
H
H
H
L
×
×
×
DESL  
Enter IDLE after tRC  
Enter IDLE after tRC  
ILLEGAL  
ILLEGAL*4  
ILLEGAL*4  
ILLEGAL*4  
ILLEGAL*4  
ILLEGAL  
H
H
L
H
L
×
NOP  
×
BST  
H
L
BA, CA, A10  
BA, CA, A10  
BA, RA  
BA, A10  
×
READ/READA  
WRIT/WRITA  
ACT  
L
H
H
L
H
L
L
PRE, PALL  
REF, SELF  
MRS  
L
H
L
L
L
MODE  
ILLEGAL  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
19  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Current state  
/CS  
H
L
/RAS /CAS /WE  
Address  
Command  
DESL  
Operation  
NOP  
Mode register set  
×
×
×
×
H
H
H
H
L
H
H
L
H
L
×
NOP  
NOP  
L
×
BST  
ILLEGAL  
L
H
L
BA, CA, A10  
BA, CA, A10  
BA, RA  
BA, A10  
×
READ/READA  
WRIT/WRITA  
ACT  
ILLEGAL*4  
ILLEGAL*4  
Bank and row active*9  
NOP  
Refresh*9  
Mode register set*8  
L
L
L
H
H
L
H
L
L
L
PRE, PALL  
REF, SELF  
MRS  
L
L
H
L
L
L
L
MODE  
Remark: H: VIH. L: VIL. ×: VIH or VIL  
Notes: 1.An interval of tDPL is required between the final valid data input and the precharge command.  
2. If tRRD is not satisfied, this operation is illegal.  
3. Illegal for same bank, except for another bank.  
4. Illegal for all banks.  
5. NOP for same bank, except for another bank.  
6. Illegal if tRCD is not satisfied.  
7. Illegal if tRAS is not satisfied.  
8. MRS command must be issued after DOUT finished, in case of DOUT remaining.  
9. Illegal if lMRD is not satisfied.  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
20  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Command Truth Table for CKE  
CKE  
Current State  
Self refresh  
n – 1 n  
/CS /RAS /CAS /WE Address  
Operation  
Notes  
H
L
×
×
H
L
L
L
×
H
L
L
L
H
L
L
L
×
H
L
×
H
L
L
L
L
H
L
L
L
L
×
×
×
×
×
×
×
×
×
×
H
H
L
×
×
H
H
L
×
H
H
L
×
×
H
×
×
H
L
L
L
×
H
L
L
L
×
×
×
×
×
×
×
×
×
×
H
L
×
×
×
H
L
×
×
H
L
×
×
×
H
×
×
×
H
L
L
×
×
H
L
L
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
H
×
×
×
×
H
L
×
×
×
H
L
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
INVALID, CLK (n – 1) would exit self refresh  
Self refresh recovery  
Self refresh recovery  
ILLEGAL  
H
H
H
H
L
L
L
L
ILLEGAL  
L
Continue self refresh  
Idle after tRC  
Self refresh recovery  
H
H
H
H
H
H
H
H
H
L
H
H
H
H
L
Idle after tRC  
ILLEGAL  
ILLEGAL  
ILLEGAL  
L
ILLEGAL  
L
ILLEGAL  
L
ILLEGAL  
Power down  
All banks idle  
×
INVALID, CLK (n – 1) would exit power down  
EXIT power down  
H
H
L
×
×
×
L
EXIT power down  
L
Continue power down mode  
Refer to operations in Function Truth Table  
Refer to operations in Function Truth Table  
Refer to operations in Function Truth Table  
CBR (auto) Refresh  
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
L
×
OPCODE Refer to operations in Function Truth Table  
Begin power down next cycle  
L
Refer to operations in Function Truth Table  
Refer to operations in Function Truth Table  
L
L
×
Self refresh  
1
L
OPCODE Refer to operations in Function Truth Table  
H
L
×
×
×
×
Exit power down next cycle  
Power down  
L
1
1
2
Row active  
H
L
×
Refer to operations in Function Truth Table  
Clock suspend  
×
Any state other than  
listed above  
H
H
L
H
L
Refer to operations in Function Truth Table  
Begin clock suspend next cycle  
Exit clock suspend next cycle  
Maintain clock suspend  
×
×
×
H
L
L
Remark: H: VIH. L: VIL. ×: VIH or VIL  
Notes: 1. Self refresh can be entered only from the all banks idle state. Power down can be entered only from all  
banks idle. Clock suspend can be entered only from following states, row active, read, read with auto-  
precharge, write and write with auto precharge.  
2. Must be legal command as defined in Function Truth Table.  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
21  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Clock suspend mode entry  
The SDRAM enters clock suspend mode from active mode by setting CKE to Low. If command is input in the clock  
suspend mode entry cycle, the command is valid. The clock suspend mode changes depending on the current  
status (1 clock before) as shown below.  
ACTIVE clock suspend  
This suspend mode ignores inputs after the next clock by internally maintaining the bank active status.  
READ suspend and READ with Auto-precharge suspend  
The data being output is held (and continues to be output).  
WRITE suspend and WRIT with Auto-precharge suspend  
In this mode, external signals are not accepted. However, the internal state is held.  
Clock suspend  
During clock suspend mode, keep the CKE to Low.  
Clock suspend mode exit  
The SDRAM exits from clock suspend mode by setting CKE to High during the clock suspend state.  
IDLE  
In this state, all banks are not selected, and completed precharge operation.  
Auto-refresh command [REF]  
When this command is input from the IDLE state, the SDRAM starts auto-refresh operation. (The auto-refresh is the  
same as the CBR refresh of conventional DRAMs.) During the auto-refresh operation, refresh address and bank  
select address are generated inside the SDRAM. For every auto-refresh cycle, the internal address counter is  
updated. Accordingly, 8192 times are required to refresh the entire memory. Before executing the auto-refresh  
command, all the banks must be in the IDLE state. In addition, since the precharge for all banks is automatically  
performed after auto-refresh, no precharge command is required after auto-refresh.  
Self-refresh entry [SELF]  
When this command is input during the IDLE state, the SDRAM starts self-refresh operation. After the execution of  
this command, self-refresh continues while CKE is Low. Since self-refresh is performed internally and automatically,  
external refresh operations are unnecessary.  
Power down mode entry  
When this command is executed during the IDLE state, the SDRAM enters power down mode. In power down  
mode, power consumption is suppressed by cutting off the initial input circuit.  
Self-refresh exit  
When this command is executed during self-refresh mode, the SDRAM can exit from self-refresh mode. After exiting  
from self-refresh mode, the SDRAM enters the IDLE state.  
Power down exit  
When this command is executed at the power down mode, the SDRAM can exit from power down mode. After  
exiting from power down mode, the SDRAM enters the IDLE state.  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
22  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Simplified State Diagram  
SELF  
REFRESH  
SR ENTRY  
SR EXIT  
*1  
MRS  
REFRESH  
MODE  
REGISTER  
SET  
AUTO  
REFRESH  
IDLE  
CKE  
CKE_  
IDLE  
POWER  
DOWN  
ACTIVE  
ACTIVE  
CLOCK  
SUSPEND  
CKE_  
CKE  
ROW  
ACTIVE  
BST  
BST  
WRITE  
READ  
Write  
WRITE  
WITH  
AP  
READ  
WITH  
AP  
Read  
CKE_  
CKE_  
CKE  
WRITE  
SUSPEND  
READ  
READ  
SUSPEND  
WRITE  
READ  
WRITE  
CKE  
READ  
WITH AP  
WRITE  
WITH AP  
WRITE  
WITH AP  
READ  
WITH AP  
PRECHARGE  
CKE_  
CKE_  
WRITEA  
SUSPEND  
READA  
SUSPEND  
WRITEA  
READA  
CKE  
CKE  
PRECHARGE PRECHARGE  
POWER  
APPLIED  
POWER  
ON  
PRECHARGE  
PRECHARGE  
Automatic transition after completion of command.  
Transition resulting from command input.  
Note: 1. After the auto-refresh operation, precharge operation is performed automatically and  
enter the IDLE state.  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
23  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Mode Register Configuration  
The mode register is set by the input to the address pins (A0 to A12, BA0 and BA1) during mode register set cycles.  
The mode register consists of five sections, each of which is assigned to address pins.  
BA1, BA0, A8, A9, A10, A11, A12: (OPCODE): The SDRAM has two types of write modes. One is the burst write  
mode, and the other is the single write mode. These bits specify write mode.  
Burst read and burst write: Burst write is performed for the specified burst length starting from the column address  
specified in the write cycle.  
Burst read and single write: Data is only written to the column address specified during the write cycle, regardless of  
the burst length.  
A7: Keep this bit Low at the mode register set cycle. If this pin is high, the vender test mode is set.  
A6, A5, A4: (LMODE): These pins specify the /CAS latency.  
A3: (BT): A burst type is specified.  
A2, A1, A0: (BL): These pins specify the burst length.  
A12  
A11  
OPCODE  
BA1 BA0  
A10  
A9  
A8  
A7  
0
A6  
A5  
A4  
A3  
BT  
A2  
A1  
BL  
A0  
LMODE  
A6 A5 A4 CAS latency  
A3 Burst type  
Burst length  
BT=0 BT=1  
A2 A1 A0  
R
R
2
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
0
1
Sequential  
Interleave  
1
2
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2
3
4
4
R
8
8
R
R
R
R
R
R
A9 A8  
Write mode  
A10  
BA1  
0
BA0 A12  
A11  
R
0
0
1
1
0
1
0
1
Burst read and burst write  
0
X
X
X
0
X
X
X
0
X
X
X
0
X
X
X
F.P.  
R
X
Burst read and single write  
R
F.P.: Full Page  
R is Reserved (inhibit)  
X: 0 or 1  
X
X
Mode Register Set Timing  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
24  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Burst length = 2  
Starting Ad. Addressing(decimal)  
Burst length = 4  
Starting Ad. Addressing(decimal)  
A0  
0
Sequential Interleave  
A1  
0
A0 Sequential  
Interleave  
0, 1,  
1, 0,  
0, 1,  
1, 0,  
0
1
0
1
0, 1, 2, 3,  
1, 2, 3, 0,  
2, 3, 0, 1,  
0, 1, 2, 3,  
1, 0, 3, 2,  
2, 3, 0, 1,  
3, 2, 1, 0,  
1
0
1
1
3,  
0, 1, 2,  
Burst length = 8  
Starting Ad.  
Addressing(decimal)  
A2 A1 A0 Sequential  
Interleave  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0, 1, 2, 3, 4, 5, 6, 7,  
1, 2, 3, 4, 5, 6, 7, 0,  
2, 3, 4, 5, 6, 7, 0, 1,  
3, 4, 5, 6, 7, 0, 1, 2,  
4, 5, 6, 7, 0, 1, 2, 3,  
5, 6, 7, 0, 1, 2, 3, 4,  
6, 7, 0, 1, 2, 3, 4, 5,  
7, 0, 1, 2, 3, 4, 5, 6,  
0, 1, 2, 3, 4, 5, 6, 7,  
1, 0, 3, 2, 5, 4, 7, 6,  
2, 3, 0, 1, 6, 7, 4, 5,  
3, 2, 1, 0, 7, 6, 5, 4,  
4, 5, 6, 7, 0, 1, 2, 3,  
5, 4, 7, 6, 1, 0, 3, 2,  
6, 7, 4, 5, 2, 3, 0, 1,  
7, 6, 5, 4, 3, 2, 1, 0,  
Burst Sequence  
Full page burst is available only for sequential addressing. The addressing sequence is started from the column  
address that is asserted by read/write command. And the address is increased one by one.  
It is back to the address 0 when the address reaches at the end of address 4,095 (for 128M ×4 device), 2,047 (for  
64M × 8 device) and 1,023 (for 32M × 16 device). “Full page” never stops the burst read/write.  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
25  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Power-up Sequence  
Power-up Sequence  
The SDRAM should be goes on the following sequence with power up.  
The CLK, CKE, /CS, DQM and DQ pins keep low till power stabilizes.  
The CLK pin is stabilized within 100 µs after power stabilizes before the following initialization sequence.  
The CKE and DQM is driven to high between power stabilizes and the initialization sequence.  
This SDRAM has VDD clamp diodes for CLK, CKE, /CS DQM and DQ pins. If these pins go high before power up,  
the large current flows from these pins to VDD through the diodes.  
Initialization Sequence  
When 200 µs or more has past after the above power-up sequence, all banks must be precharged using the  
precharge command (PALL). After tRP delay, set 8 or more auto refresh commands (REF). Set the mode register  
set command (MRS) to initialize the mode register. We recommend that by keeping DQM and CKE to High, the  
output buffer becomes High-Z during Initialization sequence, to avoid DQ bus contention on memory system formed  
with a number of device.  
Initialization sequence  
Power up sequence  
100 µs  
200 µs  
VDD, VDDQ 0 V  
Low  
Low  
Low  
CKE, DQM  
CLK  
/CS, DQ  
Power stabilize  
Power-up sequence and Initialization sequence  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
26  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Operation of the SDRAM  
Read/Write Operations  
Bank active  
Before executing a read or write operation, the corresponding bank and the row address must be activated by the  
bank active (ACT) command. An interval of tRCD is required between the bank active command input and the  
following read/write command input.  
Read operation  
A read operation starts when a read command is input. Output buffer becomes Low-Z in the (/CAS Latency - 1)  
cycle after read command set. The SDRAM can perform a burst read operation.  
The burst length can be set to 1, 2, 4 and 8. The start address for a burst read is specified by the column address  
and the bank select address at the read command set cycle. In a read operation, data output starts after the number  
of clocks specified by the /CAS Latency. The /CAS Latency can be set to 2 or 3.  
When the burst length is 1, 2, 4 and 8 the DOUT buffer automatically becomes High-Z at the next clock after the  
successive burst-length data has been output.  
The /CAS latency and burst length must be specified at the mode register.  
CLK  
tRCD  
Command  
Address  
READ  
ACT  
Row  
Column  
out 3  
out 1 out 2  
out 0  
out 1 out 2  
CL = 2  
CL = 3  
DQ  
out 3  
out 0  
CL = /CAS latency  
Burst Length = 4  
/CAS Latency  
CLK  
Command  
Address  
tRCD  
ACT  
Row  
READ  
Column  
out 0  
BL = 1  
out 0 out 1  
BL = 2  
BL = 4  
BL = 8  
DQ  
out 3  
out 0 out 1 out 2  
out 0 out 1 out 2  
out 3  
out 5 out 6 out 7  
out 4  
BL : Burst Length  
/CAS Latency = 2  
Burst Length  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
27  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Write operation  
Burst write or single write mode is selected by the OPCODE of the mode register.  
1. Burst write: A burst write operation is enabled by setting OPCODE (A9, A8) to (0, 0). A burst write starts in the  
same clock as a write command set. (The latency of data input is 0 clock.) The burst length can be set to 1, 2, 4  
and 8, like burst read operations. The write start address is specified by the column address and the bank select  
address at the write command set cycle.  
CLK  
tRCD  
Command  
Address  
ACT  
Row  
WRIT  
Column  
in 0  
in 0  
BL = 1  
in 1  
in 1  
in 1  
BL = 2  
BL = 4  
BL = 8  
DQ  
in 3  
in 0  
in 0  
in 2  
in 2  
in 5  
in 6 in 7  
in 3 in 4  
CL = 2, 3  
Burst write  
2. Single write: A single write operation is enabled by setting OPCODE (A9, A8) to (1, 0). In a single write  
operation, data is only written to the column address and the bank select address specified by the write  
command set cycle without regard to the burst length setting. (The latency of data input is 0 clock).  
CLK  
tRCD  
Command  
WRIT  
ACT  
Row  
Column  
Address  
DQ  
in 0  
Single write  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
28  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Auto Precharge  
Read with auto-precharge  
In this operation, since precharge is automatically performed after completing a read operation, a precharge  
command need not be executed after each read operation. The command executed for the same bank after the  
execution of this command must be the bank active (ACT) command. In addition, an interval defined by lAPR is  
required before execution of the next command.  
[Clock cycle time]  
/CAS latency  
Precharge start cycle  
3
2
2 cycle before the final data is output  
1 cycle before the final data is output  
CLK  
ACT  
READA  
ACT  
CL=2 Command  
lRAS  
DQ  
out0  
out1  
out2  
out3  
lAPR  
CL=3 Command  
DQ  
ACT  
READA  
ACT  
lRAS  
out0  
out1  
out2  
out3  
lAPR  
Note: Internal auto-precharge starts at the timing indicated by " ".  
And an interval of tRAS (lRAS) is required between previous active (ACT) command and internal precharge  
"
".  
Burst Read (BL = 4)  
Write with auto-precharge  
In this operation, since precharge is automatically performed after completing a burst write or single write operation,  
a precharge command need not be executed after each write operation. The command executed for the same bank  
after the execution of this command must be the bank active (ACT) command. In addition, an interval of lDAL is  
required between the final valid data input and input of next command.  
CLK  
WRITA  
ACT  
ACT  
Command  
DQ  
IRAS  
in0 in1 in2 in3  
lDAL  
Note: Internal auto-precharge starts at the timing indicated by " ".  
and an interval of tRAS (lRAS) is required between previous active (ACT) command  
and internal precharge " ".  
Burst Write (BL = 4)  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
29  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
CLK  
WRITA  
ACT  
ACT  
Command  
IRAS  
DQ  
in  
lDAL  
Note: Internal auto-precharge starts at the timing indicated by " ".  
and an interval of tRAS (lRAS) is required between previous active (ACT) command  
and internal precharge " ".  
Single Write  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
30  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Burst Stop Command  
During a read cycle, when the burst stop command is issued, the burst read data are terminated and the data bus  
goes to High-Z after the /CAS latency from the burst stop command.  
CLK  
READ  
BST  
Command  
High-Z  
High-Z  
DQ  
out  
out  
out  
out  
out  
(CL = 2)  
DQ  
(CL = 3)  
out  
Burst Stop at Read  
During a write cycle, when the burst stop command is issued, the burst write data are terminated and data bus goes  
to High-Z at the same clock with the burst stop command.  
CLK  
WRITE  
in  
BST  
Command  
DQ  
High-Z  
in  
in  
in  
Burst Stop at Write  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
31  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Command Intervals  
Read command to Read command interval  
1. Same bank, same ROW address: When another read command is executed at the same ROW address of the  
same bank as the preceding read command execution, the second read can be performed after an interval of no  
less than 1 clock. Even when the first command is a burst read that is not yet finished, the data read by the  
second command will be valid.  
CLK  
Command  
ACT  
Row  
READ  
READ  
Column A Column B  
Address  
BS  
DQ  
out A0  
out B2 out B3  
out B0 out B1  
CL = 3  
BL = 4  
Bank 0  
Column =B  
Dout  
Bank0  
Active  
Column =A Column =B Column =A  
Read Read Dout  
READ to READ Command Interval (same ROW address in same bank)  
2. Same bank, different ROW address: When the ROW address changes on same bank, consecutive read  
commands cannot be executed; it is necessary to separate the two read commands with a precharge command  
and a bank active command.  
3. Different bank: When the bank changes, the second read can be performed after an interval of no less than 1  
clock, provided that the other bank is in the bank active state. Even when the first command is a burst read that  
is not yet finished, the data read by the second command will be valid.  
CLK  
Command  
READ READ  
ACT  
ACT  
Column A  
Row 1  
Column B  
Address  
BS  
Row 0  
DQ  
out A0  
out B2 out B3  
out B0 out B1  
Bank3  
Dout  
Bank0  
Dout  
CL = 3  
BL = 4  
Bank0  
Active  
Bank3 Bank0 Bank3  
Active Read Read  
READ to READ Command Interval (different bank)  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
32  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Write command to Write command interval  
1. Same bank, same ROW address: When another write command is executed at the same ROW address of the  
same bank as the preceding write command, the second write can be performed after an interval of no less than  
1 clock. In the case of burst writes, the second write command has priority.  
CLK  
Command  
Address  
WRIT  
ACT  
Row  
WRIT  
Column B  
Column A  
BS  
DQ  
in A0  
in B2 in B3  
in B0 in B1  
Bank0  
Active  
Column =A Column =B  
Write Write  
Burst Write Mode  
BL = 4  
Bank 0  
WRITE to WRITE Command Interval (same ROW address in same bank)  
2. Same bank, different ROW address: When the ROW address changes, consecutive write commands cannot be  
executed; it is necessary to separate the two write commands with a precharge command and a bank active  
command.  
3. Different bank: When the bank changes, the second write can be performed after an interval of no less than 1  
clock, provided that the other bank is in the bank active state. In the case of burst write, the second write  
command has priority.  
CLK  
Command  
Address  
ACT  
WRIT WRIT  
ACT  
Column A  
Column B  
Row 1  
Row 0  
BS  
DQ  
in A0  
in B2 in B3  
in B0 in B1  
Burst Write Mode  
BL = 4  
Bank0  
Active  
Bank3 Bank0 Bank3  
Active Write Write  
WRITE to WRITE Command Interval (different bank)  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
33  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Read command to Write command interval  
1. Same bank, same ROW address: When the write command is executed at the same ROW address of the same  
bank as the preceding read command, the write command can be performed after an interval of no less than 1  
clock. However, DQM must be set High so that the output buffer becomes High-Z before data input.  
CLK  
Command  
READ WRIT  
CL=2  
DQM  
CL=3  
DQ (input)  
DQ (output)  
in B0  
in B3  
in B1 in B2  
BL = 4  
Burst write  
High-Z  
READ to WRITE Command Interval (1)  
CLK  
Command  
DQM  
READ  
WRIT  
2 clock  
CL=2  
out  
out  
out  
out  
out  
in  
in  
in  
in  
in  
in  
in  
in  
DQ  
CL=3  
READ to WRITE Command Interval (2)  
2. Same bank, different ROW address: When the ROW address changes, consecutive write commands cannot be  
executed; it is necessary to separate the two commands with a precharge command and a bank active  
command.  
3. Different bank: When the bank changes, the write command can be performed after an interval of no less than 1  
cycle, provided that the other bank is in the bank active state. However, DQM must be set High so that the  
output buffer becomes High-Z before data input.  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
34  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Write command to Read command interval:  
1. Same bank, same ROW address: When the read command is executed at the same ROW address of the same  
bank as the preceding write command, the read command can be performed after an interval of no less than 1  
clock. However, in the case of a burst write, data will continue to be written until one clock before the read  
command is executed.  
CLK  
Command  
DQM  
WRIT  
in A0  
READ  
DQ (input)  
DQ (output)  
out B0  
out B1  
out B2  
out B3  
Burst Write Mode  
CL = 2  
Column = A  
Write  
/CAS Latency  
Column = B  
Read  
Column = B  
Dout  
BL = 4  
Bank 0  
WRITE to READ Command Interval (1)  
CLK  
WRIT  
in A0  
READ  
Command  
DQM  
DQ (input)  
in A1  
DQ (output)  
out B0  
out B1  
out B2  
out B3  
Burst Write Mode  
CL = 2  
Column = A  
Write  
/CAS Latency  
Column = B  
Read  
Column = B  
Dout  
BL = 4  
Bank 0  
WRITE to READ Command Interval (2)  
2. Same bank, different ROW address: When the ROW address changes, consecutive read commands cannot be  
executed; it is necessary to separate the two commands with a precharge command and a bank active  
command.  
3. Different bank: When the bank changes, the read command can be performed after an interval of no less than 1  
clock, provided that the other bank is in the bank active state. However, in the case of a burst write, data will  
continue to be written until one clock before the read command is executed (as in the case of the same bank and  
the same address).  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
35  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Read with auto precharge to Read command interval  
1. Different bank: When some banks are in the active state, the second read command (another bank) is executed.  
Even when the first read with auto-precharge is a burst read that is not yet finished, the data read by the second  
command is valid. The internal auto-precharge of one bank starts at the next clock of the second command.  
CLK  
Command  
BS  
READA  
READ  
DQ  
out A0  
out A1  
out B0  
out B1  
bank0  
Read A  
bank3  
Read  
CL= 3  
BL = 4  
Note: Internal auto-precharge starts at the timing indicated by "  
Read with Auto Precharge to Read Command Interval (Different bank)  
2. Same bank: The consecutive read command (the same bank) is illegal.  
Write with auto precharge to Write command interval  
".  
1. Different bank: When some banks are in the active state, the second write command (another bank) is executed.  
In the case of burst writes, the second write command has priority. The internal auto-precharge of one bank  
starts 2 clocks later from the second command.  
CLK  
Command  
BS  
WRITA  
in A0  
WRIT  
in B0  
DQ  
in A1  
in B1  
in B2  
".  
in B3  
bank0  
Write A  
bank3  
Write  
BL= 4  
Note: Internal auto-precharge starts at the timing indicated by "  
Write with Auto Precharge to Write Command Interval (Different bank)  
2. Same bank: The consecutive write command (the same bank) is illegal.  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
36  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Read with auto precharge to Write command interval  
1. Different bank: When some banks are in the active state, the second write command (another bank) is executed.  
However, DQM must be set High so that the output buffer becomes High-Z before data input. The internal auto-  
precharge of one bank starts at the next clock of the second command.  
CLK  
Command  
BS  
READA  
WRIT  
in B0  
CL = 2  
DQM  
CL = 3  
DQ (input)  
in B1  
in B2  
in B3  
DQ (output)  
High-Z  
BL = 4  
bank0  
ReadA  
bank3  
Write  
Note: Internal auto-precharge starts at the timing indicated by "  
".  
Read with Auto Precharge to Write Command Interval (Different bank)  
2. Same bank: The consecutive write command from read with auto precharge (the same bank) is illegal. It is  
necessary to separate the two commands with a bank active command.  
Write with auto precharge to Read command interval  
1. Different bank: When some banks are in the active state, the second read command (another bank) is executed.  
However, in case of a burst write, data will continue to be written until one clock before the read command is  
executed. The internal auto-precharge of one bank starts at 2 clocks later from the second command.  
CLK  
Command  
BS  
WRITA  
in A0  
READ  
DQM  
DQ (input)  
DQ (output)  
out B0  
out B1  
out B2 out B3  
CL = 3  
BL = 4  
bank0  
WriteA  
bank3  
Read  
Note: Internal auto-precharge starts at the timing indicated by "  
".  
Write with Auto Precharge to Read Command Interval (Different bank)  
2. Same bank: The consecutive read command from write with auto precharge (the same bank) is illegal. It is  
necessary to separate the two commands with a bank active command.  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
37  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Read command to Precharge command interval (same bank)  
When the precharge command is executed for the same bank as the read command that preceded it, the minimum  
interval between the two commands is one clock. However, since the output buffer then becomes High-Z after the  
clocks defined by lHZP, there is a case of interruption to burst read data output will be interrupted, if the precharge  
command is input during burst read. To read all data by burst read, the clocks defined by lEP must be assured as  
an interval from the final data output to precharge command execution.  
CLK  
PRE/PALL  
out A2  
READ  
Command  
DQ  
out A0  
out A1  
out A3  
CL=2  
lEP = -1 cycle  
READ to PRECHARGE Command Interval (same bank): To output all data (CL = 2, BL = 4)  
CLK  
PRE/PALL  
out A1  
READ  
Command  
DQ  
out A0  
out A2  
out A3  
CL=3  
lEP = -2 cycle  
READ to PRECHARGE Command Interval (same bank): To output all data (CL = 3, BL = 4)  
CLK  
PRE/PALL  
READ  
Command  
High-Z  
DQ  
out A0  
lHZP = 2  
READ to PRECHARGE Command Interval (same bank): To stop output data (CL = 2, BL = 1, 2, 4, 8)  
CLK  
PRE/PALL  
READ  
Command  
DQ  
High-Z  
out A0  
lHZP =3  
READ to PRECHARGE Command Interval (same bank): To stop output data (CL = 3, BL = 1, 2, 4, 8)  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
38  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Write command to Precharge command interval (same bank)  
When the precharge command is executed for the same bank as the write command that preceded it, the minimum  
interval between the two commands is 1 clock. However, if the burst write operation is unfinished, the input data  
must be masked by means of DQM for assurance of the clock defined by tDPL.  
CLK  
PRE/PALL  
Command  
DQM  
WRIT  
DQ  
tDPL  
WRIT  
CLK  
Command  
DQM  
PRE/PALL  
DQ  
in A0  
in A1  
tDPL  
WRITE to PRECHARGE Command Interval (same bank) (BL = 4 (To stop write operation))  
CLK  
PRE/PALL  
Command  
DQM  
WRIT  
in A0  
DQ  
in A1  
in A2  
in A3  
tDPL  
WRITE to PRECHARGE Command Interval (same bank) (BL = 4 (To write all data))  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
39  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Bank active command interval  
1. Same bank: The interval between the two bank active commands must be no less than tRC.  
2. In the case of different bank active commands: The interval between the two bank active commands must be no  
less than tRRD.  
CLK  
Command  
Address  
BS  
ACT  
ACT  
ROW  
ROW  
tRC  
Bank 0  
Active  
Bank 0  
Active  
Bank Active to Bank Active for Same Bank  
CLK  
Command  
Address  
ACT  
ACT  
ROW:0  
ROW:1  
BS  
tRRD  
Bank 0  
Active  
Bank 3  
Active  
Bank Active to Bank Active for Different Bank  
Mode register set to Bank active command interval  
The interval between setting the mode register and executing a bank active command must be no less than lMRD.  
CLK  
Command  
Address  
MRS  
ACT  
OPCODE  
BS & ROW  
IMRD  
Mode  
Register Set  
Bank  
Active  
Mode register set to Bank active command interval  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
40  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
DQM Control  
The DQM mask the DQ data. The UDQM and LDQM mask the upper and lower bytes of the DQ data, respectively.  
The timing of UDQM/LDQM is different during reading and writing.  
Reading  
When data is read, the output buffer can be controlled by DQM. By setting DQM to Low, the output buffer becomes  
Low-Z, enabling data output. By setting DQM to High, the output buffer becomes High-Z, and the corresponding  
data is not output. However, internal reading operations continue. The latency of DQM during reading is 2 clocks.  
Writing  
Input data can be masked by DQM. By setting DQM to Low, data can be written. In addition, when DQM is set to  
High, the corresponding data is not written, and the previous data is held. The latency of DQM during writing is 0  
clock.  
CLK  
DQM  
High-Z  
DQ  
out 0  
out 1  
out 3  
lDOD = 2 Latency  
Reading  
CLK  
DQM  
DQ  
in 3  
in 0  
in 1  
lDID = 0 Latency  
Writing  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
41  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Refresh  
Auto-refresh  
All the banks must be precharged before executing an auto-refresh command. Since the auto-refresh command  
updates the internal counter every time it is executed and determines the banks and the ROW addresses to be  
refreshed, external address specification is not required. The refresh cycles are required to refresh all the ROW  
addresses within tREF (max.). The output buffer becomes High-Z after auto-refresh start. In addition, since a  
precharge has been completed by an internal operation after the auto-refresh, an additional precharge operation by  
the precharge command is not required.  
Self-refresh  
After executing a self-refresh command, the self-refresh operation continues while CKE is held Low. During self-  
refresh operation, all ROW addresses are refreshed by the internal refresh timer. A self-refresh is terminated by a  
self-refresh exit command. Before and after self-refresh mode, execute auto-refresh to all refresh addresses in or  
within tREF (max.) period on the condition 1 and 2 below.  
1. Enter self-refresh mode within time as below* after either burst refresh or distributed refresh at equal interval to  
all refresh addresses are completed.  
2. Start burst refresh or distributed refresh at equal interval to all refresh addresses within time as below*after  
exiting from self-refresh mode.  
Note: tREF (max.) / refresh cycles.  
Others  
Power-down mode  
The SDRAM enters power-down mode when CKE goes Low in the IDLE state. In power down mode, power  
consumption is suppressed by deactivating the input initial circuit. Power down mode continues while CKE is held  
Low. In addition, by setting CKE to High, the SDRAM exits from the power down mode, and command input is  
enabled from the next clock. In this mode, internal refresh is not performed.  
Clock suspend mode  
By driving CKE to Low during a bank active or read/write operation, the SDRAM enters clock suspend mode. During  
clock suspend mode, external input signals are ignored and the internal state is maintained. When CKE is driven  
High, the SDRAM terminates clock suspend mode, and command input is enabled from the next clock. For details,  
refer to the "CKE Truth Table".  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
42  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Timing Waveforms  
Read Cycle  
tCK  
tCH tCL  
CLK  
tRC  
VIH  
CKE  
t
tRAS  
RP  
tRCD  
tHI  
tSI  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
/CS  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
/RAS  
tSI tHI  
tSI tHI  
/CAS  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
/WE  
BS  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
A10  
Address  
DQM  
tSI tHI  
tSI tHI  
tSI  
tHI  
DQ (input)  
t
t
t
t
HZ  
AC  
AC  
AC  
DQ (output)  
t
AC  
t
t
OH  
t
OH  
OH  
t
OH  
/CAS latency = 2  
Burst length = 4  
Bank 0 access  
= VIH or VIL  
Bank 0  
Read  
tLZ  
Bank 0  
Active  
Bank 0  
Precharge  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
43  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Write Cycle  
tCK  
tCH tCL  
CLK  
tRC  
VIH  
CKE  
tRP  
tRAS  
tRCD  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
/CS  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
/RAS  
tSI tHI  
/CAS  
/WE  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
tSI tHI  
BS  
tSI tHI  
tSI tHI  
tSI tHI  
A10  
tSI tHI  
tSI tHI  
Address  
DQM  
tSI  
tHI  
tSI tHI tSI tHI tSI tHI tSI tHI  
DQ (input)  
tDPL  
DQ (output)  
Bank 0  
Precharge  
Bank 0  
Write  
CL = 2  
BL = 4  
Bank 0  
Active  
Bank 0 access  
= VIH or VIL  
Mode Register Set Cycle  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLK  
VIL  
CKE  
/CS  
/RAS  
/CAS  
/WE  
BS  
code  
C: b’  
Address  
DQM  
valid  
C: b  
R: b  
b
b+3  
b’ b’+1 b’+2 b’+3  
DQ (output)  
DQ (input)  
High-Z  
lMRD  
lRP  
lRCD  
Output mask  
l
RCD = 3  
Precharge  
If needed  
Mode  
register  
Set  
Bank 3  
Active  
Bank 3  
Read  
/CAS latency = 3  
Burst length = 4  
= VIH or VIL  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
44  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Read Cycle/Write Cycle  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
CLK  
CKE  
VIH  
Read cycle  
/RAS-/CAS delay = 3  
/CAS latency = 3  
Burst length = 4  
/CS  
/RAS  
=
VIH or VIL  
/CAS  
/WE  
BS  
Address  
DQM  
R:a  
C:a  
R:b  
C:b  
C:b'  
C:b"  
DQ (output)  
DQ (input)  
a
a+1 a+2 a+3  
b
b+1 b+2 b+3 b' b'+1 b" b"+1 b"+2 b"+3  
High-Z  
Bank 0  
Active  
Bank 0  
Read  
Bank 3  
Active  
Bank 3 Bank 0  
Bank 3  
Read  
Bank 3  
Read  
Bank 3  
Precharge  
Read  
Precharge  
VIH  
CKE  
Write cycle  
/RAS-/CAS delay = 3  
/CAS latency = 3  
Burst length = 4  
= VIH or VIL  
/CS  
/RAS  
/CAS  
/WE  
BS  
Address  
DQM  
R:a  
C:a  
a
R:b  
C:b  
C:b'  
C:b"  
High-Z  
DQ (output)  
DQ (input)  
a+1 a+2 a+3  
b
b+1 b+2 b+3 b'  
b'+1 b" b"+1b"+2 b"+3  
Bank 0  
Active  
Bank 0  
Write  
Bank 3  
Active  
Bank 3  
Write  
Bank 0  
Precharge  
Bank 3  
Write  
Bank 3  
Write  
Bank 3  
Precharge  
Read/Single Write Cycle  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
CLK  
V
IH  
CKE  
/CS  
/RAS  
/CAS  
/WE  
BS  
R:a  
C:a  
R:b  
C:a' C:a  
a
Address  
DQM  
DQ (input)  
DQ (output)  
a
a+1 a+2 a+3  
a
a+1 a+2 a+3  
Bank 0  
Active  
Bank 0  
Read  
Bank 3  
Active  
Bank 0 Bank 0  
Write Read  
Bank 0  
Precharge  
Bank 3  
Precharge  
V
IH  
CKE  
/CS  
/RAS  
/CAS  
/WE  
BS  
R:a  
C:a  
R:b  
C:a  
C:b C:c  
Address  
DQM  
a
b
c
DQ (input)  
DQ (output)  
a
a+1  
a+3  
Bank 0  
Active  
Bank 0  
Read  
Bank 0  
Write  
Bank 0 Bank 0  
Write Write  
Bank 0  
Precharge  
Bank 3  
Active  
Read/Single write  
/RAS-/CAS delay = 3  
/CAS latency = 3  
Burst length = 4  
=
VIH or VIL  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
45  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Read/Burst Write Cycle  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
CLK  
CKE  
/CS  
/RAS  
/CAS  
/WE  
BS  
Address  
DQM  
R:a  
C:a  
R:b  
C:a'  
a
a+1 a+2 a+3  
DQ (input)  
DQ (output)  
a
a+1 a+2 a+3  
Bank 0  
Active  
Bank 0  
Read  
Bank 3  
Active  
Clock  
suspend  
Bank 0  
Precharge  
Bank 3  
Precharge  
Bank 0  
Write  
VIH  
CKE  
/CS  
/RAS  
/CAS  
/WE  
BS  
R:a  
C:a  
R:b  
C:a  
a
Address  
DQM  
DQ (input)  
DQ (output)  
a+1 a+2 a+3  
a
a+1  
a+3  
Bank 0  
Active  
Bank 0  
Read  
Bank 0  
Write  
Bank 0  
Precharge  
Bank 3  
Active  
Read/Burst write  
/RAS-/CAS delay = 3  
/CAS latency = 3  
Burst length = 4  
=
VIH or VIL  
Auto Refresh Cycle  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
CLK  
CKE  
/CS  
VIH  
/RAS  
/CAS  
/WE  
BS  
Address  
C:a  
A10=1  
R:a  
DQM  
DQ (input)  
a
a+1  
High-Z  
DQ (output)  
t
t
t
RC  
RP  
RC  
Refresh cycle and  
Read cycle  
Active  
Bank 0  
Read  
Bank 0  
Auto Refresh  
Precharge  
If needed  
Auto Refresh  
/RAS-/CAS delay = 2  
/CAS latency = 2  
Burst length = 4  
= VIH or VIL  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
46  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Self Refresh Cycle  
CLK  
CKE  
/CS  
lSREX  
CKE Low  
/RAS  
/CAS  
/WE  
BS  
Address  
DQM  
A10=1  
DQ (input)  
High-Z  
DQ (output)  
t
RC  
t
t
RC  
RP  
Self refresh cycle  
/RAS-/CAS delay = 3  
CL = 3  
Auto  
refresh  
Self refresh entry  
command  
Precharge command  
If needed  
Next  
Self refresh exit  
ignore command  
or No operation  
Next  
clock  
enable  
Self refresh entry  
command  
clock  
enable  
BL = 4  
=
VIH or VIL  
Clock Suspend Mode  
tSI  
tSI  
10 11 12 13 14 15 16 17 18 19 20  
tHI  
8
0
1
2
3
4
5
6
7
9
CLK  
CKE  
Read cycle  
/RAS-/CAS delay = 2  
/CAS latency = 2  
Burst length = 4  
= VIH or VIL  
/CS  
/RAS  
/CAS  
/WE  
BS  
Address  
R:a  
C:a  
R:b  
C:b  
DQM  
DQ (output)  
DQ (input)  
a
a+1 a+2  
a+3  
b
b+1 b+2 b+3  
High-Z  
Bank0 Active clock  
Active suspend start  
Active clock Bank0  
suspend end Read  
Bank3 Read suspend Read suspend  
Bank0  
Earliest Bank3  
Precharge  
Bank3  
Active  
start  
end Read Precharge  
CKE  
Write cycle  
/RAS-/CAS delay = 2  
/CAS latency = 2  
Burst length = 4  
= VIH or VIL  
/CS  
/RAS  
/CAS  
/WE  
BS  
R:b  
a+1  
Address  
DQM  
R:a  
C:a  
a
C:b  
High-Z  
DQ (output)  
DQ (input)  
a+2  
a+3  
b
b+1 b+2 b+3  
Bank0  
Active clock Bank0 Bank3 Write suspend Write suspend Bank3  
Earliest Bank3  
Precharge  
Bank0 Active clock  
Active suspend start  
Precharge  
end Write  
supend end Write Active  
start  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
47  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Power Down Mode  
CLK  
CKE  
/CS  
CKE Low  
/RAS  
/CAS  
/WE  
BS  
Address  
DQM  
A10=1  
R: a  
DQ (input)  
High-Z  
DQ (output)  
tRP  
Power down cycle  
Power down entry  
Power down  
mode exit  
Precharge command  
If needed  
/RAS-/CAS delay = 3  
/CAS latency = 3  
Burst length = 4  
= VIH or VIL  
Active Bank 0  
Initialization Sequence  
53  
0
1
2
3
4
5
6
7
8
9
10  
48  
49  
50  
51  
52  
54  
55  
CLK  
CKE  
/CS  
VIH  
/RAS  
/CAS  
/WE  
code  
valid  
Address  
Valid  
V
IH  
DQM  
DQ  
High-Z  
t
t
RC  
tRP  
RC  
l
MRD  
Bank active  
If needed  
All banks  
Precharge  
Mode register  
Set  
Auto Refresh  
Auto Refresh  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
48  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Package Drawing  
Unit: mm  
22.22 ± 0.10  
A
54  
28  
PIN#1 ID  
1
27  
B
0.80  
0.25 to 0.40  
M S  
A B  
0.16  
0.80  
Nom  
0.91 max.  
0.25  
0 to 8°  
S
0.10  
S
0.60 ± 0.15  
Note: Dimension "A" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or  
gate burrs shall not exceed 0.20mm per side.  
ECA-TS2-0016-01  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
49  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
Recommended Soldering Conditions  
Please consult with our sales offices for soldering conditions of the EDS51XXABTA.  
Type of Surface Mount Device  
EDS51XXABTA: 54-pin Plastic TSOP (II)  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
50  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR MOS DEVICES  
Exposing the MOS devices to a strong electric field can cause destruction of the gate  
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop  
generation of static electricity as much as possible, and quickly dissipate it, when once  
it has occurred. Environmental control must be adequate. When it is dry, humidifier  
should be used. It is recommended to avoid using insulators that easily build static  
electricity. MOS devices must be stored and transported in an anti-static container,  
static shielding bag or conductive material. All test and measurement tools including  
work bench and floor should be grounded. The operator should be grounded using  
wrist strap. MOS devices must not be touched with bare hands. Similar precautions  
need to be taken for PW boards with semiconductor MOS devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES  
No connection for CMOS devices input pins can be a cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input level may be  
generated due to noise, etc., hence causing malfunction. CMOS devices behave  
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected  
to VDD or GND with a resistor, if it is considered to have a possibility of being an output  
pin. The unused pins must be handled in accordance with the related specifications.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Power-on does not necessarily define initial status of MOS devices. Production process  
of MOS does not define the initial operation status of the device. Immediately after the  
power source is turned ON, the MOS devices with reset function have not yet been  
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or  
contents of registers. MOS devices are not initialized until the reset signal is received.  
Reset operation must be executed immediately after power-on for MOS devices having  
reset function.  
CME0107  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
51  
EDS5104ABTA, EDS5108ABTA, EDS5116ABTA  
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of Elpida Memory, Inc.  
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights  
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or  
third parties by or arising from the use of the products or information listed in this document. No license,  
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property  
rights of Elpida Memory, Inc. or others.  
Descriptions of circuits, software and other related information in this document are provided for  
illustrative purposes in semiconductor product operation and application examples. The incorporation of  
these circuits, software and information in the design of the customer's equipment shall be done under  
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses  
incurred by customers or third parties arising from the use of these circuits, software and information.  
[Product applications]  
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.  
However, users are instructed to contact Elpida Memory's sales office before using the product in  
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment,  
medical equipment for life support, or other such application in which especially high quality and  
reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury.  
[Product usage]  
Design your application so that the product is used within the ranges and conditions guaranteed by  
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation  
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no  
responsibility for failure or damage when the product is used beyond the guaranteed ranges and  
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure  
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so  
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other  
consequential damage due to the operation of the Elpida Memory, Inc. product.  
[Usage environment]  
This product is not designed to be resistant to electromagnetic waves or radiation. This product must be  
used in a non-condensing environment.  
If you export the products or technology described in this document that are controlled by the Foreign  
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance  
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by  
U.S. export control regulations, or another country's export control laws or regulations, you must follow  
the necessary procedures in accordance with such laws or regulations.  
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted  
license to use these products, that third party must be made aware that they are responsible for  
compliance with the relevant laws and regulations.  
M01E0107  
Preliminary Data Sheet E0250E10 (Ver. 1.0)  
52  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY