PKM4110CPINBLASP [ERICSSON]

DC-DC Regulated Power Supply Module, 1 Output, 165W, Hybrid, ROHS COMPLIANT;
PKM4110CPINBLASP
型号: PKM4110CPINBLASP
厂家: ERICSSON    ERICSSON
描述:

DC-DC Regulated Power Supply Module, 1 Output, 165W, Hybrid, ROHS COMPLIANT

输入元件
文件: 总30页 (文件大小:596K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PKM 4000C Series  
36-75 Vdc DC/DC converter  
Output up to 80 A/200 W  
Contents  
Product Program. . . . . . . . . . . . . . . . . . . . . . 2  
Mechanical Information. . . . . . . . . . . . . . . . . 3  
Absolute Maximum Ratings . . . . . . . . . . . . . 4  
Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Product Qualification Specification. . . . . . . . 5  
Safety Specification . . . . . . . . . . . . . . . . . . . 6  
PKM 4918LC PINB - 1.2 V Data . . . . . . . . . . 7  
PKM 4118HC PINB - 1.5 V Data. . . . . . . . . 10  
PKM 4118GC PINB - 1.8 V Data. . . . . . . . . 13  
PKM 4119C PINB - 2.5 V Data . . . . . . . . . . 16  
PKM 4110C PINB - 3.3 V Data . . . . . . . . . . 19  
PKM 4211C PINB - 5 V Data . . . . . . . . . . . 22  
EMC Specification. . . . . . . . . . . . . . . . . . . . 25  
Operating Information . . . . . . . . . . . . . . . . . 26  
Thermal Consideration . . . . . . . . . . . . . . . . 28  
Soldering Information . . . . . . . . . . . . . . . . . 29  
Delivery Package Information . . . . . . . . . . . 29  
Design for Environment (DfE) . . . . . . . . . . . 29  
Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Quality Statement . . . . . . . . . . . . . . . . . . . . 29  
Limitation of Liability . . . . . . . . . . . . . . . . . . 29  
Sales Offices and Contact Information . . . . 30  
Safety Approvals  
Key Features  
Industry standard quarterbrick and optional double Pin-Out  
57.93 x 36.80 x 9.1 mm (2.278 x 1.449 x 0.35 In.)  
RoHS compliant  
High efficiency, typ. 92 % at 3.3 Vout half load  
2250 Vdc input to output isolation, meets isolation  
requirements equivalent to basic insulation according  
to IEC/EN/UL 60950  
More than 2.7 million hours predicted MTBF at +40 ºC  
ambient temperature  
The PKM 4000C series of high efficiency DC/DC  
converters are designed to provide high quality on-board  
power solutions in distributed power architectures used  
in Internetworking equipment in wireless and wired  
communications applications.  
Included as standard features are output over-voltage  
protection, input under-voltage protection, over temperature  
protection, soft-start, output short circuit protection, remote  
sense, remote control, and output voltage adjust function.  
These converters are designed to meet high reliability  
requirements and are manufactured in highly automated  
manufacturing lines and meet world-class quality levels.  
The PKM 4000C series features a "double-p" footprint  
with dual output pins which reduces soldering losses to  
the board while increasing the cooling of the module.  
The PKM 4000C series uses patented synchronous  
rectification technology and achieves an efficiency up to  
90% at full load.  
Ericsson Power Modules is an ISO 9001/14001 certified  
supplier.  
Datasheet  
E
Product Program  
VO/IO max  
Output 1  
VI  
P
O max  
Ordering No.  
Comment  
1.2 V/80 A  
96 W  
PKM 4918LC PINB  
PKM 4118HC PNB  
PKM 4118GC PINB  
PKM 4119C PINB  
PKM 4110C PINB  
PKM 4211C PINB  
PKM 4213C PINB  
Example  
1.5 V/80 A  
1.8 V/71 A  
2.5 V/55 A  
3.3 V/50 A  
5.0 V/40 A  
12 V/17 A  
120 W  
126 W  
137.5 W  
165 W  
200 W  
204 W  
48/60  
Preliminary product code  
Option  
Suffix  
Positive Remote Control logic  
Lead length 3.69 mm (0.145 in)  
Single pin-out*  
P
PKM 4110C PIPNB  
PKM 4110C PINBLA  
PKM 4110C PINBSP  
LA  
SP  
Note: As an example a positive logic and short pin product would be PKM 4110C PINBLA.  
*A single pin option is available but will decrease the maximum available output current.  
Ericsson power modules do not recommend that each pin should conduct more than 40A due  
to power dissipation inside the pin and the board.  
To use more current than stated will have impact on solder joints and current distribution to  
the board, the power module will however be safe but will have more power dissipation due to  
less conductive material to the board.  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
2
Mechanical Information  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
3
Absolute Maximum Ratings  
Characteristics  
min  
-40  
typ  
max  
+125  
+125  
+100  
2250  
100  
Unit  
˚C  
T
Maximum Operating Tpcb Temperature (see thermal consideration section)  
Storage temperature  
pcb  
S
T
-55  
˚C  
V
V
V
Input voltage  
-0.5  
Vdc  
Vdc  
Vdc  
Vdc  
Vdc  
Vdc  
I
Isolation voltage (input to output test voltage)  
Input voltage transient (Tp 100 ms)  
Negative logic (referenced to -In)  
Positive logic (referenced to -In)  
Maximum input  
ISO  
tr  
15  
V
V
RC  
adj  
-0.5  
-0.5  
15  
2xVoi  
Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute  
Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with  
one parameter at a time exceeding the limits of Output data or Electrical Characteristics.  
If exposed to stress above these limits, function and performance may degrade in an  
unspecified manner.  
T
Pcb  
<T  
Pcb max  
unless otherwise specified  
Input  
Characteristics  
Conditions  
min  
typ  
max  
Unit  
Vdc  
Vdc  
Vdc  
µF  
V
Input voltage range  
Turn-off input voltage  
36  
75  
I
V
Ramping from higher voltage  
Ramping from lower voltage  
32  
34  
Ioff  
Ion  
V
Turn-on input voltage  
C
Input capacitance  
5.4  
3.5  
0.1  
I
P
Input idling power  
I = 0, V = 53 V  
W
Ii  
o
I
P
Input standby power (turned off with RC)  
V = 53 V, RC activated  
I
W
RC  
Fundamental Circuit Diagram  
*TPMBUFE  
'FFECBDL  
1SJNBSZ  
4FDPOEBSZ  
10  
9
1
8
7
6
7PMUBHF  
.POJUPSJOH  
$POUSPM  
$POUSPM  
2
5
4
3
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
4
Product Qualification Specification  
Characteristics  
Frequency  
Spectral density  
Duration  
10 ... 500 Hz  
0.025 g /Hz  
10 min each direction  
2
Random Vibration  
Sinusoidal vibration  
IEC 68-2-34 Eb  
IEC 68-2-6 Fc  
Frequency  
Amplitude  
Acceleration  
Number of cycles  
10 ... 500 Hz  
0.75 mm  
10 g  
10 in each axis  
Peak acceleration  
Duration  
Pulse shape  
200 g  
3 ms  
half sine  
Mechanical shock  
(half sinus)  
IEC 68-2-27 E  
a
Temperature  
Number of cycles  
-40 ... +100 ˚C  
300  
Temperature cycling  
Heat/Humidity  
IEC 68-2-14 N  
IEC 68-2-67 C  
a
a
Temperature  
Humidity  
Duration  
+85 ˚C  
85 % RH  
1000 hours  
Temperature, solder  
Duration  
260 ˚C  
10 s  
Solder heat stability  
IEC 68-2-20 1A  
Water  
+55 5 ˚C  
+35 5 ˚C  
+35 5 ˚C  
with rubbing  
IEC 68-2-45 XA  
Method 2  
Isopropyl alcohol  
Glycol ether  
Method  
Resistance to cleaning agents  
Storage test  
Temperature  
Duration  
125 ˚C  
1000 h  
IEC 68-2-2 Ba  
IEC 68-2-1 Bc  
Temperature, TA  
Duration  
-40 ˚C  
2 h  
Cold (in operation)  
Operational life test  
Duration  
1000 h  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
5
Safety Specification  
General information.  
Isolated DC/DC converters.  
Ericsson Power Modules DC/DC converters and DC/DC regulators  
are designed in accordance with safety standards  
IEC/EN/UL 60 950, Safety of Information Technology Equipment.  
It is recommended that a fast blow fuse with a rating  
twice the maximum input current per selected product  
be used at the input of each DC/DC converter. If an input filter is  
used in the circuit the fuse should be placed in front of the input  
filter.  
In the rare event of a component problem in the input filter or in the  
DC/DC converter that imposes a short circuit on the input source,  
this fuse will provide the following functions:  
IEC/EN/UL60950 contains requirements to prevent injury or  
damage due to the following hazards:  
Electrical shock  
Energy hazards  
Fire  
• Isolate the faulty DC/DC converter from the input power source  
so as not to affect the operation of other parts of the system.  
Mechanical and heat hazards  
Radiation hazards  
Chemical hazards  
• Protect the distribution wiring from excessive current and power  
loss thus preventing hazardous overheating.  
The galvanic isolation is verified in an electric strength test. The test  
voltage (VISO) between input and output is 1500 Vdc or 2250 Vdc for  
60 seconds (refer to product specification). Leakage current is less  
than 1µA at nominal input voltage.  
On-board DC-DC converters are defined as component power  
supplies. As components they cannot fully comply with the  
provisions of any Safety requirements without “Conditions of  
Acceptability”. It is the responsibility of the installer to ensure that  
the final product housing these components complies with the  
requirements of all applicable Safety standards and Directives for  
the final product.  
24 V dc systems.  
The input voltage to the DC/DC converter is SELV (Safety Extra Low  
Voltage) and the output remains SELV under normal and abnormal  
operating conditions.  
Component power supplies for general use should comply with  
the requirements in IEC60950, EN60950 and UL60950 “Safety of  
information technology equipment”.  
48 and 60 V dc systems.  
If the input voltage to Ericsson Power Modules DC/DC converter  
is 75 V dc or less, then the output remains SELV (Safety Extra Low  
Voltage) under normal and abnormal operating conditions.  
There are other more product related standards, e.g.  
IEC61204-7 “Safety standard for power supplies",  
IEEE802.3af “Ethernet LAN/MAN Data terminal equipment  
power”, and ETS300132-2 “Power supply interface at the input to  
telecommunications equipment; part 2: DC”,  
Single fault testing in the input power supply circuit should be  
performed with the DC/DC converter connected to demonstrate  
that the input voltage does not exceed 75 V dc.  
but all of these standards are based on IEC/EN/UL60950 with  
regards to safety.  
If the input power source circuit is a DC power system, the source  
may be treated as a TNV2 circuit and testing has demonstrated  
compliance with SELV limits and isolation requirements equivalent  
to Basic Insulation in accordance with IEC/EN/UL 60 950.  
Ericsson Power Modules DC/DC converters and DC/DC regulators  
are UL 60 950 recognized and certified in accordance with EN 60  
950.  
The flammability rating for all construction parts of the products  
meets UL 94V-0.  
Non-isolated DC/DC regulators.  
The input voltage to the DC/DC regulator is SELV (Safety Extra Low  
Voltage) and the output remains SELV under normal and abnormal  
operating conditions.  
The products should be installed in the end-use equipment, in  
accordance with the requirements of the ultimate application.  
Normally the output of the DC/DC converter is considered as SELV  
(Safety Extra Low Voltage) and the input source must be isolated by  
minimum Double or Reinforced Insulation from the primary circuit  
(AC mains) in accordance with  
It is recommended that a slow blow fuse with a rating  
twice the maximum input current per selected product  
be used at the input of each DC/DC regulator.  
IEC/EN/UL 60 950.  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
6
PKM 4918LC PINB - 1.2 V Data  
TPcb = –40…+90 °C, VI = 36...75V, sense pins connected to output pins unless otherwise specified.  
Output  
Unit  
V
Characteristics  
Conditions  
min  
1.18  
typ  
max  
1.22  
Output voltage initial setting  
VI = 53 V, IOmax, TPcb = 25 °C  
1.200  
and accuracy  
VOi  
Output adjust range  
IOmax, VI = 53 V, TPcb = 25 °C  
0.1...1 x IOmax  
0.96  
1.16  
1.18  
1.32  
1.24  
1.22  
17  
V
Output voltage tolerance band  
Idling voltage  
V
I
I
I
O = 0  
V
VO  
Line regulation  
O = IOmax  
mV  
mV  
Load regulation  
O = 0.01...1 x IOmax, VI = 53 V  
17  
Load transient  
voltage deviation  
0.1...1.0 x IOmax VI = 53 V  
,
Vtr  
ttr  
300  
100  
mV  
µs  
Load step = 0.5 x IOmax  
0.1...1.0 x IOmax VI = 53 V  
,
Load step = 0.5 x IOmax  
Load transient recovery time  
Ramp-up time  
0.1...1 x IOmax, VI = 53 V  
0.1...0.9 x VOnom  
tr  
5
10  
15  
15  
ms  
ms  
0.1...1 x IOmax, VI = 53 V  
From VI connected to 0.9 x VOnom  
ts  
Start-up time  
10  
100  
80  
IO  
Output current  
0
A
POmax Max output power  
At VO = VOnom  
96  
W
Ilim  
Current limit threshold  
Short circuit current  
Output ripple  
TPcb < TPcb max  
82  
95  
50  
110  
110  
150  
A
Isc  
TPcb = 25 °C  
A
VOac  
See ripple and noise, IOmax, VOnom  
mVp-p  
TPcb = 25 °C, f = 100 Hz sine wave 1 Vp-p,  
VI = 53 V  
SVR  
Supply voltage rejection (ac)  
70  
dB  
η
η
η
η
Efficiency - 50% load  
Efficiency - 100% load  
Efficiency - 50% load  
Efficiency - 100% load  
Power Dissipation  
TPcb = +25 °C, V = 48 V, 0.5 x IOmax  
87  
82  
87  
82  
%
I
T
T
T
Pcb = +25 °C, V = 48 V, IOmax  
%
I
Pcb = +25 °C, V = 53 V, 0.5 x IOmax  
%
I
Pcb = +25 °C, V = 53 V, IOmax  
81  
%
I
P
TPcb = +25 °C, V = 53 V, IOmax  
I
22.6  
165  
W
d
f
Switching frequency  
0 ... 1.0 x IOmax  
145  
155  
kHz  
s
7
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
PKM 4918LC PINB Typical Characteristics  
Efficiency  
Output Current Derating  
<">  
<ꢊ>  
ꢉꢈ  
ꢄꢀ  
ꢈꢀ  
ꢃꢀ  
ꢉꢀ  
ꢆꢈ  
ꢇꢀ  
ꢊꢁꢂꢃNꢄTꢃꢅꢋꢂꢂꢃMGNꢇꢃꢃ  
ꢂꢀ  
ꢆꢀ  
ꢁꢀ  
ꢅꢀ  
ꢀꢁꢉꢃNꢄTꢃꢅꢉꢂꢂꢃMGNꢇ  
ꢃꢂꢋ7  
ꢅꢆꢋ7  
ꢆꢀ  
ꢀꢁꢂꢃNꢄTꢃꢅꢆꢂꢂꢃMGNꢇ  
ꢈꢁꢉꢃNꢄTꢃꢅꢊꢂꢂꢃMGNꢇ  
ꢈꢁꢂꢃNꢄTꢃꢅꢀꢂꢂꢃMGNꢇ  
ꢂꢁꢉꢃNꢄTꢃꢅꢈꢂꢂꢃMGNꢇ  
/BUꢁꢃ$POWꢁ  
ꢈꢃꢋ7  
ꢇꢈꢋ7  
ꢇꢈ  
ꢇꢀ  
ꢁꢀ  
ꢂꢀ  
ꢃꢀ  
ꢄꢀ  
ꢅꢀꢀ  
<«$>  
ꢁꢂ  
ꢃꢄ  
ꢅꢆ  
ꢂꢅ  
ꢆꢀ  
<">  
Available load current vs. ambient air temperature and airflow at  
Efficiency vs. load current and input voltage at TPcb = +25 °C  
V
in = 53 V. DC/DC converter mounted vertically with airflow and  
test conditions as per the Thermal consideration section.  
Power Dissipation  
Thermal Resistance  
<8>  
ꢂꢅ  
<$ꢉ8>  
ꢃꢀ  
ꢂꢀ  
ꢁꢅ  
ꢁꢀ  
ꢃꢆꢉ7  
ꢄꢈꢉ7  
ꢅꢃꢉ7  
ꢇꢅꢉ7  
ꢀꢁꢀ  
<NꢉT>  
ꢅꢁꢀ  
ꢁꢀ ꢂꢀ ꢃꢀ ꢄꢀ ꢅꢀ ꢆꢀ ꢇꢀ ꢈꢀ  
ꢀꢁꢂ  
ꢃꢁꢀ  
ꢃꢁꢂ  
ꢄꢁꢀ  
ꢄꢁꢂ  
<">  
Dissipated power vs. load current and input voltage at  
Pcb = +25 °C  
Thermal resistance vs. airspeed measured at the converter.  
Tested in windtunnel with airflow and test conditions as per  
the Thermal consideration section.  
T
Output Characteristic  
<7>  
ꢁꢇꢅ  
ꢁꢇꢃ  
ꢁꢇꢄ  
ꢁꢇꢁ  
ꢁꢇꢀ  
ꢁꢂ  
ꢆꢀ  
ꢃꢄ  
ꢅꢆ  
ꢂꢅ  
<">  
Output voltage vs. load current at TPcb = +25 °C, VI = 53 V.  
8
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
PKM 4918LC PINB Typical Characteristics  
Start-Up  
Turn-Off  
Turn-off enabled by disconnecting Vin.  
IO = 80 A resistive load, TPcb = +25 °C, Vin = 53 V.  
Top trace: input voltage (0.5 V/div.).  
Bottom trace: output voltage (20 V/div.).  
Time scale: 2 ms/div.  
Start-up enabled by connecting Vin.  
IO = 80 A resistive load, TPcb = +25 °C, Vin = 53 V.  
Top trace: output voltage (0.5 V/div.).  
Bottom trace: input voltage (20 V/div.).  
Time scale: 5 ms/div.  
Transient  
Output Ripple  
Output voltage response to load current step-change  
(15-55-15 A) at TPcb = +25 °C, Vin = 53 V.  
Top trace: output voltage (200 mV/div.).  
Bottom trace: load current (50 A/div.)  
Time scale: 0.1 ms/div.  
Output voltage ripple (50mV/div.) at TPcb = +25 °C,  
V
in = 53 V, IO = 80 A resistive load with C = 10 µF  
tantalum and 0.1 µF ceramic capacitor  
Band width = 20 MHz. Time scale: 2µs / div.  
Output Voltage Adjust  
Output Voltage Adjust  
<L0IN>  
The resistor value for an adjusted output voltage is  
calculated by using the following equations:  
ꢀꢁꢁꢁꢁꢁꢁꢁ  
Output Voltage Adjust Upwards, Increase:  
*ODSFBTF  
ꢀꢁꢁꢁꢁꢁꢁ  
Radj= [4896/(1.0208-(1.225/Vo))-1000 Ohm  
%FDSFBTF  
Output Voltage Adjust Downwards, Decrease:  
Radj= [5104/((1.225/Vo)-1.0208)-1000 Ohm  
ꢀꢁꢁꢁꢁꢁ  
ꢀꢁꢁꢁꢁ  
Eg Increase 8 % to VO = 1.3 Vdc  
4896 / (1.0208 - (1.225/1.3)) - 1000 = 61 kOhm  
<>  
ꢄꢄ  
ꢀꢄ  
ꢀꢅ  
ꢀꢃ  
Eg Decrease 8 % to Vout = 1.1 Vdc  
5104 / ((1.225/1.1) - 1.0208) - 1000 = 54 kOhm  
Output voltage adjust resistor value vs.  
percentage change in output voltage.  
9
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
PKM 4118HC PINB - 1.5 V Data  
TPcb = –40…+90 °C, VI = 36...75V, sense pins connected to output pins unless otherwise specified.  
Output  
Unit  
V
Characteristics  
Conditions  
min  
1.47  
typ  
max  
1.53  
Output voltage initial setting  
VI = 53 V, IOmax, TPcb = 25 °C  
1.50  
and accuracy  
VOi  
Output adjust range  
IOmax, VI = 53 V, TPcb = 25 °C  
0.1...1 x IOmax  
1.35  
1.44  
1.44  
1.65  
1.56  
1.56  
15  
V
Output voltage tolerance band  
Idling voltage  
V
I
O = 0  
IOmax  
O = 0.01...1 x IOmax, VI = 53 V  
V
VO  
Line regulation  
mV  
mV  
Load regulation  
I
15  
Load transient  
voltage deviation  
0.1...1.0 x IOmax VI = 53 V  
,
Vtr  
ttr  
400  
100  
mV  
µs  
Load step = 0.5 x IOmax  
0.1...1.0 x IOmax VI = 53 V  
,
Load step = 0.5 x IOmax  
Load transient recovery time  
Ramp-up time  
0.1...1 x IOmax, VI = 53 V  
0.1...0.9 x VOnom  
tr  
5
10  
15  
15  
ms  
ms  
0.1...1 x IOmax, VI = 53 V  
From VI connected to 0.9 x VOnom  
ts  
Start-up time  
10  
100  
80  
IO  
Output current  
0
A
POmax Max output power  
Ab V = VOnom  
120  
83  
90  
W
Ilim  
Current limit threshold  
Short circuit current  
Output ripple  
TPcb < TPcbmax  
100  
110  
180  
A
Isc  
TPcb = 25 °C  
A
VOac  
See ripple and noise, IOmax, VOnom  
50  
70  
mVp-p  
TPcb = 25 °C, f = 100 Hz sine wave 1 Vp-p,  
SVR  
Supply voltage rejection (ac)  
dB  
VI = 53 V  
η
η
η
η
Efficiency - 50% load  
Efficiency - 100% load  
Efficiency - 50% load  
Efficiency - 100% load  
Power Dissipation  
TPcb = +25 °C, V = 48 V, 0.5 x IOmax  
89  
%
I
T
T
T
Pcb = +25 °C, V = 48 V, IOmax  
83  
%
I
Pcb = +25 °C, V = 53 V, 0.5 x IOmax  
89.5  
84  
%
I
Pcb = +25 °C, V = 53 V, IOmax  
83.5  
145  
%
I
P
TPcb = +25 °C, V = 53 V, IOmax  
I
23.4  
165  
W
d
f
Switching frequency  
0 ... 1.0 x IOmax  
155  
kHz  
s
10  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
PKM 4118HC PINB Typical Characteristics  
Efficiency  
Output Current Derating  
<ꢊ>  
ꢉꢈ  
<">  
ꢄꢀ  
ꢈꢀ  
ꢃꢀ  
ꢇꢀ  
ꢉꢀ  
ꢆꢈ  
ꢀꢁꢂꢃNꢄTꢃꢅꢆꢂꢂꢃMGNꢇꢃꢃ  
ꢈꢁꢉꢃNꢄTꢃꢅꢉꢂꢂꢃMGNꢇ  
ꢂꢀ  
ꢃꢂꢋ7  
ꢅꢆꢋ7  
ꢈꢃꢋ7  
ꢇꢈꢋ7  
ꢆꢀ  
ꢈꢁꢂꢃNꢄTꢃꢅꢊꢂꢂꢃMGNꢇ  
ꢋꢁꢉꢃNꢄTꢃꢅꢀꢂꢂꢃMGNꢇ  
ꢋꢁꢂꢃNꢄTꢃꢅꢈꢂꢂꢃMGNꢇ  
ꢂꢁꢉꢃNꢄTꢃꢅꢋꢂꢂꢃMGNꢇ  
/BUꢁꢃ$POWꢁ  
ꢆꢀ  
ꢁꢀ  
ꢅꢀ  
ꢇꢈ  
ꢇꢀ  
ꢁꢀ  
ꢂꢀ  
ꢃꢀ  
ꢄꢀ  
ꢅꢀꢀ  
<«$>  
ꢁꢂ  
ꢃꢄ  
ꢅꢆ  
ꢂꢅ  
ꢆꢀ  
<">  
Available load current vs. ambient air temperature and airflow  
at Vin = 53 V. DC/DC converter mounted vertically with airflow  
and test conditions as per the Thermal consideration section.  
Efficiency vs. load current and input voltage at TPcb = +25 °C  
Power Dissipation  
Thermal Resistance  
<8>  
ꢃꢀ  
<$ꢉ8>  
ꢃꢀ  
ꢂꢄ  
ꢁꢈ  
ꢁꢂ  
ꢃꢆꢉ7  
ꢄꢈꢉ7  
ꢅꢃꢉ7  
ꢇꢅꢉ7  
ꢀꢁꢀ  
<NꢉT>  
ꢅꢁꢀ  
ꢀꢁꢂ  
ꢃꢁꢀ  
ꢃꢁꢂ  
ꢄꢁꢀ  
ꢄꢁꢂ  
ꢁꢀ ꢂꢀ ꢃꢀ ꢄꢀ ꢅꢀ ꢆꢀ ꢇꢀ ꢈꢀ  
<">  
Dissipated power vs. load current and input voltage at  
TPcb = +25 °C  
Thermal resistance vs. airspeed measured at the converter.  
Tested in windtunnel with airflow and test conditions as per  
the Thermal consideration section.  
Output Characteristic  
<7>  
ꢁꢇꢉ  
ꢁꢇꢂ  
ꢁꢇꢈ  
ꢁꢇꢅ  
ꢁꢇꢃ  
ꢁꢇꢄ  
ꢁꢂ  
ꢆꢀ  
ꢃꢄ  
ꢅꢆ  
ꢂꢅ  
<">  
Output voltage vs. load current at TPcb = +25 °C, VI = 53 V.  
11  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
PKM 4118HC PINB Typical Characteristics  
Start-Up  
Turn-Off  
Start-up enabled by connecting Vin.  
IO = 80 A resistive load, TPcb = +25 °C, Vin = 53 V.  
Top trace: output voltage (0.5 V/div.).  
Bottom trace: input voltage (20 V/div.).  
Time scale: 5 ms/div.  
Turn-off enabled by disconnecting Vin.  
IO = 80 A resistive load, TPcb = +25 °C, Vin = 53 V.  
Top trace: input voltage (0.5 V/div.).  
Bottom trace: output voltage (20 V/div.).  
Time scale: 2 ms/div.  
Transient  
Output Ripple  
Output voltage response to load current step-change  
(20-60-20 A) at TPcb = +25 °C, Vin = 53 V.  
Top trace: output voltage (500 mV/div.).  
Bottom trace: load current (50 A/div.)  
Time scale: 0.1 ms/div.  
Output voltage ripple (20mV/div.) at TPcb = +25 °C,  
Vin = 53 V, IO = 80 A resistive load with C = 10 µF  
tantalum and 0.1 µF ceramic capacitor.  
Band width = 20 MHz. Time scale: 2µs / div.  
Output Voltage Adjust  
Output Voltage Adjust  
The resistor value for an adjusted output voltage is  
calculated by using the following equations:  
<L0IN>  
ꢀꢁꢁꢁꢁꢁꢁꢁ  
Output Voltage Adjust Upwards, Increase:  
*ODSFBTF  
Radj= [5917/(0.8166- (1.225Vo))-1000]Ohm  
ꢀꢁꢁꢁꢁꢁꢁ  
%FDSFBTF  
Output Voltage Adjust Downwards, Decrease:  
Radj= [4083/(1.225Vo- (0.8166))-1000]Ohm  
ꢀꢁꢁꢁꢁꢁ  
ꢀꢁꢁꢁꢁ  
Eg Increase 8% =>Vout = 1.62 Vdc  
5917/(0.8166-(1.225/1.62))= 97 kOhm  
<>  
ꢄꢄ  
ꢀꢄ  
ꢀꢅ  
ꢀꢃ  
Eg Decrease 8% =>Vout = 1.38 Vdc  
4083/((1.225/1.38)-0.8166))-1000= 56.4 kOhm  
Output voltage adjust resistor value vs.  
percentage change in output voltage.  
12  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
PKM 4118GC PINB - 1.8 V Data  
TPcb = –40…+90 °C, VI = 36...75V, sense pins connected to output pins unless otherwise specified.  
Output  
Unit  
V
Characteristics  
Conditions  
min  
1.77  
typ  
max  
1.84  
Output voltage initial setting  
VI = 53 V, IOmax, TPcb = 25 °C  
1.80  
and accuracy  
VOi  
Output adjust range  
IOmax, VI = 53 V, TPcb = 25 °C  
0.1...1 x IOmax  
1.62  
1.73  
1.77  
1.98  
1.86  
1.84  
25  
V
Output voltage tolerance band  
Idling voltage  
V
I
O = 0  
V
VO  
Line regulation  
IOmax  
mV  
mV  
Load regulation  
IO = 0.01...1 x IOmax, VI = 53 V  
25  
Load transient  
voltage deviation  
0.1...1.0 x IOmax VI = 53 V  
,
Vtr  
ttr  
250  
100  
mV  
µs  
Load step = 0.5 x IOmax  
0.1...1.0 x IOmax VI = 53 V  
,
Load step = 0.5 x IOmax  
Load transient recovery time  
Ramp-up time  
0.1...1 x IOmax, VI = 53 V  
0.1...0.9 x VOnom  
tr  
15  
20  
30  
ms  
ms  
0.1...1 x IOmax, VI = 53 V  
From VI connected to 0.9 x VOnom  
ts  
Start-up time  
10  
60  
71  
IO  
Output current  
0
A
POmax Max output power  
Ab V = VOnom  
128  
W
Ilim  
Current limit threshold  
Short circuit current  
Output ripple & noise  
TPcb < TPcbmax  
72  
80  
A
Isc  
TPcb = 25 °C  
85  
95  
A
VOac  
See ripple and noise, IOmax, VOnom  
100  
180  
mVp-p  
TPcb = 25 °C, f = 100 Hz sine wave 1 Vp-p,  
VI = 53 V  
SVR  
Supply voltage rejection (ac)  
70  
dB  
η
η
η
η
Efficiency - 50% load  
Efficiency - 100% load  
Efficiency - 50% load  
Efficiency - 100% load  
Power Dissipation  
TPcb = +25 °C, V = 48 V, 0.5 x IOmax  
90.5  
87  
%
I
T
T
T
Pcb = +25 °C, V = 48 V, IOmax  
%
I
Pcb = +25 °C, V = 53 V, 0.5 x IOmax  
90.5  
87.5  
%
I
Pcb = +25 °C, V = 53 V, IOmax  
87  
%
I
P
TPcb = +25 °C, V = 53 V, IOmax  
I
19.1  
160  
W
d
f
Switching frequency  
0 ... 1.0 x IOmax  
145  
155  
kHz  
s
13  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
PKM 4118GC PINB Typical Characteristics  
Efficiency  
Output Current Derating  
<ꢊ>  
ꢉꢅ  
<">  
ꢈꢀ  
ꢃꢀ  
ꢉꢀ  
ꢈꢅ  
ꢇꢀ  
ꢀꢁꢂꢃNꢄTꢃꢅꢆꢂꢂꢃMGNꢇꢃꢃ  
ꢈꢁꢉꢃNꢄTꢃꢅꢉꢂꢂꢃMGNꢇ  
ꢂꢀ  
ꢈꢁꢂꢃNꢄTꢃꢅꢊꢂꢂꢃMGNꢇ  
ꢋꢁꢉꢃNꢄTꢃꢅꢀꢂꢂꢃMGNꢇ  
ꢋꢁꢂꢃNꢄTꢃꢅꢈꢂꢂꢃMGNꢇ  
ꢂꢁꢉꢃNꢄTꢃꢅꢋꢂꢂꢃMGNꢇ  
ꢃꢆꢋ7  
ꢄꢈꢋ7  
ꢅꢃꢋ7  
ꢇꢅꢋ7  
ꢆꢀ  
ꢈꢀ  
ꢁꢀ  
/BUꢁꢃ$POWꢁ  
ꢇꢅ  
ꢅꢀ  
ꢇꢀ  
ꢁꢀ  
ꢂꢀ  
ꢃꢀ  
ꢄꢀ  
ꢅꢀꢀ  
<«$>  
<">  
ꢇꢀ  
ꢁꢀ  
ꢂꢀ  
ꢃꢀ  
ꢄꢀ  
ꢅꢀ  
ꢆꢀ  
Available load current vs. ambient air temperature and airflow  
at Vin = 53 V. DC/DC converter mounted vertically with airflow  
and testconditions as per the Thermal consideration section.  
Efficiency vs. load current and input voltage at TPcb = +25 °C  
Power Dissipation  
Thermal Resistance  
<$ꢉ8>  
ꢃꢀ  
<8>  
ꢃꢀ  
ꢂꢄ  
ꢁꢈ  
ꢁꢂ  
ꢃꢆꢉ7  
ꢄꢈꢉ7  
ꢅꢃꢉ7  
ꢇꢅꢉ7  
ꢀꢁꢀ  
<NꢉT>  
ꢅꢁꢀ  
ꢀꢁꢂ  
ꢃꢁꢀ  
ꢃꢁꢂ  
ꢄꢁꢀ  
ꢄꢁꢂ  
ꢁꢀ  
ꢂꢀ  
ꢃꢀ  
ꢄꢀ  
ꢅꢀ  
ꢆꢀ  
ꢇꢀ  
<">  
Dissipated power vs. load current and input voltage at  
Pcb = +25 °C  
Thermal resistance vs. airspeed measured at the converter.  
Tested in windtunnel with airflow and test conditions as per  
the Thermal consideration section.  
T
Output Characteristic  
<7>  
ꢃꢈꢀ  
ꢁꢈꢉ  
ꢁꢈꢄ  
ꢁꢈꢇ  
ꢁꢈꢆ  
ꢁꢈꢅ  
ꢁꢂ  
ꢃꢄ  
ꢂꢃ  
ꢅꢆ  
<">  
ꢇꢀ  
Output voltage vs. load current at TPcb = +25 °C, VI = 53 V.  
14  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
PKM 4118GC PINB Typical Characteristics  
Start-Up  
Turn-Off  
Start-up enabled by connecting Vin.  
IO = 71 A resistive load, TPcb = +25 °C, Vin = 53 V.  
Top trace: input voltage (1 V/div.).  
Bottom trace: output voltage (20 V/div.).  
Time scale: 5 ms/div.  
Turn-off enabled by disconnecting Vin.  
IO = 71 A resistive load at TPcb = +25 °C, Vin = 53 V.  
Top trace: Input voltage 1 V/div.  
Bottom trace: output voltage (20 V/div.).  
Time scale: 5 ms/div.  
Transient  
Output Ripple  
Output voltage response to load current step-change  
(18-54-18 A) at TPcb = +25 °C, Vin = 53 V.  
Top trace: output voltage (100 mV/div.).  
Bottom trace: load current (50 A/div.)  
Time scale: 0.1 ms/div.  
Output voltage ripple (50mV/div.) at TPcb = +25 °C,  
Vin = 53 V, IO = 71 A resistive load with C = 10 µF  
tantalum and 0.1 µF ceramic capacitor.  
Band width = 20 MHz. Time scale: 2µs / div.  
Output Voltage Adjust  
Output Voltage Adjust  
<L0IN>  
ꢀꢁꢁꢁꢁꢁ  
The resistor value for an adjusted output voltage is  
calculated by using the following equations:  
Output Voltage Adjust Upwards, Increase:  
ꢀꢁꢁꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ  
Radj= 5.11 [1.8(100+%)/1.225%- (100+2%)/%] kOhm  
%FDSFBTF  
*ODSFBTF  
Output Voltage Adjust Downwards, Decrease:  
Radj= 5.11 [(100/%-2)] kOhm  
Eg Increase 4% =>Vout = 1.87 Vdc  
5.11 [1.8(100+4)/(1.225x4)-(100+2x4)/4]=57.3 kOhm  
Eg Decrease 2% =>Vout = 1.76 Vdc  
<>  
ꢀꢂ  
ꢀꢁ  
5.11 x(100/2-2)=245.3 kOhm  
Output voltage adjust resistor value vs.  
percentage change in output voltage.  
15  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
PKM 4119C PINB - 2.5 V Data  
TPcb = –40…+90 °C, VI = 36...75V, sense pins connected to output pins unless otherwise specified.  
Output  
Unit  
V
Characteristics  
Conditions  
min  
2.45  
typ  
max  
2.55  
Output voltage initial setting  
VI = 53 V, IOmax, TPcb = 25 °C  
2.500  
and accuracy  
VOi  
Output adjust range  
IOmax, VI = 53 V, TPcb = 25 °C  
0.1...1 x IOmax  
2.21  
2.40  
2.40  
2.81  
2.60  
2.60  
30  
V
Output voltage tolerance band  
Idling voltage  
V
I
O = 0  
V
VO  
Line regulation  
IOmax  
mV  
mV  
Load regulation  
IO = 0.01...1 x IOmax, VI = 53 V  
30  
Load transient  
voltage deviation  
0.1...1.0 x IOmax VI = 53 V  
,
Vtr  
ttr  
250  
40  
mV  
µs  
Load step = 0.5 x IOmax  
0.1...1.0 x IOmax VI = 53 V  
,
Load step = 0.5 x IOmax  
Load transient recovery time  
Ramp-up time  
0.1...1 x IOmax, VI = 53 V  
0.1...0.9 x VOnom  
tr  
5
10  
15  
15  
ms  
ms  
0.1...1 x IOmax, VI = 53 V  
From VI connected to 0.9 x VOnom  
ts  
Start-up time  
10  
100  
55  
IO  
Output current  
0
A
POmax Max output power  
Ab V = VOnom  
137.5  
58  
W
Ilim  
Current limit threshold  
Short circuit current  
Output ripple & noise  
TPcb < TPcbmax  
75  
A
Isc  
TPcb = 25 °C  
65  
90  
A
VOac  
See ripple and noise, IOmax, VOnom  
80  
55  
130  
mVp-p  
TPcb = 25 °C, f = 100 Hz sine wave 1 Vp-p,  
VI = 53 V  
SVR  
Supply voltage rejection (ac)  
dB  
η
η
η
η
Efficiency - 50% load  
Efficiency - 100% load  
Efficiency - 50% load  
Efficiency - 100% load  
Power Dissipation  
TPcb = +25 °C, V = 48 V, 0.5 x IOmax  
92  
88  
91  
88  
%
I
T
T
T
Pcb = +25 °C, V = 48 V, IOmax  
%
I
Pcb = +25 °C, V = 53 V, 0.5 x IOmax  
%
I
Pcb = +25 °C, V = 53 V, IOmax  
86.5  
145  
%
I
P
TPcb = +25 °C, V = 53 V, IOmax  
I
20.8  
165  
W
d
f
Switching frequency  
0 ... 1.0 x IOmax  
155  
kHz  
s
16  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
PKM 4119C PINB Typical Characteristics  
Efficiency  
Output Current Derating  
<ꢉ>  
ꢈꢅ  
<">  
ꢃꢁ  
ꢇꢁ  
ꢂꢁ  
ꢈꢀ  
ꢇꢅ  
ꢃꢊꢋ7  
ꢄꢇꢋ7  
ꢅꢃꢋ7  
ꢆꢅꢋ7  
ꢀꢁꢂꢃNꢄTꢃꢅꢆꢂꢂꢃMGNꢇꢃꢃ  
ꢈꢁꢉꢃNꢄTꢃꢅꢉꢂꢂꢃMGNꢇ  
ꢈꢁꢂꢃNꢄTꢃꢅꢊꢂꢂꢃMGNꢇ  
ꢋꢁꢉꢃNꢄTꢃꢅꢀꢂꢂꢃMGNꢇ  
ꢋꢁꢂꢃNꢄTꢃꢅꢈꢂꢂꢃMGNꢇ  
ꢂꢁꢉꢃNꢄTꢃꢅꢋꢂꢂꢃMGNꢇ  
/BUꢁꢃ$POWꢁ  
ꢆꢁ  
ꢀꢁ  
ꢅꢁ  
ꢇꢀ  
ꢆꢅ  
ꢆꢀ  
ꢀꢁ  
ꢂꢁ  
ꢃꢁ  
ꢄꢁ  
ꢅꢁꢁ  
<«$>  
<">  
ꢅꢀ  
ꢁꢀ  
ꢃꢀ  
ꢄꢀ  
ꢂꢀ  
Available load current vs. ambient air temperature and airflow  
at Vin = 53 V. DC/DC converter mounted vertically with airflow  
testconditions as per the Thermal consideration section.  
Efficiency vs. load current and input voltage at TPcb = +25 °C  
Thermal Resistance  
Power Dissipation  
<$ꢉ8>  
ꢃꢀ  
<8>  
ꢂꢅ  
ꢂꢀ  
ꢁꢅ  
ꢁꢀ  
ꢃꢆꢇ7  
ꢄꢈꢇ7  
ꢅꢃꢇ7  
ꢉꢅꢇ7  
ꢀꢁꢀ  
ꢁꢀ  
ꢂꢀ  
ꢃꢀ  
ꢄꢀ  
ꢅꢀ  
<NꢉT>  
ꢅꢁꢀ  
<">  
ꢀꢁꢂ  
ꢃꢁꢀ  
ꢃꢁꢂ  
ꢄꢁꢀ  
ꢄꢁꢂ  
Dissipated power vs. load current and input voltage at  
Pcb = +25 °C  
Thermal resistance vs. airspeed measured at the converter.  
Tested in windtunnel with airflow and test conditions as per  
the Thermal consideration section.  
T
Output Characteristic  
<7>  
ꢂꢆꢈ  
ꢂꢆꢇ  
ꢂꢆꢅ  
ꢂꢆꢄ  
ꢂꢆꢃ  
ꢂꢆꢂ  
ꢁꢀ  
ꢂꢀ  
ꢃꢀ  
ꢄꢀ  
ꢅꢀ <">  
Output voltage vs. load current at TPcb = +25 °C, VI = 53 V.  
17  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
PKM 4119C PINB Typical Characteristics  
Start-Up  
Turn-Off  
Start-up enabled by connecting Vin.  
IO = 55 A resistive load, TPcb = +25 °C, Vin = 53 V.  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (20 V/div.).  
Time scale: 2 ms/div.  
Turn-off enabled by disconnecting Vin.  
IO = 55 A resistive load at TPcb = +25 °C, Vin = 53 V.  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (20 V/div.)  
Time scale: 5 ms/div.  
Transient  
Output Ripple  
Output voltage response to load current step-change  
Output voltage ripple (50 mV/div.) at TPcb = +25 °C,  
(14-38-14 A) at TPcb = +25 °C, Vin = 53 V.  
Top trace: Input voltage (50 mV/div.).  
Bottom trace: load current (40 A/div.).  
Time scale: 0.1 ms/div.  
Vin = 53 V, IO = 55 A resistive load with C = 10 µF  
tantalum and 0.1 µF ceramic capacitor.  
Band width = 20 MHz. Time scale: 2 µs/div.  
Output Voltage Adjust  
Output Voltage Adjust  
<L0IN>  
ꢀꢁꢁꢁ  
The resistor value for an adjusted output voltage is  
calculated by using the following equations:  
Output Voltage Adjust Upwards, Increase:  
Radj= 5.11 [2.5(100+%)/1.225%- (100+2%)/%] kOhm  
ꢀꢁꢁ  
ꢀꢁ  
Output Voltage Adjust Downwards, Decrease:  
Radj= 5.11 [(100/%-2)] kOhm  
%FDSFBTF  
*ODSFBTF  
Eg Increase 4% =>Vout = 2.6 Vdc  
5.11 [2.5(100+4)/(1.225x4)-(100+2x4)/4]=133 kOhm  
Eg Decrease 2% =>Vout = 2.45 Vdc  
<>  
ꢀꢂ  
ꢀꢁ  
5.11 x(100/2-2)=245.3 kOhm  
Output voltage adjust resistor value vs.  
percentage change in output voltage.  
18  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
PKM 4110C PINB - 3.3 V Data  
TPcb = –40…+90 °C, VI = 36...75V, sense pins connected to output pins unless otherwise specified.  
Output  
Unit  
V
Characteristics  
Conditions  
min  
3.24  
typ  
max  
3.36  
Output voltage initial setting  
VI = 53 V, IOmax, TPcb = 25 °C  
3.30  
and accuracy  
VOi  
Output adjust range  
IOmax, VI = 53 V, TPcb = 25 °C  
0.1...1 x IOmax  
2.97  
3.23  
3.23  
-11  
3.63  
3.37  
3.37  
22  
V
Output voltage tolerance band  
Idling voltage  
V
I
O = 0  
V
VO  
Line regulation  
IOmax  
mV  
mV  
Load regulation  
IO = 0.01...1 x IOmax, VI = 53 V  
-11  
22  
Load transient  
voltage deviation  
0.1...1.0 x IOmax VI = 53 V  
,
Vtr  
ttr  
500  
100  
mV  
µs  
Load step = 0.5 x IOmax  
0.1...1.0 x IOmax VI = 53 V  
,
Load step = 0.5 x IOmax  
Load transient recovery time  
Ramp-up time  
0.1...1 x IOmax, VI = 53 V  
0.1...0.9 x VOnom  
tr  
7
10  
15  
30  
ms  
ms  
0.1...1 x IOmax, VI = 53 V  
From VI connected to 0.9 x VOnom  
ts  
Start-up time  
10  
100  
50  
IO  
Output current  
0
A
POmax Max output power  
Ab V = VOnom  
165  
55  
W
Ilim  
Current limit threshold  
Short circuit current  
Output ripple & noise  
TPcb < TPcbmax  
70  
A
Isc  
TPcb = 25 °C  
60  
50  
75  
A
VOac  
See ripple and noise, IOmax, VOnom  
125  
mVp-p  
TPcb = 25 °C, f = 100 Hz sine wave 1 Vp-p,  
VI = 53 V  
SVR  
Supply voltage rejection (ac)  
50  
dB  
η
η
η
η
Efficiency - 50% load  
Efficiency - 100% load  
Efficiency - 50% load  
Efficiency - 100% load  
Power Dissipation  
TPcb = +25 °C, V = 48 V, 0.5 x IOmax  
92  
90  
92  
90  
%
I
T
T
T
Pcb = +25 °C, V = 48 V, IOmax  
%
I
Pcb = +25 °C, V = 53 V, 0.5 x IOmax  
%
I
Pcb = +25 °C, V = 53 V, IOmax  
89  
%
I
P
TPcb = +25 °C, V = 53 V, IOmax  
I
20.4  
165  
W
d
f
Switching frequency  
0 ... 1.0 x IOmax  
145  
155  
kHz  
s
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
19  
PKM 4110C PINB Typical Characteristics  
Efficiency  
Output Current Derating  
<ꢉ>  
ꢈꢅ  
<">  
ꢃꢀ  
ꢇꢀ  
ꢂꢀ  
ꢈꢀ  
ꢇꢅ  
ꢃꢊꢋ7  
ꢆꢀ  
ꢁꢀ  
ꢅꢀ  
ꢀꢁꢂꢃNꢄTꢃꢅꢆꢂꢂꢃMGNꢇꢃꢃ  
ꢈꢁꢉꢃNꢄTꢃꢅꢉꢂꢂꢃMGNꢇ  
ꢈꢁꢂꢃNꢄTꢃꢅꢊꢂꢂꢃMGNꢇ  
ꢋꢁꢉꢃNꢄTꢃꢅꢀꢂꢂꢃMGNꢇ  
ꢋꢁꢂꢃNꢄTꢃꢅꢈꢂꢂꢃMGNꢇ  
ꢂꢁꢉꢃNꢄTꢃꢅꢋꢂꢂꢃMGNꢇ  
/BUꢁꢃ$POWꢁ  
ꢄꢇꢋ7  
ꢅꢃꢋ7  
ꢆꢅꢋ7  
ꢇꢀ  
ꢆꢅ  
ꢆꢀ  
ꢁꢀ  
ꢂꢀ  
ꢃꢀ  
ꢄꢀ  
ꢅꢀꢀ  
<«$>  
<">  
ꢅꢀ  
ꢁꢀ  
ꢃꢀ  
ꢄꢀ  
ꢂꢀ  
Efficiency vs. load current and input voltage at TPcb = +25 °C  
Available load current vs. ambient air temperature and airflow  
at Vin = 53 V. DC/DC converter mounted vertically with airflow  
testconditions as per the Thermal consideration section.  
Thermal Resistance  
Power Dissipation  
<$ꢉ8>  
ꢃꢀ  
<8>  
ꢂꢅ  
ꢂꢀ  
ꢁꢅ  
ꢁꢀ  
ꢃꢆꢇ7  
ꢄꢈꢇ7  
ꢅꢃꢇ7  
ꢉꢅꢇ7  
ꢀꢁꢀ  
<NꢉT>  
ꢅꢁꢀ  
ꢀꢁꢂ  
ꢃꢁꢀ  
ꢃꢁꢂ  
ꢄꢁꢀ  
ꢄꢁꢂ  
ꢁꢀ  
ꢂꢀ  
ꢃꢀ  
ꢄꢀ  
ꢅꢀ  
<">  
Dissipated power vs. load current and input voltage at  
Pcb = +25 °C  
Thermal resistance vs. airspeed measured at the converter.  
Tested in windtunnel with airflow and test conditions as per  
the Thermal consideration section.  
T
Output Characteristic  
<7>  
ꢃꢆꢅ  
ꢃꢆꢄ  
ꢃꢆꢃ  
ꢃꢆꢂ  
ꢃꢆꢁ  
ꢃꢆꢀ  
<">  
ꢅꢀ  
ꢁꢀ  
ꢂꢀ  
ꢃꢀ  
ꢄꢀ  
Output voltage vs. load current at TPcb = +25 °C. VI = 53 V.  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
20  
PKM 4110C PINB Typical Characteristics  
Start-Up  
Turn-Off  
Turn-off enabled by disconnecting Vin.  
IO = 50 A resistive load at TPcb = +25 °C, Vin = 53 V.  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (20 V/div.).  
Time scale: 5 ms/div.  
Start-up enabled by connecting Vin.  
IO = 50 A resistive load, TPcb = +25 °C, Vin = 53 V.  
Top trace: output voltage (1 V/div.).  
Bottom trace: input voltage (20 V/div.).  
Time scale: 5 ms/div.  
Transient  
Output Ripple  
Output voltage response to load current step-change  
(12.5-37.5-12.5 A) at TPcb = +25 °C, Vin = 53 V.  
Top trace: output voltage (0.5 V/div.).  
Bottom trace: load current: (40 A/div.).  
Time scale: 0.1 ms/div.  
Output voltage ripple (50mV/div.) at TPcb = +25 °C,  
Vin = 53 V, IO = 50 A resistive load with C = 10 µF  
tantalum and 0.1 µF ceramic capacitor.  
Band width = 20 MHz. Time scale: 2µs / div.  
Output Voltage Adjust  
Output Voltage Adjust  
<L0IN>  
ꢀꢁꢁꢁꢁꢁ  
The resistor value for an adjusted output voltage is  
calculated by using the following equations:  
Output Voltage Adjust Upwards, Increase:  
ꢀꢁꢁꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ  
Radj= 5.11 [3.3(100+%)/1.225%- (100+2%)/%] kOhm  
%FDSFBTF  
*ODSFBTF  
Output Voltage Adjust Downwards, Decrease:  
Radj= 5.11 [(100/%-2)] kOhm  
Eg Increase 4% =>Vout = 3.43 Vdc  
5.11 [3.3(100+4)/(1.225x4)-(100+2x4)/4]=219.9 kOhm  
Eg Decrease 2% =>Vout = 3.23 Vdc  
5.11 x(100/2-2)=245.3 kOhm  
<>  
ꢀꢂ  
ꢀꢁ  
Output voltage adjust resistor value vs.  
percentage change in output voltage.  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
21  
PKM 4211C PINB - 5 V Data  
TPcb = –40…+90 °C, VI = 36...75V, sense pins connected to output pins unless otherwise specified.  
Output  
Unit  
V
Characteristics  
Conditions  
min  
4.90  
typ  
max  
5.10  
Output voltage initial setting  
VI = 53 V, IOmax, TPcb = 25 °C  
5.00  
and accuracy  
VOi  
Output adjust range  
IOmax, VI = 53 V, TPcb = 25 °C  
0.1...1 x IOmax  
4.50  
4.80  
4.80  
5.50  
5.20  
5.20  
35  
V
Output voltage tolerance band  
Idling voltage  
V
I
O = 0  
V
VO  
Line regulation  
IOmax  
mV  
mV  
Load regulation  
IO = 0.01...1 x IOmax, VI = 53 V  
35  
Load transient  
voltage deviation  
0.1...1.0 x IOmax VI = 53 V  
,
Vtr  
ttr  
700  
100  
mV  
µs  
Load step = 0.5 x IOmax  
0.1...1.0 x IOmax VI = 53 V  
,
Load step = 0.5 x IOmax  
Load transient recovery time  
Ramp-up time  
0.1...1 x IOmax, VI = 53 V  
0.1...0.9 x VOnom  
tr  
5
7
10  
15  
30  
ms  
ms  
0.1...1 x IOmax, VI = 53 V  
From VI connected to 0.9 x VOnom  
ts  
Start-up time  
100  
40  
IO  
Output current  
0
A
POmax Max output power  
Ab V = VOnom  
200  
W
Ilim  
Current limit threshold  
Short circuit current  
Output ripple & noise  
TPcb < TPcbmax  
42  
44  
60  
60  
A
Isc  
TPcb = 25 °C  
65  
A
VOac  
See ripple and noise, IOmax, VOnom  
150  
mVp-p  
TPcb = 25 °C, f = 100 Hz sine wave 1 Vp-p,  
VI = 53 V  
SVR  
Supply voltage rejection (ac)  
70  
dB  
η
η
η
η
Efficiency - 50% load  
Efficiency - 100% load  
Efficiency - 50% load  
Efficiency - 100% load  
Power Dissipation  
TPcb = +25 °C, V = 48 V, 0.5 x IOmax  
93  
%
I
T
T
T
Pcb = +25 °C, V = 48 V, IOmax  
90.5  
92  
%
I
Pcb = +25 °C, V = 53 V, 0.5 x IOmax  
%
I
Pcb = +25 °C, V = 53 V, IOmax  
89  
89.5  
%
I
P
TPcb = +25 °C, V = 53 V, IOmax  
I
24.7  
220  
W
d
f
Switching frequency  
0 ... 1.0 x IOmax  
180  
200  
kHz  
s
22  
EN/LZT 146 035 R3C ©Ericsson Power Modules, May 2005  
PKM 4000C Datasheet  
PKM 4211C PINB Typical Characteristics  
Efficiency  
Output Current Derating  
<ꢊ>  
ꢉꢈ  
<">  
ꢂꢀ  
ꢉꢀ  
ꢆꢀ  
ꢁꢈ  
ꢆꢃꢋ7  
ꢁꢀ  
ꢅꢁꢋ7  
ꢀꢁꢂꢃNꢄTꢃꢅꢆꢂꢂꢃMGNꢇꢃꢃ  
ꢈꢆꢋ7  
ꢇꢈꢋ7  
ꢈꢁꢉꢃNꢄTꢃꢅꢉꢂꢂꢃMGNꢇ  
ꢈꢁꢂꢃNꢄTꢃꢅꢊꢂꢂꢃMGNꢇ  
ꢋꢁꢉꢃNꢄTꢃꢅꢀꢂꢂꢃMGNꢇ  
ꢋꢁꢂꢃNꢄTꢃꢅꢈꢂꢂꢃMGNꢇ  
ꢂꢁꢉꢃNꢄTꢃꢅꢋꢂꢂꢃMGNꢇ  
/BUꢁꢃ$POWꢁ  
ꢁꢀ  
ꢇꢈ  
ꢇꢀ  
ꢅꢀ  
ꢁꢀ  
ꢂꢀ  
ꢃꢀ  
ꢄꢀ  
ꢅꢀꢀ  
<«$>  
<">  
ꢅꢀ  
ꢂꢃ  
ꢄꢅ  
ꢆꢄ  
Available load current vs. ambient air temperature and airflow  
at Vin = 53 V. DC/DC converter mounted vertically with airflow  
testconditions as per the Thermal consideration section.  
Efficiency vs. load current and input voltage at TPcb = +25 °C  
Thermal Resistance  
Power Dissipation  
<$ꢉ8>  
ꢃꢀ  
<8>  
ꢆꢀ  
ꢄꢅ  
ꢂꢁ  
ꢂꢄ  
ꢆꢃꢇ7  
ꢅꢁꢇ7  
ꢈꢆꢇ7  
ꢉꢈꢇ7  
<NꢉT>  
ꢅꢁꢀ  
ꢀꢁꢀ  
ꢀꢁꢂ  
ꢃꢁꢀ  
ꢃꢁꢂ  
ꢄꢁꢀ  
ꢄꢁꢂ  
ꢄꢅ  
ꢆꢄ  
ꢅꢀ  
<">  
ꢂꢃ  
Thermal resistance vs. airspeed measured at the converter.  
Tested in windtunnel with airflow and test conditions as per  
the Thermal consideration section.  
Dissipated power vs. load current and input voltage at  
Pcb = +25 °C  
T
Output Characteristic  
<7>  
ꢊꢇꢄ  
ꢊꢇꢂ  
ꢊꢇꢀ  
ꢅꢇꢉ  
ꢅꢇꢁ  
ꢅꢇꢈ  
ꢂꢃ  
ꢄꢅ  
ꢆꢄ  
<">  
ꢅꢀ  
Output voltage vs. load current at TPcb = +25 °C. VI = 53 V.  
23  
EN/LZT 146 035 R3C ©Ericsson Power Modules, May 2005  
PKM 4000C Datasheet  
PKM 4211C PINB Typical Characteristics  
Start-Up  
Turn-Off  
Start-up enabled by connecting Vin.  
IO = 40 A resistive load, TPcb = +25 °C, Vin = 53 V.  
Top trace: output voltage (2 V/div.).  
Bottom trace: input voltage (20 V/div.).  
Time scale: 5 ms/div.  
Turn-off enabled by disconnecting Vin.  
IO = 40 A resistive load at TPcb = +25 °C, Vin = 53 V.  
Top trace: output voltage (2 V/div.).  
Bottom trace: input voltage (20 V/div.).  
Time scale: 5 ms/div.  
Transient  
Output Ripple  
Output voltage response to load current step-change  
(10-30-10 A) at TPcb = +25 °C, Vin = 53 V.  
Top trace: output voltage (500 mV/div.).  
Bottom trace:load current: (40 A/div.).  
Time scale: 0.1 ms/div.  
Output voltage ripple (50 mV/div.) at TPcb = +25 °C,  
Vin = 53 V, IO = 40 A resistive load with C= 10 µF  
tantalum and 0.1 µF ceramic capacitor.  
Band width = 20 MHz. Time scale: 2 µs / div.  
Output Voltage Adjust  
Output Voltage Adjust  
<L0IN>  
ꢀꢁꢁꢁꢁꢁ  
The resistor value for an adjusted output voltage is  
calculated by using the following equations:  
ꢀꢁꢁꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ  
Output Voltage Adjust Upwards, Increase:  
Radj= 5.11 [5(100+%)/1.225%- (100+2%)/%] kOhm  
Output Voltage Adjust Downwards, Decrease:  
Radj= 5.11 [(100/%-2)] kOhm  
Eg Increase 4% =>Vout = 5.2 Vdc  
5.11 [5(100+4)/(1.225x4)-(100+2x4)/4]=404.3 kOhm  
<>  
ꢀꢂ  
Eg Decrease 2% =>Vout = 4.9 Vdc  
ꢀꢁ  
5.11 x(100/2-2)=245.3 kOhm  
Output voltage adjust resistor value vs.  
percentage change in output voltage.  
24  
EN/LZT 146 035 R3C ©Ericsson Power Modules, May 2005  
PKM 4000C Datasheet  
EMC Specification  
The conducted EMI measurement was performed using a  
module placed directly on the test bench.  
The fundamental switching frequency is 150kHz.  
Printed Circuit Board  
Power Module  
5µH 50  
50 ohm temination  
+
out  
in  
LISN  
rcvr  
DC  
Filter  
(if used)  
Power  
Source  
Conducted EMI Input termonal value (typ) .  
5µH 50Ω  
LISN  
-
out  
in  
1 m Twisted Pair  
rcvr  
Resistive  
Load  
Optional Connection  
to Earth Ground  
50 ohm input  
EMC  
Reciver  
Computer  
Test set-up.  
Layout Recommendation  
The radiated EMI performance of the DC/DC converter will  
be optimised by including a ground plane in the Pcb area  
under the DC/DC converter.  
This approach will return switching noise to ground as di-  
rectly as possible, with improvements to both emissions and  
susceptibility.  
If one ground trace is used, it should be connected to the  
input return. Alternatively, two ground traces may be used,  
with the trace under the input side of the DC/DC converter  
connected to the input return and the trace under the output  
side of the DC/DC converter connected to the output return.  
PKM 4118GC without filter.  
External filter (class B)  
Required external input filter in order to meet class B in  
EN 55022, CISPR 22 and FCC part 15J.  
$ꢂ  
-ꢁ  
065  
Make sure to use appropriate safety isolation spacing be-  
tween these two return traces. The use of two traces as de-  
scribed will provide the capability of routing the input noise  
and output noise back to their respective returns.  
$ꢀ  
$ꢀ  
$ꢀ  
$ꢁ  
*/  
$ꢂ  
$ꢁꢂꢀꢁꢀ¬'  
$ꢃꢂꢀꢁꢄꢄꢀ¬'  
$ꢅꢂꢀꢅꢆꢇꢀO'  
-ꢁꢂꢀ$PNNPOꢀNPEFꢀJOEVDUPSꢈꢀꢉꢊꢋꢀ¬)  
-ꢃꢂꢀ$IPLFꢈꢀꢁꢌꢀ¬)  
Output ripple and noise  
The circuit below has been used for the ripple and noise  
measurements on the PKM 4000C Series DC/DC converters.  
The capacitors are ceramic type. Low ESR is critical for  
achieveing these results.  
Ceramic  
Capacitor  
Tantalum  
Capacitor  
+Vout  
+Sense  
+
Trim  
0.1uF  
10uF  
Load  
-Sense  
-Vout  
BNC  
Connector  
to Scope  
* Conductor from Vout to capacitors = 50mm [1.97in]  
Output ripple and noise test setup  
PKM 4118GC with filter.  
25  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
Operating Information  
Remote Sense  
Input Voltage  
The input voltage range 36…75 Vdc meets the requirements  
of the European Telecom Standard ETS 300 132-2 for  
normal input voltage range in –48 V and –60 V DC systems,  
-40.5…-57.0 V and –50.0…-72 V respectively. At input  
voltages exceeding 75 V, the power loss will be higher than  
at normal input voltage and TPcb must be limited to absolute  
max +110 °C. The absolute maximum continuous input  
voltage is 80 Vdc.  
All PKM 4000C Series DC/DC converters have remote sense  
that can be used to compensate for moderate amounts of  
resistance in the distribution system and allow for voltage  
regulation at the load or other selected point. The remote  
sense lines will carry very little current and do not need a  
large cross sectional area. However, the sense lines on the  
Pcb should be located close to a ground trace or ground  
plane. In a discrete wiring situation, the use of twisted  
pair wires or other technique to reduce noise susceptibil-  
ity is highly recommended. The remote sense circuitry will  
compensate for up to 10% voltage drop between the sense  
voltage and the voltage at the output pins. The output volt-  
age and the remote sense voltage offset must be less than  
the minimum over voltage trip point. If the remote sense is  
not needed the –Sense should be connected to –Out and  
+Sense should be connected to +Out.  
Turn-Off Input Voltage  
The PKM 4000C Series DC/DC converters monitor the input  
voltage and will turn on and turn off at predetermined levels.  
The minimum hysteresis between turn on and turn off input  
voltage is 1 V where the turn on input voltage is the highest.  
Remote Control (RC)  
The PKM 4000C Series DC/DC  
+In  
RC  
-In  
converters have a remote control  
function referenced to the primary  
side (- In), with negative and positive  
logic options available. The RC  
Output Voltage Adjust (Vadj)  
All PKM 4000C Series DC/DC converters have an Output  
Voltage adjust pin (Vadj). This pin can be used to adjust the  
output voltage above or below Output voltage initial setting.  
When increasing the output voltage, the voltage at the output  
pins (including any remote sense offset) must be kept below  
the overvoltage trip point, to prevent the converter from  
shut down. Also note that at increased output voltages the  
maximum power rating of the converter remains the same,  
and the output current capability will decrease correspond-  
ingly. To decrease the output voltage the resistor should be  
connected between Vadj pin and –Sense pin. To increase  
the voltage the resistor should be connected between Vadj  
pin and +Sense pin. The resistor value of the Output voltage  
adjust function is according to information given under the  
output section.  
function allows the converter to be  
turned on/off by an external device  
like a semiconductor or mechanical  
Circuit configuration  
for RC function  
switch. The RC pin has an internal pull up resistor to + In.  
The needed maximum sink current is 1 mA. When the RC  
pin is left open, the voltage generated on the RC pin is  
3.5 - 6.0 V. The maximum allowable leakage current of the  
switch is 50 µA.  
The standard converter is provided with “negative logic”  
remote control and the converter will be off until the RC  
pin is connected to the - In. To turn on the converter the  
voltage between RC pin and - In should be less than 1 V.  
To turn off the converter the RC pin should be left open, or  
connected to a voltage higher than 2 V referenced to - In. In  
situations where it is desired to have the converter to power  
up automatically without the need for control signals or a  
switch, the RC pin can be wired directly to - In.  
+Out  
+Out  
+Sense  
+Sense  
R
adj  
Load  
Load  
V
V
adj  
adj  
The second option is “positive logic” remote control, which  
can be ordered by adding the suffix “P” to the end of the  
part number. The converter will turn on when the input  
voltage is applied with the RC pin open. Turn off is achieved  
by connecting the RC pin to the - In. To ensure safe turn off  
the voltage difference between RC pin and the - In pin shall  
be less than 0.8 V. The converter will restart automatically  
when this connection is opened.  
R
adj  
-Sense  
-Sense  
-Out  
-Out  
Decrease  
Increase  
Circuit configuration for output voltage adjust  
26  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
Operating Information  
Current Limit Protection  
Maximum Capacitive Load  
The PKM 4000C Series DC/DC converters include current  
limiting circuitry that allows them to withstand continuous  
overloads or short circuit conditions on the output. The out-  
put voltage will decrease towards zero for output currents in  
excess of max output current (Iomax).  
The converter will resume normal operation after removal  
of the overload. The load distribution system should be  
designed to carry the maximum output short circuit current  
specified.  
When powering loads with significant dynamic current  
requirements, the voltage regulation at the load can be  
improved by addition of decoupling capacitance at the  
load. The most affective technique is to locate low ESR  
ceramic capacitors as close to the load as possible, using  
several capacitors to lower the effective ESR. These  
ceramic capacitors will handle short duration high-frequency  
components of dynamic load changes. In addition, higher  
values of electrolytic capacitors should be used to handle  
the mid-frequency components. It is equally important  
to use good design practise when configuring the DC  
distribution system.  
Over Voltage Protection (OVP)  
The PKM 4000C Series DC/DC converters include output  
overvoltage protection. In the event of an overvoltage condi-  
tion due to malfunction in the voltage monitoring circuits, the  
converter's PWM will automatically dictate minimum duty-  
cycle thus reducing the output voltage to a minimum.  
Low resistance and low inductance Pcb layouts and cabling  
should be used. Remember that when using remote sensing,  
all resistance, inductance and capacitance of the distribution  
system is within the feedback loop of the converter. This  
can affect on the converters compensation and the resulting  
stability and dynamic response performance. As a “rule of  
thumb”, 100µF/A of output current can be used without  
any additional analysis. For example with a 25A converter,  
values of decoupling capacitance up to 2500 µF can be  
used without regard to stability. With larger values of  
capacitance, the load transient recovery time can exceed  
the specified value. As much of the capacitance as possible  
should be outside the remote sensing loop and close to the  
load. The absolute maximum value of output capacitance is  
10 000 µF. For values larger than this, please contact your  
local Ericsson Power Modules representative.  
Over Temperature Protection (OTP)  
The PKM 4000C Series DC/DC converters are protected  
from thermal overload by an internal over temperature  
shutdown circuit. When the Pcb temperature (TC reference  
point) exceeds the temperature trig point (120 °C) for the  
OTP circuit the converter will cut down output power. The  
converter will go into hiccup mode until safe operational  
temperature is restored.  
Input And Output Impedance  
The impedance of both the power source and the load will  
interact with the impedance of the DC/DC converter. It is  
most important to have a low characteristic impedance,  
both at the input and output, as the converters have a low  
energy storage capability. The PKM 4000C Series DC/DC  
converters have been designed to be completely stable  
without the need for external capacitors on the input or  
the output circuits. The performance in some applications  
can be enhanced by addition of external capacitance as  
described under maximum capacitive load. If the distribution  
of the input voltage source to the converter contains  
significant inductance, the addition of a 100µF capacitor  
across the input of the converter will help insure stability.  
This capacitor is not required when powering the DC/DC  
converter from a low impedance source with short, low  
inductance, input power leads.  
Parallel Operation  
The PKM 4000C Series DC/DC converters can be paralleled  
for redundancy if external o-ring diodes are used in series  
with the outputs. It is not recommended to parallel the PKM  
4000C Series DC/DC converters for increased power without  
using external current sharing circuits.  
27  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
Thermal Consideration  
Calculation of ambient temperature  
General  
The PKM 4000C series DC/DC converters are designed  
to operate in a variety of thermal environments, however  
sufficient cooling should be provided to help ensure reliable  
operation. Heat is removed by conduction, convection and  
radiation to the surrounding environment. Increased airflow  
enhances the heat transfer via convection. The available  
load current vs. ambient air temperature and airflow at  
Vin =53 V for each model is according to the information  
given under the output section. The test is done in a  
wind tunnel with a cross section of 305 x 305 mm, the  
DC/DC converter vertically mounted on a 16 layer Pcb  
with a size of 254 x 254 mm, each layer with 35 µm (1  
oz) copper. Proper cooling can be verified by measuring  
the temperature of selected devices. Peak temperature  
can occur at positions P1 - P4. The temperature at these  
positions should not exceed the recommended max values.  
By using the thermal resistance the maximum allowed  
ambient temperature can be calculated.  
1. The powerloss is calculated by using the formula  
((1/η) - 1) × output power = power losses.  
η = efficiency of converter. E.g 90% = 0.90  
2. Find the value of the thermal resistance for each product in  
the diagram by using the airflow speed at the output section  
of the converter. Take the thermal resistance x powerloss to  
get the temperature increase.  
3. Max allowed calculated ambient temperature is: Max  
T
Pcb of DC/DC converter – temperature increase.  
E.g PKM 4110C PINB at 1m/s:  
1
A. ((  
) - 1) × 165 W = 18.3 W  
0.9  
B. 18.3 W × 4.2 °C/W = 77 °C  
Note that the recommended max value is the absolute  
maximum rating (non destruction) and that the electrical  
output data is guaranteed up to TPcb +90 °C.  
C. 110 °C - 77 °C = max ambient temperature is 33 °C  
The real temperature will be dependent on several factors,  
like Pcb size and type, direction of airflow, air turbulence etc.  
It is recommended to verify the temperature by testing.  
Position  
Device  
TC  
Recommended  
max value  
P1  
P2  
P3  
P4  
Pcb  
110 °C  
120 °C  
120 °C  
130 °C  
Transistor  
Transistor  
Transformer  
Tsurface  
Tsurface  
Tsurface  
Input side  
1ꢃ  
1ꢁ  
1ꢂ  
1ꢀ  
"JSGMPX  
Output side  
28  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
Soldering Information  
Reliability  
The Mean Time Between Failure (MTBF) of the PKM 4000C  
series DC/DC converter is calculated at full output power  
and an operating ambient temperature (TA) of +40°C.  
Different methods could be used to calculate the predicted  
MTBF and failure rate which may give different results.  
Ericsson Power Modules currently uses two different  
methods, Ericsson failure rate data system DependTool and  
Telcordia SR332.  
The PKM 4000C Series DC/DC converters are intended  
for through hole mounting on a PCB. When wave soldering  
is used max temperature on the pins is specified to  
260°C for 10 seconds. Maximum preheat rate of 4°C/s  
and temperature of max 130°C is suggested. When hand  
soldering, care should be taken to avoid direct contact  
between the hot soldering iron tip and the pins for more  
than a few seconds in order to prevent overheating.  
Predicted MTBF for the PKM 4000C series products is:  
2.7 million hours according to DependTool.  
1.4 million hours according to Telcordia SR332, issue 1,  
Black box techique.  
No-clean flux is recommended to avoid entrapment of  
cleaning fluids in cavities inside of the DC/DC power  
module. The residues may affect long time reliability and  
isolation voltage.  
The Ericsson failure rate data system is based on field  
tracking data. The data corresponds to actual failure  
rates of components used in Information Technology  
and Telecom (IT&T) equipment in temperature controlled  
environments  
Delivery Package Information  
PKM 4000C series standard delivery package is a 20 pcs box.  
(one box contains 1 full tray and 1 hold down tray)  
Clamshell Specification  
(TA = -5...+65°C). Telcordia SR332 is a commonly used  
standard method intended for reliability calculations in IT&T  
equipment. The parts count procedure used in this method  
was originally modeled on the methods from MIL-HDBK-  
217F, Reliability Predictions of Electronic Equipment. It  
assumes that no reliability data is available on the actual  
units and devices for which the predictions are to be  
made, i.e. all predictions are based on generic reliability  
parameters.  
Material:  
Polystyrene (PS)  
10 MOhm/sq  
black  
Max surface resistance:  
Color:  
Capacity:  
20 pcs/tray  
Loaded tray stack pitch: 38 mm (1.50 In)  
Weight: 138 g (typ)  
Design for Environment (DfE)  
The PKM 4000C Series DC/DC converters are designed to  
fulfil the wanted functionality with minimum environmental  
impact. The PKM 4000C Series DC/DC converters are  
RoHS compliant, meaning that the content of hazardous  
substances are below the following levels:  
Quality Statement  
The PKM 4000C series DC/DC converters are designed  
and manufactured in an industrial environment where  
quality systems and methods like ISO 9000, 6σ (sigma),  
and SPC are intensively in use to boost the continuous  
improvements strategy. Infant mortality or early failures  
in the products are screened out and they are subjected  
to an ATE-based final test. Conservative design rules,  
design reviews and product qualifications, plus the high  
competence of an engaged work force, contribute to the  
high quality of our products.  
Lead (Pb):  
1000 ppm by weight  
1000 ppm by weight  
100 ppm by weight  
Mercury (Hg):  
Cadmium (Cd):  
Hexa Valent Chromium (Cr6+): 1000 ppm by weight  
PBB & PBDE: 1000 ppm by weight  
The low weight high efficiency converters are shipped in a  
recyclable package.  
Limitation of Liability  
Ericsson Power Modules does not make any other  
warranties, expressed or implied including any warranty of  
merchantability or fitness for a particular purpose (including,  
but not limited to, use in life support applications, where  
malfunctions of product can cause injury to a person's  
health or life).  
29  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
Sales Offices and Contact Information  
Company Headquarters  
Ericsson Power Modules AB  
LM Ericssons väg 30  
SE-126 25 Stockholm  
Sweden  
Italy, Spain (Mediterranean)  
Ericsson Power Modules AB  
Via Cadorna 71  
20090 Vimodrone (MI)  
Italy  
Phone: +46-8-568-69620  
Fax: +46-8-568-69599  
Phone: +39-02-265-946-07  
Fax: +39-02-265-946-69  
China  
Japan  
Ericsson Simtek Electronics Co.  
33 Fuhua Road  
Jiading District  
Shanghai 201 818  
China  
Ericsson Power Modules AB  
Kimura Daini Building, 3 FL.  
3-29-7 Minami-Oomachi, Shinagawa-ka  
Tokyo 140-0013  
Japan  
Phone: +86-21-5990-3258  
Fax: +86-21-5990-0188  
Phone: +81-3-5733-5107  
Fax: +81-3-5753-5162  
France, Switzerland, Benelux  
Ericsson Power Modules AB  
Bat Sologne  
North and South America  
Ericsson Inc. Power Modules  
6300 Legacy Dr.  
17 Rue des 4 vents  
92380 Garches  
Plano, TX 75024  
USA  
France  
Phone: +1-972-583-5254  
+1-972-583-6910  
Fax: +1-972-583-7839  
Phone: +33-1-4741-5244  
Fax: +33-1-4741-5244  
Germany, Austria  
Ericsson Power Modules AB  
Mühlhauser Weg 18  
85737 Ismaning  
UK, Eire  
Ericsson Power Modules AB  
United Kingdom  
Germany  
Phone: +44-1869-233-992  
Fax: +44-1869-232-307  
Phone: +49-89-9500-6905  
Fax: +49-89-9500-6911  
Hong Kong (Asia Pacific)  
Ericsson Ltd.  
12/F. Devon House  
979 King’s Road  
Quarry Bay  
All other countries  
Contact Company Headquarters  
or visit our website:  
www.ericsson.com/powermodules  
Hong Kong  
Phone: +852-2590-2453  
Fax: +852-2590-7152  
Information given in this data sheet is believed to be accurate and reliable.  
No responsibility is assumed for the consequences of its use nor for any infringement  
of patents or other rights of third parties which may result from its use.  
No license is granted by implication or otherwise under any patent or patent rights of  
Ericsson Power Modules. These products are sold only according to  
Ericsson Power Modules’ general conditions of sale, unless otherwise confirmed in  
writing. Specifications subject to change without notice.  
EN/LZT 146 035 R3D ©Ericsson Power Modules, June 2005  
PKM 4000C Datasheet  
30  

相关型号:

PKM4110CPINBLBSP

DC-DC Regulated Power Supply Module, 1 Output, 165W, Hybrid, ROHS COMPLIANT
ERICSSON

PKM4110CPINBSP

DC-DC Regulated Power Supply Module, 1 Output, 165W, Hybrid, ROHS COMPLIANT, QUARTER BRICK PACKAGE-10
ERICSSON

PKM4110CPIPNBLA

DC-DC Regulated Power Supply Module, 1 Output, 165W, Hybrid, ROHS COMPLIANT
ERICSSON

PKM4110DPINB

DC-DC Regulated Power Supply Module, 1 Output, 116W, Hybrid, ROHS COMPLIANT, QUARTER BRICK, 8 PIN
ERICSSON

PKM4110DPINBLA

DC-DC Regulated Power Supply Module, 1 Output, 115.5W, Hybrid, ROHS COMPLIANT, QUARTER BRICK, 8 PIN
ERICSSON

PKM4110DPINBLB

DC-DC Regulated Power Supply Module, 1 Output, 115.5W, Hybrid, ROHS COMPLIANT, QUARTER BRICK, 8 PIN
ERICSSON

PKM4110DPINBMLB

DC-DC Regulated Power Supply Module, 1 Output, 115.5W, Hybrid, ROHS COMPLIANT PACKAGE-8
ERICSSON

PKM4110DPIPHCSPMLB

DC-DC Regulated Power Supply Module,
ERICSSON

PKM4110DPIPNBHCMLB

DC-DC Regulated Power Supply Module, ROHS COMPLIANT, QUARTER-BRICK PACKAGE-8
ERICSSON

PKM4110DPIPNBHCSPMLA

DC-DC Regulated Power Supply Module,
ERICSSON

PKM4110DPIPNBLB

DC-DC Regulated Power Supply Module, 1 Output, 115.5W, Hybrid, ROHS COMPLIANT PACKAGE-8
ERICSSON

PKM4110DPIPNBMLA

DC-DC Regulated Power Supply Module, 1 Output, 115.5W, Hybrid, ROHS COMPLIANT PACKAGE-8
ERICSSON