M16U4G16256A [ESMT]

32M x 16 Bit x 8 Banks DDR4 SDRAM;
M16U4G16256A
型号: M16U4G16256A
厂家: ELITE SEMICONDUCTOR MEMORY TECHNOLOGY INC.    ELITE SEMICONDUCTOR MEMORY TECHNOLOGY INC.
描述:

32M x 16 Bit x 8 Banks DDR4 SDRAM

动态存储器 双倍数据速率
文件: 总53页 (文件大小:1901K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ESMT  
M16U4G16256A  
DDR4 SDRAM  
32M x 16 Bit x 8 Banks  
DDR4 SDRAM  
Feature  
Power supply (JEDEC standard 1.2V)  
- VDD = 1.2V ± 5%  
- VPP = 2.375V to 2.75V  
16 internal banks  
Differential clock inputs (CK_t and CK_c)  
DLL aligns DQ and DQS transitions with CK transitions  
Commands entered on each positive CK edge; data and  
data mask referenced to both edges of DQS  
Data Mask (DM) for write data  
Write Cyclic Redundancy Code (CRC) for DQ error detect  
and inform it to controller during high-speed operation  
Data Bus Inversion (DBI)  
- Improve the power consumption and signal integrity of  
the memory interface (x16 product only)  
Programmable preamble is supported both of 1tCK and  
2tCK mode  
Command Address (CA) Parity for command/address  
signal error detect and inform it to controller  
VREFDQ training  
- 8 banks (4 banks x 2 bank groups) for x 16 product  
Interface: Pseudo Open Drain (POD)  
Burst Length (BL): 8 and 4 with Burst Chop (BC)  
CAS Latency (CL): 9, 11, 12, 13, 14, 15, 16, 18  
CAS Write Latency (CWL): 9, 10, 11, 12, 14, 16  
On-Die Termination (ODT): nom. values of RZQ/7,  
RZQ/5 (RZQ = 240Ω)  
Precharge: auto precharge option for each burst access  
Refresh: auto-refresh, self-refresh  
Refresh cycles  
Average refresh period  
- 7.8μs at 0°C  TC  +85°C  
- 3.9μs at +85°C < TC  +95°C  
- VREFDQ generate inside DRAM and further train per  
DRAM  
Double-data-rate architecture: two data transfers per  
clock cycle  
Per DRAM Addressability (PDA)  
- Each DRAM can be set a different mode register value  
individually and has individual adjustment.  
Fine granularity refresh  
- 2x, 4x mode for smaller tRFC  
Programmable Partial Array Self-Refresh (PASR)  
The high-speed data transfer is realized by the 8 bits  
prefetch pipelined architecture  
Bi-directional differential data strobe (DQS_t and DQS_c)  
is transmitted/received with data for capturing data at the  
receiver  
RESET_n pin for power-up sequence and reset function  
Operating case temperature range: TC = 0°C to +95°C  
DQS is edge-aligned with data for READs; center aligned  
with data for WRITEs  
Ordering Information  
Data Rate  
(CL-tRCD-tRP)  
Product ID  
Max Freq.  
VDD  
Package  
Comments  
M16U4G16256A-QLBG  
M16U4G16256A-KJBG  
M16U4G16256A-HHBG  
1600MHz  
1333MHz  
1200MHz  
1.2V  
1.2V  
1.2V  
DDR4- 3200 (24-24-24)  
96 ball BGA  
96 ball BGA  
96 ball BGA  
Pb-free  
Pb-free  
Pb-free  
DDR4- 2666 (19-19-19)  
DDR4- 2400 (17-17-17)  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 1/53  
ESMT  
M16U4G16256A  
DDR4 SDRAM Addressing  
Parameter  
256 Mb x16  
# of Bank  
2
BG0  
Bank group address  
Bank count per group  
Bank address in bank group  
Row addressing  
4
BA0  BA1  
A0  A14  
A0  A9  
2KB  
Column addressing  
Page size1  
Note:  
1.  
Page size is per bank, calculated as follows:  
Page size = 2COLBITS × ORG/8, where COLBIT = the number of column address bits and ORG = the number of DQ bits.  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 2/53  
ESMT  
M16U4G16256A  
Ball Configuration 96 balls BGA Package  
< TOP View>  
See the balls through the package  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 3/53  
ESMT  
M16U4G16256A  
Input / Output Functional Description  
Symbol  
Type  
Function  
Clock: CK_t and CK_c are differential clock inputs. All address and control input signals  
are sampled on the crossing of the positive edge of CK_t and negative edge of CK_c.  
CK_t, CK_c  
Input  
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and  
device input buffers and output drivers. Taking CKE Low provides Precharge Power-Down  
and Self-Refresh operation (all banks idle), or Active Power-Down (row Active in any  
bank). CKE is synchronous for Self-Refresh exit. After VREFCA and Internal DQ Vref have  
become stable during the power on and initialization sequence, they must be maintained  
during all operations (including Self-Refresh). CKE must be maintained high throughout  
read and write accesses. Input buffers, excluding CK_t ꢀꢁꢂꢃꢅꢆꢇꢈꢉꢊꢋꢈꢀꢁꢌꢈꢉꢍꢎꢈꢋꢏꢐꢉꢑꢒꢎꢋ  
during power-down. Input buffers, excluding CKE, are disabled during Self-Refresh.  
CKE  
Input  
Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for  
external Rank selection on systems with multiple Ranks. CS_n is considered part of the  
command code.  
CS_n  
ODT  
Input  
Input  
On Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance  
internal to the DDR4 SDRAM. When enabled, ODT is only applied to each DQ, DQS_t,  
DQS_c and DM_n/DBI_n/ TDQS_t, NU/TDQS_c (When TDQS is enabled via Mode  
Register A11=1 in MR1) signal for x8 configurations. For x16 configuration ODT is applied  
to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c, DMU_n, and DML_n signal. The ODT  
pin will be ignored if MR1 is programmed to disable RTT_NOM.  
Activation Command Input : ACT_n defines the Activation command being entered along  
with CS_n. The input into RAS_n, CAS_n/A15 and WE_n/A14 will be considered as Row  
Address A15 and A14  
ACT_n  
Input  
Input  
Command Inputs: RAS_n, CAS_n/A15 and WE_n/A14 (along with CS_n) define the  
command being entered. Those pins have multi function. For example, for activation with  
ACT_n Low, those are Addressing like A15, A14 but for non-activation command with  
ACT_n High, those are Command pins for Read, Write and other command defined in  
command truth table  
RAS_n, CAS_n/A15,  
WE_n/A14  
Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data.  
Input data is masked when DM_n is sampled LOW coincident with that input data during a  
Write access. DM_nis sampled on both edges of DQS. DM is muxed with DBI function by  
DM_n/DBI_n  
(DMU_n/DBIU_n),  
(DML_n/DBIL_n)  
Input/Output Mode Register A10,A11,A12 setting in MR5. For x8 device, the function of DM or TDQS is  
enabled by Mode Register A11 setting in MR1. DBI_n is an input/output identifying  
whether to store/output the true or inverted data. If DBI_n is LOW, the data will be stored/  
output after inversion inside the DDR4 SDRAM and not inverted if DBI_n is HIGH.  
Bank Group Inputs : BG0 - BG1 define to which bank group an Active, Read, Write or  
BG0 - BG1  
BA0 - BA1  
Input  
Input  
Precharge command is being applied. BG0 also determines which mode register is to be  
accessed during a MRS cycle. x4/8 have BG0 and BG1 but x16 has only BG0  
Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write or Precharge  
command is being applied. Bank address also determines which mode register is to be  
accessed during a MRS cycle.  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 4/53  
ESMT  
M16U4G16256A  
Symbol  
Type  
Function  
Address Inputs: Provide the row address for ACTIVATE Commands and the column  
address for Read/ Write commands to select one location out of the memory array in the  
respective bank. (A10/AP,A12/ BC_n, RAS_n, CAS_n/A15 and WE_n/A14 have additional  
functions, see other rows.The address inputs also provide the op-code during Mode  
Register Setcommands.  
A0 - A15  
A10 / AP  
Input  
Auto-precharge: A10 is sampled during Read/Write commands to determine whether  
Autoprecharge should be performed to the accessed bank after the Read/Write operation.  
(HIGH: Autoprecharge; LOW: no Autoprecharge).A10 is sampled during a Precharge  
command to determine whether thePrecharge applies to one bank (A10 LOW) or all banks  
(A10 HIGH). If only one bank is to be precharged, the bank is selected by bank addresses.  
Input  
Burst Chop: A12 / BC_n is sampled during Read and Write commands to determine if burst  
chop (on-the-fly) will be performed. (HIGH, no burst chop; LOW: burst chopped). See  
command truth table for details.  
A12 / BC_n  
RESET_n  
Input  
Input  
Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive  
when RESET_n is HIGH. RESET_n must be HIGH during normal operation. RESET_n is a  
CMOS rail to rail signal with DC high and low at 80% and 20% of VDD.  
Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then CRC  
code is added at the end of Data Burst. Any DQ from DQ0~DQ3 may indicate the internal  
Vref level during test via Mode Register Setting MR4 A4=High. During this mode, RTT  
value should be set to Hi-Z. Refer to vendor specific datasheets to determine which DQ is  
used.  
DQ  
Input / Output  
Data Strobe: output with read data, input with write data. Edge-aligned with read data,  
centered in write data. For the x16, DQSL corresponds to the data on DQL0-DQL7; DQSU  
corresponds to the data on DQU0-DQU7. The data strobe DQS_t, DQSL_t and DQSU_t  
are paired with differential signals DQS_c, DQSL_c and DQSU_c, respectively, to provide  
differential pair signaling to the system during reads and writes. DDR4 SDRAM supports  
differential data strobe only and does not support single-ended.  
DQS_t, DQS_c,  
DQSU_t, DQSU_c, Input / Output  
DQSL_t, DQSL_c  
Command and Address Parity Input : DDR4 Supports Even Parity check in DRAMs with  
MRꢈ ꢐꢎttꢏꢊg.ꢈ ꢅꢊꢃꢎꢈ ꢏt’ꢐꢈ ꢎꢊꢉꢑꢒꢎꢋꢈ vꢏꢉꢈ Rꢎgꢏꢐtꢎꢍꢈ ꢏꢊꢈ MR5 ꢈ thꢎꢊꢈ RAM calculates Parity  
withACT_n,RAS_n,CAS_n/A15,WE_n/ A14,BG0-BG1,BA0-BA1,A15-A0. Input parity  
should maintain at the rising edge of the clock and at the same time with command &  
address with CS_n LOW  
PAR  
ALERT_n  
TEN  
Input  
Input/Output  
Input  
Alert : It has multi functions such as CRC error flag , Command and Address Parity error  
flag as Output signal. If there is error in CRC, then Alert_n goes LOW for the period time  
interval and goes back HIGH. If there is error in Command Address Parity Check, then  
Alert_n goes LOW for relatively long period until on going DRAM internal recovery  
transaction to complete. During Connectivity Test mode, this pin works as input.  
Using this signal or not is dependent on system. In case of not connected as Signal,  
ALERT_n Pin must be bounded to VDD on board.  
Connectivity Test Mode Enable : Required on x16 devices and optional input on x4/x8 with  
densities equal to or greater than 8Gb. HIGH in this pin will enable Connectivity Test Mode  
operation along with other pins. It is a CMOS rail to rail signal with AC high and low at 80%  
and 20% of VDD. Using this signal or not is dependent on System. This pin may be DRAM  
internally pulled low through a weak pull-down resistor to VSS  
.
NC  
No Connect: No internal electrical connection is present.  
DQ Power Supply: 1.2 V +/- 0.06 V  
VDDQ  
VSSQ  
Supply  
Supply  
DQ Ground  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1  
5/53  
ESMT  
M16U4G16256A  
Power Supply: 1.2 V +/- 0.06 V  
VDD  
VSS  
Supply  
Supply  
Supply  
Supply  
Supply  
Ground  
DRAM Activating Power Supply: 2.5V ( 2.375V min , 2.75V max)  
Reference voltage for CA  
VPP  
VREFCA  
ZQ  
Reference Pin for ZQ calibration  
Note: Input only pins (BG0-BG1, BA0-BA1, A0-A15, ACT_n, RAS_n, CAS_n/A15, W E_n/A14, CS_n, CKE, ODT, and  
RESET_n) do not supplytermination.  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 6/53  
ESMT  
M16U4G16256A  
Electrical Conditions  
All voltages are referenced to VSS (GND)  
Execute power-up and Initialization sequence before proper device operation is achieved.  
Absolute Maximum Ratings  
Absolute Maximum Ratings  
Parameter  
Symbol  
Rating  
Unit  
Note  
Power supply voltage  
Power supply voltage for output  
DRAM activation power supply  
Input voltage  
VDD  
VDDQ  
VPP  
-0.3 to +1.5  
-0.3 to +1.5  
V
V
1, 3  
1, 3  
4
-0.3 to +3.0  
V
VIN  
-0.3 to +1.5  
V
1
Output voltage  
VOUT  
VREFCA  
Tstg  
-0.3 to +1.5  
V
1
Reference voltage  
Storage temperature  
Notes:  
-0.3 to 0.6 x VDD  
-55 to +100  
V
3
1, 2  
C  
1.  
Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect reliability.  
2.  
3.  
Storage temperature is the case surface temperature on the center/top side of the DRAM.  
VDD and VDDQ must be within 300mV of each other at all times; and VREFCA must be no greater than 0.6 x VDDQ,  
When VDD and VDDQ are less than 500mV; VREFCA may be equal to or less than 300mV.  
VPP must be equal or greater than VDD/VDDQ at all times.  
4.  
Caution: Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage.  
The device is not meant to be operated under conditions outside the limits described in the operational section of this  
specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.  
Temperature Range  
Symbol  
Parameter  
Value  
0 to 85  
85 to 95  
Units  
C  
Notes  
1
Normal Operating Temperature Range  
Extended Temperature Range  
TC  
1,2  
C  
Note:  
1. The normal temperature range specifies the temperatures at which all DRAM specifications will be supported. During  
operation, the DRAM case temperature must be maintained between 0°C to 85°C under all operating conditions for the  
commercial offering.  
2. Some applications require operation of the commercial and industrial temperature DRAMs in the extended temperature  
range (between 85°C and 95°C case temperature). Full specifications are supported in this range, but the following  
additional conditions apply:  
a) REFRESH commands must be doubled in frequency, reducing the refresh interval tREFI to 3.9us. It is also possible to  
specify a component with 1X refresh (tREFI to 7.8us) in the extended temperature range.  
b) If SELF REFRESH operation is required in the extended temperature range, it is mandatory to use either the manual  
self refresh mode with extended temperature range capability (MR2[6] = 0 and MR2 [7] = 1) or enable the optional auto  
self refresh mode (MR2 [6] = 1 and MR2 [7] = 1).  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 7/53  
ESMT  
M16U4G16256A  
Operating Temperature Condition  
Recommended DC Operating Conditions  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Note  
Supply voltage  
Supply voltage for DQ  
DRAM activating power  
Ground  
VDD  
VDDQ  
VPP  
1.14  
1.14  
2.375  
0
1.2  
1.2  
2.5  
0
1.26  
1.26  
2.75  
0
V
V
V
V
V
1, 2, 3  
1, 2, 3  
3
VSS  
Ground for DQ  
VSSQ  
0
0
0
Notes:  
1.  
2.  
3.  
Under all conditions VDDQ must be less than or equal to VDD.  
VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.  
DC bandwidth is limited to 20MHz.  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 8/53  
ESMT  
M16U4G16256A  
IDD and IDDQ Specification Parameters and Test conditions  
IDD, IPP and IDDQ Measurement Conditions  
In this chapter, IDD, IPP and IDDQ measurement conditions such as test load and patterns are defined.  
The figure Measurement Setup and Test Load for IDD and IDDQ Measurements shows the setup and test load for IDD, IPP and  
IDDQ measurements.  
IDD currents (such as IDD0, IDD0A, IDD1, IDD2N, IDD2NT, IDD2P, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B,  
IDD6N, IDD6E, IDD6A and IDD7) are measured as time-averaged currents with all VDD balls of the DDR4 SDRAM under  
test tied together. Any IPP or IDDQ current is not included in IDD currents.  
IPP currents have the same definition as IDD except that the current on the VPP supply is measured.  
IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the  
DDR4 SDRAM under test tied together. Any IDD current is not included in IDDQ currents.  
Note: IDDQ values cannot be directly used to calculate I/O power of the DDR4 SDRAM. They can be used to support  
correlation of simulated I/O power to actual I/O power as outlined in correlation from simulated channel I/O power to  
actual channel I/O power supported by IDDQ measurement.  
For IDD, IPP and IDDQ measurements, the following definitions apply:  
L and 0: VIN VIL(AC) max  
H and 1: VIN VIH(AC) min  
MID-LEVEL: defined as inputs are VREFCA = VDD / 2  
Timings used for IDD, IPP and IDDQ measurement-loop patterns are provided in Timings Used for IDD and IDDQ  
Measurement-Loop Patterns table.  
Basic IDD, IPP and IDDQ measurement conditions are described in Basic IDD, IPP and IDDQ Measurement Conditions  
table.  
Note:The IDD, IPP and IDDQ measurement-loop patterns need to be executed at least one time before actual IDD or  
IDDQ measurement is started.  
Detailed IDD, IPP and IDDQ measurement-loop patterns are described in IDD0 Measurement-Loop Pattern table through  
IDD7 Measurement-Loop Pattern table.  
IDD Measurements are done after properly initializing the DDR4 SDRAM. This includes but is not limited to setting.  
RON = RZQ/7 (34Ω in MR1);  
Qoff = 0B (Output buffer enabled in MR1);  
RTT_Nom = RZQ/6 (40Ω in MR1);  
RTT_WR = RZQ/2 (120Ω in MR2);  
RTT_PARK = Disable;  
TDQS_t feature disabled in MR1;  
CRC disabled in MR2;  
CA parity feature disabled in MR5;  
Gear-down mode disabled in MR3;  
Read/Write DBI disabled in MR5;  
DM_n disabled in MR5  
Define D = {CS_n, ACT_n, RAS_n, CAS_n, WE_n} : = {H, L, L, L, L} ; apply BG/BA changes when directed.  
Define /D = {CS_n, ACT_n, RAS_n, CAS_n, WE_n} : = {H, H, H, H, H}; apply BG/BA changes when directed.  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 9/53  
ESMT  
M16U4G16256A  
Measurement Setup and Test Load for IDD, IPP and IDDQ Measurements  
Correlation from Simulated Channel I/O Power to Actual Channel I/O Power Supported by IDDQ Measurement  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 10/53  
ESMT  
M16U4G16256A  
Timings Used for IDD and IDDQ Measurement-Loop Patterns  
Symbol  
DDR4-2400 (17-17-17) DDR4-2666 (19-19-19) DDR4-3200 (24-24-24) Unit  
tCK  
CL  
0.833  
17  
16  
17  
56  
39  
17  
36  
7
0.750  
19  
18  
19  
62  
43  
19  
40  
7
0.625  
24  
20  
24  
76  
52  
24  
48  
9
ns  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
CWL  
nRCD  
nRC  
nRAS  
nRP  
nFAW  
nRRDS  
nRRDL  
tCCD_S  
tCCD_L  
tWTR_S  
tWTR_L  
nRFC 4Gb  
8
9
11  
4
4
4
6
7
8
3
4
4
9
10  
347  
12  
416  
313  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1  
11/53  
ESMT  
M16U4G16256A  
Basic IDD and IDDQ Measurement Conditions  
Basic IDD, IPP and IDDQ Measurement Conditions  
Symbol  
Description  
Operating One Bank Active-Precharge Current (AL=0)  
CKE: H; External clock: on; tCK, nRC, nRAS, CL: see Measurement-Loop Pattern table; BL: 8*1; AL: 0; CS_n: H  
between ACT and PRE; Command, address, bank group address, bank address inputs: partially toggling  
according to Measurement-Loop Pattern table; Data I/O: VDDQ; DM_n: stable at 1; Bank activity: cycling with one  
bank active at a time: 0,0,1,1,2,2,... (see Measurement-Loop Pattern table); Output buffer and RTT: enabled in  
MR*2; ODT signal: stable at 0; Pattern details: see Measurement-Loop Pattern table  
IDD0  
Operating One Bank Active-Precharge Current (AL=CL-1)  
AL = CL-1, Other conditions: see IDD0  
IDD0A  
IPP0  
Operating One Bank Active-Precharge IPP Current  
Same condition with IDD0  
Operating One Bank Active-Read-Precharge Current (AL=0)  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Measurement-Loop Pattern table; BL: 8*1; AL: 0;  
CS_n: H between ACT, RD and PRE; Command, address, bank group address, bank address inputs, data I/O:  
partially toggling according to Measurement-Loop Pattern table; DM_n: stable at 1; Bank activity: cycling with one  
bank active at a time: 0,0,1,1,2,2,... (see Measurement-Loop Pattern table); Output buffer and RTT: enabled in  
MR*2; ODT Signal: stable at 0; Pattern details: see Measurement-Loop Pattern table  
IDD1  
Operating One Bank Active-Read-Precharge Current (AL=CL-1)  
AL=CL-1, Other conditions : see IDD1  
IDD1A  
IPP1  
Operating One Bank Active-Read-Precharge IPPCurrent  
Same condition with IDD1  
Precharge Standby Current (AL=0)  
CKE: H; External clock: on; tCK, CL: see Measurement-Loop Pattern table; BL: 8*1; AL: 0; CS_n: stable at 1;  
Command, address, bank group address, bank address Inputs: partially toggling according to Measurement-Loop  
Pattern table; data I/O: VDDQ; DM_n: stable at 1; bank activity: all banks closed; output buffer and RTT: enabled in  
MR*2; ODT signal: stable at 0; pattern details: see Measurement-Loop Pattern table  
IDD2N  
Precharge Standby Current (AL=CL-1)  
Same condition with IDD2N  
IDD2NA  
IPP2N  
Precharge Standby IPP Current  
AL = CL-1, Other conditions: see IDD2N  
Precharge Standby ODT Current  
CKE: H; External clock: on; tCK, CL: see Measurement-Loop Pattern table; BL: 8*1; AL: 0; CS_n: stable at 1;  
Command, address, bank group address, bank address Inputs: partially toggling according to Measurement-Loop  
Pattern table; data I/O: VSSQ; DM_n: stable at 1; bank activity: all banks closed; output buffer and RTT: enabled in  
MR*2; ODT signal: toggling according to Measurement-Loop Pattern table  
IDD2NT  
IDDQ2NT  
(Optional)  
Precharge Standby ODT IDDQ Current  
Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current  
Precharge Standby Current with CAL enabled  
Same definition like for IDD2N, CAL enabled*3  
IDD2NL  
IDD2NG  
Precharge Standby Current with Gear Down mode enabled  
Same definition like for IDD2N, Gear Down mode enabled*3,*5  
Precharge Standby Current with DLL disabled  
Same definition like for IDD2N, DLL disabled*3  
IDD2ND  
Precharge Standby Current with CA parity enabled  
Same definition like for IDD2N, CA parity enabled*3  
IDD2N_par  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 12/53  
ESMT  
M16U4G16256A  
Precharge Power-Down Current  
CKE: Low; External clock: on; tCK, CL: see Measurement-Loop Pattern table; BL: 8*1; AL: 0; CS_n: stable at 1;  
Command, address, bank group address, bank address inputs: stable at 0; data I/O: VDDQ; DM_n: stable at 1;  
bank activity: all banks closed; output buffer and RTT: enabled in MR*2; ODT signal: stable at 0  
IDD2P  
IPP2P  
IDD2Q  
Precharge Power-Down IPP Current  
Same condition with IDD2P  
Precharge Quiet Standby Current  
CKE: H; External clock: On; tCK, CL: see Measurement-Loop Pattern table; BL: 8*1; AL: 0; CS_n: stable at 1;  
Command, address, bank group address, bank address Inputs: stable at 0; data I/O: VDDQ; DM_n: stable at  
1;bank activity: all banks closed; output buffer and RTT: enabled in MR*2; ODT signal: stable at 0  
Active Standby Current  
CKE: H; External clock: on; tCK, CL: see Measurement-Loop Pattern table; BL: 8*1; AL: 0; CS_n: stable at 1;  
Command, address, bank group address, bank address Inputs: partially toggling according to Measurement-Loop  
Pattern table; data I/O: VDDQ; DM_n: stable at 1; bank activity: all banks open; output buffer and RTT: enabled in  
MR*2; ODT signal: stable at 0; pattern details: see Measurement-Loop Pattern table  
IDD3N  
Active Standby Current (AL=CL-1)  
Same condition with IDD3N  
IDD3NA  
IPP3N  
Active Standby IPP Current  
AL = CL-1, Other conditions: see IDD3N  
Active Power-Down Current  
CKE: L; External clock: on; tCK, CL: see Measurement-Loop Pattern table; BL: 8*1; AL: 0; CS_n: stable at 1;  
Command, address, bank group address, bank address inputs: stable at 0; data I/O: VDDQ; DM_n:stable at 1;  
bank activity: all banks open; output buffer and RTT: enabled in MR*2; ODT signal: stable at 0  
IDD3P  
IPP3P  
Active Power-Down IPP Current  
Same condition with IDD3P  
Operating Burst Read Current  
CKE: H; External clock: on; tCK, CL: see Measurement-Loop Pattern table; BL: 8*1; AL: 0; CS_n: H between RD;  
Command, address, Bank group address, Bank address Inputs: partially toggling according to Measurement-Loop  
Pattern table; data I/O: seamless read data burst with different data between one burst and the next one according  
to Measurement-Loop Pattern table; DM_n: stable at 1;Bank activity: all Banks open, RD commands cycling  
through banks: 0,0,1,1,2,2,... (see Measurement-Loop Pattern table); output buffer and RTT: enabled in MR*2;  
ODT signal: stable at 0; pattern details: see Measurement-Loop Pattern table  
IDD4R  
Operating Burst Read Current (AL=CL-1)  
AL = CL-1, Other conditions: see IDD4R  
IDD4RA  
IDD4RB  
IPP4R  
Operating Burst Read Current with Read DBI  
Read DBI enabled*3, Other conditions: see IDD4R  
Operating Burst Read IPP Current  
Same condition with IDD4R  
IDDQ4R Operating Burst Read IDDQ Current  
(Optional) Same definition like for IDD4R, however measuring IDDQ current instead of IDD current  
IDDQ4RB Operating Burst Read IDDQ Current with Read DBI  
(Optional) Same definition like for IDD4RB, however measuring IDDQ current instead of IDD current  
Operating Burst Write Current  
CKE: H; External clock: on; tCK, CL: see Measurement-Loop Pattern table; BL: 8*1; AL: 0; CS_n: H between WR;  
command, address, bank group address, bank address inputs: partially toggling according to Measurement-Loop  
IDD4W  
Pattern table; data I/O: seamless write data burst with different data between one burst and the next one according  
to Measurement-Loop Pattern table;DM_n: stable at 1; bank activity: all banks open, WR commands cycling  
through banks: 0,0,1,1,2,2,.. (see Measurement-Loop Pattern table); output buffer and RTT: enabled in MR*2;  
ODT signal: stable at H; pattern details: see Measurement-Loop Pattern table  
Operating Burst Write Current (AL=CL-1)  
AL = CL-1, Other conditions: see IDD4W  
IDD4WA  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 13/53  
ESMT  
M16U4G16256A  
Operating Burst Write Current with Write DBI  
IDD4WB  
IDD4WC  
IDD4W_par  
IPP4W  
Write DBI enabled*3, Other conditions: see IDD4W  
Operating Burst Write Current with Write CRC  
Write CRC enabled*3, Other conditions: see IDD4W  
Operating Burst Write Current with CA Parity  
CA Parity enabled*3, Other conditions: see IDD4W  
Operating Burst Write IPP Current  
Same condition with IDD4W  
Burst Refresh Current (1X REF)  
CKE: H; External clock: on; tCK, CL, nRFC: see Measurement-Loop Pattern table; BL: 8*1; AL: 0; CS_n: H  
between REF; Command, address, bank group address, bank address Inputs: partially toggling according to  
Measurement-Loop Pattern table; data I/O: VDDQ; DM_n: stable at 1; bank activity: REF command every nRFC  
(Measurement-Loop Pattern table); output buffer and RTT: enabled in MR*2; ODT signal: stable at 0; pattern  
details: see Measurement-Loop Pattern table  
IDD5B  
Burst Refresh IPP Current (1X REF)  
Same condition with IDD5B  
IPP5B  
IDD5F2  
IPP5F2  
IDD5F4  
IPP5F4  
Burst Refresh Current (2X REF)  
tRFC=tRFC_x2, Other conditions: see IDD5B  
Burst Refresh Write IPP Current (2X REF)  
Same condition with IDD5F2  
Burst Refresh Current (4X REF)  
tRFC=tRFC_x4, Other conditions: see IDD5B  
Burst Refresh Write IPP Current (4X REF)  
Same condition with IDD5F4  
Self Refresh Current: Normal Temperature Range  
TC: 0 to 85°C; LP ASR: Normal*4; CKE: L; External clock: off; CK_t and CK_c: L; CL: see Measurement-Loop  
Pattern table; BL: 8*1; AL: 0; CS_n, command, address, bank group address, bank address, data I/O: H; DM_n:  
stable at 1; bank activity: self-refresh operation; Output buffer and RTT: enabled in MR*2; ODT signal: MID-LEVEL  
IDD6N  
IPP6N  
Self Refresh IPP Current: Normal Temperature Range  
Same condition with IDD6N  
Self-Refresh Current: Extended Temperature Range  
TC: 0 to 95°C; LP ASR: Extended*4; CKE: L; External clock: off; CK_t and CK_c: L; CL: see Measurement-Loop  
Pattern table; BL: 8*1; AL: 0; CS_n, command, address, bank group address, bank address, data I/O: H; DM_n:  
stable at 1; bank activity: Extended temperature self-refresh operation; Output buffer and RTT: enabled in MR*2;  
ODT signal: MID-LEVEL  
IDD6E  
IPP6E  
IDD6R  
Self Refresh IPP Current: Extended Temperature Range  
Same condition with IDD6E  
Self-Refresh Current: Reduced Temperature Range  
TC: 0 to 45°C; LP ASR: Reduced*4; CKE: L; External clock: off; CK_t and CK_c: L; CL: see Measurement-Loop  
Pattern table; BL: 8*1; AL: 0; CS_n, command, address, bank group address, bank address, data I/O: H; DM_n:  
stable at 1; bank activity: Reduced temperature self-refresh operation; Output buffer and RTT: enabled in MR*2;  
ODT signal: MID-LEVEL  
Self Refresh IPP Current: Reduced Temperature Range  
Same condition with IDD6R  
IPP6R  
IDD6A  
IPP6A  
Auto Self Refresh Current  
TC: 0 to 95°C; LP ASR: Auto*4; CKE: L; External clock: off; CK_t and CK_c: L; CL: see Measurement-Loop Pattern  
table; BL: 8*1; AL: 0; CS_n, command, address, bank group address, bank address, data I/O: H; DM_n: stable at  
1; bank activity: auto self-refresh operation; Output buffer and RTT: enabled in MR*2; ODT signal: MID-LEVEL  
Auto Self Refresh IPP Current  
Same condition with IDD6A  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 14/53  
ESMT  
M16U4G16256A  
Operating Bank Interleave Read Current  
CKE: H; External clock: on; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Measurement-Loop Pattern table; BL:  
8*1 ; AL: CL-1; CS_n: H between ACT and RDA; Command, address, bank group address, bank address Inputs:  
partially toggling according to Measurement-Loop Pattern table; data I/O: read data bursts with different data  
between one burst and the next one according to Measurement-Loop Pattern table; DM_n: stable at 1; bank  
ꢉꢃtꢏvꢏty:ꢈtwoꢈtꢏmꢎꢐꢈꢏꢊtꢎꢍꢒꢎꢉvꢎꢋꢈꢃyꢃꢒꢏꢊgꢈthꢍoughꢈꢑꢉꢊkꢐꢈ(0 ꢈ1 ꢈ…7)ꢈwꢏthꢈꢋꢏffꢎꢍꢎꢊtꢈꢉꢋꢋꢍꢎꢐꢐꢏꢊg ꢈꢐꢎꢎ Measurement-Loop  
Pattern table; output buffer and RTT: enabled in MR*2; ODT signal: stable at 0; pattern details: see  
Measurement-Loop Pattern table  
IDD7  
Operating Bank Interleave Read IPP Current  
Same condition with IDD7  
IPP7  
IDD8  
IPP8  
Maximum Power Down Current  
TBD  
Maximum Power Down IPP Current  
Same condition with IDD8  
Note:  
1.  
2.  
Burst Length: BL8 fixed by MRS: MR0 bits A[1,0] = [0,0].  
MR: Mode Register  
Output buffer enable:  
set MR1 bit A12 = 0: Qoff = output buffer enabled  
and MR1 bits A[2, 1] = [0,0]: output driver impedance control = RZQ/7  
RTT_Nom enable:  
set MR1 bits A[10:8] = [0,1,1]: RTT_Nom = RZQ/6  
RTT_WR enable:  
set MR2 bits A[11:9] = [0,0,1]: RTT_WR = RZQ/2  
RTT_PARK disable:  
set MR5 bits A[8:6] = [0,0,0]  
CAL enabled:  
3.  
set MR4 bits A[8:6] = [0,0,1]: 1600MT/s;  
[0,1,0]: 1866MT/s, 2133MT/s;  
[0,1,1]: 2400MT/s  
[0,1,1]: 2666MT/s  
[1,0,0]: 3200MT/s  
Gear down mode enabled :  
set MR3 bit A3 = 1: 1/4 Rate  
DLL disabled:  
set MR1 bit A0 = 0  
CA parity enabled:  
set MR5 bits A[2:0] = [0,0,1]: 1600MT/s,1866MT/s, 2133MT/s  
[0,1,0]: 2400MT/s, 2666MT/s  
[0,1,1]: 3200MT/s  
Read DBI enabled:  
set MR5 bit A12 = 1  
Write DBI enabled:  
set :MR5 bit A11 = 1  
4.  
Low Power Array Self-Refresh (LP ASR)  
set MR2 bits A[7:6] = [0,0]: Normal  
[0,1]: Reduced temperature range  
[1,0]: Extended temperature range  
[1,1]: Auto self-refresh  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 15/53  
ESMT  
IDD0, IDD0A and IPP0 Measurement-Loop Pattern1  
M16U4G16256A  
Data4  
0
ACT  
D, D  
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
F
0
0
0
-
-
-
1, 2  
3, 4  
D#, D#  
32  
0
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
PRE  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
nRAS  
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
-
1
2
3
4
5
6
7
8
9
1*nRC repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 1 instead  
2*nRC repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
3*nRC repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
4*nRC repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
5*nRC repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
6*nRC repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
7*nRC repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
8*nRC repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
9*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
10 10*nRC repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
11 11*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
12 12*nRC repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
13 13*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
14 14*nRC repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
15 15*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
Note :  
1.  
2.  
3.  
4.  
DQS_t, DQS_c are VDDQ.  
BG1ꢈꢏꢐꢈꢋoꢊ’tꢈꢃꢉꢍꢎꢈfoꢍꢈx16ꢈꢋꢎvꢏꢃꢎ  
C[2:0] are used only for 3DS device  
DQ signals are VDDQ.  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 16/53  
ESMT  
IDD1, IDD1A and IPP1 Measurement-Loop Pattern1  
M16U4G16256A  
Data4  
0
ACT  
D, D  
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
F
0
0
0
-
-
-
1, 2  
3, 4  
D#, D#  
32  
repeat pattern 1...4 until nRCD - AL - 1, truncate if necessary  
D0=00  
D1=FF  
D2=FF  
D3=00  
D4=FF  
D5=00  
0
nRCD  
-AL  
RD  
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
nRAS  
...  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
PRE  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
0
1
0
1
0
0
0
0
0
-
1*nRC  
+ 0  
-
-
-
ACT  
D, D  
0
1
1
0
0
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
1
0
1
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
0
0
1*nRC  
+ 1, 2  
1*nRC  
+ 3, 4  
0
F
D#, D#  
32  
...  
repeat pattern nRC + 1...4 until 1*nRC + nRAS - 1, truncate if necessary  
D0=FF  
D1=00  
D2=00  
D3=FF  
D4=00  
1
1*nRC  
+nRCD  
- AL  
RD  
0
1
1
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
...  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
PRE  
repeat nRC + 1...4 until 2*nRC - 1, truncate if necessary  
1*nRC  
+ nRAS  
0
1
0
1
0
0
0
0
0
-
...  
2
3
4
5
6
8
9
2*nRC repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
3*nRC repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
4*nRC repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1instead  
5*nRC repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2instead  
6*nRC repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
7*nRC repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
9*nRC repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 0instead  
10 10*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1instead  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 17/53  
ESMT  
M16U4G16256A  
11 11*nRC repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
12 12*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3instead  
13 13*nRC repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 1instead  
14 14*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
15 15*nRC repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
16 16*nRC repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 0instead  
Note :  
1.  
2.  
3.  
4.  
DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ  
BG1ꢈꢏꢐꢈꢋoꢊ’tꢈꢃꢉꢍe for x16 device  
C[2:0] are used only for 3DS device  
Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ.  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 18/53  
ESMT  
M16U4G16256A  
IDD2N, IDD2NA, IDD2NL, IDD2NG, IDD2N_par, IPP2, IDD3N, IDD3NA, and IDD3P Measurement-Loop  
Pattern1  
Data4  
0
D, D  
D, D  
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
3
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
7
0
0
F
F
0
0
0
0
0
0
0
0
1
0
2
D#, D#  
32  
32  
3
D#, D#  
1
2
4-7  
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
8-11  
12-15  
16-19  
20-23  
24-27  
28-31  
32-35  
36-39  
40-43  
44-47  
48-51  
52-55  
56-59  
60-63  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Note :  
1.  
2.  
3.  
4.  
DQS_t, DQS_c are VDDQ  
BG1ꢈꢏꢐꢈꢋoꢊ’tꢈꢃꢉꢍꢎꢈfoꢍꢈx16ꢈꢋꢎvꢏꢃꢎ  
C[2:0] are used only for 3DS device  
DQ signals are VDDQ  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 19/53  
ESMT  
IDD2NT and IDDQ2NT Measurement-Loop Pattern1  
M16U4G16256A  
Data4  
0
D, D  
D, D  
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
3
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
7
0
0
F
F
0
0
0
0
-
-
-
-
1
0
2
D#, D#  
32  
32  
3
D#, D#  
1
2
4-7  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 1 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 0 instead  
8-11  
12-15  
16-19  
20-23  
24-27  
28-31  
32-35  
36-39  
40-43  
44-47  
48-51  
52-55  
56-59  
60-63  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Note :  
1.  
2.  
3.  
4.  
DQS_t, DQS_c are VDDQ.  
BG1ꢈꢏꢐꢈꢋoꢊ’tꢈꢃꢉꢍꢎꢈfoꢍꢈx16ꢈꢋꢎvꢏꢃꢎ  
C[2:0] are used only for 3DS device  
DQ signals are VDDQ  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 20/53  
ESMT  
M16U4G16256A  
IDD4R, IDD4RA, IDD4RB and IDDQ4R Measurement-Loop Pattern1  
Data4  
D0=00  
D1=FF  
D2=FF  
D3=00  
D4=FF  
D5=00  
D6=00  
D7=FF  
0
RD  
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
D
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
2,3  
D#, D#  
32  
D0=FF  
D1=00  
D2=00  
D3=FF  
D4=00  
D5=FF  
D6=FF  
D7=00  
4
RD  
0
1
1
0
1
0
0
1
1
0
0
0
7
F
0
1
5
D
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
6,7  
D#, D#  
32  
2
3
8-11  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
12-15  
16-19  
20-23  
24-27  
28-31  
32-35  
36-39  
40-43  
44-47  
48-51  
52-55  
56-59  
60-63  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Note :  
1.  
2.  
3.  
4.  
QS_t, DQS_c are used according to RD Commands, otherwise VDDQ  
BG1ꢈꢏꢐꢈꢋoꢊ’tꢈꢃꢉꢍꢎꢈfoꢍꢈx16ꢈꢋꢎvꢏꢃꢎ  
C[2:0] are used only for 3DS device  
Burst Sequence driven on each DQ signal by Read Command  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 21/53  
ESMT  
M16U4G16256A  
IDD4W, IDD4WA, IDD4WB and IDD4W_par Measurement-Loop Pattern1  
Data4  
D0=00  
D1=FF  
D2=FF  
D3=00  
D4=FF  
D5=00  
D6=00  
D7=FF  
0
WR  
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
1
D
1
1
0
1
0
1
0
1
0
1
1
1
0
0
0
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
2,3  
D#, D#  
32  
D0=FF  
D1=00  
D2=00  
D3=FF  
D4=00  
D5=FF  
D6=FF  
D7=00  
4
WR  
0
1
1
0
0
1
0
1
1
0
0
0
7
F
0
1
5
D
1
1
0
1
0
1
0
1
0
1
1
1
0
0
0
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
6,7  
D#, D#  
32  
2
3
8-11  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
12-15  
16-19  
20-23  
24-27  
28-31  
32-35  
36-39  
40-43  
44-47  
48-51  
52-55  
56-59  
60-63  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Note :  
1.  
2.  
3.  
4.  
DQS_t, DQS_c are used according to W R Commands, otherwise VDDQ  
BG1ꢈꢏꢐꢈꢋoꢊ’tꢈꢃꢉꢍꢎꢈfoꢍꢈx16ꢈꢋꢎvꢏꢃꢎ  
C[2:0] are used only for 3DS device  
Burst Sequence driven on each DQ signal by Write Command  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 22/53  
ESMT  
M16U4G16256A  
IDD4WC Measurement-Loop Pattern1  
Data4  
D0=00  
D1=FF  
D2=FF  
D3=00  
0
WR  
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
D4=FF  
D5=00  
0
D6=00  
D7=FF  
D8=CRC  
1,2  
3,4  
D, D  
1
1
0
1
0
1
0
1
0
1
1
1
0
0
0
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
D#, D#  
32  
D0=FF  
D1=00  
D2=00  
D3=FF  
D4=00  
D5=FF  
D6=FF  
D7=00  
D8=CRC  
5
WR  
0
1
1
0
0
1
0
1
1
0
0
0
7
F
0
1
6,7  
D, D  
1
1
0
1
0
1
0
1
0
1
1
1
0
0
0
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
8,9  
D#, D#  
32  
2
3
10-14  
15-19  
20-24  
25-29  
30-34  
35-39  
40-44  
45-49  
50-54  
55-59  
60-64  
65-69  
70-74  
75-79  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Note :  
1.  
2.  
3.  
4.  
DQS_t, DQS_c are used according to W R Commands, otherwise VDDQ  
BG1ꢈꢏꢐꢈꢋoꢊ’tꢈꢃꢉꢍꢎꢈfoꢍꢈx16ꢈꢋꢎvꢏꢃꢎ  
C[2:0] are used only for 3DS device  
Burst Sequence driven on each DQ signal by Write Command  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 23/53  
ESMT  
IDD5B Measurement-Loop Pattern1  
M16U4G16256A  
Data4  
0
0
REF  
D
0
1
1
1
1
1
0
0
1
1
0
0
0
1
1
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
7
0
0
0
F
F
0
0
0
0
0
-
-
-
-
-
1
2
D
0
3
D#, D#  
D#, D#  
32  
32  
4
repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 1 instead  
repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
5-8  
9-12  
13-16  
17-20  
21-24  
25-28  
29-32  
33-36  
37-40  
41-44  
45-48  
49-52  
53-56  
57-60  
61-64  
1
65...  
nRFC - 1  
2
repeat Sub-Loop 1, Truncate, if necessary  
Note :  
1.  
2.  
3.  
4.  
DQS_t, DQS_c are VDDQ  
BG1ꢈꢏꢐꢈꢋoꢊ’tꢈꢃꢉꢍꢎꢈfor x16 device  
C[2:0] are used only for 3DS device  
DQ signals are VDDQ  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 24/53  
ESMT  
IDD7 Measurement-Loop Pattern1  
M16U4G16256A  
Data4  
0
1
ACT  
RDA  
0
0
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
-
D0=00  
D1=FF  
D2=FF  
D3=00  
D4=FF  
D5=00  
D6=00  
D7=FF  
0
2
3
D
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
D#  
32  
...  
repeat pattern 2...3 until nRRD - 1, if nRCD > 4. Truncate if necessary  
nRRD  
ACT  
RDA  
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
-
D0=FF  
D1=00  
D2=00  
D3=FF  
D4=00  
D5=FF  
D6=FF  
D7=00  
1
0
1
1
0
1
0
0
1
0
0
1
nRRD +1  
...  
repeat pattern 2 ... 3 until 2*nRRD - 1, if nRCD > 4. Truncate if necessary  
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead  
2
3
4
2*nRRD  
3*nRRD  
4*nRRD  
repeat pattern 2 ... 3 until nFAW - 1, if nFAW > 4*nRCD. Truncate if necessary  
5
6
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead  
nFAW  
nFAW +  
nRRD  
nFAW +  
2*nRRD  
nFAW +  
3*nRRD  
nFAW +  
4*nRRD  
7
8
9
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 4  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 25/53  
ESMT  
IDD7 Measurement-Loop Pattern1- continued  
M16U4G16256A  
Data4  
10  
11  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead  
2*nFAW  
2*nFAW +  
nRRD  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 4  
2*nFAW +  
2*nRRD  
2*nFAW +  
3*nRRD  
2*nFAW +  
4*nRRD  
12  
13  
14  
15  
16  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead  
3*nFAW  
3*nFAW  
nRRD  
+
+
+
+
3*nFAW  
2*nRRD  
3*nFAW  
3*nRRD  
3*nFAW  
4*nRRD  
17  
18  
19  
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead  
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead  
repeat Sub-Loop 4  
20 4*nFAW  
repeat pattern 2 ... 3 until nRC - 1, if nRC > 4*nFAW. Truncate if necessary  
Note :  
1.  
2.  
3.  
4.  
DQS_t, DQS_c are VDDQ  
BG1ꢈꢏꢐꢈꢋoꢊ’tꢈꢃꢉꢍꢎꢈfoꢍꢈx16ꢈꢋꢎvꢏꢃꢎ  
C[2:0] are used only for 3DS device  
Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 26/53  
ESMT  
M16U4G16256A  
Electrical Specifications  
IDD Specifications  
IDD and IPP values are for full operating range of voltage and temperature unless otherwise noted.  
IDD and IDDQ Specification  
Symbol  
IDD0  
DDR4-2400  
86  
DDR4-2666  
92  
DDR4-3200  
104  
105  
170  
174  
88  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD0A  
87  
93  
IDD1  
128  
122  
67  
142  
146  
74  
IDD1A  
IDD2N  
IDD2NA  
IDD2NT  
IDD2NL  
IDD2NG  
IDD2ND  
IDD2N_par  
IDD2P  
68  
75  
89  
86  
97  
104  
71  
59  
63  
65  
71  
83  
49  
52  
58  
82  
94  
98  
40  
44  
52  
IDD2Q  
67  
75  
91  
IDD3N  
78  
86  
102  
97  
IDD3NA  
IDD3P  
79  
85  
64  
67  
73  
IDD4R  
188  
197  
190  
211  
227  
199  
194  
215  
170  
179  
147  
234  
30  
205  
227  
206  
230  
266  
215  
210  
204  
180  
189  
160  
235  
30  
254  
254  
231  
283  
282  
284  
307  
332  
209  
220  
185  
302  
30  
IDD4RA  
IDD4RB  
IDD4W  
IDD4WA  
IDD4WB  
IDD4WC  
IDD4W _par  
IDD5B  
IDD5F2  
IDD5F4  
IDD7  
IDD8  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1  
27/53  
ESMT  
M16U4G16256A  
IPP Specification  
Symbol  
IPP0  
DDR4-2400  
DDR4-2666  
DDR4-3200  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
8
8
9
9
11  
11  
9
IPP1  
IPP2N  
6
7
IPP2P  
6
7
9
IPP3N  
6
7
9
IPP3P  
6
7
9
IPP4R  
6
7
9
IPP4W  
IPP5B  
6
7
9
24  
25  
18  
33  
2
27  
29  
20  
40  
3
33  
37  
24  
54  
5
IPP5F2  
IPP5F4  
IPP7  
IPP8  
IDD6 Specification  
Symbol  
Value  
DDR4-2400/ 2666/ 3200  
Unit  
Notes  
IDD (max)  
IPP (Max)  
IDD6N  
IDD6E  
0 - 85°C  
0 - 95°C  
0 - 45°C  
0 - 85°C  
30  
36  
25  
30  
6
8
4
6
mA  
mA  
mA  
mA  
1
2
3
4
IDD6R  
IDD6A  
Note :  
1.  
2.  
Applicable for MR2 settings A6 = 0 and A7 = 0  
Applicable for MR2 settings A6 = 0 and A7 = 1. IDD6E is only specified for devices which support the extended  
temperature range feature  
3.  
4.  
Applicable for MR2 settings A6 = 1 and A7 = 0. IDD6R is only specified for devices which support the reduced temperature  
range feature  
Applicable for MR2 settings A6 = 1 and A7 = 1. IDD6A is only specified for devices which support the auto self-refresh  
feature  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 28/53  
ESMT  
M16U4G16256A  
Input/Output Capacitance  
Silicon pad I/O Capacitance  
DDR4- 2400/ 2666  
DDR4- 3200  
Symbol  
Parameter  
Units  
Note  
Min.  
0.55  
-0.1  
Min.  
1.15  
0.1  
Min.  
0.55  
-0.1  
Max.  
1.00  
0.1  
CIO  
Input/output capacitance  
pF  
pF  
1,2,3  
CDIO  
Input/output capacitance delta  
1,2,3,11  
Input/output capacitance delta DQS_t  
and DQS_c  
CDDQS  
-
0.05  
-
0.05  
pF  
1,2,3,5  
CCK  
Input capacitance, CK_t and CK_c  
0.2  
-
0.7  
0.2  
-
0.7  
pF  
pF  
1,3  
CDCK  
Input capacitance delta CK_t and CK_c  
0.05  
0.05  
1,3,4  
Input capacitance  
CI  
0.2  
-0.1  
-0.1  
0.7  
0.1  
0.1  
0.2  
-0.1  
-0.1  
0.55  
0.1  
pF  
pF  
pF  
1,3,6  
1,3,7,8  
1,2,9,10  
(CTRL, ADD, CMD pins only)  
Input capacitance delta  
(All CTRL pins only)  
CDI_ CTRL  
CDI_ ADD_CMD  
Input capacitance delta  
(All ADD/CMD pins only)  
0.1  
CALERT  
CZQ  
Input/output capacitance of ALERT  
Input/output capacitance of ZQ  
Input capacitance of TEN  
0.5  
-
1.5  
2.3  
2.3  
0.5  
-
1.5  
2.3  
2.3  
pF  
pF  
pF  
1,3  
1,3,12  
1,3,13  
CTEN  
0.2  
0.2  
Note:  
1. This parameter is not subject to production test. It is verified by design and characterization. The silicon only capacitance is  
validated by de-embedding the package L & C parasitic. The capacitance is measured with VDD, VDDQ, VSS, VSSQ  
applied with all other signal pins floating. Measurement procedure TBD.  
2. DQ, DM_n, DQS_T, DQS_C, TDQS_T, TDQS_C. Although the DM, TDQS_T and TDQS_C pins have different functions,  
the loading matches DQ and DQS  
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here  
4. Absolute value CK_T-CK_C  
5. Absolute value of CIO(DQS_T)-CIO(DQS_C)  
6. CI applies to ODT, CS_n, CKE, A0-A15, BA0-BA1, BG0-BG1, RAS_n, CAS_n/A15, W E_n/A14, ACT_n and PAR.  
7. CDI CTRL applies to ODT, CS_n and CKE  
8. CDI_CTRL = CI(CTRL)-0.5*(CI(CLK_T)+CI(CLK_C))  
9. CDI_ADD_ CMD applies to, A0-A15, BA0-BA1, BG0-BG1,RAS_n, CAS_n/A15, W E_n/A14, ACT_n and PAR.  
10. CDI_ADD_CMD = CI(ADD_CMD)-0.5*(CI(CLK_T)+CI(CLK_C))  
11. CDIO = CIO(DQ,DM)-0.5*(CIO(DQS_T)+CIO(DQS_C))  
12. Maximum external load capacitance on ZQ pin: TBD pF.  
13. TEN pin is DRAM internally pulled low through a weak pull-down resistor to VSS.  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 29/53  
ESMT  
M16U4G16256A  
DRAM package electrical specifications  
DDR4- 2400/ 2666/ 3200  
Symbol  
Parameter  
Units  
Note  
Min.  
45  
14  
-
Max.  
85  
ZIO  
TdIO  
Lio  
Input/output Zpkg  
Ω
ps  
nH  
pF  
Ω
1
1
Input/output Pkg Delay  
Input/Output Lpkg  
45  
3.4  
0.82  
85  
1,2  
1,3  
1
Cio  
Input/Output Cpkg  
-
ZIO DQS  
TdIO DQS  
Lio DQS  
DQS_t, DQS_c Zpkg  
DQS_t, DQS_c Pkg Delay  
DQS Lpkg  
45  
14  
-
45  
ps  
nH  
pF  
Ω
1
3.4  
0.82  
10  
1,2  
1,3  
-
Cio DQS  
DQS Cpkg  
-
Delta Zpkg DQSU_t, DQSU_c  
Delta Zpkg DQSL_t, DQSL_c  
Delta Delay DQSU_t, DQSU_c  
Delta Delay DQSL_t, DQSL_c  
Input- CTRL pins Zpkg  
Input- CTRL pins Pkg Delay  
Input CTRL Lpkg  
-
DZDIO DQS  
-
10  
Ω
-
-
5
ps  
ps  
Ω
-
DTdDIO DQS  
-
5
-
ZI CTRL  
TdI_ CTRL  
Li CTRL  
50  
14  
-
90  
1
42  
ps  
nH  
pF  
Ω
1
3.4  
0.7  
90  
1,2  
1,3  
1
Ci CTRL  
ZIADD CMD  
TdIADD_ CMD  
Li ADD CMD  
Ci ADD CMD  
ZCK  
Input CTRL Cpkg  
-
Input- CMD ADD pins Zpkg  
Input- CMD ADD pins Pkg Delay  
Input CMD ADD Lpkg  
Input CMD ADD Cpkg  
CLK_t & CLK_c Zpkg  
CLK_t & CLK_c Pkg Delay  
Input CLK Lpkg  
50  
14  
-
52  
ps  
nH  
pF  
Ω
1
3.9  
0.86  
90  
1,2  
1,3  
1
-
50  
14  
-
TdCK  
42  
ps  
nH  
pF  
Ω
1
Li CLK  
3.4  
0.7  
10  
1,2  
1,3  
-
Ci CLK  
Input CLK Cpkg  
-
DZDCK  
DTdCK  
Delta Zpkg CLK_t & CLK_c  
Delta Delay CLK_t & CLK_c  
ZQ Zpkg  
-
-
5
ps  
Ω
-
ZOZQ  
-
100  
90  
-
TdO ZQ  
ZO ALERT  
TdO ALERT  
ZQ Delay  
20  
40  
20  
ps  
Ω
-
ALERT Zpkg  
100  
55  
-
ALERT Delay  
ps  
-
Note:  
1.  
Package implementations shall meet spec if the Zpkg and Pkg Delay fall within the ranges shown, and the maximum Lpkg  
and Cpkg do not exceed the maximum value shown  
2.  
3.  
It is assumed that Lpkg can be approximated as Lpkg = Zo*Td  
It is assumed that Cpkg can be approximated as Cpkg = Td/Zo  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 30/53  
ESMT  
M16U4G16256A  
Standard Speed Bins  
DDR4-2400 Speed Bins  
Speed Bins  
DDR4-2400 (17-17-17)  
Unit  
Note  
Parameter  
Symbol  
Min  
Max  
14.1614  
Internal read command to first data  
tAA  
18.00  
ns  
ns  
ns  
10  
10  
10  
(13.75)5,12  
Internal read command to first data with  
read DBI enabled  
tAA_DBI  
tRCD  
tAA(min) + 3nCK  
tAA(max) +3nCK  
-
14.16  
(13.75)5,12  
14.16  
ACT to internal read or write delay time  
PRE command period  
tRP  
tRAS  
tRC  
-
ns  
ns  
ns  
10  
10  
10  
(13.75)5,12  
ACT to PRE command period  
ACT to ACT or REF command period  
32  
9 x tREFI  
-
46.16  
(45.75)5,12  
Normal  
Read DBI  
CL = 11  
CL = 9  
tCK(AVG)  
Reserved  
ns  
1,2,3,4,9  
(Optional)5  
CWL =9  
CL = 10  
CL = 10  
CL = 12  
CL = 12  
tCK(AVG)  
tCK(AVG)  
1.5  
1.6  
ns  
ns  
1,2,3,4,9  
4
Reserved  
1.25  
1.25  
<1.5  
CWL = 9,11  
CL = 11  
CL = 13  
tCK(AVG)  
ns  
1,2,3,4,6  
(Optional)5,12  
Reserved  
CL = 12  
CL = 12  
CL = 14  
CL = 14  
tCK(AVG)  
tCK(AVG)  
<1.5  
ns  
ns  
1,2,3,6  
4
1.071  
1.071  
0.938  
0.938  
<1.25  
<1.25  
<1.071  
<1.071  
CWL = 10,12  
CWL = 11,14  
CWL = 12,16  
CL = 13  
CL = 15  
tCK(AVG)  
ns  
1,2,3,4,6  
(Optional)5,12  
Reserved  
CL = 14  
CL = 14  
CL = 16  
CL = 17  
tCK(AVG)  
tCK(AVG)  
ns  
ns  
1,2,3,6  
4
CL = 15  
CL = 18  
tCK(AVG)  
ns  
1,2,3,4,6  
(Optional)5,12  
CL = 16  
CL = 15  
CL = 16  
CL = 17  
CL = 18  
CL = 19  
CL = 18  
CL = 19  
CL = 20  
CL = 21  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
ns  
ns  
1,2,3,6  
1,2,3,4  
1,2,3,4  
Reserved  
Reserved  
ns  
0.833  
0.833  
<0.938  
<0.938  
ns  
ns  
1,2,3  
11  
Supported CL Settings  
10,11,12,13,14,15,16,17,18  
12,13,14,15,16,18,19,20,21  
9,10,11,12,14,16  
nCK  
nCK  
nCK  
Supported CL Settings with read DBI  
Supported CWL Settings  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 31/53  
ESMT  
M16U4G16256A  
DDR4-2666 Speed Bins  
Speed Bins  
DDR4-2666 (19-19-19)  
Unit  
Note  
Parameter  
Symbol  
Min  
Max  
14.2514  
Internal read command to first data  
tAA  
18.00  
ns  
ns  
ns  
10  
10  
10  
(13.75)5,12  
Internal read command to first data with  
read DBI enabled  
tAA_DBI  
tRCD  
tAA(min) + 3nCK  
tAA(max) +3nCK  
-
14.25  
(13.75)5,12  
14.25  
ACT to internal read or write delay time  
PRE command period  
tRP  
tRAS  
tRC  
-
ns  
ns  
ns  
10  
10  
10  
(13.75)5,12  
ACT to PRE command period  
ACT to ACT or REF command period  
32  
9 x tREFI  
-
46.25  
(45.75)5,12  
Normal  
CL = 9  
Read DBI  
CL = 11  
CL = 12  
CL = 12  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
Reserved  
ns  
ns  
ns  
1,2,3,4,9  
1,2,3,4,9  
4
CWL =9  
CL = 10  
CL = 10  
1.5  
1.6  
<1.5  
Reserved  
1.25  
1.25  
CWL = 9,11  
CL = 11  
CL = 13  
tCK(AVG)  
ns  
1,2,3,4,7  
(Optional)5,12  
Reserved  
CL = 12  
CL = 12  
CL = 14  
CL = 14  
tCK(AVG)  
tCK(AVG)  
<1.5  
ns  
ns  
1,2,3,7  
4
1.071  
1.071  
0.937  
0.937  
<1.25  
<1.25  
<1.071  
<1.071  
CWL = 10,12  
CWL = 11,14  
CL = 13  
CL = 15  
tCK(AVG)  
ns  
1,2,3,4,7  
(Optional)5,12  
Reserved  
CL = 14  
CL = 14  
CL = 16  
CL = 17  
tCK(AVG)  
tCK(AVG)  
ns  
ns  
1,2,3,7  
4
CL = 15  
CL = 18  
tCK(AVG)  
ns  
1,2,3,4,7  
(Optional)5,12  
CL = 16  
CL = 15  
CL = 16  
CL = 19  
CL = 18  
CL = 19  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
ns  
ns  
ns  
1,2,3,7  
4
Reserved  
Reserved  
1,2,3,4,7  
CWL = 12,16  
CWL = 14,18  
0.833  
0.833  
<0.937  
<0.937  
CL = 17  
CL = 20  
tCK(AVG)  
ns  
1,2,3,4,7  
(Optional)5,12  
CL = 18  
CL = 17  
CL = 18  
CL = 19  
CL = 20  
CL = 21  
CL = 20  
CL = 21  
CL = 22  
CL = 23  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
ns  
ns  
1,2,3  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3  
Reserved  
Reserved  
ns  
0.75  
0.75  
<0.833  
<0.833  
ns  
ns  
Supported CL Settings  
10,11,12,13,14,15,16,17,18,19,20  
12,13,14,15,16,18,19,20,21,22,23  
9,10,11,12,14,16,18  
nCK  
nCK  
nCK  
11  
Supported CL Settings with read DBI  
Supported CWL Settings  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 32/53  
ESMT  
M16U4G16256A  
DDR4-3200 Speed Bins  
Speed Bins  
DDR4-3200 (24-24-24)  
Unit  
Note  
Parameter  
Symbol  
Min  
Max  
Internal read command to first data  
tAA  
15.00  
19.00  
ns  
ns  
10  
10  
Internal read command to first data with  
read DBI enabled  
tAA_DBI  
tAA(min) + 4nCK  
tAA(min) + 4nCK  
ACT to internal read or write delay time  
PRE command period  
tRCD  
tRP  
15.00  
15.00  
-
ns  
ns  
ns  
ns  
10  
10  
10  
10  
-
ACT to PRE command period  
ACT to ACT or REF command period  
tRAS  
tRC  
32  
9 x tREFI  
-
tRAS + tRP  
Normal  
CL = 9  
Read DBI  
CL = 11  
CL = 12  
CL = 12  
CL = 13  
CL = 14  
CL = 14  
CL = 15  
CL = 16  
CL = 17  
CL = 18  
CL = 19  
CL = 18  
CL = 19  
CL = 20  
CL = 21  
CL = 20  
CL = 21  
CL = 22  
CL = 23  
CL = 24  
CL = 26  
CL = 28  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
Reserved  
ns  
ns  
1,2,3,4,9  
1,2,3,4,9  
1,2,3,4  
1,2,3,4,8  
1,2,3,8  
1,2,3,4  
1,2,3,4,8  
1,2,3,8  
1,2,3,4  
1,2,3,4,8  
1,2,3,8  
1,2,3,4  
1,2,3,4,8  
1,2,3,4,8  
1,2,3,8  
1,2,3,4  
1,2,3,4,8  
1,2,3,4,8  
1,2,3,8  
1,2,3,4  
1,2,3,4  
1,2,3  
CWL =9  
CL = 10  
CL = 10  
CL = 11  
CL = 12  
CL = 12  
CL = 13  
CL = 14  
CL = 14  
CL = 15  
CL = 16  
CL = 15  
CL = 16  
CL = 17  
CL = 18  
CL = 17  
CL = 18  
CL = 19  
CL = 20  
CL = 20  
CL = 22  
CL = 24  
1.5  
1.9  
<1.5  
Reserved  
ns  
CWL = 9,11  
Reserved  
ns  
1.25  
1.071  
0.937  
ns  
Reserved  
Reserved  
ns  
CWL = 10,12  
CWL = 11,14  
ns  
<1.25  
<1.071  
ns  
Reserved  
Reserved  
ns  
ns  
ns  
Reserved  
Reserved  
Reserved  
ns  
ns  
CWL = 12,16  
ns  
0.833  
<0.937  
ns  
Reserved  
Reserved  
Reserved  
ns  
ns  
CWL = 14,18  
CWL = 16,20  
ns  
0.75  
<0.833  
<0.682  
ns  
Reserved  
Reserved  
ns  
ns  
0.625  
ns  
Supported CL Settings  
10,12,14,16,18,20,22,24  
12,14,16,19,21,23,28  
9,10,11,12,14,16,18,20  
nCK  
nCK  
nCK  
11  
Supported CL Settings with read DBI  
Supported CWL Settings  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 33/53  
ESMT  
M16U4G16256A  
Speed Bin Table Notes  
Absolute Specification  
­
­
­
­
VDDQ = VDD = 1.20V +/- 0.06 V  
VPP = 2.5V +0.25/-0.125 V  
The values defined with above-mentioned table are DLL ON case.  
DDR4-2400, 2666 and 3200 Speed Bin Tables are valid only when Geardown Mode is disabled.  
1.  
2.  
The CL setting and CWL setting result in tCK(avg).MIN and tCK(avg).MAX requirements. When making a selection of  
tCK(avg), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting.  
tCK(avg).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all  
possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard  
tCK(avg) value (1.5, 1.25, 1.071, 0.938 or 0.833 ns) when calculating CL [nCK] = tAA [ns] / tCK(avg) [ns], rounding up to  
thꢎꢈꢊꢎxtꢈ‘SuppoꢍtꢎꢋꢈꢀL’ ꢈwhꢎꢍꢎꢈtAAꢈ=ꢈ12.5ꢊꢐꢈꢉꢊꢋꢈtꢀꢁ(ꢉvg)ꢈ=ꢈ1.3ꢈꢊꢐꢈꢐhouꢒꢋꢈoꢊꢒyꢈꢑꢎꢈuꢐꢎꢋꢈfoꢍꢈꢀLꢈ=ꢈ10ꢈꢃꢉꢒꢃuꢒꢉtꢏoꢊ.  
tCK(avg).MAX limits: Calculate tCK(avg) = tAA.MAX / CL SELECTED and round the resulting tCK(avg) down to the next  
valid speed bin (i.e. 1.5ns or 1.25ns or 1.071 ns or 0.938 ns or 0.833 ns). This result is tCK(avg).MAX corresponding to  
CL SELECTED.  
3.  
4.  
5.  
‘Rꢎꢐꢎꢍvꢎꢋ’ꢈꢐꢎttꢏꢊgꢐꢈꢉꢍꢎꢈꢊotꢈꢉꢒꢒowꢎꢋ.ꢈUꢐꢎꢍꢈmuꢐtꢈpꢍogꢍꢉmꢈꢉꢈꢋꢏffꢎꢍꢎꢊt value.  
'Optional' settings allow certain devices in the industry to support this setting, however, it is not  
a mandatory feature.  
Refer to supplier's data sheet and/or the DIMM SPD information if and how this setting is supported.  
6.  
7.  
8.  
9.  
Any DDR4-2400 speed bin also supports functional operation at lower frequencies as shown in the table which are not  
subject to Production Tests but verified by Design/Characterization.  
Any DDR4-2666 speed bin also supports functional operation at lower frequencies as shown in the table which are not  
subject to Production Tests but verified by Design/Characterization.  
Any DDR4-3200 speed bin also supports functional operation at lower frequencies as shown in the table which are not  
subject to Production Tests but verified by Design/Characterization.  
DDR4-1600 AC timing apply if DRAM operates at lower than 1600 MT/s data rate.  
10. Parameter apply from tCK(avg)min to tCH(avg)max at all standard JEDEC clock period values as stated in the Speed Bin  
Tables.  
11. CL number in parentheses, it means that these numbers are optional.  
12. DDR4 SDRAM supports CL=9 as long as a system meets tAA(min).  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 34/53  
ESMT  
M16U4G16256A  
Electrical Characteristics & AC Timing  
Reference Load for AC Timing and Output Slew Rate  
Figure represents the effective reference load of 50 ohms used in defining the relevant AC timing parameters of the device as  
well as output slew rate measurements.  
It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by  
a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a  
system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission  
lines terminated at the tester electronics.  
Reference Load for AC Timing and Output SlewRate  
tREFI  
Average periodic Refresh interval (tREFI) of DDR4 SDRAM is defined as shown in the table.  
tREFI by device density  
Parameter  
Symbol  
0°CTC85°C  
85°C< TC95°C  
4Gb  
7.8  
Units  
us  
tREFI  
Average periodic refresh interval  
3.9  
us  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 35/53  
ESMT  
M16U4G16256A  
Timing Parameters by Speed Grade  
Timing Parameters by Speed Bin for DDR4-2400  
DDR4-2400  
Parameter  
Symbol  
Units  
Max.  
Note  
Min.  
Clock Timing  
Minimum Clock Cycle Time (DLL  
off mode)  
tCK  
8
20  
ns  
(DLL_OFF)  
tCK(avg)  
tCH(avg)  
tCL(avg)  
Average Clock Period  
Average high pulse width  
Average low pulse width  
Absolute Clock Period  
0.833  
0.48  
< 0.938  
ns  
35,36  
0.52  
tCK(avg)  
tCK(avg)  
0.48  
0.52  
tCK(avg)min  
+
tCK(avg)max  
+
tCK(abs)  
tCK(avg)  
tJIT(per)min  
_ tot  
tJIT(per)max  
_ tot  
-
Absolute clock HIGH pulse width  
Absolute clock LOW pulse width  
Clock Period Jitter- total  
tCH(abs)  
tCL(abs)  
0.45  
tCK(avg)  
tCK(avg)  
ps  
23  
24  
25  
26  
0.45  
-
JIT(per)_tot  
JIT(per)_dj  
-42  
42  
21  
Clock Period Jitter- deterministic  
Clock Period Jitter during DLL  
locking period  
-21  
ps  
tJIT(per, lck)  
tJIT(cc)_total  
tJIT(cc)_dj  
-33  
33  
ps  
ps  
ps  
Cycle to Cycle Period Jitter  
Cycle to Cycle Period  
83  
42  
25  
26  
Jitterdeterministic  
Cycle to Cycle Period Jitter  
during DLL locking period  
tJIT(cc, lck)  
67  
ps  
Duty Cycle Jitter  
tJIT(duty)  
tERR(2per)  
tERR(3per)  
tERR(4per)  
tERR(5per)  
tERR(6per)  
tERR(7per)  
tERR(8per)  
tERR(9per)  
tERR(10per)  
tERR(11per)  
tERR(12per)  
tERR(13per)  
tERR(14per)  
tERR(15per)  
tERR(16per)  
tERR(17per)  
tERR(18per)  
TBD  
-61  
TBD  
61  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
Cumulative error across 6 cycles  
Cumulative error across 7 cycles  
Cumulative error across 8 cycles  
Cumulative error across 9 cycles  
Cumulative error across 10 cycles  
Cumulative error across 11 cycles  
Cumulative error across 12 cycles  
Cumulative error across 13 cycles  
Cumulative error across 14 cycles  
Cumulative error across 15 cycles  
Cumulative error across 16 cycles  
Cumulative error across 17 cycles  
Cumulative error across 18 cycles  
Cumulative error across  
-73  
73  
-81  
81  
-87  
87  
-92  
92  
-97  
97  
-101  
-104  
-107  
-110  
-112  
-114  
-116  
-118  
-120  
-122  
-124  
101  
104  
107  
110  
112  
114  
116  
118  
120  
122  
124  
tERR(nper)min = ((1 + 0.68ln(n)) * tJIT(per)_total min)  
tERR(nper)max = ((1 + 0.68ln(n)) * tJIT(per)_total max)  
tERR(nper)  
ps  
n = 13, 14 ... 49, 50 cycles  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 36/53  
ESMT  
M16U4G16256A  
Timing Parameters by Speed Bin for DDR4-2400- continued  
DDR4-2400  
Parameter  
Symbol  
Units  
Max.  
Note  
Min.  
Command and Address setup time  
to CK_t, CK_c referenced to  
Vih(ac) /Vil(ac) levels  
tIS(base)  
62  
-
-
-
ps  
ps  
ps  
Command and Address setup time  
to CK_t, CK_c referenced to Vref  
levels  
tIS(Vref)  
162  
87  
Command and Address hold time  
to CK_t, CK_c referenced to  
Vih(dc) / Vil(dc) levels  
tIH(base)  
Command and Address hold time  
to CK_t, CK_c referenced to Vref  
levels  
tIH(Vref)  
tIPW  
162  
410  
-
-
ps  
ps  
Control and Address Input pulse  
width for each input  
Command and AddressTiming  
CAS_n to CAS_n command delay  
for same bank group  
tCCD_L  
tCCD_S  
Max(5nCK, 5.000ns)  
4
-
-
nCK  
nCK  
34  
34  
CAS_n to CAS_n command delay  
for different bank group  
ACTIVATE to ACTIVATE  
Command delay to different bank  
group for 2KB page size  
ACTIVATE to ACTIVATE  
Command delay to different bank  
group for 2KB page size  
ACTIVATE to ACTIVATE  
Command delay to different bank  
group for 1/ 2KB page size  
ACTIVATE to ACTIVATE  
Command delay to same bank  
group for 2KB page size  
ACTIVATE to ACTIVATE  
Command delay to same bank  
group for 1KB page size  
ACTIVATE to ACTIVATE  
Command delay to same bank  
group for 1/2KB page size  
Four activate window for 2KB page  
size  
tRRD_S(2K)  
Max(4nCK, 5.3ns)  
Max(4nCK, 3.3ns)  
Max(4nCK, 3.3ns)  
Max(4nCK, 6.4ns)  
Max(4nCK, 4.9ns)  
Max(4nCK, 4.9ns)  
-
-
-
-
-
-
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
34  
34  
34  
34  
34  
34  
tRRD_S  
(1K)  
tRRD_S  
(1/ 2K)  
tRRD_L(2K)  
tRRD_L(1K)  
tRRD_L  
(1/ 2K)  
tFAW_2K  
tFAW_1K  
Max(28nCK, 30ns)  
Max(20nCK, 21ns)  
Max(16nCK, 13ns)  
-
-
-
ns  
ns  
ns  
34  
34  
34  
Four activate window for 1KB page  
size  
Four activate window for 1/2KB  
page size  
tFAW_1/2K  
Delay from start of internal write  
transaction to internal read  
command for different bank group  
Delay from start of internal write  
transaction to internal read  
command for same bank group  
Internal READ Command to  
PRECHARGE Command delay  
1,2,  
34  
tWTR_S  
max (2nCK, 2.5ns)  
-
tWTR_L  
tRTP  
max(4nCK, 7.5ns)  
Max(4nCK, 7.5ns)  
-
-
1,34  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 37/53  
ESMT  
M16U4G16256A  
Timing Parameters by Speed Bin for DDR4-2400- continued  
DDR4-2400  
Parameter  
Symbol  
Units  
Max.  
Note  
Min.  
WRITE recovery time  
tWR  
tWR_CRC  
_DM  
15  
-
-
ns  
ns  
1
Write recovery time when CRC  
and DM are enabled  
tW R+max (5nCK,3.75ns)  
1, 28  
delay from start of internal write  
transaction to internal read  
command for different bank group  
with both CRC and DM enabled  
delay from start of internal write  
transaction to internal read  
command for same bank group  
with both CRC and DM enabled  
DLL locking time  
tWTR_S_CRC  
_DM  
2, 29,  
34  
tW TR_S+max (5nCK,3.75ns)  
-
-
ns  
ns  
tWTR_L_CRC  
_DM  
3,30,  
34  
tW TR_L+max (5nCK,3.75ns)  
tDLLK  
tMRD  
768  
8
-
-
nCK  
nCK  
Mode Register Set command cycle  
time  
Mode Register Set command  
update delay  
Max  
tMOD  
tMPRR  
-
-
-
(24nCK, 15ns)  
Multi-Purpose Register Recovery  
Time  
1
nCK  
-
33  
Multi Purpose Register W rite  
Recovery Time  
tMOD (min)  
+ AL + PL  
tWR_MPR  
tDAL(min)  
Auto precharge write recovery +  
precharge time  
Programmed WR + roundup ( tRP / tCK(avg))  
nCK  
CS_n to Command Address Latency  
CS_n to Command Address  
Latency  
tCAL  
5
-
nCK  
DRAM Data Timing  
DQS_t,DQS_c to DQ skew,per  
group, per access  
tCK(avg)  
/2  
tDQSQ  
tQH  
-
TBD  
-
13,18  
DQ output hold time from  
DQS_t,DQS_c  
tCK(avg)  
/2  
13,17,  
18  
TBD  
0.9  
DQS_t, DQS_c differential READ  
Preamble(1 clock preamble)  
DQS_t, DQS_c differential READ  
Preamble(2 clock preamble)  
DQS_t, DQS_c differential READ  
Postamble  
tRPRE  
tRPRE  
tRPST  
tQSH  
TBD  
TBD  
TBD  
-
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
ps  
1.8  
0.33  
0.4  
DQS_t, DQS_c differential output  
high time  
21  
20  
DQS_t, DQS_c differential  
outputlow time  
tQSL  
0.4  
-
DQS_t, DQS_c differential WRITE  
Preamble  
tWPRE  
tWPST  
tLZ(DQS)  
0.9  
-
DQS_t, DQS_c differential WRITE  
Postamble  
0.33  
-300  
TBD  
150  
DQS_t and DQS_c low-impedance  
time (Referenced from RL-1)  
DQS_t and DQS_c  
high-impedance time (Referenced  
from RL+BL/2)  
tHZ(DQS)  
tDQSL  
-
150  
ps  
DQS_t, DQS_c differential input  
low pulse width  
0.46  
0.54  
tCK  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 38/53  
ESMT  
M16U4G16256A  
Timing Parameters by Speed Bin for DDR4-2400- continued  
DDR4-2400  
Parameter  
Symbol  
Units  
Note  
Min.  
Max.  
DQS_t, DQS_c differential input  
high pulse width  
tDQSH  
0.46  
0.54  
0.27  
tCK  
tCK  
DQS_t, DQS_c rising edge to  
CK_t, CK_c rising edge (1 clock  
preamble)  
tDQSS  
-0.27  
DQS_t, DQS_c falling edge  
setup time to CK_t, CK_c rising  
edge  
tDSS  
tDSH  
0.18  
0.18  
-
-
tCK  
tCK  
DQS_t, DQS_c falling edge hold  
time from CK_t, CK_c rising edge  
DQS_t, DQS_c rising edge  
output timing locatino from  
rising CK_t, CK_c with DLL On  
mode  
tDQSCK  
-175  
175  
ps  
MPSM Timing  
Command path disable delay upon  
MPSM entry  
tMPED  
tCKMPE  
tCKMPX  
tXMP  
tMOD(min) + tCPDED(min)  
tMOD(min) + tCPDED(min)  
tCKSRX(min)  
-
-
-
-
-
Valid clock requirement after  
MPSM entry  
Valid clock requirement before  
MPSM exit  
Exit MPSM to commands not  
requiring a locked DLL  
Exit MPSM to commands requiring  
a locked DLL  
TBD  
tXMPDLL  
tXMP(min) + tXSDLL(min)  
CS setup time to CKE  
CS hold time to CKE  
tMPX_S  
tMPX_H  
TBD  
TBD  
-
-
Calibration Timing  
Power-up and RESET calibration  
time  
tZQinit  
tZQoper  
tZQCS  
1024  
512  
-
-
-
nCK  
nCK  
nCK  
Normal operation Full calibration  
time  
Normal operation Short calibration  
time  
128  
Reset/Self Refresh Timing  
Exit Reset from CKE HIGH to a  
valid command  
max (5nCK,tRFC  
(min) + 10ns)  
tXPR  
tXS  
-
-
-
Exit Self Refresh to commands not  
requiring a locked DLL  
SRX to commands not requiring a  
locked DLL in Self RefreshABORT  
Exit Self Refresh to ZQCL,ZQCS  
and MRS (CL,CWL,WR,RTP and  
Gear Down)  
tRFC(min)+ 10ns  
tXS_ABORT  
(min)  
tRFC4(min) + 10ns  
tXS_FAST  
(min)  
tRFC4(min) + 10ns  
tDLLK(min)  
-
Exit Self Refresh to commands  
requiring a locked DLL  
Minimum CKE low width for Self  
refresh entry to exit timing  
tXSDLL  
tCKESR  
-
-
tCKE(min) +  
1 nCK  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 39/53  
ESMT  
M16U4G16256A  
Timing Parameters by Speed Bin for DDR4-2400- continued  
DDR4-2400  
Parameter  
Symbol  
Units  
Max.  
Note  
Min.  
Minimum CKE low width for Self  
re- fresh entry to exit timing with  
CA Parity enabled  
tCKESR_ PAR  
tCKE(min) + 1nCK + PL  
-
-
Valid Clock Requirement after Self  
Refresh Entry (SRE) or  
tCKSRE  
max (5nCK,10ns)  
Power-Down Entry (PDE)  
Valid Clock Requirement after Self  
Refresh Entry (SRE) or  
max (5nCK,10ns)  
+ PL  
tCKSRE_PAR  
-
-
Power-Down when CA Parity is  
enabled  
Valid Clock Requirement before  
Self Refresh Exit (SRX) or  
Power-Down Exit (PDX) or  
Reset Exit  
tCKSRX  
max (5nCK,10ns)  
Power Down Timing  
Exit Power Down with DLL on to  
any valid command;Exit Precharge  
Power Down with DLL frozen to  
commands not requiring a locked  
DLL  
tXP  
max (4nCK,6ns)  
-
-
Max  
(3nCK, 5ns)  
4
CKE minimum pulse width  
tCKE  
31,32  
Command pass disable delay  
Power Down Entry to Exit Timing  
Timing of ACT command to Power  
Down entry  
tCPDED  
tPD  
-
nCK  
tCKE(min)  
9*tREFI  
6
7
tACTPDEN  
tPRPDEN  
tRDPDEN  
2
2
-
-
-
nCK  
nCK  
nCK  
Timing of PRE or PREA command  
to Power Down entry  
7
Timing of RD/RDA command to  
Power Down entry  
RL+4+1  
Timing of WR command to Power  
Down entry  
WL+4+(tW R/  
tCK(avg))  
tWRPDEN  
-
-
nCK  
nCK  
4
5
(BL8OTF, BL8MRS, BC4OTF)  
Timing of WRA command to Power  
Down entry  
tWRAPDEN  
WL+4+WR+1  
(BL8OTF, BL8MRS, BC4OTF)  
Timing of WR command to Power  
Down entry (BC4MRS)  
tWRP  
WL+2+(tW R/  
tCK(avg))  
-
-
-
-
nCK  
nCK  
nCK  
4
5
7
- BC4DEN  
tWRAP  
Timing of WRA command to Power  
Down entry (BC4MRS)  
WL+2+WR+1  
2
- BC4DEN  
Timing of REF command to Power  
Down entry  
tREFPDEN  
tMRSPDEN  
Timing of MRS command to Power  
Down entry  
tMOD(min)  
PDA Timing  
Mode Register Set command  
cycle time in PDA mode  
Mode Register Set command  
update delay in PDA mode  
tMRD_PDA  
tMOD_PDA  
Max  
(16nCK, 10ns)  
tMOD  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 40/53  
ESMT  
M16U4G16256A  
Timing Parameters by Speed Bin for DDR4-2400- continued  
DDR4-2400  
Parameter  
Symbol  
Units  
Max.  
Note  
Min.  
ODT Timing  
Asynchronous RTT turn-on delay  
(Power-Down with DLL frozen)  
Asynchronous RTT turn-off delay  
(Power-Down with DLL frozen)  
RTT dynamic change skew  
Write Leveling Timing  
tAONAS  
1.0  
9.0  
ns  
tAOFAS  
tADC  
1.0  
0.3  
9.0  
0.7  
ns  
tCK(avg)  
First DQS_t/DQS_n rising edge  
after write leveling mode is  
programmed  
tWLMRD  
tWLDQSEN  
tWLS  
40  
25  
-
-
-
nCK  
nCK  
12  
12  
DQS_t/DQS_n delay after write  
level- ing mode is programmed  
Write leveling setup time from  
rising CK_t, CK_c crossing to  
rising DQS_t/ DQS_n crossing  
Write leveling hold time from rising  
DQS_t/DQS_n crossing to rising  
CK_t, CK_ crossing  
0.13  
tCK(avg)  
tWLH  
0.13  
0
-
tCK(avg)  
Write leveling output delay  
Write leveling output error  
CA Parity Timing  
tWLO  
9.5  
ns  
ns  
tWLOE  
Commands not guaranteed to be  
ex- ecuted during this time  
Delay from errant command to  
ALERT_n assertion  
tPAR_UN-  
KNOWN  
tPAR_ALER  
T_ON  
-
-
PL  
PL+6ns  
144  
Pulse width of ALERT_n signal  
when asserted  
tPAR_ALER  
T_PW  
72  
nCK  
Time from when Alert is asserted  
till controller must start providing  
DES commands in Persistent CA  
parity mode  
tPAR_ALERT_  
RSP  
-
64  
nCK  
nCK  
Parity Latency  
PL  
5
CRC Error Reporting  
CRC error to ALERT_nlatency  
tCRC_ALERT  
CRC_ALERT_  
PW  
3
6
13  
10  
ns  
CRC ALERT_n pulsewidth  
nCK  
tREFI  
tRFC1 (min)  
tRFC2 (min)  
tRFC4 (min)  
4Gb  
4Gb  
4Gb  
260  
160  
110  
-
-
-
ns  
ns  
ns  
34  
34  
34  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 41/53  
ESMT  
M16U4G16256A  
Timing Parameters by Speed Bin for DDR4-2666/3200  
DDR4-2666  
DDR4-3200  
Units  
Parameter  
Symbol  
Note  
Min.  
Max.  
Min.  
Max.  
Clock Timing  
Minimum Clock Cycle Time (DLL  
off mode)  
tCK  
8
20  
8
20  
ns  
ns  
(DLL_OFF)  
<0.833  
Average Clock Period  
tCK(avg)  
0.750  
0.625  
<0.682  
35,36  
Average high pulse width  
Average low pulse width  
Absolute Clock Period  
tCH(avg)  
tCL(avg)  
0.48  
0.48  
0.52  
0.48  
0.48  
0.52  
tCK(avg)  
tCK(avg)  
0.52  
0.52  
tCK(avg)min  
+
tCK(avg)max  
tCK(avg)min  
+
tCK(avg)max  
+
+
tCK(abs)  
tCK(avg)  
tJIT(per)min  
_ tot  
tJIT(per)max  
tJIT(per)min  
_ tot  
tJIT(per)max  
_ tot  
-
_ tot  
-
Absolute clock HIGH pulse width  
Absolute clock LOW pulse width  
Clock Period Jitter- total  
tCH(abs)  
tCL(abs)  
0.45  
0.45  
tCK(avg)  
tCK(avg)  
ps  
23  
24  
25  
26  
0.45  
-
0.45  
-
JIT(per)_tot  
JIT(per)_dj  
-38  
38  
19  
-32  
32  
16  
Clock Period Jitter- deterministic  
Clock Period Jitter during DLL  
locking period  
-19  
-16  
ps  
tJIT(per, lck)  
tJIT(cc)_total  
tJIT(cc)_dj  
-30  
30  
-25  
-
25  
62  
ps  
ps  
ps  
Cycle to Cycle Period Jitter  
Cycle to Cycle Period  
75  
38  
32  
26  
Jitterdeterministic  
Cycle to Cycle Period Jitter  
during DLL locking period  
tJIT(cc, lck)  
60  
-
62  
ps  
Duty Cycle Jitter  
tJIT(duty)  
tERR(2per)  
tERR(3per)  
tERR(4per)  
tERR(5per)  
tERR(6per)  
tERR(7per)  
tERR(8per)  
tERR(9per)  
tERR(10per)  
tERR(11per)  
tERR(12per)  
tERR(13per)  
tERR(14per)  
tERR(15per)  
tERR(16per)  
tERR(17per)  
tERR(18per)  
TBD  
-55  
TBD  
55  
TBD  
-46  
-55  
-61  
-65  
-69  
-73  
-76  
-78  
-80  
-83  
-84  
-86  
-87  
-89  
-90  
-92  
-93  
TBD  
46  
55  
61  
65  
69  
73  
76  
78  
80  
83  
84  
86  
87  
89  
90  
92  
93  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
Cumulative error across 6 cycles  
Cumulative error across 7 cycles  
Cumulative error across 8 cycles  
Cumulative error across 9 cycles  
Cumulative error across 10 cycles  
Cumulative error across 11 cycles  
Cumulative error across 12 cycles  
Cumulative error across 13 cycles  
Cumulative error across 14 cycles  
Cumulative error across 15 cycles  
Cumulative error across 16 cycles  
Cumulative error across 17 cycles  
Cumulative error across 18 cycles  
Cumulative error across  
-66  
66  
-73  
73  
-78  
78  
-83  
83  
-87  
87  
-91  
91  
-94  
94  
-96  
96  
-99  
99  
-101  
-103  
-104  
-106  
-108  
-110  
-112  
101  
103  
104  
106  
108  
110  
112  
tERR(nper)min = ((1 + 0.68ln(n)) * tJIT(per)_total min)  
tERR(nper)max = ((1 + 0.68ln(n)) * tJIT(per)_total max)  
tERR(nper)  
ps  
n = 13, 14 ... 49, 50 cycles  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 42/53  
ESMT  
M16U4G16256A  
Timing Parameters by Speed Bin for DDR4-2666/3200- continued  
DDR4-2666  
DDR4-3200  
Units  
Parameter  
Symbol  
Note  
Min.  
Max.  
Min.  
Max.  
Command and Address setup  
time to CK_t, CK_c referenced to  
Vih(ac) /Vil(ac) levels  
tIS(base)  
55  
-
40  
-
-
-
ps  
ps  
ps  
Command and Address setup  
time to CK_t, CK_c referenced to  
Vref levels  
tIS(Vref)  
145  
80  
-
-
130  
65  
Command and Address hold time  
to CK_t, CK_c referenced to  
Vih(dc) / Vil(dc) levels  
tIH(base)  
Command and Address hold time  
to CK_t, CK_c referenced to Vref  
levels  
tIH(Vref)  
tIPW  
145  
385  
-
-
130  
340  
-
-
ps  
ps  
Control and Address Input pulse  
width for each input  
Command and AddressTiming  
CAS_n to CAS_n command delay  
for same bank group  
tCCD_L  
tCCD_S  
Max(5nCK, 5ns)  
4
-
-
Max(4nCK, 5ns)  
4
-
-
nCK  
nCK  
34  
34  
CAS_n to CAS_n command delay  
for different bank group  
ACTIVATE to ACTIVATE  
Command delay to different bank  
group for 2KB page size  
ACTIVATE to ACTIVATE  
Command delay to different bank  
group for 2KB page size  
ACTIVATE to ACTIVATE  
Command delay to different bank  
group for 1/ 2KB page size  
ACTIVATE to ACTIVATE  
Command delay to same bank  
group for 2KB page size  
ACTIVATE to ACTIVATE  
Command delay to same bank  
group for 1KB page size  
ACTIVATE to ACTIVATE  
Command delay to same bank  
group for 1/2KB page size  
Four activate window for 2KB  
page size  
Max(4nCK,  
5.3ns)  
Max(4nCK,  
5.3ns)  
tRRD_S(2K)  
-
-
-
-
-
-
-
-
-
-
-
-
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
34  
34  
34  
34  
34  
34  
tRRD_S  
(1K)  
Max(4nCK,  
2.5ns)  
Max(4nCK, 3ns)  
Max(4nCK, 3ns)  
tRRD_S  
(1/ 2K)  
Max(4nCK,  
2.5ns)  
Max(4nCK,  
6.4ns)  
Max(4nCK,  
6.4ns)  
tRRD_L(2K)  
tRRD_L(1K)  
Max(4nCK,  
4.9ns)  
Max(4nCK,  
4.9ns)  
tRRD_L  
(1/ 2K)  
Max(4nCK,  
4.9ns)  
Max(4nCK,  
4.9ns)  
Max(28nCK,  
30ns)  
Max(28nCK,  
30ns)  
tFAW_2K  
tFAW_1K  
-
-
-
-
-
-
ns  
ns  
ns  
34  
34  
34  
Four activate window for 1KB  
page size  
Max(20nCK,  
21ns)  
Max(20nCK,  
21ns)  
Four activate window for 1/2KB  
page size  
Max(16nCK,  
12ns)  
Max(16nCK,  
10ns)  
tFAW_1/2K  
Delay from start of internal write  
transaction to internal read  
command for different bank group  
Delay from start of internal write  
transaction to internal read  
command for same bank group  
Internal READ Command to  
PRECHARGE Command delay  
Max(2nCK,  
2.5ns)  
Max(2nCK,  
2.5ns)  
tWTR_S  
-
-
nCK  
1,2,34  
Max(4nCK,  
7.5ns)  
Max(4nCK,  
7.5ns)  
tWTR_L  
tRTP  
-
-
-
-
nCK  
nCK  
1,34  
34  
Max(4nCK,  
7.5ns)  
Max(4nCK,  
7.5ns)  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 43/53  
ESMT  
M16U4G16256A  
Timing Parameters by Speed Bin for DDR4-2666/3200- continued  
DDR4-2666  
DDR4-3200  
Units  
Parameter  
Symbol  
Note  
Min.  
Max.  
Min.  
Max.  
WRITE recovery time  
tWR  
tWR_CRC  
_DM  
15  
-
15  
-
-
ns  
ns  
1
Write recovery time when CRC  
and DM are enabled  
tWR+max  
(5nCK, 3.75ns  
tWR+max  
(5nCK, 3.75ns  
-
-
1, 28  
delay from start of internal write  
transaction to internal read  
command for different bank group  
with both CRC and DM enabled  
delay from start of internal write  
transaction to internal read  
command for same bank group  
with both CRC and DM enabled  
DLL locking time  
tWTR_S+max  
(5nCK,  
tWTR_S+max  
(5nCK,  
tWTR_S_C  
RC_DM  
2, 29,  
34  
-
-
ns  
ns  
3.75ns)  
3.75ns)  
tWTR_L+max  
(5nCK,  
tWTR_L+max  
(5nCK,  
tWTR_L_C  
RC_DM  
3,30,  
34  
-
3.75ns)  
3.75ns)  
tDLLK  
tMRD  
854  
8
-
-
1024  
8
-
-
nCK  
nCK  
Mode Register Set command cycle  
time  
Mode Register Set command  
update delay  
max(24nCK,  
15ns)  
max(24nCK,  
15ns)  
tMOD  
tMPRR  
nCK  
nCK  
-
Multi-Purpose Register Recovery  
Time  
1
-
1
-
33  
Multi Purpose Register W rite  
Recovery Time  
tWR_MPR  
tDAL(min)  
MIN = tMOD + AL + PL; MAX = N/A  
Auto precharge write recovery +  
precharge time  
Programmed WR +  
roundup ( tRP / tCK(avg))  
MIN = WR + ROUNDtRP/tCK  
(AVG); MAX = N/A  
nCK  
CS_n to Command Address Latency  
CS_n to Command Address  
Latency  
tCAL  
5
-
6
-
nCK  
DRAM Data Timing  
DQS_t,DQS_c to DQ skew,per  
group, per access  
tCK(avg)  
/2  
tDQSQ  
tQH  
-
0.18  
-
0.20  
13,18  
DQ output hold time from  
DQS_t,DQS_c  
tCK(avg)  
/2  
13,17,  
18  
0.74  
0.9  
-
0.70  
0.9  
-
DQS_t, DQS_c differential READ  
Preamble(1 clock preamble)  
DQS_t, DQS_c differential READ  
Preamble(2 clock preamble)  
DQS_t, DQS_c differential READ  
Postamble  
tRPRE  
tRPRE  
tRPST  
tQSH  
-
-
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
ps  
1.8  
-
1.8  
-
0.33  
0.4  
-
0.33  
0.4  
-
DQS_t, DQS_c differential output  
high time  
-
-
21  
20  
DQS_t, DQS_c differential  
outputlow time  
tQSL  
0.4  
-
0.4  
-
DQS_t, DQS_c differential WRITE  
Preamble  
tWPRE  
tWPST  
tLZ(DQS)  
0.9  
-
-
0.9  
-
-
DQS_t, DQS_c differential WRITE  
Postamble  
0.33  
-310  
0.33  
-250  
DQS_t and DQS_c low-impedance  
time (Referenced from RL-1)  
DQS_t and DQS_c  
170  
160  
high-impedance time (Referenced  
from RL+BL/2)  
tHZ(DQS)  
tDQSL  
-
170  
-
160  
ps  
DQS_t, DQS_c differential input  
low pulse width  
0.46  
0.54  
0.46  
0.54  
tCK  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 44/53  
ESMT  
M16U4G16256A  
Timing Parameters by Speed Bin for DDR4-2666/3200- continued  
DDR4-2666  
DDR4-3200  
Units  
Parameter  
Symbol  
Note  
Min.  
Max.  
Min.  
Max.  
DQS_t, DQS_c differential input  
high pulse width  
tDQSH  
0.46  
0.54  
0.46  
0.54  
0.27  
tCK  
tCK  
DQS_t, DQS_c rising edge to  
CK_t, CK_c rising edge (1 clock  
preamble)  
tDQSS  
-0.27  
0.27  
-0.27  
DQS_t, DQS_c falling edge  
setup time to CK_t, CK_c rising  
edge  
tDSS  
tDSH  
0.18  
0.18  
-
-
0.18  
0.18  
-
-
tCK  
tCK  
DQS_t, DQS_c falling edge hold  
time from CK_t, CK_c rising edge  
DQS_t, DQS_c rising edge  
output timing locatino from  
rising CK_t, CK_c with DLL On  
mode  
tDQSCK  
-170  
170  
-160  
160  
ps  
MPSM Timing  
Command path disable delay upon  
MPSM entry  
tMPED  
tCKMPE  
tCKMPX  
tXMP  
MIN = tMOD (MIN) + tCPDED (MIN) ; MAX = N/A  
MIN = tMOD (MIN) + tCPDED (MIN) ; MAX = N/A  
MIN = tCKSRX (MIN) ; MAX = N/A  
nCK  
nCK  
nCK  
nCK  
nCK  
Valid clock requirement after  
MPSM entry  
Valid clock requirement before  
MPSM exit  
Exit MPSM to commands not  
requiring a locked DLL  
Exit MPSM to commands requiring  
a locked DLL  
MIN = tXS (MIN) ; MAX = N/A  
MIN = tXMP (MIN) + tXSDLL (MIN) ; MAX = N/A  
MIN = tIS (MIN) + tIH (MIN) ; MAX = N/A  
tXMPDLL  
CS setup time to CKE  
CS_n High hold time to CKE  
CS_n Low hold time to CKE  
Calibration Timing  
tMPX_S  
tMPX_HH  
tMPX_LH  
ns  
ns  
ns  
tXP  
12  
-
tXP  
12  
-
tXMP-10ns  
tXMP-10ns  
Power-up and RESET calibration  
time  
tZQinit  
tZQoper  
tZQCS  
1024  
512  
-
-
-
1024  
512  
-
-
-
nCK  
nCK  
nCK  
Normal operation Full calibration  
time  
Normal operation Short calibration  
time  
128  
128  
Reset/Self Refresh Timing  
max (5nCK,  
tRFC(min)+  
10ns)  
max (5nCK,  
tRFC(min)+  
10ns)  
Exit Reset from CKE HIGH to a  
valid command  
-
-
tXPR  
tXS  
nCK  
Exit Self Refresh to commands not  
requiring a locked DLL  
tRFC(min)+  
10ns  
tRFC(min)+  
10ns  
-
-
-
-
nCK  
nCK  
SRX to commands not requiring a  
locked DLL in Self RefreshABORT  
Exit Self Refresh to ZQCL,ZQCS  
and MRS (CL,CWL,WR,RTP and  
Gear Down)  
tXS_ABORT  
(min)  
tRFC4(min)+  
10ns  
tRFC4(min)+  
10ns  
tXS_FAST  
(min)  
tRFC4(min)+  
10ns  
tRFC4(min)+  
10ns  
-
-
nCK  
Exit Self Refresh to commands re-  
quiring a locked DLL  
tXSDLL  
tCKESR  
tDLLK(min)  
-
-
tDLLK(min)  
-
-
nCK  
nCK  
Minimum CKE low width for Self  
refresh entry to exit timing  
tCKE(min)+  
1 nCK  
tCKE(min)+  
1 nCK  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 45/53  
ESMT  
M16U4G16256A  
Timing Parameters by Speed Bin for DDR4-2666/3200- continued  
DDR4-2666  
DDR4-3200  
Units  
Parameter  
Symbol  
Note  
Min.  
Max.  
Min.  
Max.  
Minimum CKE low width for Self  
tCKE(min)+  
1nCK+PL  
tCKE(min)+  
1nCK+PL  
refresh entry to exit timing with CA tCKESR_ PAR  
Parity enabled  
-
-
-
nCK  
nCK  
Valid Clock Requirement after Self  
max  
max  
Refresh Entry (SRE) or  
Power-Down Entry (PDE)  
Valid Clock Requirement after Self  
Refresh Entry (SRE) or  
Power-Down when CA Parity is  
enabled  
tCKSRE  
-
-
(5nCK,10ns)  
(5nCK,10ns)  
max  
(5nCK,10ns)  
+PL  
max  
(5nCK,10ns)  
+PL  
tCKSRE_PAR  
-
-
nCK  
nCK  
Valid Clock Requirement before  
Self Refresh Exit (SRX) or  
Power-Down Exit (PDX) or  
Reset Exit  
max  
max  
tCKSRX  
-
(5nCK,10ns)  
(5nCK,10ns)  
Power Down Timing  
Exit Power Down with DLL on to  
any valid command;Exit Precharge  
Power Down with DLL frozen to  
commands not requiring a locked  
DLL  
max  
max  
tXP  
-
-
-
-
nCK  
nCK  
(4nCK,6ns)  
(4nCK,6ns)  
max  
(3nCK,5ns)  
4
max  
(3nCK,5ns)  
4
CKE minimum pulse width  
tCKE  
31,32  
Command pass disable delay  
Power Down Entry to Exit Timing  
Timing of ACT command to Power  
Down entry  
tCPDED  
tPD  
-
-
nCK  
nCK  
tCKE(min)  
9*tREFI  
tCKE(min)  
9*tREFI  
6
7
tACTPDEN  
tPRPDEN  
tRDPDEN  
2
2
-
-
-
2
2
-
-
-
nCK  
nCK  
nCK  
Timing of PRE or PREA command  
to Power Down entry  
7
Timing of RD/RDA command to  
Power Down entry  
RL + 4 + 1  
RL + 4 + 1  
Timing of WR command to Power  
Down entry  
tWRPDEN  
MIN = WL + 4 + tWR/tCK (AVG) ; MAX = N/A  
MIN = WL + 4 + WR + 1 ; MAX = N/A  
nCK  
nCK  
4
5
(BL8OTF, BL8MRS, BC4OTF)  
Timing of WRA command to Power  
Down entry  
tWRAPDEN  
(BL8OTF, BL8MRS, BC4OTF)  
Timing of WR command to Power  
Down entry (BC4MRS)  
tWRP  
MIN = WL + 2 + tWR/tCK (AVG) ; MAX = N/A  
MIN = WL + 2 + WR + 1 ; MAX = N/A  
nCK  
nCK  
nCK  
nCK  
4
5
7
- BC4DEN  
tWRAP  
Timing of WRA command to Power  
Down entry (BC4MRS)  
- BC4DEN  
Timing of REF command to Power  
Down entry  
tREFPDEN  
tMRSPDEN  
2
-
-
2
-
-
Timing of MRS command to Power  
Down entry  
tMOD (MIN)  
tMOD (MIN)  
PDA Timing  
Mode Register Set command  
cycle time in PDA mode  
Mode Register Set command  
update delay in PDA mode  
max  
max  
tMRD_PDA  
tMOD_PDA  
-
-
-
-
nCK  
nCK  
(16nCK,10ns)  
(16nCK,10ns)  
tMOD  
tMOD  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 46/53  
ESMT  
M16U4G16256A  
Timing Parameters by Speed Bin for DDR4-2666/3200- continued  
DDR4-2666  
DDR4-3200  
Units  
Parameter  
Symbol  
Note  
Min.  
Max.  
Min.  
Max.  
ODT Timing  
Asynchronous RTT turn-on delay  
(Power-Down with DLL frozen)  
Asynchronous RTT turn-off delay  
(Power-Down with DLL frozen)  
RTT dynamic change skew  
Write Leveling Timing  
tAONAS  
1.0  
9.0  
1.0  
9.0  
ns  
tAOFAS  
tADC  
1.0  
0.3  
9.0  
0.7  
1.0  
9.0  
ns  
0.26  
0.74  
tCK(avg)  
First DQS_t/DQS_n rising edge  
after write leveling mode is  
programmed  
tWLMRD  
tWLDQSEN  
tWLS  
40  
25  
-
-
-
40  
25  
-
-
-
nCK  
nCK  
12  
12  
DQS_t/DQS_n delay after write  
level- ing mode is programmed  
Write leveling setup time from  
rising CK_t, CK_c crossing to  
rising DQS_t/ DQS_n crossing  
Write leveling hold time from rising  
DQS_t/DQS_n crossing to rising  
CK_t, CK_ crossing  
0.13  
0.13  
tCK(avg)  
tWLH  
0.13  
-
0.13  
-
tCK(avg)  
Write leveling output delay  
Write leveling output error  
CA Parity Timing  
tWLO  
0
0
9.5  
2
0
0
9.5  
2
ns  
ns  
tWLOE  
Commands not guaranteed to be  
executed during this time  
Delay from errant command to  
ALERT_n assertion  
tPAR_UN-  
KNOWN  
tPAR_  
-
-
PL  
PL+6ns  
160  
-
-
PL  
PL+6ns  
192  
nCK  
nCK  
nCK  
ALERT_ON  
tPAR_  
Pulse width of ALERT_n signal  
when asserted  
80  
96  
ALERT_PW  
Time from when Alert is asserted  
till controller must start providing  
DES commands in Persistent CA  
parity mode  
tPAR_  
-
71  
-
85  
-
nCK  
nCK  
ALERT_RSP  
Parity Latency  
PL  
5
6
CRC Error Reporting  
CRC error to ALERT_nlatency  
tCRC_ALERT  
CRC_  
3
6
13  
10  
3
6
13  
10  
ns  
CRC ALERT_n pulsewidth  
nCK  
ALERT_PW  
tGEAR_setup  
tGEAR_hold  
Geardown setup time  
Geardown hold time  
tREFI  
2
2
-
-
2
2
-
-
nCK  
nCK  
tRFC1 (min)  
4Gb  
4Gb  
4Gb  
260  
160  
110  
-
-
-
260  
160  
110  
-
-
-
ns  
ns  
ns  
34  
34  
34  
tRFC2 (min)  
tRFC4 (min)  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 47/53  
ESMT  
M16U4G16256A  
Note:  
1.  
Start of internal write transaction is defined as follows :  
For BL8 (Fixed by MRS and on-the-fly): Rising clock edge 4 clock cycles after WL.  
For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after W L.  
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after W L.  
2.  
3.  
4.  
5.  
6.  
7.  
A separate timing parameter will cover the delay from write to read when CRC and DM are simultaneously enabled.  
Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.  
tWR is defined in ns, for calculation of tW RPDEN it is necessary to round up tWR/tCK to the next integer.  
WR in clock cycles as programmed in MR0.  
tREFI depends on TC.  
CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in  
progress, but power-down IDD spec will not be applied until finishing those operations.  
For these parameters, the DDR4 SDRAM device supports tnPARAM[nCK]=RU{tPARAM[ns]/tCK(avg)[ns]}, which is in  
clock cycles assuming all input clock jitter specifications are satisfied.  
8.  
9.  
When CRC and DM are both enabled, tWR_CRC_DM is used in place of tWR.  
10. When CRC and DM are both enabled, tWTR_S_CRC_DM is used in place of tWTR_S.  
11. When CRC and DM are both enabled, tWTR_L_CRC_DM is used in place of tWTR_L.  
12. The max values are system dependent.  
13. DQ to DQS total timing per group where the total includes the sum of deterministic and random timing terms for a  
specified BER. BER spec and measurement method are TBD.  
14. The deterministic component of the total timing. Measurement method TBD.  
15. DQ to DQ static offset relative to strobe per group. Measurement method TBD.  
16. This parameter will be characterized and guaranteed by design.  
17. When the device is operated with the input clock jitter, this parameter needs to be derated by the actual tjit(per)_total of  
the input clock. (output deratings are relative to the SDRAM input clock). Example TBD.  
18. DRAM DBI mode is off.  
19. DRAM DBI mode is enabled. Applicable to x8 and x16 DRAM only.  
20. tQSL describes the instantaneous differential output low pulse width on DQS_t - DQS_c, as measured from on falling  
edge to the next consecutive rising edge.  
21. tQSH describes the instantaneous differential output high pulse width on DQS_t - DQS_c, as measured from on falling  
edge to the next consecutive rising edge.  
22. There is no maximum cycle time limit besides the need to satisfy the refresh interval tREFI.  
23. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling  
edge.  
24. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising  
edge.  
25. Total jitter includes the sum of deterministic and random jitter terms for a specified BER. BER target and measurement  
method are TBD.  
26. The deterministic jitter component out of the total jitter. This parameter is characterized and guaranteed by design.  
27. This parameter has to be even number of clocks.  
28. When CRC and DM are both enabled, tWR_CRC_DM is used in place of tWR.  
29. When CRC and DM are both enabled tWTR_S_CRC_DM is used in place of tWTR_S.  
30. When CRC and DM are both enabled tWTR_L_CRC_DM is used in place of tWTR_L.  
31. After CKE is registered LOW, CKE signal level shall be maintained below VILDC for tCKE specification (Low pulse width).  
32. After CKE is registered HIGH, CKE signal level shall be maintained above VIHDC for tCKE specification (HIGH pulse  
width).  
33. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.  
34. Parameters apply from tCK(avg) min to tCK(avg)max at all standard JEDEC clock period values as stated in the Speed  
Bin Tables.  
35. This parameter must keep consistency with Speed-Bin Tables.  
36. DDR4-1600 AC timing apply if DRAM operates at lower than 1600 MT/s data rate. UI=tCK(avg) min/2.  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 48/53  
ESMT  
M16U4G16256A  
Function Matrix  
DDR4 SDRAM has several features supported by ORG and also by Speed. The following Table is the summary of the features.  
Function Matrix (By ORG. V:Supported, Blank:Not supported)  
Functions  
x4  
V
x8  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
x16  
V
Note  
Write Leveling  
Temperature controlled Refresh  
Low Power Auto Self Refresh  
Fine Granularity Refresh  
Multi Purpose Register  
Data Mask  
V
V
V
V
V
V
V
V
V
Data Bus Inversion  
TDQS  
V
ZQ calibration  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DQ Vref Training  
Per DRAM Addressability  
Mode Register Readout  
CAL  
WRITE CRC  
CA Parity  
Control Gear Down Mode  
Programmable Preamble  
Maximum Power Down Mode  
Boundary Scan Mode  
Additive Latency  
V
V
V
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 49/53  
ESMT  
M16U4G16256A  
Function Matrix (By Speed. V:Supported, Blank:Not supported)  
DLL Off mode  
Functions  
DLL On mode  
Note  
equal or slower  
2133 Mbps  
2400 Mbps  
2666/3200 Mbps  
Write Leveling  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Temperature controlled Refresh  
Low Power Auto Self Refresh  
Fine Granularity Refresh  
Multi Purpose Register  
Data Mask  
Data Bus Inversion  
TDQS  
ZQ calibration  
V
V
DQ Vref Training  
Per DRAM Addressability  
Mode Register Readout  
CAL  
V
WRITE CRC  
CA Parity  
Control Gear Down Mode  
Programmable Preamble ( = 2tCK)  
Maximum Power Down Mode  
Boundary Scan Mode  
V
V
V
V
V
V
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 50/53  
ESMT  
M16U4G16256A  
PACKING DIMENSIONS  
96-BALL  
DDR SDRAM ( 7.5x13 mm )  
D
Pin# A1  
Index  
Side  
SEATING PLANE  
SOLDER BALL  
DETAIL : "A"  
D1  
"A"  
e
o
b
Pin# A1  
Index  
Pin# A1  
Index  
DETAIL : "B"  
"B"  
Dimension in mm  
Symbol  
Dimension in inch  
Min  
Norm  
Max  
1.00  
0.40  
0.50  
7.60  
13.10  
Min  
Norm  
Max  
A
A1  
Φb  
D
0.039  
0.016  
0.020  
0.299  
0.516  
0.30  
0.40  
7.40  
12.90  
0.35  
0.012  
0.016  
0.291  
0.508  
0.014  
0.45  
0.018  
7.50  
0.295  
E
13.00  
0.512  
D1  
E1  
e
6.40 BSC  
12.00 BSC  
0.80 BSC  
0.252 BSC  
0.472 BSC  
0.031 BSC  
Controlling dimension : Millimeter.  
(Revision date : Nov172 2017)  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 51/53  
ESMT  
M16U4G16256A  
Revision History  
Revision  
Date  
Description  
0.1  
2019.08.21  
2019.11.19  
Original  
1.0  
Delete Preliminary  
1. Add speed grade 2600Mbps and 3200Mbps  
2. Correct typo  
1.1  
2020.01.03  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 52/53  
ESMT  
M16U4G16256A  
Important Notice  
All rights reserved.  
No part of this document may be reproduced or duplicated in any form or by  
any means without the prior permission of ESMT.  
The contents contained in this document are believed to be accurate at the  
time of publication. ESMT assumes no responsibility for any error in this  
document, and reserves the right to change the products or specification in  
this document without notice.  
The information contained herein is presented only as a guide or examples  
for the application of our products. No responsibility is assumed by ESMT for  
any infringement of patents, copyrights, or other intellectual property rights of  
third parties which may result from its use. No license, either express, implied  
or otherwise, is granted under any patents, copyrights or other intellectual  
property rights of ESMT or others.  
Any semiconductor devices may have inherently a certain rate of failure. To  
minimize risks associated with customer's application, adequate design and  
operating safeguards against injury, damage, or loss from such failure,  
should be provided by the customer when making application designs.  
ESMT's products are not authorized for use in critical applications such as,  
but not limited to, life support devices or system, where failure or abnormal  
operation may directly affect human lives or cause physical injury or property  
damage. If products described here are to be used for such kinds of  
application, purchaser must do its own quality assurance testing appropriate  
to such applications.  
Elite Semiconductor Memory Technology Inc  
Publication Date : Jan. 2020  
Revision : 1.1 53/53  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY