EDW1032BBBG-70-F [ELPIDA]

1G bits GDDR5 SGRAM; 1G位GDDR5 SGRAM
EDW1032BBBG-70-F
型号: EDW1032BBBG-70-F
厂家: ELPIDA MEMORY    ELPIDA MEMORY
描述:

1G bits GDDR5 SGRAM
1G位GDDR5 SGRAM

双倍数据速率
文件: 总16页 (文件大小:477K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
1G bits GDDR5 SGRAM  
EDW1032BBBG (32M words x 32 bits)  
Specifications  
Features  
• Density: 1G bits  
• Organization  
• x32/x16 mode configuration set at power-up with  
EDC pin  
• Single ended interface for data, address and command  
• Quarter data-rate differential clock inputs CK, /CK for  
address and commands  
• Two half data-rate differential clock inputs WCK, /WCK,  
each associated with two data bytes (DQ, /DBI, EDC)  
• Double Data Rate (DDR) data (WCK)  
• Single Data Rate (SDR) command (CK)  
• Double Data Rate (DDR) addressing (CK)  
• Write data mask function via address bus  
(single/double byte mask)  
• Data Bus Inversion (DBI) and Address Bus Inversion  
(ABI)  
— 2Mbit x 32 I/O x 16 banks  
— 4Mbit x 16 I/O x 16 banks  
• Package  
— 170-ball FBGA  
— Lead-free (RoHS compliant) and Halogen-free  
• Power supply:  
— VDD: 1.5V ±3% and 1.35V ± 3%  
— VDDQ: 1.5V ±3% and 1.35V ±3%  
• Data rate: 7.0Gbps/6.0Gbps/5.0Gbps/4.0Gbps (max.)  
• 16 internal banks  
• Four bank groups for tCCDL = 3tCK  
• 8n prefetch architecture: 256 bit per array Read or  
Write access; 128 bit for x16  
• Burst length (BL): 8 only  
• Programmable CAS latency: 6 to 20  
• Programmable Write latency: 3 to 7  
• Programmable CRC READ latency: 0 to 3  
• Programmable CRC WRITE latency: 8 to 14  
• Programmable EDC hold pattern for CDR  
• Input/output PLL on/off mode  
• Address training: address input monitoring via DQ pins  
• WCK2CK clock training: phase information via EDC  
pins  
• Data read and write training via Read FIFO (FIFO  
depth = 6)  
• Read FIFO pattern preload by LDFF command  
• Direct write data load to Read FIFO by WRTR  
command  
• Precharge: auto precharge option for each burst  
access  
• Consecutive read of Read FIFO by RDTR command  
• Refresh: auto-refresh, self-refresh  
• Refresh cycles: 8192 cycles/32ms  
• Interface: Pseudo open drain (POD-15)  
• On-die termination (ODT): nom. values of 60Ω or 120Ω  
• Pseudo open drain (POD-15) compatible outputs  
— 40Ω pulldown  
— 60Ω pullup  
• ODT and output driver strength auto-calibration with  
external resistor ZQ pin (120Ω)  
• Programmable termination and driver strength offsets  
• Read/Write data transmission integrity secured by  
cyclic redundancy check (CRC–8)  
• Read/Write EDC on/off mode  
• DQ Preamble for Read on/off mode  
• Low Power modes  
• RDQS mode on EDC pin  
• On-chip temperature sensor with read-out  
• Automatic temperature sensor controlled self-refresh  
rate  
• Digital tRAS lockout  
• Vendor ID, FIFO depth and Density info fields for  
identification  
• Selectable external or internal VREF for data inputs;  
programmable offsets for internal VREF  
• Mirror function with MF pin  
• Boundary Scan function with SEN pin  
• Separate external VREF for address / command inputs  
• Operating case temperature range  
— TC = 0°C to +95°C  
Document No. E1771E11 (Ver. 1.1)  
Date Published September 2011 (K) Japan  
Printed in Japan  
URL: http://www.elpida.com  
Elpida Memory, Inc. 2011  
EDW1032BBBG  
Ordering Information  
Organization  
(words x bits)  
Part number  
Max. Data Rate (Gbps/pin)  
Package  
EDW1032BBBG-40-F  
EDW1032BBBG-50-F  
EDW1032BBBG-60-F  
EDW1032BBBG-70-F  
32M x 32  
4.0  
5.0  
6.0  
7.0  
170-ball FBGA  
Part Number  
E D W 10 32 B B BG - 60 - F  
Elpida Memory  
Type  
Environment Code  
F: Lead Free (RoHS compliant)  
and Halogen Free  
D: Packaged Device  
Product Family  
Speed  
W: GDDR5 SGRAM  
40: 4.0Gbps  
50: 5.0Gbps  
60: 6.0Gbps  
70: 7.0Gbps  
Density/Bank  
10: 1Gb/16-bank  
Package  
BG: FBGA  
Organization  
32: x32  
Revision  
Power Supply, Interface  
B: VDD = 1.5V  
Data Sheet E1771E11 (Ver. 1.1)  
2
EDW1032BBBG  
Pin Configuration  
ꢀꢙꢜꢤihyyꢃꢉ7ꢟꢁꢃꢥꢔꢉꢂꢜꢃꢖꢍꢆsꢅtˆꢦh‡ꢅꢍꢆꢧ  
#
'
ꢀꢜ  
ꢐSꢕꢉꢑ ꢑꢒ' ꢐꢓꢓꢒ ꢑꢒꢛ ꢐꢓꢓꢒ  
ꢐꢓꢓ ꢑꢒꢀꢜ ꢐꢑꢑꢒ ꢑꢒꢀꢀ ꢐꢑꢑꢒ  
ꢐꢑꢑ ꢐꢓꢓꢒ ꢐꢓꢓꢒ ꢕꢑꢖꢀ ꢐꢓꢓꢒ  
ꢐꢓꢓ ꢐꢑꢑ ꢐꢑꢑꢒ ꢢꢑ7ꢣꢀ ꢐꢑꢑꢒ  
ꢀꢀ  
ꢀꢘ  
ꢀꢗ  
ꢀ#  
7
ꢐꢓꢓꢒ ꢑꢒꢀ ꢐꢓꢓꢒ ꢑꢒꢜ  
ꢐꢑꢑꢒ ꢑꢒꢗ ꢐꢑꢑꢒ ꢑꢒꢘ  
Iꢖ  
ꢐꢓꢓ  
ꢐꢓꢓꢒ ꢕꢑꢖꢜ ꢐꢓꢓꢒ ꢐꢓꢓꢒ ꢐꢑꢑ  
ꢐꢑꢑꢒ ꢢꢑ7ꢣꢜ ꢐꢑꢑꢒ ꢝꢖꢞꢜꢀ ꢢꢝꢖꢞꢜꢀ  
ꢐꢓꢓꢒ ꢑꢒꢚ ꢐꢓꢓꢒ ꢑꢒ# ꢐꢑꢑꢒ  
ꢐꢑꢑꢒ ꢑꢒꢙ ꢐꢑꢑꢒ ꢑꢒꢋ ꢐꢓꢓꢒ  
ꢐꢑꢑꢒ ꢑꢒꢀꢘ ꢐꢓꢓꢒ ꢑꢒꢀꢗ ꢐꢓꢓꢒ  
ꢐꢓꢓꢒ ꢑꢒꢀ# ꢐꢑꢑꢒ ꢑꢒꢀꢚ ꢐꢑꢑꢒ  
C
ꢐꢑꢑ ꢐꢑꢑꢒ ꢢSꢁꢓ  
ꢐꢓꢓ ꢐꢓꢓꢒ ꢐꢑꢑꢒ  
ꢔꢉ ꢢSꢕꢓꢕU ꢢꢖꢞꢕ  
ꢐꢓꢓ ꢐꢓꢓꢒ ꢐꢑꢑꢒ  
ꢐꢑꢑ ꢐꢑꢑꢒ ꢢꢖꢁꢓ  
ꢐꢑꢑ  
ꢐꢓꢓ  
ꢐꢓꢓ  
ꢐꢑꢑ  
ꢢꢖꢓ  
ꢐꢑꢑꢒ ꢐꢓꢓꢒ  
ꢖꢞ aꢒ  
ꢐꢑꢑꢒ ꢐꢓꢓꢒ  
ꢢꢝꢕ  
ꢐꢑꢑꢒ ꢐꢑꢑ  
ꢁꢀꢜ  
ꢁꢜ  
ꢁꢛ  
ꢁꢀ  
7ꢁꢗ  
ꢁꢗ  
7ꢁꢜ  
ꢁꢘ  
ꢐꢓꢓ  
ꢐSꢕꢉꢖ  
ꢐꢓꢓ  
Iꢖ  
ꢢꢁ7ꢣ  
ꢓꢕI  
ꢢꢖꢞ  
ꢁ'  
ꢁꢙ  
ꢁꢀꢀ  
ꢁꢋ  
7ꢁꢀ  
ꢁꢚ  
7ꢁꢘ  
ꢁ#  
ꢐꢑꢑ  
ꢐꢓꢓ  
ꢐꢓꢓ  
ꢐꢑꢑ  
ꢐꢑꢑꢒ ꢐꢑꢑ  
I
Q
S
U
ꢐꢑꢑꢒ ꢑꢒꢗꢀ ꢐꢑꢑꢒ ꢑꢒꢗꢜ ꢐꢓꢓꢒ  
ꢐꢓꢓꢒ ꢑꢒꢘꢛ ꢐꢓꢓꢒ ꢑꢒꢘ' ꢐꢑꢑꢒ  
ꢐꢑꢑꢒ ꢢꢑ7ꢣꢗ ꢐꢑꢑꢒ ꢝꢖꢞꢘꢗ ꢢꢝꢖꢞꢘꢗ  
ꢐꢓꢓꢒ ꢕꢑꢖꢗ ꢐꢓꢓꢒ ꢐꢓꢓꢒ ꢐꢑꢑ  
ꢐꢓꢓꢒ ꢑꢒꢘꢘ ꢐꢑꢑꢒ ꢑꢒꢘꢗ ꢐꢑꢑꢒ  
ꢐꢑꢑꢒ ꢑꢒꢘꢜ ꢐꢓꢓꢒ ꢑꢒꢘꢀ ꢐꢓꢓꢒ  
ꢐꢓꢓ  
ꢐꢑꢑ ꢐꢓꢓꢒ ꢐꢓꢓꢒ ꢕꢑꢖꢘ ꢐꢓꢓꢒ  
ꢐꢓꢓ ꢑꢒꢀ' ꢐꢑꢑꢒ ꢑꢒꢀꢛ ꢐꢑꢑꢒ  
ꢐSꢕꢉꢑ ꢑꢒꢀꢋ ꢐꢓꢓꢒ ꢑꢒꢀꢙ ꢐꢓꢓꢒ  
ꢐꢑꢑ ꢐꢑꢑꢒ ꢢꢑ7ꢣꢘ ꢐꢑꢑꢒ  
ꢐꢑꢑꢒ ꢑꢒꢘꢙ ꢐꢑꢑꢒ ꢑꢒꢘꢋ  
ꢐꢓꢓꢒ ꢑꢒꢘꢚ ꢐꢓꢓꢒ ꢑꢒꢘ#  
ꢐꢓꢓ  
Iꢖ  
V
ꢂꢃꢄꢅꢆꢃꢅꢇꢃꢈꢉꢉꢃꢅꢆꢃꢊꢀꢋꢃꢌꢍꢎꢏꢃꢃꢃꢃ  
ꢥUꢍꢄꢃꢐꢅꢏꢧ  
Data Sheet E1771E11 (Ver. 1.1)  
3
EDW1032BBBG  
ꢀꢇꢊ01233%ꢏꢋꢐꢁ%4ꢕꢏ$ꢀ%ꢌ-(5'67829'-(:  
ꢀꢊ  
ꢜꢘꢎꢏꢍ ꢍꢛꢀꢆ ꢜꢝꢝꢛ ꢍꢛꢀꢇ ꢜꢝꢝꢛ  
ꢜꢝꢝ ꢍꢛꢀꢈ ꢜꢍꢍꢛ ꢍꢛꢀꢉ ꢜꢍꢍꢛ  
ꢜꢍꢍ ꢜꢝꢝꢛ ꢜꢝꢝꢛ ꢎꢍꢌꢂ ꢜꢝꢝꢛ  
ꢜꢝꢝ ꢜꢍꢍ ꢜꢍꢍꢛ !ꢍꢋ"ꢂ ꢜꢍꢍꢛ  
ꢀꢀ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢜꢝꢝꢛ ꢍꢛꢂꢅ ꢜꢝꢝꢛ ꢍꢛꢂꢄ  
ꢜꢍꢍꢛ ꢍꢛꢂꢇ ꢜꢍꢍꢛ ꢍꢛꢂꢆ  
ꢖꢌ  
ꢜꢝꢝ  
ꢜꢝꢝꢛ ꢎꢍꢌꢃ ꢜꢝꢝꢛ ꢜꢝꢝꢛ ꢜꢍꢍ  
ꢜꢍꢍꢛ !ꢍꢋ"ꢃ ꢜꢍꢍꢛ #ꢌꢓꢂꢃ !#ꢌꢓꢂꢃ  
ꢜꢝꢝꢛ ꢍꢛꢂꢉ ꢜꢝꢝꢛ ꢍꢛꢂꢈ ꢜꢍꢍꢛ  
ꢜꢍꢍꢛ ꢍꢛꢃꢀ ꢜꢍꢍꢛ ꢍꢛꢃꢊ ꢜꢝꢝꢛ  
ꢜꢍꢍꢛ ꢍꢛꢂꢊ ꢜꢝꢝꢛ ꢍꢛꢂꢀ ꢜꢝꢝꢛ  
ꢜꢝꢝꢛ ꢍꢛꢂꢂ ꢜꢍꢍꢛ ꢍꢛꢂꢃ ꢜꢍꢍꢛ  
ꢜꢍꢍ ꢜꢍꢍꢛ !ꢌꢁꢝ  
ꢜꢝꢝ ꢜꢝꢝꢛ ꢜꢍꢍꢛ  
ꢕꢏ !ꢘꢎꢝꢎꢙ !ꢌꢓꢎ  
ꢜꢝꢝ ꢜꢝꢝꢛ ꢜꢍꢍꢛ  
ꢜꢍꢍ ꢜꢍꢍꢛ !ꢘꢁꢝ  
ꢜꢍꢍ  
ꢜꢝꢝ  
ꢜꢝꢝ  
ꢜꢍꢍ  
!#ꢎ  
ꢜꢍꢍꢛ ꢜꢝꢝꢛ  
ꢌꢓ  ꢛ  
ꢜꢍꢍꢛ ꢜꢝꢝꢛ  
!ꢌꢝ  
ꢜꢍꢍꢛ ꢜꢍꢍ  
ꢁꢈ  
ꢁꢇ  
ꢁꢀꢀ  
ꢁꢆ  
ꢋꢁꢀ  
ꢁꢅ  
ꢋꢁꢂ  
ꢁꢄ  
ꢜꢝꢝ  
ꢜꢘꢎꢏꢌ  
ꢜꢝꢝ  
ꢖꢌ  
!ꢁꢋ"  
ꢝꢎꢖ  
!ꢌꢓ  
ꢁꢀꢊ  
ꢁꢊ  
ꢁꢉ  
ꢁꢀ  
ꢋꢁꢃ  
ꢁꢃ  
ꢋꢁꢊ  
ꢁꢂ  
ꢜꢍꢍ  
ꢜꢝꢝ  
ꢜꢝꢝ  
ꢜꢍꢍ  
ꢜꢍꢍꢛ ꢜꢍꢍ  
ꢜꢍꢍꢛ ꢍꢛꢇ ꢜꢍꢍꢛ ꢍꢛꢆ ꢜꢝꢝꢛ  
ꢜꢝꢝꢛ ꢍꢛꢅ ꢜꢝꢝꢛ ꢍꢛꢄ ꢜꢍꢍꢛ  
ꢜꢍꢍꢛ !ꢍꢋ"ꢊ ꢜꢍꢍꢛ #ꢌꢓꢊꢀ !#ꢌꢓꢊꢀ  
ꢜꢝꢝꢛ ꢎꢍꢌꢊ ꢜꢝꢝꢛ ꢜꢝꢝꢛ ꢜꢍꢍ  
ꢜꢝꢝꢛ ꢍꢛꢀꢄ ꢜꢍꢍꢛ ꢍꢛꢀꢅ ꢜꢍꢍꢛ  
ꢜꢍꢍꢛ ꢍꢛꢀꢂ ꢜꢝꢝꢛ ꢍꢛꢀꢃ ꢜꢝꢝꢛ  
ꢜꢝꢝ  
ꢜꢍꢍ ꢜꢝꢝꢛ ꢜꢝꢝꢛ ꢎꢍꢌꢀ ꢜꢝꢝꢛ  
ꢜꢝꢝ ꢍꢛꢀꢊ ꢜꢍꢍꢛ ꢍꢛꢀꢀ ꢜꢍꢍꢛ  
ꢜꢍꢍ ꢜꢍꢍꢛ !ꢍꢋ"ꢀ ꢜꢍꢍꢛ  
ꢜꢍꢍꢛ ꢍꢛꢃ ꢜꢍꢍꢛ ꢍꢛꢂ  
ꢜꢝꢝꢛ ꢍꢛꢀ ꢜꢝꢝꢛ ꢍꢛꢊ  
ꢜꢝꢝ  
ꢖꢌ  
ꢜꢘꢎꢏꢍ ꢍꢛꢈ ꢜꢝꢝꢛ ꢍꢛꢉ ꢜꢝꢝꢛ  
$%&'(%')%*ꢏꢏ%'(%+ꢀꢆ%,-./%%%%  
4ꢙ-&%ꢜ'/;:  
Signal  
Function  
Signal  
ZQ  
Function  
CK, /CK  
Clock  
Impedance Reference  
WCK01, /WCK01,  
WCK23, /WCK23  
Data Clocks  
/RESET  
Reset  
/CKE  
Clock Enable  
MF  
Mirror Function  
/CS  
Chip Select  
SEN  
Scan Enable  
/RAS, /CAS, /WE  
BA0 - BA3  
A0 - A11  
Command inputs  
Bank Address inputs  
Address inputs  
Data Input/Output  
Data bus inversion  
VREFC  
VREFD  
VDDQ  
VSSQ  
VDD  
Reference voltage for command and address  
Reference voltage for DQ and /DBI  
I/O power  
DQ0 - DQ31  
/DBI0 - /DBI3  
EDC0 - EDC3  
/ABI  
I/O ground  
Power supply  
Error Detection Code  
Address bus inversion  
VSS  
Ground  
NC  
Not connected  
Note: 1. /xxx indicates active low signal.  
Data Sheet E1771E11 (Ver. 1.1)  
4
EDW1032BBBG  
1. Configuration  
The Elpida GDDR5 SGRAM is a high speed dynamic random-access memory designed for applications requiring  
high bandwidth. It contains 1,073,741,824 bits and is internally configured as a 16-bank DRAM.  
The GDDR5 SGRAM uses a 8n prefetch architecture and DDR interface to achieve high-speed operation. The  
device can be configured to operate in x32 mode or x16 (clamshell) mode. The mode is detected during device  
initialization. The GDDR5 interface transfers two 32 bit wide data words per WCK clock cycle to/from the I/O pins.  
Corresponding to the 8n prefetch a single write or read access consists of a 256 bit wide, two CK clock cycle data  
transfer at the internal memory core and eight corresponding 32 bit wide one-half WCK clock cycle data transfers  
at the I/O pins.  
The GDDR5 SGRAM operates from a differential clock CK and /CK. Commands are registered at every rising edge  
of CK. Addresses are registered at every rising edge of CK and every rising edge of /CK.  
GDDR5 replaces the pulsed strobes (WDQS & RDQS) used in previous DRAMs such as GDDR4 with a free running  
differential forwarded clock (WCK, /WCK) with both input and output data registered and driven respectively at both  
edges of the forwarded WCK.  
Read and write accesses to the GDDR5 SGRAM are burst oriented; an access starts at a selected location and  
continues for a total of eight data words. Accesses begin with the registration of an ACTIVE command, which is then  
followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command and  
the next rising /CK edge are used to select the bank and the row to be accessed. The address bits registered  
coincident with the READ or WRITE command and the next rising /CK edge are used to select the bank and the  
column location for the burst access.  
Data Sheet E1771E11 (Ver. 1.1)  
5
EDW1032BBBG  
1.1 Signal Description  
Table 1: Signal Description  
Signal  
Type  
Detailed Function  
Clock: CK and /CK are differential clock inputs. Command inputs are latched on the rising  
edge of CK. Address inputs are latched on the rising edge of CK and the rising edge of /CK.  
All latencies are referenced to CK. CK and /CK are externally terminated.  
CK, /CK  
Input  
Data Clocks: WCK and /WCK are differential clocks used for WRITE data capture and READ  
data output. WCK01, /WCK01 is associated with DQ0-DQ15, /DBI0, /DBI1, EDC0 and EDC1.  
WCK23, /WCK23 is associated with DQ16-DQ31, /DBI2, /DBI3, EDC2 and EDC3. WCK clocks  
operate at nominally twice the CK clock frequency.  
WCK01, /WCK01,  
WCK23, /WCK23  
Input  
Input  
Input  
Clock Enable: /CKE low activates and /CKE high deactivates internal clock, device input  
buffers and output drivers. Taking /CKE high provides Precharge Power-Down and Self-  
Refresh operations (all banks idle), or Active Power-Down (row active in any bank). /CKE is  
synchronous for Power-Down entry and exit and for Self-Refresh entry. /CKE must be  
maintained low throughout READ and WRITE accesses.  
/CKE  
Input buffers excluding CK, /CK, /CKE, WCK01, /WCK01, WCK23, /WCK23 are disabled  
during Power-Down. Input buffers excluding /CKE are disabled during Self-Refresh.  
The value of /CKE latched at power-up with /RESET going high determines the termination  
value of the address and command inputs.  
Chip Select: /CS low enables, and /CS high disables the command decoder. All commands  
are masked when /CS is registered high, but internal command execution continues. /CS  
provides for individual device selection on memory channels with multiple memory devices.  
/CS is considered part of the command code.  
/CS  
/RAS, /CAS, /WE Input  
Command inputs: /RAS, /CAS and /WE (along with /CS) define the command to be entered.  
Bank Address inputs: BA0-BA3 define to which bank an ACTIVE, READ, WRITE or  
PRECHARGE command is being applied. BA0-BA3 also determine which Mode Register is  
accessed with a MODE REGISTER SET command. BA0-BA3 are sampled with the rising edge  
of CK.  
BA0 - BA3  
Input  
Input  
Address inputs: A0-A11 provide the row address for ACTIVE commands. A0-A5(A6) provide  
the column address and A8 defines the auto precharge function for READ and WRITE  
commands, to select one location out of the memory array in the respective bank. A8 sampled  
during a PRECHARGE command determines whether the PRECHARGE applies to one bank  
(A8 low, bank selected by BA0-BA3) or all banks (A8 high). The address inputs also provide  
the op-code during an MODE REGISTER SET command, and the data bits during LDFF  
commands. A8-A11 are sampled with the rising edge of CK and A0-A7 are sampled with the  
rising edge of /CK.  
A0 - A11  
DQ0 - DQ31  
/DBI0 - /DBI3  
I/O  
I/O  
Data Input/Output: 32 bit data bus  
Data bus inversion: /DBI0 is associated with DQ0-DQ7, /DBI1 with DQ8-DQ15, /DBI2 with  
DQ16-DQ23, and /DBI3 with DQ24-DQ31.  
Error Detection Code: The calculated CRC data is transmitted on these pins. In addition  
these pins drive a hold pattern when idle and can be used as an RDQS function. EDC0 is  
associated with DQ0-DQ7, EDC1 with DQ8-DQ15, EDC2 with DQ16-DQ23, and EDC3 with  
DQ24-DQ31.  
EDC0 - EDC3  
Output  
/ABI  
ZQ  
Input  
-
Address bus inversion  
Impedance Reference: external reference pin for auto-calibration  
Reset: VDDQ CMOS input. /RESET low asynchronously initiates a full chip reset. With  
/RESET low all ODTs are disabled.  
/RESET  
Input  
MF  
Input  
Mirror Function: VDDQ CMOS input. Must be tied to Power or Ground.  
Scan Enable: VDDQ CMOS input. Must be tied to Ground when not in use.  
Reference voltage for command and address inputs.  
Reference voltage for DQ and /DBI inputs.  
Isolated power for the input and output buffers.  
Isolated ground for the input and output buffers.  
Power supply  
SEN  
Input  
VREFC  
VREFD  
VDDQ  
VSSQ  
VDD  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
-
VSS  
Ground  
NC  
Not connected  
Data Sheet E1771E11 (Ver. 1.1)  
6
EDW1032BBBG  
1.2 Mirror Function Mode  
The GDDR5 SGRAM provides a mirror function (MF) pin to change the physical location of the command, address,  
data and WCK pins assisting in routing devices back to back. The MF ball should be tied directly to VSSQ or VDDQ  
depending on the control line orientation desired.  
The pins affected by this Mirror Function mode are listed in Table 2.  
Table 2: Ball Assignment with Mirror Function  
Signal  
M=1  
Signal  
M=1  
Signal  
M=1  
Signal  
MF=1  
Ball  
A2  
B2  
C2  
D2  
E2  
F2  
MF=0  
DQ1  
Ball  
A4  
B4  
D4  
E4  
F4  
MF=0  
DQ0  
DQ2  
Ball  
K5  
MF=0  
Ball  
G12  
L12  
A13  
B13  
C13  
D13  
E13  
F13  
M13  
N13  
P13  
R13  
T13  
U13  
MF=0  
/CS  
DQ25  
DQ27  
EDC3  
/DBI3  
DQ29  
DQ31  
DQ7  
DQ24  
DQ26  
A11 A6 A9 A1  
/WCK23 /WCK01  
BA3 A3 BA1 A5  
BA1 A5 BA3 A3  
/WE  
DQ3  
P5  
/WE  
/CS  
EDC0  
/DBI0  
DQ5  
WCK01 WCK23  
H10  
K10  
A11  
B11  
E11  
F11  
H11  
K11  
M11  
N11  
T11  
U11  
DQ9  
DQ17  
DQ19  
EDC2  
/DBI2  
DQ21  
DQ23  
DQ15  
DQ13  
/DBI1  
EDC1  
DQ11  
DQ9  
DQ4  
DQ6  
DQ28  
DQ30  
DQ11  
EDC1  
/DBI1  
DQ13  
DQ15  
DQ23  
DQ21  
/DBI2  
EDC2  
DQ19  
DQ17  
DQ8  
DQ16  
DQ18  
DQ20  
DQ22  
DQ7  
H4  
K4  
M4  
N4  
P4  
T4  
A10 A0 A8 A7  
DQ10  
DQ12  
DQ14  
M2  
N2  
P2  
R2  
T2  
DQ31  
DQ29  
/DBI3  
EDC3  
DQ27  
DQ25  
/RAS  
/CAS  
A8 A7  
DQ30  
DQ28  
A10 A0  
DQ6  
DQ5  
/DBI0  
EDC0  
DQ3  
DQ4  
BA0 A2 BA2 A4  
BA2 A4 BA0 A2  
WCK23 WCK01  
DQ26  
DQ24  
DQ2  
DQ0  
DQ22  
DQ20  
DQ18  
DQ16  
DQ14  
DQ12  
DQ10  
DQ8  
U2  
G3  
L3  
DQ1  
U4  
D5  
H5  
/CAS  
/RAS  
/WCK01 /WCK23  
A9 A1 A11 A6  
Functions within the GDDR5 SGRAM that refer to external signals are transparent with respect to Mirror Function  
mode, meaning that the signal names shown in the respective functional description apply both to mirrored (MF=1)  
and non-mirrored (MF=0) modes. The referenced package pin is determined by the Mirror Function mode the  
devices is configured to.  
1.3 Clamshell Mode Detection  
The GDDR5 SGRAM can operate in a x32 mode or a x16 mode to allow a clamshell configuration with a point to  
point connection on the high speed data signals. The disabled pins in x16 mode will be in Hi-Z state, non-terminating.  
The x16 mode is detected at power-up on the pin at location C-13 which is EDC1 when configured to MF=0 and  
EDC2 when configured to MF=1. For x16 mode this pin is tied to VSSQ; the pin is part of the two bytes that are  
disabled in this mode and therefore not needed for EDC functionality. For x32 mode this pin is active and always  
terminated to VDDQ in the system or by the controller. The configuration is set with /RESET going high. Once the  
configuration has been set, it cannot be changed during normal operation. Usually the configuration is fixed in the  
system.  
Table 3: Clamshell Mode and Mirror Function  
Mode  
MF  
EDC1 (MF=0) or EDC2 (MF=1)  
x16 non-mirrored  
x32 non-mirrored  
x16 mirrored  
x32 mirrored  
VSSQ  
VSSQ  
VDDQ  
VDDQ  
VSSQ  
VDDQ (terminated by the system or controller)  
VSSQ  
VDDQ (terminated by the system or controller)  
Data Sheet E1771E11 (Ver. 1.1)  
7
EDW1032BBBG  
1.4 Clocking  
The GDDR5 SGRAM operates from a differential clock CK and /CK. Commands are registered at every rising edge  
of CK. Addresses are registered at every rising edge of CK and every rising edge of /CK.  
GDDR5 uses a double data rate data interface and an 8n-prefetch architecture. The data interface uses two  
differential forwarded clocks (WCK, /WCK). DDR means that the data is registered at every rising edge of WCK and  
rising edge of /WCK. WCK and /WCK are continuously running and operate at twice the frequency of the  
command/address clock (CK, /CK).  
ꢝꢀꢁ  
ꢀꢁ  
ꢀꢂꢃꢃꢄꢅꢆ  
ꢇꢆꢆꢈꢉꢊꢊ  
ꢋꢀꢁ  
ꢝꢋꢀꢁ  
ꢌꢄꢍꢄ  
ꢎꢂꢍꢉꢏꢐꢍꢑꢉꢐꢒꢓꢔꢕꢈꢉꢐꢊꢑꢂꢖꢊꢐꢍꢑꢉꢐꢈꢉꢗꢄꢍꢓꢂꢅꢊꢑꢓꢘꢐꢙꢉꢍꢖꢉꢉꢅꢐꢍꢑꢉꢐꢆꢄꢍꢄꢐꢈꢄꢍꢉꢐꢂꢒꢐꢍꢑꢉꢐꢙꢕꢊꢉꢊꢐꢄꢅꢆꢐꢍꢑꢉꢐꢚꢗꢂꢚꢛꢊꢐꢄꢅꢆꢐꢓꢊꢐꢅꢂꢍꢐꢄꢐꢍꢓꢃꢓꢅꢔꢐꢆꢓꢄꢔꢈꢄꢃꢜ  
Figure 1: GDDR5 Clocking and Interface Relationship  
1.5 Addressing  
The GDDR5 SGRAM uses a double data rate address scheme to reduce pins required on the GDDR5 SGRAM as  
shown in Table 4. The addresses should be provided to the GDDR5 SGRAM in two parts; the first half is latched on  
the rising edge of CK along with the command pins such as /RAS, /CAS and /WE; the second half is latched on the  
rising edge of /CK.  
The use of DDR addressing allows all address values to be latched in at the same rate as the SDR commands. All  
addresses related to command access have been positioned for latching on the initial rising edge for faster  
decoding.  
Table 4: Address Pairs  
Clock Edge  
Rising CK  
Rising /CK  
Address Inputs  
BA3  
A3  
BA2  
A4  
BA1  
A5  
BA0  
A2  
A11  
A6  
A10  
A0  
A9  
A1  
A8  
A7  
Addressing schemes for x32 mode and x16 mode differ only in the number of valid column addresses, as shown in  
Table 5.  
Table 5: Addressing Scheme  
32M x 32  
A0-A11  
A0-A5  
BA0-BA3  
A8  
64M x 16  
A0-A11  
A0-A6  
BA0-BA3  
A8  
Row Address  
Column address  
Bank address  
Autoprecharge  
Page size  
2 KB  
2 KB  
Refresh  
8k/32ms  
3.9 µs  
8k/32ms  
3.9 µs  
Refresh period  
Data Sheet E1771E11 (Ver. 1.1)  
8
EDW1032BBBG  
1.6 Commands  
Table 6: Command Truth Table  
/CKE /CKE  
BA3-  
A6-A7, A0-A5  
Operation  
Code  
n-1  
n
/CS /RAS /CAS /WE BA0  
A11 A10 A8  
A9  
(A6) Note  
DESELECT  
DESEL  
L
X
H
X
X
X
X
X
X
X
X
X
2,8  
NO OPERATION  
(NOP)  
NOP  
MRS  
L
L
X
L
L
H
H
H
X
X
X
X
X
X
2,8  
MODE REGISTER  
SET  
L
L
L
L
MRA OPCODE  
2,3  
ACTIVATE  
READ  
ACT  
RD  
L
L
L
L
L
L
L
H
L
H
H
BA  
BA  
RA  
L
2,4  
H
L
L
L
X
X
CA  
CA  
2,5,9  
READ with  
Autoprecharge  
RDA  
L
L
L
H
L
H
BA  
L
H
2,5  
LOAD FIFO  
LDFF  
L
L
L
L
L
L
L
L
L
H
H
H
L
L
L
H
H
L
BST  
X
H
H
L
L
H
L
L
L
L
DATA  
2,7  
2
READ TRAINING  
RDTR  
X
X
X
WRITE without Mask WR  
WRITE without Mask  
BA  
CA  
2,5  
WRA  
L
L
L
L
L
L
H
H
L
L
L
L
BA  
BA  
L
L
L
H
L
X
X
CA  
CA  
2,5  
2,5  
with Autoprecharge  
WRITE with Single  
Byte Mask  
WSM  
H
WRITE with  
Autoprecharge, Single WSMA  
Byte Mask  
L
L
L
L
L
L
L
L
L
H
H
H
L
L
L
L
L
L
BA  
BA  
BA  
L
H
L
H
L
X
X
X
CA  
CA  
CA  
2,5  
2,5  
2,5  
WRITE with Double  
WDM  
H
H
Byte Mask  
WRITE with  
Autoprecharge,  
WDMA  
L
H
Double Byte Mask  
WRITE TRAINING  
PRECHARGE  
PRECHARGE ALL  
REFRESH  
WRTR  
PRE  
L
L
L
L
L
L
L
L
L
L
H
L
H
L
H
L
L
L
X
H
X
X
X
H
X
X
X
L
X
X
X
X
X
X
X
X
2
2
2
6
H
H
L
L
BA  
X
L
PREALL L  
L
L
H
X
REF  
L
L
H
X
H
X
H
X
X
H
X
H
X
H
X
H
POWER-DOWN-  
ENTRY  
PDE  
L
H
X
X
X
X
X
X
POWER-DOWN-  
EXIT  
PDX  
SRE  
SRX  
H
L
L
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SELF-REFRESH-  
ENTRY  
L
L
L
H
6
H
L
X
H
X
H
X
H
SELF-REFRESH-  
EXIT  
H
Notes: 1. H = logic high level; L = logic low level; X = Don’t Care. Signal may be H or L, but not floating.  
2. Addresses shown are logical addresses; physical addresses are inverted when address bus inversion (ABI) is  
activated and /ABI=L.  
3. BA0-BA3 provide the Mode Register address (MRA), A0-A11 the opcode to be loaded.  
4. BA0-BA3 provide the bank address (BA), A0-A11 provide the row address (RA).  
5. BA0-BA3 provide the bank address, A0-A5 (A6) provide the column address (CA); no sub-word addressing within a  
burst of 8.  
6. This command is REFRESH when /CKE(n) = L, and SELF-REFRESH ENTRY when /CKE(n) is H.  
7. BA0-BA3 and CA are used to select burst location (BST) and data, respectively.  
8. DESELECT and NO OPERATION are functionally interchangeable.  
9. In address training mode READ is decoded from the command pins only with /RAS = H, /CAS = L, /WE= H.  
Data Sheet E1771E11 (Ver. 1.1)  
9
EDW1032BBBG  
2. Electrical Characteristics  
Table 7: Absolute Maximum Ratings  
Parameter  
Symbol  
VDD  
Min.  
-0.5  
-0.5  
-0.5  
-0.5  
-55  
Max.  
2.0  
Unit  
V
Voltage on VDD supply relative to VSS  
Voltage on VDDQ supply relative to VSSQ  
Voltage on VREF and inputs relative to VSS  
Voltage on I/O pins relative to VSS  
Storage Temperature  
VDDQ  
VIN  
2.0  
V
2.0  
V
VOUT  
TSTG  
TJ  
2.0  
V
+150  
+125  
50  
°C  
°C  
mA  
Junction Temperature  
Short Circuit output current  
IOUT  
Caution: Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent  
damage of the device. This is a stress rating only, and functional operation of the device at these  
or any other conditions above those indicated in the operational sections of these specification  
is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Data Sheet E1771E11 (Ver. 1.1)  
10  
EDW1032BBBG  
2.1 Operating Conditions  
Table 8: DC Operating Conditions  
POD15  
typ.  
POD135  
typ.  
Parameter  
Symbol  
VDD  
min.  
1.455  
1.455  
max.  
1.545  
1.545  
min.  
max. Unit Note  
Device supply voltage  
I/O Supply voltage  
1.5  
1.3095  
1.3095  
1.35  
1.35  
1.3905  
1.3905  
V
V
2
2
VDDQ  
1.5  
0.69 *  
VDDQ  
0.71 *  
VDDQ  
0.69 *  
VDDQ  
0.71 *  
VDDQ  
Reference voltage for DQ and /DBI pins  
Reference voltage for DQ and /DBI pins  
VREFD  
V
V
V
V
V
V
V
V
V
3,4  
3,4,5  
6
0.49 *  
VDDQ  
0.51 *  
VDDQ  
0.49 *  
VDDQ  
0.51 *  
VDDQ  
VREFD2  
VREFC  
External reference voltage for address and  
command  
0.69 *  
VDDQ  
0.71 *  
VDDQ  
0.69 *  
VDDQ  
0.71 *  
VDDQ  
DC input logic high voltage for address and  
command inputs  
VREFC  
+ 0.15  
VREFC  
+ 0.135  
VIHA(DC)  
VILA(DC)  
VIHD(DC)  
VILD(DC)  
VIHD2(DC)  
VILD2(DC)  
VIHR  
DC input logic low voltage for address and  
command inputs  
VREFC  
- 0.15  
VREFC  
- 0.135  
DC input logic high voltage for DQ, /DBI  
inputs with VREFD  
VREFD  
+ 0.10  
VREFD  
+ 0.09  
DC input logic low voltage for DQ, /DBI  
inputs with VREFD  
VREFD  
- 0.10  
VREFD  
- 0.09  
DC input logic high voltage for DQ, /DBI  
inputs with VREFD2  
VREFD2  
+ 0.30  
VREFD2  
+ 0.27  
DC input logic low voltage for DQ, /DBI  
inputs with VREFD2  
VREFD2  
- 0.30  
VREFD2  
- 0.27  
Input logic high voltage for /RESET, SEN,  
MF  
VDDQ  
- 0.5  
VDDQ  
- 0.5  
0.3  
0.3  
V
V
V
Input logic low voltage for /RESET, SEN, MF VILR  
Input logic high voltage for EDC1/2  
VIHX  
VDDQ  
- 0.3  
VDDQ  
- 0.3  
9
9
(x16 mode detect)  
Input logic low voltage for EDC1/2  
VILX  
-5  
-5  
0.3  
+5  
+5  
-5  
-5  
0.3  
+5  
+5  
V
(x16 mode detect)  
Input leakage current  
(any input 0V VIN VDDQ; all other pins IL  
not under test = 0V)  
μA 10  
μA 11  
Output leakage current  
(DQs are disabled; 0V VOUT VDDQ)  
IOZ  
Output logic low voltage  
External resistor value  
VOL(DC)  
ZQ  
0.62  
125  
0.56  
125  
V
115  
120  
115  
120  
Ω
Notes: 1. 0°C TC 95°C. All voltages are measured at the package pins.  
2. GDDR5 SGRAMs are designed to tolerate PCB designs with separate VDDQ and VDD power regulators.  
3. AC noise in the system is estimated at 50 mV peak-to-peak for the purpose of DRAM design.  
4. Source of reference voltage and control of Reference voltage for DQ and /DBI pins is determined by VREFD, Half  
VREFD and VREFD Offset Mode Registers.  
5. VREFD Offsets are not supported with VREFD2.  
6. External VREFC is to be provided by the controller as there is no alternative supply.  
7. DB, /DBI input slew rate must be greater than or equal to 3V/ns for POD15 and 2.7V/ns for POD135. The slew rate is  
measured between VREFD crossing and VIHD(AC) or VILD(AC) or VREFD2 crossing and VIHD2(AC) or VILD2(AC).  
8. ADR/CMD input slew rate must be greater than or equal to 3V/ns for POD15 and 2.7V/ns for POD135. The slew rate  
is measured between VREFC crossing and VIHA(AC) or VILA(AC).  
9. VIHX and VILX define the input voltage levels for the receiver that detects x32 mode or x16 mode with /RESET going  
high.  
10. IL is measured with ODT off. Any input 0V VIN VDDQ; all other pins not under test = 0V.  
11. IOZ is measured with DQs disabled; 0V VOUT VDDQ.  
Data Sheet E1771E11 (Ver. 1.1)  
11  
EDW1032BBBG  
Table 9: AC Operating Conditions  
Parameter  
POD15  
typ.  
POD135  
typ.  
Symbol  
min.  
max.  
min.  
max. Unit Note  
AC input logic high voltage for address and  
command inputs  
VREFC  
+ 0.20  
VREFC  
+ 0.18  
VIHA(AC)  
V
V
V
V
V
V
AC input logic low voltage for address and  
command inputs  
VREFC  
- 0.20  
VREFC  
- 0.18  
VILA(AC)  
VIHD(AC)  
VILD(AC)  
VIHD2(AC)  
VILD2(AC)  
AC input logic high voltage for DQ, /DBI  
inputs with VREFD  
VREFD  
+ 0.15  
VREFD  
+ 0.135  
AC input logic low voltage for DQ, /DBI  
inputs with VREFD  
VREFD  
- 0.15  
VREFD  
- 0.135  
AC input logic high voltage for DQ, /DBI  
inputs with VREFD2  
VREFD2  
+ 0.40  
VREFD2  
+ 0.36  
AC input logic low voltage for DQ, /DBI  
inputs with VREFD2  
VREFD2  
- 0.40  
VREFD2  
- 0.36  
Notes: 1. 0°C TC 95°C. All voltages are measured at the package pins.  
2. For optimum performance it is recommended that signal swings are larger than shown in the table.  
Table 10: Clock Input Operating Conditions  
POD15  
POD135  
Parameter  
Symbol  
min.  
max.  
min.  
max.  
Unit Note  
VREFC  
- 0.1  
VREFC  
+ 0.1  
VREFC  
- 0.1  
VREFC  
+ 0.1  
Clock input mid-point voltage: CK, /CK  
VMP(DC)  
V
2,7  
Clock input differential voltage: CK, /CK  
Clock input differential voltage: CK, /CK  
VIDCK(DC)  
VIDCK(AC)  
0.22  
0.40  
0.20  
0.30  
0.198  
0.36  
0.18  
0.27  
V
V
V
V
5,7  
3,5,7  
6,8  
Clock input differential voltage: WCK, /WCK VIDWCK(DC)  
Clock input differential voltage: WCK, /WCK VIDWCK(AC)  
3,6,8  
Clock input voltage level for CK, /CK,  
VIN  
VDDQ  
+ 0.3  
VDDQ  
+ 0.3  
-0.3  
-0.3  
V
WCK, /WCK single ended inputs  
CK, /CK single ended slew rate  
CKslew  
3
3
2.7  
2.7  
V/ns 10  
V/ns 11  
WCK, /WCK single ended slew rate  
WCKSlew  
VREFC  
- 0.12  
VREFC  
+ 0.12  
VREFC  
- 0.108  
VREFC  
+ 0.108  
Clock input crossing point voltage: CK, /CK VIXCK(AC)  
V
V
3,4,7  
Clock input crossing point voltage:  
VIXWCK(AC)  
VREFD  
- 0.10  
VREFD  
+ 0.10  
VREFD  
- 0.09  
VREFD  
+ 0.09  
3,4,  
8,9  
WCK, /WCK  
Notes: 1. 0°C TC 95°C. All voltages are measured at the package pins.  
2. This provides a minimum of 0.9V to a maximum of 1.2V, and is nominally 70% of VDDQ with POD15. If POD135, this  
provides a minimum of 0.845V to a maximum of 1.045V, and is nominally 70% of VDDQ. DRAM timings relative to CK  
cannot be guaranteed if these limits are exceeded.  
3. For AC operations, all DC clock requirements must be satisfied as well.  
4. The value of VIXCK and VIXWCK is expected to equal 70% VDDQ for the transmitting device and must track variations  
in the DC level of the same.  
5. VIDCK is the magnitude of the difference between the input level in CK and the input level on /CK. The input reference  
level for signals other than CK and /CK is VREFC.  
6. VIDWCK is the magnitude of the difference between the input level in WCK and the input level on /WCK. The input  
reference level for signals other than WCK and /WCK is either VREFD, VREFD2 or the internal VREFD.  
7. The CK and /CK input reference level (for timing referenced to CK and /CK) is the point at which CK and /CK cross.  
Please refer to the applicable timings in the AC timings table.  
8. The WCK and /WCK input reference level (for timing referenced to WCK and /WCK) is the point at which WCK and  
/WCK cross. Please refer to the applicable timings in the AC Timings table.  
9. VREFD is either VREFD, VREFD2 or the internal VREFD.  
10. The slew rate is measured between VREFC crossing and VIXCK(AC).  
11. The slew rate is measured between VREFD crossing and VIXWCK(AC).  
Data Sheet E1771E11 (Ver. 1.1)  
12  
EDW1032BBBG  
3. Package Drawing  
170-ball FBGA  
Solder ball: Lead free (Sn-Ag-Cu)  
Unit: mm  
12.0 0.1  
0.2  
S A  
INDEX MARK  
0.2  
S B  
0.2  
S
1.1 0.1  
S
0.12  
S
0.35 0.05  
A
170- 0.45 0.05  
M S  
A B  
0.15  
B
INDEX MARK  
2.0 0.8  
10.4  
ECA-TS2-0327-02  
Data Sheet E1771E11 (Ver. 1.1)  
13  
EDW1032BBBG  
NOTES FOR CMOS DEVICES  
PRECAUTION AGAINST ESD FOR MOS DEVICES  
1
Exposing the MOS devices to a strong electric field can cause destruction of the gate  
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop  
generation of static electricity as much as possible, and quickly dissipate it, when once  
it has occurred. Environmental control must be adequate. When it is dry, humidifier  
should be used. It is recommended to avoid using insulators that easily build static  
electricity. MOS devices must be stored and transported in an anti-static container,  
static shielding bag or conductive material. All test and measurement tools including  
work bench and floor should be grounded. The operator should be grounded using  
wrist strap. MOS devices must not be touched with bare hands. Similar precautions  
need to be taken for PW boards with semiconductor MOS devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES  
No connection for CMOS devices input pins can be a cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input level may be  
generated due to noise, etc., hence causing malfunction. CMOS devices behave  
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected  
to VDD or GND with a resistor, if it is considered to have a possibility of being an output  
pin. The unused pins must be handled in accordance with the related specifications.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Power-on does not necessarily define initial status of MOS devices. Production process  
of MOS does not define the initial operation status of the device. Immediately after the  
power source is turned ON, the MOS devices with reset function have not yet been  
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or  
contents of registers. MOS devices are not initialized until the reset signal is received.  
Reset operation must be executed immediately after power-on for MOS devices having  
reset function.  
CME0107  
Data Sheet E1771E11 (Ver. 1.1)  
14  
EDW1032BBBG  
Tꢭe ꢪnformꢩꢨꢪon ꢪn ꢨꢭꢪꢫ documenꢨ ꢪꢫ ꢫubjecꢨ ꢨo cꢭꢩnge wꢪꢨꢭouꢨ noꢨꢪce. Before uꢫꢪng ꢨꢭꢪꢫ documenꢨ, confꢪrm ꢨꢭꢩꢨ ꢨꢭꢪꢫ ꢪꢫ ꢨꢭe lꢩꢨeꢫꢨ verꢫꢪon.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of Elpida Memory, Inc.  
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights  
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or  
third parties by or arising from the use of the products or information listed in this document. No license,  
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property  
rights of Elpida Memory, Inc. or others.  
Descriptions of circuits, software and other related information in this document are provided for  
illustrative purposes in semiconductor product operation and application examples. The incorporation of  
these circuits, software and information in the design of the customer's equipment shall be done under  
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses  
incurred by customers or third parties arising from the use of these circuits, software and information.  
[Producꢨ ꢩpplꢪcꢩꢨꢪonꢫ]  
Be aware that this product is for use in typical electronic equipment for general-purpose applications.  
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.  
However, this product is not intended for use in the product in aerospace, aeronautics, nuclear power,  
combustion control, transportation, traffic, safety equipment, medical equipment for life support, or other  
such application in which especially high quality and reliability is demanded or where its failure or  
malfunction may directly threaten human life or cause risk of bodily injury. Customers are instructed to  
contact Elpida Memory's sales office before using this product for such applications.  
[Producꢨ uꢫꢩge]  
Design your application so that the product is used within the ranges and conditions guaranteed by  
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation  
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no  
responsibility for failure or damage when the product is used beyond the guaranteed ranges and  
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure  
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so  
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other  
consequential damage due to the operation of the Elpida Memory, Inc. product.  
[ꢬꢫꢩge envꢪronmenꢨ]  
Usage in environments with special characteristics as listed below was not considered in the design.  
Accordingly, our company assumes no responsibility for loss of a customer or a third party when used in  
environments with the special characteristics listed below.  
Example:  
1) Usage in liquids, including water, oils, chemicals and organic solvents.  
2) Usage in exposure to direct sunlight or the outdoors, or in dusty places.  
3) Usage involving exposure to significant amounts of corrosive gas, including sea air, CL2, H2S, NH3,  
SO2, and NO .  
x
4) Usage in environments with static electricity, or strong electromagnetic waves or radiation.  
5) Usage in places where dew forms.  
6) Usage in environments with mechanical vibration, impact, or stress.  
7) Usage near heating elements, igniters, or flammable items.  
If you export the products or technology described in this document that are controlled by the Foreign  
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance  
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by  
U.S. export control regulations, or another country's export control laws or regulations, you must follow  
the necessary procedures in accordance with such laws or regulations.  
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted  
license to use these products, that third party must be made aware that they are responsible for  
compliance with the relevant laws and regulations.  
M01E1007  
Data Sheet E1771E11 (Ver. 1.1)  
15  
EDW1032BBBG  
Revision History  
Ver.  
Date  
Apr. 2011 Initial version  
Part Number Correction  
Description  
1.0  
1.1  
Sep. 2011  
Type D : Monolithc Device to Packaged Device  
Data Sheet E1771E11 (Ver. 1.1)  
16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY