HM534253BZ-6 [ELPIDA]

1 M VRAM (256-kword x 4-bit); 1M的VRAM ( 256千字×4位)
HM534253BZ-6
型号: HM534253BZ-6
厂家: ELPIDA MEMORY    ELPIDA MEMORY
描述:

1 M VRAM (256-kword x 4-bit)
1M的VRAM ( 256千字×4位)

存储 内存集成电路
文件: 总45页 (文件大小:448K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HM534253B Series  
1 M VRAM (256-kword × 4-bit)  
E0165H10 (Ver. 1.0)  
(Previous ADE-203-204D (Z))  
Jul. 6, 2001 (K)  
Description  
The HM534253B is a 1-Mbit multiport video RAM equipped with a 256-kword × 4-bit dynamic RAM and a  
512-word × 4-bit SAM (serial access memory). Its RAM and SAM operate independently and  
asynchronously. It can transfer data between RAM and SAM. In addition, it has two modes to realize fast  
writing in RAM. Block write and flash write modes clear the data of 4-word × 4-bit and the data of one row  
(512-word × 4-bit) respectively in one cycle of RAM. And the HM534253B makes split transfer cycle  
possible by dividing SAM into two split buffers equipped with 256-word × 4-bit each. This cycle can transfer  
data to SAM which is not active, and enables a continuous serial access.  
Features  
Multiport organization  
Asynchronous and simultaneous operation of RAM and SAM capability  
RAM: 256-kword × 4-bit  
SAM: 512-word × 4-bit  
Access time  
RAM: 60 ns/70 ns/80 ns/100 ns max  
SAM: 20 ns/22 ns/25 ns/25 ns max  
Cycle time  
RAM: 125 ns/135 ns/150 ns/180 ns min  
SAM: 25 ns/25 ns/30 ns/30 ns min  
Low power  
Active  
RAM: 413 mW max  
SAM: 275 mW max  
Standby 38.5 mW max  
High-speed page mode capability  
Mask write mode capability  
Bidirectional data transfer cycle between RAM and SAM capability  
Split transfer cycle capability  
Elpida Memory, Inc. is a joint venture DRAM company of NEC Corporation and Hitachi, Ltd.  
HM534253B Series  
Block write mode capability  
Flash write mode capability  
3 variations of refresh (8 ms/512 cycles)  
RAS-only refresh  
CAS-before-RAS refresh  
Hidden refresh  
TTL compatible  
Ordering Information  
Type No.  
Access Time  
Package  
HM534253BJ-6  
HM534253BJ-7  
HM534253BJ-8  
HM534253BJ-10  
60 ns  
70 ns  
80 ns  
100 ns  
400-mil 28-pin plastic SOJ (CP-28D)  
HM534253BZ-6  
HM534253BZ-7  
HM534253BZ-8  
HM534253BZ-10  
60 ns  
70 ns  
80 ns  
100 ns  
400-mil 28-pin plastic ZIP (ZP-28)  
Pin Arrangement  
HM534253BZ Series  
HM534253BJ Series  
1
3
5
7
9
DSF  
I/O3  
SI/O2  
VSS  
SC  
SI/O0  
SI/O1  
DT/OE  
I/O0  
I/O1  
WE  
NC  
RAS  
A8  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VSS  
SI/O3  
SI/O2  
SE  
I/O3  
I/O2  
DSF  
CAS  
QSF  
A0  
I/O2  
SE  
SI/O3  
SC  
SI/O1 10  
I/O0 12  
WE 14  
RAS 16  
A6 18  
2
4
6
8
SI/O0  
11 DT/OE  
13 I/O1  
15 NC  
17 A8  
19 A5  
21 VCC  
23 A3  
9
10  
11  
12  
13  
14  
A4 20  
A7 22  
A2 24  
A0 26  
A6  
A5  
A4  
VCC  
A1  
A2  
A3  
A7  
25 A1  
27 QSF  
CAS 28  
(Top view)  
(Bottom view)  
Data Sheet E0165H10  
2
HM534253B Series  
Pin Description  
Pin Name  
A0 – A8  
I/O0 – I/O3  
SI/O0 – SI/O3  
RAS  
Function  
Address inputs  
RAM port data inputs/outputs  
SAM port data inputs/outputs  
Row address strobe  
Column address strobe  
Write enable  
CAS  
WE  
DT/OE  
SC  
Data transfer/output enable  
Serial clock  
SE  
SAM port enable  
DSF  
Special function input flag  
Special function output flag  
Power supply  
QSF  
VCC  
VSS  
Ground  
NC  
No connection  
Data Sheet E0165H10  
3
HM534253B Series  
Block Diagram  
A0 – A8  
Column Address  
Row Address  
Buffer  
Refresh  
Counter  
Buffer  
Serial Address  
Counter  
QSF  
Row Decoder  
Memory Array  
Input Data  
Control  
Serial Output Serial Input  
Buffer Buffer  
SI/O0 – SI/O3  
Input  
Buffer  
Output  
Buffer  
Timing Generator  
I/O0 – I/O3  
Data Sheet E0165H10  
4
HM534253B Series  
Pin Functions  
RAS (input pin): RAS is a basic RAM signal. It is active in low level and standby in high level. Row  
address and signals as shown in table 1 are input at the falling edge of RAS. The input level of these signals  
determine the operation cycle of the HM534253B.  
Table 1  
Operation Cycles of the HM534253B  
Input Level At The Falling Edge Of RAS  
CAS  
L
DT/OE WE  
SE  
X
L
DSF  
X
L
DSF At The Falling Edge Of CAS  
Operation Mode  
CBR refresh  
X
L
X
L
X
X
X
X
X
L
H
Write transfer  
H
L
L
H
X
X
X
X
X
X
X
X
X
L
Pseudo transfer  
Split write transfer  
Read transfer  
H
L
L
H
L
H
L
H
H
L
H
L
H
L
Split read transfer  
Read/mask write  
Mask block write  
Flash write  
H
H
H
H
H
H
H
H
L
L
H
X
L
H
L
H
L
H
H
H
H
Read/write  
H
L
H
X
Block write  
H
H
Color register read/write  
Note: X: H or L.  
CAS (input pin): Column address and DSF signals are fetched into chip at the falling edge of CAS, which  
determines the operation mode of the HM534253B. CAS controls output impedance of I/O in RAM.  
A0 – A8 (input pins): Row address is determined by A0 – A8 level at the falling edge of RAS. Column  
address is determined by A0 – A8 level at the falling edge of CAS. In transfer cycles, row address is the  
address on the word line which transfers data with SAM data register, and column address is the SAM start  
address after transfer.  
WE (input pin): WE pin has two functions at the falling edge of RAS and after. When WE is low at the  
falling edge of RAS, the HM534253B turns to mask write mode. According to the I/O level at the time, write  
on each I/O can be masked. (WE level at the falling edge of RAS don’t care in read cycle.) When WE is high  
at the falling edge of RAS, a normal write cycle is executed. After that, WE switches read/write cycles as in a  
standard DRAM. In a transfer cycle, the direction of transfer is determined by WE level at the falling edge of  
RAS. When WE is low, data is transferred from SAM to RAM (data is written into RAM), and when WE is  
high, data is transferred from RAM to SAM (data is read from RAM).  
Data Sheet E0165H10  
5
HM534253B Series  
I/O0 – I/O3 (input/output pins): I/O pins function as mask data at the falling edge of RAS (in mask write  
mode). Data is written only to high I/O pins. Data on low I/O pins are masked and internal data are retained.  
After that, they function as input/output pins as those of a standard DRAM. In block write cycle, they  
function as address mask data at the falling edges of CAS.  
DT/OE (input pin): D T/OE pin functions as DT (data transfer) pin at the falling edge of RAS and as OE  
(output enable) pin after that. When DT is low at the falling edge of RAS, this cycle becomes a transfer cycle.  
When DT is high at the falling edge of RAS, RAM and SAM operate independently.  
SC (input pin): SC is a basic SAM clock. In a serial read cycle, data outputs from an SI/O pin  
synchronously with the rising edge of SC. In a serial write cycle, data on an SI/O pin at the rising edge of SC  
is fetched into the SAM data register.  
SE(input pin): SE pin activates SAM. When SE is high, SI/O is in the high impedance state in serial read  
cycle and data on SI/O is not fetched into the SAM data register in serial write cycle. SE can be used as a  
mask for serial write because internal pointer is incremented at the rising edge of SC.  
SI/O0 – SI/O3 (input/output pins): SI/Os are input/output pins in SAM. Direction of input/output is  
determined by the previous transfer cycle. When it was a read transfer cycle, SI/O outputs data. When it was  
a pseudo transfer cycle or write transfer cycle, SI/O inputs data.  
DSF (input pin): DSF is a special function data input flag pin. It is set to high at the falling edge of RAS  
when new functions such as color register read/write, split transfer, and flash write, are used. DSF is set to  
high at the falling edge of CAS when block write is executed.  
QSF (output pin): QSF outputs data of address A8 in SAM. QSF is switched from low to high by accessing  
address 255 in SAM and from high to low by accessing 511 address in SAM.  
Data Sheet E0165H10  
6
HM534253B Series  
Operation of HM534253B  
RAM Port Operation  
RAM Read Cycle (DT/OE high, CAS high and DSF low at the falling edge of RAS, DSF low at the falling  
edge of CAS)  
Row address is entered at the RAS falling edge and column address at the CAS falling edge to the device as in  
standard DRAM. Then, when WE is high and DT/OE is low while CAS is low, the selected address data  
outputs through I/O pin. At the falling edge of RAS, DT/OE and CAS become high to distinguish RAM read  
cycle from transfer cycle and CBR refresh cycle. Address access time (tAA) and RAS to column address delay  
time (tRAD) specifications are added to enable high-speed page mode.  
RAM Write Cycle (Early Write, Delayed Write, Read-Modify-Write) (DT/OE high, CAS high and DSF  
low at the falling edge of RAS, DSF low at the falling edge of CAS)  
Normal Mode Write Cycle (WE high at the falling edge of RAS)  
When CAS and WE are set low after driving RAS low, a write cycle is executed and I/O data is written in  
the selected addresses. When all 4 I/Os are written, WE should be high at the falling edge of RAS to  
distinguish normal mode from mask write mode.  
If WE is set low before the CAS falling edge, this cycle becomes an early write cycle and all I/O become  
in high impedance. Data is entered at the CAS falling edge.  
If WE is set low after the CAS falling edge, this cycle becomes a delayed write cycle. Data is input at the  
WE falling. I/O does not become high impedance in this cycle, so data should be entered with OE in high.  
If WE is set low after tCWD (min) and tAWD (min) after the CAS falling edge, this cycle becomes a read-  
modify-write cycle and enables read/write at the same address in one cycle. In this cycle also, to avoid I/O  
contention, data should be input after reading data and driving OE high.  
Mask Write Mode (WE low at the falling edge of RAS)  
If WE is set low at the falling edge of RAS, the cycle becomes a mask write mode which writes only to  
selected I/O. Whether or not an I/O is written depends on I/O level (mask data) at the falling edge of  
RAS. Then the data is written in high I/O pins and masked in low ones and internal data is retained. This  
mask data is effective during the RAS cycle. So, in high-speed page mode, the mask data is retained  
during the page access.  
Data Sheet E0165H10  
7
HM534253B Series  
High-Speed Page Mode Cycle (DT/OE high, CAS high and DSF low at the falling edge of RAS)  
High-speed page mode cycle reads/writes the data of the same row address at high speed by toggling CAS  
while RAS is low. Its cycle time is one third of the random read/write cycle. In this cycle, read, write, and  
block write cycles can be mixed. Note that address access time (tAA), RAS to column address delay time  
(tRAD), and access time from CAS precharge (tACP) are added. In one RAS cycle, 512-word memory cells of the  
same row address can be accessed. It is necessary to specify access frequency within tRASP max (100 µs).  
Color Register Set/Read Cycle (CAS high, DT/OE high, WE high and DSF high at the falling edge of RAS)  
In color register set cycle, color data is set to the internal color register used in flash write cycle or block write  
cycle. 4 bits of internal color register are provided at each I/O. This register is composed of static circuits, so  
once it is set, it retains the data until reset. Color register set cycle is just as same as the usual write cycle  
except that DSF is set high at the falling edge of RAS, and read, early write and delayed write cycle can be  
executed. In this cycle, the HM534253B refreshes the row address fetched at the falling edge of RAS.  
Flash Write Cycle (CAS high, DT/OE high, WE low, and DSF high at the falling edge of RAS)  
In a flash write cycle, a row of data (512-word × 4-bit) is cleared to 0 or 1 at each I/O according to the data of  
color register mentioned before. It is also necessary to mask I/O in this cycle. When CAS and DT/OE are set  
high, WE is low, and DSF is high at the falling edge of RAS, this cycle starts. Then, the row address to clear  
is given to row address and mask data is given to I/O. Mask data is as same as that of a RAM write cycle.  
High I/O is cleared, low I/O is not cleared and the internal data is retained. Cycle time is the same as those of  
RAM read/write cycles, so all bits can be cleared in 1/512 of the usual cycle time. (See figure 1.)  
Data Sheet E0165H10  
8
HM534253B Series  
Color Register Set Cycle  
Flash Write Cycle  
Flash Write Cycle  
RAS  
CAS  
Address  
Row  
Xi  
Xj  
WE  
DT/OE  
DSF  
I/O  
*1  
Color Data  
*1  
Execute flash write into each Execute flash write into  
Set color register  
I/O on row address Xi using  
color resister.  
each I/O on row address  
Xj using color resister.  
Note: 1. I/O Mask Data  
Low: Mask  
High: Non Mask  
Figure 1 Use of Flash Write  
Block Write Cycle (CAS high, DT/OE high and DSF low at the falling edge of RAS, DSF high at the falling  
edge of CAS)  
In a block write cycle, 4 columns of data (4-word × 4-bit) are cleared to 0 or 1 at each I/O according to the  
data of color register. Column addresses A0 and A1 are disregarded. The data on I/Os and addresses can be  
masked. I/O level at the falling edge of CAS determines the address to be cleared. (See figure 2.) In a page  
mode cycle, mixed cycle of normal Read/Write and block write can be allowed by controlling DSF.  
Normal Mode Block Write Cycle (WE high at the falling edge of RAS)  
The data on 4 I/Os are all cleared when WE is high at the falling edge of RAS.  
Mask Block Write Mode (WE low at the falling edge of RAS)  
When WE is low at the falling edge of RAS, the HM534253B starts mask block write mode to clear the  
data on an optional I/O. The mask data is the same as that of a RAM write cycle. High I/O is cleared, low  
I/O is not cleared and the internal data is retained. The mask data is available in the RAS cycle. In page  
mode block write cycle, the mask data is retained during the page access.  
Data Sheet E0165H10  
9
HM534253B Series  
Color Register Set Cycle  
Block Write Cycle  
Block Write Cycle  
RAS  
CAS  
Row  
Row  
Column A2–A8  
Column A2–A8  
Row  
Address  
*1  
*1  
WE  
DT/OE  
DSF  
I/O  
Address Mask  
Color Data  
Address Mask  
*1  
*1  
Note: 1.  
I/O  
Mode  
Mask  
Non mask  
WE  
Low  
High  
I/O Mask Data  
Don't care  
I/O Mask Data  
Low: Mask  
High: Non Mask  
Address Mask Data  
Column0 (A0 = 0, A1 = 0) Mask Data  
Column1 (A0 = 1, A1 = 0) Mask Data  
Column2 (A0 = 0, A1 = 1) Mask Data  
I/O0  
I/O1  
I/O2  
Low: Mask  
High: Non Mask  
I/O3 Column3 (A0 = 1, A1 = 1) Mask Data  
Figure 2 Use of Block Write  
Transfer Operation  
The HM534253B provides the read transfer cycle, split read transfer cycle,pseudo transfer cycle, write  
transfer cycle, and split write transfer cycle as data transfer cycles. These transfer cycles are set by driving  
CAS high and DT/OE low at the falling edge of RAS. They have following functions:  
(1) Transfer data between row address and SAM data register (except for pseudo transfer cycle)  
Read transfer cycle and split read transfer cycle: RAM to SAM  
Write transfer cycle and split write transfer cycle: SAM to RAM  
(2) Determine SI/O state (except for split read transfer cycle and split write transfer cycle)  
Read transfer cycle: SI/O output  
Pseudo transfer cycle and write transfer cycle: SI/O input  
(3) Determine first SAM address to access after transferring at column address (SAM start address).  
Data Sheet E0165H10  
10  
HM534253B Series  
SAM start address must be determined by read transfer cycle or pseudo transfer cycle (split transfer cycle  
isn’t available) before SAM access, after power on, and determined for each transfer cycle.  
Read Transfer Cycle (CAS high, DT/OE low, WE high and DSF low at the falling edge of RAS)  
This cycle becomes read transfer cycle by driving DT/OE low, WE high and DSF low at the falling edge of  
RAS. The row address data (512 × 4 bits) determined by this cycle is transferred to SAM data register  
synchronously at the rising edge of DT/OE. After the rising edge of DT/OE, the new address data outputs  
from SAM start address determined by column address. In read transfer cycle, DT/OE must be risen to  
transfer data from RAM to SAM.  
This cycle can access SAM even during transfer (real time read transfer). In this case, the timing tSDD (min)  
specified between the last SAM access before transfer and DT/OE rising edge and tSDH (min) specified  
between the first SAM access and DT/OE rising edge must be satisfied. (See figure 3.)  
When read transfer cycle is executed, SI/O becomes output state by first SAM access. Input must be set high  
impedance before tSZS (min) of the first SAM access to avoid data contention.  
RAS  
CAS  
Address  
DT/OE  
Xi  
Yj  
L
DSF  
tSDD tSDH  
SC  
SI/O  
Yj  
Yj + 1  
SAM Data before Transfer  
SAM Data after Transfer  
Figure 3 Real Time Read Transfer  
Pseudo Transfer Cycle (CAS high, DT/OE low, WE low, SE high and DSF low at the falling edge of RAS)  
Pseudo transfer cycle switches SI/O to input state and set SAM start address without data transfer to RAM.  
This cycle starts when CAS is high, DT/OE low, WE low, SE high and DSF low at the falling edge of RAS.  
Data should be input to SI/O later than tSID (min) after RAS becomes low to avoid data contention. SAM  
access becomes enabled after tSRD (min) after RAS becomes high. In this cycle, SAM access is inhibited  
during RAS low, therefore, SC must not be risen.  
Write Transfer Cycle (CAS high, DT/OE low, WE low, SE low, and DSF low at the falling edge of RAS)  
Data Sheet E0165H10  
11  
HM534253B Series  
Write transfer cycle can transfer a row of data input by serial write cycle to RAM. The row address of data  
transferred into RAM is determined by the address at the falling edge of RAS. The column address is  
specified as the first address for serial write after terminating this cycle. Also in this cycle, SAM access  
becomes enabled after tSRD (min) after RAS becomes high. SAM access is inhibited during RAS low. In this  
period, SC must not be risen. Data transferred to SAM by read transfer cycle or split read transfer cycle can  
be written to other addresses of RAM by write transfer cycle. However, the address to write data must be the  
same MSB of row address (AX8) as that of the read transfer cycle. Figure 4 shows the example of row bit  
data transfer. In case AX8 is 0, data cannot be transferred RAM address within the range of 100000000 to  
111111111. Same as the case of AX8 = 1.  
SAM  
RAM  
SAM  
Possible  
(Row address)  
........  
(Row address)  
........  
........  
A0  
A8  
A0  
A8  
000000000  
000000000  
RAM  
Impossible  
011111111  
100000000  
011111111  
100000000  
RAM  
SAM  
RAM  
SAM  
111111111  
111111111  
(Read transfer cycle)  
(Write transfer cycle)  
Figure 4 Example of Row Bit Data Transfer  
Split Read Transfer Cycle (CAS high, DT/OE low, WE high and DSF high at the falling edge of RAS)  
To execute a continuous serial read by real time read transfer, the HM534253B must satisfy SC and DT/OE  
timings and requires an external circuit to detect SAM last address. Split read transfer cycle makes it possible  
to execute a continuous serial read without the above timing limitation. Figure 5 shows the block diagram for  
a split transfer. SAMdata register (DR) consists of 2 split buffers, whose organizations are 256-word × 4-bit  
each. Let us suppose that data is read from upper data register DR1 (The row address AX8 is 0 and SAM  
address A8 is 1.). When split read transfer is executed setting row address AX8 0 and SAM start addresses  
A0 to A7, 256-word × 4-bit data are transferred from RAM to the lower data register DR0 (SAM address A8  
is 0) automatically. After data are read from data register DR1, data start to be read from SAM start addresses  
of data register DR0. If the next split read transfer isn’t executed while data are read from data register DR0,  
data start to be read from SAM start address 0 of DR1 after data are read from data register DR0. If split read  
transfer is executed setting row address AX8 1 and SAM start addresses A0 to A7 while data are read from  
data register DR1, 256-word × 4-bit data are transferred to data register DR2. After data are read from data  
register DR1, data start to be read from SAM start addresses of data register DR2. If the next split read  
transfer isn’t executed while data is read from data register DR2, data start to be read from SAM start address  
0 of data register DR3 after data are read from data register DR2. In this time, SAM data is the one  
transferred to data register DR3 finally while row address AX8 is 1. In split read data transfer, the SAM start  
address A8 is automatically set in the data register which isn’t used.  
The data on SAM address A8, which will be accessed next, outputs to QSF. QSF is switched from low to  
high by accessing SAM last address 255 and from high to low by accessing address 511.  
Data Sheet E0165H10  
12  
HM534253B Series  
Split read transfer cycle is set when CAS is high, DT/OE is low, WE is high and DSF is high at the falling  
edge of RAS. The cycle can be executed asyncronously with SC. However, tSTS (min) timing specified  
between SC rising and RAS falling must be satisfied. SAM last address must be accessed, satisfying tRST  
(min), tCST (min), and tAST (min) timings specified between RAS or CAS falling and column address. (See  
figure 6.)  
In split read transfer, SI/O isn't switched to output state. Therefore, read transfer must be executed to switch  
SI/O to output state when the previous transfer cycle is pseudo transfer or write transfer cycle.  
Memory  
Array  
Memory  
Array  
AX8 = 0  
AX8 = 1  
SAM I/O Buffer  
SI/O  
Figure 5 Block Diagram for Split Transfer  
Data Sheet E0165H10  
13  
HM534253B Series  
RAS  
tSTS (min)  
tRST (min)  
CAS  
tCST(min)  
Yj  
Address  
Xi  
tAST(min)  
DT/OE  
DSF  
255  
(511)  
n
(n + 255)  
511  
SC  
255 + Yj  
(Yj)  
(255)  
Figure 6 Limitation in Split Transfer  
Split Write Transfer Cycle (CAS high, DT/OE low, WE low and DSF high at the falling edge of RAS)  
A continuous serial write cannot be executed because accessing SAM is inhibited during RAS low in write  
transfer. Split write transfer cycle makes it possible. In this cycle, tSTS (min), t (min), tCST (min) and tAST  
RST  
(min) timings must be satisfied like split read transfer cycle. And it is impossible to switch SI/O to input state  
in this cycle. If SI/O is in output state, pseudo transfer cycle should be executed to switch SI/O into input  
state. Data transferred to SAM by read transfer cycle or split read transfer cycle can be written to other  
addresses of RAM by split write transfer cycle. However, pseudo transfer cycle must be executed before split  
write transfer cycle. And the MSB of row address (AX8) to write data must be the same as that of the read  
transfer cycle or the split read transfer cycle.  
SAM Port Operation  
Serial Read Cycle  
SAM port is in read mode when the previous data transfer cycle is read transfer cycle. Access is  
synchronized with SC rising, and SAM data is output from SI/O. When SE is set high, SI/O becomes high  
impedance, and the internal pointer is incremented by the SC rising. After indicating the last address (address  
511), the internal pointer indicates address 0 at the next access.  
Data Sheet E0165H10  
14  
HM534253B Series  
Serial Write Cycle  
If previous data transfer cycle is pseudo transfer cycle or write transfer cycle, SAM port goes into write mode.  
In this cycle, SI/O data is fetched into data register at the SC rising edge like in the serial read cycle. If SE is  
high, SI/O data isn’t fetched into data register. Internal pointer is incremented by the SC rising, so SE high  
can be used as mask data for SAM. After indicating the last address (address 511), the internal pointer  
indicates address 0 at the next access.  
Refresh  
RAM Refresh  
RAM, which is composed of dynamic circuits, requires refresh to retain data. Refresh is executed by  
accessing all 512 row addresses within 8 ms. There are three refresh cycles: (1) RAS-only refresh cycle, (2)  
CAS-before-RAS (CBR) refresh cycle, and (3) Hidden refresh cycle. Besides them, the cycles which activate  
RAS such as read/write cycles or transfer cycles can refresh the row address. Therefore, no refresh cycle is  
required when all row addresses are accessed within 8 ms.  
(1) RAS-Only Refresh Cycle: RAS-only refresh cycle is executed by activating only RAS cycle with CAS  
fixed to high after inputting the row address (= refresh address) from external circuits. To distinguish this  
cycle from data transfer cycle, DT/OE must be high at the falling edge of RAS.  
(2) CBR Refresh Cycle: CBR refresh cycle is set by activating CAS before RAS. In this cycle, refresh  
address need not to be input through external circuits because it is input through an internal refresh  
counter. In this cycle, output is in high impedance and power dissipation is lowered because CAS circuits  
don’t operate.  
(3) Hidden Refresh Cycle: Hidden refresh cycle executes CBR refresh with the data output by reactivating  
RAS when DT/OE and CAS keep low in normal RAM read cycles.  
SAM Refresh  
SAM parts (data register, shift resister and selector), organized as fully static circuitry, require no refresh.  
Absolute Maximum Ratings  
Parameter  
Symbol  
VT  
Value  
Unit  
V
Note  
Voltage on any pin relative to VSS  
Supply voltage relative to VSS  
Short circuit output current  
Power dissipation  
–1.0 to +7.0  
–0.5 to +7.0  
50  
1
1
VCC  
V
Iout  
PT  
mA  
W
1.0  
Operating temperature  
Storage temperature  
Topr  
Tstg  
0 to +70  
–55 to +125  
°C  
°C  
Note: 1. Relative to VSS.  
Data Sheet E0165H10  
15  
HM534253B Series  
Recommended DC Operating Conditions (Ta = 0 to +70°C)  
Parameter  
Symbol  
VCC  
Min  
4.5  
Typ  
5.0  
Max  
5.5  
Unit  
V
Notes  
Supply voltage  
Input high voltage  
Input low voltage  
1
1
1
VIH  
2.4  
–0.5*2  
6.5  
V
VIL  
0.8  
V
Notes: 1. All voltage referred to VSS  
–3.0 V for pulse width 10 ns.  
2
DC Characteristics (Ta = 0 to +70°C, VCC = 5 V ± 10%, VSS = 0 V)  
HM534253B  
-6  
-7  
-8  
-10  
Parameter Symbol Min Max Min Max Min Max Min Max Unit Test Conditions  
Operating  
current  
ICC1  
ICC7  
75  
70  
60  
55  
95  
mA RAS, CAS cycling SC = VIL,  
t
RC = min  
SE = VIH  
125  
120  
100  
mA  
SE = VIL,  
SC cycling  
tSCC = min  
Standby  
current  
ICC2  
ICC8  
7
7
7
7
mA RAS, CAS = VIH  
SC = VIL,  
SE = VIH  
50  
50  
40  
40  
mA  
SE = VIL,  
SC cycling  
tSCC = min  
RAS-only  
refresh  
current  
ICC3  
75  
70  
60  
55  
95  
65  
mA RAS cycling  
CAS = VIH  
SC = VIL,  
SE = VIH  
tRC = min  
ICC9  
125  
80  
120  
80  
100  
70  
mA  
SE = VIL,  
SC cycling  
tSCC = min  
Page mode ICC4  
current  
mA CAS cycling  
RAS = VIL  
SC = VIL,  
SE = VIH  
tPC = min  
ICC10  
130  
50  
130  
45  
110  
40  
105 mA  
SE = VIL,  
SC cycling  
tSCC = min  
CAS-before- ICC5  
RAS refresh  
current  
35  
75  
mA RAS cycling  
RC = min  
SC = VIL,  
SE = VIH  
t
ICC11  
100  
95  
80  
mA  
SE = VIL,  
SC cycling  
tSCC = min  
Data Sheet E0165H10  
16  
HM534253B Series  
DC Characteristics (Ta = 0 to +70°C, VCC = 5 V ± 10%, VSS = 0 V) (cont)  
HM534253B  
-6 -7  
Parameter Symbol Min Max Min Max Min Max Min Max Unit Test Conditions  
-8  
-10  
Data  
transfer  
current  
ICC6  
ICC12  
ILI  
80  
75  
65  
60  
mA RAS, CAS cycling SC = VIL,  
t
RC = min  
SE = VIH  
130  
125  
105  
100 mA  
SE = VIL,  
SC cycling  
tSCC = min  
Input  
leakage  
current  
–10 10  
–10 10  
–10 10  
–10 10  
–10 10  
–10 10  
–10 10  
–10 10  
µA  
µA  
Output  
leakage  
current  
ILO  
Output high VOH  
voltage  
2.4  
2.4  
2.4  
2.4  
V
V
IOH = –2 mA  
IOL = 4.2 mA  
Output low VOL  
voltage  
0.4  
0.4  
0.4  
0.4  
Notes: 1. ICC depends on output load condition when the device is selected. ICC max is specified at the output  
open condition.  
2. Address can be changed once while RAS is low and CAS is high.  
Capacitance (Ta = 25°C, VCC = 5 V, f = 1 MHz, Bias: Clock, I/O = VCC, address =VSS)  
Parameter  
Symbol  
CI1  
Typ  
Max  
Unit  
pF  
Note  
Input capacitance (Address)  
Input capacitance (Clocks)  
Output capacitance (I/O, SI/O, QSF)  
5
5
7
1
1
1
CI2  
pF  
CI/O  
pF  
Note: 1. This parameter is sampled and not 100% tested.  
AC Characteristics (Ta = 0 to +70°C, VCC = 5 V ± 10%, VSS = 0 V)*1, *16  
Test Conditions  
Input rise and fall time: 5 ns  
Input pulse levels: VSS to 3.0 V  
Input timing reference levels: 0.8 V, 2.4 V  
Output timing reference levels: 0.8 V, 2.0 V  
Output load: See figures  
Data Sheet E0165H10  
17  
HM534253B Series  
Test Conditions (cont)  
+ 5 V  
+ 5 V  
IOH= – 2 mA  
IOL = 4.2 mA  
IOH= – 2 mA  
IOL = 4.2 mA  
I / O  
SI / O  
* 1  
100 pF  
* 1  
50 pF  
Output Load (A)  
Output Load (B)  
Note: 1. Including scope & jig  
Common Parameter  
HM534253B  
-6  
-7  
-8  
-10  
Parameter  
Symbol Min Max  
Min Max  
Min Max  
Min Max  
Unit Notes  
Random read or write cycle tRC  
time  
125  
135  
150  
180  
ns  
RAS precharge time  
RAS pulse width  
tRP  
55  
55  
60  
70  
ns  
tRAS  
tCAS  
tASR  
tRAH  
60 10000 70 10000 80 10000 100 10000 ns  
CAS pulse width  
20  
0
20  
0
20  
0
25  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Row address setup time  
Row address hold time  
10  
0
10  
0
10  
0
10  
0
Column address setup time tASC  
Column address hold time  
tCAH  
tRCD  
tRSH  
15  
15  
15  
15  
RAS to CAS delay time  
20 40  
20 50  
20 60  
20 75  
2
3
RAS hold time referred to  
CAS  
20  
20  
20  
25  
CAS hold time referred to  
tCSH  
60  
70  
80  
100  
ns  
RAS  
CAS to RAS precharge time tCRP  
10  
3
50  
8
10  
3
50  
8
10  
3
50  
8
10  
3
50  
8
ns  
ns  
ms  
ns  
ns  
ns  
ns  
Transition time (rise to fall)  
Refresh period  
tT  
tREF  
tDTS  
tDTH  
tFSR  
tRFH  
0
0
0
0
DT to RAS setup time  
DT to RAS hold time  
DSF to RAS setup time  
DSF to RAS hold time  
10  
0
10  
0
10  
0
10  
0
10  
10  
10  
10  
Data Sheet E0165H10  
18  
HM534253B Series  
Common Parameter (cont)  
HM534253B  
-6  
-7  
-8  
-10  
Parameter  
Symbol Min Max  
Min Max  
Min Max  
Min Max  
Unit Notes  
DSF to CAS setup time  
DSF to CAS hold time  
Data-in to CAS delay time  
Data-in to OE delay time  
tFSC  
tCFH  
tDZC  
tDZO  
0
20  
0
20  
0
20  
0
20  
ns  
ns  
15  
0
15  
0
15  
0
15  
0
ns  
ns  
ns  
4
4
5
0
0
0
0
Output buffer turn-off delay tOFF1  
referred to CAS  
Output buffer turn-off delay tOFF2  
20  
20  
20  
20  
ns  
5
referred to OE  
Read Cycle (RAM), Page Mode Read Cycle  
HM534253B  
-6  
-7  
-8  
-10  
Parameter  
Symbol Min Max  
Min Max  
Min Max  
Min Max  
Unit Notes  
Access time from RAS  
Access time from CAS  
Access time from OE  
Address access time  
tRAC  
tCAC  
tOAC  
tAA  
0
60  
20  
20  
35  
0
70  
20  
20  
35  
0
80  
20  
20  
40  
0
100  
25  
25  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6, 7  
7, 8  
7
7, 9  
Read command setup time tRCS  
Read command hold time  
tRCH  
tRRH  
0
0
0
0
10  
10  
Read command hold time  
10  
10  
10  
10  
referred to RAS  
RAS to column address  
tRAD  
15 25  
15 35  
15 40  
15 55  
ns  
ns  
ns  
2
delay time  
Column address to RAS lead tRAL  
time  
35  
35  
35  
35  
40  
40  
45  
45  
Column address to CAS lead tCAL  
time  
Page mode cycle time  
tPC  
45  
10  
40  
45  
10  
40  
50  
10  
45  
55  
10  
50  
ns  
ns  
ns  
CAS precharge time  
tCP  
Access time from CAS  
precharge  
tACP  
Page mode RAS pulse width tRASP  
60 100000 70 100000 80 100000 100 100000 ns  
Data Sheet E0165H10  
19  
HM534253B Series  
Write Cycle (RAM), Page Mode Write Cycle, Color Register Set Cycle  
HM534253B  
-6  
-7  
-8  
-10  
Parameter  
Symbol Min Max  
Min Max  
Min Max  
Min Max  
Unit Notes  
Write command setup time  
Write command hold time  
tWCS  
tWCH  
0
0
0
0
ns  
ns  
ns  
ns  
11  
15  
15  
20  
15  
15  
20  
15  
15  
20  
15  
15  
20  
Write command pulse width tWP  
Write command to RAS lead tRWL  
time  
Write command to CAS lead tCWL  
time  
20  
20  
20  
20  
ns  
Data-in setup time  
Data-in hold time  
tDS  
tDH  
tWS  
tWH  
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
12  
12  
15  
0
15  
0
15  
0
15  
0
WE to RAS setup time  
WE to RAS hold time  
10  
0
10  
0
10  
0
10  
0
Mask data to RAS setup time tMS  
Mask data to RAS hold time tMH  
OE hold time referred to WE tOEH  
10  
20  
45  
10  
20  
10  
20  
45  
10  
20  
10  
20  
50  
10  
20  
10  
20  
55  
10  
20  
Page mode cycle time  
CAS precharge time  
tPC  
tCP  
CAS to data-in delay time  
tCDD  
13  
Page mode RAS pulse width tRASP  
60 100000 70 100000 80 10000 100 100000 ns  
Data Sheet E0165H10  
20  
HM534253B Series  
Read-Modify-Write Cycle  
HM534253B  
-6  
-7  
-8  
-10  
Parameter  
Symbol Min Max  
Min Max  
Min Max  
Min Max  
230  
Unit Notes  
Read-modify-write cycle time tRWC  
175  
185  
200  
ns  
RAS pulse width (read-  
modify-write cycle)  
tRWS  
110 10000 120 10000 130 10000 150 10000 ns  
CAS to WE delay time  
tCWD  
45  
60  
45  
60  
45  
65  
50  
70  
ns  
ns  
14  
14  
Column address to WE delay tAWD  
time  
OE to data-in delay time  
Access time from RAS  
Access time from CAS  
Access time from OE  
Address access time  
tODD  
tRAC  
tCAC  
tOAC  
tAA  
20  
60  
20  
20  
35  
20  
70  
20  
20  
35  
20  
80  
20  
20  
40  
20  
ns  
ns  
ns  
ns  
ns  
ns  
12  
100  
25  
25  
45  
6, 7  
7, 8  
7
7, 9  
RAS to column address  
delay time  
tRAD  
15 25  
15 35  
15 40  
15 55  
Read command setup time tRCS  
0
0
0
0
ns  
ns  
Write command to RAS lead tRWL  
time  
20  
20  
20  
20  
Write command to CAS lead tCWL  
time  
20  
20  
20  
20  
ns  
Write command pulse width tWP  
15  
0
15  
0
15  
0
15  
0
ns  
ns  
ns  
ns  
Data-in setup time  
Data-in hold time  
tDS  
tDH  
12  
12  
15  
20  
15  
20  
15  
20  
15  
20  
OE hold time referred to WE tOEH  
Refresh Cycle  
HM534253B  
-6  
-7  
-8  
-10  
Parameter  
Symbol Min Max  
Min Max  
Min Max  
Min Max  
Unit Notes  
CAS setup time (CAS-  
before-RAS refresh)  
tCSR  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
ns  
CAS hold time (CAS-before- tCHR  
RAS refresh)  
ns  
ns  
RAS precharge to CAS hold tRPC  
time  
Data Sheet E0165H10  
21  
HM534253B Series  
Flash Write Cycle, Block Write Cycle  
HM534253B  
-6  
-7  
-8  
-10  
Parameter  
Symbol Min Max  
Min Max  
Min Max  
Min Max  
Unit Notes  
CAS to data-in delay time  
OE to data-in delay time  
tCDD  
tODD  
20  
20  
20  
20  
20  
20  
20  
20  
ns  
ns  
13  
13  
Read Transfer Cycle  
HM534253B  
-6  
-7  
-8  
-10  
Parameter  
Symbol Min Max  
Min Max  
Min Max  
Min Max  
Unit Notes  
DT hold time referred to RAS tRDH  
DT hold time referred to CAS tCDH  
50 10000 60 10000 65 10000 80 10000 ns  
20  
25  
20  
25  
20  
30  
25  
30  
ns  
ns  
DT hold time referred to  
tADH  
column address  
DT precharge time  
tDTP  
tDRD  
tSRS  
tSRH  
tSCH  
tSAH  
20  
65  
25  
60  
25  
40  
20  
65  
25  
70  
25  
40  
20  
70  
30  
80  
25  
45  
30  
80  
30  
100  
25  
50  
ns  
ns  
ns  
ns  
ns  
ns  
DT to RAS delay time  
SC to RAS setup time  
1st SC to RAS hold time  
1st SC to CAS hold time  
1st SC to column address  
hold time  
Last SC to DT delay time  
Last SC to DT delay time  
1st SC to DT hold time  
RAS to QSF delay time  
CAS to QSF delay time  
DT to QSF delay time  
tSDD  
tSDD2  
tSDH  
tRQD  
tCQD  
tDQD  
tRQH  
5
65  
35  
35  
5
70  
35  
35  
5
75  
40  
35  
5
85  
40  
35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
25  
10  
20  
25  
10  
20  
25  
15  
20  
25  
15  
25  
19  
15  
15  
15  
QSF hold time referred to  
RAS  
QSF hold time referred to  
tCQH  
5
5
5
5
ns  
CAS  
QSF hold time referred to DT tDQH  
5
0
5
0
5
0
5
0
ns  
ns  
Serial data-in to 1st SC delay tSZS  
time  
Serial clock cycle time  
tSCC  
25  
25  
30  
30  
ns  
Data Sheet E0165H10  
22  
HM534253B Series  
Read Transfer Cycle (cont)  
HM534253B  
-6  
-7  
-8  
-10  
Parameter  
Symbol Min Max  
Min Max  
Min Max  
Min Max  
Unit Notes  
SC pulse width  
tSC  
5
20  
5
22  
10  
10  
5
25  
10  
10  
5
25  
ns  
ns  
SC precharge time  
SC access time  
tSCP  
tSCA  
tSOH  
tSIS  
10  
5
10  
5
ns  
ns  
ns  
ns  
ns  
15  
Serial data-out hold time  
Serial data-in setup time  
Serial data-in hold time  
0
0
0
0
tSIH  
tRAD  
15  
15  
15  
15  
RAS to column address  
delay time  
15 25  
15 35  
15 40  
15 55  
Column address to RAS lead tRAL  
35  
10  
35  
10  
40  
10  
45  
10  
ns  
ns  
time  
RAS precharge to DT high  
tDTHH  
18  
hold time  
Data Sheet E0165H10  
23  
HM534253B Series  
Pseudo Transfer Cycle, Write Transfer Cycle  
HM534253B  
-6  
-7  
-8  
-10  
Parameter  
Symbol Min Max  
Min Max  
Min Max  
Min Max  
Unit Notes  
SE setup time referred to  
RAS  
tES  
0
0
0
0
ns  
SE hold time referred to RAS tEH  
10  
25  
10  
25  
10  
30  
10  
30  
ns  
ns  
SC setup time referred to  
tSRS  
RAS  
RAS to SC delay time  
tSRD  
tSRZ  
20  
20  
25  
25  
ns  
ns  
Serial output buffer turn-off  
10 40  
10 40  
10 45  
10 50  
time referred to RAS  
RAS to serial data-in delay  
time  
tSID  
40  
40  
45  
50  
ns  
RAS to QSF delay time  
CAS to QSF delay time  
tRQD  
tCQD  
tRQH  
20  
65  
35  
20  
70  
35  
20  
75  
40  
25  
85  
40  
ns  
ns  
ns  
15  
15  
QSF hold time referred to  
RAS  
QSF hold time referred to  
tCQH  
5
5
5
5
ns  
CAS  
Serial clock cycle time  
SC pulse width  
tSCC  
tSC  
25  
5
20  
20  
25  
5
22  
22  
30  
10  
10  
5
25  
25  
30  
10  
10  
5
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SC precharge time  
SC access time  
tSCP  
tSCA  
tSEA  
tSOH  
tSWS  
10  
5
10  
5
15  
15  
SE access time  
Serial data-out hold time  
Serial write enable setup  
time  
5
5
5
5
Serial data-in setup time  
Serial data-in hold time  
tSIS  
tSIH  
0
0
0
0
ns  
ns  
15  
15  
15  
15  
Data Sheet E0165H10  
24  
HM534253B Series  
Split Read Transfer Cycle, Split Write Transfer Cycle  
HM534253B  
-6  
-7  
-8  
-10  
Parameter  
Symbol Min Max  
Min Max  
Min Max  
Min Max  
Unit Notes  
Split transfer setup time  
tSTS  
tRST  
20  
60  
20  
70  
20  
80  
25  
ns  
ns  
Split transfer hold time  
100  
referred to RAS  
Split transfer hold time  
referred to CAS  
tCST  
tAST  
tSQD  
20  
35  
20  
35  
20  
40  
25  
45  
ns  
ns  
Split transfer hold time  
referred to column address  
SC to QSF delay time  
5
30  
20  
5
30  
22  
5
30  
25  
5
30  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
15  
15  
QSF hold time referred to SC tSQH  
Serial clock cycle time  
SC pulse width  
tSCC  
tSC  
25  
5
25  
5
30  
10  
10  
5
30  
10  
10  
5
SC precharge time  
SC access time  
tSCP  
tSCA  
tSOH  
tSIS  
10  
5
10  
5
Serial data-out hold time  
Serial data-in setup time  
Serial data-in hold time  
0
0
0
0
tSIH  
15  
15  
15  
15  
RAS to column address  
delay time  
tRAD  
15 25  
15 35  
15 40  
15 55  
Column address to RAS lead tRAL  
time  
35  
35  
40  
45  
ns  
Data Sheet E0165H10  
25  
HM534253B Series  
Serial Read Cycle, Serial Write Cycle  
HM534253B  
-6  
-7  
-8  
-10  
Parameter  
Symbol Min Max  
Min Max  
Min Max  
Min Max  
Unit Notes  
Serial clock cycle time  
SC pulse width  
tSCC  
tSC  
25  
5
20  
20  
20  
25  
5
22  
22  
20  
30  
10  
10  
5
25  
25  
20  
30  
10  
10  
5
25  
25  
20  
ns  
ns  
ns  
SC precharge width  
Access time from SC  
Access time from SE  
Serial data-out hold time  
tSCP  
tSCA  
tSEA  
tSOH  
tSEZ  
10  
5
10  
5
ns  
ns  
ns  
ns  
15  
15  
Serial output buffer turn-off  
5
time referred to SE  
Serial data-in setup time  
Serial data-in hold time  
tSIS  
0
0
0
0
ns  
ns  
ns  
tSIH  
tSWS  
15  
5
15  
5
15  
5
15  
5
Serial write enable setup  
time  
Serial write enable hold time tSWH  
15  
5
15  
5
15  
5
15  
5
ns  
ns  
Serial write disable setup  
time  
tSWIS  
Serial write disable hold time tSWIH  
15  
15  
15  
15  
ns  
Notes: 1. AC measurements assume tT = 5 ns.  
2. When tRCD > tRCD (max) and tRAD > tRAD (max), access time is specified by tCAC or tAA.  
3. VIH (min) and VIL (max) are reference levels for measuring timing of input signals. Transition time tT  
is measured between VIH and VIL.  
4. Data input must be floating before output buffer is turned on. In read cycle, read-modify-write cycle  
and delayed write cycle, either tDZC (min) or tDZO (min) must be satisfied.  
5. tOFF1 (max), tOFF2 (max), and tSEZ (max) are defined as the time at which the output achieves the open  
circuit condition (VOH – 100 mV, VOL + 100 mV).  
6. Assume that tRCD tRCD (max) and tRAD tRAD (max). If tRCD or tRAD is greater than the maximum  
recommended value shown in this table, tRAC exceeds the value shown.  
7. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.  
8. When tRCD tRCD (max) and tRAD tRAD (max), access time is specified by tCAC  
9. When tRCD tRCD (max) and tRAD tRAD (max), access time is specified by tAA.  
10. If either tRCH or tRRH is satisfied, operation is guaranteed.  
.
11. When tWCS tWCS (min), the cycle is an early write cycle, and I/O pins remain in an open circuit (high  
impedance) condition.  
12. These parameters are specified by the later falling edge of CAS or WE.  
13. Either tCDD (min) or tODD (min) must be satisfied because output buffer must be turned off by CAS or  
OE prior to applying data to the device when output buffer is on.  
14. When tAWD tAWD (min) and tCWD tCWD (min) in read-modify-write cycle, the data of the selected  
address outputs to an I/O pin and input data is written into the selected address. tODD (min) must be  
satisfied because output buffer must be turned off by OE prior to applying data to the device.  
15. Measured with a load circuit equivalent to 2 TTL loads and 50 pF.  
Data Sheet E0165H10  
26  
HM534253B Series  
16. After power-up, pause for 100 µs or more and execute at least 8 initialization cycle (normal memory  
cycle or refresh cycle), then start operation.  
17. When the serial write cycle is used, at least one SC pulse is required before proper SAM operation  
after VCC stabilized.  
18. tDTHH (min) must be satisfied only if DT/OE rises up before RAS rises in a read transfer cycle.  
19. After read transfer cycle, if split read transfer cycle is executed without SC access and SC address  
is 254 or 510, tSDD2 (min) must be satisfied 25 ns. Except for those cases, tSDD (min) is effective and  
satisfied 5 ns.  
20. XXX: H or L (H: VIH (min) VIN VIH (max), L: VIL (min) VIN VIL (max))  
///////: Invalid Dout  
Timing Waveforms*20  
Read Cycle  
tRC  
t RAS  
tRP  
RAS  
CAS  
tCRP  
t CSH  
tRSH  
tCAS  
tRCD  
t RAD  
t RAH  
tRAL  
tCAH  
tCAL  
t ASR  
Row  
tASC  
Column  
tRCS  
Address  
tRRH  
tRCH  
WE  
tCAC  
tAA  
tRAC  
tCDD  
tOFF1  
Valid Dout  
tOFF2  
I/O  
(Output)  
tOAC  
tDZC  
I/O  
(Input)  
tDZO  
tDTS  
tDTH  
DT/OE  
DSF  
tRFH  
tFSC  
tFSR  
tCFH  
Data Sheet E0165H10  
27  
HM534253B Series  
Early Write Cycle  
tRC  
tRAS  
tRP  
RAS  
tCRP  
tCSH  
tRCD  
tRSH  
tCAS  
CAS  
tASR  
tRAH  
Row  
tWS  
tCAH  
Column  
tWCS  
tASC  
Address  
WE  
tWH  
tWCH  
*1  
High-Z  
I/O  
(Output)  
tMH  
tMS  
tDH  
Valid Din  
tDS  
I/O  
(Input)  
Mask Data  
tDTS tDTH  
DT/OE  
DSF  
tFSR  
tRFH  
tFSC  
tCFH  
Note:  
1. This cycle becomes a normal mode write cycle when WE is high and a mask write cycle when WE  
is low.  
Delayed Write Cycle  
tRC  
tRAS  
tRP  
RAS  
tCRP  
tCSH  
tRSH  
tRCD  
tCAS  
CAS  
tASR  
tRAH  
tASC  
Columun  
tCAH  
Address  
Row  
tWS  
tRWL  
tWP  
tWH  
tCWL  
*1  
WE  
I/O  
(Output)  
tDH  
tDS  
tMS  
tMH  
tDZC  
I/O  
(Input)  
Valid Din  
tOEH  
Mask Data  
tDTH  
tOFF2  
tODD  
tDTS  
DT/OE  
DSF  
tRFH  
tFSR  
tCFH  
tFSC  
Note:  
1. This cycle becomes a normal mode write cycle when WE is high and a mask write cycle when WE  
is low.  
Data Sheet E0165H10  
28  
HM534253B Series  
Read-Modify-Write Cycle  
tRWC  
tRWS  
tRP  
RAS  
tCRP  
tRCD  
CAS  
tRAD  
tRAH  
Row  
tASR  
tCAH  
tASC  
Address  
WE  
Column  
tAWD  
tCWD  
tRWL  
tCWL  
tWP  
tWS  
tWH  
tRCS  
tCAC  
tAA  
tRAC  
*1  
I/O  
Valid Dout  
(Output)  
tDS  
tOAC  
tDH  
tMS  
Mask Data  
tDTS  
tMH  
tDZC  
tDZO  
I/O  
(Input)  
Valid Din  
tOEH  
tOFF2  
tODD  
tDTH  
DT/OE  
DSF  
tRFH  
tFSC  
tFSR  
tCFH  
Note:  
1. This cycle becomes a normal mode write cycle when WE is high and a mask write cycle when WE  
is low.  
Page Mode Read Cycle  
tRC  
tRASP  
tRP  
RAS  
CAS  
tCSH  
tRCD  
tPC  
tRSH  
tCAS  
tCP  
tRAL  
tASC  
tCRP  
tCP  
tCAS  
tCAS  
tRAD  
tCAL  
tCAH  
tCAL  
tCAL  
tCAH  
tASR  
tASC  
tASC  
tCAH  
tRAH  
Row  
Address  
WE  
Column  
Column  
Column  
tRRH  
tRCS  
tRCS  
tRCS  
tRCH  
tRCH  
t
RCH  
tRAC  
tAA  
tCAC  
tOFF1  
tAA  
tACP  
tCAC  
tAA  
tACP  
tCAC  
tOFF1  
tOFF1  
Valid  
Dout  
Valid  
Dout  
I/O  
(Output)  
Valid Dout  
tCDD  
tOFF2  
tCDD  
tDZC  
tDZC  
tDZC  
tCDD  
tOAC  
tOAC  
tOAC tOFF2  
I/O  
(Input)  
tDZO  
tDTH  
tDTS  
DT/OE  
DSF  
tFSR  
tRFH  
tFSC  
tFSC  
tCFH  
tCFH  
tCFH  
tFSC  
Data Sheet E0165H10  
29  
HM534253B Series  
Page Mode Write Cycle (Early Write)  
tRC  
tRP  
tRASP  
RAS  
tCSH  
tRCD  
tPC  
tRSH  
tCAS  
tCP  
tCRP  
tCP  
tCAS  
tCAH  
tCAS  
CAS  
tASR  
tRAH  
tASC  
Column  
tWCS  
tASC  
tASC  
tCAH  
tCAH  
Address  
Row  
tWH  
Column  
tWCS  
Column  
tWCS  
tWS  
tWCH  
tWCH  
tWCH  
WE  
*1  
High-Z  
I/O  
(Output)  
tMS tMH tDS  
tDH  
tDH  
tDH  
tDS  
tDS  
I/O  
(Input)  
Mask  
Data  
Valid Din  
Valid Din  
Valid Din  
tDTS  
tDTH  
DT/OE  
DSF  
tFSR  
tRFH  
tCFH  
tFSC  
tCFH  
tFSC  
tCFH  
tFSC  
Note:  
1. This cycle becomes a normal mode write cycle when WE is high and a mask write cycle when WE  
is low.  
Page Mode Write Cycle (Delayed Write)  
tRC  
tRASP  
tRP  
RAS  
tCSH  
tPC  
tRSH  
tCAS  
tCP  
tCRP  
tRCD  
tASC  
tCP  
tCAS  
tCAH  
tCAS  
tCAH  
CAS  
tASR  
tRAH  
Row  
tWS tWH  
*1  
tASC  
tASC  
tCAH  
Address  
Column  
Column  
Column  
tRWL  
tCWL  
tWP  
tCWL  
tWP  
tCWL  
tWP  
WE  
I/O  
(Output)  
tMH  
tMS  
tDH  
tDS tDH  
tDS tDH  
tDS  
Mask  
Data  
I/O  
(Input)  
Valid  
Din  
Valid  
Din  
Valid  
Din  
tOEH  
tDTS  
DT/OE  
DSF  
tRFH  
tFSC tCFH  
tFSC tCFH  
tFSC  
tCFH  
tFSR  
Note:  
1. This cycle becomes a normal mode write cycle when WE is high and a mask write cycle when WE  
is low.  
Data Sheet E0165H10  
30  
HM534253B Series  
RAS-Only Refresh Cycle  
tRC  
tRP  
tRAS  
RAS  
CAS  
tRPC  
tCRP  
tASR  
Row  
tRAH  
Address  
tOFF1  
I/O  
(Output)  
tCDD  
tOFF2  
I/O  
(Input)  
tODD  
tDTS  
tDTH  
DT/OE  
DSF  
tFSR tRFH  
CAS-Before-RAS Refresh Cycle  
tRC  
tRP  
tRP  
tRAS  
tRPC  
tCP  
tRPC  
RAS  
tCSR  
tCSR  
tCHR  
Inhibit Falling Transition  
CAS  
Address  
WE  
tOFF1  
High-Z  
I/O  
(Output)  
DT/OE  
DSF  
Data Sheet E0165H10  
31  
HM534253B Series  
Hidden Refresh Cycle  
tRC  
tRC  
tRAS  
tRAS  
tRP  
tRP  
RAS  
tCRP  
tRCD  
tRSH  
tCHR  
CAS  
tRAD  
tRAH  
tRAL  
tASC  
Column  
tASR  
Row  
tCAH  
Address  
WE  
tRCS  
tRRH  
tCAC  
tAA  
tRAC  
tOFF1  
I/O  
(Output)  
Valid Dout  
tDZC  
tOAC  
tOFF2  
I/O  
(Input)  
tDZO  
tDTH  
tDTS  
tFSR  
DT/OE  
DSF  
tRFH  
tFSC  
tCFH  
Color Register Set Cycle (Early Write)  
tRC  
tRP  
tRAS  
RAS  
tCSH  
tCRP  
tRCD  
tRAH  
tRSH  
tCAS  
CAS  
tASR  
Row  
Address  
WE  
tWS  
tWH  
tWCS  
tWCH  
High-Z  
I/O  
(Output)  
tDS  
Color Data  
tDH  
I/O  
(Input)  
tDTS  
tDTH  
DT/OE  
DSF  
tFSR  
tRFH  
Data Sheet E0165H10  
32  
HM534253B Series  
Color Register Set Cycle (Delayed Write)  
tRC  
tRP  
tRAS  
RAS  
tCSH  
tCRP  
tRSH  
tRCD  
tCAS  
CAS  
tASR  
tRAH  
Address  
Row  
tRWL  
tCWL  
tWS  
tWP  
WE  
I/O  
(Output)  
High-Z  
tDS  
tDH  
I/O  
(Input)  
Color Data  
tDTS  
tOEH  
DT/OE  
DSF  
tFSR  
tRFH  
Color Register Read Cycle  
tRC  
tRP  
tRAS  
RAS  
CAS  
tCSH  
tCRP  
tRSH  
tCAS  
tRCD  
tASR  
tRAH  
Address  
WE  
Row  
tWH  
tRCS  
tWS  
tRRH  
tRCH  
tCDD  
tCAC  
tOFF1  
tRAC  
I/O  
(Output)  
Valid Out  
tOFF2  
tOAC  
tDZC  
tODD  
I/O  
(Input)  
tDZO  
tDTH  
tDTS  
DT/OE  
DSF  
tFSR tRFH  
Data Sheet E0165H10  
33  
HM534253B Series  
Flash Write Cycle  
tRC  
tRAS  
tRP  
RAS  
tCRP  
tRCD  
tRAH  
CAS  
tASR  
Row  
tWS  
Address  
tWH  
WE  
tCDD  
tOFF1  
High-Z  
I/O  
(Output)  
tOFF2  
tMS  
tMH  
tODD  
I/O  
(Input)  
Mask Data  
tDTH  
tDTS  
DT/OE  
DSF  
tFSR  
tRFH  
Block Write Cycle  
t RC  
t RP  
t RASP  
RAS  
t CSH  
t PC  
tRSH  
t CAS  
t CP  
t CRP  
tRCD  
tCP  
t CAS  
t CAS  
CAS  
tASR  
tRAH  
tASC  
tCAH  
tCAH  
tASC  
tASC  
tCAH  
Column  
A2-A8  
Column  
A2-A8  
Column  
A2-A8  
Row  
Address  
tWS  
tWH  
*1  
WE  
High-Z  
I/O  
(Output)  
tDS  
tDS  
tDS  
tMS  
tMH  
tDH  
tDH  
tDH  
Address  
Mask  
Address  
Mask  
I/O  
Mask  
Address  
Mask  
I/O  
(Input)  
tDTH  
tDTS  
DT/OE  
DSF  
tFSC  
tFSC  
tFSC  
tCFH  
tFSR  
tRFH  
tCFH  
tCFH  
Note:  
1. This cycle becomes a normal block write cycle when WE is high and a mask block write cycle  
when WE is low.  
Data Sheet E0165H10  
34  
HM534253B Series  
Page Mode Block Write Cycle  
t RC  
t RP  
t RASP  
RAS  
t CSH  
t PC  
tRSH  
t CAS  
t CP  
t CRP  
tRCD  
tCP  
t CAS  
t CAS  
CAS  
tASR  
tRAH  
tASC  
tCAH  
tCAH  
tASC  
tASC  
tCAH  
Column  
A2-A8  
Column  
A2-A8  
Column  
A2-A8  
Row  
Address  
WE  
tWS  
tWH  
*1  
High-Z  
I/O  
(Output)  
tDS  
tDS  
tDS  
tMS  
tMH  
tDH  
tDH  
tDH  
Address  
Mask  
Address  
Mask  
I/O  
Mask  
Address  
Mask  
I/O  
(Input)  
tDTH  
tDTS  
DT/OE  
DSF  
tFSC  
tFSC  
tFSC  
tCFH  
tFSR  
tRFH  
tCFH  
tCFH  
Note:  
1. This cycle becomes a normal block write cycle when WE is high and a mask block write cycle  
when WE is low.  
Data Sheet E0165H10  
35  
HM534253B Series  
Read Transfer Cycle (1)  
tRC  
tRP  
tRAS  
RAS  
tCRP  
tCSH  
tRCD  
tRSH  
tCAS  
CAS  
tRAD  
tRAH  
tRAL  
tASR  
tCAH  
tASC  
SAM Start  
Address  
Address  
WE  
Row  
tWS tWH  
tDTHH  
High-Z  
tDTP  
I/O  
(Output)  
tCDH  
tADH  
tRDH  
tDRD  
tDTS  
DT/OE  
DSF  
tRFH  
tFSR  
tSCC  
tSCC  
tSCC  
tSCC  
tSDH  
tSDD  
tSDD2*  
tSC  
3
tSCP  
SC  
tSCA  
tSCA  
tSOH  
tSCA  
tSOH  
Valid Sout  
tSCA  
tSOH  
tSOH  
tSOH  
Valid Sout  
Valid Sout  
Valid Sout  
Valid Sout  
SI/O  
(Output)  
Previous Row  
tDQD  
New Row  
SI/O  
(Input)  
tDQH  
QSF *1  
SAM Address MSB  
tRQD  
tCQD  
tCQH  
tRQH  
QSF *2  
SAM Address MSB  
Notes: 1. This QSF timing is referred when SC is risen once or more between the previous transfer cycle and  
CAS falling edge of this cycle (QSF is switched by DT rising).  
2. This QSF timing is referred when SC isn't risen between the previous transfer cycle and CAS falling  
edge of this cycle (QSF is switched by RAS or CAS falling).  
3. After read transfer cycle, if split read transfer cycle is executed without SC access and SC address  
is 254 or 510, tSDD2 (min) must be satisfied 25 ns. Except for those cases, tSDD (min) is effective and  
satisfied 5 ns.  
Data Sheet E0165H10  
36  
HM534253B Series  
Read Transfer Cycle (2)  
tRC  
tRAS  
tRP  
RAS  
tCSH  
tCRP  
tRCD  
tRSH  
tCAS  
CAS  
tRAD  
tRAH  
tRAL  
tASR  
Row  
tASC  
tCAH  
Sam Start  
Address  
Address  
WE  
tWH  
tWS  
tDTHH  
High-Z  
I/O  
(Output)  
tDRD  
tDTP  
tDTS  
tDTH  
DT/OE  
DSF  
tFSR  
tRFH  
tSRS  
tSC  
tSDH  
tSCP  
tSCC  
tSCP  
tSC  
Inhibit Rising Transition  
tSCH  
SC  
tSCA  
tSCA  
tSAH  
tSRH  
tSOH  
Valid Sout  
SI/O  
(Output)  
tSIS  
tSIH  
tSZS  
Valid  
Sin  
SI/O  
(Input)  
tDQD  
tDQH  
SAM Address MSB  
QSF  
tCQD  
tCQH  
tRQD  
tRQH  
Data Sheet E0165H10  
37  
HM534253B Series  
Pseudo Transfer Cycle  
t
RC  
t
RAS  
t
RP  
RAS  
CAS  
t
t
CSH  
RSH  
CAS  
CRP  
t
t
RCD  
t
t
t
t
t
t
CAH  
ASC  
RAH  
ASR  
WS  
SAM Start  
Address  
Address  
WE  
Row  
t
WH  
High - Z  
I/O  
(Output)  
t
DTS  
FSR  
t
DTH  
DT/OE  
DSF  
t
t
RFH  
t
t
SEZ  
EH  
t
SWS  
t
ES  
SE  
SC  
t
SRS  
t
SCC  
t
SRD  
SCP  
t
t
t
SCP  
SC  
t
SC  
Inhibit Rising Transition  
t
SCA  
t
SRZ  
t
SOH  
SI/O  
(Output)  
Valid  
Sout  
Valid Sout  
t
t
t
SIH  
t
t
SIH  
SIS  
SIS  
SID  
SI/O  
(Input)  
Valid Sin  
Valid Sin  
t
CQD  
t
CQH  
t
RQD  
t
RQH  
QSF  
SAM Address MSB  
Data Sheet E0165H10  
38  
HM534253B Series  
Write Transfer Cycle  
t
RC  
t
RAS  
t
RP  
RAS  
t
t
CRP  
CSH  
RSH  
t
t
RCD  
t
CAS  
CAS  
t
t
t
t
CAH  
ASC  
RAH  
ASR  
SAM Start  
Address  
Address  
WE  
Row  
t
t
WH  
WS  
High-Z  
I/O  
(Output)  
t
DTS  
FSR  
t
DTH  
DT/OE  
DSF  
t
t
RFH  
EH  
t
t
ES  
t
SWS  
SE  
SC  
t
SRS  
t
SRD  
t
SCC  
t
t
SC  
SWS  
t
t
SCP  
t
SC  
SCP  
Inhibit Rising Transition  
SI/O  
(Output)  
t
t
SIH  
SIS  
t
t
SIH  
t
t
SIS  
SIS  
SIH  
SI/O  
(Input)  
Valid Sin  
Valid Sin  
Valid Sin  
t
CQD  
t
CQH  
t
RQD  
t
RQH  
QSF  
SAM Address MSB  
Data Sheet E0165H10  
39  
HM534253B Series  
Split Read Transfer Cycle  
t
RC  
t
t
RP  
RAS  
RAS  
t
CSH  
t
t
RSH  
t
RCD  
CRP  
t
CRP  
t
CAS  
CAS  
t
RAD  
t
RAL  
t
t
ASR  
RAH  
t
t
CAH  
ASC  
SAM Start  
Address Yi  
Address  
Row  
t
t
WS  
WH  
WE  
t
OFF1  
High-Z  
I/O  
(Output)  
t
t
DTH  
DTS  
DT/OE  
DSF  
t
RFH  
t
FSR  
t
CST  
t
AST  
t
RST  
Low  
SE  
SC  
t
SCC  
t
t
t
SC  
SCP  
STS  
n
253  
(509)  
n+1  
(n+256)  
n+2  
(n+257)  
254  
(510)  
255  
(511)  
511  
Yi+255  
(Yi)  
(n+255)  
(255)  
t
SCA  
t
SCA  
t
t
SOH  
SOH  
SI/O  
(Output)  
Valid  
Sout  
Valid  
Sout  
Valid  
Sout  
Valid  
Sout  
Valid  
Sout  
Valid Sout  
SI/O  
(Input)  
t
t
SQD  
SQD  
t
SQH  
t
SQH  
QSF  
SAM Address MSB  
Data Sheet E0165H10  
40  
HM534253B Series  
Split Write Transfer Cycle  
t
RC  
t
RP  
t
RAS  
RAS  
t
CSH  
t
t
RSH  
RCD  
t
CAS  
CAS  
t
RAL  
t
t
ASR  
RAH  
t
t
CAH  
ASC  
SAM Start  
Address Yi  
Address  
Row  
t
t
WH  
WS  
WE  
t
OFF1  
High-Z  
I/O  
(Output)  
t
t
DTH  
DTS  
DT/OE  
DSF  
t
RFH  
t
FSR  
t
CST  
t
AST  
t
RST  
Low  
SE  
SC  
t
SCC  
t
t
t
t
SC  
SCP  
STS  
n
n+1  
(n+256)  
n+2  
n+3  
(n+258)  
254  
(510)  
255  
511  
(255)  
Yi+255  
(Yi)  
(n+255)  
(n+257)  
(511)  
SI/O  
(Output)  
t
t
t
t
SIS  
t
SIS  
SIH  
SIS  
SIH  
SIH  
SI/O  
(Input)  
Valid  
Sin  
Valid  
Sin  
Valid  
Sin  
Valid  
Sin  
Valid  
Sin  
Valid Sin  
Valid Sin  
t
t
SQD  
SQD  
t
SQH  
t
SQH  
QSF  
SAM Address MSB  
Data Sheet E0165H10  
41  
HM534253B Series  
Serial Read Cycle  
SE  
tSCC  
tSCC  
tSCC  
tSCP  
tSC  
tSC  
tSCP  
tSC  
tSC  
tSCP  
SC  
tSCA  
tSCA  
tSEA  
tSCA  
tSEZ  
tSOH  
tSOH  
Valid  
Sout  
SI/O  
(Output)  
Valid Sout  
Valid Sout  
Valid Sout  
Serial Write Cycle  
tSWH  
tSWIS tSWIH  
tSWS  
SE  
SC  
tSCC  
tSCC  
tSC  
tSCC  
tSC  
tSCP  
tSC  
tSC  
tSIS  
Valid Sin  
tSCP  
tSCP  
tSIS  
tSIS tSIH  
tSIH  
tSIH  
SI/O  
(Input)  
Valid Sin  
Valid Sin  
Data Sheet E0165H10  
42  
HM534253B Series  
Package Dimensions  
HM534253BJ Series (CP-28D)  
Unit: mm  
18.17  
18.54 Max  
15  
14  
28  
1
0.74  
1.30 Max  
9.40 ± 0.25  
1.27  
0.43 ± 0.10  
0.41 ± 0.08  
0.10  
Hitachi Code  
JEDEC  
EIAJ  
CP-28D  
Conforms  
Conforms  
Dimension including the plating thickness  
Base material dimension  
Weight (reference value) 1.16 g  
Data Sheet E0165H10  
43  
HM534253B Series  
HM534253BZ Series (ZP-28)  
Unit: mm  
35.58  
36.57 Max  
+ 0.10  
– 0.05  
0.25  
2.54  
1
28  
1.045 Max  
+ 0.08  
– 0.12  
1.27  
0.50  
0.25 M  
Hitachi Code  
JEDEC  
ZP-28  
EIAJ  
Conforms  
Weight (reference value) 1.95 g  
Data Sheet E0165H10  
44  
HM534253B Series  
Cautions  
1. Elpida Memory, Inc. neither warrants nor grants licenses of any rights of Elpida Memory, Inc.’s or any  
third party’s patent, copyright, trademark, or other intellectual property rights for information contained in  
this document. Elpida Memory, Inc. bears no responsibility for problems that may arise with third party’s  
rights, including intellectual property rights, in connection with use of the information contained in this  
document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.  
However, contact Elpida Memory, Inc. before using the product in an application that demands especially  
high quality and reliability or where its failure or malfunction may directly threaten human life or cause  
risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,  
traffic, safety equipment or medical equipment for life support.  
4. Design your application so that the product is used within the ranges guaranteed by Elpida Memory, Inc.  
particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation  
conditions and other characteristics. Elpida Memory, Inc. bears no responsibility for failure or damage  
when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally  
foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as  
fail-safes, so that the equipment incorporating Elpida Memory, Inc. product does not cause bodily injury,  
fire or other consequential damage due to operation of the Elpida Memory, Inc. product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without  
written approval from Elpida Memory, Inc..  
7. Contact Elpida Memory, Inc. for any questions regarding this document or Elpida Memory, Inc.  
semiconductor products.  
Data Sheet E0165H10  
45  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY