EM6607WP11 [EMMICRO]

Ultra-low power microcontroller with 4 high drive outputs; 超低功耗微控制器, 4个高输出驱动器
EM6607WP11
型号: EM6607WP11
厂家: EM MICROELECTRONIC - MARIN SA    EM MICROELECTRONIC - MARIN SA
描述:

Ultra-low power microcontroller with 4 high drive outputs
超低功耗微控制器, 4个高输出驱动器

驱动器 微控制器
文件: 总47页 (文件大小:802K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
R
EM MICROELECTRONIC - MARIN SA  
EM6607  
Ultra-low power microcontroller  
with 4 high drive outputs  
Features  
Figure 1.  
Architecture  
‰
Low Power  
typical 1.8µA active mode  
typical 0.5µA standby mode  
typical 0.1µA sleep mode  
V
DD VREG VSS  
32KHz  
Crystal Osc  
ROM  
2k X 16Bit  
RAM  
96 X 4Bit  
@ 1.5V, 32kHz, 25 °C  
‰
‰
‰
‰
‰
‰
‰
‰
‰
‰
‰
‰
‰
‰
‰
Low Voltage 1.2 to 3.3 V  
Power  
Supply  
ROM  
RAM  
2k × 16 (Mask Programmed)  
96 × 4 (User Read/Write)  
2 clocks per instruction cycle  
RISC architecture  
5 software configurable 4-bit ports  
1 High drive output port  
VLD 3 Levels  
Prescaler  
Power on  
Reset  
Up to 20 inputs  
Up to 16 outputs  
buzzer three tone  
(5 ports)  
(4 ports)  
Core  
EM6600  
3 Tone  
Buzzer  
8-Bit Event  
Count/Timer  
Serial Write buffer – SWB  
Supply Voltage level detection (SVLD).  
Analogue and timer watchdog  
8 bit timer / event counter  
Internal interrupt sources (timer, event counter,  
prescaler)  
Watchdog  
Timer  
Interrupt  
Controller  
Serial Write  
Buffer  
Port A  
Port B  
Port C  
Port D  
Port E  
‰
External interrupt sources (portA + portC)  
0
1 2 3  
0
1
2
3
0
1
2
3
0
1
2
3
1
0 2 3  
Description  
The EM6607 is  
Clk  
Data  
Buzzer  
High Drive  
Outputs  
a single chip low power, mask  
programmed CMOS 4-bit microcontroller. It contains  
ROM, RAM, watchdog timer, oscillation detection circuit,  
combined timer / event counter, prescaler, voltage level  
detector and a number of clock functions. Its low voltage  
and low power operation make it the most suitable  
controller for battery, stand alone and mobile equipment.  
The EM6607 microcontroller is manufactured using EM’s  
Advanced Low Power CMOS Process.  
Figure 2. Pin Configuration  
1
2
3
4
5
6
1
2
3
4
5
6
24  
23  
28  
VDD  
PA0  
PA1  
PA2  
PA3  
PB0  
PB1  
VDD  
PA0  
PA1  
PA2  
PA3  
PE0  
PB0  
In 24 Pin package it is direct replacement for EM6603.  
27  
VREG  
VREG  
22 RESET  
21 PD3  
26 RESET  
25 PE3  
Typical Applications  
‰
‰
‰
‰
‰
‰
‰
‰
‰
‰
sensor interfaces  
domestic appliances  
clocks  
security systems  
bicycle computers  
automotive controls  
TV & audio remote controls  
measurement equipment  
R/F and IR. control  
motor driving  
20  
24  
PD2  
PD3  
19  
23  
PD1  
PD2  
EM6607  
PB2  
PB3  
18 PD0  
17 PC3  
PB1  
PB2  
22 PD1  
7
8
7
8
EM6607  
21  
PD0  
9
16  
PB3  
9
20  
TEST  
QOUT  
QIN  
PC2  
PE2  
10  
11  
12  
15  
PE1 10  
19  
PC1  
PC3  
14  
TEST 11  
QOUT 12  
QIN 13  
18  
17  
16  
15  
PC0  
PC2  
VSS  
13 STB/RST  
PC1  
PC0  
VSS  
14  
STB/RST  
(TS)SOP-24  
(TS)SOP-28  
Copyright © 2005, EM Microelectronic-Marin SA  
1
www.emmicroelectronic.com  
R
EM6607  
EM6607 at a glance  
‰
4-Bit Input/Output PortD  
- Input or Output port as a whole port  
- Pull-up, Pull-down or none, selectable by metal mask if  
used as Input  
- CMOS or N-channel open drain mode  
- Serial Write Buffer clock and data output  
‰
Power Supply  
- Low Voltage, low power architecture  
including internal voltage regulator  
- 1.2V ... 3.3 V battery voltage  
- 1.8μA in active mode  
- 0.5μA in standby mode  
- 0.1μA in sleep mode @ 1.5V, 32kHz, 25 °C  
- 32 kHz Oscillator or external clock  
‰
4-Bit Input/Output PortE  
- Separate input or output selection by register  
- Pull-up, Pull-down or none, selectable by metal mask if  
used as Input  
‰
RAM  
- 96 x 4 bit, direct addressable  
‰
Serial (output) Write Buffer  
‰
ROM  
- max. 256 bits long clocked with 16/8/2/1kHz  
- automatic send mode  
- 2048 x 16 bit metal mask programmable  
- interactive send mode : interrupt request  
when buffer is empty  
‰
CPU  
- 4 bit RISC architecture  
- 2 clock cycles per instruction  
- 72 basic instructions  
‰
Buzzer Output  
- if used output on PB0 (24 pin) or PE0 (28 pin)  
- 3 tone buzzer - 1kHz, 2kHz, 2.66kHz/4kHz (TBC)  
‰
Main Operating Modes and Resets  
- Active mode  
- Standby mode  
- Sleep mode  
- Initial reset on Power-On (POR)  
- External reset pin  
- Watchdog timer (time-out) reset  
- Oscillation detection watchdog reset  
- Reset with input combination on PortA  
(CPU is running)  
(CPU in Halt)  
(No clock, Reset State)  
‰
Prescaler  
- 32kHz output possible on the STB/RST pin  
- 15 stage system clock divider down to 1 Hz  
- 3 interrupt requests: 1Hz/8Hz/32Hz  
- Prescaler reset (from 8kHz to 1Hz)  
‰
8-bit Timer / Event Counter  
- 8-bit auto-reload count-down timer  
- 6 different clocks from prescaler  
- or event counter from the PA3 input  
- parallel load  
‰
4-Bit Input PortA  
- Direct input read  
- Debounced or direct input selectable (reg.)  
- Interrupt request on input’s rising or falling edge, selectable by  
register.  
- interrupt request when comes to 00 hex.  
- Pull-down or Pull-up selectable by metal mask  
- Software test variables for conditional jumps  
- PA3 input for the event counter  
‰
Supply Voltage Level Detector  
- 3 software selectable levels (1.3V, 2.0V,  
2.3V or user defined between 1.3V and 3.0V)  
- Busy flag during measure  
- Reset with input combination on PortA (metal option)  
‰
4-Bit Input/Output PortB  
- Active only on request during measurement to reduce  
power consumption  
- Separate input or output selection by register  
- Pull-up, Pull-down or none, selectable by metal mask if used as  
Input  
‰
Interrupt Controller  
- Buzzer output on PB0 (24-pin) / PE0 (28-pin)  
- 9 external interrupt sources: 4 from PortA, 4 from PortC.  
- 3 internal interrupt sources, prescaler, timer and Serial  
Write Buffer  
‰
4-Bit Input/Output PortC  
- Input or Output port as a whole port  
- Debounced or direct input selectable (reg.)  
- Interrupt request on input’s rising or falling edge, selectable by  
register.  
- Each interrupt request is individually selectable  
- Interrupt request flag is cleared automatically on register  
read  
- Pull-up, pull-down or none, selectable by  
metal mask if used as input  
- CMOS or N-channel open drain mode  
Copyright © 2005, EM Microelectronic-Marin SA  
2
www.emmicroelectronic.com  
R
EM6607  
18.7 OSCILLATOR  
43  
43  
Table of Contents  
18.8 INPUT TIMING CHARACTERISTICS  
19 PAD LOCATION DIAGRAM  
20 PACKAGE DIMENSIONS  
1
PIN DESCRIPTION FOR EM6607  
5
44  
45  
2
OPERATING MODES  
7
7
7
7
2.1 ACTIVE MODE  
2.2 STANDBY MODE  
2.3 SLEEP MODE  
21 ORDERING INFORMATION  
21.1 PACKAGE MARKING  
21.2 CUSTOMER MARKING  
47  
47  
47  
3
POWER SUPPLY  
8
4
RESET  
9
9
9
4.1 OSCILLATION DETECTION CIRCUIT  
4.2 RESET PIN  
Table of Figures  
Figure 1. Architecture  
1
1
4.3 INPUT PORT (PA0..PA3) RESET  
4.4 WATCHDOG TIMER RESET  
4.5 SOFTWARE POWER-ON-RESET  
4.6 CPU STATE AFTER RESET  
4.7 POR WITH POWER-CHECK RESET  
10  
10  
10  
11  
11  
Figure 2. Pin Configuration  
Figure 3. Typical Configuration: VDD 1.4V up to 3.3V  
Figure 4. Typical Configuration: VDD 1.2V up to 1.8V  
Figure 5. Mode Transition Diagram  
Figure 6. System reset generation  
Figure 7. Port A  
Figure 8. Port B  
Figure 9. Port C  
Figure 10. Port D  
Figure 11. Port E  
Figure 12. Timer / Event Counter  
Figure 13. Interrupt Request generation  
Figure 14. Serial write buffer  
Figure 15. Automatic Serial Write Buffer transmission  
Figure 16. Interactive Serial Write Buffer transmission  
Figure 17. Dimensions of SOP24 Package SOIC  
Figure 18. Dimensions of TSSOP24 Package  
Figure 19. Dimensions of SOP28 Package SOIC  
Figure 20. Dimensions of TSSOP28 Package  
6
6
7
9
14  
15  
17  
18  
19  
21  
24  
27  
28  
29  
45  
45  
46  
46  
5
OSCILLATOR  
12  
12  
5.1 PRESCALER  
6
7
WATCHDOG TIMER  
INPUT AND OUTPUT PORTS  
12  
13  
13  
14  
15  
15  
16  
16  
18  
18  
19  
19  
7.1 PORTA  
7.1.1  
PortA registers  
7.2 PORTB  
7.2.1  
PortB registers  
7.3 PORTC  
7.3.1  
PortC registers  
7.4 PORTD  
7.4.1  
PortD registers  
7.5 PORTE  
7.5.1  
PortE registers  
8
BUZZER  
20  
8.1 BUZZER REGISTER  
20  
9
TIMER/EVENT COUNTER  
21  
9.1 TIMER/COUNTER REGISTERS  
22  
10 INTERRUPT CONTROLLER  
23  
10.1 INTERRUPT CONTROL REGISTERS  
23  
11 SUPPLY VOLTAGE LEVEL DETECTOR (SVLD) 25  
12 SERIAL WRITE BUFFER – SWB  
12.1 SWB AUTOMATIC SEND MODE  
12.2 SWB INTERACTIVE SEND MODE  
26  
28  
29  
13 STROBE / RESET OUTPUT  
30  
14 TEST AT EM - ACTIVE SUPPLY CURRENT TEST30  
15 METAL MASK OPTIONS  
31  
32  
32  
32  
15.1.1 Power-Check Level Option  
15.1.2 PortA reset Option, see paragraph 3.3  
15.1.3 SVLD levels Option, see paragraph 10.0 SVLD  
16 PERIPHERAL MEMORY MAP  
33  
17 TEMPERATURE AND VOLTAGE BEHAVIOURS 36  
17.1 IDD CURRENT (TYPICAL)  
17.2 PULL-DOWN RESISTANCE (TYPICAL)  
17.3 OUTPUT CURRENTS (TYPICAL)  
36  
37  
38  
18 ELECTRICAL SPECIFICATIONS  
18.1 ABSOLUTE MAXIMUM RATINGS  
18.2 STANDARD OPERATING CONDITIONS  
18.3 HANDLING PROCEDURES  
18.4 DC CHARACTERISTICS - POWER SUPPLY PINS  
18.5 DC CHARACTERISTICS - INPUT/OUTPUT PINS  
18.6 DC CHARACTERISTICS - SUPPLY VOLTAGE DETECTOR  
LEVELS  
40  
40  
40  
40  
40  
42  
43  
Copyright © 2005, EM Microelectronic-Marin SA  
3
www.emmicroelectronic.com  
R
EM6607  
Table of Tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
IntRq register  
7
8
8
Watchdog register - WD  
Internal state in Active, Stand-by and Sleep mode  
PortA Inputs RESET options (metal Hardware option) 10  
Watchdog-Timer Option (software option)  
Software Power-On-Reset  
Initial Value after RESET  
Prescaler interrupts source  
Prescaler control register - PRESC  
10  
10  
11  
12  
12  
12  
13  
13  
14  
14  
14  
15  
15  
16  
16  
16  
16  
17  
18  
18  
19  
19  
20  
20  
Table 10. Watchdog register - WD  
Table 11. Input / Output Ports Overview  
Table 12. Option register - Option  
Table 13. PortA input status register - PortA  
Table 14. PortA Interrupt request register - IRQpA  
Table 15. PortA interrupt mask register - MportA  
Table 16. PortB input/output status register - PortB  
Table 17. PortB Input/Output control register - CIOportB  
Table 18. Ports A&C Interrupt  
Table 19. PortC input/output register - PortC  
Table 20. PortC Interrupt request register - IRQpC  
Table 21. PortC interrupt mask register - MportC  
Table 22. Option2 register - Option2  
Table 23. PortD Input/Output register - PortD  
Table 24. Ports control register - CPIOB  
Table 25. PortE Input/Output status register - PortE  
Table 26. PortE Input/Output control register - CIOPortE  
Table 27. Buzzer control register - BEEP  
Table 28. Buzzer output pad allocation  
Table 29. PB0 & PE0 function used with BUen and BuzzerPE0  
control bits  
Table 30. Timer Clock Selection  
20  
22  
22  
Table 31. Timer control register - TimCtr  
Table 32. LOW Timer Load/Status register - LTimLS (4 low bits)22  
Table 33. HIGH Timer Load/Status register - HTimLS (4 high bits)  
22  
Table 34. PA3 counter input selection register - PA3cnt  
Table 35. PA3 counter input selection  
22  
22  
Table 36. Main Interrupt request register - IntRq (Read Only)* 23  
Table 37. Register - CIRQD  
Table 38. SVLD Level selection  
Table 39. SVLD control register - SVLD  
Table 40. SWB clock selection  
Table 41. SWB clock selection register - ClkSWB  
Table 42. PortD status  
Table 43. SWB buffer register - SWbuff  
Table 44. SWB Low size register - LowSWB  
Table 45. SWB High size register – HighSWB  
Table 46. input/output Ports  
24  
25  
25  
26  
26  
26  
27  
27  
27  
31  
31  
Table 47. PortB Hi Current Drive capability  
Copyright © 2005, EM Microelectronic-Marin SA  
4
www.emmicroelectronic.com  
R
EM6607  
1
Pin Description for EM6607  
Pin Nb  
24 pin  
Pin Nb  
28 pin  
1
Pin Name  
Function  
Remarks  
1
2
3
4
-
5
6
7
8
port A, 0  
port A, 1  
port A, 2  
port A, 3  
port E, 0  
port B, 0  
port B, 1  
port B, 2  
port B, 3  
port E, 1  
test  
input 0 port A  
input 1 port A  
input 2 port A  
input 3 port A  
input / output 0 port E  
input / output 0 port B  
input / output 1 port B  
input / output 2 port B  
input / output 3 port B  
input / output 1 port E  
test input terminal  
interrupt request; tvar 1  
interrupt request; tvar 2  
interrupt request; tvar 3  
interrupt request; event counter input  
buzzer output in 28 pin package  
buzzer output in 24 pin package  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
-
9
for EM test purpose only (internal pull-down)  
Can accept trimming capacitor tw. VSS  
10  
11  
12  
13  
14  
15  
16  
17  
-
18  
19  
20  
21  
-
Qout/osc 1  
Qin/osc 2  
VSS  
crystal terminal 1  
crystal terminal 2 (input)  
negative power supply terminal  
strobe / reset status  
input / output 0 port C  
input / output 1 port C  
input / output 2 port C  
input / output 3 port C  
input / output 2 port E  
input / output 0 port D  
input / output 1 port D  
input / output 2 port D  
input / output 3 port D  
input / output 3 port E  
reset terminal  
STB/RST  
port C, 0  
port C, 1  
port C, 2  
port C, 3  
port E, 2  
port D, 0  
port D, 1  
port D, 2  
port D, 3  
port E, 3  
RESET  
VREG  
µC reset state + port B, C, D write  
interrupt request  
interrupt request  
interrupt request  
interrupt request  
SWB Serial Clock Output  
SWB Serial Data Output  
22  
23  
24  
Table 1.  
Active high (internal pull-down)  
Needs typ. 100nF capacitor tw. VSS  
internal voltage regulator  
positive power supply terminal  
VDD  
Pin Description  
Copyright © 2005, EM Microelectronic-Marin SA  
5
www.emmicroelectronic.com  
R
EM6607  
Figure 3.  
Typical Configuration: VDD 1.4V up to 3.3V  
QIN  
QOUT  
PA  
SLEEP  
SLEEP  
6
VDD  
V. Regulator  
Oscillator  
PB  
PC  
PD  
VREG  
+
C
C
I/O Drivers  
SVLD  
SWB  
Logic  
ROM  
RAM  
POR  
PE  
Reset  
Strb/Rst  
Test  
VSS  
Figure 4.  
Typical Configuration: VDD 1.2V up to 1.8V  
QIN  
QOUT  
PA  
VDD  
V. Regulator  
Oscillator  
PB  
PC  
PD  
VREG  
+
C
I/O Drivers  
SVLD  
SWB  
Logic  
ROM  
RAM  
POR  
PE  
Reset  
Strb/Rst  
Test  
VSS  
Copyright © 2005, EM Microelectronic-Marin SA  
www.emmicroelectronic.com  
R
EM6607  
2
Operating modes  
The EM6607 has two low power dissipation modes: STANDBY and SLEEP. Figure 5 is a transition diagram for these modes.  
2.1 Active Mode  
The active mode is the actual CPU running mode. Instructions are read from the internal ROM and executed by the CPU.  
Leaving active mode via the halt instruction to go into standby mode, the Sleep bit write to go into Sleep mode or a reset  
from port A to go into reset mode.  
2.2 STANDBY Mode  
Executing a HALT instruction puts the EM6607 into STANDBY mode. The voltage regulator, oscillator, Watchdog timer,  
interrupts and timer/event counter are operating. However, the CPU stops since the clock related to instruction execution stops.  
Registers, RAM, and I/O pins retain their states prior to STANDBY mode. A RESET or an Interrupt request cancel STANDBY  
mode.  
2.3 SLEEP MODE  
Active  
Halt  
instruction  
Writing the SLEEP* bit in the IntRq* register puts the  
EM6607 in SLEEP mode. The oscillator stops and most  
functions of the EM6607 are inactive. To be able to write  
the SLEEP bit, the SLmask bit must be first set to 1 in  
register WD. In SLEEP mode only the voltage regulator  
and RESET input are active. The RAM data integrity is  
maintained. SLEEP mode may be cancelled only by a  
RESET at the terminal pin of the EM6607 or by the  
selected port A input reset combination. This combination  
is a metal option, see paragraph 15.1.2. The RESET port  
must be high for at least 10µsec.  
Sleep bit  
write  
IRQ  
Standby  
Reset=0  
Sleep  
Reset=1  
Reset=1  
Reset=1  
Reset  
Figure 5. Mode Transition Diagram  
Due to the cold start characteristics of the oscillator, waking up from SLEEP mode may take some time to guarantee that the  
oscillator has started correctly. During this time the circuit is in RESET state and the strobe output STB/RST is high. Waking up  
from SLEEP mode clears the SLEEP flag but not the SLmask bit. By reading SLmask it can therefore determine if the EM6607  
was powered up (SLmask = 0), or woken from SLEEP mode (SLmask = 1).  
Table 1.  
IntRq register  
Bit  
3
2
1
0
Name  
INTPR  
INTTE  
INTPC  
INTPA  
SLEEP  
Reset  
R/W  
R
R
R
R
Description  
0
0
0
0
0
Prescaler interrupt request  
Timer/counter interrupt request  
PortC Interrupt request  
PortA Interrupt request  
SLEEP mode flag  
2
W*  
* Write bit 2 only if SLmask=1  
Copyright © 2005, EM Microelectronic-Marin SA  
7
www.emmicroelectronic.com  
R
EM6607  
Table 2.  
Watchdog register - WD  
Bit  
3
2
1
0
Name  
WDRST  
Slmask  
WD1  
Reset  
-
-
0
0
R/W  
R/W  
R/W  
R
Description  
Watchdog timer reset  
SLEEP mask bit  
WD Timer data 1/4 Hz  
WD Timer data 1/2 Hz  
WD0  
R
Table 3 shows the status of different EM6607 blocks in these three main operating modes.  
Table 3.  
Internal state in Active, Stand-by and Sleep mode  
Peripheral /// EM6607 mode  
ACTIVE mode  
STAND-BY mode  
SLEEP mode  
POR (static)  
On  
On  
On  
Voltage regulator  
On  
On  
On (Low-Power)  
Quartz 32768 Hz oscillator  
Clocks (Prescaler & RC divider)  
CPU  
Peripheral register  
RAM  
On  
On  
Running  
“On”  
“On”  
“On”  
can be activated  
Yes  
Yes - possible  
On / Off (soft selectable)  
On/Off (soft select.)  
On  
On  
Off  
Off  
In HALT – Stopped  
“On” retain value  
retain value  
“On” if activated before  
can not be activated  
Yes  
Yes - possible  
On / Off (soft selectable)  
“On” if activated before  
Stopped  
retain value  
retain value  
stopped  
Off  
Timer/Counter  
Supply Voltage Level Det.=SVLD  
PortA /C, Reset pad debounced  
Interrupts / events  
Watch-Dog timer  
Analogue Watchdog (osc.detect)  
No  
No – not possible  
No  
Off  
3
Power Supply  
The EM6607 is supplied by a single external power supply between VDD and VSS, the circuit reference being at VSS (ground). A  
built-in voltage regulator generates VREG providing regulated voltage for the oscillator and internal logic. Output drivers are  
supplied directly from the external supply VDD. A typical connection configuration is shown in figure 4.  
For VDD less then 1.4V it is recommended that VDD is connected directly to VREG connected  
For VDD >1.8V then the configuration shown in Figure 4 should be used.  
*registers are marked in bold and underlined like  
IntRq  
*Bits/Flags in registers are marked in bold only like SLEEP  
Copyright © 2005, EM Microelectronic-Marin SA  
8
www.emmicroelectronic.com  
R
EM6607  
4
Reset  
To initialize the EM6607, a system RESET must be executed. There are five methods of doing this:  
(1)  
(2)  
(3)  
Initial RESET from the oscillation detection circuit.  
External RESET from the RESET PIN.  
External RESET by simultaneous high input to terminals PA0..PA3.  
(Combinations defined by metal option)  
(4)  
(5)  
Watchdog RESET (software option).  
Software Power-On-Reset by writing S0ftPOR bit in Option2 register to “1”  
During any of these RESET’s the STB/RST output pin is high.  
Figure 6.  
System reset generation  
4.1 Oscillation detection circuit  
At power on, the built-in voltage regulator starts to follow the supply voltage until VDD becomes higher than VREG. Since it is  
VREG which supplies the oscillator and this needs time to stabilise, Power-On-Reset with the oscillation detection circuit  
therefore counts the first 32768 oscillator clocks after power-on and holds the system in RESET. The system will consequently  
remain in RESET for at least one second after power up.  
After power up the Analogue Watchdog circuit monitors the oscillator. If it stops for any reason other then SLEEP mode, then a  
RESET is generated and the STB/RST pin is driven high.  
4.2 Reset Pin  
During active or STANDBY mode the RESET terminal has a debouncer to reject noise and therefore must be active high for at  
least 2ms or 16ms (CLK = 32kHz) - software selectable by DebCK in CIRQD register. (See Table 37)  
When cancelling sleep mode, the debouncer is not active (no clock), however, reset passes through an analogue filter with a  
time constant of typical. 5µs. In this case Reset pin must be high for at least 10 µs to generate a system reset.  
Copyright © 2005, EM Microelectronic-Marin SA  
9
www.emmicroelectronic.com  
R
EM6607  
4.3 Input port (PA0..PA3) RESET  
With a mask option it is possible to choose from eleven PortA reset combinations. The selected ports must be simultaneously  
high for at least 2ms/16ms (CLK = 32kHz) due to the presence of debouncers. Note also, that RESET with port A is not  
possible during SLEEP mode.  
Below are the combinations of Port A (PA0..PA3) inputs, which can be used to generate a RESET. They can be selected by  
metal « PortA RESET » mask option, described in chapter 14.  
Table 4.  
PortA Inputs RESET options (metal Hardware option)  
Function  
Opt. Code  
NO inputs RESET  
RESET = PA0 AND PA1  
RESET = PA0 AND PA2  
RESET = PA1 AND PA2  
RESET = PA0 AND PA1 AND PA2  
RESET = PA0 AND PA3  
RESET = PA1 AND PA3  
RESET = PA0 AND PA1 AND PA3  
RESET = PA2 AND PA3  
RESET = PA0 AND PA2 AND PA3  
RESET = PA1 AND PA2 AND PA3  
RESET = PA0 AND PA1 AND PA2 AND PA3  
rstpa_no  
rstpa_3h  
rstpa_5h  
rstpa_6h  
rstpa_7h  
rstpa_9h  
rstpa_ah  
rstpa_bh  
rstpa_ch  
rstpa_dh  
rstpa_eh  
rstpa_fh  
4.4  
Watchdog Timer RESET  
The Watchdog Timer RESET is a software option and if used it will generate a RESET if it is not cleared. See section 5.  
Watchdog timer for details.  
Table 5.  
Watchdog-Timer Option (software option)  
Watchdog Function  
NoWD bit in Option register  
Without Watchdog Time-out reset  
With Watchdog Time-out reset  
1
0
4.5 Software Power-On-Reset  
This is software generation of POR, which can be used mainly to reset the circuit and start again the Power-Check function if  
enabled to be sure that VDD supply is high enough when circuit will start to work again due to increased VDD  
.
When VDD starts to decrease due to any reason and software by periodically testing the VDD min by SVLD function detects this,  
user can generate POR at VDD min and like that the circuit will go in Reset until Power-Check level is satisfied again to  
guarantee the proper circuit operation, not to fall in a grey zone below VDD min until Static POR does it job at typ. 0.9V.  
Table 6.  
Software Power-On-Reset  
Software POR function  
SoftPOR in RegSoftPOR register  
Software POR start  
No Software POR  
1
0
Copyright © 2005, EM Microelectronic-Marin SA  
10  
www.emmicroelectronic.com  
R
EM6607  
4.6 CPU State after RESET  
RESET initialises the CPU as shown in the table below.  
Table 7.  
name  
Program counter 0  
Program counter 1  
Program counter 2  
stack pointer  
Initial Value after RESET  
bits  
symbol  
PC0  
PC1  
PC2  
SP  
initial value  
$000 (as a result of Jump 0)  
undefined  
undefined  
SP(0) selected  
undefined  
12  
12  
12  
2
7
1
index register  
Carry flag  
IX  
CY  
undefined  
Zero flag  
1
Z
undefined  
HALT  
Instruction register  
periphery registers  
1
16  
4
HALT  
IR  
0
Jump 0  
see peripheral memory map  
4.7 POR with Power-Check Reset  
POR and Power-Check are supervising the VREG (digital) which follows more or less the VDD supply voltage on start-up to  
guarantee proper operation after Power-On. The resetcold signal is released when the VDD supply voltage is high enough  
for the IC to function correctly.  
During power-up of the EM6607 static POR (Power-On-Reset) cell supervising the VREG with level of typ. 0.9V is checked to  
give initial reset. Reset can be prolonged also with Power-Check function if enabled by metal option. In this case VDD must  
come above VL1 of the SVLD described in Chapter 11 Supply Voltage Level Detector (SVLD) to release the circuit reset  
signal and starts to execute instructions.  
When Power-Check is enabled a power-check logic is switched-on with POR signal high and starts to check periodically  
VDD against the SVLD-VL1 level which keeps resetcold active high until VDD > VL1. When used with external quartz first VDD  
check starts in the middle of quartz Cold-Start sequence – after first 16384 system clocks with the same timing as in normal  
SVLD operation. If VDD > VL1 Power-Check condition is met and system reset will wait until first 32768 clocks needed for  
Quartz Cold-Start is finished and release System reset.  
In case VDD < VL1, comparison will be repeated with every next 8 Hz system clock until VDD > VL1. In case of a very slow  
rising VDD, it might happen that Quartz Cold-Start is finished. System reset will keep the EM6607 under reset until first time  
V
DD becomes higher as VL1 to guarantee good operating conditions (oscillator stabilized during its Cold-Start delay and VDD  
is high enough to avoid “grey” zone between static POR and VL1).  
IMPORTANT: special care should be taken, when Power Supply starts to fall close to or below VDD min. Frequent checking  
of the SVLD VL1 (1.3V) must be done. Between minimum VDD supply of 1.2V and static POR level of 0.9V there is a grey  
zone, which must be avoided for proper operation.  
Copyright © 2005, EM Microelectronic-Marin SA  
11  
www.emmicroelectronic.com  
R
EM6607  
5
Oscillator  
A built-in crystal oscillator circuit generates the system-operating clock for the CPU and peripheral circuits from an externally  
connected crystal (typ. 32.768kHz) and trimmer capacitor (from Qin tw. VSS). The regulated voltage, VREG, supplies the  
oscillator circuit. In SLEEP mode the oscillator is stopped.  
With Fout bit in PA3cnt register we can put the system 32.768 Hz frequency on STB/RST pin as output.  
5.1 Prescaler  
The input to the prescaler is the system clock signal. The  
prescaler consists of a fifteen (15) element divider chain  
which delivers clock signals for the peripheral circuits such  
as the timer/counter, buzzer, I/O debouncers and edge  
detectors, as well as generating prescaler interrupts.  
Table 8.  
Prescaler interrupts source  
Interrupt frequency  
mask(no interrupt)  
1 Hz  
8 Hz  
32 Hz  
PSF1  
PSF0  
0
0
1
1
0
1
0
1
The frequency of prescaler interrupts is software selectable, as shown in Table 8.  
Table 9.  
Prescaler control register - PRESC  
Bit  
3
2
1
0
Name  
MTim  
PRST  
PSF1  
PSF0  
Reset  
0
-
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Timer/Counter Interrupt Mask  
Prescaler reset  
Prescaler Interrupt select 1  
Prescaler Interrupt select 0  
6
Watchdog timer  
If for any reason the CPU crashes, then the watchdog timer can detect this situation and output a system reset signal. This  
function can be used to detect program overrun. For normal operation the watchdog timer must be reset periodically by  
software at least once every three seconds (CLK = 32kHz) or a system reset signal is generated to CPU and periphery. The  
watchdog is active during STANDBY. Setting the NoWD bit to 1 in the Option register deactivates the watchdog-reset function.  
In worst case because of prescaler reset function WD time-out can come down to 2 seconds.  
Writing 1 to the WDRST bit resets the watchdog timer. Writing 0 to WDRST has no effect.  
The watchdog timer also operates in STANDBY mode. It is therefore necessary to reset it if this mode continues for more than  
three seconds. One method to do so is to use the prescaler 1Hz interrupt such, that the watchdog is reset every second.  
Table 10.  
Watchdog register - WD  
Bit  
3
2
1
0
Name  
WDRST  
Slmask  
WD1  
Reset  
-
-
0
0
R/W  
R/W  
R/W  
R
Description  
Watchdog timer reset  
SLEEP mask bit  
WD Timer data 1/4 Hz  
WD Timer data 1/2 Hz  
WD0  
R
Copyright © 2005, EM Microelectronic-Marin SA  
12  
www.emmicroelectronic.com  
R
EM6607  
7
INPUT and OUTPUT ports  
The EM6607 has five independent 4-bit ports, as shown in Table below  
Table 11.  
Input / Output Ports Overview  
Port  
Mode  
Mask Options  
Function(s)  
PA(0:3)  
Input  
Pull-Up/Down  
Input Interrupt  
(*)Debouncer  
Software Test Variable  
PA3 input for event counter  
RESET input(s)  
(*) + or – IRQ edge  
RESET combination  
Nch open drain output  
Pull-Up/Down on input  
PB(0:3)  
PC(0:3)  
Individual input or output  
(high Current)  
Input or Output  
PB0 for buzzer output in 24-pin version  
High Current outputs  
Input or Output Port  
Interrupt  
Port input or output  
Pull-Up/Down  
(*)+ or – IRQ edge  
(*)Debouncer  
Nch open drain output  
Pull-Up/Down on Input  
Nch open drain output  
PD(0:3)  
PE(0:3)  
Port input or Output  
Input or Output Port  
PD0 -SWB serial clock output  
PD1 -SWB serial data output  
Input or Output Port  
Individual input or output  
Pull-Up/Down on Input  
Nch open drain output  
PE0 for buzzer output in 28-pin version  
(*) Some options can be set also by Option register.  
Table 12.  
Option register - Option  
Bit  
3
2
1
0
Name  
Reset  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
IRQedgeR  
debPCN  
debPAN  
NoWD  
0
0
0
0
Rising edge interrupt for portA&C  
PortC without/with debouncer  
PortA without/with debouncer  
WatchDog timer Off  
IRQedgeR :  
Valid for both PortA and PortC input interrupt edge. By default interrupt are active on a falling edge. When  
set to 1 the rising edge is active.  
debPAN :  
By default (after a reset) debouncers are enabled on whole PortA. Writing 1 removes the debouncers from  
the PortA.  
debPCN :  
NoWD :  
By default debouncers are enabled on whole PortC. Writing 1 removes the debouncers from the PortC.  
By default Watchdog timer is On (NoWD=0). Writing 1 removes the watchdog timer.  
7.1 PortA  
The EM6607 has one 4-bit general purpose input port. Each of the input port terminals PA3..PA0 has an internal pull-  
Up/Down resistor, which can be selected with mask options. Port information is directly read from the pin into a register.  
On inputs PA0, PA1, PA2 and PA3 debouncers for noise rejection are added by default. For interrupt generation, either  
direct input and debounced input can be chosen. With the debPAN written to 0 in the Option register all the PortA inputs are  
debounced and with the debPAN bit at 1 none of the PortA inputs are debounced. With the debouncer selected the input  
must be stable for two rising edges of 1024Hz or 128Hz clocks (at 32kHz). This corresponds to a worst case of 1.95ms or  
15.62msec. PortA terminals PA0, PA1 and PA2 are also used as input conditions for conditional software branches as  
shown on the next page:  
Copyright © 2005, EM Microelectronic-Marin SA  
13  
www.emmicroelectronic.com  
R
EM6607  
Debounced PA0 is connected to CPU TestVar1  
Debounced PA1 is connected to CPU TestVar2  
Debounced PA2 is connected to CPU TestVar3  
Vdd  
IRQedgeR  
debPAN  
Interrupt  
Request  
IRQpA  
1
0
1
0
Mask  
option  
1
PA[3:0]  
CPU  
Testvar  
Debouncer  
DebCK  
Mask  
option  
0
PortA RD  
Figure 7.  
Port A  
Additionally, PA3 can also be used as the input terminal for the event counter.  
The input port PA(0:3) has also individually selectable interrupts. Each port has its own interrupt mask bit in the MPortA  
register. When an interrupt occurs, reading of the IRQpA and the IntRq registers allows identifying the source of the  
interrupt. The IRQpA register is automatically cleared by reading the register or by a RESET,. Reading IRQpA register also  
clears the INTPA flag in IntRq register. At initial RESET the MPortA is set to 0, thus disabling any input interrupts.  
See paragraph 9 for further details about the interrupt controller.  
7.1.1  
PortA registers  
Table 13.  
PortA input status register - PortA  
Bit  
3
2
1
0
Name  
PA3  
PA2  
PA1  
PA0  
Reset  
R/W  
R
R
R
R
Description  
-
-
-
-
PA3 input status  
PA2 input status  
PA1 input status  
PA0 input status  
Table 14.  
PortA Interrupt request register - IRQpA  
Bit  
3
2
1
0
Name  
Reset  
R/W  
R
R
R
R
Description  
IRQpa3  
IRQpa2  
IRQpa1  
IRQpa0  
0
0
0
0
input PA3 interrupt request flag  
input PA2 interrupt request flag  
input PA1 interrupt request flag  
input PA0 interrupt request flag  
Table 15.  
PortA interrupt mask register - MportA  
Bit  
3
2
1
0
Name  
MPA3  
MPA2  
MPA1  
MPA0  
Reset  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
0
0
0
0
interrupt mask for input PA3  
interrupt mask for input PA2  
interrupt mask for input PA1  
interrupt mask for input PA0  
Copyright © 2005, EM Microelectronic-Marin SA  
14  
www.emmicroelectronic.com  
R
EM6607  
7.2 PortB  
Port B is a 4-bit general-purpose I/O port. Outputs on this port are high current outputs. Each bit PB(0:3) can be separately  
configured by software to be either input or output by writing to the corresponding bit of the CIOPortB control register. The  
PortB register is used to read data when in input mode and to write data when in output mode. On each terminal controlled  
Pull-Up/Down resistor can be selected by metal option, which are active only when selected as input. Special case is when  
we want to use internal Strong Pull-Up resistor also when PortB terminal is declared as N-channel open drain output and  
internal Pull-Up resistor is used to pull up the output (not-controlled Pull-Up). This is a special option “sod” = strong Pull-Up  
for Open drain- active all the time (when terminal is input or output).  
Writing 0 to the corresponding bit in the CIOPortB register sets input mode. This results in a high impedance state with the  
status of the pin being read from register PortB. Writing 1 to the corresponding bit in the CIOPortB register sets output  
mode. Consequently the output terminal follows the status of the bits in the PortB register. At initial RESET the CIOPortB  
register is set to 0, thus setting the port to input. Additionally, PB0 can also be used as a three-tone buzzer output. For  
details see section 7, Buzzer.  
7.2.1  
PortB registers  
Table 16.  
PortB input/output status register - PortB  
Bit  
3
2
1
0
Name  
PB3  
PB2  
PB1  
PB0  
Reset  
R/W  
R/W  
R /W  
R/W  
R /W  
Description  
PB3 I/O data  
PB2 I/O data  
PB1 I/O data  
PB0 I/O data  
-
-
-
-
Table 17.  
PortB Input/Output control register - CIOportB  
Bit  
3
2
1
0
Name  
Reset  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
CIOPB3  
CIOPB2  
CIOPB1  
CIOPB0  
0
0
0
0
PB3 Input/Output select  
PB2 Input/Output select  
PB1 Input/Output select  
PB0 Input/Output select  
Vdd  
Port B  
Mask  
2Y  
2N  
option  
Sleep  
OEBsleepRes  
Mask  
option  
Mask  
option  
0
1
PB[3:0]  
PG  
NG  
D
OE  
CIOportB  
Mask  
option  
Mask  
option  
3Y  
3N  
PortB RD  
Mask  
option  
Figure 8.  
Port B  
If metal mask option 3Y (Input blocked when Output) is used and port is declared as Output (CIOPortB = 1111b) the real  
port information cannot be read directly. In this case no direct logic operations (like AND PortB) on Output ports are  
possible. This logic operation can be made with an image of the Port saved in the RAM which we store after on the output  
port. This is valid for PortB, PortC and PortD when declared as output and the metal Option 3Y is used. In the case of metal  
option 3N selected direct logic operations on output ports are possible.  
If OEBsleepRes bit in Option2 register is set to “1” (Output Hi-Z in SLEEP mode) the active Output will go tri-state when  
the circuit goes into SLEEP mode. In the case of OEBsleepRes at “0”, output stays active also in the SLEEP mode.  
Copyright © 2005, EM Microelectronic-Marin SA  
15  
www.emmicroelectronic.com  
R
EM6607  
7.3 PortC  
This port can be configured as either input or output (but it is not bitwise selectable). When in input mode it implements the  
identical interrupt functions as PortA. The PortC register is used to read data when input mode and to write data when in  
output mode. Input mode is set by writing 0 in the I/O control bit CIOPC in register CPIOB, the input becomes high  
impedance. On each terminal controlled Pull-Up/Down resistor can be selected by metal option, which are active only when  
port is input. When we want to use internal Strong pull-up resistor also when PortC terminal is declared as N-channel open  
drain output and internal pull-up resistor is used to pull up the output (not-controlled pull-up). This is a special option “sod” =  
strong pull-up for Open drain- active all the time (when terminal is input or output).  
The output mode is selected by writing 1 to CIOPC bit, and the terminal follows the bits in the PortC register. When PortC is  
used as an input, interrupt functions as described for PortA can be enabled. Input to the interrupt logic can be direct or via a  
debounced input. With the debPCN bit at 0 in the Option register all the PortC inputs are debounced and with the debPCN  
bit at 1 none of the PortC inputs are debounced. MPortC is the interrupt mask register for this port and IRQpC is the portC  
interrupt request register. See also section 9.  
By writing the PA&C bit in the CPIOB data register it is  
possible to combine PortA and PortC interrupt requests  
(logic AND) as shown in Table 17  
Table 18.  
Ports A&C Interrupt  
IRQPA  
IRQPC  
PA&C  
Request to CPU  
0
0
1
1
0
1
1
0
1
0
1
1
0
1
X
0
0
0
1
1
1
No  
Yes  
Yes  
Yes  
No  
No  
Yes  
At initial reset, the CPIOC control register is set to 0, and the  
port is in input mode. The MPortC register is also set to 0,  
therefore disabling interrupts.  
7.3.1 PortC registers  
Table 19.  
PortC input/output register - PortC  
Bit  
3
2
1
0
Name  
PC3  
PC2  
PC1  
PC0  
Reset  
R/W  
R/W  
R /W  
R/W  
R /W  
Description  
PC3 I/O data  
PC2 I/O data  
PC1 I/O data  
PC0 I/O data  
-
-
-
-
Table 20.  
PortC Interrupt request register - IRQpC  
Bit  
3
2
1
0
Name  
Reset  
R/W  
R
R
R
R
Description  
IRQpc3  
IRQpc2  
IRQpc1  
IRQpc0  
0
0
0
0
input PC3 interrupt request flag  
input PC2 interrupt request flag  
input PC1 interrupt request flag  
input PC0 interrupt request flag  
Table 21.  
PortC interrupt mask register - MportC  
Bit  
3
2
1
0
Name  
MPC3  
MPC2  
MPC1  
MPC0  
Reset  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
0
0
0
0
interrupt mask for input PC3  
interrupt mask for input PC2  
interrupt mask for input PC1  
interrupt mask for input PC0  
Copyright © 2005, EM Microelectronic-Marin SA  
16  
www.emmicroelectronic.com  
R
EM6607  
IRQedgeR  
debPCN  
Interrupt  
Request  
IRQpC  
1
0
1
0
Debouncer  
DebCK  
Vdd  
Port C  
Mask  
2Y  
option  
Sleep  
OECsleepRes  
Mask  
option  
Mask  
option  
2N  
0
1
PC[3:0]  
PG  
NG  
D
OE  
CIOPC  
Mask  
option  
Mask  
option  
3Y  
PortC RD  
Mask  
option  
3N  
Figure 9.  
Port C  
If OECsleepRes bit in Option2 register is set to “1” (=6Y (Output Hi-Z in SLEEP mode)) the active Output will go tri-state when the  
circuit goes into SLEEP mode. In the case of 6N - OECsleepRes at “0”, output stay active also in the SLEEP mode.  
Table 22.  
Option2 register - Option2  
Bit  
3
2
1
0
Name  
Reset  
R/W  
W
W
W
W
Description  
OEDsleepRes  
OECsleepRes  
OEBsleepRes  
BuzzerPE0  
0
0
0
0
PortD Output Enable reset by Sleep mode  
PortC Output Enable reset by Sleep mode  
PortB Output Enable reset by Sleep mode  
Buzzer on PE0 if 1, on PB0 if 0  
Copyright © 2005, EM Microelectronic-Marin SA  
17  
www.emmicroelectronic.com  
R
EM6607  
7.4 PortD  
The EM6607 has one all purpose I/O port similar to PortC but without interrupt capability. The PortD register is used to read  
input data when an input and to write output data for output. The input line can be pulled Up/Down (metal option) when the  
port is used as input. Input mode is set by writing 0 to the I/O control bit CIOPD in register CPIOB, and the terminal becomes  
high impedance. On each terminal controlled Pull-Up/Down resistor can be selected by metal option which are active only  
when selected as input. Special case is when we want to use internal Strong pull-up resistor also when PortC terminal is  
declared as N-channel open drain output and internal pull-up resistor is used to pull up the output (not-controlled pull-up).  
This is a special option “sod” = strong pull-up for Open drain- active all the time (when terminal is input or output).  
Output mode is set by writing 1 to the control bit CIOPD. Consequently, the terminal follows the status of the bits in the  
PortD register. If Serial Write Buffer function is enabled PD0 and PD1 terminals of PortD output serial clock and serial data  
respectively. For details see 11.0 Serial Write Buffer.  
7.4.1 PortD registers  
Table 23.  
PortD Input/Output register - PortD  
Bit  
3
2
1
0
Name  
PD3  
PD2  
PD1  
PD0  
Reset  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
PD3 I/O data  
PD2 I/O data  
PD1 I/O data  
PD0 I/O data  
0
0
0
0
Table 24.  
Ports control register - CPIOB  
Bit  
3
2
1
0
Name  
-
CIOPD  
CIOPC  
PA&C  
Reset  
-
0
0
0
R/W  
Description  
not used  
I/O PortD select  
I/O PortC select  
R/W  
R/W  
R/W  
R/W  
Logical AND of IRQ’s from PortA & PortC  
Vdd  
Port D  
Mask  
2Y  
2N  
option  
Sleep  
Mask  
option  
Mask  
option  
OEBsleepRes  
0
1
PD[3:0]  
PG  
NG  
D
OE  
CIOPD  
Mask  
option  
Mask  
option  
3Y  
PortD RD  
Mask  
option  
3N  
Figure 10. Port D  
If OEDsleepRes bit in Option2 register is set to “1” (Output Hi-Z in SLEEP mode) the active Output will go tri-state when the  
circuit goes into SLEEP mode. In the case of OEDsleepRes at “0”, output stay active also in the SLEEP mode.  
Copyright © 2005, EM Microelectronic-Marin SA  
18  
www.emmicroelectronic.com  
R
EM6607  
7.5 PortE  
PortE is a 4-bit I/O port where each pad PE(0:3) can be separately configured by software to be either input or output by  
writing to the corresponding bit of the CIOPortE control register. The PortE register is used to read data when in input mode  
and to write data when in output mode. On each terminal controlled Pull-Up/Down resistor can be selected by metal option  
which are active only when selected as input. Special case is when we want to use internal Strong pull-up resistor also when  
PortC terminal is declared as N-channel open drain output and internal pull-up resistor is used to pull up the output (not-  
controlled pull-up). This is a special option “sod” = strong pull-up for Open drain- active all the time (when terminal is input or  
output).  
Input mode is set by writing 0 to the corresponding bit in the CIOPortE register. This results in a high impedance state with  
the status of the pin being read from register PortE. Output mode is set by writing 1 to the corresponding bit in the CIOPortE  
register. Consequently the output terminal follows the status of the bits in the PortE register. At initial RESET the CIOPortE  
register is set to 0, thus setting the port to an input.  
7.5.1 PortE registers  
Table 25.  
PortE Input/Output status register - PortE  
Bit  
3
2
1
0
Name  
PE3  
PE2  
PE1  
PE0  
Reset  
R/W  
R/W  
R /W  
R/W  
R /W  
Description  
PE3 I/O data  
PE2 I/O data  
PE1 I/O data  
PE0 I/O data  
-
-
-
-
Table 26.  
PortE Input/Output control register - CIOPortE  
Bit  
3
2
1
0
Name  
Reset  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
CIOPE3  
CIOPE2  
CIOPE1  
CIOPE0  
0
0
0
0
PE3 Input/Output select  
PE2 Input/Output select  
PE1 Input/Output select  
PE0 Input/Output select  
Vdd  
Port E  
Mask  
2Y  
2N  
option  
Mask  
option  
Mask  
option  
0
1
PE[3:0]  
PG  
NG  
D
OE  
CIOPE  
Mask  
option  
PortE RD  
Figure 11. Port E  
Copyright © 2005, EM Microelectronic-Marin SA  
19  
www.emmicroelectronic.com  
R
EM6607  
8
BUZZER  
The EM6607 has one 50% duty cycle output with three different frequencies, which can be used to drive a buzzer. I/O  
terminal PB0 in 24-pin package or PE0 in 28-pin package (BuzzerPE0 option) is used for this function when the buzzer is  
enabled by setting the BUen bit to 1 . Table 22 below shows how to select the frequency by writing to the BCF1 and BCF0  
control flags in the BEEP register.  
After writing to the buzzer control register BEEP, the  
chosen frequency (or silence) is selected immediately.  
With the BUen bit set to 1, the selected frequency is  
output at PB0 when BuzzerPE0 is 0. When the BUen is  
set to 0 PB0 is used as a normal I/O terminal of PortB.  
The BUen bit has a higher priority over the I/O control bit  
CIOPB0 in the CIOPortB register. In case when  
BuzzerPE0 is 1 and BUen is set to 1 PE0 becomes  
output and PB0 is not influenced by buzzer function.  
Tone frequency  
silence  
1024 Hz  
2048 Hz  
2667 Hz  
BCF1  
BCF0  
0
0
1
1
0
1
0
1
Table 2.  
Buzzer frequency selection  
8.1 Buzzer Register  
Table 27.  
Buzzer control register - BEEP  
Bit  
3
2
1
0
Name  
TimEn  
BUen  
BCF1  
BCF0  
Reset  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Timer/counter enable  
Buzzer enable  
Buzzer Frequency control  
Buzzer Frequency control  
0
0
0
0
Table 28.  
Buzzer output pad allocation  
Buzzer on PB0 or PE0  
BuzzerPE0 in register Option2  
Buzzer output on PE0  
Buzzer output on PB0  
1
0
Table 29.  
CIOPB0  
PB0 & PE0 function used with BUen and BuzzerPE0 control bits  
CIOPE0 BUen BuzzerPE0 Function distributions on PB0 and PE0 pads  
0
1
X
0
1
0
1
0
X
X
0
0
1
1
1
X
X
0
1
1
PB0 and PE0 are Inputs  
PB0 and PE0 are independent outputs  
PB0 is Buzzer output, PE0 is input  
PB0 is input, PE0 is Buzzer output  
PB0 is general output, PE0 is Buzzer output  
Copyright © 2005, EM Microelectronic-Marin SA  
20  
www.emmicroelectronic.com  
R
EM6607  
9
Timer/Event Counter  
The EM6607 has a built-in 8 bit countdown auto-reload Timer/Event counter that takes an input from either the prescaler or  
Port PA3. If the Timer/Event counter counts down to $00 the interrupt request flag IntTim is set to 1. If the Timer/Event  
counter interrupt is enabled by setting the mask flag MTimC set to 1, then an interrupt request is generated to the CPU. See  
also section 9. If used as an event counter, pulses from the PA3 terminal are input to the event counter. See figure 10 and  
tables 28 and 29 on the next page for PA3 source selection (debounced or not, Rising/Falling edge). By default rising and  
debounced PA3 input is selected.  
The timer control register TimCtr selects the auto-reload function and input clock source. At initial RESET this bit is cleared  
to 0 selecting no auto-reload. To enable auto-reload TimAuto must be set to 1. The Timer/Event counter can be enabled or  
disabled by writing to the TIMen control bit in the BEEP register. At initial RESET it is cleared to 0. When used as timer, it is  
initialised according to the data written into the timer load/status registers LTimLS (low 4 bits) and HTimLS (high four bits).  
The timer starts to count down as soon as the LTimLS value is written. When loading the Timer/Event counter registers the  
correct order must be respected: First, write either the control register TimCtr or the high data nibble HTimLS. The last  
register written should be the low data nibble LTimLS. During count down, the timer can always be reloaded with a new  
value, but the high four bits will only be accepted during the write of the low four bits.  
In the case of the auto-reload function, the timer is initialised with the value of the load registers LTimLS and HTimLS.  
Counting with the auto-reload function is only enabled during the write to the low four bits, (writing TimAuto to 1 does not  
start the timer counting down with the last value in the timer load registers but it waits until a new LTimLS load). The timer  
counting to $00 generates a timer interrupt event and reloads the registers before starting to count down again. To stop the  
timer at any time, a write of $00 can be made to the timer load registers, this sets the TimAuto flag to 0. If the timer is  
stopped by writing the TimEn bit to 0, the timer status can be read. The current timer status can be always obtained by  
reading the timer registers LTimLS and HTimLS. For proper operation read ordering should be respected such that the first  
read should be of the LTimLS register followed by the HTimLS register. Example: To have continous 1sec timer IRQ with  
128Hz one has to write 128dec (80hex) in Timer registers with auto-reload.  
Using the Timer/Event Counter as the event counter allows several possibilities:  
1.) Firstly, load the number of PA3 input edges expected into the load registers and then generate an interrupt request  
when counter reaches $00.  
2.) The second is to write timer/counter to $FF, then select the event counter mode, and lastly enable the event counter by  
setting the TimEn bit to 1, which starts the count.  
Because the counter counts down, a binary complement has to be done in order to get the number of events at the PA3  
input.  
3) Another option is to use the Timer/Event counter in conjunction with the prescaler interrupt, such that it is possible to  
count the number of the events during two consecutive 32Hz, 8Hz or 1Hz prescaler interrupts.  
Figure 12. Timer / Event Counter  
Copyright © 2005, EM Microelectronic-Marin SA  
21  
www.emmicroelectronic.com  
R
EM6607  
Table below shows the selection of inputs to the Timer/Event counter.  
Table 30.  
Timer Clock Selection  
TEC2  
TEC1  
TEC0  
Timer/Counter clock source  
not active  
2048 Hz from prescaler  
512 Hz from prescaler  
128 Hz from prescaler  
32 Hz from prescaler  
8 Hz from prescaler  
1 Hz from prescaler  
PA3 input terminal (see tables 28 and 29)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
9.1 Timer/Counter registers  
Table 31.  
Timer control register - TimCtr  
Bit  
3
2
1
0
Name  
TimAuto  
TEC2  
TEC1  
TEC0  
Reset  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
0
0
0
0
Timer/Counter AUTO reload  
Timer/Counter mode 2  
Timer/Counter mode 1  
Timer/Counter mode 0  
Table 32.  
LOW Timer Load/Status register - LTimLS (4 low bits)  
Bit  
3
2
1
0
Name  
Reset  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
TL3/TS3  
TL2/TS2  
TL1/TS1  
TL0/TS0  
0
0
0
0
Timer load/status bit 3  
Timer load/status bit 2  
Timer load/status bit 1  
Timer load/status bit 0  
Table 33.  
HIGH Timer Load/Status register - HTimLS (4 high bits)  
Bit  
3
2
1
0
Name  
Reset  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
TL7/TS7  
TL6/TS6  
TL5/TS5  
TL4/TS4  
0
0
0
0
Timer load/status bit 7  
Timer load/status bit 6  
Timer load/status bit 5  
Timer load/status bit 4  
Table 34.  
PA3 counter input selection register - PA3cnt  
bit  
3
2
1
0
Name  
-
WDanadis  
Fout  
Reset  
R/W  
-
R/W  
R/W  
R/W  
Description  
empty  
Analogue WD disable  
System freq. output on STB/RST pad  
PA3 input status  
0
0
0
0
PA3cntin  
Table 35.  
PA3 counter input selection  
debPAN IRQedgeR  
PA3cntin  
Counter source  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
PA3 debounced rising edge  
PA3 debounced falling edge  
PA3 debounced rising edge  
PA3 not debounced falling edge  
PA3 not debounced rising edge  
X ( Don’t care)  
Copyright © 2005, EM Microelectronic-Marin SA  
22  
www.emmicroelectronic.com  
R
EM6607  
10 Interrupt Controller  
The EM6607 has 12 different interrupt sources, each of which is maskable. These are:  
External (9)  
- PortA PA3..PA0 inputs  
- PortC PC3..PC0 inputs  
- Combined AND of PortA * PortC  
Internal (3)  
- Prescaler (32Hz / 8Hz / 1Hz)  
- Timer/Event counter  
- SWB in interactive mode  
For an interrupt to the CPU to be generated, the interrupt request flag must be set (INTxx), and the corresponding mask  
register bit must be set to 1 (Mxx), the general interrupt enable flag (INTEN) must also be set to 1. The interrupt request can  
be masked by the corresponding interrupt mask registers MPortx for each input interrupt and by PSF0 ,PSF1 and MTim for  
internal interrupts. At initial reset the interrupt mask bits are set to 0. INTEN bit is set automatically to 1 by Halt Instruction  
except when starting the Automatic SWB transfer (see Serial Write Buffer (SWB) chapter 11)  
The CPU is interrupted when one of the interrupt request flags is set to 1 in register IntRq and the INTEN bit is enabled in  
the control register CIRQD. INTTE and INTPR flags are cleared automatically after a read of the IntRq register. The other  
two interrupt flags INTPA (IRQ from PortA) and INTPC (IRQ from PortC) in the IntRq register are cleared only after reading  
the corresponding Port interrupt request registers IRQpA and IRQpC. At the Power on reset and in SLEEP mode the INTEN  
bit is also set to 0 therefore not allowing any interrupt requests to the CPU until it is set to 1 by software.  
Since the CPU has only one interrupt subroutine and because the IntRq register is cleared after reading, the CPU does not  
miss any of the interrupt requests which come during the interrupt service routine. If any occur during this time a new  
interrupt will be generated as soon as the CPU comes out of the current interrupt subroutine. Interrupt priority can be  
controlled through software by deciding which flag in the IntRq register should be serviced first.  
For SWB interactive mode interrupt see section 11.0 Serial Write Buffer.  
10.1 Interrupt control registers  
Table 36.  
Main Interrupt request register - IntRq (Read Only)*  
Bit  
3
2
1
0
Name  
INTPR  
INTTE  
INTPC  
INTPA  
SLEEP  
Reset  
R/W  
R
R
R
R
Description  
0
0
0
0
0
Prescaler interrupt request  
Timer/counter interrupt request  
PortC Interrupt request  
PortA Interrupt request  
SLEEP mode flag  
2
W*  
* Write bit 2 only if SLmask=1  
If the SLEEP flag is written with 1 then the EM6607 goes immediately into SLEEP mode (SLmask was at 1).  
Copyright © 2005, EM Microelectronic-Marin SA  
23  
www.emmicroelectronic.com  
R
EM6607  
Table 37.  
Register - CIRQD  
Bit  
3
2
1
0
Name  
-
-
DebCK  
INTEN  
Reset  
R/W  
R/W  
R/W*  
R/W  
R/W  
Description  
0
0
0
0
Reserved, must written to 0  
Reserved, must written to 0  
Debouncer clock select (0=2ms : 1=16ms)  
Enable interrupt to CPU (1=enabled)  
Figure 13. Interrupt Request generation  
IRQ mask bit which can be written to 0 or 1 (1 to enable an interrupt)  
interrupt request flag which is set on the input rising edge.  
Timer IRQ flag INTTE and prescaler IRQ flag INTPR arrive independent of their mask bits not to loose any timing  
information. But the μprocessor will be interrupted only with mask set to 1.  
Copyright © 2005, EM Microelectronic-Marin SA  
24  
www.emmicroelectronic.com  
R
EM6607  
11 Supply Voltage Level Detector (SVLD)  
The EM6607 has a software configurable Supply Voltage Level detector. Three levels can be defined within the power  
supply range. During SLEEP mode this function is disabled.  
Voltage level detector can be used also for Power-Check on Start-up of the EM6607 micro-controller when VDD is applied  
(see Chapter 4.7 POR with Power-Check Reset).  
The required voltage compare level is selected by writing the bits VLC1 and VLC2 in the SVLD control register that also  
activates the compare measurement. Since the measurement is not immediate the busy flag remains high during the  
measurement and is automatically cleared low when the measurement is finished. Reading the VLDR flag indicates the  
result. If the result is 0 then the voltage level is higher than the selected compare level. And if 1 it is lower than the compare  
level. The result VLDR of the last measurement remains until the new one is finished. The new result overwrites the  
previous one.  
During the SVLD operation power consumption increases by approximately 3μA for 3.9msec. The measurement internally  
starts with the rising 256Hz edge following the SVLD test command. The additional SVLD consumption stops after the  
falling edge of the 256Hz internal clock.  
Table below lists the voltage level selection  
Table 38.  
SVLD Level selection  
Voltage level  
VLC1  
VLC0  
Possible levels implementations  
SVLD disabled  
0
0
1
1
0
1
0
1
VL1  
VL2  
VL3  
VL1 : possible levels are from 1.3V to 3V by step of 100mV.  
VL2 : possible levels are 2.3V ; 2.6V to 3.5V by step of 100mV ; 3.7V and 4V  
VL3 : possible levels are 2.6V to 3.5V by step of 100mV ; 3.7V and 4V  
VL1 level is also the level used for Power check if activated (table 15.1.1).  
Table 39.  
SVLD control register - SVLD  
Bit  
3
2
1
0
Name  
VLDR  
busy  
VLC1  
VLC0  
Reset  
R/W  
R
R
R/W  
R/W  
Description  
0
0
0
0
SVLD result (0=higher 1=lower)  
measurement in progress  
SVLD level control 1  
SVLD level control 0  
Copyright © 2005, EM Microelectronic-Marin SA  
25  
www.emmicroelectronic.com  
R
EM6607  
12 Serial Write Buffer – SWB  
The EM6607 has a simple Serial Write Buffer (SWB) which outputs serial data and serial clock.  
The SWB is enabled by setting the bit V03 in the CLKSWB register as well as setting port D to output mode. The  
combination of the possible PortD mode is shown in Table 34. In SWB mode the serial clock is output on port D0 and the  
serial data is output on port D1.  
The signal TestVar[3], which is used by the processor to make conditional jumps, indicates "Transmission finished" in  
automatic send mode or "SWBbuffer empty" in interactive send mode. In interactive mode, TestVar[3] (see port A section) is  
equivalent to the interrupt request flags stored in IntRq register : it permits to recognise the interrupt source. (See also the  
interrupt handling section 9.Interrupt Controller for further information). To serve the "SWBbuffer empty " interrupt request,  
one only has to make a conditional jump on TestVar[3].  
Bits ClkSWB0 and ClkSWB1 in the ClkSWB register select the Serial Write Buffer output clock frequency. The  
possible values are 1kHz (default), 2kHz, 8kHz or 16kHz and are shown in Table below:  
Table 40.  
SWB clock selection  
SWB clock output  
1024 Hz  
2048 Hz  
8192 Hz  
16384 Hz  
CkSWB1  
CkSWB0  
0
0
1
1
0
1
0
1
Table 41.  
SWB clock selection register - ClkSWB  
Bit  
3
2
1
0
Name  
V03  
-
CkSWB1  
CkSWB0  
Reset  
R/W  
R/W  
R
R/W  
R/W  
Description  
0
0
0
0
Serial Write buffer selection  
RESERVED - read 0  
SWB clock selector 1  
SWB clock selector 0  
Table 42.  
PortD status  
PortD status  
« NORMAL »  
« NORMAL »  
« NORMAL »  
« SWB »  
CIOPD  
V03  
0
1
0
1
PD0  
input  
input  
output PD0  
serial clock Out  
PD1  
input  
input  
output PD1  
SWB serial data  
PD2  
input  
input  
output PD2  
output PD2  
PD3  
input  
input  
output PD3  
output PD3  
0
0
1
1
When the SWB is enabled by setting the bit V03 TestVar[3], which is used to make conditional jumps, is reassigned to the  
SWB and indicates either "SWBbuffer empty " interrupt or "Transmission finished" . After Power-on-RESET V03 is cleared  
at "0" and TestVar[3] is consequently assigned to PA2 input terminal.  
The SWB data is output on the rising edge of the clock. Consequently, on the receiver side the serial data can be evaluated  
on falling edge of the serial clock edge.  
Copyright © 2005, EM Microelectronic-Marin SA  
26  
www.emmicroelectronic.com  
R
EM6607  
Figure 14. Serial write buffer  
Table 43.  
SWB buffer register - SWbuff  
Bit  
3
2
1
0
Name  
Buff3  
Buff2  
Buff1  
Buff0  
Reset  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
1
1
1
1
SWB buffer D3  
SWB buffer D2  
SWB buffer D1  
SWB buffer D0  
Table 44.  
SWB Low size register - LowSWB  
Bit  
3
2
1
0
Name  
Reset  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Size[3]  
Size[2]  
Size[1]  
Size[0]  
0
0
0
0
Auto mode buffer size bit3  
Auto mode buffer size bit2  
Auto mode buffer size bit1  
Auto mode buffer size bit0  
Table 45.  
SWB High size register – HighSWB  
Bit  
3
2
1
0
Name  
Reset  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
AutoSWB  
StSWB  
Size[5]  
Size[4]  
0
0
0
0
SWB Automatic mode select  
SWB start interactive mode  
Auto mode buffer size bit5  
Auto mode buffer size bit4  
The SWB has two operational modes, automatic mode and interactive mode.  
Copyright © 2005, EM Microelectronic-Marin SA  
27  
www.emmicroelectronic.com  
R
EM6607  
12.1 SWB Automatic send mode  
Automatic mode enables a buffer on a predefined length to be sent at high transmission speeds ( up to 16khz). In this mode  
user prepares all the data to be sent (minimum 8 bits, maximum 256 bits) in RAM. The user then selects the clock speed,  
sets the number of data nibbles to be sent, selects automatic transmission mode (AutoSWB bit set to 1) and enters  
STANDBY mode by executing a HALT instruction. Once the HALT instruction is activated the SWB peripheral module sends  
the data in register SWBuff followed by the data in the RAM starting at address 00 up to the address specified by the bits  
size[5:0] located in the LowSWB, HighSWB registers.  
During automatic transmission the general INTEN bit is disabled automatically to prevent other Interrupts to reset the  
standby mode. At the end of automatic transmission EM6607 leaves standby mode and sets TestVar[3] high. TestVar[3] =  
1 is signaling SWB transmission is terminated. Once the transmission is finished, do not forget to enable the general INTEN  
bit if necessary.  
The data to be sent must be prepared in the following order:  
First nibble to be sent must be written in the SWBuff register . The other nibbles must be loaded in the RAM from address 0  
(second nibble at adr.0, third at adr.1,...) up to the address with last nibble of data to be send = "size" address. Max. address  
space for SWB is 3E ("size" 3E hex) what gives with SWBuff up to 64 nibbles (256 bits) of possible data to be sent. The  
minimum possible data length we can send in Automatic SWB mode is 8 bits when the last RAM address to be sent is 00  
("size" = 00)  
Once data are ready in the RAM and in the SWBuff, user has to load the "size" (adr. of the last nibble to be send - bits  
size[5:0]) into the LowSWB and HighSWB register together with AutoSWB bit = 1.  
Now everything is ready for serial transmission. To start the transmission one has to put the EM6607 in standby mode with  
the HALT instruction. With this serial transmission starts. When transmission is finished the TESTvar[3] (can be used for  
conditional jumps) becomes active High, the AutoSWB bit is cleared, the processor is leaving the Standby mode and  
INTEN is switched on.  
Figure 15. Automatic Serial Write Buffer transmission  
The processor now starts to execute the first instruction placed after the HALT instruction (for instance write of SWBuff  
register to clear TESTvar[3]), except if there was a IRQ during the serial transmission. In this case the CPU will go directly in  
the interrupt routine to serve other interrupt sources.  
TestVar[3] stays high until SWBuff is rewritten. Before starting a second SWB action this bit must be cleared by performing  
a dummy write on SWBuff address.  
Because the data in the RAM are still present one can start transmitting the same data once again only by recharging the  
SWBuff , LowSWB and HighSWB register together with AutoSWB bit and putting the EM6607 in HALT mode will start  
new transmission.  
Copyright © 2005, EM Microelectronic-Marin SA  
28  
www.emmicroelectronic.com  
R
EM6607  
12.2 SWB Interactive send mode  
In interactive SWB mode the reloading of the data transmission register SWBbuff is performed by the application program.  
This means that it is possible to have an unlimited length transmission data stream. However, since the application program  
is responsible for reloading the data a continuous data stream can only be achieved at 1kHz or 2kHz transmission speeds.  
For the higher transmission speeds a series of writes must be programmed and the serial output clock will not be  
continuous.  
Serial transmission using the interactive mode is detailed in Figure 14. Programming of the SWB in interactive is achieved in  
the following manner:  
Select the transmission clock speed using the bits ClkSW0 and ClkSW1 in the ClkSWB register.  
Load the first nibble of data into the SWB data register SWBbuff  
Start serial transmission by selecting the bit StSWB in the register HighSWB register.  
Once the data has been transferred into the serial transmission register a non maskable interrupt (SWBEmpty) is generated  
and TESTvar[3] goes high. The CPU goes in the interrupt routine, with the JPV3 as first instruction in the routine one can  
immediately jump to the SWB update routine to load the next nibble to be transmitted into the SWBuff register. If this reload  
is performed before all the serial data is shifted out then the next nibble is automatically transmitted. This is only possible at  
the transmission speeds of 1KHz or 2KHz due to the number of instructions required to reload the register. At the higher  
transmission speeds of 8khz and 16khz the application must restart the serial transmission by writing the StSWB in the High  
SWBHigh register after writing the next nibble to the SWBbuff register.  
Each time the SWBuff register is written the "SWBbuffer empty interrupt" and TestVar[3] are cleared to "0". For proper  
operation the SWBuff register must be written before the serial clock drops to low during sending the last bit (MSB) of the  
previous data.  
Figure 16. Interactive Serial Write Buffer transmission  
After loading the last nibble in the SWBbuff register a new interrupt is generated when this data is transferred to an  
intermediate Shift Register. Precaution must be made in this case because the SWB will give repetitive interrupts until the  
last data is sent out completely and the STSWB bit goes low automatically. One possibility to overcome this is to check in  
the Interrupt subroutine that the STSWB bit went low before exiting interrupt. Be careful because if STSWB bit is cleared by  
software transmission is stopped immediately.  
At the end of transmission a dummy write of SWBuff must be done to clear TESTvar[3] and "SWBbuffer empty interrupt"  
or the next transmission will not work.  
Copyright © 2005, EM Microelectronic-Marin SA  
29  
www.emmicroelectronic.com  
R
EM6607  
13 STroBe / ReSeT Output  
The STB/RST output pin is used to indicate the EM6607 RESET condition as well as write operations to ports B, C and D.  
For a PortB, PortC and PortD write operation the STROBE signal goes high for half of the system clock period. Write is  
effected on falling edge of the strobe signal and it can this be used to indicate when data changes at the output port pins. In  
addition, any EM6607 internal RESET condition is indicated by a continuous high level on STB/RST for the period of the  
RESET.  
14 Test at EM - Active Supply Current test  
For this purpose, five instructions at the end of the ROM will be added.  
Testloop:  
STI00H, 0AH  
LDR  
1BH  
NXORX  
JPZ  
JMP  
Testloop  
00H  
To stay in the testloop, these values must be written in the corresponding addresses before jumping in the loop:  
1BH:  
32H:  
6EH:  
6FH:  
0101b  
1010b  
0010b  
0011b  
Free space after last instruction: JMP 00H (0000)  
Remark: empty space within the program are filled with NOP (FOFF).  
Copyright © 2005, EM Microelectronic-Marin SA  
30  
www.emmicroelectronic.com  
R
EM6607  
15 Metal Mask Options  
The following options can be selected at the time of programming the metal mask ROM.  
Table 46. input/output Ports  
Pull-Down  
Yes / No  
Strong / Weak  
Pull-Up  
Yes / No  
Strong / Weak  
Nch-open drain  
Yes / No  
Input blocked  
when Output  
Yes / No  
Output Hi-Z in  
SLEEP mode  
Yes / No  
0
1 (*1)  
2 (*1)  
3
(*2)  
4
A0  
A1  
A2  
A3  
B0  
B1  
B2  
B3  
C0  
C1  
C2  
C3  
D0  
D1  
D2  
D3  
E0  
E1  
E2  
E3  
PA0 input  
PA1 input  
PA2 input  
PA3 input  
PB0 In/Out  
PB1 In/Out  
PB2 In/Out  
PB3 In/Out  
PC0 In/Out  
PC1 In/Out  
PC2 In/Out  
PC3 In/Out  
PD0 In/Out  
PD1 In/Out  
PD2 In/Out  
PD3 In/Out  
PE0 In/Out  
PE1 In/Out  
PE2 In/Out  
PE3 In/Out  
OEBsleepRes  
Bit in Option2  
register.  
Yes =1, No=0  
OECsleepRes  
Bit in Option2  
register.  
Yes =1, No=0  
OEDsleepRes  
Bit in Option2  
register.  
Yes =1, No=0  
Put one letter (Y, N) in each BOX from proposed for the column.  
For Pull-Up/Down if “Y” add also one letter (S,W) to define type of resistor. (see 18.5 electrical parameters also)  
*1 When used as N-channel Open drain output not-controlled Pull-Up (Y-SOD) can be used. Pull Up active during Output also  
if Y-S is set in Pull-Up & Y for Nch-open drain an external resistor is needed to make output High !!!! because Pull Up is active  
during input only ! This is applicable only for Ports B,C,D and E which can be outputs also.  
*2 Port-wise for PortC and PortD (one possibility for the whole port); PortB bit-wise  
Table 47. PortB Hi Current Drive capability  
Driving to VSS (negative supply)  
Possible options are  
Driving to VDD (positive supply)  
Possible options are  
4n (weak), 10n, 18n (strong)  
6p (weak), 14p, 24p (strong)  
B0  
B1  
B2  
B3  
PB0 output  
PB1 output  
PB2 output  
PB3 output  
At higher VDD scaling of this buffer is needed not to overcome the Maximum VDD and VSS current for the IC.  
Put in each box one of 3 possibilities mentioned in the title of column like 18n, 24p (strongest configuration). Numbers  
above state for number of active N and P transistors in output buffer. See electrical parameters to know what to expect at  
different option. Important Note: Maximum VDD and VSScurrent MUST be limited to 90 mA !! Only 2 PortB High current  
terminals can switch at the same time in strongest configuration to limit the spikes generated by switching.  
Copyright © 2005, EM Microelectronic-Marin SA  
31  
www.emmicroelectronic.com  
R
EM6607  
15.1.1 Power-Check Level Option  
Power Check function can be enabled or disabled. For  
EM6603 compatibility the default selection is NO, but can  
be set to YES to be sure VDD on Power-Up came over  
SVLD level VL1 before internal Reset is released and  
circuit starts to execute instructions.  
Option  
Name  
Default  
Value  
User  
Value  
B
A
PwCheck  
Power-Check Yes / No  
NO  
15.1.2 PortA reset Option, see paragraph 4.3  
Refer to chapter 4.3 Input port (PA0..PA3) RESET to  
select the PortA reset option. Possible options are  
rstpa_no, rstpa_xh where x={3,5,6,7,9,a,b,c,d,e,f}  
Option  
Name  
Default  
Value  
A
User  
Value  
B
RA  
PortAreset  
rstpa_no  
15.1.3 SVLD levels Option, see paragraph 11 SVLD  
Option  
typ. VL1 level [V] typ. VL2 level [V] typ. VL3 level [V]  
Name  
VLX  
SVLD level in Volts  
VL1 level is also the level used for Power check if activated (table 15.1.1).  
VL1 : possible levels are from 1.3V to 3V by step of 100mV.  
V
V
L2 : possible levels are 2.3V ; 2.6V to 3.5V by step of 100mV ; 3.7V and 4V  
L3 : possible levels are 2.6V to 3.5V by step of 100mV ; 3.7V and 4V  
Software name is :  
______________.bin, dated ______________  
The customer should specify the required options at the time of ordering.  
A copy of this sheet, as well as the « Software ROM characteristic file » generated by  
the assembler (*.STA) should be attached to the order.  
Copyright © 2005, EM Microelectronic-Marin SA  
32  
www.emmicroelectronic.com  
R
EM6607  
16 PERIPHERAL MEMORY MAP  
The following table shows the peripheral memory map of the EM6607. The address space is between $00 and $7F (Hex).  
Any addresses not shown can be considered to be reserved.  
power  
up  
value  
Register  
name  
add add  
hex dec  
write_bits  
read_bits  
Remarks  
b'3210  
Read/Write_bits  
00-  
0-95  
5f  
0: D0  
1: D1  
2: D2  
3: D3  
RAM  
LTimLS  
HTimLS  
TimCtr  
xxxx  
direct addressing  
0: TL0  
1: TL1  
2: TL2  
3: TL3  
0: TL4  
1: TL5  
2: TL6  
3: TL7  
0: TS0  
1: TS1  
2: TS2  
3: TS3  
0: TS4  
1: TS5  
2: TS6  
3: TS7  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
96  
97  
0000  
0000  
0000  
0000  
0000  
0000  
xxxx  
low nibble of 8bit timer load and  
status register  
high nibble of 8bit timer load  
and status register  
0: TEC0  
1: TEC1  
2: TEC2  
98  
timer control register with  
frequency selector  
3: TimAuto  
0: NoWD  
1: debPAN  
2: debPCN  
3: IRQedgeR  
0: BUZZERPE0  
1: OEBsleepRes  
2: OECsleepRes  
3: OEDsleepRes  
0: PA3cntin  
1: Fout  
2: WDdisana  
3: 0  
0: PE0  
1: PE1  
2: PE2  
Watch dog timer off  
Option  
99  
Debouncer on port A disabled  
Debouncer on port C disabled  
Rising edge interrupt  
Buzzer on PE0 enable  
PortB OE reset by Sleep  
PortC OE reset by Sleep  
PortD OE reset by Sleep  
Option2  
PA3cnt  
PortE  
100  
101  
102  
103  
104  
105  
106  
107  
PA3 counter input  
Frequency output on STRB  
Disable analogue WD  
Port E Input/Output  
3: PE3  
0: CIOPE0  
1: CIOPE1  
2: CIOPE2  
3: CIOPE3  
0: CkSWB0  
1: CkSWB1  
2: 0  
3: V03  
0: Buff0  
1: Buff1  
2: Buff2  
Port E Input/Output individual  
control  
CIOportE  
ClkSWB  
SWBuff  
LowSWB  
HighSWB  
0000  
0000  
1111  
0000  
0000  
Clock selector for SWB  
SWB intermediate buffer  
3: Buff3  
0: size[0]  
1: size[1]  
2: size[2]  
3: size[3]  
0: size[4]  
1: size[5]  
2: StSWB  
3: AutoSWB  
low nibble to define the size of  
data to be send in Automatic  
mode  
the size of the data to be sent &  
SWB control  
power  
up  
value  
Register  
name  
add add  
hex dec  
write_bits  
read_bits  
Remarks  
Copyright © 2005, EM Microelectronic-Marin SA  
33  
www.emmicroelectronic.com  
R
EM6607  
b'3210  
0000  
Read/Write_bits  
0: VLC0  
1: VLC1  
2: -  
0: VLC0  
1: VLC1  
2: busy  
voltage level  
SVLD  
6C  
6D  
108  
109  
detector control  
3: -  
3: VLDR  
0: INTEN  
1: DebCK  
2: 0  
global interrupt enable  
debouncer clock  
IRQ Comp Bit  
CIRQD  
0000  
3: 0  
IRQ Comp Mask  
internally used for INDEX  
register  
Index LOW  
Index HIGH  
6E  
6F  
110  
111  
xxxx  
xxxx  
internally used for INDEX  
register  
0: -  
1: -  
2: SLEEP  
3: -  
0: -  
1: -  
0: INTPA  
1: INTPC  
2: INTTE  
3: INTPR  
0: WD0  
1: WD1  
2: SLmask  
3: 0  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
interrupt requests  
sleep mode  
IntRq  
WD  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
0000  
0000  
xxxx  
0000  
0000  
xxxx  
0000  
xxxx  
0000  
0000  
xxxx  
WatchDog timer control  
and SLEEP mask  
2: SLmask  
3: WDrst  
PortA  
Port A status  
0: IRQpa0  
1: IRQpa1  
2: IRQpa2  
3: IRQpa3  
IRQpA  
MPortA  
PortB  
Port A interrupt request  
Port A mask  
0: MPA0  
1: MPA1  
2: MPA2  
3: MPA3  
0: PB0  
1: PB1  
2: PB2  
Port B Input/Output  
3: PB3  
0: CIOPB0  
1: CIOPB1  
2: CIOPB2  
3: CIOPB3  
0: PC0  
1: PC1  
2: PC2  
3: PC3  
Port B Input/Output individual  
control  
CIOportB  
PortC  
Port C Input/Output  
0: IRQpc0  
1: IRQpc1  
2: IRQpc2  
3: IRQpc3  
IRQpC  
Port C interrupt request  
Port C mask  
0: MPC0  
1: MPC1  
2: MPC2  
3: MPC3  
0: PD0  
MPortC  
PortD  
1: PD1  
2: PD2  
Port D Input/Output  
3: PD3  
Copyright © 2005, EM Microelectronic-Marin SA  
34  
www.emmicroelectronic.com  
R
EM6607  
power  
up  
value  
Register  
name  
add add  
hex dec  
write_bits  
read_bits  
Remarks  
b'3210  
Read/Write_bits  
0: 0  
1: 0  
2: --  
3: SOFTPOR  
0: 0  
1: 0  
2: --  
3:  
7B  
7C  
7D  
123  
124  
125  
0000  
RegSoftPOR  
CPIOB  
Software POR  
0: PA&C  
PortAirq AND PortCirq  
PortC In/Out  
x000  
0000  
1: CIOPC  
2: CIOPD  
3: 0  
PortD In/Out  
0: PSF0  
1: PSF1  
2: PRST  
3: MTim  
0: PSF0  
1: PSF1  
2: 0  
Prescaler control  
PRESC  
BEEP  
3: MTim  
timer mask  
Buzzer control  
0: BCF0  
1: BCF1  
2: BUen  
3: TimEn  
7E  
126  
0000  
Timer Enable  
RegTestEM  
7F  
127  
----  
----  
----  
reserved  
Copyright © 2005, EM Microelectronic-Marin SA  
35  
www.emmicroelectronic.com  
R
EM6607  
17 Temperature and Voltage Behaviours  
17.1 IDD Current (Typical)  
Idd RUN @ 3V  
[uA]  
Idd RUN @ 1.5V  
[uA]  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
[°C]  
[°C]  
[°C]  
[°C]  
[°C]  
[°C]  
-40  
-20  
0
20  
40  
60  
80  
80  
80  
100  
100  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
100  
100  
Idd HALT @ 3.0V  
Idd HALT @ 1.5V  
[nA]  
[nA]  
1000.00  
800.00  
600.00  
400.00  
200.00  
0.00  
1000.00  
800.00  
600.00  
400.00  
200.00  
0.00  
-40  
-20  
0
20  
40  
60  
-40  
-20  
0
20  
40  
60  
80  
Idd SLEEP @ 3.0V  
Idd SLEEP @ 1.5V  
[nA]  
[nA]  
250.00  
250.00  
200.00  
150.00  
100.00  
50.00  
0.00  
200.00  
150.00  
100.00  
50.00  
0.00  
-40  
-20  
0
20  
40  
60  
-40  
-20  
0
20  
40  
60  
80  
Copyright © 2005, EM Microelectronic-Marin SA  
36  
www.emmicroelectronic.com  
R
EM6607  
17.2 Pull-down resistance (Typical)  
Weak Pull-Up @ 3V  
[kohm]  
Weak Pull-Up @ 1.5V  
[kohm]  
700.00  
600.00  
500.00  
400.00  
300.00  
200.00  
100.00  
0.00  
250.00  
200.00  
150.00  
100.00  
50.00  
0.00  
[°C]  
100  
[°C]  
100  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Weak Pull-Down @ 3V  
Weak Pull-Down @ 1.5V  
[kohm]  
[kohm]  
400.00  
350.00  
300.00  
250.00  
200.00  
150.00  
100.00  
50.00  
200.00  
150.00  
100.00  
50.00  
0.00  
0.00  
[°C]  
100  
[°C]  
100  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Strong Pull-Up @ 3V  
Strong Pull-Up @ 1.5V  
[kohm]  
140.00  
120.00  
100.00  
80.00  
[kohm]  
140.00  
120.00  
100.00  
80.00  
60.00  
40.00  
20.00  
0.00  
60.00  
40.00  
20.00  
0.00  
[°C]  
100  
[°C]  
100  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Strong Pull-Down @ 3V  
Strong Pull-Down @ 1.5V  
[kohm]  
[kohm]  
120.00  
120.00  
100.00  
80.00  
60.00  
40.00  
20.00  
0.00  
100.00  
80.00  
60.00  
40.00  
20.00  
0.00  
[°C]  
100  
[°C]  
100  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Copyright © 2005, EM Microelectronic-Marin SA  
37  
www.emmicroelectronic.com  
R
EM6607  
17.3 Output Currents (Typical)  
Port B: IOL current VDD=1.5V , VOL=0.3V  
Port B: IOL current VDD=3.0V , VOL=0.4V  
[mA]  
[mA]  
20.00  
40  
35  
30  
25  
20  
15  
10  
5
15.00  
10.00  
5.00  
18 Tr  
10 Tr  
18 Tr  
10 Tr  
4 Tr  
4 Tr  
0
0.00  
[°C]  
100  
[°C]  
100  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Port B: IOL current VDD=1.2V , VOL=0.15V  
[mA]  
8
7
6
18 Tr  
5
4
3
2
1
0
[°C]  
100  
-40  
-20  
0
20  
40  
60  
80  
Port IOL current VDD=3.0V , VOL=0.4V  
Port IOL current VDD=1.5V , VOL=0.3V  
[mA]  
[mA]  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
10  
8
6
4
2
0
[°C]  
[°C]  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
Copyright © 2005, EM Microelectronic-Marin SA  
38  
www.emmicroelectronic.com  
R
EM6607  
Port B: IOH current VDD=3.0V , VOH=2.5V  
Port B: IOH current VDD=1.5V , VOH=1.2V  
[mA]  
[mA]  
0.00  
-5.00  
0
-2  
-4  
-10.00  
-15.00  
-20.00  
-25.00  
-30.00  
-35.00  
-40.00  
-45.00  
6 Tr  
6 Tr  
14 Tr  
14 Tr  
-6  
-8  
24 Tr  
24 Tr  
-10  
-12  
[°C]  
[°C]  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
Port B: IOH current VDD=1.2V , VOH=1.05V  
[mA]  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
24 Tr  
-3.5  
-4  
-4.5  
[°C]  
100  
-40  
-20  
0
20  
40  
60  
80  
Port IOH current VDD=3.0V , VOH=2.5V  
Port IOH current VDD=1.5V , VOH=1.2V  
[mA]  
[mA]  
0.00  
0.00  
-1.00  
-2.00  
-3.00  
-4.00  
-5.00  
-6.00  
-0.40  
-0.80  
-1.20  
-1.60  
[°C]  
[°C]  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
Copyright © 2005, EM Microelectronic-Marin SA  
39  
www.emmicroelectronic.com  
R
EM6607  
18 Electrical specifications  
18.1 Absolute maximum ratings  
Parameter  
Supply voltage VDD-VSS  
VDD current (DC)  
VSS current (DC)  
Input voltage  
min.  
- 0.2  
max.  
+ 3.6  
90  
90  
VDD+0.2  
+ 125  
unit  
V
mA  
mA  
V
VSS - 0.2  
- 40  
Storage temperature  
°C  
Stresses above these listed maximum ratings may cause permanent damage to the device. Exposure beyond specified  
electrical characteristics may affect device reliability or cause malfunction.  
18.2 Standard Operating Conditions  
Parameter  
value  
-20°C to +85°C  
1.4V to 3.3V  
1.2V to 1.8V  
0V (reference)  
min. 100nF  
32768Hz  
Description  
With internal voltage regulator  
Temperature  
VDD_range1  
VDD_range2 (VREG = VDD) (note 1)  
Without internal voltage regulator  
VSS  
CVREG  
fq  
regulated voltage capacitor tow. VSS  
nominal frequency  
RQS  
CL  
df/f  
35k  
8.2pF  
± 30ppm  
typical quartz serial resistor  
typical quartz load capacitance  
quartz frequency tolerance  
18.3 Handling Procedures  
This device has built-in protection against high static voltages or electric fields; however, anti-static precautions should be  
taken as for any other CMOS component.  
Unless otherwise specified, proper operation can only occur when all terminal voltages are kept within the supply voltage  
range.  
18.4 DC characteristics - Power Supply Pins  
Conditions: VDD=VREG=1.5V, T=25°C (note 5) (unless otherwise specified)  
Parameter  
Conditions  
Symb.  
IVDDa  
Min.  
Typ.  
(note1)  
1.8  
Max.  
Unit  
ACTIVE Supply Current  
ACTIVE Supply Current  
(in active mode)  
STANDBY Supply Current  
STANDBY Supply Current  
(in Halt mode)  
SLEEP Supply Current  
SLEEP Supply Current  
(SLEEP =1)  
+25°C (note2)  
(note2) (note2)  
-20°C to +85°C  
+25°C  
(note3)  
-20°C to +85°C  
+25°C  
(note3)  
-20°C to +85°C  
3.0  
μA  
IVDDa  
IVDDh  
4.5  
1.0  
μA  
μA  
0.5  
0.1  
0.7  
IVDDh  
IVDDs  
1.8  
0.4  
μA  
μA  
IVDDs  
VPOR  
VRD  
1.2  
1.0  
μA  
V
V
POR voltage  
RAM data retention  
Regulated Voltage  
1.1  
1.10  
VREG not at VDD  
VREG  
1.5  
V
Copyright © 2005, EM Microelectronic-Marin SA  
40  
www.emmicroelectronic.com  
R
EM6607  
Conditions: VDD=3.0V, T=25°C (note 5) (unless otherwise specified), VREG not shorted to VDD  
Parameter  
Conditions  
Symb.  
Min.  
Typ.  
(note 2)  
1.8  
Max.  
Unit  
ACTIVE Supply Current  
ACTIVE Supply Current  
(in active mode)  
STANDBY Supply Current  
STANDBY Supply Current  
(in Halt mode)  
SLEEP Supply Current  
SLEEP Supply Current  
(SLEEP =1)  
+25°C (note 3)  
(note 3) (note 4)  
-20°C to +85°C  
+25°C  
(note 4)  
-20°C to +85°C  
+25°C  
(note 4)  
-20°C to +85°C  
IVDDa  
3.0  
μA  
IVDDa  
IVDDh  
4.5  
1.0  
μA  
μA  
0.5  
0.1  
0.7  
IVDDh  
IVDDs  
1.8  
0.4  
μA  
μA  
IVDDs  
VPOR  
VRD  
1.2  
1.0  
μA  
V
V
POR voltage  
RAM data retention  
Regulated Voltage  
1.1  
1.10  
-20°C to +85°C  
VREG  
1.90  
V
Note 1 Because of the voltage regulator drop at low voltages VREG = VDD when VDD<1.8V  
Note 2: For current measurement typical quartz described in Operating Conditions is used.  
All I/O pins without internal Pull Up/Down are pulled to VDD externally.  
Note 3: Test loop with successive writing and reading of two different addresses with an inverted  
values (five instructions should be reserved for this measurement),  
Note 4: NOT tested if delivered in chip form.  
Note 5: Test conditions for ACTIVE and STANDBY Supply current mode are: QIN = external  
square wave, from rail to rail of VREG (regulated voltage) with 100nF capacitor on VREG  
fQIN = 32kHz.  
.
Copyright © 2005, EM Microelectronic-Marin SA  
41  
www.emmicroelectronic.com  
R
EM6607  
18.5 DC characteristics - Input/Output Pins  
Conditions: VDD=1.5V / 3.0V, -20°C <T<85°C (unless otherwise specified)  
Parameter  
Conditions  
Symb.  
Min.  
Typ.  
Max.  
Unit  
Input Low voltage  
I/O ports A,B,C,D,E  
TEST, Reset  
Pin at hi-impedance  
VIL  
VSS  
VSS  
VSS  
0.3VDD  
0.3VDD  
0.3VREG  
V
V
V
QIN (Note5)  
Input High voltage  
I/O ports A,B,C,D,E  
TEST, Reset  
Pin at hi-impedance  
VIH  
0.7VDD  
0.7VDD  
0.9VREG  
VDD  
VDD  
VREG  
V
V
V
QIN (Note5)  
Output Low Current  
Port B 18 transistors  
Output Low Current  
Port B 18 transistors  
Port B 10 transistors  
Port B 4 transistors  
Port C,D,E, STRB/RST  
Output Low Current  
Port B 18 transistors  
Port B 10 transistors  
Port B 4 transistors  
Port C,D,E, STRB/RST  
Output High Current  
Port B 24 transistors  
Output High Current  
Port B 24 transistors  
Port B 14 transistors  
Port B 6 transistors  
Port C,D,E, STRB/RST  
Output High Current  
Port B 24 transistors  
Port B 14 transistors  
Port B 6 transistors  
Port C,D,E, STRB/RST  
Output load on Port B  
VOL = 0.15V, VDD = 1.2V  
VOL = 0.3V, VDD = 1.5V  
IOL  
IOL  
3.0  
6.0  
mA  
9.5  
5.0  
1.5  
1.0  
15.0  
8.0  
3.5  
2.5  
mA  
mA  
mA  
mA  
VOL = 0.4V, VDD = 3.0V  
IOL  
23.0  
13.0  
5.4  
33.0  
20.5  
8.8  
mA  
mA  
mA  
mA  
5.4  
7.8  
VOH = 1.05V, VDD = 1.2V  
VOH = 1.2V, VDD = 1.5V  
IOH  
IOH  
-3.5  
-2.5  
mA  
-9.4  
-5.0  
-2.5  
-1.2  
-6.0  
-3.0  
-1.5  
-0.6  
mA  
mA  
mA  
mA  
VOH = 2.5V, VDD = 3.0V  
IOH  
-33.0  
-20.0  
-9.0  
-23.0  
-15.0  
-3.0  
mA  
mA  
mA  
mA  
-4.5  
-3.0  
VDD = 3.0V,Port B 18/24  
transistors option  
Capacitor  
with 4 toggling ports.  
50  
nF  
Resistor  
150  
Ω
Input pull-down strong  
I/O ports A,B,C,D,E (option)  
Reset  
Test  
Pin at VDD = 1.5V, 25°C  
Pin at VDD = 3.0V, 25°C  
RIN  
50  
50  
10  
90  
110  
18  
350  
200  
35  
kΩ  
kΩ  
kΩ  
Input pull-down strong  
RIN  
I/O ports A,B,C,D,E (option)  
Reset  
Test  
50  
50  
10  
90  
110  
18  
160  
200  
35  
kΩ  
kΩ  
kΩ  
Input pull-down weak  
I/O ports A,B,C,D,E (option)  
Input pull-down weak  
I/O ports A,B,C,D,E (option)  
Input pull-up strong  
I/O ports A,B,C,D,E (option)  
Input pull-up strong  
I/O ports A,B,C,D,E (option)  
Input pull-up weak  
I/O ports A,B,C,D,E (option)  
Input pull-up weak  
I/O ports A,B,C,D,E (option)  
Pin at VDD = 1.5V, 25°C  
Pin at VDD = 3.0V, 25°C  
Pin at VDD = 1.5V, 25°C  
Pin at VDD = 3.0V, 25°C  
Pin at VDD = 1.5V, 25°C  
Pin at VDD = 3.0V, 25°C  
RIN  
RIN  
RIN  
RIN  
RIN  
RIN  
80  
50  
130  
250  
100  
100  
550  
180  
350  
600  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
50  
250  
50  
200  
300  
100  
1000  
400  
Note 5: QOUT is used only with crystal.  
Copyright © 2005, EM Microelectronic-Marin SA  
42  
www.emmicroelectronic.com  
R
EM6607  
18.6 DC characteristics - Supply Voltage Detector Levels  
Conditions: T= +25°C (unless otherwise specified)  
Parameter  
Conditions  
Symb.  
Min.  
Typ.  
Max.  
Unit  
Supply Voltage Detector  
SVLD lev3  
SVLD lev2  
VL3  
VL2  
VL1  
0.88 x VL3  
0.88 x VL2  
0.88 x VL1  
VL3  
VL2  
VL1  
1.12 x VL3  
1.12 x VL2  
1.12 x VL1  
V
V
V
SVLD lev1  
Supply Voltage Detector  
SVLD lev3  
SVLD lev2  
0°C to +65°C  
VL3  
VL2  
VL1  
0.88 x VL3  
0.88 x VL2  
0.88 x VL1  
VL3  
VL2  
VL1  
1.12 x VL3  
1.12 x VL2  
1.12 x VL1  
V
V
V
SVLD lev1  
SVLD typical level values must be selected with a precision of 100 mV.  
18.7 Oscillator  
Conditions: T=25°C (unless otherwise specified)  
Parameter  
Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Temperature stability  
Voltage stability  
+15°C to +35 °C  
VDD=1,4V to 1,6 V  
Ref. on VSS  
df/f x dT  
df/f x dU  
CIN  
0,3  
5
ppm /°C  
ppm /V  
pF  
Input capacitor  
5,6  
7
8,4  
Output capacitor  
Ref. on VSS  
CIN  
12,1  
2.5  
14  
15,9  
15.0  
pF  
Transconductance  
50mVpp,VDD min  
TSTART< 10 s  
Gm  
µA/V  
V
Oscillator start voltage  
Oscillator start time  
System start time  
USTART  
tDOSC  
VDD min  
VDD > VDD Min  
0.5  
1.5  
3
4
s
tDSYS  
s
(oscillator + cold-start + reset)  
Oscillation detector frequency  
VDD > VDD min  
tDetFreq  
6
12  
kHz  
18.8 Input Timing characteristics  
Conditions: 1.5V<VDD<3.0V, -20°C <T<85°C (unless otherwise specified)  
Parameter  
Conditions  
Symb.  
Min.  
Unit  
RESET pulse length to exit  
SLEEP mode  
RESET from  
SLEEP  
tRESsl  
2
μs  
RESET pulse length (debounced)  
PortA , C pulse length (debounced)  
RESET pulse length (debounced)  
PortA , C pulse length (debounced)  
DebCK = 0  
DebCK = 0  
DebCK = 1  
DebCK = 1  
tdeb0  
tdeb0  
tdeb1  
tdeb1  
2
2
16  
16  
ms  
ms  
ms  
ms  
Copyright © 2005, EM Microelectronic-Marin SA  
43  
www.emmicroelectronic.com  
R
EM6607  
19 Pad Location Diagram  
PC[2]  
PC[1]  
PE[3]  
RESET  
VREG  
PC[0]  
STRB  
VSS  
VDD  
VDD  
EM6607  
VSS  
QIN  
Chip size upon request  
PA[0]  
Substrate of the die is at VSS  
PA[1]  
PA[2]  
QOUT  
PA[3]  
TEST  
Copyright © 2005, EM Microelectronic-Marin SA  
44  
www.emmicroelectronic.com  
R
EM6607  
20 Package Dimensions  
SOP-24  
(1.27mm pitch, 300mils body width)  
Figure 17. Dimensions of SOP24 Package SOIC  
TSSOP24  
(0.65mm pitch, 4.4mm body width)  
Figure 18. Dimensions of TSSOP24 Package  
Copyright © 2005, EM Microelectronic-Marin SA  
45  
www.emmicroelectronic.com  
R
EM6607  
SOP-28  
(1.27mm pitch, 300mils body width)  
Figure 19. Dimensions of SOP28 Package SOIC  
TSSOP28  
(0.65mm pitch, 4.4mm body width)  
Figure 20. Dimensions of TSSOP28 Package  
Copyright © 2005, EM Microelectronic-Marin SA  
46  
www.emmicroelectronic.com  
R
EM6607  
21 Ordering Information  
Packaged Device:  
Device in DIE Form:  
EM6607 SO28 A %%%  
EM6607 WS 11 %%%  
-
-
Package:  
Die form:  
SO28 = 28 pin SOIC  
SO24 = 24 pin SOIC  
TP28 = 28 pin TSSOP  
TP24 = 24 pin TSSOP  
WW = Wafer  
WS = Sawn Wafer/Frame  
WP = Waffle Pack  
Thickness:  
11 = 11 mils (280um), by default  
27 = 27 mils (686um), not backlapped  
(for other thickness, contact EM)  
Delivery Form:  
A = Stick  
B = Tape&Reel  
Customer Version:  
Customer Version:  
customer-specific number  
given by EM Microelectronic  
customer-specific number  
given by EM Microelectronic  
Ordering Part Number (selected examples)  
Part Number  
Package/Die Form  
Delivery Form/ Thickness  
Stick  
Tape&Reel  
Stick  
Tape&Reel  
Tape&Reel  
Tape&Reel  
11 mils  
EM6607SO28A-%%%  
EM6607SO28B-%%%  
EM6607SO24A-%%%  
EM6607SO24B-%%%  
EM6607TP28B-%%%  
EM6607TP24B-%%%  
EM6607WS11-%%%  
EM6607WP11-%%%  
28 pin SOIC  
28 pin SOIC  
24 pin SOIC  
24 pin SOIC  
28 pin TSSOP  
24 pin TSSOP  
Sawn wafer  
Die in waffle pack  
11 mils  
Please make sure to give the complete Part Number when ordering, including the 3-digit customer version. The customer  
version is made of 3 numbers %%% (e.g. 008 , 012, 131, etc.)  
21.1 Package Marking  
24/28-pin SOIC marking:  
24-pin TSSOP marking:  
First line:  
Second line:  
Third line:  
E M  
6
P
6
P
0
P
7
P
% % % Y  
E
P
M 6  
6
P
C
0
P
C
7
P
C
% %  
P
P
P
P
C
P
C
P
C
P
C
P
P
P
Y
P
P
C C C C C C C  
C
28-pin TSSOP marking:  
First line:  
E M  
6
6
0
7
% % % Y  
Second line:  
Third line:  
P
P
P P  
P
P
P
P
P
C
P
C
P
C
C C C C C  
Where: %%% or %% = customer version, specific number given by EM (e.g. 008, 012, 131, etc.)  
PP…P = Production identification (date & lot number) of EM Microelectronic  
Y = year of assembly  
CC…C = Customer specific package marking on third line, selected by customer  
21.2 Customer Marking  
There are 11 digits available for customer marking on SO24/28, 4 for TSSOP24, and 8 for TSSOP14.  
EM Microelectronic-Marin SA (EM) makes no warranty for the use of its products, other than those expressly contained in  
the Company's standard warranty which is detailed in EM's General Terms of Sale located on the Company's web site.  
EM assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or  
specifications detailed herein at any time without notice, and does not make any commitment to update the information  
contained herein. No licenses to patents or other intellectual property of EM are granted in connection with the sale of EM  
products, expressly or by implications. EM's products are not authorized for use as components in life support devices or  
systems.  
© EM Microelectronic-Marin SA, 01/06, Rev. D  
Copyright © 2005, EM Microelectronic-Marin SA  
47  
www.emmicroelectronic.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY