EM78P372NSO20 [ELAN]

8-Bit Microcontroller with OTP ROM;
EM78P372NSO20
型号: EM78P372NSO20
厂家: ELAN MICROELECTRONICS CORP    ELAN MICROELECTRONICS CORP
描述:

8-Bit Microcontroller with OTP ROM

OTP只读存储器 微控制器 外围集成电路
文件: 总126页 (文件大小:3182K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EM78P372N  
8-Bit Microcontroller  
with OTP ROM  
Product  
Specification  
DOC. VERSION 1.4  
ELAN MICROELECTRONICS CORP.  
March 2016  
Trademark Acknowledgments:  
IBM is a registered trademark and PS/2 is a trademark of IBM.  
Windows is a trademark of Microsoft Corporation.  
ELAN and ELAN logo  
are trademarks of ELAN Microelectronics Corporation.  
Copyright © 2016 by ELAN Microelectronics Corporation  
All Rights Reserved  
Printed in Taiwan  
The contents of this specification are subject to change without further notice. ELAN Microelectronics assumes no  
responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics  
makes no commitment to update, or to keep current the information and material contained in this specification.  
Such information and material may change to conform to each confirmed order.  
In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or  
other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not  
be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information  
or material.  
The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and  
may be used or copied only in accordance with the terms of such agreement.  
ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of  
ELAN Microelectronics product in such applications is not supported and is prohibited.  
NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY  
ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.  
ELAN MICROELECTRONICS CORPORATION  
Headquarters:  
Hong Kong:  
USA:  
No. 12, Innovation 1st Road  
Hsinchu Science Park  
Elan (HK) Microelectronics  
Corporation, Ltd.  
Elan Information  
Technology Group  
Hsinchu, TAIWAN 30076  
Tel: +886 3 563-9977  
Fax: +886 3 563-9966  
webmaster@emc.com.tw  
http://www.emc.com.tw  
Flat A, 19F., World Tech Centre 95 (U.S.A.)  
How Ming Street, Kwun Tong  
Kowloon, HONG KONG  
Tel: +852 2723-3376  
PO Box 601  
Cupertino, CA 95015  
U.S.A.  
Fax: +852 2723-7780  
Tel: +1 408 366-8225  
Fax: +1 408 366-8225  
Shenzhen:  
Shanghai:  
Elan Microelectronics  
Shenzhen, Ltd.  
ELAN Microelectronics  
Shanghai, Ltd.  
8A Floor, Microprofit Building  
Gaoxin South Road 6  
6F, Ke Yuan Building  
No. 5 Bibo Road  
Shenzhen Hi-tech Industrial Park  
South Area, Shenzhen  
CHINA 518057  
Zhangjiang Hi-Tech Park  
Pudong New Area, Shanghai,  
CHINA 201203  
Tel: +86 755 2601-0565  
Fax: +86 755 2601-0500  
elan-sz@elanic.com.cn  
Tel: +86 21 5080-3866  
Fax: +86 21 5080-0273  
elan-sh@elanic.com.cn  
Contents  
Contents  
1 General Description ................................................................................................1  
2 Features ...................................................................................................................1  
3 Pin Assignment .......................................................................................................2  
4 Pin Description........................................................................................................3  
5 Block Diagram .........................................................................................................5  
6 Functional Description............................................................................................6  
6.1 Operational Registers ......................................................................................6  
6.1.1 R0 (Indirect Address Register) ..............................................................................6  
6.1.2 R1 (Time Clock/Counter)........................................................................................6  
6.1.3 R2 (Program Counter) and Stack ...........................................................................6  
6.1.3.1 Data Memory Configuration .................................................................8  
6.1.4 R3 (Status Register) ...............................................................................................9  
6.1.5 R4 (RAM Select Register) ......................................................................................9  
6.1.6 Bank 0 R5 ~ R7 (Port 5 ~ Port 7) ...........................................................................9  
6.1.7 Bank 0 R8 (AISR: ADC Input Select Register).....................................................10  
6.1.8 Bank 0 R9 (ADCON: ADC Control Register)........................................................12  
6.1.9 Bank 0 RA (ADOC: ADC Offset Calibration Register)..........................................13  
6.1.10 Bank 0 RB (ADDATA: Converted Value of ADC)..................................................14  
6.1.11 Bank 0 RC (ADDATA1H: Converted Value of ADC).............................................14  
6.1.12 Bank 0 RD (ADDATA1L: Converted Value of ADC) .............................................15  
6.1.13 Bank 0 RE (Interrupt Status Register 2 and Wake-up Control Register) .............15  
6.1.14 Bank 0 RF (Interrupt Status Register 2) ...............................................................16  
6.1.15 Bank 1 R5 (TBHP: Table Point Register for Instruction TBRD)............................17  
6.1.16 Bank 1 R6 (TBLP: Table Point Register for Instruction TBRD) ............................17  
6.1.17 Bank 1 R7 (PWMCON: PWM Control Register)...................................................17  
6.1.18 Bank 1 R8 (TMRCON: Timer Control Register) ...................................................18  
6.1.19 Bank 1 R9 (PRD1: PWM1 Time Period)...............................................................18  
6.1.20 Bank 1 RA (PRD2: PWM2 Time Period) ..............................................................19  
6.1.21 Bank 1 RB (DT1: PWM1 Duty Cycle)...................................................................19  
6.1.22 Bank 1 RC (DT2:PWM2 Duty Cycle)....................................................................19  
6.1.23 Bank 1 RE (LVD Interrupt and Wake-up Register)...............................................19  
6.1.24 Bank 1 RF (System Control Register) ..................................................................20  
6.1.25 R10 ~ R3F ............................................................................................................24  
6.2 Special Purpose Registers.............................................................................24  
6.2.1 A (Accumulator) ....................................................................................................24  
6.2.2 CONT (Control Register)......................................................................................24  
6.2.3 IOC50 ~ IOC70 (I/O Port Control Register)..........................................................25  
6.2.4 IOC80 (Comparator Control Register)..................................................................25  
6.2.5 IOC90 (TMR1: PWM1 Timer) ...............................................................................25  
6.2.6 IOCA0 (TMR2: PWM2 Timer)...............................................................................25  
6.2.7 IOCB0 (Pull-down Control Register) ....................................................................26  
6.2.8 IOCC0 (Open-drain Control Register)..................................................................26  
6.2.9 IOCD0 (Pull-high Control Register) ......................................................................27  
Product Specification (V1.4) 03.15.2016  
iii  
Contents  
6.2.10 IOCE0 (WDT Control Register and Interrupt Mask Register 2) ...........................27  
6.2.11 IOCF0 (Interrupt Mask Register) ..........................................................................28  
6.2.12 IOC51 (High Sink Control Register 1) ..................................................................29  
6.2.13 IOC61 (High Sink Control Register 2) ..................................................................29  
6.2.14 IOC71 (High Driver Control Register 1)................................................................30  
6.2.15 IOC81 (High Driver Control Register 2)................................................................30  
6.2.16 IOCF1 (Pull-high Control Register) ......................................................................31  
6.3 TCC/WDT and Prescaler ...............................................................................31  
6.4 I/O Ports.........................................................................................................32  
6.4.1 Usage of Port 5 Input Change Wake-up/Interrupt Function .................................35  
6.5 Reset and Wake-up .......................................................................................35  
6.5.1 Reset and Wake-up Operation.............................................................................35  
6.5.1.1 Wake-up and Interrupt Modes Operation Summary ..........................38  
6.5.1.2 Register Initial Values after Reset......................................................40  
6.5.1.3 Controller Reset Block Diagram.........................................................45  
6.5.2 T and P Status under the Status Register ............................................................45  
6.6 Interrupt .........................................................................................................46  
6.7 Analog-to-Digital Converter (ADC).................................................................48  
6.7.1 ADC Control Register (AISR/R8, ADCON/R9, ADOC/RA)...................................49  
6.7.1.1 Bank 0 R8 (AISR: ADC Input Select Register)...................................49  
6.7.1.2 Bank 0 R9 (ADCON: ADC Control Register) .....................................50  
6.7.1.3 RA (ADOC: AD Offset Calibration Register) ......................................52  
6.7.1.4 Bank 1 RF (IRC Switch Register).......................................................53  
6.7.2 ADC Data Register (ADDATA/RB, ADDATA1H/RC, ADDATA1L/RD) ..................53  
6.7.3 ADC Sampling Time .............................................................................................53  
6.7.4 AD Conversion Time.............................................................................................53  
6.7.5 ADC Operation during Sleep Mode......................................................................54  
6.7.6 Programming Process/Considerations.................................................................55  
6.7.6.1 Programming Process........................................................................55  
6.7.6.2 Sample Demo Programs....................................................................56  
6.8 Dual Sets of PWM (Pulse Width Modulation) .................................................57  
6.8.1 Overview...............................................................................................................57  
6.8.2 Increment Timer Counter (TMRX: TMR1 or TMR2) .............................................58  
6.8.3 PWM Time Period (TMRX: TMR1 or TMR2) ........................................................59  
6.8.4 PWM Duty Cycle (DTX: DT1 or DT2; DLX: DL1 or DL2) .....................................59  
6.8.5 Comparator X .......................................................................................................60  
6.8.6 PWM Programming Process/Steps ......................................................................60  
6.9 Timer/Counter................................................................................................60  
6.9.1 Overview...............................................................................................................60  
6.9.2 Functional Description..........................................................................................60  
6.9.3 Programming the Related Registers ....................................................................61  
6.9.4 Timer Programming Process/Steps......................................................................61  
6.9.5 PWM Cascade Mode............................................................................................61  
iv   
Product Specification (V1.4) 03.15.2016  
Contents  
6.10 Comparator....................................................................................................62  
6.10.1 External Reference Signal....................................................................................62  
6.10.2 Comparator Outputs .............................................................................................63  
6.10.3 Using Comparator as an Operation Amplifier.......................................................63  
6.10.4 Comparator Interrupt ............................................................................................64  
6.10.5 Wake-up from Sleep Mode...................................................................................64  
6.11 Oscillator........................................................................................................65  
6.11.1 Oscillator Modes...................................................................................................65  
6.11.2 Crystal Oscillator/Ceramic Resonators (Crystal)..................................................66  
6.11.3 External RC Oscillator Mode ................................................................................69  
6.11.4 Internal RC Oscillator Mode .................................................................................70  
6.12 Power-on Considerations...............................................................................70  
6.12.1 Programmable WDT Time-out Period ..................................................................70  
6.12.2 External Power-on Reset Circuit ..........................................................................71  
6.12.3 Residual Voltage Protection .................................................................................71  
6.13 Code Option...................................................................................................72  
6.13.1 Code Option Register (Word 0)............................................................................72  
6.13.2 Code Option Register (Word 1)............................................................................74  
6.13.3 Customer ID Register (Word 2)............................................................................75  
6.14 Low Voltage Detector/Low Voltage Reset.......................................................76  
6.14.1 Low Voltage Reset................................................................................................76  
6.14.2 Low Voltage Detector ...........................................................................................76  
6.14.2.1 Bank 1 RE (LVD Interrupt and Wake-up Register) ............................76  
6.14.2.2 Bank 0 RE (Interrupt Status 2 and Wake-up Control Register)..........77  
6.14.3 Programming Process..........................................................................................78  
6.15 Instruction Set................................................................................................79  
Absolute Maximum Ratings..................................................................................81  
DC Electrical Characteristics................................................................................81  
7
8
8.1 AD Converter Characteristics.........................................................................83  
8.2 Comparator Characteristics ...........................................................................85  
8.3 OP Characteristics.........................................................................................86  
8.4 VREF 2V/3V/4V Characteristics.....................................................................86  
8.5 Device Characteristics ...................................................................................87  
8.5.1 Graphs of P5/P6/P7 Vih/Vil vs. VDD ....................................................................87  
8.5.2 Graphs of P5/P6/P7 Ioh1 vs. Voh.........................................................................90  
8.5.3 Graphs of P51~P54, P56/P57/P60~P67 Ioh1 vs. Voh .........................................91  
8.5.4 Graphs of P5/P6/P7 Iol1 vs. Vol ...........................................................................92  
8.5.5 Graph of P51~P54, P56/P57/P60~P63 Iol2 vs. Vol .............................................93  
8.5.6 Graphs of P5/P6 IPH vs. Temperature at VDD=3V and 5V .................................94  
8.5.7 Graphs of P5 IPL vs. Temperature at VDD=3V and 5V........................................94  
8.5.8 Graphs of Typical ICC1 and ICC2 vs. Temperature .............................................95  
8.5.9 Graphs of Typical ICC3 and ICC4 vs. Temperature .............................................96  
8.5.10 Graphs of Wake-up Time from Sleep to Normal Mode vs. VDD ..........................97  
Product Specification (V1.4) 03.15.2016  
v  
Contents  
8.5.11 Graphs of Wake-up Time from Idle to Normal Mode vs. VDD..............................98  
8.5.12 Graphs of WTD Time Out Period in Normal Mode vs. VDD.................................99  
8.5.13 Graphs of Power-on Reset Time in Normal Mode vs. VDD ...............................100  
8.5.14 Graphs of Typical ICO vs. Temperature .............................................................101  
8.5.15 Graphs of Typical IAI1 and IAI2 vs. Temperature...............................................101  
8.5.16 Graphs of LVR Level vs. Temperature................................................................102  
8.5.17 Graphs of Comparator Offset Voltage vs. Temperature .....................................102  
9
AC Electrical Characteristics..............................................................................103  
10 Timing Diagrams .................................................................................................104  
APPENDIX  
A
B
C
Ordering and Manufacturing Information ..........................................................105  
Package Type.......................................................................................................107  
Packaging Configuration ....................................................................................108  
C.1 EM78P372ND14..........................................................................................108  
C.2 EM78P372NSO14 .......................................................................................109  
C.3 EM78P372NSO16A..................................................................................... 110  
C.4 EM78P372ND18.......................................................................................... 111  
C.5 EM78P372NSO18 ....................................................................................... 112  
C.6 EM78P372ND20.......................................................................................... 113  
C.7 EM78P372NSO20 ....................................................................................... 114  
C.8 EM78P372NSS20........................................................................................ 115  
C.9 EM78P372NMS10 ....................................................................................... 116  
C.10 EM78P372NQN16 ....................................................................................... 117  
D
Quality Assurance and Reliability ...................................................................... 118  
D.1 Address Trap Detect .................................................................................... 118  
vi   
Product Specification (V1.4) 03.15.2016  
Contents  
Specification Revision History  
Doc. Version  
Revision Description  
Date  
0.9  
Preliminary version  
2010/06/21  
2010/07/19  
0.91  
Preliminary version  
Modified the IOCC0 Control Register  
0.92  
Modified the Bank 1-RF[3:0] Control Reigster  
Modified the Bank 0-RA[2:0] Control Reigster  
2010/08/06  
Initial Version  
1.0  
1.1  
2010/12/10  
2011/05/24  
Modified the Operating frequency range (DC ~ 16 MHz)  
1. Modified the Electrical Characteristics  
2. Modified the Quality Assurance and Reliability section in the  
Appendix.  
1. Added the EM78P372NQN16S Package Type  
2. Deleted the EM78P372NSS10J/S Package Type.  
3. Fixed the number of I/O discription in the Features section.  
4. Added Ordering and Manufacturing Information.  
5. Modified the instruction table  
1.2  
2012/02/09  
6. Modified the Part Number  
7. Modifed the description about POR and LVR in the Features  
section  
1. Added new note items to the existing ones in Section 6.1.9 and  
Section 6.7.1.3.  
1.3  
1.4  
2015/02/09  
2016/03/15  
2. Reorganized the grouping of the graphs in Section 8.5.  
3. Modified the PWM System Block Diagram in Section 6.8.1.  
1. Modified the package type in Section 2 Features  
2. Added User Application Note  
3. Modified Appendix A “Ordering and Manufacturing Information”  
4. Modified Section 6.7.4 AD Conversion Time.  
5. Modified Section 6.8.2 Increment Timer Counter.  
Product Specification (V1.4) 03.15.2016  
vii  
Contents  
User Application Note  
(Before using this chip, take a look at the following description note, it includes important messages.)  
1.  
2.  
The PWM output will not be set, if the duty cycle is “0”.  
The internal TCC will stop running when in sleep mode. However, during AD conversion, when  
TCC is set to “SLEP” instruction, if the ADWE bit of the RE register is enabled, the TCC will keep  
on running.  
3.  
4.  
During ADC conversion, do not perform output instruction to maintain precision for all of the pins.  
In order to obtain accurate values, it is necessary to avoid any data transition on I/O pins during  
AD conversion  
When using operational amplifier:  
(1) The CMPIE (IOCE0.4), CMPWE (RE.2), and CMPIF (RE.4) bits are invalid.  
(2) The comparator interrupt is invalid.  
(3) The comparator wake-up is invalid.  
5.  
The noise rejection function is turned off in the LXT2 and sleep mode  
viii   
Product Specification (V1.4) 03.15.2016  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
1 General Description  
The EM78P372N is an 8-bit microprocessor designed and developed with low-power and high-speed CMOS  
technology. The device has an on-chip 2K13-bit Electrical One Time Programmable Read Only Memory  
(OTP-ROM). It provides a protection bit to prevent intrusion of user’s OTP memory code. Three Code option bits  
are also available to meet user’s requirements.  
With enhanced OTP-ROM features, the EM78P372N provides a convenient way of developing and verifying users  
programs. Moreover, this OTP device offers the advantages of easy and effective program updates, using  
development and programming tools. User can avail of the ELAN Writer to easily program his development code.  
2 Features  
CPU configuration  
Fast set-up time requires only 0.8ms (VDD: 5V  
Crystal: 4 MHz, C1/C2: 15pF) in XT mode and 10 s in IRC  
mode (VDD: 5V, IRC: 4 MHz)  
2K13 bits on-chip ROM  
808 bits on-chip registers (SRAM)  
8-level stacks for subroutine nesting  
Less than 1.5 mA at 5V/4 MHz  
Typically 15 A, at 3V/32kHz  
Typically 2 A, during sleep mode  
I/O port configuration  
Peripheral configuration  
8-bit real time clock/counter (TCC) with selective signal  
sources, trigger edges, and overflow interrupt  
4 programmable Level Voltage Detector  
(LVD) : 4.5V, 4.0V, 3.3V, 2.2V  
Power on reset and programmable level voltage reset  
POR: 1.8V (Default), LVR: 4.0V, 3.5V, 2.7V  
8-bit multi-channel Analog-to-Digital Converter with  
12-bit resolution in Vref mode  
One pair of comparator or OP(offset voltage: smaller  
than 10mV)  
3 bidirectional I/O ports: P5, P6, P7  
18 I/O pins  
Wake-up port : P5  
8 programmable pull-down I/O pins (P50 ~ P57)  
16 programmable pull-high I/O pins (P50 ~ P57)  
(P60 ~ P67)  
8 programmable open-drain I/O pins (P60 ~ P67)  
14 programmable high-sink current I/O pins (P51 ~  
P54, P56 ~ P57) (P60 ~ P67)  
Two Pulse Width Modulation (PWM) with 8-bit resolution  
Ten available interrupts  
TCC overflow interrupt  
Input-port status changed interrupt (wake up from sleep  
mode)  
External interrupt : P60  
Operating voltage range:  
External interrupt  
ADC completion interrupt  
2.1V~5.5V at 0C~70C (commercial)  
2.3V~5.5V at -40C~85C (industrial)  
Operating frequency range (based on 2 clocks):  
Comparator status change interrupt  
Low voltage detect (LVD) interrupt  
PWM1~2 period match interrupt  
PWM1~2 duty match interrupt  
Crystal mode: DC ~ 16 MHz, 4.5V;  
DC ~ 8 MHz, 3V; DC ~ 4 MHz, 2.1V  
Special Features:  
ERC mode: DC ~ 2 MHz, 2.1V;  
Programmable free running Watchdog Timer  
(4.5ms : 18ms)  
IRC mode  
Power saving Sleep mode  
Power-on voltage detector available  
High EFT immunity (better performance at 4 MHz or  
below)  
Oscillation mode: 16 MHz, 4 MHz, 1 MHz, 8 MHz  
Drift Rate  
Internal  
RC  
Temperature Voltage  
(-40°C~85°C) (2.1V~5.5V)  
Process Total  
Frequency  
Package Type:  
10-pin MSOP 118mil  
14-pin DIP 300mil  
14-pin SOP 150mil  
16-pin SOP 150mil  
18-pin DIP 300mil  
18-pin SOP 300mil  
20-pin DIP 300mil  
20-pin SOP 300mil  
20-pin SSOP 209mil  
:
:
:
:
:
:
:
:
:
EM78P372NMS10  
EM78P372ND14  
EM78P372NSO14  
EM78P372NSO16A  
EM78P372ND18  
EM78P372NSO18  
EM78P372ND20  
EM78P372NSO20  
EM78P372NSS20  
±1%  
*(2.1~5.5V)  
±1%  
*(4.5~5.5V)  
±1%  
*(3.0~5.5V)  
±1%  
*(2.1~5.5V)  
4 MHz  
16 MHz  
8 MHz  
1 MHz  
±2%  
±2%  
±2%  
±2%  
±2%  
±2%  
±2%  
±2%  
±5%  
±5%  
±5%  
±5%  
16-pin QFN 330.8mm : EM78P372NQN16  
* Operating voltage range  
All the four main frequencies can be trimmed by  
programming with six calibrated bits in the ICE300N  
Simulator. OTP is auto trimmed by ELAN Writer.  
Note: These are Green products that do not contain  
hazardous substances.  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
1  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
3 Pin Assignment  
P52/ADC2  
P53/ADC3  
P54/TCC/VREF  
P71//RESET  
Vss  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
P51/ADC1/PWM2  
P50/ADC0  
P52/ADC2  
P53/ADC3  
P54/TCC/VREF  
P71//RESET  
Vss  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
P51/ADC1/PMW2  
P50/ADC0  
P55/ADC6/OSCO/ERCin  
P55/ADC6/OSCO/ERCin  
P70/ADC5/OSCI/RCOUT  
VDD  
P70/ADC5/OSCI/RCOUT  
VDD  
P60//INT  
P67/ADC4/PWM1  
P66/CIN-  
P60//INT  
P67/ADC4/PWM1  
P66/CIN-  
P61  
8
P61  
P65/CIN+  
P64/CO  
Figure 3-1 EM78P372ND14/SO14  
Figure 3-2 EM78P372NSO16A  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
P56  
P52/ADC2  
P53/ADC3  
P54/TCC/VREF  
P71//RESET  
Vss  
P57/ADC7  
P52/ADC2  
P53/ADC3  
P54/TCC/VREF  
P71//RESET  
Vss  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
P51/ADC1/PWM2  
P51/ADC1/PWM2  
P50/ADC0  
P50/ADC0  
3
P55/ADC6/OSCO/ERCin  
P70/ADC5/OSCI/RCOUT  
VDD  
4
P55/ADC6/OSCO/ERCin  
P70/ADC5/OSCI/RCOUT  
VDD  
5
6
P60//INT  
P61  
P67/ADC4/PWM1  
P66/CIN-  
7
P67/ADC4/PWM1  
P60//INT  
P61  
8
P66/CIN-  
P65/CIN+  
P64/CO  
P62  
P65/CIN+  
P62  
9
P63  
P64/CO  
P63  
10  
Figure 3-4 EM78P372ND20/SO20/SS20  
Figure 3-3 EM78P372ND18/SO18  
16  
15  
14  
13  
P51/ADC1/PWM2  
P50/ADC0  
1
2
3
4
5
10  
9
P53/ADC3  
P54/TCC/VREF  
P71//RESET  
1
2
3
P70/ADC5/OSCI/RCOUT  
VDD  
12  
11  
P55/ADC6/OSCO/ERCin  
P70/ADC5/OSCI/RCOUT  
VDD  
P52/ADC2  
P53/ADC3  
P71//RESET  
Vss  
EM78P372N-QFN16  
8
10  
9
P67/ADC4/PWM1  
P66/CIN-  
7
4
P67/ADC4/PWM1  
6
5
6
7
8
Figure 3-5 EM78P372NMS10  
Figure 3-6 EM78P372NQN16  
2   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
4 Pin Description  
Input Output  
Name  
Function  
Description  
Type  
Type  
Bidirectional I/O pin with programmable  
P50  
ST  
CMOS pull-down, pull-high and pin change  
wake-up.  
P50  
P51  
ADC0  
P51  
AN  
ADC Input 0  
Bidirectional I/O pin with programmable  
CMOS pull-down, pull-high, high-driver, high-sink  
and pin change wake-up.  
ST  
ADC1  
AN  
ADC Input 1  
CMOS PWM2 output  
Bidirectional I/O pin with programmable  
PWM2  
P52  
ST  
AN  
ST  
AN  
ST  
CMOS pull-down, pull-high, high-driver, high-sink  
and pin change wake-up.  
P52  
P53  
ADC2  
P53  
ADC Input 2  
Bidirectional I/O pin with programmable  
CMOS pull-down, pull-high, high-driver, high-sink  
and pin change wake-up.  
ADC3  
P54  
ADC Input 3  
Bidirectional I/O pin with programmable  
CMOS pull-down, pull-high, high-driver, high-sink  
and pin change wake-up.  
P54  
P55  
TCC  
ST  
AN  
Real Time Clock/Counter clock input  
VREF  
ADC external voltage reference  
Bidirectional I/O pin with programmable  
CMOS pull-down, pull-high and pin change  
wake-up.  
P55  
ST  
ADC6  
OSCO  
ERCin  
AN  
ADC Input 6  
XTAL  
Clock output of crystal/ resonator oscillator  
AN  
External RC input pin  
Bidirectional I/O pin with programmable  
P56  
P57  
P56  
ST  
CMOS pull-down, pull-high, high-driver, high-sink  
and pin change wake-up.  
Bidirectional I/O pin with programmable  
CMOS pull-down, pull-high, high-driver, high-sink  
and pin change wake-up.  
P57  
ST  
ST  
ST  
ST  
ADC7  
P60  
ADC Input 7  
Bidirectional I/O pin with programmable  
CMOS open-drain, pull-high, high-driver and high  
sink.  
P60//INT  
/INT  
External interrupt pin  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
3  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Input Output  
Type Type  
Name  
Function  
Description  
Bidirectional I/O pins with programmable  
P61~P63  
P61~P63 ST  
CMOS open-drain, pull-high, high-driver and high  
sink.  
Bidirectional I/O pins with programmable  
CMOS open-drain, pull-high, high-driver and high  
sink.  
P64  
CO  
ST  
ST  
ST  
ST  
ST  
P64/CO  
P65/CIN+  
P66/CIN-  
Comparator output  
Bidirectional I/O pins with programmable  
CMOS open-drain, pull-high, high-driver and high  
sink.  
P65  
CIN+  
P66  
CIN-  
P67  
Non-inverting end of comparator  
Bidirectional I/O pins with programmable  
CMOS open-drain, pull-high, high-driver and high  
sink.  
Inverting end of comparator  
Bidirectional I/O pins with programmable  
CMOS open-drain, pull-high, high-driver and high  
sink.  
ST  
P67/ADC4/PWM1  
ADC4  
PWM1  
P70  
AN  
ADC Input 4  
CMOS  
PWM1 output  
P70  
AN  
XTAL  
Bidirectional I/O pin  
ADC5  
OSCI  
ADC Input 5  
P70/ADC5/OSCI/  
RCOUT  
Clock input of crystal/ resonator oscillator  
Clock output of internal RC oscillator  
ROCUT  
CMOS  
Clock output of external RC oscillator  
(open-drain)  
P71  
ST  
ST  
CMOS Bidirectional I/O pin (open-drain)  
P71  
System reset pin  
/RESET  
(should be external pull-high)  
VDD  
VSS  
VDD  
VSS  
Power  
Power  
Power  
Ground  
Legend: ST: Schmitt Trigger input  
XTAL: oscillation pin for crystal/resonator  
AN: analog pin  
CMOS: CMOS output  
4   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
5 Block Diagram  
Ext.  
OSC. RC  
Int.  
Ext.  
RC  
PC  
ROM  
Oscillation  
Generation  
8-level stack  
(13 bit)  
Instruction  
Register  
Start-up  
timer  
P70  
WDT  
PWM2  
PWM1  
TCC  
P71  
Reset  
Instruction  
Decoder  
PWM2  
PWM1  
P6  
TCC  
P60  
P61  
Mux  
ALU  
P62  
P63  
P64  
P65  
P66  
P67  
R4  
LVD  
LVR  
RAM  
Interrupt  
control  
register  
R3 (Status  
Reg.)  
P5  
ACC  
P50  
P51  
P52  
P53  
P54  
P55  
P56  
P57  
Interrupt  
circuit  
Comparator  
(CO) or OP  
ADC  
Cin+ Cin- CO  
Ain0~7  
Ext INT  
Figure 5-1 EM78P372N Block Diagram  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
5  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6 Functional Description  
6.1 Operational Registers  
6.1.1 R0 (Indirect Address Register)  
R0 is not a physically implemented register. It is used as an indirect address pointer.  
Any instruction using R0 as a pointer, actually accesses the data pointed by the RAM  
Select Register (R4).  
6.1.2 R1 (Time Clock/Counter)  
Incremented by an external signal edge which is defined by the TE bit (CONT-5)  
through the TCC pin, or by the instruction cycle clock.  
Writable and readable as any other registers.  
The TCC prescaler counter is assigned to TCC  
The contents of the CONT register is cleared whenever –  
a value is written to the TCC register  
a value is written to the TCC prescaler bits (Bits 3, 2, 1, 0 of the CONT register)  
theres power-on reset, /RESET, or WDT time out reset  
6.1.3 R2 (Program Counter) and Stack  
A10 A9 A8 A7  
~
A0  
PC  
0000h  
Reset vector  
CALL  
LCALL  
RET  
0003h  
0006h  
0009h  
000Ch  
000Fh  
0012h  
0015h  
0018h  
001Bh  
001Eh  
0021h  
External interrupt  
Port 5 pin change  
RETL  
RETI  
Store ACC, R3, R4  
TCC overflow interrupt  
AD conversion complete interrupt  
Comparator interrupt  
Stack Level 1  
Stack Level 2  
Stack Level 3  
Stack Level 4  
Stack Level 5  
Stack Level 6  
Stack Level 7  
Stack Level 8  
PWM1 Period Match interrupt  
PWM2 Period Match interrupt  
PWM1 Duty Match interrupt  
PWM2 Duty Match interrupt  
Low Voltage Detector interrupt  
On-chip Program Memory  
07FFh  
Figure 6-1 Program Counter Organization  
6   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
R2 and hardware stacks are 11-bit wide. The structure is depicted in the table  
under Section 6.1.3.1 Data Memory Configuration.  
The configuration structure generates 2K13 bits on-chip ROM addresses to the  
relative programming instruction codes. One program page is 1024 words long.  
The contents of R2 are all set to "0"s when a reset condition occurs.  
"JMP" instruction allows direct loading of the lower 10 program counter bits. Thus,  
"JMP" allows the PC to jump to any location within a page.  
"CALL" instruction loads the lower 10 bits of the PC, and PC+1 are pushed onto the  
stack. Thus, the subroutine entry address can be located anywhere within a page.  
"LJMP" instruction allows direct loading of the program counter bits (A0~A10).  
Therefore, "LJMP" allows the PC to jump to any location within 2K (211).  
"LCALL" instruction loads the program counter bits (A0 ~A10), and then PC+1 is  
pushed onto the stack. Thus, the subroutine entry address can be located  
anywhere within 2K (211)  
"RET" ("RETL k", "RETI") instruction loads the program counter with the contents  
of the top of the stack.  
"ADD R2, A" allows a relative address to be added to the current PC, and the ninth  
and above bits of the PC will increase progressively.  
"MOV R2, A" allows loading of an address from the "A" register to the lower 8 bits of  
the PC, and the ninth and tenth bits (A8 ~ A9) of the PC will remain unchanged.  
Any instruction (except “ADD R2, A”) that is written to R2 (e.g., "MOV R2, A", "BC  
R2, 6", etc.) will cause the ninth bit and the tenth bit (A8 ~ A9) of the PC to remain  
unchanged.  
All instructions are single instruction cycle (fclk/2) except “LCALLand LJMP”  
instructions. The LCALLand LJMPinstructions need two instruction cycles.  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
7  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.1.3.1 Data Memory Configuration  
Register  
Bank 0  
Register  
Bank 1  
IOC  
Page 0  
IOC  
Page 1  
Address  
R0 (Indirect Addressing  
Register)  
00  
R1 (Timer Clock Counter)  
R2 (Program Counter)  
R3 (Status Register)  
R4 (RSR, Bank select)  
R5 (Port 5 I/O data)  
R6 (Port 6 I/O data)  
R7 (Port 7 I/O data)  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
R5 (TBHP: Table Point  
Register)  
IOC51 (HSCR1: High Sink  
Control Register 1)  
IOC50 (Port 5 I/O control)  
IOC60 (Port 6 I/O control)  
IOC70 (Port 7 I/O control)  
R6 (TBLP: Table Point  
Register)  
IOC61 (HSCR2: High Sink  
Control Register 2)  
R7 (PWMCON: PWM  
Control Register)  
IOC71 (HDCR1: High Driver  
Control Register 1)  
R8 (ADC Input Select  
Register)  
R8 (TMRCON: Timer Control  
Register)  
IOC80 (Comparator Control  
Register)  
IOC81 (HDCR2: High Driver  
Control Register 2)  
R9 (ADC Control  
Register)  
R9 (PRD1: PWM1 Time  
Period)  
IOC90 (TMR1: PWM1 Timer) IOC91 (Reserved)  
RA (ADC Offset  
Calibration Register)  
RA (PRD2: PWM2 Time  
Period)  
IOCA0 ((TMR2: PWM2 Timer)) IOCA1 (Reserved)  
IOCB0 (Pull-down Control  
RB (Converted value  
AD11~AD4 of ADC)  
RB (DT1: PMW1 Duty Cycle)  
RC (DT2: PMW2 Duty Cycle)  
RD (Reserved)  
IOCB1 (Reserved))  
Register)  
RC (Converted value  
AD11~AD8 of ADC)  
IOCC0 (Open-drain Control  
IOCC1 (Reserved))  
Register)  
RD (Converted value  
AD7~AD0 of ADC)  
IOCD0 (Pull-high Control  
IOCD1 (Reserved)  
Register)  
IOCE0 (WDT Control  
Register and Interrupt Mask  
Register 2)  
RE (LVD Control and  
Wake-up Control Register 2)  
RE (Interrupt Status 2 and  
Wake-up Control Register 1)  
IOCE1 (Reserved)  
IOCF0 (Interrupt Mask  
Register 1)  
IOCF1 (Pull-high Control  
Register)  
RF (Interrupt Status  
Register 1)  
RF (Mode Select and IRC  
Switch Register)  
10  
:
16-Byte Common Register  
1F  
20  
:
3F  
Bank 0  
32x8  
Bank 1  
32x8  
Figure 6-2 Data Memory Configuration  
8   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.1.4 R3 (Status Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RST  
IOCS  
T
P
Z
DC  
C
Bit 7 (RST): Bit of reset type  
Set to “1” if wake-up from sleep on pin change, comparator status  
change, or AD conversion completed. Set to “0” if wake-up from other  
reset types.  
Bit 6 (IOCS): Select the Segment of IO control register  
0: Segment 0 (IOC50 ~ IOCF0) selected  
1: Segment 1 (IOC51 ~ IOCC1) selected  
Bit 5: Not used, set to 0at all time.  
Bit 4 (T): Time-out bit. Set to “1” by the "SLEP" and "WDTC" commands or during  
power on, and reset to “0” by WDT time-out (for more details, see Section  
6.5.2, The T and P Status under Status Register).  
Bit 3 (P): Power-down bit. Set to “1” during power-on or by a "WDTC" command and  
reset to “0” by a "SLEP" command (see Section 6.5.2, The T and P Status  
under Status Register for more details).  
Bit 2 (Z): Zero flag. Set to "1" if the result of an arithmetic or logic operation is zero.  
Bit 1 (DC): Auxiliary carry flag  
Bit 0 (C): Carry flag  
6.1.5 R4 (RAM Select Register)  
Bit 7 (SBANK): Special Register 0x05~0x0F bank selection bit.  
Bit 6 (BANK): Used to select Bank 0 or Bank 1 of the register  
Bits 5 ~ 0: Used to select a register (Address: 00~0F, 10~3F) in indirect addressing  
mode.  
See the table under Section 6.1.3.1 Data Memory Configuration.  
6.1.6 Bank 0 R5 ~ R7 (Port 5 ~ Port 7)  
R5 and R6, P70 and P71 are I/O registers.  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
9  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.1.7 Bank 0 R8 (AISR: ADC Input Select Register)  
The AISR register individually defines the I/O Port as analog input or as digital I/O.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADE7  
ADE6  
ADE5  
ADE4  
ADE3  
ADE2  
ADE1  
ADE0  
Bit 7 (ADE7): AD converter enable bit of P57 pin  
0: Disable ADC7, P57 functions as I/O pin  
1: Enable ADC7 to function as analog input pin  
Bit 6 (ADE6): AD converter enable bit of P55 pin  
0: Disable ADC6, P55 functions as I/O pin  
1: Enable ADC6 to function as analog input pin  
Bit 5 (ADE5): AD converter enable bit of P70 pin  
0: Disable ADC5, P70 functions as I/O pin  
1: Enable ADC5 to function as analog input pin  
Bit 4 (ADE4): AD converter enable bit of P67 pin  
0: Disable ADC4, P67 functions as I/O pin  
1: Enable ADC4 to function as analog input pin  
Bit 3 (ADE3): AD converter enable bit of P53 pin  
0: Disable ADC3, P53 functions as I/O pin  
1: Enable ADC3 to function as analog input pin  
Bit 2 (ADE2): AD converter enable bit of P52 pin  
0: Disable ADC2, P52 functions as I/O pin  
1: Enable ADC2 to function as analog input pin  
Bit 1 (ADE1): AD converter enable bit of P51 pin  
0: Disable ADC1, P51 functions as I/O pin  
1: Enable ADC1 to function as analog input pin  
Bit 0 (ADE0): AD converter enable bit of P50 pin  
0: Disable ADC0, P50 functions as I/O pin  
1: Enable ADC0 to function as analog input pin  
10   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
NOTE  
The P55/ADC6/OSCO/ERCin pin cannot be applied to OSCO and ADC6 at the same  
time. If P55/ADC6/OSCO/ERCin functions as OSCO oscillator input pin, then ADE6  
bit for R8 must be 0and ADIS2~0 do not select 110. The P55/ADC6/OSCO/ERCin  
pin priority is as follows:  
:
P55/ADC6/OSCO/ERCin Pin Priority  
High  
Medium  
ADC6  
Low  
P55  
OSCO/ERCin  
The P70/ADC5/OSCI/RCOUT pin cannot be applied to OSCI and ADC5 at the same  
time. If P70/ADC5/OSCI/RCOUT acts as OSCI oscillator input pin, then ADE5 bit for R8  
must be 0and ADIS2~0 do not select 101. The P70/ADC5/OSCI/RCOUT pin priority  
is as follows:  
P70/ADC5/OSCI/ROCUT Pin Priority  
High  
Medium  
ADC5  
Low  
P70  
OSCI/RCOUT  
The P67/ADC4/PWM1 pin cannot be applied to PWM1 and ADC4 at the same time.  
If P67/ADC4/PWM1 functions as ADC4 analog input pin, then the P67/ADC4/PWM1  
pin priority is as follows:  
P67/ADC4/PWM1 Pin Priority  
High  
Medium  
PWM1  
Low  
P67  
ADC4  
The P51/ADC1/PWM2 pin cannot be applied to PWM2 and ADC1 at the same time.  
If P51/ADC1/PWM2 functions as ADC1 analog input pin, then the P51/ADC1/PWM2  
pin priority is as follows:  
P51/ADC1/PWM2 Pin Priority  
High  
Medium  
PWM2  
Low  
P51  
ADC1  
The P50/ADC0 pin cannot be applied to ADC0 at the same time.  
If P50/ADC0 functions as ADC0 analog input pin, then the P50/ADC0 pin priority is as  
follows:  
P50/ADC0 Pin Priority  
High  
Low  
P50  
ADC0  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
11  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.1.8 Bank 0 R9 (ADCON: ADC Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
VREFS  
CKR1  
CKR0  
ADRUN  
ADPD  
ADIS2  
ADIS1  
ADIS0  
Bit 7 (VREFS): The input source of Vref of the ADC  
0: The Vref of the ADC is connected to Vdd (default value), and the  
VREF/TCC/P54 pin carries out the function of P54 (default)  
1: The Vref of the ADC is connected to VREF/TCC/P54  
NOTE  
The P54/TCC/VREF pin cannot be applied to TCC and VREF at the same time. If  
P54/TCC/VREF functions as VREF analog input pin, then CONT Bit 5 “TS” must  
be 0.  
The VREF/TCC/P54 Pin Priority is as follows:  
P54/TCC/VREF Pin Priority  
High  
Medium  
TCC  
Low  
P54  
VREF  
Bit 6 and Bit 5 (CKR1 and CKR0): ADC Clock Rate Select  
00 = 1 : 16 (default value)  
01 = 1 : 4  
10 = 1 : 64  
11 = 1 : 1  
Bit 4 (ADRUN): ADC starts to RUN  
0: on completion of the conversion Reset by hardware. This bit cannot  
be reset through software (default)  
1: an A/D conversion is started. This bit can be set by software  
Bit 3 (ADPD): ADC Power  
0: ADC is in power down mode (default)  
1: ADC is operating normally  
12   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Bit 2 ~ Bit 0 (ADIS2 ~ ADIS0): Analog Input Select  
ADICS  
ADIS2  
ADIS1  
ADIS0  
Analog Input Select  
ADIN0/P50  
ADIN1/P51  
ADIN2/P52  
ADIN3/P53  
ADIN4/P67  
ADIN5/P70  
ADIN6/P55  
ADIN7/P57  
OPOUT  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
X
X
0
1
0
1
0
1
0
1
X
X
Internal 1/4 VDD  
These bits can only be changed when the ADIF bit and the ADRUN bit are both low.  
See Section 6.1.13, RE (Interrupt Status 2 and Wake-up Control Register).  
6.1.9 Bank 0 RA (ADOC: ADC Offset Calibration Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CALI  
SIGN  
VOF[2]  
VOF[1]  
VOF[0]  
VREF1  
VREF0  
ADICS  
Bit 7 (CALI): Calibration enable bit for ADC offset  
0: Disable Calibration (default)  
1: Enable Calibration  
Bit 6 (SIGN): Polarity bit of the offset voltage  
0: Negative voltage (default)  
1: Positive voltage  
Bit 5 ~ Bit 3 (VOF[2] ~ VOF[0]): Offset voltage bits  
VOF[2]  
VOF[1]  
VOF[0]  
EM78P372N  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0LSB  
2LSB  
4LSB  
6LSB  
8LSB  
10LSB  
12LSB  
14LSB  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
13  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Bit 2 ~ Bit 1 (VREF1 ~ VREF0): ADC internal reference voltage source  
ADC Internal Reference Voltage  
VDD (default)  
4.0V ± 1%  
VREF1  
VREF0  
0
0
1
1
0
1
0
1
3.0V ± 1%  
2.0V ± 1%  
NOTE  
If VREF [1:0]=00, the internal reference will not turn on. If VREF[1:0]00, the  
internal reference will turn on automatically. Moreover, the power of the internal  
reference is irrelevant to ADC.  
When using internal voltage reference for the first time, user needs to wait for at  
least 50 µs to enable and stabilize the voltage reference. Unstable reference will  
result to inaccurate conversion. On subsequent switching of the voltage reference,  
user only needs to wait for at least 6μs for stabilization.  
If ADC uses internal VREF 2V function, the resulting conversion data will be  
inaccurate. So user must ensure that the minimum analog reference voltage of AD  
electrical characteristics is not less than 2.5V.  
Bit 0 (ADICS): ADC Internal Channel Select (select ADC internal 1/4 VDD or OP  
output pin connected to ADC input)  
0: Disable (default)  
1: Enable  
6.1.10 Bank 0 RB (ADDATA: Converted Value of ADC)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
AD11  
AD10  
AD9  
AD8  
AD7  
AD6  
AD5  
AD4  
When AD conversion is completed, the result is loaded into the ADDATA. The ADRUN  
bit is cleared and the ADIF is set. See Section 6.1.13, Bank 0 RE (Interrupt Status 2  
and Wake-up Control Register).  
RB is read only.  
6.1.11 Bank 0 RC (ADDATA1H: Converted Value of ADC)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0”  
0”  
0”  
0”  
AD11  
AD10  
AD9  
AD8  
When AD conversion is completed, the result is loaded into the ADDATA1H. The  
ADRUN bit is cleared and the ADIF is set. See Section 6.1.13, Bank 0 RE (Interrupt  
Status 2 and Wake-up Control Register).  
RC is read only.  
14   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.1.12 Bank 0 RD (ADDATA1L: Converted Value of ADC)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
When AD conversion is completed, the result is loaded into the ADDATA1L. The  
ADRUN bit is cleared and the ADIF is set. See Section 6.1.13, RE (Interrupt Status 2  
and Wake-up Control Register).  
RD is read only  
6.1.13 Bank 0 RE (Interrupt Status Register 2 and Wake-up  
Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
/LVD  
LVDIF  
ADIF  
CMPIF  
ADWE  
CMPWE  
ICWE  
LVDWE  
Note: 1. RE <6, 5, and 4> can be cleared by instruction but cannot be set.  
2. IOCE0 is the interrupt mask register.  
3. Reading RE will result to “Logic AND” of the RE and IOCE0.  
Bit 7 (/LVD): Low voltage Detector state. This is a read only bit. When the VDD pin  
voltage is lower than LVD voltage interrupt level (selected by LVD1 and  
LVD0), this bit will be cleared.  
0: Low voltage is detected  
1: Low voltage is not detected or LVD function is disabled (default)  
Bit 6 (LVDIF): Low Voltage Detector Interrupt flag  
LVDIF is reset to 0by software.  
Bit 5 (ADIF): Interrupt flag for analog to digital conversion. Set when AD conversion is  
completed. Reset by software.  
0: no interrupt occurs (default)  
1: interrupt request  
Bit 4 (CMPIF): Comparator Interrupt flag. Set when a change occurs in the  
Comparator output. Reset by software.  
0: no interrupt occurs (default)  
1: interrupt request  
Bit 3 (ADWE): ADC wake-up enable bit  
0: Disable ADC wake-up (default)  
1: Enable ADC wake-up  
When AD Conversion enters sleep/idle mode, this bit must be set to  
“Enable.  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
15  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Bit 2 (CMPWE): Comparator wake-up enable bit  
0: Disable Comparator wake-up (default)  
1: Enable Comparator wake-up  
When the Comparator enters sleep/idle mode, this bit must be set to  
“Enable.  
Bit 1 (ICWE): Port 5 input change to wake-up status enable bit  
0: Disable Port 5 input change to wake-up status (default)  
1: Enable Port 5 input change to wake-up status  
When Port 5 change enters sleep/idle mode, this bit must be set to  
“Enable.  
Bit 0 (LVDWE): Low Voltage Detect wake-up enable bit  
0: Disable Low Voltage Detect wake-up (default)  
1: Enable Low Voltage Detect wake-up  
When the Low Voltage Detect is used to enter an interrupt vector or to  
wake-up the IC from sleep/idle with Low Voltage Detect running, the  
LVDWE bit must be set to “Enable.  
6.1.14 Bank 0 RF (Interrupt Status Register 2)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
DT2IF  
DT1IF  
PWM2IF PWM1IF  
EXIF  
ICIF  
TCIF  
Note: 1. “1” means there is interrupt request, “0”  
2. RF can be cleared by instruction but cannot be set.  
3. IOCF0 is the interrupt mask register.  
4. Reading RF will result to “logic AND” of the RF and IOCF0  
Bit 7: Not used. Set to 0all the time.  
Bit 6 (DT2IF): PWM2 Duty Interrupt flag. Set when PWM2 Duty Match. Reset by  
software.  
Bit 5 (DT1IF): PWM1 Duty Interrupt flag. Set when PWM1 Duty Match. Reset by  
software.  
Bit 4 (PWM2IF): PWM2 Period Interrupt flag. Set when PWM2 period match. Reset  
by software.  
Bit 3 (PWM1IF): PWM1 Period Interrupt flag. Set when PWM1 period match. Reset  
by software.  
Bit 2 (EXIF): External interrupt flag. Set by falling edge on /INT pin. Reset by software.  
Bit 1 (ICIF): Port 5 input status change interrupt flag. Set when Port 5 input changes.  
Reset by software.  
Bit 0 (TCIF): TCC overflow interrupt flag. Set when TCC overflows. Reset by  
software.  
16   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.1.15 Bank 1 R5 (TBHP: Table Point Register for Instruction  
TBRD)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MLB  
-
-
-
-
RBit10  
RBit9  
RBit8  
Bit 7 (MLB): Chooses the MSB or LSB machine code to move into the register.  
The machine code is pointed by TBLP and TBHP register.  
Bit 6 ~ Bit 3: Not used. Set to “0at all time.  
Bit 2 ~ Bit 0: Most 3 significant bits of address for program code  
6.1.16 Bank 1 R6 (TBLP: Table Point Register for Instruction  
TBRD)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RBit7  
RBit6  
RBit5  
RBit4  
RBit3  
RBit2  
RBit1  
RBit0  
Bit 7 ~ Bit 0: These are the least 8 significant bits of address for program code.  
6.1.17 Bank 1 R7 (PWMCON: PWM Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0”  
0”  
0”  
0”  
0”  
PWMCAS PWM2E  
PWM1E  
Bit 7~ Bit 3: Not used bits. Read as “0” all the time  
Bit 2 (PWMCAS): PWM Cascade Mode  
0: Two Independent 8-bit PWM functions (default value)  
1: 16-bit PWM Mode (Cascaded from two 8-bit ones)  
Bit 1 (PWM2E): PWM2 enable bit  
0: PWM2 is off (default value), and its related pin carries out the P51  
function.  
1: PWM2 is on, and its related pin is automatically set to output.  
Bit 0 (PWM1E): PWM1 enable bit  
0: PWM1 is off (default value), and its related pin carries out the P67  
function.  
1: PWM1 is on, and its related pin is automatically set to output.  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
17  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.1.18 Bank 1 R8 (TMRCON: Timer Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
T2EN  
T1EN  
T2P2  
T2P1  
T2P0  
T1P2  
T1P1  
T1P0  
Bit 7 (T2EN): TMR2 enable bit  
0: TMR2 is off (default value)  
1: TMR2 is on  
Bit 6 (T1EN): TMR1 enable bit  
0: TMR1 is off (default value)  
1: TMR1 is on  
Bit 5 ~ Bit 3 (T2P2 ~ T2P0): TMR2 clock prescaler option bits  
T2P2  
T2P1  
T2P0  
Prescale  
1:1 (default)  
1:2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1:4  
1:8  
1:16  
1:64  
1:128  
1:256  
Bit 2 ~ Bit 0 (T1P2 ~ T1P0): TMR1 clock prescale option bits  
T1P2  
T1P1  
T1P0  
Prescale  
1:1 (default)  
1:2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1:4  
1:8  
1:16  
1:64  
1:128  
1:256  
6.1.19 Bank 1 R9 (PRD1: PWM1 Time Period)  
The content of Bank 1-R9 is the time period (time base) of PWM1. The frequency of  
PWM1 is the reverse of the period.  
18   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.1.20 Bank 1 RA (PRD2: PWM2 Time Period)  
The content of Bank 1-RA is the time period (time base) of PWM2. The frequency of  
PWM2 is the reverse of the period.  
6.1.21 Bank 1 RB (DT1: PWM1 Duty Cycle)  
A specified value keeps the output of PWM1 to remain high until the value matches with  
TMR1.  
6.1.22 Bank 1 RC (DT2:PWM2 Duty Cycle)  
A specified value keeps the output of PWM2 to remain high until the value matches with  
TMR2.  
6.1.23 Bank 1 RE (LVD Interrupt and Wake-up Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LVDIE  
LVDEN  
LVD1  
LVD0  
-
-
-
EXWE  
Bit 7 (LVDIE): Low voltage detector interrupt enable bit  
0: Disable the low voltage detector interrupt (default)  
1: Enable the low voltage detector interrupt  
NOTE  
When the detected low level voltage is used to enter an interrupt vector or enter  
the next instruction, the LVDIE bit must be set to Enable.  
Bit 6 (LVDEN): Low voltage detector enable bit  
0: Disable the Low voltage detector function (default)  
1: Enable the Low voltage detector function  
Bit 5 ~ Bit 4: Low voltage detector level bits  
LVDEN  
LVD1, LVD0  
LVD Voltage Interrupt Level  
Vdd 2.2V  
Vdd > 2.2V  
Vdd 3.3V  
Vdd > 3.3V  
Vdd 4.0V  
Vdd > 4.0V  
Vdd 4.5V  
Vdd > 4.5V  
N/A  
/LVD  
0
1
0
1
0
1
0
1
1
1
11 (default)  
1
1
10  
01  
1
0
00  
  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
19  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
NOTE  
IF Vdd has crossover at LVD voltage in interrupt level as VDD varies, LVD interrupt  
will occur.  
Bit 3 ~ Bit 1: Not used. Set to “0at all time.  
Bit 0 (EXWE): External /INT wake-up enable bit  
0: Disable External /INT pin wake-up (default)  
1: Enable External /INT pin wake-up  
6.1.24 Bank 1 RF (System Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
TIMERSC  
CPUS  
IDLE  
SHS1  
SHS0  
RCM1  
RCM0  
Bit 7: Not used, fixed to "0" all the time.  
Bit 6 (TIMERSC): TCC, PWM1, PWM2 clock source select.  
0: Fs is used as Fc  
1: Fm is used as Fc (default)  
Bit 5 (CPUS): CPU Oscillator Source Select  
0: Fs : sub frequency for WDT internal RC time base is 16kHz  
1: Fm : main oscillator (Fm) (default)  
When CPUS=0, the CPU oscillator selects the sub-oscillator and the  
main oscillator is stopped.  
Bit 4 (IDLE): Idle Mode Enable Bit.  
From SLEP instruction, this bit will determine as to which mode to  
activate.  
0: IDLE = ‘0’ + SLEP instruction sleep mode (default)  
1: IDLE = ‘1’ + SLEP instruction idle mode  
20   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
CPU Operation Mode  
RESET  
Normal Mode  
fm:oscillation  
fs: oscillation  
Wake up  
wake up  
CPU: using fm  
CPUS="0"  
CPUS="1"  
IDLE="0"  
+SLEP  
IDLE="1"  
+SLEP  
IDLE="1  
"+SLEP  
Wake up  
Sleep Mode  
fm:stop  
Green Mode  
fm:stop  
Idle Mode  
fm:stop  
fs: stop  
fs: oscillation  
fs: oscillation  
IDLE="0"  
+ SLEP  
CPU: stop  
CPU: using fs  
CPU: stop  
wake up  
Figure 6-3 CPU Operation Mode Diagram  
Oscillator  
Oscillator Stable  
CPU Mode Status  
Count from  
Time (S)1  
Normal/Green (CLK)2  
(Normal Mode Source)  
Sleep/Idle Normal  
0.5 ms ~ 2 ms  
510 CLK  
510 CLK  
8 CLK  
Crystal  
Green Normal  
1M ~ 16 MHz  
Sleep/Idle Green  
Sleep/Idle Normal  
Green Normal  
< 100 µs  
< 5 µs  
ERC  
8 CLK  
8 CLK  
2 MHz  
Sleep/Idle Green  
Sleep/Idle Normal  
Green Normal  
< 100 µs  
< 2 µs  
IRC  
1M, 4M, 8M, 16 MHz  
Sleep/Idle Green  
< 100 µs  
NOTE  
1The oscillator stable time depends on the oscillator characteristics.  
2After the oscillator has stabilized, the CPU will count 510/8 CLK in Normal/Green  
mode and continue to work in Normal/Green mode.  
Ex 1 : The 4 MHz IRC wakes-up from Sleep mode to Normal mode,  
the total wake-up time is 2 µs + 8 CLK @ 4 MHz.  
Ex 2 : The 4 MHz IRC wakes-up from Sleep mode to Green mode,  
the total wake-up time is 100 µs + 8 CLK @ 16kHz.  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
21  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Bit 3 ~ Bit 2 (SHS1 ~ SHS0): Sample and Hold Timing Select  
(Recommend at least 4μs, TAD: Period of ADC Operating Clock).  
SHS1  
SHS0  
Sample and Hold Timing(TAD)  
0
0
1
1
0
1
0
1
2 x TAD  
4 x TAD  
8 x TAD  
12 x TAD (default)  
Bits 1 ~ 0 (RCM1 ~ RCM0): IRC mode select bits.  
RCM 1  
RCM 0  
Frequency (MHz)  
1
1
0
0
1
0
1
0
4
16  
8
1
Bank 1 RF<1, 0> will be enabled.  
Bank 1 RF<1,0>  
Writer Trim IRC  
Operating Voltage  
Frequency  
Stable Time  
Range  
RCM1  
RCM0  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
4 MHz ± 2%  
16 MHz ± 10%  
8 MHz ± 10%  
1 MHz ± 10%  
4 MHz ± 10%  
16 MHz ± 2%  
8 MHz ± 10%  
1 MHz ± 10%  
4 MHz ± 10%  
16 MHz ± 10%  
8 MHz ± 2%  
2.1V ~ 5.5V  
4.5V ~ 5.5V  
3.0V ~ 5.5V  
2.1V ~ 5.5V  
2.1V ~ 5.5V  
4.5V ~ 5.5V  
3.0V ~ 5.5V  
2.1V ~ 5.5V  
2.1V ~ 5.5V  
4.5V ~ 5.5V  
3.0V ~ 5.5V  
2.1V ~ 5.5V  
2.1V ~ 5.5V  
4.5V ~ 5.5V  
3.0V ~ 5.5V  
2.1V ~ 5.5V  
< 5 µs  
< 1.5 µs  
< 3 µs  
4 MHz  
16 MHz  
8 MHz  
1 MHz  
< 24 µs  
< 6 µs  
< 1.25 µs  
< 3 µs  
< 24 µs  
< 6 µs  
< 1.5 µs  
< 2.5 µs  
< 24 µs  
< 6 µs  
1 MHz ± 10%  
4 MHz ± 10%  
16 MHz ± 10%  
8 MHz ± 10%  
1 MHz ± 2%  
< 1.5 µs  
< 3 µs  
< 20 µs  
NOTE  
The initial values of Bank 1 RF<1, 0> will be kept the same as Word 1<6,5>.  
If user changes the IRC frequency from A-frequency to B-frequency, the MCU needs  
to wait for some time for it to work. The waiting time corresponds to the B-frequency.  
22   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
For Example:  
1st step When user selects the 4 MHz at the Writer, the initial values of Bank 1 RF<1,0>  
would be “11”, the same as the value of Word 1<6,5> which is “11”.  
If the MCU is free-running, it will work at 4 MHz ± 2%. Refer to the table below.  
Bank 1 RF<1,0>  
Operating Voltage  
Range  
Stable  
Time  
Writer Trim IRC  
4 MHz  
Frequency  
RCM1  
RCM0  
1
1
0
0
1
0
1
0
4 MHz ± 2%  
16 MHz ± 10%  
8 MHz ± 10%  
1 MHz ± 10%  
2.1V ~ 5.5V  
4.5V ~ 5.5V  
3.0V ~ 5.5V  
2.1V ~ 5.5V  
< 5 µs  
< 1.5 µs  
< 3 µs  
< 24 µs  
2nd step If it is desired to set Bank 1 RF<1,0> = “10” while the MCU is working at 4 MHz  
± 2%, the MCU needs to hold for 1.5 µs, then it will continue to work at 16 MHz  
± 10%.  
Bank 1 RF<1,0>  
Operating Voltage  
Range  
Stable  
Time  
Writer Trim IRC  
Frequency  
RCM1  
RCM0  
1
1
0
0
1
0
1
0
4 MHz ± 2%  
16 MHz ± 10%  
8 MHz ± 10%  
1 MHz ± 10%  
2.1V ~ 5.5V  
4.5V ~ 5.5V  
3.0V ~ 5.5V  
2.1V ~ 5.5V  
< 5 µs  
< 1.5 µs  
< 3 µs  
4 MHz  
< 24 µs  
3rd step If it is desired to set Bank 1 RF<1,0> = “00” while the MCU is working at 16  
MHz ± 10%, the MCU needs to hold for 24 µs, then it will continue to work at  
1 MHz ± 10%.  
Bank 1 RF<1,0>  
Operating Voltage  
Range  
Stable  
Time  
Writer Trim IRC  
Frequency  
RCM1  
RCM0  
1
1
0
0
1
0
1
0
4 MHz ± 2%  
16 MHz ± 10%  
8 MHz ± 10%  
1 MHz ± 10%  
2.1V ~ 5.5V  
4.5V ~ 5.5V  
3.0V ~ 5.5V  
2.1V ~ 5.5V  
< 5 µs  
< 1.5 µs  
< 3 µs  
4 MHz  
< 24 µs  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
23  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
4th step If it is desired to set Bank 1 RF<1,0> = “11” while the MCU is working at 1 MHz  
± 10%, the MCU needs to hold for 5 µs, then it will continue to work at 4 MHz ±  
2%.  
Bank 1 RF<1,0>  
Operating Voltage  
Range  
Stable  
Time  
Writer Trim IRC  
Frequency  
RCM1  
RCM0  
1
1
0
0
1
0
1
0
4 MHz ± 2%  
16 MHz ± 10%  
8 MHz ± 10%  
1 MHz ± 10%  
2.1V ~ 5.5V  
4.5V ~ 5.5V  
3.0V ~ 5.5V  
2.1V ~ 5.5V  
< 5 µs  
< 1.5 µs  
< 3 µs  
4 MHz  
< 24 µs  
6.1.25 R10 ~ R3F  
All of these are 8-bit general-purpose registers.  
6.2 Special Purpose Registers  
6.2.1 A (Accumulator)  
Internal data transfer operation, or instruction operand holding usually involves the  
temporary storage function of the Accumulator, which is not an addressable register.  
6.2.2 CONT (Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTE  
INT  
TS  
TE  
PSTE  
PST2  
PST1  
PST0  
Note: The CONT register is both readable and writable.  
Bit 6 is read only.  
Bit 7 (INTE): INT signal edge  
0: Interrupt occurs at the rising edge of the INT pin  
1: Interrupt occurs at the falling edge of the INT pin  
Bit 6 (INT): Interrupt Enable flag  
0: Masked by DISI or hardware interrupt  
1: Enabled by the ENI/RETI instructions  
This bit is readable only.  
Bit 5 (TS): TCC signal source  
0: Internal instruction cycle clock. If P54 is used as I/O pin  
1: Transition on the TCC pin  
Bit 4 (TE): TCC signal edge  
0: Increment if the transition from low to high takes place on the TCC pin  
1: Increment if the transition from high to low takes place on the TCC pin.  
24   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Bit 3 (PSTE): Prescaler enable bit for TCC  
0: Prescaler disable bit. TCC rate is 1:1.  
1: Prescaler enable bit. TCC rate is set as Bit 2 ~ Bit 0.  
Bit 2 ~ Bit 0 (PST2 ~ PST0): TCC prescaler bits  
PST2  
PST1  
PST0  
TCC Rate  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1:2  
1:4  
1:8  
1:16  
1:32  
1:64  
1:128  
1
1
1
1:256  
Note: Tcc Time-out period [1/FT x prescaler x (256 Tcc cnt) x 1  
Where FT = Fm or Fs, determined by Bank 1 RF TIMERSC bit.  
6.2.3 IOC50 ~ IOC70 (I/O Port Control Register)  
"0" defines the relative I/O pin as output  
"1" sets the relative I/O pin into high impedance  
6.2.4 IOC80 (Comparator Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMPOUT  
COS1  
COS0  
Note: Bits 4~0 of the IOC80 register are both readable and writable.  
Bit 5 of the IOC80 register is read only.  
Bit 7 and Bit 6: Not used. Set to 0all the time.  
Bit 5 (CMPOUT): Result of the comparator output. This bit is readable only.  
Bit 4 and Bit 3 (COS1 and COS0): Comparator/OP Select bits  
COS1  
COS0  
Function Description  
0
0
0
1
Comparator and OP are not used. P64, P65, and P66 are normal I/O pin  
P65 and P66 are Comparator input pins and P64 is normal I/O pin  
P65 and P66 are Comparator input pins and P64 is Comparator output  
pin (CO)  
1
1
0
1
Used as OP and P64 is OP output pin (CO)  
Bits 2 ~ 0: Not used. Set to 0all the time.  
6.2.5 IOC90 (TMR1: PWM1 Timer)  
6.2.6 IOCA0 (TMR2: PWM2 Timer)  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
25  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.2.7 IOCB0 (Pull-down Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
/PD57  
/PD56  
/PD55  
/PD54  
/PD53  
/PD52  
/PD51  
/PD50  
The IOCB0 register is both readable and writable.  
Bit 7 (/PD57): Control bit used to enable internal pull-down of the P57 pin.  
0: Enable internal pull-down  
1: Disable internal pull-down (default)  
Bit 6 (/PD56): Control bit used to enable internal pull-down of the P56 pin.  
Bit 5 (/PD55): Control bit used to enable internal pull-down of the P55 pin.  
Bit 4 (/PD54): Control bit used to enable internal pull-down of the P54 pin.  
Bit 3 (/PD53): Control bit used to enable internal pull-down of the P53 pin.  
Bit 2 (/PD52): Control bit used to enable internal pull-down of the P52 pin.  
Bit 1 (/PD51): Control bit used to enable internal pull-down of the P51 pin.  
Bit 0 (/PD50): Control bit used to enable internal pull-down of the P50 pin.  
6.2.8 IOCC0 (Open-drain Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OD67  
OD66  
OD65  
OD64  
OD63  
OD62  
OD61  
OD60  
The IOCC0 register is both readable and writable.  
Bit 7 (OD67): Control bit used to enable open-drain output of the P67 pin.  
0: Disable open-drain output  
1: Enable open-drain output  
Bit 6 (OD66): Control bit used to enable open-drain output of the P66 pin.  
Bit 5 (OD65): Control bit used to enable open-drain output of the P65 pin.  
Bit 4 (OD64): Control bit used to enable open-drain output of the P64 pin.  
Bit 3 (OD63): Control bit used to enable open-drain output of the P63 pin.  
Bit 2 (OD62): Control bit used to enable open-drain output of the P62 pin.  
Bit 1 (OD61): Control bit used to enable open-drain output of the P61 pin.  
Bit 0 (OD60): Control bit used to enable open-drain output of the P60 pin.  
26   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.2.9 IOCD0 (Pull-high Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
/PH57  
/PH56  
/PH55  
/PH54  
/PH53  
/PH52  
/PH51  
/PH50  
The IOCD0 register is both readable and writable.  
Bit 7 (/PH57): Control bit used to enable internal pull-high of the P57 pin.  
0: Enable internal pull-high  
1: Disable internal pull-high  
Bit 6 (/PH56): Control bit used to enable internal pull-high of the P56 pin.  
Bit 5 (/PH55): Control bit used to enable internal pull-high of the P55 pin.  
Bit 4 (/PH54): Control bit used to enable internal pull-high of the P54 pin.  
Bit 3 (/PH53): Control bit used to enable internal pull-high of the P53 pin.  
Bit 2 (/PH52): Control bit used to enable internal pull-high of the P52 pin.  
Bit 1 (/PH51): Control bit used to enable internal pull-high of the P51 pin.  
Bit 0 (/PH50): Control bit used to enable internal pull-high of the P50 pin.  
6.2.10 IOCE0 (WDT Control Register and Interrupt Mask Register 2)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WDTE  
EIS  
ADIE  
CMPIE  
PSWE  
PSW2  
PSW1  
PSW0  
Bit 7 (WDTE): Control bit used to enable Watchdog Timer  
0: Disable WDT (default)  
1: Enable WDT  
WDTE is both readable and writable.  
Bit 6 (EIS): Control bit used to define the function of the P60 (/INT) pin  
0: P60, bidirectional I/O pin  
1: /INT, external interrupt pin. In this case, the I/O control bit of P60  
(Bit 0 of IOC60) must be set to "1".  
NOTE  
When EIS is "0", the path of /INT is masked. When EIS is "1", the status of the /INT  
pin can also be read by way of reading Port 6 (R6). Refer to Figure 6-5 (I/O Port and  
I/O Control Register Circuit for P60 (/INT)) under Section 6.4 (I/O Ports).  
EIS is both readable and writable.  
Bit 5 (ADIE): ADIF interrupt enable bit  
0: disable ADIF interrupt  
1: enable ADIF interrupt  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
27  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Bit 4 (CMPIE): CMPIF interrupt enable bit  
0: Disable CMPIF interrupt  
1: Enable CMPIF interrupt  
Bit 3 (PSWE): Prescaler enable bit for WDT  
0: Prescaler disable bit, WDT rate is 1:1  
1: Prescaler enable bit, WDT rate is set at Bit 2 ~ Bit 0  
Bit 2 ~ Bit 0 (PSW2 ~ PSW0): WDT prescaler bits  
PSW2 PSW1 PSW0 WDT Rate  
1:2  
0
0
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
1:4  
1:8  
1:16  
1:32  
1:64  
1:128  
1:256  
6.2.11 IOCF0 (Interrupt Mask Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
DT2IE  
DT1IE  
PWM2IE PWM1IE  
EXIE  
ICIE  
TCIE  
Note: The IOCF0 register is both readable and writable.  
Individual interrupt is enabled by setting to “1” its associated control bit in the IOCF0 and  
in IOCEO Bits 4 and 5.  
Global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction.  
Refer to Figure 6-7 Interrupt Input Circuit under Section 6 Interrupt.  
Bit 7: Not used. Set to 0at all time.  
Bit 6 (DT2IE): DT2IE interrupt enable bit  
0: Disable DT2IF interrupt  
1: Enable DT2IF interrupt  
Bit 5 (DT1IE): DT1IE interrupt enable bit  
0: Disable DT1IF interrupt  
1: Enable DT1IF interrupt  
Bit 4 (PWM2IE): PWM2IE interrupt enable bit  
0: Disable PWM2IF interrupt  
1: Enable PWM2IF interrupt  
Bit 3 (PWM1IE): PWM1IE interrupt enable bit  
0: Disable PWM1IF interrupt  
1: Enable PWM1IF interrupt  
28   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Bit 2 (EXIE): EXIF interrupt enable bit  
0: Disable EXIF interrupt  
1: Enable EXIF interrupt  
Bit 1 (ICIE): ICIF interrupt enable bit  
0: Disable ICIF interrupt  
1: Enable ICIF interrupt  
Bit 0 (TCIE): TCIF interrupt enable bit.  
0: Disable TCIF interrupt  
1: Enable TCIF interrupt  
6.2.12 IOC51 (High Sink Control Register 1)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
HS57  
HS56  
-
HS54  
HS53  
HS52  
HS51  
-
Bit 7 (HS57): Output High Sink current Select for P57.  
Bit 6 (HS56): Output High Sink current Select for P56.  
Bit 5: Not used.  
Bit 4 (HS54): Output High Sink current Select for P54.  
Bit 3 (HS53): Output High Sink current Select for P53.  
Bit 2 (HS52): Output High Sink current Select for P52.  
Bit 1 (HS51): Output High Sink current Select for P51.  
Bit 0: Not used.  
HSxx  
VDD = 5V, Sink Current  
10 mA (in 0.1VDD)  
0
1
25 mA (in 0.1VDD)  
6.2.13 IOC61 (High Sink Control Register 2)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
HS67  
HS66  
HS65  
HS64  
HS63  
HS62  
HS61  
HS60  
Bit 7 (HS67): Output High Sink current Select for P67.  
Bit 6 (HS66): Output High Sink current Select for P66.  
Bit 5 (HS65): Output High Sink current Select for P65.  
Bit 4 (HS64): Output High Sink current Select for P64.  
Bit 3 (HS63): Output High Sink current Select for P63.  
Bit 2 (HS62): Output High Sink current Select for P62.  
Bit 1 (HS61): Output High Sink current Select for P61.  
Bit 0 (HS60): Output High Sink current Select for P60.  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
29  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
HSxx  
VDD = 5V, Sink Current  
10 mA (in 0.1VDD)  
0
1
25 mA (in 0.1VDD)  
6.2.14 IOC71 (High Driver Control Register 1)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
HD57  
HD56  
-
HD54  
HD53  
HD52  
HD51  
-
Bit 7 (HD57): Output High Driver current Select for P57.  
Bit 6 (HD56): Output High Driver current Select for P56.  
Bit 5: Not used.  
Bit 4 (HD54): Output High Driver current Select for P54.  
Bit 3 (HD53): Output High Driver current Select for P53.  
Bit 2 (HD52): Output High Driver current Select for P52.  
Bit 1 (HD51): Output High Driver current Select for P51.  
Bit 0: Not used.  
HDxx  
VDD = 5V, Driver Current  
3.7 mA (in 0.9VDD)  
0
1
10 mA (in 0.9VDD)  
6.2.15 IOC81 (High Driver Control Register 2)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
HD67  
HD66  
HD65  
HD64  
HD63  
HD62  
HD61  
HD60  
Bit 7 (HD67): Output High Driver current Select for P67.  
Bit 6 (HD66): Output High Driver current Select for P66.  
Bit 5 (HD65): Output High Driver current Select for P65.  
Bit 4 (HD64): Output High Driver current Select for P64.  
Bit 3 (HD63): Output High Driver current Select for P63.  
Bit 2 (HD62): Output High Driver current Select for P62.  
Bit 1 (HD61): Output High Driver current Select for P61.  
Bit 0 (HD60): Output High Driver current Select for P60.  
HDxx  
VDD = 5V, Driver Current  
3.7 mA (in 0.9VDD)  
0
1
10 mA (in 0.9VDD)  
30   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.2.16 IOCF1 (Pull-high Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
/PH67  
/PH66  
/PH65  
/PH64  
/PH63  
/PH62  
/PH61  
/PH60  
Note: The IOCD0 register is both readable and writable.  
Bit 7 (/PH67): Control bit used to enable pull-high of the P67 pin.  
0: Enable internal pull-high  
1: Disable internal pull-high  
Bit 6 (/PH66): Control bit used to enable internal pull-high of the P66 pin.  
Bit 5 (/PH65): Control bit used to enable internal pull-high of the P65 pin.  
Bit 4 (/PH64): Control bit used to enable internal pull-high of the P64 pin.  
Bit 3 (/PH63): Control bit used to enable internal pull-high of the P63 pin.  
Bit 2 (/PH62): Control bit used to enable internal pull-high of the P62 pin.  
Bit 1 (/PH61): Control bit used to enable internal pull-high of the P61 pin.  
Bit 0 (/PH60): Control bit used to enable internal pull-high of the P60 pin.  
6.3 TCC/WDT and Prescaler  
There are two 8-bit counters available as prescalers for the TCC and WDT  
respectively. The PST2 ~ PST0 bits of the CONT register are used to determine the  
ratio of the TCC prescaler, and the PSW2 ~ PSW0 bits of the IOCE0 register are used  
to determine the prescaler of WDT. The prescaler counter is cleared by the instructions  
each time such instructions are written into TCC. The WDT and prescaler will be  
cleared by the “WDTC” and “SLEP” instructions. Figure 6-3 depicts the block diagram  
of TCC/WDT.  
TCC (R1) is an 8-bit timer/counter. The TCC clock source can be internal clock  
(Fm/Fs) or external signal input (edge selectable from the TCC pin). If TCC signal  
source is from the internal clock, TCC will be incremented by 1 at every instruction  
cycle (without prescaler). If TCC signal source is from an external clock, the TCC will  
be incremented by 1 at every falling edge or rising edge of the TCC pin. The TCC pin  
input time length (kept at High or Low level) must be greater than Fm clock or Fs clock,  
determine by Bank 1 RF CPUS bit.  
NOTE  
The internal TCC will stop running when in sleep mode. However, during AD  
conversion, when TCC is set to “SLEPinstruction, if the ADWE bit of the RE register is  
enabled, the TCC will keep on running.  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
31  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
The Watchdog Timer is a free running on-chip RC oscillator. The WDT will keep on  
running even when the oscillator driver has been turned off (i.e., in sleep mode).  
During normal operation or in sleep mode, a WDT time-out (if enabled) will cause the  
device to reset. The WDT can be enabled or disabled any time during normal mode  
through software programming. Refer to WDTE bit of IOCE0 register (Section 6.2.10  
IOCE0 (WDT Control and Interrupt Mask Registers 2). With no prescaler, the WDT  
time-out period is approximately 18ms1 or 4.5ms2.  
Fs  
Fm  
MUX  
Data Bus  
0
8-Bit Counter  
MUX  
TCC Pin  
1
8 to 1 MUX  
Prescaler  
TCC (R1)  
TE (CONT)  
TS (CONT)  
TCC overflow  
interrupt  
PST2~0  
(CONT)  
WDT  
8-Bit counter  
8 to 1 MUX  
Prescaler  
WDTE  
(IOCE0)  
PSW2~0  
(IOCE0)  
WDT Time out  
Figure 6-3 TCC and WDT Block Diagram  
6.4 I/O Ports  
The I/O registers (Port 5, Port 6, and Port 7) are bidirectional tri-state I/O ports. Port 5  
is pulled-high and pulled-down internally by software. Likewise, P6 has its open-drain  
output set through software. Port 5 features an input status changed interrupt (or  
wake-up) function. Each I/O pin can be defined as "input" or "output" pin by the I/O  
control register (IOC50 ~ IOC70). The I/O registers and I/O control registers are both  
readable and writable. The I/O interface circuits for Port 5, Port 6, and Port 7 are  
illustrated in Figures 6-4, 6-5, 6-6, and 6-7.  
1
°
VDD=5V, WDT time-out period = 16.5ms ± 30% at 25 C  
°
VDD=3V, WDT time-out period = 18ms ± 30% at 25 C  
2
°
VDD=5V, WDT time-out period = 4.2ms ± 30% at 25 C  
°
VDD=3V, WDT time-out period = 4.5ms ± 30% at 25 C  
32   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
PCRD  
P
R
Q
D
D
CLK  
PCWR  
_
C
L
Q
P
R
PORT  
IOD  
Q
CLK  
PDWR  
_
C
L
Q
PDRD  
M
U
X
0
1
Note: Pull-high and Open-drain are not shown in the figure.  
Figure 6-4 I/O Port and I/O Control Register Circuit for Port 6 and Port 7  
PCRD  
P
R
Q
D
_
Q
PCWR  
PDWR  
CLK  
C
L
IOD  
P
R
Q
PORT  
D
_
Q
CLK  
C
L
Bit 6 of IOCE0  
P
D
Q
R
0
1
M
U
X
_
Q
CLK  
C
L
PDRD  
INT  
Note: Pull-high and Open-drain are not shown in the figure.  
Figure 6-5 I/O Port and I/O Control Register Circuit for P60 (/INT)  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
33  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
PCRD  
P
R
Q
D
CLK  
PCWR  
_
C
L
Q
P50 ~ P57  
PORT  
P
R
Q
D
IOD  
CLK  
_
PDWR  
C
L
Q
M
U
X
0
1
PDRD  
TI n  
P
R
D
Q
CLK  
_
C
L
Q
Note: Pull-high (down) and Open-drain are not shown in the figure.  
Figure 6-6 I/O Port and I/O Control Register Circuit for Ports 50~57  
IOCF.1  
RF.1  
TI 0  
TI 1  
TI 8  
Figure 6-7 Port 5 Block Diagram with Input Change Interrupt / Wake-up  
34   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.4.1 Usage of Port 5 Input Change Wake-up/Interrupt Function  
(1) Wake-up  
(a) Before Sleep  
(2) Wake-up and Interrupt  
(a) Before Sleep  
1. Disable WDT  
1. Disable WDT  
2. Read I/O Port 5 (MOV R5,R5)  
3. Execute "ENI" or "DISI"  
2. Read I/O Port 5 (MOV R5,R5)  
3. Execute "ENI" or "DISI"  
4. Enable wake-up bit (Set RE  
ICWE =1)  
4. Enable wake-up bit (Set RE ICWE =1)  
5. Execute "SLEP" instruction  
(b) After wake-up  
5. Enable interrupt (Set IOCF ICIE =1)  
6. Execute "SLEP" instruction  
(b) After wake-up  
Next instruction  
1. IF "ENI" Interrupt Vector (006H)  
2. IF "DISI" Next instruction  
(3) Interrupt  
(a) Before Port 5 pin change  
1. Read I/O Port 5 (MOV R5,R5)  
2. Execute "ENI" or "DISI"  
3. Enable interrupt (Set IOCF ICIE =1)  
(b) After Port 5 pin changed (interrupt)  
1. IF "ENI" Interrupt Vector (006H)  
2. IF "DISI" Next instruction  
6.5 Reset and Wake-up  
6.5.1 Reset and Wake-up Operation  
A reset is initiated by one of the following events:  
1. Power-on reset  
2. /RESET pin input "low"  
3. WDT time-out (if enabled)  
The device is kept in reset condition for a period of approximately 18ms3 (except in LXT  
mode) after the reset is detected. When in LXT2 mode, the reset time is 500 ms. Two  
choices (18ms3 or 4.5ms4) are available for WDT-time out period. Once a reset occurs,  
the following functions are performed (the initial Address is 000h):  
The oscillator continues running, or will be started (if in sleep mode).  
The Program Counter (R2) is set to all "0".  
3 VDD=5V, Setup time period = 16.5 ms ± 30%.  
VDD=3V, Setup time period = 18 ms ± 30%.  
4 VDD=5V, Setup time period = 4.2 ms ± 30%.  
VDD=3V, Setup time period = 4.5 ms ± 30%.  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
35  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
All I/O port pins are configured as input mode (high-impedance state)  
The Watchdog Timer and prescaler are cleared  
When power is switched on, the upper three bits of R3 is cleared  
The IOCB0 register bits are set to all "1"  
The IOCC0 register bits are set to all "0"  
The IOCD0 register bits are set to all "1"  
Bits 7, 5, and 4 of the IOCE0 register are cleared  
Bits 5 and 4 of the RE register are cleared  
RF and IOCF0 registers are cleared  
Executing the “SLEP” instruction will assert the sleep (power down) mode (when  
IDLE=0.). While entering into sleep mode, the Oscillator, TCC, TMR1 and TMR2 are  
stopped. The WDT (if enabled) is cleared but keeps on running.  
During AD conversion, when “SLEPinstruction is set; the Oscillator, TCC, TMR1 and  
TMR2 keep on running. The WDT (if enabled) is cleared but keeps on running.  
The controller can be awakened by:  
Case 1 External reset input on /RESET pin  
Case 2 WDT time-out (if enabled)  
Case 3 Port 5 input status changes (if ICWE is enabled)  
Case 4 Comparator output status changes (if CMPWE is enabled)  
Case 5 AD conversion completed (if ADWE is enabled)  
Case 6 Low Voltage Detector (if LVDWE is enabled)  
The first two cases (1 and 2) will cause the EM78P372N to reset. The T and P flags of  
R3 can be used to determine the source of the reset (wake-up). Cases 3, 4, 5 and 6 are  
considered the continuation of program execution and the global interrupt ("ENI" or  
"DISI" being executed) determines whether or not the controller branches to the  
interrupt vector following wake-up. If ENI is executed before SLEP, the instruction will  
begin to execute from Address 0x06 (Case 3), 00F (Case 4), 0x0C (Case 5) and 021  
(Case 6) after wake-up. If DISI is executed before SLEP, the execution will restart from  
the instruction next to SLEP after wake-up.  
Only one of Cases 2 to 6 can be enabled before entering into sleep mode. That is:  
Case [a] If WDT is enabled before SLEP, all of the RE bit is disabled. Hence, the  
EM78P372N can be awakened only with Case 1 or Case 2. Refer to the  
section on Interrupt (Section 6.6) for further details.  
Case [b] If Port 5 Input Status Change is used to wake up the EM78P372N and the  
ICWE bit of the RE register is enabled before SLEP, and WDT must be  
disabled. Hence, the EM78P372N can be awakened only with Case 3.  
Wake-up time is dependent on the oscillator mode. In RC mode, wake-up  
time is 10 s (for stable oscillators). In XT (4 MHz) mode, wake-up time is  
800 s (for stable oscillators), and in LXT2 mode, Wake-up time is 2~3s.  
36   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Case [c] If the Comparator output status change is used to wake-up the EM78P372N  
and the CMPWE bit of the RE register is enabled before SLEP, WDT must be  
disabled by software. Hence, the EM78P372N can be awakened only with  
Case 4. Wake-up time is dependent on the oscillator mode. In RC mode,  
Wake-up time is 10 s (for stable oscillators). In XT (4 MHz) mode, Wake-up  
time is 800s (for stable oscillators), and in LXT2 mode, Wake-up time is  
2s~3s.  
Case [d] If AD conversion completed is used to wake-up the EM78P372N and ADWE  
bit of RE register is enabled before SLEP, WDT must be disabled by  
software. Hence, the EM78P372N can be awakened only with Case 5. The  
wake-up time is 16 TAD (ADC clock period).  
Case[e] If Low voltage detector is used to wake-up the EM78P372N and the LVDWE  
bit of Bank 0-RE register is enabled before SLEP, WDT must be disabled by  
software. Hence, the EM78P372N can be awakened only with Case 6.  
Wake-up time is dependent on the oscillator mode.  
If Port 5 Input Status Change Interrupt is used to wake up the EM78P372N (as in Case  
[b] above), the following instructions must be executed before SLEP:  
BC  
MOV  
IOW  
R3, 6  
A, @00xx1110b  
IOCE0  
; Select Segment 0  
; Select WDT prescaler and Disable WDT  
WDTC  
MOV  
; Clear WDT and prescaler  
; Read Port 5  
R5, R5  
ENI (or DISI)  
; Enable (or disable) global interrupt  
;EnablePort5inputchangewake-upbit  
MOV  
MOV  
MOV  
IOW  
SLEP  
A, @xxxxxx1xb  
RE  
A, @xxxxxx1xb  
IOCF0  
; Enable Port 5 input change interrupt  
; Sleep  
Similarly, if the Comparator Interrupt is used to wake up the EM78P372N (as in Case  
[c] above), the following instructions must be executed before SLEP:  
BC  
MOV  
R3, 6  
A, @xxx10XXXb  
; Select Segment 0  
; Select a comparator and P64 functions  
; as CO pin  
IOW  
MOV  
IOC80  
A, @00x11110b  
; SelectWDTprescalerandDisableWDT,  
; and enable comparator output status  
; change interrupt  
IOW  
WDTC  
IOCE0  
;Clear WDT and prescaler  
ENI (or DISI)  
MOV  
;Enable (or disable) global interrupt  
; Enable comparator output status  
; change wake-up bit  
A, @xxx0x1xxb  
RE  
MOV  
SLEP  
;Sleep  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
37  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.5.1.1 Wake-up and Interrupt Modes Operation Summary  
The controller can be awakened from sleep mode and idle mode. The wake-up signals  
are listed as follows.  
Sleep Mode  
Idle Mode  
DISI ENI  
Green Mode  
Normal Mode  
DISI ENI  
Wake-up Condition  
Signal  
Signal  
DISI  
ENI  
DISI  
ENI  
EXWE = 0  
EXIE = 0  
Wake-up is invalid  
Wake-up is invalid  
Interrupt is invalid  
Interrupt  
Interrupt is invalid  
Interrupt  
EXWE = 0  
EXIE = 1  
Next  
+
Next  
+
Wake-up is invalid  
Wake-up is invalid  
Instruction Interrupt Instruction Interrupt  
Vector  
Interrupt is invalid  
Interrupt  
Vector  
Interrupt is invalid  
Interrupt  
External  
INT  
Wake up  
+
Next Instruction  
Wake up  
+
Next Instruction  
EXWE = 1,  
EXIE = 0  
Wake up Wake up Wake up Wake up  
EXWE = 1  
EXIE = 1  
+
Next  
+
+
Next  
+
Next  
+
Next  
+
Interrupt  
Interrupt Instruction Interrupt Instruction Interrupt  
Instruction Vector Instruction Vector  
Vector  
Interrupt is invalid  
Interrupt  
Vector  
Interrupt is invalid  
Interrupt  
ICWE = 0  
ICIE = 0  
Wake-up is invalid  
Wake-up is invalid  
Wake-up is invalid  
Wake-up is invalid  
ICWE = 0  
ICIE = 1  
Next  
+
Next  
+
Instruction Interrupt Instruction Interrupt  
Vector  
Interrupt is invalid  
Interrupt  
Vector  
Interrupt is invalid  
Interrupt  
Port 5  
Wake up  
+
Next Instruction  
Wake up  
+
Next Instruction  
ICWE = 1  
ICIE = 0  
Pin change  
Wake up Wake up Wake up Wake up  
ICWE = 1  
ICIE = 1  
+
Next  
+
+
Next  
+
Next  
+
Next  
+
Interrupt  
Interrupt Instruction Interrupt Instruction Interrupt  
Instruction Vector Instruction Vector  
Vector  
Interrupt is invalid  
Interrupt  
Vector  
Interrupt is invalid  
Interrupt  
TCIE = 0  
TCIE = 1  
Wake-up is invalid  
TCC  
Wake up Wake up  
Wake-up is invalid  
+
+
Next  
+
Next  
+
Overflow  
Next  
Interrupt Instruction Interrupt Instruction Interrupt  
Instruction Vector  
Vector  
Interrupt is invalid  
Interrupt  
Vector  
Interrupt is invalid  
Interrupt  
ADWE = 0  
ADIE = 0  
Wake-up is invalid  
Wake-up is invalid  
Wake-up is invalid  
ADWE = 0  
ADIE = 1  
Next  
+
Next  
+
Wake-up is invalid  
Instruction Interrupt Instruction Interrupt  
AD  
Vector  
Interrupt is invalid  
Interrupt  
Vector  
Interrupt is invalid  
Interrupt  
Conversion  
complete  
Wake up  
+
Next Instruction  
Wake up  
+
Next Instruction  
ADWE = 1  
ADIE = 0  
Wake up Wake up Wake up Wake up  
ADWE = 1,  
ADIE = 1  
+
Next  
+
+
Next  
+
Next  
Interrupt Instruction Interrupt Instruction Interrupt  
Vector Vector  
+
Next  
+
Interrupt  
Instruction Vector Instruction Vector  
38   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Sleep Mode  
DISI ENI  
Idle Mode  
DISI ENI  
Green Mode  
Normal Mode  
DISI ENI  
Wake-up Condition  
Signal  
Signal  
DISI  
ENI  
CMPWE = 0  
CMPIE = 0  
Wake-up is invalid Wake-up is invalid  
Interrupt is invalid  
Interrupt  
Interrupt is invalid  
Interrupt  
CMPWE = 0  
CMPIE = 1  
Next  
+
Next  
+
Wake-up is invalid Wake-up is invalid  
Instruction Interrupt Instruction Interrupt  
Vector  
Interrupt is invalid  
Interrupt  
Vector  
Interrupt is invalid  
Interrupt  
Comparator  
Interrupt  
Wake up  
+
Next Instruction  
Wake up  
+
Next Instruction  
CMPWE = 1  
CMPIE = 0  
Wake up Wake up Wake up Wake up  
CMPWE = 1  
CMPIE = 1  
+
Next  
+
+
+
Next  
+
Next  
+
Interrupt  
Next  
Interrupt Instruction Interrupt Instruction Interrupt  
Instruction Vector Instruction Vector  
Vector  
Interrupt is invalid  
Interrupt  
Vector  
Interrupt is invalid  
Interrupt  
PWM1IE =  
0
Wake-up is invalid  
PWM1  
period  
Wake-up is invalid  
Wake up Wake up  
PWM1IE =  
1
+
+
Next  
+
Next  
+
interrupt  
Next  
Interrupt Instruction Interrupt Instruction Interrupt  
Instruction Vector  
Wake-up is invalid  
Wake up Wake up  
Vector  
Interrupt is invalid  
Interrupt  
Vector  
Interrupt is invalid  
Interrupt  
PWM2IE =  
0
PWM2  
period  
Wake-up is invalid  
Wake-up is invalid  
PWM2IE =  
1
+
+
Next  
+
Next  
+
interrupt  
Next  
Interrupt Instruction Interrupt Instruction Interrupt  
Instruction Vector  
Wake-up is invalid  
Wake up Wake up  
Vector  
Interrupt is invalid  
Interrupt  
Vector  
Interrupt is invalid  
Interrupt  
DT1IE = 0  
DT1IE = 1  
DT2IE = 0  
DT2IE = 1  
PWM1 duty  
interrupt  
+
Next  
+
Next  
+
Next  
+
Interrupt Instruction Interrupt Instruction Interrupt  
Instruction Vector  
Wake-up is invalid  
Wake up Wake up  
Vector  
Interrupt is invalid  
Interrupt  
Vector  
Interrupt is invalid  
Interrupt  
PWM2 duty  
interrupt  
Wake-up is invalid  
+
Next  
+
Next  
+
Next  
+
Interrupt Instruction Interrupt Instruction Interrupt  
Instruction Vector  
Vector  
Interrupt is invalid  
Interrupt  
Vector  
Interrupt is invalid.  
Interrupt  
LVDWE = 0  
LVDIE = 0  
Wake-up is invalid Wake-up is invalid  
Wake-up is invalid Wake-up is invalid  
LVDWE = 0  
LVDIE = 1  
Next  
Instruction Interrupt Instruction Interrupt  
Vector Vector  
+
Next  
+
Low Voltage  
Detector  
Wake up  
+
Next Instruction  
Wake up  
+
Next Instruction  
LVWE = 1  
LVDIE = 0  
Interrupt is invalid. Interrupt is invalid.  
Wake up Wake up Wake up Wake up  
Interrupt  
+
Interrupt  
+
LVDWE = 1  
LVDIE = 1  
+
+
+
Next  
+
Next  
Next  
Next  
Interrupt  
Interrupt Instruction Interrupt Instruction Interrupt  
Vector Vector  
Instruction Vector Instruction Vector  
WDT  
Timeout  
WDTE = 1 Wake up + Reset  
Wake up + Reset  
Wake up + Reset  
Wake up + Reset  
Reset Reset  
Low voltage  
reset  
Reset  
Reset  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
39  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.5.1.2 Register Initial Values after Reset  
The following summarizes the initialized values for registers.  
Address Name  
Reset Type  
Bit Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
C57  
C56  
C55  
C54  
C53  
C52  
C51  
C50  
Type  
Power-on  
1
1
1
1
1
1
1
1
N/A  
N/A  
IOC50  
IOC60  
/RESET and WDT  
1
1
1
1
1
1
1
1
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
C67  
C66  
C65  
C64  
C63  
C62  
C61  
C60  
Type  
Power-on  
/RESET and WDT  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
0
0
0
0
0
0
0
0
0
0
0
0
C71  
1
C70  
1
Power-on  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
IOC70  
IOC80  
/RESET and WDT  
1
1
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
0
0
0
0
CMPOUT COS1  
COS0  
0
0
0
0
0
0
Power-on  
0
0
0
0
0
0
/RESET and WDT  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
/PD57  
/PD56  
/PD55  
/PD54  
/PD53  
/PD52  
/PD51  
/PD50  
Power-on  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IOCB0  
/RESET and WDT  
(PDCR)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
OD67  
OD66  
OD65  
OD64  
OD63  
OD62  
OD61  
OD60  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IOCC0  
(ODCR)  
/RESET and WDT  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
/PH57  
/PH56  
/PH55  
/PH54  
/PH53  
/PH52  
/PH51  
/PH50  
Power-on  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IOCD0  
(PHCR1)  
/RESET and WDT  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
WDTC  
EIS  
0
ADIE  
CMPIE PSWE  
PSW2  
PSW1  
PSW0  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IOCE0  
(WDTCR  
& IMR2)  
/RESET and WDT  
0
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
40   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Address Name  
Reset Type  
Bit Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
DT2IE  
DT1IE PWM2IE PWM1IE EXIE  
ICIE  
0
TCIE  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
IOCF0  
N/A  
/RESET and WDT  
0
(IMR)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
HS57  
HS56  
0
0
HS54  
HS53  
HS52  
HS51  
0
0
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
IOC51  
N/A  
/RESET and WDT  
(HSCR1)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
HS67  
HS66  
HS65  
HS64  
HS63  
HS62  
HS61  
HS60  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
IOC61  
N/A  
/RESET and WDT  
(HSCR2)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
HD57  
HD56  
0
0
HD54  
HD53  
HD52  
HD51  
0
0
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
IOC71  
N/A  
/RESET and WDT  
(HDCR1)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
HD67  
HD66  
HD65  
HD64  
HD63  
HD62  
HD61  
HD60  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IOC81  
N/A  
/RESET and WDT  
(HDCR2)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
/PH67  
/PH66  
/PH65  
/PH64  
/PH63  
/PH62  
/PH61  
/PH60  
Power-on  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IOCF1  
N/A  
/RESET and WDT  
(PHCR2)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
INTE  
INT  
0
TS  
1
TE  
1
PSTE  
PST2  
PST1  
PST0  
Power-on  
1
1
0
0
0
0
0
0
0
0
N/A  
000  
001  
CONT  
/RESET and WDT  
0
1
1
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
U
P
U
P
U
P
U
P
U
P
U
P
U
P
U
P
Power-on  
R0 (IAR)  
R1 (TCC)  
/RESET and WDT  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Power-on  
/RESET and WDT  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
41  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Address Name  
Reset Type  
Bit Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Power-on  
002  
003  
004  
005  
006  
007  
008  
009  
00A  
R2 (PC)  
R3 (SR)  
/RESET and WDT  
Wake-up from Pin  
Change  
Jump to Address 0x06 or continue to execute next instruction  
Bit Name  
RST  
IOCS  
-
T
1
t
P
1
t
Z
U
P
DC  
U
C
U
P
Power-on  
0
0
0
0
0
0
/RESET and WDT  
P
Wake-up from Pin  
Change  
1
P
P
t
t
P
P
P
Bit Name  
SBANK  
BS0  
0
U
P
U
P
U
P
U
P
U
P
U
P
Power-on  
0
0
R4 (RSR)  
/RESET and WDT  
0
Wake-up from Pin  
Change  
0
P
P
P
P
P
P
P
Bit Name  
P57  
1
P56  
1
P55  
1
P54  
1
P53  
1
P52  
1
P51  
1
P50  
1
Power-on  
Bank 0  
R5  
/RESET and WDT  
1
1
1
1
1
1
1
1
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
P67  
1
P66  
1
P65  
1
P64  
1
P63  
1
P62  
1
P61  
1
P60  
1
Power-on  
Bank 0  
R6  
/RESET and WDT  
1
1
1
1
1
1
1
1
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
0
0
0
0
0
0
0
0
0
0
0
0
P71  
1
P70  
1
Power-on  
Bank 0  
R7  
/RESET and WDT  
1
1
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
ADE7  
ADE6  
ADE5  
ADE4  
ADE3  
ADE2  
ADE1  
ADE0  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bank 0  
R8  
/RESET and WDT  
(AISR)  
Wake-up from Pin  
Change  
0
0
0
0
P
P
P
P
Bit Name  
VREFS CKR1  
CKR0 ADRUN ADPD  
ADIS2  
ADIS1 ADIS0  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bank 0  
R9  
/RESET and WDT  
(ADCON)  
Wake-up from Pin  
Change  
P
P
P
P
P
0
P
P
Bit Name  
CALI  
SIGN  
VOF[2] VOF[1] VOF[0] VREF1 VREF0 ADICS  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bank 0  
RA  
/RESET and WDT  
(ADOC)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
42   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Address Name  
Reset Type  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bit Name  
Power-on  
AD11  
U
AD10  
U
AD9  
U
AD8  
U
AD7  
U
AD6  
U
AD5  
U
AD4  
U
Bank 0  
/RESET and  
WDT  
RB  
00B  
00C  
00D  
00E  
U
P
U
P
U
P
U
P
U
P
U
P
U
P
U
P
(ADDATA)  
Wake-up from  
Pin Change  
Bit Name  
Power-on  
AD11  
U
AD10  
U
AD9  
U
AD8  
U
0
0
0
0
Bank 0  
RC  
/RESET and  
WDT  
0
0
0
0
U
P
U
P
U
P
U
P
(ADDATA1H)  
Wake-up from  
Pin Change  
P
P
P
P
Bit Name  
Power-on  
AD7  
U
AD6  
U
AD5  
U
AD4  
U
AD3  
U
AD2  
U
AD1  
U
AD0  
U
Bank 0  
RD  
/RESET and  
WDT  
U
P
U
P
U
P
U
P
U
P
U
P
U
P
U
P
(ADDATA1L)  
Wake-up from  
Pin Change  
Bit Name  
Power-on  
/LVD  
1
LVDIF  
0
ADIF  
0
CMPIF ADWE CMPWE ICWE LVDWE  
Bank 0  
RE  
0
0
0
0
0
/RESET and  
WDT  
1
0
0
0
0
0
0
0
(ISR2 &  
WUCR)  
Wake-up from  
Pin Change  
P
P
P
P
P
P
P
P
Bit Name  
Power-on  
DT2IF  
0
DT1IF PWM2IF PWM1IF  
EXIF  
0
ICIF  
0
TCIF  
0
0
0
0
0
Bank 0  
RF  
/RESET and  
WDT  
00F  
005  
006  
007  
0
0
0
0
0
0
0
0
(ISR2)  
Wake-up from  
Pin Change  
P
P
P
P
P
P
P
P
Bit Name  
Power-on  
MLB  
0
RBit10  
0
RBit9  
0
RBit8  
0
0
0
0
0
Bank 1  
R5  
/RESET and  
WDT  
0
0
0
0
0
0
0
0
(TBHP)  
Wake-up from  
Pin Change  
P
P
P
P
P
P
P
P
Bit Name  
Power-on  
RBit7  
0
RBit6  
0
RBit5  
0
RBit4  
0
RBit3  
0
RBit2  
0
RBit1  
0
RBit0  
0
Bank 1  
R6  
/RESET and  
WDT  
0
0
0
0
0
0
0
0
(TBLP)  
Wake-up from  
Pin Change  
P
P
P
P
P
P
P
P
Bit Name  
Power-on  
PWMCAS PWM2E PWM1E  
0
0
0
0
0
0
0
0
Bank 1  
R7  
/RESET and  
WDT  
0
0
0
0
0
0
0
0
(PWMCON)  
Wake-up from  
Pin Change  
P
P
P
P
P
P
P
P
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
43  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Address Name  
Reset Type  
Bit Name  
Bit 7  
T2EN  
0
Bit 6  
T1EN  
0
Bit 5  
T2P2  
0
Bit 4  
T2P1  
0
Bit 3  
T2P0  
0
Bit 2  
T1P2  
0
Bit 1  
T1P1  
0
Bit 0  
T1P0  
0
Power-on  
Bank 1  
008  
009  
R8  
0
0
0
0
0
0
0
0
/RESET and WDT  
(TMRCON)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
PWM1[7] PWM1[6] PWM1[5] PWM1[4] PWM1[3] PWM1[2] PWM1[1] PWM1[0]  
Bit Name  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Power-on  
Bank 1  
R9  
/RESET and WDT  
(PRD1)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
PWM2[7] PWM2[6] PWM2[5] PWM2[4] PWM2[3] PWM2[2] PWM2[1] PWM2[0]  
Bit Name  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Power-on  
Bank 1  
RA  
00A  
00B  
00C  
00E  
00F  
/RESET and WDT  
(PRD2)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
DT1[7] DT1[6]  
DT1[5]  
DT1[4]  
DT1[3]  
DT1[2] DT1[1] DT1[0]  
Bit Name  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Power-on  
Bank 1  
RB  
/RESET and WDT  
(DT1)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
DT2[7] DT2[6]  
DT2[5]  
DT2[4]  
DT2[3]  
DT2[2] DT2[1] DT2[0]  
Bit Name  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Power-on  
Bank 1  
RC  
/RESET and WDT  
(DT2)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
LVDIE LVDEN  
LVD1  
LVD0  
0
0
0
0
0
0
EXWE  
Bit Name  
Bank 1  
RE  
0
0
0
0
1
1
1
1
0
0
Power-on  
/RESET and WDT  
(LVDCR &  
WUCR)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
-
TIMERSC CPUS  
IDLE  
SHS1  
SHS0  
RCM1  
RCM0  
Bit Name  
0
0
1
1
1
1
0
0
1
1
1
1
WORD1<6~5>  
WORD1<6~5>  
Power-on  
Bank 1  
RF  
/RESET and WDT  
(SCR)  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
U
P
U
P
U
P
U
P
U
P
U
P
U
P
U
P
Power-on  
0x10~0x3F R10~R3F  
/RESET and WDT  
Wake-up from Pin  
Change  
P
P
P
P
P
P
P
P
Legend: = not used  
“u” = unknown or dont care  
P= previous value before reset  
t= check Reset TypeTable in Section 6.5.2  
44   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.5.1.3 Controller Reset Block Diagram  
VDD  
D
Q
CLK  
Oscillator  
CLK  
CLR  
Power-on Reset  
Voltage  
Detector  
ENWDTB  
WDT Timeout  
Reset  
Setup time  
WDT  
/RESET  
Figure 6-8 Controller Reset Block Diagram  
6.5.2 T and P Status under the Status Register  
A reset condition is initiated by one of the following events:  
1. Power-on reset  
2. /RESET pin input "low"  
3. WDT time-out (if enabled)  
The values of T and P as listed in the table below, are used to check how the processor  
wakes up.  
Reset Type  
RST  
0
T
1
P
1
Power-on  
/RESET during Operating mode  
/RESET wake-up during Sleep mode  
LVR during Operating mode  
0
*P  
1
*P  
0
0
0
*P  
1
*P  
0
LVR wake-up during Sleep mode  
WDT during Operating mode  
0
0
0
1
WDT wake-up during Sleep mode  
Wake-up on pin change during Sleep mode  
0
0
0
1
1
0
*P: Previous status before reset  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
45  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
The following shows the events that may affect the status of T and P.  
Event  
RST  
0
T
1
1
0
1
1
P
1
Power-on  
WDTC instruction  
WDT time-out  
SLEP instruction  
*P  
0
1
*P  
0
*P  
1
Wake-up on pin changed during Sleep mode  
0
*P: Previous value before reset  
6.6 Interrupt  
The EM78P372N has ten interrupts enumerated below:  
1. PWM1~2 period match and duty cycle match overflow interrupt  
2. Port 5 Input Status Change Interrupt  
3. External interrupt [(P60, /INT) pin]  
4. Analog to Digital conversion completed  
5. When the comparators status changes  
6. Low voltage detector Interrupt  
Before the Port 5 Input Status Change Interrupt is enabled, reading Port 5 (e.g. "MOV  
R5, R5") is necessary. Each Port 5 pin will have this feature if its status changes. The  
Port 5 Input Status Change Interrupt will wake up the EM78P372N from sleep mode if it  
is enabled prior to going into sleep mode by executing SLEP instruction. When wake  
up occurs, the controller will continue to execute program in-line if the global interrupt is  
disabled. If enabled, the global interrupt will branch out to the Interrupt Vector 006H.  
External interrupt equipped with digital noise rejection circuit (input pulse less than  
system clock time) is eliminated as noise. However, under Low Crystal oscillator  
(LXT2) mode the noise rejection circuit will be disabled. Edge selection is possible with  
INTE of CONT. When an interrupt is generated by the External interrupt (when  
enabled), the next instruction will be fetched from Address 003H. Refer to Word 1  
Bits 9 and 8, Section 6.14.2, Code Option Register (Word 1) for digital noise rejection  
definition.  
RF and RE are the interrupt status register that records the interrupt requests in the  
relative flags/bits. IOCF0 and IOCE0 are Interrupt mask registers. The global interrupt  
is enabled by the ENI instruction and is disabled by the DISI instruction. Once in the  
interrupt service routine, the source of an interrupt can be determined by polling the flag  
bits in RF. The interrupt flag bit must be cleared by instructions before leaving the  
interrupt service routine to avoid recursive interrupts.  
When interrupt mask bits is Enable, the flag in the Interrupt Status Register (RF) is set  
regardless of the ENI execution. Note that the result of RF will be the logic AND of RF  
and IOCF0 (refer to figure below). The RETI instruction ends the interrupt routine and  
enables the global interrupt (the ENI execution).  
46   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
When an interrupt is generated by the Timer clock/counter (when enabled), the next  
instruction will be fetched from Address 009, 012, 015, 018 and 01BH (PWM1~2 period  
match and duty match respectively).  
When an interrupt generated by AD conversion is completed (if enabled), the next  
instruction will be fetched from Address 00CH.  
When an interrupt is generated by the Comparators (when enabled), the next  
instruction will be fetched from Address 00FH (Comparator interrupt).  
When an interrupt is generated by the Low Voltage Detect (when enabled), the next  
instruction will be fetched from Address 021H (Low Voltage Detector interrupt).  
Before an interrupt subroutine is executed, the contents of ACC and the R3 and R4  
registers are saved first by the hardware. If another interrupt occurs, the ACC, R3, and  
R4 will be replaced by the new interrupt. After an interrupt service routine is completed,  
the ACC, R3, and R4 registers are restored.  
VDD  
D
Q
CLK  
Oscillator  
CLK  
CLR  
Power-On Reset  
Low Voltage Reset  
Setup time  
WDTE  
WDT  
WDT Timeout  
Reset  
/RESET  
Interrupt  
occurs  
Interrupt sources  
ACC  
R3  
Stack ACC  
ENI/DISI  
Stack R3  
Stack R4  
RETI  
R4  
Figure 6-9 Interrupt Back-up Diagram  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
47  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
In EM78P372N, each individual interrupt source has its own interrupt vector as  
depicted in the table below.  
Interrupt Vector  
Interrupt Status  
Priority *  
003H  
006H  
009H  
00CH  
00FH  
012H  
015H  
018H  
01BH  
021H  
External interrupt  
Port 5 pin change  
2
3
TCC overflow interrupt  
4
AD conversion complete interrupt  
Comparator interrupt  
5
6
PWM1 period match interrupt  
PWM2 period match interrupt  
PWM1 duty match interrupt  
PWM2 duty match interrupt  
Low Voltage Detector interrupt  
7
8
9
10  
1
Note: *Priority: 1 = highest ; 10 = lowest priority  
6.7 Analog-to-Digital Converter (ADC)  
The analog-to-digital circuitry consists of an 8-bit analog multiplexer; three control  
registers (AISR/R8, ADCON/R9, & ADOC/RA), three data registers (ADDATA/RB,  
ADDATA1H/RC, and ADDATA1L/RD) and an ADC with 12-bit resolution as shown in  
the functional block diagram below. The analog reference voltage (Vref) and the  
analog ground are connected via separate input pins. Connecting to an external VREF  
is more accurate than connecting to an internal VDD.  
The ADC module utilizes successive approximation to convert the unknown analog  
signal into a digital value. The result is fed to the ADDATA, ADDATA1H, and  
ADDATA1L. Input channels are selected by the analog input multiplexer via the  
ADCON register Bits ADIS2, ADIS1 and ADIS0.  
48   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
OPOUT  
VDD  
VREFP  
1/4 VDD PowerDet.  
AD7  
ADC  
(Successive Approximation)  
Power Down  
Start to Convert  
Fsub  
Fmain/4  
Fmain/1  
4 to 1  
MUX  
Fmain/16  
AD0  
Fmain/64  
7-0  
2~0  
6
5
4
4
11 10 9 8 7 6 5 4 3 2 1 0  
4
3
1 0  
ADCON  
ADCON  
IMR  
ADDATA1H  
ADDATA1L  
ADCON  
AISR  
ISR  
DATA BUS  
Figure 6-10 Analog-to-Digital Conversion Functional Block Diagram  
This is a 12-bit successive approximation register analog to digital converter (SAR  
ADC). There are two reference voltages for SAR ADC. The positive reference voltage  
can select internal AVDD, internal voltage sources or external input pin by setting the  
VREFP and VPIS[1:0] bits in ADCR2. Connecting to external positive reference  
voltage provides more accuracy than using internal AVDD.  
6.7.1 ADC Control Register (AISR/R8, ADCON/R9, ADOC/RA)  
6.7.1.1 Bank 0 R8 (AISR: ADC Input Select Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADE7  
ADE6  
ADE5  
ADE4  
ADE3  
ADE2  
ADE1  
ADE0  
The AISR register individually defines the P5, P6 and P7 pins as analog inputs or as  
digital I/O.  
Bit 7 (ADE7): AD converter enable bit of P57 pin  
0: Disable ADC7, P57 functions as I/O pin  
1: Enable ADC7 to function as analog input pin  
Bit 6 (ADE6): AD converter enable bit of P55 pin  
0: Disable ADC6, P55 functions as I/O pin  
1: Enable ADC6 to function as analog input pin  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
49  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Bit 5 (ADE5): AD converter enable bit of P70 pin  
0: Disable ADC5, P70 functions as I/O pin  
1: Enable ADC5 to function as analog input pin  
Bit 4 (ADE4): AD converter enable bit of P67 pin  
0: Disable ADC4, P67 functions as I/O pin  
1: Enable ADC4 to function as analog input pin  
Bit 3 (ADE3): AD converter enable bit of P53 pin  
0: Disable ADC3, P53 functions as I/O pin  
1: Enable ADC3 to function as analog input pin  
Bit 2 (ADE2): AD converter enable bit of P52 pin  
0: Disable ADC2, P52 functions as I/O pin  
1: Enable ADC2 to function as analog input pin  
Bit 1 (ADE1): AD converter enable bit of P51 pin  
0: Disable ADC1, P51 acts as I/O pin  
1: Enable ADC1 acts as analog input pin  
Bit 0 (ADE0): AD converter enable bit of P50 pin  
0: Disable ADC0, P50 functions as I/O pin  
1: Enable ADC0 to function as analog input pin  
6.7.1.2 Bank 0 R9 (ADCON: ADC Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
VREFS  
CKR1  
CKR0  
ADRUN  
ADPD  
ADIS2  
ADIS1  
ADIS0  
The ADCON register controls the operation of the AD conversion and determines  
which pin should be currently active.  
Bit 7(VREFS): The input source of the ADC Vref  
0: The ADC Vref is connected to Vdd (default value), and the  
VREF/TCC/P54 pin carries out the P54 function  
1: The ADC Vref is connected to VREF/TCC/P54  
NOTE  
The P54/TCC/VREF pin cannot be applied to TCC and VREF at the same time. If  
P54/TCC/VREF functions as VREF analog input pin, then CONT Bit 5 (TS) must be 0”.  
The P54/TCC/VREF pin priority is as follows:  
P54/TCC/VREF Pin Priority  
High  
Medium  
TCC  
Low  
P54  
VREF  
50   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Bit 6 ~ Bit 5 (CKR1 ~ CKR0): The prescaler of ADC oscillator clock rate  
00 = 1: 16 (default value)  
01 = 1: 4  
10 = 1: 64  
11 = 1: 1  
System  
Mode  
Operating Clock  
of ADC (FAD = 1 / TAD  
Max. FMain  
(VDD = 2.5V ~ 3V)  
Max. FMain  
(VDD = 3V ~ 5.5V)  
CKR[1:0]  
)
00  
(default)  
FOSC /16  
4 MHz  
16 MHz  
Normal  
Mode  
01  
10  
11  
FOSC /4  
FOSC /64  
FOSC /1  
1 MHz  
16 MHz  
4 MHz  
1 MHz  
Green  
Mode  
xx  
16k/128kHz  
16k/128kHz  
Bit 4 (ADRUN): ADC starts to RUN  
0: Reset upon completion of the conversion. This bit cannot be reset  
though software.  
1: AD conversion is started. This bit can be set by software.  
Bit 3 (ADPD): ADC Power-down mode  
0: Switch off the resistor reference to conserve power even while the  
CPU is operating  
1: ADC is operating  
Bit 2 ~ Bit 0 (ADIS2 ~ ADIS0): Analog Input Select  
ADICS  
ADIS2  
ADIS1  
ADIS0  
Analog Input Select  
ADIN0/P50  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
X
x
0
1
0
1
0
1
0
1
X
x
ADIN1/P51  
ADIN2/P52  
ADIN3/P53  
ADIN4/P67  
ADIN5/P70  
ADIN6/P55  
ADIN7/P57  
OPOUT  
Internal, 1/4 VDD  
These bits can only be changed when the ADIF bit and the ADRUN bit are both Low.  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
51  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.7.1.3 RA (ADOC: AD Offset Calibration Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CALI  
SIGN  
VOF[2]  
VOF[1]  
VOF[0]  
VREF1  
VREF0  
ADICS  
Bit 7 (CALI): Calibration enable bit for ADC offset  
0: Disable Calibration  
1: Enable Calibration  
Bit 6 (SIGN): Polarity bit of offset voltage  
0: Negative voltage  
1: Positive voltage  
Bit 5 ~ Bit 3 (VOF[2] ~ VOF[0]): Offset voltage bits  
VOF[2]  
VOF[1]  
VOF[0]  
EM78P372N  
0LSB  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2LSB  
4LSB  
6LSB  
8LSB  
10LSB  
12LSB  
14LSB  
Bit 2 ~ Bit 1: ADC internal reference voltage source.  
VREF1  
VREF0  
ADC internal Reference Voltage  
0
0
1
1
0
1
0
1
VDD  
4.0V ± 1%  
3.0V ± 1%  
2.0V ± 1%  
Bit 0 (ADICS): ADC Internal Channel Select (select ADC internal 1/4 VDD or OP  
output pin connects to ADC input)  
0: disable  
1: enable  
NOTE  
If VREF [1:0]=00, the internal reference will not turn on. If VREF[1:0]00, the  
internal reference will turn on automatically. Moreover, the power of the internal  
reference is irrelevant to ADC.  
When using internal voltage reference for the first time, user needs to wait for at  
least 50 µs to enable and stabilize the voltage reference. Unstable reference will  
result to inaccurate conversion. On subsequent switching of the voltage reference,  
user only needs to wait for at least 6μs for stabilization.  
If ADC uses internal VREF 2V function, the resulting conversion data will be  
inaccurate. So user must ensure that the minimum analog reference voltage of AD  
electrical characteristics is not less than 2.5V.  
52   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.7.1.4 Bank 1 RF (IRC Switch Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
TIMERSC  
CPUS  
IDLE  
SHS1  
SHS0  
RCM1  
RCM0  
Bits 3 ~ 2 (SHS1 ~ SHS0): Select AD sample and hold Timing Select. (Recommend at  
least 4 s, TAD: Period of ADC Operating Clock)  
SHS1  
SHS0  
ADC Sample and Hold (TAD)  
0
0
1
1
0
1
0
1
2 x TAD  
4 x TAD  
8 x TAD  
12 x TAD (default)  
6.7.2 ADC Data Register (ADDATA/RB, ADDATA1H/RC,  
ADDATA1L/RD)  
When the AD conversion is completed, the result is loaded into the ADDATA1H and  
ADDATA1L. The ADIF is set if ADIE is enabled.  
6.7.3 ADC Sampling Time  
The accuracy, linearity, and speed of the successive approximation AD converter are  
dependent on the properties of the ADC. The source impedance and the internal  
sampling impedance directly affect the time required to charge the sample and hold  
capacitor. The application program controls the length of the sample time to meet the  
specified accuracy. The maximum recommended impedance for the analog source is  
10 kat VDD = 5V. After the analog input channel is selected; this acquisition time  
must be done before AD conversion can be started.  
6.7.4 AD Conversion Time  
CKR[2:0] select the conversion time (TAD). This allows the MCU to run at maximum  
frequency without sacrificing the accuracy of the AD conversion. The following tables  
show the relationship between TAD and the maximum operating frequencies. TAD is 0.5  
µs for 3V~5.5V and TAD is 2 µs for 2.5V~3V.  
VDD = 3V ~ 5.5V (TAD is 1 µs)  
Conversion Time  
of One Word  
Operating Clock  
of ADC  
System  
Mode  
Max. FMain  
(VDD = 3V ~ 5.5V)  
CKR[1:0]  
(FAD = 1 / TAD  
FMain / 16  
FMain / 4  
)
(SHS[1:0] = 10*)  
00  
01  
10  
11  
xx  
16 MHz  
4 MHz  
-
20 s  
20 s  
-
Normal  
Mode  
FMain / 64  
FMain / 1  
1 MHz  
128kHz  
20 s  
157 s  
FSub  
Green Mode  
* Conversion Time = Sample and Hold (SHS [1:0]=10, 8 TAD) + 12 Bit Conversion Time  
(12 TAD) + Delay Time between setting ADSTART bit and starting first TAD  
.
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
53  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
VDD = 2.5V ~ 3V (TAD is 4 µs)  
Conversion Time  
of One Word  
Operating Clock  
Max. FMain  
System  
Mode  
CKR[1:0]  
of ADC  
(FAD = 1 / TAD  
)
(VDD = 2.5V ~ 3V)  
(SHS[1:0] = 10*)  
00  
01  
10  
11  
xx  
FMain / 16  
FMain / 4  
FMain / 64  
FMain / 1  
-
4 MHz  
82 µs  
1 MHz  
82 µs  
Normal  
Mode  
-
-
-
-
Green Mode  
128 kHz  
157 µs  
*Conversion Time = Sample and Hold (SHS [1:0]=10, 8 TAD) + 12 Bit Conversion Time  
(12 TAD) + Delay Time between setting ADSTART bit and starting first TAD (0.5 TAD).  
NOTE  
Pin not used as an analog input pin can be used as regular input or output pin.  
During conversion, do not perform output instruction to maintain precision for all of  
the pins.  
6.7.5 ADC Operation during Sleep Mode  
In order to obtain a more accurate ADC value and reduce power consumption, the AD  
conversion remains operational during sleep mode. As the SLEP instruction is  
executed, all the MCU operations will stop except for the Oscillator, TCC, PWM1,  
PMW2 and AD conversion.  
The AD Conversion is considered completed as determined by:  
1. The ADRUN bit of the R9 register is cleared to “0”.  
2. The ADIF bit of the BANK 0 RE register is set to “1.  
3. The ADWE bit of the BANK 0 RE register is set to “1”. Wakes up from ADC  
conversion (where it remains in operation during sleep mode).  
4. Wake up and execution of the next instruction if the ADIE bit of the IOCE0 is enabled  
and the DISIinstruction is executed.  
5. Wake up and enters into Interrupt vector (Address 0x00C) if the ADIE bit of the  
IOCE0 is enabled and the ENIinstruction is executed.  
6. Enters into an Interrupt vector (Address 0x00C) if the ADIE bit of the IOCE0 is  
enabled and the ENIinstruction is executed.  
The results are fed into the ADDATA, ADDATA1H, and ADDATA1L registers when the  
conversion is completed. If the ADIE is enabled, the device will wake up. Otherwise,  
the AD conversion will be shut off, no matter what the status of the ADPD bit is.  
54   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.7.6 Programming Process/Considerations  
6.7.6.1 Programming Process  
Follow these steps to obtain data from the ADC:  
1. Write to the eight bits (ADE7: ADE0) on the R8 (AISR) register to define the  
characteristics of R5 (digital I/O, analog channels, or voltage reference pin)  
2. Write to the R9/ADCON register to configure the AD module:  
a) Select the ADC input channel (ADIS2 : ADIS0)  
b) Define the AD conversion clock rate (CKR1 : CKR0)  
c) Select the VREFS input source of the ADC  
d) Set the ADPD bit to 1 to begin sampling  
3. Set the ADWE bit, if the wake-up function is employed  
4. Set the ADIE bit, if the interrupt function is employed  
5. Write “ENI” instruction, if the interrupt function is employed  
6. Set the ADRUN bit to 1  
7. Write “SLEPinstruction or Polling.  
8. Wait for wake-up or for the ADRUN bit to be cleared to “0, interrupt flag (ADIF) is  
set “1,” or ADC interrupt occurs.  
9. Read the ADDATA or ADDATA1H and ADDATA1L conversion data registers. If the  
ADC input channel changes at this time, the ADDATA, ADDATA1H, and  
ADDATA1L values can be cleared to ‘0’.  
10. Clear the interrupt flag bit (ADIF).  
11. For next conversion, go to Step 1 or Step 2 as required. At least two Tct is required  
before the next acquisition starts.  
NOTE  
In order to obtain accurate values, it is necessary to avoid any data transition on the I/O  
pins during AD conversion.  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
55  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.7.6.2 Sample Demo Programs  
R_0 == 0  
PSW == 3  
; Indirect addressing register  
; Status register  
PORT5 == 5  
PORT6 == 6  
RE== 0XE  
; Interrupt status register  
B. Define a Control Register  
IOC50 == 0X5  
IOC60 == 0X6  
IOCE0== 0XE  
C_INT== 0XF  
; Control Register of Port 5  
; Control Register of Port 6  
; Interrupt Mask Register 2  
; Interrupt Mask Register  
C. ADC Control Register  
ADDATA == 0xB  
; The contents are the results of ADC[11:4]  
ADDATA1H == 0xC ; The contents are the results of ADC[11:8]  
ADDATA1L == 0xD ; The contents are the results of ADC[7:0]  
AISR == 0x08  
ADCON == 0x9  
; ADC input select register  
;
7
6
5
4
3
2
1
0
;VREFS CKR1 CKR0 ADRUN ADPD ADIS2 ADIS1 ADIS0  
D. Define Bits in ADCON  
ADRUN == 0x4  
ADPD == 0x3  
; ADC is executed as the bit is set  
; Power Mode of ADC  
E. Program Starts  
ORG 0  
JMP INITIAL  
; Initial address  
; Interrupt vector  
ORG 0x0C  
JMP CLRRE  
;
;(User program section)  
;
CLRRE:  
MOV A,RE  
AND A, @0BXX0XXXXX ; To clear the ADIF bit, “X” by application  
MOV RE,A  
BS ADCON, ADRUN  
; To start to execute the next AD conversion  
; if necessary  
RETI  
INITIAL:  
MOV A,@0B00000001  
MOV AISR,A  
; To define P50 as an analog input  
MOV A,@0B00001000  
; To select P50 as an analog input channel, and  
; AD power on  
MOV ADCON,A  
; To define P50 as an input pin and set the  
; clock rate at fosc/16  
En_ADC:  
MOV A, @0BXXXXXXX1 ; To define P50 as an input pin, and the others  
; are dependent on applications  
56   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
IOW PORT5  
MOV A, @0BXXXX1XXX ; Enable the ADWE wake-up function of ADC, “X”  
; by application  
MOV RE,A  
MOV A, @0BXX1XXXXX ; Enable the ADIE interrupt function of ADC,  
; “X” by application  
IOW IOCE0  
ENI  
; Enable the interrupt function  
; Start to run the ADC  
BS ADCON, ADRUN  
; If the interrupt function is employed, the following three lines  
may be ignored  
;If Sleep:  
SLEP  
;
;(User program section)  
;
or  
;If Polling:  
POLLING:  
JBC ADCON, ADRUN  
JMP POLLING  
; To check the ADRUN bit continuously;  
; ADRUN bit will be reset as the AD conversion  
; is completed  
;
;(User program section)  
6.8 Dual Sets of PWM (Pulse Width Modulation)  
6.8.1 Overview  
In PWM mode, PWM1 and PWM2 pins produce 8-bit resolution PWM output (see. the  
functional block diagram below). A PWM output consists of a time period and a duty  
cycle, and it keeps the output high. The baud rate of PWM is the inverse of the time  
period. Figure 6-13 PWM Output Timing depicts the relation between a time period and  
a duty cycle.  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
57  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
latch  
DL1  
PWM1IF  
Fosc  
DT1  
1:1  
1:2  
1:4  
Duty Cycle  
Match  
Comparator  
1:8  
MUX  
PWM1  
1:16  
1:64  
1:128  
1:256  
R
Q
TMR1  
reset  
S
BANK1 R7[0]  
Comparator  
T1P2 T1P1 T1P0 T1EN  
Period  
Match  
PRD1  
DT2  
Data Bus  
Data Bus  
latch  
DL2  
PWM2IF  
Duty Cycle  
Match  
T2P2 T2P1 T2P0 T2EN  
Comparator  
PWM2  
Fosc  
R
S
Q
TMR2  
reset  
1:1  
1:2  
1:4  
1:8  
1:16  
1:64  
MUX  
BANK1 R7 [1]  
Comparator  
Period  
Match  
1:128  
1:256  
PRD2  
Figure 6-12 PWM System Block Diagram  
Period  
Duty Cycle  
PRD1 = TMR1  
DT1 = TMR1  
Figure 6-13 PWM Output Timing  
6.8.2 Increment Timer Counter (TMRX: TMR1 or TMR2)  
TMRX are 8-bit clock counters with programmable prescalers. They are designed for  
the PWM module as baud rate clock generators. If employed, they can be turned off for  
power saving by setting the T1EN bit [Bank 1-R8<6>] or T2EN bit [Bank 1-R8<7>] to  
0”.  
TMR1 and TMR2 are internal designs and can be read only  
58   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.8.3 PWM Time Period (TMRX: TMR1 or TMR2)  
PWM Time Period (PRDX: PRD1 or PRD2). The PWM time period is defined by writing  
to the PRDX register. When TMRX is equal to PRDX, the following events occur on the  
next increment cycle:  
1) TMR is cleared  
2) The PWMX pin is set to “1”  
3) The PWMX duty cycle is latched from DT1/DT2 to DL1/DL2  
NOTE  
The PWM output will not be set, if the duty cycle is “0”.  
4) The PWMXIF pin is set to “1”  
The following formula describes how to calculate the PWM time period:  
1
Period   
PRDX 1  
TMRX prescale value  
FOSC  
Example:  
PRDX=49; Fosc=4 MHz; TMRX (0, 0, 0) = 1:1,  
1
µS  
Period   
49 1  
112.5  
then  
4M  
6.8.4 PWM Duty Cycle (DTX: DT1 or DT2; DLX: DL1 or DL2)  
The PWM duty cycle is defined by writing to the DTX register, and is latched from DTX  
to DLX while TMRX is cleared. When DLX is equal to TMRX, the PWMX pin is cleared.  
DTX can be loaded anytime. However, it cannot be latched into DLX until the current  
value of DLX is equal to TMRX.  
The following formula describes how to calculate the PWM duty cycle:  
1
Duty Cycle   
DTX  
TMRX prescale value  
FOSC  
Example:  
DTX=10; Fosc=4 MHz; TMRX (0, 0, 0) = 1:1,  
1
then  
µS  
Duty Cycle 10   
1 2.5  
4M  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
59  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.8.5 Comparator X  
Changing the output status while a match occurs will simultaneously set the PWMXIF  
(TMRXIF) flag.  
6.8.6 PWM Programming Process/Steps  
1. Load PRDX with the PWM time period.  
2. Load DTX with the PWM Duty Cycle.  
3. Enable the interrupt function by writing to the IOCF0, if required.  
4. Set PWMX pin to be output by writing a desired value to BANK1-R7.  
5. Load a desired value to Bank 1-R7 or Bank 1-R8 with TMRX prescaler value and  
enable both PWMx and TMRX.  
6.9 Timer/Counter  
6.9.1 Overview  
Timer 1 (TMR1) and Timer 2 (TMR2) (TMRX) are 8-bit clock counters with  
programmable prescalers. They are designed for the PWM module as baud rate clock  
generators. TMRX can be read only. The Timer 1 and Timer 2 will stop running when  
sleep mode occurs with AD conversion not running. However, if AD conversion is  
running when sleep mode occurs, the Timer 1 and Timer 2 will keep on running.  
6.9.2 Functional Description  
1:1  
1:2  
Fosc  
1:4  
To TMR1IF(PWM1IF)  
1:8  
MUX  
1:16  
1:64  
reset  
1:128  
1:256  
Period  
Match  
TMR1  
Comparator  
T1P2 T1P1 T1P0 T1EN  
PRD1  
Data Bus  
Data Bus  
PRD2  
T2P2 T2P1 T2P0 T2EN  
Comparator  
reset  
Period  
Match  
TMR2  
1:1  
1:2  
Fosc  
1:4  
1:8  
MUX  
1:16  
1:64  
To TMR2IF(PWM2IF)  
1:128  
1:256  
Figure 6-14 Timer Block Diagram  
60   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Where:  
Fosc: Input clock  
Prescaler (T1P2, T1P1 and T1P0 / T2P2, T2P1 and T2P0): The options 1:1, 1:2, 1:4,  
1:8, 1:16, 1:64, 1:128, and 1:256 are defined by TMRX. These are cleared when any  
type of reset occurs.  
TMR1 and TMR2: Timer X register. TMRX is increased until it matches with PRDX,  
and then is reset to 0(default value).  
PRDX (PRD1, PRD2): PWM time period register  
Comparator X (Comparator 1 and Comparator 2): Reset TMRX while a match  
occurs. The TMRXIF (PWMXIF) flag is set at the same time.  
6.9.3 Programming the Related Registers  
When defining TMRX, refer to the operation of its related registers as shown in the  
following table. It must be noted that the PWMX bits must be disabled if their related  
TMRXs are utilized. That is, Bit 7 ~ Bit 3 of the PWMCON register must be set to 0.  
Related Control Registers of TMR1 and TMR2  
Addr.  
0x07  
0x08  
Name  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3  
0” “0” “0” “0” “0PWMCAS PWM2E PWM1E  
T1P2 T1P1 T1P0  
Bit 2  
Bit 1  
Bit 0  
PWMCON/R7  
TMRCON/R8 T2EN T1EN T2P2 T2P1 T2P0  
6.9.4 Timer Programming Process/Steps  
1. Load PRDX with the Timer duration  
2. Enable interrupt function by writing IOCF0, if required  
3. Load a desired value for the TMRX prescaler and enable TMRX and disable PWM  
6.9.5 PWM Cascade Mode  
The PWM Cascade Mode merges two 8-bit PWM function to one 16-bit. In this Mode,  
the necessary parameters are redefined as shown on the table below:  
Parameter  
PRD  
(Period)  
TMR  
(Timer)  
DT (Duty)  
16-bit PWM  
MSB (15~8)  
LSB (7~0)  
DT2  
DT1  
PRD2  
PRD1  
TMR2  
TMR1  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
61  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
The prescaler of this 16-bit PWM uses the prescaler of the TMR1, the MSB of TMR is  
counted when LSB carry and the PWM1IF bit/PWM1 Pin are redefined as the PWMIF  
bit/PWM pin for this one.  
latch  
To PWMIF  
(PWM1IF)  
DL  
Fosc  
DT  
1:1  
1:2  
1:4  
1:8  
1:16  
1:64  
1:128  
1:256  
Duty Cycle  
Match  
16-bit Comparator  
TMR  
MUX  
PWM  
(PWM1)  
R
S
Q
reset  
IOC51,2  
Data Bus  
16-bit Comparator  
T1E  
N
T1P2 T1P1 T1P0  
Period  
Match  
PRD  
Data Bus  
Figure 6-14 Functional Block Diagram of 16-bit PWM (merged from two 8 bits)  
6.10 Comparator  
The EM78P372N has one  
comparator which has two analog  
inputs and one output. The  
comparator can be employed to  
wake up the system from  
sleep/idle mode. The Figure at  
the right shows the comparator  
circuit.  
-
Cin  
-
CO  
CMP  
Cin+  
+
Cin-  
Cin+  
Output  
10mV  
Figure 6-15 Comparator Operating Mode  
6.10.1 External Reference Signal  
The analog signal that is presented at Cincompares to the signal at Cin+, and the  
digital output (CO) of the comparator is adjusted accordingly by taking the following  
notes into considerations:  
NOTE  
The reference signal must be between Vss and Vdd.  
The reference voltage can be applied to either pin of the comparator.  
Threshold detector applications may be of the same reference.  
The comparator can operate from the same or different reference sources.  
62   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.10.2 Comparator Outputs  
The compared result is stored in the CMPOUT of IOC80.  
The comparator outputs are sent to CO (P64) by programming Bit 4 and Bit 3  
<COS1, COS0> of the IOC80 register to <1,0>. See the table under Section 6.2.4,  
IOC80 (Comparator Control Registers) for Comparator/OP select bits Function  
description.  
The following figure shows the Comparator Output block diagram.  
To C0  
From OP I/O  
CMRD  
EN  
EN  
Q
D
Q
D
To CMPOUT  
RESET  
To CPIF  
CMRD  
From other  
comparator  
Figure 6-16 Comparator Output Configuration  
6.10.3 Using Comparator as an Operation Amplifier  
The comparator can be used as an operation amplifier if a feedback resistor is  
externally connected from the input to the output. In this case, the Schmitt trigger  
function can be disabled for power saving purposes, by setting Bit 4, Bit 3 <COS1,  
COS0> of the IOC80 register to <1,1>. See the table under Section 6.2.4, IOC80  
(Comparator Control Registers) for Comparator/OP select bits function description.  
NOTE  
Under Operation Amplifier:  
The CMPIE (IOCE0.4), CMPWE (BANK 0 RE.2), and CMPIF (BANK 0 RE.4) bits are  
invalid.  
The comparator interrupt is invalid.  
The comparator wake-up is invalid.  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
63  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.10.4 Comparator Interrupt  
CMPIE (IOCE0.4) must be enabled for the ENIinstruction to take effect  
Interrupt is triggered whenever a change occurs on the comparator output pin  
The actual change on the pin can be determined by reading the Bit CMPOUT,  
IOC80<5>.  
CMPIF (Bank 0 RE.4), the comparator interrupt flag, can only be cleared by  
software  
6.10.5 Wake-up from Sleep Mode  
If the CMPWE bit of the Bank 0 RE register is set to “1,” the comparator remains  
active and the interrupt remains functional, even under Sleep mode.  
If a mismatch occurs, the change will wake up the device from Sleep mode.  
The power consumption should be taken into consideration for the benefit of  
energy conservation.  
If the function is unemployed during Sleep mode, turn off the comparator before  
entering into sleep mode.  
The Comparator is considered completed as determined by:  
1. COS1 and COS0 bits of IOC80 register setting selects Comparator.  
2. CMPIF bit of Bank 0 RE register is set to 1.  
3. CMPWE bit of Bank 0 RE register is set to 1. Wakes up from Comparator (where  
it remains in operation during sleep/idle mode).  
4. Waking-up and executing the next instruction, if CMPIE bit of IOCE0 is enabled and  
the DISIinstruction is executed.  
5. Waking-up and entering into Interrupt vector (Address 0x00F), if CMPIE bit of  
IOCE0 is enabled and the ENIinstruction is executed.  
6. Entering into Interrupt vector (Address 0x00F), if CMPIE bit of IOCE0 is enabled  
and the ENIinstruction is executed.  
64   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.11 Oscillator  
6.11.1 Oscillator Modes  
The EM78P372N can be operated in six different oscillator modes, such as Crystal  
Oscillator Mode (XT), High Crystal Oscillator Mode 1 (HXT1), High Crystal Oscillator  
Mode 2 (HXT2), Low Crystal Oscillator Mode 1 (LXT1), Low Crystal Oscillator Mode 2  
(LXT2), External RC Oscillator Mode (ERC), and RC Oscillator Mode with Internal RC  
Oscillator Mode (IRC). User can select one of the six modes by programming the  
OSC3, OSC2, OCS1, and OSC0 in the Code Option register.  
The Oscillator modes defined by OSC3, OSC2, OCS1, and OSC0 are described below.  
Oscillator Modes  
OSC3 OSC2 OSC1 OSC0  
ERC1 (External RC oscillator mode);  
P55/ERCin acts as ERCin  
0
0
0
0
0
0
0
1
P70/RCOUT acts as P70  
ERC1 (External RC oscillator mode);  
P55/ERCin acts as ERCin  
P70/RCOUT acts as RCOUT  
IRC2 (Internal RC oscillator mode);  
P55/ERCin acts as P55  
P70/RCOUT acts as P70  
(default)  
0
0
0
0
1
1
0
1
IRC2 (Internal RC oscillator mode);  
P55/ERCin acts as P55  
P70//RCOUT acts as RCOUT  
LXT13 (Frequency range of XT, mode is 100kHz ~ 1 MHz)  
HXT13 (Frequency range of XT mode is 12 MHz ~ 16 MHz)  
LXT23 (Frequency range of XT mode is 32.768kHz)  
HXT23 (Frequency range of XT mode is 6 MHz ~ 12 MHz)  
XT3 (Frequency range of XT mode is 1 MHz ~ 6 MHz)  
0
0
0
0
1
1
1
1
1
1
0
0
1
1
1
0
1
0
1
1
1 In ERC mode, ERCin is used as oscillator pin. RCOUT/P70 is defined by Code Option Word 1  
Bit 4 ~ Bit 1.  
2 In IRC mode, P55 is normal I/O pin. RCOUT/P70 is defined by Code Option Word 1 Bit4 ~Bit 1.  
3 In LXT1, LXT2, HXT1, HXT2 and XT modes; OSCI and OSCO are used as oscillator pins.  
These pins cannot and should not be defined as normal I/O pins.  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
65  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
The maximum operating frequency limit of the crystal/resonator at different VDDs are  
as follows:  
Conditions  
VDD  
2.1V  
3.0V  
4.5V  
Max. Freq. (MHz)  
4
8
Two clocks  
16  
6.11.2 Crystal Oscillator/Ceramic Resonators (Crystal)  
The EM78P372N can be driven by an external clock signal through the OSCI pin as  
illustrated below.  
OSCI  
OSCO  
Figure 6-17 External Clock Input Circuit  
In most applications, Pin OSCI and Pin OSCO can be connected with a crystal or  
ceramic resonator to generate oscillation. Figure 6-18 below depicts such a circuit.  
The same applies to the HXT1 mode, HTX2 mode, LXT1 mode, LXT2 and XT mode.  
C1  
OSCI  
Crystal  
OSCO  
RS  
C2  
Figure 6-18 Crystal/Resonator Circuit  
The following table provides the recommended values for C1 and C2. Since each  
resonator has its own attribute, user should refer to the resonator specifications for the  
appropriate values of C1 and C2. RS, a serial resistor, maybe required for AT strip cut  
crystal or low frequency mode. Figure 6-21 is a PCB layout suggestion. When the  
system works in Crystal mode (16 MHz), a 10 Kis connected between OSCI  
and OSCO.  
66   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Capacitor selection guide for crystal oscillator or ceramic resonators:  
Oscillator Type  
Frequency Mode  
Frequency  
C1 (pF)  
C2 (pF)  
100kHz  
200kHz  
455kHz  
1 MHz  
60 pF  
60 pF  
40 pF  
30 pF  
30 pF  
30 pF  
20 pF  
40 pF  
60 pF  
60 pF  
40 pF  
30 pF  
30 pF  
30 pF  
20 pF  
30 pF  
30 pF  
20 pF  
30 pF  
30 pF  
20 pF  
60 pF  
60 pF  
40 pF  
30 pF  
30 pF  
30 pF  
20 pF  
40 pF  
60 pF  
60 pF  
40 pF  
30 pF  
30 pF  
30 pF  
20 pF  
30 pF  
30 pF  
20 pF  
30 pF  
30 pF  
20 pF  
LXT1  
(100 K ~ 1 MHz)  
Ceramic Resonators  
1.0 MHz  
2.0 MHz  
4.0 MHz  
32.768kHz  
100kHz  
200kHz  
455kHz  
1 MHz  
XT  
(1 M ~ 6 MHz)  
LXT2 (32.768kHz)  
LXT1  
(100 K ~ 1 MHz)  
1.0 MHz  
2.0 MHz  
4.0 MHz  
6.0 MHz  
6.0 MHz  
8.0 MHz  
12.0 MHz  
12.0 MHz  
16.0 MHz  
XT  
Crystal Oscillator  
(1~6 MHz)  
HXT2  
(6~12 MHz)  
HXT1  
(12~20 MHz)  
Circuit diagrams for serial and parallel modes Crystal/Resonator:  
330  
330  
C
OSCI  
7404  
7404  
7404  
Crystal  
Figure 6-19 Serial Mode Crystal/Resonator Circuit Diagram  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
67  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
4.7K  
10K  
7404  
Vdd  
OSCI  
7404  
10K  
Crystal  
10K  
C1  
C2  
Figure 6-20 Parallel Mode Crystal/Resonator Circuit Diagram  
Figure 6-21 Parallel Mode Crystal/Resonator Circuit Diagram  
68   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.11.3 External RC Oscillator Mode  
For some applications that do not  
require precise timing calculation, the  
RC oscillator (Figure 6-22) could offer  
an effective cost savings.  
Vcc  
Rext  
Nevertheless, it should be noted that  
the frequency of the RC oscillator is  
influenced by the supply voltage, the  
values of the resistor (Rext), the  
capacitor (Cext), and even by the  
operation temperature. Moreover, the  
frequency also changes slightly from  
one chip to another due to the  
ERCin  
Cext  
Figure 6-22 External RC Oscillator Mode Circuit  
manufacturing process variation.  
In order to maintain a stable system frequency, the values of the Cext should be not  
lesser than 20 pF, and the value of Rext should not be greater than 1 M. If the  
frequency cannot be kept within this range, the frequency can be affected easily by  
noise, humidity, and leakage.  
The smaller the Rext in the RC oscillator is, the faster its frequency will be. On the  
contrary, for very low Rext values, for instance, 1 K, the oscillator will become  
unstable because the NMOS cannot correctly discharge the capacitance current.  
Based on the above reasons, it must be kept in mind that all the supply voltage, the  
operation temperature, the components of the RC oscillator, the package types, and  
the PCB layout have certain effects on the system frequency.  
The RC Oscillator frequencies:  
Cext  
Rext  
3.3k  
5.1k  
10k  
Average Fosc 5V, 25 C  
Average Fosc 3V, 25 C  
2.064 MHz  
1.403 MHz  
750.0kHz  
81.45kHz  
647.0kHz  
430.8kHz  
225.8kHz  
23.88kHz  
256.6kHz  
169.5kHz  
88.53kHz  
9.283kHz  
1.901 MHz  
1.316 MHz  
719.0kHz  
81.33kHz  
615.0kHz  
414.3kHz  
219.8kHz  
23.96kHz  
245.3kHz  
163.0kHz  
86.14kHz  
9.255kHz  
20 pF  
100k  
3.3k  
5.1k  
10k  
100 pF  
300 pF  
100k  
3.3k  
5.1k  
10k  
100k  
Note: 1: Measured based on DIP packages.  
2: The values are for design reference only.  
3: The frequency drift is 30%  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
69  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.11.4 Internal RC Oscillator Mode  
The EM78P372N offers a versatile internal RC mode with default frequency value of  
4 MHz. Internal RC oscillator mode has other frequencies (16 MHz, 1 MHz, and  
8 MHz) that can be set by Code Option (Word 1), RCM1, and RCM0. The Table below  
describes the EM78P372N internal RC drift with voltage, temperature, and process  
variations.  
Internal RC Drift Rate (Ta=25°C, VDD=5V, VSS=0V)  
Drift Rate  
Internal  
RC  
Frequency  
Temperature  
(-40°C ~+85°C)  
Voltage  
Process  
Total  
±1%  
4 MHz  
16 MHz  
8 MHz  
1 MHz  
±2%  
±2%  
±2%  
±2%  
±2%  
±5%  
*(2.1~5.5V)  
±1%  
±2%  
±2%  
±2%  
±5%  
±5%  
±5%  
*(4.0~5.5V)  
±1%  
*(3.0~5.5V)  
±1%  
*(2.1~5.5V)  
* Operating voltage range  
Note: Theoretical values are for reference only. Actual values may vary depending on the actual  
process.  
6.12 Power-on Considerations  
Any microcontroller is not warranted to start operating properly before the power supply  
stabilizes in steady state. The EM78P372N POR voltage range is 1.8V ~ 1.9V. Under  
customer application, when power is switched OFF, Vdd must drop below 1.8V and  
remains at OFF state for 10s before power can be switched ON again. Subsequently,  
the EM78P372N will reset and work normally. The extra external reset circuit will work  
well if Vdd rises fast enough (50ms or less). However, under critical applications, extra  
devices are still required to assist in solving power-on problems.  
6.12.1 Programmable WDT Time-out Period  
The Option word (WDTPS) is used to define the WDT time-out period (18ms5 or  
4.5ms6). Theoretically, the range is from 4.5ms or 18ms. For most crystal or ceramic  
resonators, the lower the operation frequency is, the longer is the required set-up time.  
5
°
VDD=5V, WDT time-out period = 16.5ms ± 30% at 25 C  
°
VDD=3V, WDT time-out period = 18ms ± 30% at 25 C  
6
°
VDD=5V, WDT time-out period = 4.2ms ± 30% at 25 C  
°
VDD=3V, WDT time-out period = 4.5ms ± 30% at 25 C  
70   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.12.2 External Power-on Reset Circuit  
The circuits shown in the  
following figure implement  
an external RC to produce a  
reset pulse. The pulse  
width (time constant) should  
be kept long enough to  
allow the Vdd to reach the  
minimum operating voltage.  
This circuit is used when the  
power supply has a slow  
power rise time.  
VDD  
/RESET  
R
D
Rin  
C
Figure 6-23 External Power-on Reset Circuit  
Because the current leakage from the /RESET pin is about 5 A, it is recommended  
that R should not be greater than 40KΩ. This way, the voltage at Pin /RESET is held  
below 0.2V. The diode (D) functions as a short circuit at power-down. The “C”  
capacitor is discharged rapidly and fully. Rin, the current-limited resistor, prevents high  
current discharge or ESD (electrostatic discharge) from flowing into Pin /RESET.  
6.12.3 Residual Voltage Protection  
When the battery is replaced, device power (Vdd) is removed but residual voltage  
remains. The residual voltage may trip below Vdd minimum, but not to zero. This  
condition may cause a poor power-on reset. Figure 6-24 and Figure 6-25 show how to  
create a protection circuit against residual voltage.  
VDD  
VDD  
33K  
Q1  
10K  
/RESET  
100K  
1N4684  
Figure 6-24 Residual Voltage Protection Circuit 1  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
71  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
VDD  
VDD  
R1  
R2  
Q1  
R3  
/RESET  
Figure 6-25 Residual Voltage Protection Circuit 2  
6.13 Code Option  
EM78P372N has two Code Option Words and one Customer ID word that are not part  
of the normal program memory.  
Word 0  
Word 1  
Word 2  
Bit 12 ~ Bit 0  
Bit 12 ~ Bit 0  
Bit12 ~ Bit 0  
6.13.1 Code Option Register (Word 0)  
Word 0  
Bit  
Bit 12 Bit 11  
Bit 10  
Bit9  
Bit 8  
Bit 7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2~ 0  
Mne  
TYPE1 TYPE0 WK_CLK CLKS LVR1 LVR0 RESETEN ENWDT NRHL  
NRE  
Protect  
monic  
1
0
High High  
8 clock High High High Disable Disable 32/fc Enable Disable  
Enable Enable 8/fc Disable Enable  
Low Low 32 clock Low Low Low  
Bits 12 ~ 11 (TYPE1 ~ TYPE0): Type selection for EM78P372N (for UWTR)  
TYPE 1, TYPE 0  
MCU Type  
EM78P372N-10Pin  
EM78P372N-14Pin  
EM78P372N-18Pin  
EM78P372N-20Pin (Default)  
Pin Not Used  
Port 60 ~ 66 / 54 / 56 / 57 are output low.  
Port 62 / 63 / 64 / 65 / 56 / 57 are output low.  
Port 56 / 57 are output low.  
X
00  
01  
10  
11  
Bit 10 (WK_CLK): Selecting 8 or 32 clocks wake up from sleep and idle mode (only  
IRC mode)  
0: IRC stable time + 32 clocks  
1: IRC stable time + 8 clocks (default)  
72   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Bit 9 (CLKS): Instruction period option bit  
0: Two oscillator periods  
1: Four oscillator periods (default)  
Bits 8 ~ 7 (LVR1 ~ LVR0): Low Voltage Reset Enable bits  
LVR1, LVR0  
VDD Reset Level  
VDD Release Level  
11  
10  
01  
00  
NA (Power-on Reset) (Default)  
2.7V  
3.5V  
4.0V  
2.9V  
3.7V  
4.2V  
Bit 6 (RESETEN): RESET/P71 Pin Select Bit  
0: P71 set to /RESET pin  
1: P71 is general purpose input pin or open-drain for output Port  
(default)  
Bit 5 (ENWDT): Watchdog timer enable bit  
0: Enable  
1: Disable (default)  
Bit 4 (NRHL): Noise rejection high/low pulses define bit. The INT pin is falling or rising  
edge trigger.  
0: Pulses equal to 8/fc is regarded as signal  
1: Pulses equal to 32/fc is regarded as signal (default)  
NOTE  
The noise rejection function is turned off in the LXT2 and sleep mode.  
Bit 3 (NRE): Noise Rejection Enable  
0: Disable noise rejection  
1: Enable noise rejection (default), but in Low Crystal oscillator (LXT)  
mode, the noise rejection circuit is always disabled.  
Bits 2 ~ 0 (Protect): Protect Bit  
Protect Bits  
Protect  
Enable  
0
1
Disable (default)  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
73  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.13.2 Code Option Register (Word 1)  
Word 1  
Bit  
Mnemonic  
1
Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5  
Bit 4 Bit 3 Bit2 Bit1  
Bit0  
C5  
C4  
C3  
C2  
C1  
C0  
RCM1 RCM0 OSC3 OSC2 OSC1 OSC0 RCOUT  
High High  
High  
High High High  
High  
Low  
High  
Low  
High  
Low  
High High High System_clk  
Open_  
0
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
drain  
Bits 12 ~ 7 (C5 ~ C0): Calibrator of internal RC mode C5~C0 must be set to 1only  
(auto-calibration).  
Bits 6 ~ 5 (RCM1 ~ RCM0): RC mode selection bits  
RCM 1  
RCM 0  
Frequency (MHz)  
1
1
0
0
1
0
1
0
4 (Default)  
16  
8
1
Bits 4 ~ 1 (OSC3 ~ OSC0): Oscillator Modes Selection bits  
Oscillator Modes  
OSC3 OSC2 OSC1 OSC0  
ERC1 (External RC oscillator mode);  
P55/ERCin acts as ERCin  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
P70/RCOUT acts as P70  
ERC1 (External RC oscillator mode);  
P55/ERCin acts as ERCin  
P70/RCOUT acts as RCOUT  
IRC2 (Internal RC oscillator mode);  
P55/ERCin acts as P55  
P70/RCOUT acts as P70 (default)  
IRC2 (Internal RC oscillator mode);  
P55/ERCin acts as P55  
P70/RCOUT acts as RCOUT  
LXT13 (Frequency range of XT, mode is 100kHz ~ 1 MHz)  
HXT13 (Frequency range of XT mode is 12 MHz ~ 16 MHz)  
LXT23 (Frequency range of XT mode is 32.768kHz)  
HXT23 (Frequency range of XT mode is 6MHz ~ 12 MHz)  
XT3 (Frequency range of XT mode is 1 MHz ~ 6 MHz)  
0
0
0
0
1
1
1
1
1
1
0
0
1
1
1
0
1
0
1
1
1 In ERC mode, ERCin is used as oscillator pin. RCOUT/P70 is defined by code option Word 1  
Bit 4 ~ Bit 1.  
2 In IRC mode, P55 is normal I/O pin. RCOUT/P70 is defined by code option Word 1 Bit 4 ~ Bit 1.  
3 In LXT1, LXT2, HXT1, HXT2 and XT modes; OSCI and OSCO are used as oscillator pins.  
These pins cannot and should not be defined as normal I/O pins.  
74   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Bit 0 (RCOUT): Instruction clock output enable bit in IRC or ERC mode.  
0: RCOUT pin output instruction clock with open drain.  
1: RCOUT pin output instruction clock (default)  
6.13.3 Customer ID Register (Word 2)  
Word 2  
Bit 7 Bit 6  
Bit  
Bit 12 Bit 11 Bit 10 Bit 9  
Bit 8  
Bit 5  
HLP  
High  
Low  
Bit 4  
Bit 3  
Bit2  
Bit1  
ID1  
Bit0  
ID0  
Mnemonic  
SFS  
WDTPS ID2  
1
0
16KHz  
128KHz  
18ms  
High  
Low  
High  
Low  
High  
Low  
4.5ms  
Bit 12: Not used (reserved). This bit is set to “1” all the time.  
Bit 11: Not used, (reserved). This bit is set to “0” all the time.  
Bit 10: Not used, (reserved). This bit is set to “1” all the time.  
Bit 9 (SFS): Sub-oscillator select for GREEN mode and TCC, PWM1, PWM2 clock  
source (Non-include WDT time-out and free run setup-up time)  
0: 128kHz  
1: 16kHz (default)  
Bit 8: Not used, (reserved). This bit is set to “0” all the time.  
Bit 7: Not used (reserved). This bit is set to “1” all the time.  
Bit 6: Not used (reserved). This bit is set to “1” all the time.  
Bit 5 (HLP): Power consumption selection  
0: Low power consumption mode, applies to operating frequency at  
400kHz or below 400kHz  
1: High power consumption mode, applies to operating frequency above  
400kHz (default)  
(User selects LXT1 or LXT2 in crystal mode, HLP function automatically selects  
low)  
Bit 4: Not used, (reserved). This bit is set to “1” all the time.  
Bit 3 (WDTPS): WDT Time-out Period  
WDTPS  
Watchdog Timer*  
18 ms (Default)  
4.5 ms  
1
0
*Theoretical values, for reference only.  
Bits 2 ~ 0: Customer’s ID code  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
75  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.14 Low Voltage Detector/Low Voltage Reset  
The Low Voltage Reset (LVR) and the Low Voltage Detector (LVD) are designed for  
unstable power situation, such as external power noise interference or in EMS test  
condition.  
When LVR is enabled, the system supply voltage (Vdd) drops below Vdd reset level  
(VRESET) and remains at 10s, a system reset will occur and the system will remain in  
reset status. The system will remain at reset status until Vdd voltage rises above Vdd  
release level. Refer to Figure 6-26 LVD/LVR Waveform.  
If Vdd drops below the low voltage detector level, /LVD (Bit 7 of RE) is cleared to 0to  
show a low voltage signal when LVD is enabled. This signal can be used for low  
voltage detection.  
6.14.1 Low Voltage Reset  
LVR property is set at Bits 8 and 7 of Code Option Word 0. Detailed operation mode is  
as follows:  
Word 0  
Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7  
Bit 6  
Bit 5  
Bit 4 Bit 3 Bit 2~Bit0  
TYPE1 TYPE0 WK_CLK CLKS LVR1 LVR0 RESETEN ENWDT NRHL NRE  
Protect  
Bits 8~7 (LVR1 ~ LVR0): Low Voltage Reset Enable bits.  
LVR1, LVR0  
VDD Reset Level  
VDD Release Level  
11  
10  
01  
00  
NA (Power-on Reset)  
2.7V  
3.5V  
4.0V  
2.9V  
3.7V  
4.2V  
6.14.2 Low Voltage Detector  
LVD property is set and Register detailed operation mode is as follows:  
6.14.2.1 Bank 1 RE (LVD Interrupt and Wake-up Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LVDIE  
LVDEN  
LVD1  
LVD0  
-
-
-
EXWE  
NOTE  
Bank 1 RE< 6 > register is both readable and writable  
Individual interrupt is enabled by setting its associated control bit in the Bank 1 RE  
< 7 > to "1."  
Global interrupt is enabled by the ENI instruction and is disabled by the DISI  
instruction. Refer to Figure 6-8 (Interrupt Input Circuit) under Section 6.6 (Interrupt).  
76   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Bit 7 (LVDIE): Low voltage Detector interrupt enable bit.  
0: Disable Low voltage Detector interrupt  
1: Enable Low voltage Detector interrupt  
When the detected low level voltage state is used to enter an interrupt  
vector or enter next instruction, the LVDIE bit must be set to “Enable.  
Bit 6 (LVDEN): Low Voltage Detector Enable bit  
0: Disable Low voltage detector  
1: Enable Low voltage detector  
Bits 5 ~ 4 (LVD1 ~ LVD0): Low Voltage Detector level bits.  
LVDEN  
LVD1, LVD0  
LVD voltage Interrupt Level  
Vdd 2.2V  
Vdd > 2.2V  
Vdd 3.3V  
Vdd > 3.3V  
Vdd 4.0V  
Vdd > 4.0V  
Vdd 4.5V  
Vdd > 4.5V  
NA  
/LVD  
0
1
0
1
0
1
0
1
0
1
11  
1
1
10  
01  
1
0
00  
××  
6.14.2.2 Bank 0 RE (Interrupt Status 2 and Wake-up Control Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
/LVD  
LVDIF  
ADIF  
CMPIF  
ADWE  
CMPWE  
ICWE  
LVDWE  
NOTE  
Bank 0 RE < 6, 5, 4 > can be cleared by instruction but cannot be set.  
Bank 1 RE and IOCE0 is the interrupt mask register.  
Reading Bank 0 RE will result to "logic AND" of Bank 1 RE and IOCE0.  
Bit 7 (/LVD): Low voltage Detector state. This is a read only bit. When the VDD pin  
voltage is lower than LVD voltage interrupt level (selected by LVD1 and  
LVD0), this bit will be cleared.  
0: Low voltage is detected.  
1: Low voltage is not detected or LVD function is disabled.  
Bit 6 (LVDIF): Low Voltage Detector Interrupt flag  
LVDIF is reset to 0by software or hardware.  
Bit 0 (LVDWE): Low Voltage Detect wake-up enable bit.  
0: Disable Low Voltage Detect wake-up.  
1: Enable Low Voltage Detect wake-up.  
When the Low Voltage Detect is used to enter an interrupt vector or to  
wake up the IC from Sleep/Idle with Low Voltage Detect running, the  
LVDWE bit must be set to “Enable.  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
77  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.14.3 Programming Process  
Follow these steps to obtain data from the LVD:  
1. Write to the two bits (LVD1: LVD0) on the LVDCR register to define the LVD level.  
2. Set the LVDWE bit, if the wake-up function is employed.  
3. Set the LVDIE bit, if the interrupt function is employed.  
4. Write “ENI” instruction, if the interrupt function is employed.  
5. Set LVDEN bit to 1  
6. Write “SLEPinstruction or Polling /LVD bit.  
7. Clear the low voltage detector interrupt flag bit (LVDIF) when Low Voltage Detector  
interrupt occurred.  
The LVD module uses the internal circuit. When LVDEN (Bit 6 of Bank 1-RE) is set to  
1, the LVD module is enabled.  
When LVDWE (Bit 0 of RE) is set to 1, the LVD module will continue to operate during  
sleep/idle mode. If Vdd drops slowly and crosses the detect point (VLVD), the LVDIF  
(Bit 6 of RE) will be set to 1, the /LVD (Bit 7 of RE) will be cleared to 0, and the  
system will wake up from Sleep/Idle mode. When a system reset occurs, the LVDIF will  
be cleared.  
When Vdd remains above VLVD, LVDIF is kept at 0and /LVD is kept at 1. When  
Vdd drops below VLVD, LVDIF is set to 1and /LVD is kept at 0. If the ENI instruction  
is executed, LVDIF will be set to 1, and the next instruction will branch to interrupt  
Vector 021H. The LVDIF is cleared to 0by software. Refer to Figure 6-26 below.  
LVDIF is cleared by  
software  
Vdd  
VLVD  
VRESET  
LVDIF  
Internal  
18ms  
Reset  
<LVR Voltage drop  
>LVR Voltage drop  
Vdd < Vreset not longer than 10us, the system still keeps on operating  
System occur reset  
Figure 6-26 LVD/LVR Waveform  
78   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
6.15 Instruction Set  
Each instruction in the instruction set is a 13-bit word divided into an OP code and one  
or more operands. Normally, all instructions are executed within one single instruction  
cycle (one instruction consists of two oscillator time periods), unless the program  
counter is changed by instructions "MOV R2,A," "ADD R2,A," or by instructions of  
arithmetic or logic operation on R2 (e.g., "SUB R2,A," "BS(C) R2,6," "CLR R2," etc.).  
In addition, the instruction set has the following features:  
1. Every bit of any register can be set, cleared, or tested directly.  
2. The I/O registers can be regarded as general registers. That is, the same instruction  
can operate on I/O registers.  
The following symbols are used in the Instruction Set table:  
Convention:  
R = Register designator that specifies which one of the registers (including operation and general  
purpose registers) is to be utilized by the instruction.  
Bits 6 and 7 in R4 determine the selected register bank.  
b = Bit field designator that selects the value for the bit located in the register R and which affects  
the operation.  
k = 8 or 10-bit constant or literal value  
Mnemonic  
NOP  
Operation  
Status Affected  
No Operation  
None  
C
DAA  
Decimal Adjust A  
A CONT  
CONTW  
SLEP  
None  
T, P  
T, P  
None1  
None  
None  
None  
None  
None  
None1  
None  
Z
0 WDT, Stop oscillator  
0 WDT  
WDTC  
IOW R  
ENI  
A IOCR  
Enable Interrupt  
Disable Interrupt  
[Top of Stack] PC  
[Top of Stack] PC, Enable Interrupt  
CONT A  
DISI  
RET  
RETI  
CONTR  
IOR R  
MOV R,A  
CLRA  
IOCR A  
A R  
0 A  
CLR R  
SUB A,R  
SUB R,A  
DECA R  
DEC R  
OR A,R  
OR R,A  
0 R  
Z
R-A A  
Z, C, DC  
Z, C, DC  
Z
R-A R  
R-1 A  
R-1 R  
Z
A VR A  
A VR R  
Z
Z
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
79  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Mnemonic  
Operation  
Status Affected  
AND A,R  
AND R,A  
XOR A,R  
XOR R,A  
ADD A,R  
ADD R,A  
MOV A,R  
MOV R,R  
COMA R  
COM R  
A & R A  
Z
A & R R  
A R A  
A R R  
A + R A  
A + R R  
R A  
R R  
/R A  
/R R  
Z
Z
Z
Z, C, DC  
Z, C, DC  
Z
Z
Z
Z
INCA R  
R+1 A  
R+1 R  
Z
INC R  
Z
DJZA R  
DJZ R  
R-1 A, skip if zero  
R-1 R, skip if zero  
R(n) A(n-1), R(0) C, C A (7)  
R(n) R(n-1), R(0) C,  
C R(7)  
R(n) A(n+1), R(7) C,  
C A(0)  
R(n) R(n+1), R(7) C,  
C R(0)  
None  
None  
C
RRCA R  
RRC R  
C
C
RLCA R  
RLC R  
C
R(0-3) A(4-7),  
R(4-7) A(0-3)  
R(0-3) R(4-7)  
R+1 A, skip if zero  
R+1 R, skip if zero  
0 R(b)  
SWAPA R  
None  
SWAP R  
JZA R  
None  
None  
None  
None 2  
None 3  
None  
None  
None  
None  
None  
Z
JZ R  
BC R,b  
BS R,b  
JBC R,b  
JBS R,b  
CALL k  
JMP k  
1 R(b)  
if R(b)=0, skip  
if R(b)=1, skip  
PC+1 [SP], (Page, k) PC  
(Page, k) PC  
k A  
A k A  
A & k A  
A k A  
k A, [Top of Stack] PC  
k-A A  
MOV A,k  
OR A,k  
AND A,k  
XOR A,k  
RETL k  
SUB A,k  
BANK k  
Z
Z
None  
Z, C, DC  
None  
k R4(6)  
LCALL k  
LJMP k  
PC+1[SP], kPC  
kPC  
None  
None  
If Bank1 R5.7=0, machine code (7~0) R  
Else Bank1 R5.7=1, machine code (12~8)   
R(4~0), R(7~5)=(0,0,0)  
TBRD R  
None  
Note: 1 This instruction is applicable to IOC50~IOCF0, IOC51 ~ IOCF1 only.  
2 This instruction is not recommended for RF operation.  
3 This instruction cannot operate under RF.  
80   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
7 Absolute Maximum Ratings  
Items  
Rating  
85 C  
Temperature under bias  
Storage temperature  
Input voltage  
-40C  
-65C  
Vss-0.3V  
Vss-0.3V  
2.1V  
to  
to  
to  
to  
to  
to  
150 C  
Vdd+0.5V  
Vdd+0.5V  
5.5V  
Output voltage  
Working Voltage  
Working Frequency  
DC  
16 MHz  
8 DC Electrical Characteristics  
Ta= 25C, VDD= 5.0V, VSS= 0V  
Symbol  
FXT  
Parameter  
Crystal: VDD to 5V  
ERC: VDD to 5V  
Condition  
Min.  
Typ.  
4
Max.  
16  
Unit  
MHz  
kHz  
Two cycles with two clocks  
32.768k  
760  
ERC  
R: 5.1K, C: 100 pF  
950  
1140  
Input High Voltage  
(Schmitt Trigger)  
VIH1  
Ports 5, 6, 7  
Ports 5, 6, 7  
/RESET  
0.7VDD  
VDD+0.3  
V
V
V
V
V
V
Input Low Voltage  
(Schmitt Trigger)  
VIL1  
-0.3V  
0.3VDD  
Input High Threshold  
VIHT1  
VILT1  
VIHT2  
VILT2  
IOH1  
1.8  
1.1  
Voltage (Schmitt Trigger)  
Input Low Threshold  
/RESET  
Voltage (Schmitt Trigger)  
Input High Threshold  
TCC, INT  
TCC, INT  
0.7VDD  
-0.3V  
VDD+0.3  
0.3VDD  
Voltage (Schmitt Trigger)  
Input Low Threshold  
Voltage (Schmitt Trigger)  
Output High Voltage  
(Ports 5, 6, 7)  
-3.7  
VOH = 0.9VDD  
VOL = 0.1VDD  
mA  
Output High Voltage  
(Ports 51~54,  
IOH2  
IOL1  
IOL2  
-10  
10  
25  
56~57,60~67)  
Output Low Voltage  
(Ports 5, 6, 7)  
mA  
Output Low Voltage  
(Ports 51~54,  
56~57,60~67)  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
81  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Symbol  
Parameter  
Condition  
Min. Typ. Max. Unit  
Ta= 25 C  
2.41  
2.14  
3.1  
2.7  
2.7  
3.5  
3.5  
4.0  
4.0  
70  
2.99  
3.25  
3.92  
4.25  
4.43  
4.81  
V
V
LVR1  
Low voltage reset level  
Ta= -40~85 C  
Ta= 25 C  
V
LVR2  
LVR3  
Low voltage reset level  
Low voltage reset level  
Ta= -40~85 C  
2.73  
3.56  
3.16  
V
Ta= 25 C  
V
Ta= -40~85 C  
V
IPH  
IPL  
Pull-high current  
Pull-low current  
Pull-high active, input pin at VSS  
Pull-low active, input pin at Vdd  
A  
A  
40  
All input and I/O pins at VDD,  
Output pin floating, WDT disabled  
ISB1  
ISB2  
Power down current  
Power down current  
1.0  
2.0  
10  
A  
A  
All input and I/O pins at VDD,  
Output pin floating, WDT enabled  
/RESET= 'High', Fosc=32.768kHz  
(Crystal type, CLKS="0"),  
Output pin floating, WDT disabled  
Operating supply current  
at two clocks (VDD = 3V)  
ICC1  
ICC2  
ICC3  
ICC4  
15  
15  
20  
25  
A  
A  
/RESET= 'High', Fosc=32.768kHz  
(Crystal type,CLKS="0"),  
Output pin floating, WDT enabled  
Operating supply current  
at two clocks (VDD = 3V)  
/RESET= 'High', Fosc=4 MHz  
(Crystal type, CLKS="0"),  
Output pin floating, WDT enabled  
Operating supply current  
at two clocks  
1.5  
2.8  
1.7  
3.0  
mA  
mA  
/RESET= 'High', Fosc=10 MHz  
(Crystal type, CLKS="0"),  
Output pin floating, WDT enabled  
Operating supply current  
at two clocks  
Note: 1. These parameters are hypothetical (not tested) and are provided for design reference  
use only.  
2. Data under Minimum, Typical, and Maximum (Min., Typ., and Max.) columns are based  
on hypothetical results at 25C. These data are for design reference only.  
Internal RC Electrical Characteristics (Ta=25C, VDD=5 V, VSS=0V)  
Drift Rate  
Internal RC  
Temperature  
25C  
Voltage  
5V  
Min.  
Typ.  
4 MHz  
16 MHz  
1 MHz  
8 MHz  
Max.  
4 MHz  
16 MHz  
1 MHz  
8 MHz  
3.92 MHz  
15.68 MHz  
0.98 MHz  
7.84 MHz  
4.08 MHz  
16.32 MHz  
1.02 MHz  
8.16 MHz  
25C  
5V  
25C  
5V  
25C  
5V  
Internal RC Electrical Characteristics (Ta=-40 ~ 85C, VDD=2.1 ~ 5.5 V, VSS=0V)  
Drift Rate  
Internal RC  
Temperature  
-40C ~85C  
-40C ~85C  
-40C ~85C  
-40C ~85C  
Voltage  
Min.  
Typ.  
4 MHz  
16 MHz  
1 MHz  
8 MHz  
Max.  
4 MHz  
16 MHz  
1 MHz  
8 MHz  
2.1V~5.5V  
2.1V~5.5V  
2.1V~5.5V  
2.1V~5.5V  
3.80 MHz  
15.2 MHz  
0.95 MHz  
7.60 MHz  
4.20 MHz  
16.8 MHz  
1.05 MHz  
8.40 MHz  
82   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
8.1 AD Converter Characteristics  
Vdd=5V, Vss=0V, Ta= 25°C  
Symbol  
VAREF  
VASS  
Parameter  
Condition  
Min. Typ. Max. Unit  
2.5  
Vss  
VASS  
Vdd  
Vss  
V
V
V
Analog reference voltage VAREF - VASS 2.5V  
VAI  
Analog input voltage  
Analog supply current  
VAREF  
VAREF=VDD=5.0V,  
VASS=0.0V, FS*1=100kHz,  
FIN*1=1kHz  
(VREF is internal VDD)  
VAREF=VDD=5.0V,  
VASS=0.0V, FS*1=100kHz,  
FIN*1=1kHz  
Ivdd  
1400 µA  
10 µA  
IAI1  
Ivref  
Ivdd  
IVref  
900 µA  
500 µA  
IAI2  
Analog supply current  
(VREF is external VREF pin)  
RN  
Resolution  
12  
Bits  
VAREF=VDD=5.0V  
VASS=0.0V, FS*1=100kHz,  
FIN*1=1kHz  
INL  
Integral Nonlinearity  
±4 LSB  
±1 LSB  
VAREF=VDD=5.0V  
VASS=0.0V, FS*1=100kHz,  
FIN*1=1kHz  
DNL  
Differential nonlinear error  
VAREF=VDD=5.0V  
FSE  
OE  
Full scale error  
Offset error  
±8 LSB  
±4 LSB  
VASS=0.0V, FS*1=100kHz  
VAREF= Vdd=5.0V  
VASS=0.0V, FS*1=100kHz  
External impedance of  
ADC input channel.  
ZAI  
10  
KΩ  
VDD=3~5.5V,  
VASS = 0.0V,  
FIN*1=1kHz  
Period of ADC  
clock  
TAD  
VDD=2.5~3V,  
VASS = 0.0V,  
FIN*1=1kHz  
VDD=3~5.5V,  
VASS = 0.0V, Ta=25°C  
VDD=2.5~3V,  
4
µs  
µs  
Tsh  
Sample and Hold Time  
16  
VASS = 0.0V, Ta=25°C  
AD conversion time  
(Include S/H Time)  
VDD=2.5~5.5V,  
VASS = 0.0V  
TCN  
14  
24 TAD  
AD delay time  
between  
setting  
VDD=2.5~5.5V,  
VASS=0.0V  
TADD1  
PSRR  
ADRUNand  
starting 1st TAD  
VAREF= 2.5V,  
2
LSB  
Power Supply Rejection  
VAREF=2.5V, VASS=0V,  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
83  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Ratio  
VIN*1=0V~2.5V, FS*1=25kHz  
V1/4VDD  
Accuracy for 1/4 VDD  
±3  
%
84   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Note:  
1. FS is Sample Rate, that is to say, conversion rate. FIN is freq. of input test sine wave  
2. The parameters are theoretical values and have not been tested. Such parameters are  
for design reference only.  
3. There is no current consumption when ADC is off other than minor leakage current.  
4. AD conversion result will not decrease with an increase of input voltage and no missing  
code.  
5. These parameters are subject to change without further notice.  
8.2 Comparator Characteristics  
Vdd = 5.0V, Vss=0V, Ta = 25°C  
Symbol  
Parameter  
Condition  
Min. Typ. Max.  
Unit  
VOS  
Input offset voltage  
10  
mV  
Input common-mode  
voltage range  
Vcm  
ICO  
GND  
VDD  
V
Supply current of  
comparator  
Co=0V, Ta= -40~85C  
160  
1
uA  
us  
ns  
VREF=1.0V, VRL=5V,  
TRS  
TLRS  
Response time  
RL=5.1k, CL=15p (Note1)  
Large signal response VREF=2.5V, VRL = 5V,  
time  
250  
RL = 5.1k (Note2)  
Vi(-) = 1V, Vi(+) = 0V,  
Vo = GND+0.5V (Note3)  
IOL  
Output sink current  
12  
mA  
V
Vi(-)=1V, Vi(+)=0V,  
IOL <= 4mA (Note3)  
VSAT Saturation voltage  
0.2  
0.4  
Note: 1. These parameters are hypothetical (not tested) and provided for design reference use  
only.  
2. The response time specified is at 0V~VDD input step with 1/2*VDD overdrive.  
3. The driving ability is determined by the digital output block.  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
85  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
8.3 OP Characteristics  
Vdd = 5.0V, Vss=0V, Ta= 25°C  
Symbol  
VOS  
SR  
Parameter  
Input offset voltage  
Slew rate  
Condition  
Vin+=0V  
Min.  
Typ.  
Max.  
10  
Unit  
mV  
V/s  
V
0
Ta= -40~85C  
1.5  
IVR  
Input voltage range  
5
Vip=0V,IL=1.0mA  
123  
mV  
V
Ta= -40~85C  
OVS  
Output voltage swing  
Vip=5V, IL=1.0mA  
4.68  
Ta= -40~85C  
IOP  
Supply current of OP  
Ta= -40~85C  
255  
75  
A  
dB  
PSRR Power supply rejection ratio Ta= -40~85C  
CMRR Common mode reject ratio 0VVCMVDD  
90  
dB  
GBP  
Gain bandwidth product  
RL=1Meg, CL=100p  
2.6  
MHz  
8.4 VREF 2V/3V/4V Characteristics  
Vdd = 5.0V, Vss=0V, Ta= -40 to 85°C  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max. Unit  
VDD  
Power Supply  
2.1  
5.5  
250  
1.75  
V
µA  
%
DC Supply  
Current  
IVDD  
No load  
Vref  
Accuracy for Vref  
2V, 3V, 4V  
±1  
VDD=VDDmin - 5.5V,  
Cload = 19.2pf  
Warn  
Time ready for  
30  
50  
µs  
V
up time voltage reference  
Rload=15.36K  
Minimum  
VDDmin  
Vref + 0.2*  
Power Supply  
*VDDmin : can work at (Vref+0.1V), but will have a poor PSRR.  
86   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
8.5 Device Characteristics  
The graphs provided in the following pages were derived based on a limited number of  
samples and are shown here for reference only. The device characteristics illustrated  
herein are not guaranteed for its accuracy. In some graphs, the data maybe out of the  
specified warranted operating range.  
8.5.1 Graphs of P5/P6/P7 Vih/Vil vs. VDD  
P5/P6/P7 Vih/Vil vs VDD (Input pin with schmit inverter) at 85  
3.5  
3.0  
2.5  
2.0  
VIH  
VIL  
1.5  
1.0  
0.5  
0.0  
2.3  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
Figure 8-1(a) P5/P6/P7 Vih/Vil vs. VDD @ 85°C  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
87  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
P5/P6/P7 Vih/Vil vs VDD (Input pin with schmit inverter) at 70  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIH  
VIL  
2.1  
2.3  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
Figure 8-1(b) P5/P6/P7 Vih/Vil vs. VDD @ 70°C  
P5/P6/P7 Vih/Vil vs VDD (Input pin with schmit inverter) at 25  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIH  
VIL  
2.1  
2.3  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
Figure 8-1(c) P5/P6/P7 Vih/Vil vs. VDD @ 25°C  
88   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
P5/P6/P7 Vih/Vil vs VDD ( Input pin with schmit inverter) at 0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIH  
VIL  
2.1  
2.3  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
Figure 8-1(d) P5/P6/P7 Vih/Vil vs. VDD @ 0°C  
P5/P6/P7 Vih/Vil vs VDD (Input pin with schmit inverter) at -40℃  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIH  
VIL  
2.3  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
Figure 8-1(e) P5/P6/P7 Vih/Vil vs. VDD @ -40°C  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
89  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
8.5.2 Graphs of P5/P6/P7 Ioh1 vs. Voh  
P5/P6/P7 Ioh1 vs Voh at VDD=5V  
0
-5  
-10  
-15  
-20  
-25  
85℃  
25℃  
-40℃  
0.5  
1.0  
1.5  
2.0  
2.5  
Voh (V)  
3.0  
3.5  
4.0  
4.5  
Figure 8-2(a) P5/P6/P7 Ioh1 vs. Voh, VDD=5V  
P5/P6/P7 Ioh1 vs Voh at VDD=3V  
0
-2  
-4  
85℃  
25℃  
-40℃  
-6  
-8  
-10  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
Voh (V)  
Figure 8-2(b) P5/P6/P7 Ioh1 vs. Voh, VDD=3V  
90   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
8.5.3 Graphs of P51~P54, P56/P57/P60~P67 Ioh1 vs. Voh  
P51~P54,P56~P57/P60~P67 Ioh2 vs Voh at VDD=5V  
0
-10  
-20  
-30  
-40  
-50  
85℃  
25℃  
-40℃  
0.5  
1.0  
1.5  
2.0  
2.5  
Voh (V)  
3.0  
3.5  
4.0  
4.5  
Figure 8-3(a) P51~P54, P56/P57/P60~P67 Ioh2 vs. Voh, VDD=5V  
P51~P54,P56~P57/P60~P67 Ioh2 vs Voh at VDD=3V  
0
-5  
-10  
-15  
-20  
-25  
85℃  
25℃  
-40℃  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
Voh (V)  
Figure 8-3(b) P51~P54, P56/P57/P60~P67 Ioh2 vs. Voh, VDD=3V  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
91  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
8.5.4 Graphs of P5/P6/P7 Iol1 vs. Vol  
P5/P6/P7 Iol1 vs Vol at VDD=5V  
60  
50  
40  
30  
20  
10  
0
85  
25℃  
-40℃  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
Vol (V)  
Figure 8-4(a) P5/P6/P7 Iol1 vs. Vol, VDD=5V  
P5/P6/P7 Iol1 vs Vol at VDD=3V  
35  
30  
25  
20  
15  
10  
5
85℃  
25℃  
-40℃  
0
0.3  
0.6  
0.9  
1.2  
1.5  
Vol (V)  
1.8  
2.1  
2.4  
2.7  
Figure 8-4(b) P5/P6/P7 Iol1 vs. Vol, VDD=3V  
92   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
8.5.5 Graph of P51~P54, P56/P57/P60~P63 Iol2 vs. Vol  
P51~P54,P56~P57/P60~P63 Iol2 vs Vol at VDD=5V  
120  
105  
90  
75  
60  
45  
30  
15  
0
85℃  
25℃  
-40℃  
0.5  
1.0  
1.5  
2.0  
2.5  
Vol (V)  
3.0  
3.5  
4.0  
4.5  
Figure 8-5(a) P51~P54, P56/P57/P60~P63 Iol2 vs. Vol, VDD=5V  
P51~P54,P56~P57/P60~P63 Iol2 vs Vol at VDD=3V  
60  
50  
40  
30  
20  
10  
0
85℃  
25℃  
-40℃  
0.3  
0.6  
0.9  
1.2  
1.5  
Vol (V)  
1.8  
2.1  
2.4  
2.7  
Figure 8-5(b) P51~P54, P56/P57/P60~P63 Iol2 vs. Vol, VDD=3V  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
93  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
8.5.6 Graphs of P5/P6 IPH vs. Temperature at VDD=3V and 5V  
P5/P6 IPH vs Temperature at VDD=3V&5V  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
3.0V  
5.0V  
-40  
-20  
0
25  
50  
70  
85  
Temperature()  
Figure 8-6 P5/P6 IPH vs. Temperature, VDD=3V&5V  
8.5.7 Graphs of P5 IPL vs. Temperature at VDD=3V and 5V  
P5 IPL vs Temperature at VDD=3V&5V  
50  
40  
30  
20  
10  
0
3.0V  
5.0V  
-40  
-20  
0
25  
50  
70  
85  
Temperature()  
Figure 8-7 P5/P6 IPL vs. Temperature, VDD=3V&5V  
94   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
8.5.8 Graphs of Typical ICC1 and ICC2 vs. Temperature  
Typical ICC1 and ICC2 vs Temperature at VDD=5V  
31.0  
30.0  
29.0  
28.0  
27.0  
26.0  
25.0  
24.0  
23.0  
22.0  
21.0  
ICC1  
ICC2  
-40  
-20  
0
25  
50  
70  
85  
Temperature ()  
Figure 8-8(a) Typical Operating Current ICC1/ICC2 vs. Temperature, VDD=5V  
Typical ICC1 and ICC2 vsTemperature at VDD=3V  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
ICC1  
ICC2  
-40  
-20  
0
25  
50  
70  
85  
Temperature()  
Figure 8-8(b) Typical Operating Current ICC1/ICC2 vs. Temperature, VDD=3V  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
95  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
8.5.9 Graphs of Typical ICC3 and ICC4 vs. Temperature  
Typical ICC3 and ICC4 vs Temperature at VDD=5V  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
ICC3  
ICC4  
-40  
-20  
0
25  
50  
70  
85  
Temperature ()  
Figure 8-9(a) Typical Operating Current ICC3/ICC4 vs. Temperature, VDD=5V  
Typical ICC3 and ICC4 vs Temperature at VDD=3V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
ICC3  
ICC4  
-40  
-20  
0
25  
50  
70  
85  
Temperature()  
Figure 8-9(b) Typical Operating Current ICC3/ICC4 vs. Temperature, VDD=3V  
96   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
8.5.10 Graphs of Wake-up Time from Sleep to Normal Mode vs. VDD  
P5 Wake-up time vs VDD when Sleep to Normal in XTAL Mode(4MHz)  
3.0  
2.5  
2.0  
85℃  
1.5  
1.0  
0.5  
0.0  
25℃  
-40℃  
2.3  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD(V)  
Figure 8-10(a) Wake-up Time from Sleep Mode vs. VDD with XTAL=4MHz  
P5 Wake-up time vs VDD when Sleep to Normal in IRC Mode(4MHz)  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
85℃  
25℃  
-40℃  
2.3  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD(V)  
Figure 8-10(b) Wake-up Time from Sleep Mode vs. VDD with IRC=4MHz  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
97  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
8.5.11 Graphs of Wake-up Time from Idle to Normal Mode vs. VDD  
P5 Wake-up time vs VDD when Idle to Normal in XTAL Mode(4MHz)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
85℃  
25℃  
-40℃  
2.3  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD(V)  
Figure 8-11(a) Wake-up Time from Idle Mode vs. VDD with XTAL=4MHz  
P5 Wake-up time vs VDD when Idle to Normal in IRC Mode(4MHz)  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
85℃  
25℃  
-40℃  
2.3  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD(V)  
Figure 8-11(b) Wake-up Time from Idle Mode vs. VDD with IRC=4MHz  
98   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
8.5.12 Graphs of WTD Time Out Period in Normal Mode vs. VDD  
WDT Time_out Period vs VDD in Normal in Crystal mode(4MHz)  
35.0  
30.0  
25.0  
85℃  
25℃  
-40℃  
20.0  
15.0  
10.0  
5.0  
0.0  
2.3  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD(V)  
Figure 8-12(a) WDT Time Out Period in Normal Mode vs. VDD with XTAL=4MHz  
WDT Time_out Period vs VDD in Normal in IRC mode(4MHz)  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
85℃  
25℃  
-40℃  
0.0  
2.3  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD(V)  
Figure 8-12(b) WDT Time Out Period in Normal Mode vs. VDD with IRC=4MHz  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
99  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
8.5.13 Graphs of Power-on Reset Time in Normal Mode vs. VDD  
Power On Reset Time vs VDD in Normal in XTAL Mode(4MHz)  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
85℃  
25℃  
-40℃  
0.0  
2.3  
3.0  
3.5  
4.0  
VDD(V)  
4.5  
5.0  
5.5  
Figure 8-13(a) Power-on Reset Time in Normal Mode vs. VDD with XTAL=4MHz  
Power On Reset Time vs VDD in Normal in IRC Mode(4MHz)  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
85℃  
25℃  
-40℃  
0.0  
2.3  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD(V)  
Figure 8-13(b) Power-on Reset Time in Normal Mode vs. VDD with IRC=4MHz  
100   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
8.5.14 Graphs of Typical ICO vs. Temperature  
Typical ICO vs Temperature  
220  
200  
180  
160  
140  
120  
100  
ICO at 3V  
ICO at 5V  
-40  
-20  
0
25  
50  
70  
85  
Temperature ()  
Figure 8-14 Typical Supply Current ICO vs. Temperature  
8.5.15 Graphs of Typical IAI1 and IAI2 vs. Temperature  
Typical IAI1 and IAI2 vs Temperature  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
IAI1_Ivdd  
IAI2_Ivdd  
IAI2_Ivref  
-40  
-20  
0
25  
50  
70  
85  
Temperature ()  
Figure 8-15 Typical AD Current (IAI1 & IAI2) vs. Temperature  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
101  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
8.5.16 Graphs of LVR Level vs. Temperature  
LVR Level vs Temperature  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
-40  
-20  
0
25  
50  
70  
85  
Temperature()  
4.0reset  
2.7reset  
4.0release  
2.7release  
3.5reset  
1.8reset  
3.5release  
1.8release  
Figure 8-16 LVR Level vs. Temperature  
8.5.17 Graphs of Comparator Offset Voltage vs. Temperature  
Comparator of Offset voltage vs Temperature  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
0.1V  
2.5V  
4.9V  
-40  
-20  
0
25  
50  
70  
85  
Temperature()  
Figure 8-17 CMP Offset Voltage vs. Temperature (V+ is variable)  
102   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
9 AC Electrical Characteristics  
Ta=25C, VDD=5V 5%, VSS=0V  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Dclk  
Input CLK duty cycle  
45  
50  
55  
%
Instruction cycle time  
(CLKS="0")  
Tins  
Tpor  
Crystal type  
125  
DC  
ns  
Delay Time after  
FSS0=1  
(16kHz)  
16 30%  
ms  
Power-On-Reset release  
WSTO + 510/Fm  
WSTO + 8/Fs  
WSTO + 8/Fm  
WSTO + 8/Fs  
s  
s  
s  
s  
Crystal type  
IRC type  
Delay time after  
Trstrl  
/Reset, WDT, and LVR  
release  
Hold Time after /RESET  
pin reset  
Trsth1  
Trsth2  
1 s  
1 s  
Hold Time after LVR  
pin reset  
Twdt  
Tset  
Watchdog timer time-out FSS0=1 (16kHz)  
16 30%  
ms  
ns  
ns  
Input pin setup time  
Input pin hold time  
0
Thold  
15  
20  
25  
Cload=20 pF  
Tdelay Output pin delay time  
20  
ns  
Rload=1M  
Note: 1. WSTO: The waiting time of Start-to-Oscillation  
2. These parameters are hypothetical (not tested) and are provided for design reference  
only.  
3. Data under minimum, typical, and maximum (Min., Typ. and Max.) columns are based  
on hypothetical results at 25C. These data are for design reference use only.  
*. Tpor and Twdt are 16 30% ms at FSS0=1(16kHz), Ta=-40~85C, and VDD=2.1~5.5V  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
103  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
10 Timing Diagrams  
AC Test Input / Output Waveform  
VDD-0.5V  
GND+0.5V  
0.75 VDD  
TEST POINTS  
0.25VDD  
0.75 VDD  
0.25VDD  
Note: AC Testing: Input is driven at VDD-0.5V for Logic 1, and GND+0.5V for Logic 0”  
Timing measurements are made at 0.75V for Logic 1, and 0.25VDD for Logic 0”  
Figure 10-1a AC Test Input / Output Waveform Timing Diagram  
Reset Timing (CLK = "0")  
Instruction 1  
NOP  
Executed  
CLK  
/RESET  
Tdrh  
Figure 10-1b Reset Timing Diagram  
TCC Input Timing (CLKS = "0")  
ins  
CLK  
TCC  
tcc  
Figure 10-1c TCC Input Timing Diagram  
104   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
APPENDIX  
A Ordering and Manufacturing Information  
EM78P372ND14J  
Material Type  
J: RoHS complied  
S: Sony SS-00259 complied  
Contact Elan Sales for details  
Pin Number  
Package Type  
D: DIP  
SO: SOP  
SS: SSOP  
Check the following section  
Specific Annotation  
Product Number  
Product Type  
P: OTP  
Elan 8-bit Product  
For example:  
EM78P372NSO14S  
is EM78P372N with OTP program memory product,  
in 14-pin SOP 300mil package with Sony SS-00259 complied  
IC Mark  
‧‧‧‧‧‧‧  
Elan Product Number  
Batch Number  
EM78Paaaa  
1041 bbbbbb  
Manufacture Date  
YYWW”  
YY is year and WW is week  
‧‧‧‧‧‧‧  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
105  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
Ordering Code  
EM78P372ND14J  
Material Type  
Contact Elan Sales for details  
Package Type / Pin Number  
Check the followingsection  
Elan IC Product Number  
106   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
B Package Type  
OTP MCU  
Package Type  
MSOP  
DIP  
Pin Count  
Package Size  
118 mil  
EM78P372NMS10  
EM78P372ND14  
EM78P372NSO14  
EM78P372NSO16A  
EM78P372ND18  
EM78P372NSO18  
EM78P372ND20  
EM78P372NSO20  
EM78P372NSS20  
EM78P372NQN16  
10  
14  
14  
16  
18  
18  
20  
20  
20  
16  
300 mil  
SOP  
150 mil  
SOP  
150 mil  
DIP  
300 mil  
SOP  
300 mil  
DIP  
300 mil  
SOP  
300 mil  
SSOP  
QFN  
209 mil  
330.8mm  
For product code "J".  
These are Green products and complies with RoHS specifications  
Part No.  
EM78P372NxJ/xS  
Pure Tin  
Electroplate type  
Ingredient (%)  
Sn: 100%  
Melting point (°C)  
232°C  
Electrical resistivity  
11.4  
-cm)  
Hardness (hv)  
Elongation (%)  
8~10  
>50%  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
107  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
C Packaging Configuration  
C.1 EM78P372ND14  
Min.  
Normal  
Symbol  
A
Max.  
4.318  
D
E1  
A1  
A2  
c
0.381  
14  
8
3.175 3.302  
0.203 0.254 0.356  
18.796 19.050 19.304  
3.429  
C
D
E
E
E1  
6.174 6.401  
7.366 7.696  
8.409 9.017  
0.356 0.457 0.559  
1.143 1.524 1.778  
6.628  
8.025  
9.625  
eB  
e
B
1
7
B
B1  
L
θ
3.302 3.556  
3.048  
2.540 (TYP)  
e
θ
0
15  
A1  
A2  
A
L
B
e
B1  
TITLE:  
PDIP-14L 300 MIL PACKAGE OUTLINE  
DIMENSION  
File:  
Edtion: A  
D14  
Unit: mm  
Scale: Free  
Material:  
Sheet: 1 of1  
Figure C-1 EM78P372N 14-pin PDIP Package Type  
108   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
C.2 EM78P372NSO14  
Symbol  
Normal  
Max.  
1.750  
0.250  
0.510  
0.250  
4.000  
6.200  
8.750  
1.270  
Min.  
1.350  
0.100  
0.330  
0.190  
3.800  
5.800  
8.550  
0.600  
A
A1  
b
c
E
H
D
L
E
H
1.27 (TYP)  
e
θ
0
8
e
b
c
D
A2  
A
:
TITLE  
SOP-14L(150MIL) PACKAGE OUTLINE  
DIMENSION  
File:  
Edtion: A  
NSO14  
Unit: mm  
Scale: Free  
Material:  
Sheet: 1 of1  
Figure C-2 EM78P372N 14-pin SOP Package Type  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
109  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
C.3 EM78P372NSO16A  
Symbal  
Min  
1.350  
0.100  
1.300  
0.330  
0.190  
3.800  
5.800  
9.800  
0.600  
Normal  
1.400  
Max  
1.750  
0.250  
1.500  
0.510  
0.250  
4.000  
6.200  
10.000  
1.270  
A
A1  
A2  
b
c
E
H
D
L
1.27(TYP)  
e
0
8
θ
b
e
c
TITLE:  
SOP-16L(150MIL) PACKAGE OUTLINE  
DIMENSION  
File :  
Edtion: A  
NSO16  
Unit : mm  
Scale: Free  
Material:  
Sheet:1 of 1  
Figure C-3 EM78P372N 16-pin SOP Package Type  
110   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
C.4 EM78P372ND18  
Symbol  
Min. Normal Max.  
4.450  
A
A1  
A2  
c
0.381  
3.175  
3.302  
3.429  
0.203 0.254 0.356  
22.610 22.860 23.110  
D
6.220  
7.370  
8.510  
6.438  
7.620  
9.020  
6.655  
7.870  
9.530  
E1  
E
eB  
B
B1  
L
0.356 0.457 0.559  
1.143 1.524 1.778  
eB  
3.302 3.556  
3.048  
2.540 (TYP.)  
e
θ
0
15  
θ
TITLE:  
PDIP-18L 300 MIL PACKAGE OUTLINE  
DIMENSION  
File:  
Edtion: A  
D18  
Unit: mm  
Scale: Free  
Material:  
Sheet: 1 of1  
Figure C-4 EM78P372N 18-pin PDIP Package Type  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
111  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
C.5 EM78P372NSO18  
Min.  
2.350  
0.102  
Normal  
Max.  
2.650  
0.300  
Symbol  
A
A1  
b
0.406 (TYP)  
c
E
0.230  
7.400  
0.320  
7.600  
H
D
L
e
θ
10.000  
11.350  
0.406  
10.650  
11.750  
1.270  
0.838  
1.27 (TYP)  
0
8
b
e
c
TITLE :  
SOP-18L (300MIL) PACKAGE OUTLINE  
DIMENSION  
File:  
Edtion: A  
SO18  
Unit: mm  
Scale: Free  
Material:  
Sheet: 1 of1  
Figure C-5 EM78P372N 18-pin SOP Package Type  
112   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
C.6 EM78P372ND20  
Symbol Min. Normal Max.  
E
A
A1  
A2  
c
4.450  
0.381  
3.175  
0.203  
3.429  
0.356  
3.302  
0.254  
D
25.883  
6.220  
7.370  
8.510  
0.356  
1.143  
26.237  
6.655  
26.060  
6.438  
7.620  
9.020  
0.457  
1.524  
E1  
E
7.870  
9.530  
0.559  
1.778  
3.556  
eB  
B
B1  
L
3.048 3.302  
2.540 (TYP.)  
e
0
15  
θ
:
TITLE  
PDIP-20L 300MIL PACKAGE  
OUTLINE DIMENSION  
:
File  
Edtion :A  
D20  
Unit :mm  
Scale: Free  
Material:  
Sheet:1 of1  
Figure C-6 EM78P372N 20-pin PDIP Package Type  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
113  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
C.7 EM78P372NSO20  
Symbol  
Min.  
2.350  
0.102  
Normal  
Max.  
2.650  
0.300  
A
A1  
b
0.406 (TYP.)  
c
0.230  
7.400  
0.320  
7.600  
E
H
D
L
10.000  
12.600  
0.630  
10.650  
12.900  
1.100  
0.838  
1.27 (TYP.)  
e
0
8
θ
b
e
c
TITLE:  
SOP-20L(300MIL) PACKAGE  
OUTLINE DIMENSION  
:
File  
Edtion: A  
SO20  
Unit : mm  
Scale: Free  
Materia:l  
Sheet: 1 of1  
Figure C-7 EM78P372N 20-pin SOP Package Type  
114   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
C.8 EM78P372NSS20  
Symbol  
Min.  
Normal  
Max.  
2.130  
0.250  
1.880  
0.380  
0.200  
8.200  
5.600  
7.500  
0.850  
A
A1  
A2  
b
c
E
E1  
D
L
0.050  
1.620  
0.220  
0.090  
1.750  
7.400  
5.000  
6.900  
0.650  
7.800  
5.300  
7.200  
0.750  
L1  
e
1.250 (REF )  
0.650 (TYP)  
4
0
8
θ
b
e
c
L1  
:
TITLE  
SSOP-20L (209MIL) PACKAGE OUTLINE  
DIMENSION  
File:  
Edtion: A  
SSOP20  
Unit: mm  
Scale: Free  
Material:  
Sheet: 1 of1  
Figure C-8 EM78P372N 20-pin SSOP Package Type  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
115  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
C.9 EM78P372NMS10  
Figure C-9 EM78P372N 10-pin MSOP Package Type  
116   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
C.10 EM78P372NQN16  
Figure C-10 EM78P372N 16-pin QFN Package Type  
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  
117  
EM78P372N  
8-Bit Microcontroller with OTP ROM  
D Quality Assurance and Reliability  
Test Category  
Test Conditions  
Remarks  
Solder temperature=245 5 C, for 5 seconds up to the  
Solderability  
stopper using a rosin-type flux  
Step 1: TCT, 65 C (15mins)~150 C (15mins), 10 cycles  
Step 2: Bake at 125 C, TD (durance)=24 hrs  
Step 3: Soak at 30 C / 60% , TD (durance)=192 hrs  
For SMD IC (such as  
SOP, QFP, SOJ, etc)  
Step 4: IR flow 3 cycles  
Pre-condition  
(Pkg thickness 2.5mm or  
3
Pkg volume 350mm 225 5 C)  
(Pkg thickness 2.5mm or  
Pkg volume 350mm3 240 5 C )  
Temperature cycle test -65 (15mins)~150 C (15mins), 200 cycles  
TA =121 C, RH=100%, pressure=2 atm,  
Pressure cooker test  
TD (durance) = 96 hrs  
High temperature /  
High humidity test  
TA=85 C , RH=85% , TD (durance)=168 , 500 hrs  
High-temperature  
storage life  
TA=150 C, TD (durance)=500, 1000 hrs  
High-temperature  
operating life  
TA=125 C, VCC=Max. operating voltage,  
TD (durance) =168, 500, 1000 hrs  
TA=25 C, VCC=Max. operating voltage, 800mA/40V  
Latch-up  
IP_ND,OP_ND,IO_ND  
IP_NS,OP_NS,IO_NS  
IP_PD,OP_PD,IO_PD,  
IP_PS,OP_PS,IO_PS,  
°
TA=25 C, ≥ | ± 4KV |  
ESD (HBM)  
°
TA=25 C, ≥ | ± 400V |  
ESD (MM)  
VDD-VSS(+),VDD_VSS  
(-)mode  
D.1 Address Trap Detect  
An address trap detect is one of the MCU embedded fail-safe functions that detects  
MCU malfunction caused by noise or the like. Whenever the MCU attempts to fetch an  
instruction from a certain section of ROM, an internal recovery circuit is auto started. If  
a noise-caused address error is detected, the MCU will repeat execution of the  
program until the noise is eliminated. The MCU will then continue to execute the next  
program.  
118   
Product Specification (V1.4) 03.15.2016  
(This specification is subject to change without prior notice)  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY