M52D5121632A-7BG [ESMT]

8M x 16 Bit x 4 Banks Mobile Synchronous DRAM;
M52D5121632A-7BG
型号: M52D5121632A-7BG
厂家: ELITE SEMICONDUCTOR MEMORY TECHNOLOGY INC.    ELITE SEMICONDUCTOR MEMORY TECHNOLOGY INC.
描述:

8M x 16 Bit x 4 Banks Mobile Synchronous DRAM

动态存储器
文件: 总46页 (文件大小:1185K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ESMT  
M52D5121632A  
8M x 16 Bit x 4 Banks  
Mobile Synchronous DRAM  
Mobile SDRAM  
ORDERING INFORMATION  
FEATURES  
ó
ó
ó
ó
1.8V power supply  
LVCMOS compatible with multiplexed address  
Four banks operation  
Product ID  
Max Freq.  
Package  
Comments  
Pb-free  
M52D5121632A-5BG  
M52D5121632A-6BG  
M52D5121632A-7BG  
200MHz 54 Ball FBGA  
166MHz 54 Ball FBGA  
143MHz 54 Ball FBGA  
MRS cycle with address key programs  
Pb-free  
-
CAS Latency (2, 3)  
Pb-free  
-
-
Burst Length (1, 2, 4, 8 & full page)  
Burst Type (Sequential & Interleave)  
ó
ó
EMRS cycle with address  
All inputs are sampled at the positive going edge of the  
system clock  
ó
Special function support  
-
PASR (Partial Array Self Refresh)  
TCSR (Temperature Compensated Self Refresh)  
DS (Driver Strength)  
-
-
-
Deep Power Down (DPD) Mode  
ó
ó
ó
DQM for masking  
Auto & self refresh  
64ms refresh period (8K cycle)  
GENERAL DESCRIPTION  
The M52D5121632A is 536,870,912 bits synchronous high data rate Dynamic RAM organized as 4 x 8,388,608 words by  
16 bits. Synchronous design allows precise cycle controls with the use of system clock I/O transactions are possible on  
every clock cycle. Range of operating frequencies, programmable burst lengths and programmable latencies allow the  
same device to be useful for a variety of high bandwidth, high performance memory system applications.  
BALL CONFIGURATION (TOP VIEW)  
(BGA54, 8mmX8mmX1mm Body, 0.8mm Ball Pitch)  
1
2
3
4
5
6
7
8
9
VDDQ  
DQ15  
VSSQ  
DQ0  
VDD  
A
B
C
D
E
F
VSS  
VSSQ  
VDDQ  
DQ2  
DQ4  
DQ1  
DQ3  
DQ14  
DQ12  
DQ13  
DQ11  
VDDQ  
VSSQ  
VSSQ  
VDD  
VDDQ  
VSS  
DQ6  
DQ10  
DQ8  
DQ9  
NC  
DQ5  
DQ7  
LDQM  
UDQM  
A12  
CLK  
A11  
CKE  
A9  
CAS  
BA0  
RAS  
BA1  
WE  
CS  
G
H
J
A10  
A8  
A7  
A5  
A6  
A4  
A0  
A3  
A1  
A2  
VSS  
VDD  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 1/46  
ESMT  
M52D5121632A  
FUNCTIONAL BLOCK DIAGRAM  
CLK  
CKE  
Clock  
Generator  
Bank D  
Bank C  
Bank B  
Row  
Address  
Address  
Buffer  
&
Mode  
Bank A  
Register  
Refresh  
Counter  
Sense Amplifier  
Column Decoder  
L(U)DQM  
Column  
Address  
Buffer  
&
Refresh  
Counter  
CS  
RAS  
CAS  
WE  
DQ  
Data Control Circuit  
BALL FUNCTION DESCRIPTION  
PIN  
NAME  
System Clock  
INPUT FUNCTION  
CLK  
CS  
Active on the positive going edge to sample all inputs  
Disables or enables device operation by masking or enabling all  
inputs except CLK , CKE and L(U)DQM  
Chip Select  
Masks system clock to freeze operation from the next clock cycle.  
CKE should be enabled at least one cycle prior new command.  
Disable input buffers for power down in standby.  
CKE  
Clock Enable  
Address  
Row / column address are multiplexed on the same pins.  
Row address : RA0~ RA12, column address : CA0~CA9  
A0 ~ A12  
Selects bank to be activated during row address latch time.  
Selects bank for read / write during column address latch time.  
BA0 , BA1  
Bank Select Address  
Latches row addresses on the positive going edge of the CLK with  
RAS low.  
Row Address Strobe  
RAS  
CAS  
Enables row access & precharge.  
Latches column address on the positive going edge of the CLK with  
Column Address Strobe  
CAS low.  
Enables column access.  
Enables write operation and row precharge.  
Write Enable  
WE  
Latches data in starting from CAS , WE active.  
Makes data output Hi-Z, tSHZ after the clock and masks the output.  
Blocks data input when L(U)DQM active.  
L(U)DQM  
Data Input / Output Mask  
DQ0 ~ DQ15  
VDD / VSS  
Data Input / Output  
Data inputs / outputs are multiplexed on the same pins.  
Power and ground for the input buffers and the core logic.  
Power Supply / Ground  
Isolated power supply and ground for the output buffers to provide  
improved noise immunity.  
VDDQ / VSSQ  
NC  
Data Output Power / Ground  
No Connection  
This pin is recommended to be left No Connection on the device.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1  
2/46  
ESMT  
M52D5121632A  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
SYMBOL  
VALUE  
-1.0 ~ 2.6  
-1.0 ~ 2.6  
0 ~ +70  
UNIT  
V
Voltage on any pin relative to VSS  
Voltage on VDD supply relative to VSS  
Operation ambient temperature  
Storage temperature  
V
IN, VOUT  
V
DD, VDDQ  
V
°C  
TA  
°C  
W
TSTG  
-55 ~ +150  
Power dissipation  
P
D
1
Short circuit current  
I
OS  
50  
mA  
Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATING are exceeded.  
Functional operation should be restricted to recommended operating condition.  
Exposure to higher than recommended voltage for extended periods of time could affect device reliability.  
DC OPERATING CONDITION  
Recommended operating conditions (Voltage referenced to VSS = 0V)  
PARAMETER  
Supply voltage  
SYMBOL  
MIN  
1.7  
TYP  
1.8  
1.8  
0
MAX  
1.95  
VDDQ+0.3  
0.3  
UNIT  
NOTE  
V
DD, VDDQ  
IH  
V
V
V
V
V
1
Input logic high voltage  
Input logic low voltage  
Output logic high voltage  
Output logic low voltage  
Input leakage current  
V
0.8 x VDDQ  
-0.3  
2
V
IL  
3
V
OH  
V
DDQ-0.2  
-
-
-
I
OH = -0.1mA  
V
OL  
IL  
-
0.2  
I
OL = 0.1mA  
4
I
µ
A
-2  
-
2
Note: 1. under all conditions, VDDQ must be less than or equal to VDD  
.
2. VIH (max) = 2.2V. The overshoot voltage duration is  
3. VIL (min) = -1.0V. The undershoot voltage duration is  
3ns.  
3ns.  
4. Any input 0V  
V
IN  
V
DDQ  
.
Input leakage currents include Hi-Z output leakage for all bi-directional buffers with tri-state outputs.  
CAPACITANCE (VDD = 1.8V, TA = 25 °C , f = 1MHz)  
PARAMETER  
Input capacitance (A0 ~ A12, BA0 ~ BA1)  
Input capacitance  
SYMBOL  
MIN  
MAX  
UNIT  
C
IN1  
2
5
pF  
C
IN2  
pF  
pF  
2
2
7
7
(CLK, CKE, CS , RAS , CAS , WE &  
L(U)DQM)  
Data input/output capacitance (DQ0 ~ DQ15)  
C
OUT  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 3/46  
ESMT  
M52D5121632A  
DC CHARACTERISTICS  
Recommended operating condition unless otherwise noted  
Version  
Parameter  
Symbol  
Test Condition  
Unit Note  
-5  
-6  
-7  
Burst Length = 1  
Operating Current  
(One Bank Active)  
I
CC1  
65  
60  
55  
mA  
1
t
RC  
t
RC (min), tCC  
t
CC (min), IOL= 0mA  
Precharge Standby  
Current in power-down  
mode  
I
I
CC2P  
CKE  
CKE  
V
V
IL(max), tCC =15ns  
1.2  
1.2  
mA  
mA  
CC2PS  
IL(max), CLK  
V
IL(max), tCC  
= ∞  
CKE  
V
IH(min), CS  
V
IH(min), tCC =10ns  
5
3
mA  
mA  
mA  
I
CC2N  
Precharge Standby  
Current in non  
power-down mode  
Input signals are changed one time during 20ns  
CKE IH(min), CLK  
Input signals are stable  
V
VIL(max), tCC = ∞  
I
I
I
CC2NS  
CC3P  
CKE  
CKE  
CKE  
V
IL(max), tCC =15ns  
IL(max), CLK  
IH(min), CS  
5
5
Active Standby Current  
in power-down mode  
CC3PS  
V
V
IL(max), tCC  
= ∞  
V
VIH(min), tCC=15ns  
Active Standby Current  
in non power-down  
mode  
Input signals are changed one time during 2clks  
All other pins VDD-0.2V or 0.2V  
CKE IH (min), CLK  
Input signals are stable  
OL= 0mA, Page Burst  
All Bank Activated, tCCD = tCCD (min)  
I
I
CC3N  
10  
7
mA  
(One Bank Active)  
V
VIL(max), tCC= ∞  
mA  
mA  
CC3NS  
I
Operating Current  
(Burst Mode)  
65  
85  
55  
75  
50  
70  
1
2
I
I
CC4  
CC5  
Refresh Current  
tRFC  
tRFC(min)  
mA  
°C  
45  
85  
TCSR range  
Full array  
1/2 array  
1.4  
1.3  
1.2  
1.1  
1
1.5  
1.4  
1.3  
1.2  
1.1  
Self Refresh Current  
I
CC6  
CKE  
0.2V  
mA  
uA  
1/4 array  
1/8 array  
1/16 array  
Deep Power Down  
Current  
10  
I
CC7  
CKE  
0.2V  
Note: 1.Measured with outputs open. Addresses are changed only one time during tCC(min).  
2.Refresh period is 64ms. Addresses are changed only one time during tCC(min).  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 4/46  
ESMT  
M52D5121632A  
AC OPERATING TEST CONDITIONS (VDD= 1.7V~1.95V)  
Parameter  
Input levels (Vih/Vil)  
Value  
0.9 x VDDQ / 0.2  
0.5 x VDDQ  
tr / tf = 1 / 1  
0.5 x VDDQ  
See Fig.2  
Unit  
V
Input timing measurement reference level  
Input rise and fall time  
V
ns  
V
Output timing measurement reference level  
Output load condition  
1.8V  
Vtt =0.5x VDDQ  
13.9K  
50  
Output  
VOH(DC) = VDDQ-0.2V, IOH = -0.1mA  
VOL(DC) = 0.2V, IOL = 0.1mA  
Output  
Z0=50  
10.6K  
20 pF  
20 pF  
(Fig.2) AC Output Load Circuit  
(Fig.1) DC Output Load circuit  
OPERATING AC PARAMETER  
(AC operating conditions unless otherwise noted)  
Version  
Parameter  
Symbol  
Unit  
Note  
-5  
10  
15  
-6  
12  
18  
-7  
14  
21  
Row active to row active delay  
t
RRD(min)  
RCD(min)  
ns  
ns  
1
1
t
RAS to CAS delay  
Row precharge time  
t
RP(min)  
15  
40  
18  
42  
100  
60  
96  
1
21  
42  
ns  
ns  
1
1
t
RAS(min)  
Row active time  
t
RAS(max)  
RC(min)  
us  
-
@ Operating  
@ Auto refresh  
t
55  
96  
63  
96  
ns  
1
Row cycle time  
t
RFC(min)  
CDL(min)  
RDL(min)  
ns  
1 , 5  
2
Last data in to new col. Address delay  
Last data in to row precharge  
Last data in to burst stop  
t
t
CLK  
CLK  
CLK  
CLK  
3
2
t
BDL(min)  
1
2
Col. Address to col. Address delay  
t
CCD(min)  
1
3
Mode Register command to Active or Refresh  
Command  
t
MRD(min)  
2
CLK  
ms  
-
Refresh period(8,192 rows)  
t
REF(max)  
64  
2
6
CAS Latency = 3  
CAS Latency = 2  
Number of valid output data  
ea  
4
1
Note:  
1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then  
rounding off to the next higher integer.  
2. Minimum delay is required to complete write.  
3. All parts allow every cycle column address change.  
4. In case of row precharge interrupt, auto precharge and read burst stop.  
The earliest a precharge command can be issued after a Read command without the loss of data is CL+BL-2 clocks  
5. A new command may be given tRFC after self refresh exit.  
6. A maximum of eight consecutive AUTO REFRESH commands (with tRFCmin) can be posted to any given SDRAM, and the  
maximum absolute interval between any AUTO REFRESH command and the next AUTO REFRESH command is 8x7.8μs.)  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 5/46  
ESMT  
M52D5121632A  
AC CHARACTERISTICS (AC operating conditions unless otherwise noted)  
-5  
-6  
-7  
Parameter  
Symbol  
Unit Note  
Min  
5
Max  
Min  
6
Max  
Min  
7
Max  
CAS Latency = 3  
CAS Latency = 2  
CAS Latency = 3  
CLK cycle time  
t
CC  
1000  
1000  
1000  
ns  
ns  
1
1
9
9
9
4.5  
8
5
8
6
8
CLK to valid output delay  
t
SAC  
CAS Latency = 2  
Output data hold time  
CLK high pulse width  
CLK low pulse width  
Input setup time  
t
OH  
CH  
2
2
2.6  
2.5  
2.5  
1.5  
1
2.6  
2.5  
2.5  
1.5  
1
ns  
ns  
ns  
ns  
ns  
ns  
2
3
3
3
3
2
t
t
CL  
SS  
2
t
1.5  
1
Input hold time  
t
SH  
CLK to output in Low-Z  
t
SLZ  
1
1
1
CAS Latency = 3  
CAS Latency = 2  
4.5  
8
5
8
6
8
CLK to output in Hi-Z  
t
SHZ  
ns  
*All AC parameters are measured from half to half.  
Note: 1. Parameters depend on programmed CAS latency.  
2. If clock rising time is longer than 1ns, (tr/2-0.5)ns should be added to the parameter.  
3. Assumed input rise and fall time (tr & tf)=1ns.  
If tr & tf is longer than 1ns, transient time compensation should be considered, i.e., [(tr+ tf)/2-1]ns should be added to  
the parameter.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 6/46  
ESMT  
M52D5121632A  
SIMPLIFIED TRUTH TABLE  
A12~A11,  
A9~A0  
BA0  
BA1  
COMMAND  
CKEn-1 CKEn  
DQM  
X
Note  
CS RAS CAS WE  
A10/AP  
Mode Register set  
Register  
H
H
X
L
L
L
L
L
L
L
OP CODE  
X
1,2  
Extended Mode Register  
set  
Auto Refresh  
H
L
3
3
3
3
H
X
Entry  
Self  
Refresh  
L
H
L
H
X
L
H
X
H
H
X
H
X
X
X
Refresh  
Exit  
L
H
X
X
Bank Active & Row Addr.  
H
V
V
Row Address  
Column  
Address  
(A0~A9)  
Column  
Address  
(A0~A9)  
Auto Precharge Disable  
Auto Precharge Enable  
Auto Precharge Disable  
Auto Precharge Enable  
L
H
L
4
4,5  
4
Read &  
H
H
X
X
L
L
H
H
L
L
H
L
X
X
Column Address  
Write &  
V
Column Address  
H
4,5  
6
Burst Stop  
Precharge  
H
H
X
X
L
L
H
L
H
H
L
L
X
X
X
Bank Selection  
All Banks  
V
X
L
X
H
H
L
X
H
X
X
H
X
X
H
X
Entry  
H
L
X
Clock Suspend or  
X
X
Active Power Down Mode  
Exit  
L
H
L
X
X
X
H
L
X
H
X
H
X
X
H
X
H
X
H
X
H
X
H
Entry  
H
Precharge Power Down Mode  
H
L
Exit  
L
H
H
H
X
X
V
X
DQM  
X
X
7
H
L
L
X
H
H
X
H
L
No Operating Command  
Entry  
Exit  
H
L
L
H
X
X
X
Deep Power Down Mode  
X
H
X
X
X
(V = Valid, X = Don’t Care. H = Logic High, L = Logic Low)  
Note:  
1.OP Code: Operating Code  
A0~A12 & BA0~BA1: Program keys. (@ MRS). BA1=0 for MRS and BA1=1 for EMRS  
2.MRS/EMRS can be issued only at all banks precharge state.  
A new command can be issued after 2 CLK cycles of MRS/EMRS.  
3.Auto refresh functions are as same as CBR refresh of DRAM.  
The automatical precharge without row precharge of command is meant by “Auto”.  
Auto/self refresh can be issued only at all banks idle state.  
4.BA0~BA1: Bank select addresses.  
If both BA0 and BA1 are “Low” at read, write, row active and precharge, bank A is selected.  
If both BA0 is “Low” and BA1 is “High” at read, write, row active and precharge, bank B is selected.  
If both BA0 is “High” and BA1 is “Low” at read, write, row active and precharge, bank C is selected.  
If both BA0 and BA1 are “High” at read, write, row active and precharge, bank D is selected  
If A10/AP is “High” at row precharge, BA0 and BA1 is ignored and all banks are selected.  
5.During burst read or write with auto precharge, new read/write command can not be issued.  
Another bank read/write command can be issued after the end of burst.  
New row active of the associated bank can be issued at tRP after the end of burst.  
6.Burst stop command is valid at every burst length.  
7.DQM sampled at positive going edge of a CLK and masks the data-in at the very CLK (write DQM latency is 0), but  
makes Hi-Z state the data-out of 2 CLK cycles after.(Read DQM latency is 2)  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 7/46  
ESMT  
M52D5121632A  
MODE REGISTER FIELD TABLE TO PROGRAM MODES  
Register Programmed with MRS  
Address BA0 BA1  
Function  
A12~A10/AP  
RFU  
A9  
A8~A7  
TM  
A6  
A5  
A4  
A3  
BT  
A2  
A1  
A0  
0
0
W.B.L  
CAS Latency  
Burst Length  
Test Mode  
Type  
CAS Latency  
Burst Type  
Burst Length  
A8  
0
A7  
A6  
A5  
0
A4  
0
Latency  
Reserved  
Reserved  
2
A3  
Type  
A2  
0
A1  
0
A0  
0
BT = 0  
BT = 1  
0
1
0
1
Mode Register Set  
Reserved  
0
0
0
0
1
1
1
1
0
1
Sequential  
Interleave  
1
2
4
8
1
2
4
8
0
0
1
0
0
1
1
Reserved  
1
0
0
1
0
1
Reserved  
1
1
3
0
1
1
Write Burst Length  
Length  
0
0
Reserved  
Reserved  
Reserved  
Reserved  
1
0
0
Reserved Reserved  
Reserved Reserved  
Reserved Reserved  
Full Page Reserved  
A9  
0
0
1
1
0
1
Burst  
1
0
1
1
0
1
Single Bit  
1
1
1
1
1
Full Page Length: 1024  
Note:  
1. RFU (Reserved for future use) should stay “0” during MRS cycle.  
2. If A9 is high during MRS cycle, “Burst Read Single Bit Write” function will be enabled.  
3. The full column burst (1024 bit) is available only at sequential mode of burst type.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 8/46  
ESMT  
M52D5121632A  
EXTENDED MODE REGISTER SET (EMRS)  
The extended mode register stores for selecting PASR; DS. The extended mode register set must be done before any active  
command after the power up sequence. The extended mode register is written by asserting low on CS ,RAS , CAS , WE and  
high on BA1,low on BA0(The SDRAM should be in all bank precharge with CKE already high prior to writing into the extended  
more register). The state of address pins  
A0~An in the same cycle as CS ,RAS , CAS , WE going low is written in the extended mode register. Refer to the table for  
specific codes.  
The extended mode register can be changed by using the same command and clock cycle requirements during operations as  
long as all banks are in the idle state.  
Internal Temperature Compensated Self Refresh (TCSR)  
Note:  
1. In order to save power consumption, Mobile-DRAM includes the internal temperature sensor and control units to control the  
self refresh cycle automatically according to the device temperature.  
2. If the EMRS for external TCSR is issued by the controller, this EMRS code for TCSR is ignored.  
BA1 BA0  
0*  
A12 ~ A8  
0*  
A7 A6 A5 A4 A3  
DS TCSR  
A2  
A1  
PASR  
A0 Address bus  
Extended Mode Register Set  
1
A2-A0  
000  
Self Refresh Coverage  
Full array  
001  
1/2 array (BA1=0)  
1/4 array  
010  
(BA0=BA1=0)  
011  
100  
Reserved  
PASR  
Reserved  
1/8 array  
101  
(BA1=BA0= Row Addr MSB** = 0)  
1/16 array  
110  
111  
(BA1=BA0= Row Addr 2 MSB = 0)  
Reserved  
Internal TCSR  
A7-A5  
Driver Strength  
Full Strength  
1/2 Strength  
1/4 Strength  
1/8 Strength  
3/4 Strength  
000  
001  
010  
011  
100  
DS  
Note: * BA0 and A12~ A8 should stay “0” during EMRS cycle  
** MSB: most significant bit  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1  
9/46  
ESMT  
M52D5121632A  
BURST SEQUENCE (BURST LENGTH = 4)  
Initial Address  
Sequential  
Interleave  
A1  
A0  
0
0
0
1
2
3
1
2
3
0
2
3
0
1
3
0
1
2
0
1
2
3
1
0
3
2
2
3
0
1
3
2
1
0
0
1
1
0
1
1
BURST SEQUENCE (BURST LENGTH = 8)  
Initial Address  
Sequential  
Interleave  
A2  
A1  
A0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
0
2
3
4
5
6
7
0
1
3
4
5
6
7
0
1
2
4
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
6
7
0
1
2
3
4
5
6
0
1
0
3
2
5
4
7
6
2
3
2
1
0
7
6
5
4
4
5
6
7
0
1
2
3
5
4
7
6
1
0
3
2
6
7
6
5
4
3
2
1
0
7
0
1
2
3
4
5
1
2
3
4
5
6
7
3
0
1
6
7
4
5
7
4
5
2
3
0
1
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 10/46  
ESMT  
M52D5121632A  
DEVICE OPERATIONS  
CLOCK (CLK)  
MODE REGISTER SET (MRS)  
The clock input is used as the reference for all SDRAM  
operations. All operations are synchronized to the positive  
going edge of the clock. The clock transitions must be  
monotonic between VIL and VIH. During operation with CKE  
high all inputs are assumed to be in valid state (low or high)  
for the duration of setup and hold time around positive edge  
of the clock for proper functionality and ICC specifications.  
The mode register stores the data for controlling the  
various operating modes of SDRAM. It programs the  
CAS latency, burst type, burst length, test mode and  
various vendor specific options to make SDRAM useful  
for variety of different applications. The default value of  
the mode register is not defined, therefore the mode  
register must be written after power up to operate the  
SDRAM. The mode register is written by asserting low  
on CS , RAS , CAS and WE (The SDRAM should  
be in active mode with CKE already high prior to writing  
the mode register). The state of address pins A0~A12  
CLOCK ENABLE(CKE)  
The clock enable (CKE) gates the clock onto SDRAM. If  
CKE goes low synchronously with clock (set-up and hold  
time same as other inputs), the internal clock suspended  
from the next clock cycle and the state of output and burst  
address is frozen as long as the CKE remains low. All other  
inputs are ignored from the next clock cycle after CKE goes  
low. When all banks are in the idle state and CKE goes low  
synchronously with clock, the SDRAM enters the power  
down mode from the next clock cycle. The SDRAM remains  
in the power down mode ignoring the other inputs as long as  
CKE remains low. The power down exit is synchronous as  
the internal clock is suspended. When CKE goes high at  
least “1CLK + tSS” before the high going edge of the clock,  
then the SDRAM becomes active from the same clock edge  
accepting all the input commands.  
and BA0~BA1 in the same cycle as CS , RAS , CAS  
and WE going low is the data written in the mode  
register. Two clock cycles is required to complete the  
write in the mode register. The mode register contents  
can be changed using the same command and clock  
cycle requirements during operation as long as all banks  
are in the idle state. The mode register is divided into  
various fields into depending on functionality. The burst  
length field uses A0~A2, burst type uses A3, CAS  
latency (read latency from column address) use A4~A6,  
vendor specific options or test mode use A7~A8,  
A10~A12 and BA1~BA0. The write burst length is  
programmed using A9. A7~A8, A10/AP~A12 and  
BA0~BA1 must be set to low for normal SDRAM  
operation. Refer to the table for specific codes for  
various burst length, burst type and CAS latencies.  
BANK ADDRESSES (BA0~BA1)  
This SDRAM is organized as four independent banks of  
8,388,608 words x 16 bits memory arrays. The BA0~BA1  
inputs are latched at the time of assertion of RAS and  
CAS to select the bank to be used for the operation. The  
banks addressed BA0~BA1 are latched at bank active, read,  
write, mode register set and precharge operations.  
ADDRESS INPUTS (A0~A12)  
The 23 address bits are required to decode the 8,388,608  
word locations are multiplexed into 13 address input pins  
(A0~A12). The 13 row addresses are latched along with  
RAS and BA0~BA1 during bank active command. The 10  
bit column addresses are latched along with CAS , WE  
and BA0~BA1 during read or with command.  
NOP and DEVICE DESELECT  
When RAS , CAS and WE are high, The SDRAM  
performs no operation (NOP). NOP does not initiate any new  
operation, but is needed to complete operations which  
require more than single clock cycle like bank activate, burst  
read, auto refresh, etc. The device deselect is also a NOP  
and is entered by asserting CS high. CS high disables  
the command decoder so that RAS , CAS , WE and all  
the address inputs are ignored.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1  
11/46  
ESMT  
M52D5121632A  
DEVICE OPERATIONS (Continued)  
BANK ACTIVATE  
and WE with valid column address, a write burst is  
initiated. The data inputs are provided for the initial  
address in the same clock cycle as the burst write  
command. The input buffer is deselected at the end of  
the burst length, even though the internal writing can be  
completed yet. The writing can be complete by issuing a  
burst read and DQM for blocking data inputs or burst  
write in the same or another active bank. The burst stop  
command is valid at every burst length. The write burst  
can also be terminated by using DQM for blocking data  
and procreating the bank tRDL after the last data input to  
be written into the active row. See DQM OPERATION  
also.  
The bank activate command is used to select a random row  
in an idle bank. By asserting low on RAS and CS with  
desired row and bank address, a row access is initiated. The  
read or write operation can occur after a time delay of tRCD  
(min) from the time of bank activation. tRCD is the internal  
timing parameter of SDRAM, therefore it is dependent on  
operating clock frequency. The minimum number of clock  
cycles required between bank activate and read or write  
command should be calculated by dividing tRCD (min) with  
cycle time of the clock and then rounding of the result to the  
next higher integer. The SDRAM has four internal banks in  
the same chip and shares part of the internal circuitry to  
reduce chip area, therefore it restricts the activation of four  
banks simultaneously. Also the noise generated during  
sensing of each bank of SDRAM is high requiring some time  
for power supplies to recover before another bank can be  
sensed reliably. tRRD (min) specifies the minimum time  
required between activating different bank. The number of  
clock cycles required between different bank activation must  
be calculated similar to tRCD specification. The minimum time  
required for the bank to be active to initiate sensing and  
restoring the complete row of dynamic cells is determined by  
DQM OPERATION  
The DQM is used mask input and output operations. It  
works similar to OE during operation and inhibits  
writing during write operation. The read latency is two  
cycles from DQM and zero cycle for write, which means  
DQM masking occurs two cycles later in read cycle and  
occurs in the same cycle during write cycle. DQM  
operation is synchronous with the clock. The DQM  
signal is important during burst interrupts of write with  
read or precharge in the SDRAM. Due to asynchronous  
nature of the internal write, the DQM operation is critical  
to avoid unwanted or incomplete writes when the  
complete burst write is required. Please refer to DQM  
timing diagram also.  
t
RAS (min). Every SDRAM bank activate command must  
satisfy tRAS (min) specification before a precharge command  
to that active bank can be asserted. The maximum time any  
bank can be in the active state is determined by tRAS (max)  
and tRAS (max) can be calculated similar to tRCD specification.  
BURST READ  
PRECHARGE  
The burst read command is used to access burst of data on  
consecutive clock cycles from an active row in an active  
bank. The burst read command is issued by asserting low on  
The precharge is performed on an active bank by  
asserting low on clock cycles required between bank  
activate and clock cycles required between bank  
CS and RAS with WE being high on the positive edge  
of the clock. The bank must be active for at least tRCD (min)  
before the burst read command is issued. The first output  
appears in CAS latency number of clock cycles after the  
issue of burst read command. The burst length, burst  
sequence and latency from the burst read command is  
determined by the mode register which is already  
programmed. The burst read can be initiated on any column  
address of the active row. The address wraps around if the  
initial address does not start from a boundary such that  
number of outputs from each I/O are equal to the burst  
length programmed in the mode register. The output goes  
into high-impedance at the end of burst, unless a new burst  
read was initiated to keep the data output gapless. The burst  
read can be terminated by issuing another burst read or  
burst write in the same bank or the other active bank or a  
precharge command to the same bank. The burst stop  
command is valid at every page burst length.  
activate and CS , RAS , WE and A10/AP with valid  
BA0~BA1 of the bank to be precharged. The precharge  
command can be asserted anytime after tRAS (min) is  
satisfied from the bank active command in the desired  
bank. tRP is defined as the minimum number of clock  
cycles required to complete row precharge is calculated  
by dividing tRP with clock cycle time and rounding up to  
the next higher integer. Care should be taken to make  
sure that burst write is completed or DQM is used to  
inhibit writing before precharge command is asserted.  
The maximum time any bank can be active is specified  
by tRAS (max). Therefore, each bank activates command.  
At the end of precharge, the bank enters the idle state  
and is ready to be activated again. Entry to power-down,  
Auto refresh, Self refresh and Mode register set etc. is  
possible only when all banks are in idle state.  
BURST WRITE  
The burst write command is similar to burst read command  
and is used to write data into the SDRAM on consecutive  
clock cycles in adjacent addresses depending on burst  
length and burst sequence. By asserting low on CS , CAS  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1  
12/46  
ESMT  
M52D5121632A  
DEVICE OPERATIONS (Continued)  
AUTO PRECHARGE  
SELF REFRESH  
The precharge operation can also be performed by using  
auto precharge. The SDRAM internally generates the timing  
to satisfy tRAS (min) and “tRP” for the programmed burst length  
and CAS latency. The auto precharge command is issued at  
the same time as burst write by asserting high on A10/AP,  
the bank is precharge command is asserted. Once auto  
precharge command is given, no new commands are  
possible to that particular bank until the bank achieves idle  
state.  
The self refresh is another refresh mode available in the  
SDRAM. The self refresh is the preferred refresh mode  
for data retention and low power operation of SDRAM.  
In self refresh mode, the SDRAM disables the internal  
clock and all the input buffers except CKE. The refresh  
addressing and timing is internally generated to reduce  
power consumption. The self refresh mode is entered  
from all banks idle state by asserting low on CS ,  
RAS , CAS and CKE with high on WE . Once the self  
refresh mode is entered, only CKE state being low  
matters, all the other inputs including clock are ignored  
to remain in the refresh.  
The self refresh is exited by restarting the external clock  
and then asserting high on CKE. This must be followed  
by NOP’s for a minimum time of tRFC before the SDRAM  
reaches idle state to begin normal operation. 8K cycles  
of burst auto refresh is required immediately before self  
refresh entry and immediately after self refresh exit.  
ALL BANKS PRECHARGE  
All banks can be precharged at the same time by using  
Precharge all command. Asserting low on CS ,RAS , and  
WE with high on A10/AP after all banks have satisfied tRAS  
(min) requirement, performs precharge on all banks. At the  
end of tRP after performing precharge all, all banks are in idle  
state.  
AUTO REFRESH  
The storage cells of SDRAM need to be refreshed every  
64ms to maintain data. An auto refresh cycle accomplishes  
refresh of a single row of storage cells. The internal counter  
increments automatically on every auto refresh cycle to  
refresh all the rows. An auto refresh command is issued by  
asserting low on CS , RAS and CAS with high on CKE  
and WE . The auto refresh command can only be asserted  
with all banks being in idle state and the device is not in  
power down mode (CKE is high in the previous cycle). The  
time required to complete the auto refresh operation is  
specified by tRFC (min). The minimum number of clock cycles  
required can be calculated by driving tRFC with clock cycle  
time and them rounding up to the next higher integer. The  
auto refresh command must be followed by NOP’s until the  
auto refresh operation is completed. The auto refresh is the  
preferred refresh mode when the SDRAM is being used for  
normal data transactions. The auto refresh cycle can be  
performed once in 7.8us.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1  
13/46  
ESMT  
M52D5121632A  
COMMANDS  
Mode register set command  
(
CS  
,
RAS  
,
CAS  
,
WE BA1, BA0 = Low)  
,
The DRAM has a mode register that defines how the device operates. In this  
command, A0 through BA0 are the data input pins. After power on, the mode register  
set command must be executed to initialize the device.  
The mode register can be set only when all banks are in idle state. During 2CLK (tMRD  
)
following this command, the DRAM cannot accept any other commands.  
Extended Mode register set command  
( CS ,RAS , CAS , WE , BA0 = Low ; BA1= High)  
The DRAM has an extended mode register that defines how to set PASR, DS.  
Activate command  
( CS ,RAS = Low, CAS , WE = High)  
The DRAM has four banks, each with 8,192 rows.  
This command activates the bank selected by BA1 and BA0 (BS) and a row address  
selected by A0 through A12.  
This command corresponds to a conventional DRAM’s RAS falling.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1  
14/46  
ESMT  
M52D5121632A  
Precharge command  
( CS ,RAS , WE = Low, CAS = High )  
This command begins precharge operation of the bank selected by BA1 and BA0 (BS).  
When A10 is High, all banks are precharged, regardless of BA1 and BA0. When A10  
is Low, only the bank selected by BA1 and BA0 is precharged.  
After this command, the DRAM can’t accept the activate command to the precharging  
bank during tRP (precharge to activate command period).  
This command corresponds to a conventional DRAM’s RAS rising.  
Write command  
( CS , CAS , WE = Low, RAS = High)  
If the mode register is in the burst write mode, this command sets the burst start  
address given by the column address to begin the burst write operation. The first write  
data in burst can be input with this command with subsequent data on following  
clocks.  
Read command  
( CS , CAS = Low, RAS , WE = High)  
Read data is available after CAS latency requirements have been met.  
This command sets the burst start address given by the column address.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1  
15/46  
ESMT  
M52D5121632A  
CBR (auto) refresh command  
( CS ,RAS , CAS = Low, WE , CKE = High)  
This command is a request to begin the CBR refresh operation. The refresh address is  
generated internally.  
Before executing CBR refresh, all banks must be precharged.  
After this cycle, all banks will be in the idle (precharged) state and ready for a row activate  
command.  
During tRFC period (from refresh command to refresh or activate command), the DRAM  
cannot accept any other command.  
Self refresh entry command  
( CS ,RAS , CAS , CKE = Low , WE = High)  
After the command execution, self refresh operation continues while CKE remains low.  
When CKE goes to high, the DRAM exits the self refresh mode.  
During self refresh mode, refresh interval and refresh operation are performed internally,  
so there is no need for external control.  
Before executing self refresh, all banks must be precharged.  
Burst stop command  
( CS , WE = Low, RAS , CAS = High)  
This command terminates the current burst operation.  
Burst stop is valid at every burst length.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1  
16/46  
ESMT  
M52D5121632A  
No operation  
( CS = Low,RAS , CAS , WE = High)  
This command is not an execution command. No operations begin or terminate by this  
command.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1  
17/46  
ESMT  
M52D5121632A  
BASIC FEATURE AND FUNCTION DESCRIPTIONS  
1. CLOCK Suspend  
1 ) C l o c k S u s p e n d e d D u r i n g W r i t e ( B L = 4 )  
2 ) C l o c k S u s p e n d e d D u r i n g R e a d ( B L = 4 )  
C L K  
C M D  
C K E  
W R  
R D  
M a s ke d b y C K E  
I n t e rn a l  
C L K  
D Q ( C L 3 )  
D 2  
D 3  
D 0  
D 1  
Q3  
Q0  
Q1  
Q2  
N o t W r i t t e n  
Suspe nd ed D ou t  
2. DQM Operation  
2 ) R e a d M a s k ( B L = 4 )  
1 ) W r i t e M a s k ( B L = 4 )  
C L K  
C M D  
W R  
R D  
D Q M  
M a s k e d b y D Q M  
M a s k e d b y D Q M  
H i - Z  
D Q ( C L 3 )  
D 3  
D 1  
Q1  
D 0  
Q2  
Q3  
D Q M t o D a t a - i n Ma s k= 0  
D Q M t o D a ta -o u t M a sk = 2  
* N o t e 2  
3 ) D Q M w i t h c l c o k s u s p e n d e d ( F u l l P a g e R e a d )  
C L K  
C M D  
C K E  
R D  
I n te rn a l  
C L K  
D Q M  
H i - Z  
H i - Z  
H i - Z  
Q3  
Q7  
Q1  
Q5  
Q 8  
Q 6  
D Q ( C L 3 )  
*Note: 1. CKE to CLK disable/enable = 1CLK.  
2. DQM masks data out Hi-Z after 2CLKs which should masked by CKE ”L”.  
3. DQM masks both data-in and data-out.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 18/46  
ESMT  
M52D5121632A  
3. CAS Interrupt (I)  
* N o t e 1  
1 ) R e a d i n t e r r u p t e d b y R e a d ( B L = 4 )  
C L K  
C M D  
R D  
A
R D  
B
A D D  
D Q ( C L 3 )  
Q B 1  
Q A 0 Q B 0  
Q B 2 Q B 3  
t
C C D  
* N o t e  
2
2 ) W r i t e i n t e r r u p t e d b y W r i t e ( B L = 2 )  
3 ) W r i t e i n t e r r u p t e d b y R e a d ( B L = 2 )  
C L K  
C M D  
W R  
W R  
R D  
W R  
t
C C D * N o t e 2  
t
C C D * N o t e  
2
A
A D D  
D Q  
B
A
B
D Q ( C L 3 )  
D A 0 D B 0  
D B 1  
D A 0  
D B 1  
D B 0  
t
C D L  
t
C D L  
* N o t e  
3
* N o t e  
3
*Note: 1. By “interrupt” is meant to stop burst read/write by external before the end of burst.  
By ” CAS interrupt ”, to stop burst read/write by CAS access; read and write.  
2. tCCD:CAS to CAS delay. (=1CLK)  
3. tCDL: Last data in to new column address delay. (=1CLK)  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 19/46  
ESMT  
M52D5121632A  
4. CAS Interrupt (II): Read Interrupted by Write & DQM  
CL =3 , BL =4  
C L K  
i) CM D  
RD  
W R  
D 0  
D QM  
D Q  
D2  
D 3  
D 1  
W R  
i i) CM D  
R D  
D QM  
D Q  
D0  
D3  
D1  
D 2  
i ii) C MD  
WR  
R D  
RD  
RD  
D QM  
DQ  
D0  
D3  
D 2  
D 1  
i v) CM D  
W R  
DQ M  
D Q  
H i- Z  
D2  
D 3  
D 0  
D 1  
v) C M D  
W R  
D QM  
D Q  
Hi- Z  
Q0  
D 0  
D 1  
D2  
D 3  
* N o t e 1  
*Note: 1. To prevent bus contention, there should be at least one gap between data in and data out.  
5. Write Interrupted by Precharge & DQM  
C L K  
* N o t e 3  
C M D  
D Q M  
W R  
D 0  
P R E  
* N o t e 2  
D Q  
D 3  
D 1  
t
R D L ( m i n )  
M a s k e d b y D Q M  
*Note: 1. To prevent bus contention, DQM should be issued which makes at least one gap between data in and data out.  
2. To inhibit invalid write, DQM should be issued.  
3. This precharge command and burst write command should be of the same bank, otherwise it is not precharge  
interrupt but only another bank precharge of four banks operation.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 20/46  
ESMT  
M52D5121632A  
6. Precharge  
1 ) N o r m a l W r i t e ( B L = 4 )  
2 ) N o r m a l R e a d ( B L = 4 )  
C L K  
C M D  
D Q  
C L K  
C M D  
P R E  
P R E C L= 3  
W R  
D 0  
R D  
* N o t e 2  
Q3  
Q1  
D 1  
D 2  
D 3  
D Q ( C L 3 )  
Q0  
Q 2  
t
R D L  
* N o t e 1  
.
7. Auto Precharge  
1 ) N o r m a l W r i t e ( B L = 4 )  
2 ) N o r m a l R e a d ( B L = 4 )  
C L K  
C L K  
C MD  
C M D  
D Q  
W R  
R D  
D 0  
D 2  
D 1  
D 3  
D Q ( C L 3 )  
D 3  
D 0  
D 2  
D 1  
t
R D L ( m i n )  
* N o t e 3  
* N o t e 3  
A u to P r e ch a r ge s ta r ts  
A u t o P re ch a rg e st a rt s  
*Note: 1. tRDL: Last data in to row precharge delay.  
2. Number of valid output data after row precharge: 2 for CAS Latency = 3 respectively.  
3. The row active command of the precharge bank can be issued after tRP from this point.  
The new read/write command of other activated bank can be issued from this point.  
At burst read/write with auto precharge, CAS interrupt of the same/another bank is illegal.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 21/46  
ESMT  
M52D5121632A  
8. Burst Stop & Interrupted by Precharge  
1 ) W r i t e B u r s t S t o p ( B L = 8 )  
1 ) W r i t e i n t e r r u p t e d b y p r e c h a r g e ( B L = 4 )  
C L K  
C L K  
* N o t e 3  
* N o t e 4  
C M D  
W R  
C M D  
W R  
D 0  
P R E  
S T O P  
t
R D L  
D Q M  
D Q  
D Q M  
D Q  
M a s k  
M a s k  
D 0  
D 1  
D 3  
D 1  
D 2  
D 4  
D 5  
* N o t e 1  
t
B D L  
2 ) R e a d B u r s t S t o p ( B L = 4 )  
2 ) R e a d i n t e r r u p t e d b y p r e c h a r g e ( B L = 4 )  
C L K  
C L K  
* N o t e 5  
C M D  
C M D  
R D  
P R E  
Q1  
R D  
S TO P  
* N o t e 2  
D Q ( C L 3 )  
Q 0  
Q 1  
D Q ( C L 3 )  
Q3  
Q 0  
Q 2  
9. MRS  
1 )M o d e R e g is t e r S e t  
C L K  
*N o t e 6  
C MD  
AC T  
PR E  
M RS  
t
RP  
2 C L K  
*Note: 1. tBDL: 1 CLK; Last data in to burst stop delay.  
Read or write burst stop command is valid at every burst length.  
2. Number of valid output data after burst stop: 2 for CAS latency = 3 respectiviely.  
3. Write burst is terminated. tRDL determinates the last data write.  
4. DQM asserted to prevent corruption of locations D2 and D3.  
5. Precharge can be issued here or earlier (satisfying tRAS min delay) with DQM.  
6. PRE: All banks precharge, if necessary.  
MRS can be issued only at all banks precharge state.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 22/46  
ESMT  
M52D5121632A  
10. Clock Suspend Exit & Power Down Exit  
1 ) C l o c k S u s p e n d ( = Ac t i v e P o w e r D o w n ) E x i t  
2 ) P o w e r D o w n ( = P r e c h a r g e P o w e r D o w n )  
CLK  
CK E  
CLK  
CK E  
t
S S  
t
S S  
Int ernal  
CLK  
Int ernal  
C LK  
* N o t e 1  
* N o t e 2  
C M D  
R D  
C M D  
NO P  
A C T  
11. Auto Refresh & Self Refresh  
* N o t e 3  
1 ) A u t o Re f r e s h  
&
S e lf R e f r e s h  
C L K  
* N o t e 4  
* N o t e 5  
CM D  
PR E  
CM D  
AR  
C KE  
t
RP  
t
R F C  
* N o t e 6  
2 ) S e l f Re f r e s h  
C LK  
CMD  
* N o t e 4  
SR  
PR E  
C M D  
C KE  
t
R P  
t
R F C  
*Note: 1. Active power down: one or more banks active state.  
2. Precharge power down: all banks precharge state.  
3. The auto refresh is the same as CBR refresh of conventional DRAM.  
No precharge commands are required after auto refresh command.  
During tRFC from auto refresh command, any other command can not be accepted.  
4. Before executing auto/self refresh command, all banks must be idle state.  
5. MRS, Bank Active, Auto/Self Refresh, Power Down Mode Entry.  
6. During self refresh entry, refresh interval and refresh operation are performed internally.  
After self refresh entry, self refresh mode is kept while CKE is low.  
During self refresh entry, all inputs expect CKE will be don’t cared, and outputs will be in Hi-Z state.  
For the time interval of tRFC from self refresh exit command, any other command can not be accepted.  
8K cycles of burst auto refresh is required immediately before self refresh entry and immediately after self refresh exit.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 23/46  
ESMT  
M52D5121632A  
12. About Burst Type Control  
At MRS A3 = “0”. See the BURST SEQUENCE TABLE. (BL = 4,8)  
BL = 1, 2, 4, 8 and full page.  
Sequential Counting  
Basic  
MODE  
At MRS A3 = “1”. See the BURST SEQUENCE TABLE. (BL = 4,8)  
BL = 4, 8 At BL =1, 2 interleave Counting = Sequential Counting  
Interleave Counting  
Every cycle Read/Write Command with random column address can realize  
Random Column Access.  
Random  
MODE  
Random Column Access  
t
CCD = 1 CLK  
That is similar to Extended Data Out (EDO) Operation of conventional DRAM.  
13. About Burst Length Control  
At MRS A210 = “000”  
At auto precharge. tRAS should not be violated.  
1
At MRS A210 = “001”  
At auto precharge. tRAS should not be violated.  
2
Basic  
MODE  
4
At MRS A210 = “010”  
At MRS A210 = “011”  
8
At MRS A210 = “111”  
At the end of the burst length, burst is warp-around.  
Full Page  
t
BDL = 1, Valid DQ after burst stop is 2 for CAS latency 3 respectively.  
Random  
MODE  
Burst Stop  
Using burst stop command, any burst length control is possible.  
Before the end of burst. Row precharge command of the same bank stops read /write burst  
with auto precharge.  
RAS Interrupt  
(Interrupted by  
Precharge)  
t
RDL = 3clk with DQM , Valid DQ after burst stop is 2 for CAS latency 3 respectively.  
During read/write burst with auto precharge, RAS interrupt can not be issued.  
Interrupt  
MODE  
Before the end of burst, new read/write stops read/write burst and starts new read/write  
burst.  
CAS Interrupt  
During read/write burst with auto precharge, CAS interrupt can not be issued.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 24/46  
ESMT  
M52D5121632A  
FUNCTION TRUTH TABLE (TABLE 1)  
Current  
State  
BA  
ADDR  
ACTION  
Note  
CS RAS CAS  
WE  
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
H
L
L
L
L
L
X
H
H
H
L
L
L
L
X
H
H
H
H
L
X
H
H
L
H
H
L
X
H
L
X
H
L
H
L
X
H
L
H
L
H
L
X
X
H
L
H
L
H
L
X
X
H
L
H
L
H
L
X
X
H
L
X
X
X
X
H
L
X
X
X
BA  
BA  
BA  
X
X
X
X
NOP  
NOP  
ILLEGAL  
2
2
IDLE  
CA, A10/AP ILLEGAL  
RA  
A10/AP  
Row (&Bank) Active ; Latch RA  
NOP  
Auto Refresh or Self Refresh  
Mode Register Access  
NOP  
NOP  
ILLEGAL  
4
5
5
X
L
OP code  
X
OP code  
X
H
H
L
X
X
X
X
X
2
2
Row  
Active  
BA  
BA  
BA  
BA  
X
X
X
X
BA  
BA  
BA  
BA  
X
X
X
X
BA  
BA  
BA  
BA  
X
X
X
X
BA  
BA  
X
X
X
CA, A10/AP Begin Read ; latch CA ; determine AP  
CA, A10/AP Begin Write ; latch CA ; determine AP  
RA  
A10/AP  
L
H
H
L
X
H
H
L
ILLEGAL  
Precharge  
ILLEGAL  
L
L
X
X
X
X
X
H
H
H
H
L
NOP (Continue Burst to End Row Active)  
NOP (Continue Burst to End Row Active)  
Term burst Row active  
Read  
Write  
CA, A10/AP Term burst, New Read, Determine AP  
CA, A10/AP Term burst, New Write, Determine AP  
RA  
A10/AP  
L
3
2
H
H
L
X
H
H
L
ILLEGAL  
L
L
Term burst, Precharge timing for Reads  
ILLEGAL  
NOP (Continue Burst to End Row Active)  
NOP (Continue Burst to End Row Active)  
Term burst Row active  
X
X
X
X
X
H
H
H
H
L
CA, A10/AP Term burst, New Read, Determine AP  
CA, A10/AP Term burst, New Write, Determine AP  
RA  
A10/AP  
3
3
2
3
L
H
H
L
X
H
H
L
H
L
X
H
H
L
ILLEGAL  
L
L
Term burst, Precharge timing for Writes  
ILLEGAL  
NOP (Continue Burst to End Row Active)  
NOP (Continue Burst to End Row Active)  
ILLEGAL  
X
X
X
X
X
H
H
H
L
Read with  
Auto  
Precharge  
CA, A10/AP ILLEGAL  
RA, RA10  
ILLEGAL  
ILLEGAL  
2
2
L
X
X
X
X
X
H
H
H
L
NOP (Continue Burst to End Row Active)  
NOP (Continue Burst to End Row Active)  
ILLEGAL  
Write with  
Auto  
Precharge  
X
X
X
X
BA  
BA  
X
CA, A10/AP ILLEGAL  
RA, RA10  
X
H
L
ILLEGAL  
ILLEGAL  
L
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1  
25/46  
ESMT  
M52D5121632A  
Current  
State  
BA  
ADDR  
ACTION  
Note  
CS RAS CAS  
WE  
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
H
L
L
L
L
X
H
H
H
L
X
H
H
L
H
H
L
X
H
H
L
H
H
L
X
H
L
H
L
X
H
H
L
X
H
L
X
H
L
X
X
H
L
X
H
L
X
X
X
X
X
X
X
H
L
X
X
X
BA  
BA  
BA  
X
X
X
X
BA  
BA  
BA  
X
X
X
X
X
X
X
X
X
X
CA  
RA  
A10/AP  
NOP Idle after tRP  
NOP Idle after tRP  
ILLEGAL  
ILLEGAL  
ILLEGAL  
NOP Idle after tRP  
ILLEGAL  
NOP Row Active after tRCD  
NOP Row Active after tRCD  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
NOP Idle after tRFC  
NOP Idle after tRFC  
ILLEGAL  
ILLEGAL  
ILLEGAL  
Precharging  
2
2
2
4
L
L
X
X
X
X
X
H
H
H
L
L
L
X
H
H
L
Row  
Activating  
2
2
2
2
CA  
RA  
A10/AP  
X
X
X
X
X
X
X
X
X
X
X
Refreshing  
L
X
H
H
H
L
NOP Idle after 2clocks  
NOP Idle after 2clocks  
ILLEGAL  
ILLEGAL  
ILLEGAL  
Mode  
Register  
Accessing  
X
X
X
X
X
X
X
Abbreviations:  
RA = Row Address  
NOP = No Operation Command  
BA = Bank Address  
CA = Column Address  
AP = Auto Precharge  
*Note: 1. All entries assume the CKE was active (High) during the precharge clock and the current clock cycle.  
2. Illegal to bank in specified state; Function may be legal in the bank indicated by BA, depending on the state of the  
bank.  
3. Must satisfy bus contention, bus turn around, and/or write recovery requirements.  
4. NOP to bank precharge or in idle state. May precharge bank indicated by BA (and A10/AP).  
5. Illegal if any bank is not idle.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 26/46  
ESMT  
M52D5121632A  
FUNCTION TRUTH TABLE (TABLE2)  
Current  
State  
CKE  
( n-1 )  
CKE  
n
ADDR  
ACTION  
Note  
CS RAS CAS WE  
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
H
H
H
H
H
H
H
L
X
H
H
H
H
H
L
X
H
H
H
H
H
L
H
L
L
L
L
L
L
L
L
X
H
L
L
L
X
X
H
H
H
L
X
X
X
H
H
H
L
X
X
X
H
H
H
L
X
X
H
H
L
X
X
X
X
H
H
L
X
X
X
X
H
H
L
H
L
L
X
X
X
X
X
X
X
H
L
X
X
X
X
X
H
L
X
X
X
X
X
H
L
X
H
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
INVALID  
Exit Self Refresh Idle after tRFC (ABI)  
Exit Self Refresh Idle after tRFC (ABI)  
ILLEGAL  
ILLEGAL  
ILLEGAL  
NOP (Maintain Self Refresh)  
INVALID  
Exit Self Refresh ABI  
Exit Self Refresh ABI  
ILLEGAL  
6
6
Self  
Refresh  
L
X
X
H
L
L
L
All  
Banks  
Precharge  
Power  
7
7
ILLEGAL  
ILLEGAL  
Down  
L
X
X
H
L
L
L
L
L
L
X
X
X
X
X
NOP (Maintain Low Power Mode)  
Refer to Table1  
Enter Power Down  
Enter Power Down  
ILLEGAL  
8
8
X
X
X
RA  
All  
Banks  
Idle  
ILLEGAL  
Row (& Bank) Active  
Enter Self Refresh  
Mode Register Access  
NOP  
Refer to Operations in Table 1  
Begin Clock Suspend next cycle  
Exit Clock Suspend next cycle  
Maintain Clock Suspend  
L
L
X
8
OP Code  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Any State  
other than  
Listed  
H
H
L
H
L
H
L
9
9
above  
L
Abbreviations: ABI = All Banks Idle, RA = Row Address  
*Note: 6.CKE low to high transition is asynchronous.  
7.CKE low to high transition is asynchronous if restart internal clock.  
A minimum setup time 1CLK + tSS must be satisfy before any command other than exit.  
8.Power down and self refresh can be entered only from the all banks idle state.  
9.Must be a legal command.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1  
27/46  
ESMT  
M52D5121632A  
Single Bit Read-Write-Read Cycle (Same Page) @ CAS Latency = 3, Burst Length = 1  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 28/46  
ESMT  
M52D5121632A  
Note:  
1. All input expect CKE & DQM can be don’t care when CS is high at the CLK high going edge.  
2. Bank active @ read/write are controlled by BA0~BA1.  
BA1  
BA0  
Active & Read/Write  
Bank A  
0
0
1
1
0
1
0
1
Bank B  
Bank C  
Bank D  
3. Enable and disable auto precharge function are controlled by A10/AP in read/write command  
A10/AP  
BA1  
0
BA0  
0
Operating  
Disable auto precharge, leave A bank active at end of burst.  
Disable auto precharge, leave B bank active at end of burst.  
Disable auto precharge, leave C bank active at end of burst.  
Disable auto precharge, leave D bank active at end of burst.  
Enable auto precharge, precharge bank A at end of burst.  
Enable auto precharge, precharge bank B at end of burst.  
Enable auto precharge, precharge bank C at end of burst.  
Enable auto precharge, precharge bank D at end of burst.  
0
1
0
1
0
1
1
0
0
0
1
1
1
0
1
1
4. A10/AP and BA0~BA1 control bank precharge when precharge is asserted.  
A10/AP  
BA1  
0
BA0  
0
Precharge  
Bank A  
0
0
0
0
1
0
1
Bank B  
1
0
Bank C  
1
1
Bank D  
X
X
All Banks  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 29/46  
ESMT  
M52D5121632A  
Power Up Sequence  
0
1
2
3
4
5
6
7
8
9
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
C L O C K  
C K E  
H i g h l e v e l i s n e c e s s a r y  
C S  
t
R F C  
t
R F C  
t
R P  
t
M R D  
t
M R D  
R A S  
C A S  
A D D R  
K e y  
K e y  
R A  
B A 1  
B A 0  
B S  
B S  
R A  
A10/AP  
H i g h - Z  
D Q  
W E  
D Q M  
H i g h l e v e l i s n e c e s s a r y  
M o d e R e g i s t e r S e t  
A u t o R e f r e s h  
A u t o R e f r e s h  
P r e c h a r g e  
( A l l B a n k s )  
R o w A c t i v e  
E x t e n d e d M o d e  
R e g i s t e r S e t  
:
D o n ' t c a r e  
Power-Up and Initialization Sequence  
The following sequence is required for POWER UP and Initialization.  
1. Apply power and attempt to maintain CKE at a low state (all other inputs may be undefined.)  
-
-
Apply VDD before or at the same time as VDDQ  
Apply VDDQ  
2. Start clock and maintain stable condition for a minimum.  
3. The minimum of 200us after stable power and clock (CLK), apply NOP & take CKE high.  
4. Issue precharge commands for all banks of the device.  
5. Issue 2 or more auto-refresh commands.  
6. Issue mode register set command to initialize the mode register.  
7. Issue extended mode register set command to set PASR and DS.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1  
30/46  
ESMT  
M52D5121632A  
Read & Write Cycle at Same Bank @ Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
C L O C K  
H I G H  
C K E  
* N o t e 1  
t
R C  
C S  
t
R C D  
R A S  
C A S  
* N o t e 2  
C b  
Ca  
R b  
R a  
A D D R  
B A 0  
B A1  
A10/AP  
R a  
R b  
D Q  
C L = 3  
Q a 0 Qa 1 Q a 2 Q a 3  
D b0 D b 1 D b 2 D b 3  
* N o t e 3  
t
R D L  
W E  
D Q M  
Precharge  
( A - Bank )  
Read  
( A - Bank )  
Row Active  
( A - Bank )  
Write  
( A - Bank )  
Row Active  
A - Bank )  
P r e ch a r g e  
( A B a n k )  
(
-
: D o n ' t C a r e  
*Note:  
1. Minimum row cycle times is required to complete internal DRAM operation.  
2. Row precharge can interrupt burst on any cycle. [CAS Latency-1] number of valid output data is available after Row  
precharge. Last valid output will be Hi-Z (tSHZ) after the clock.  
3. Output will be Hi-Z after the end of burst. (1, 2, 4, 8 & Full page bit burst)  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 31/46  
ESMT  
M52D5121632A  
Page Read & Write Cycle at Same Bank @ Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
C L O C K  
H I G H  
C K E  
C S  
tR C D  
R A S  
* N o t e 2  
C A S  
A D D R  
C b  
R a  
C a  
C c  
C d  
B A 0  
B A1  
A1 0/AP  
R a  
D Q  
C L = 3  
Qa 1  
D c 1  
Q a 0  
Q b 0 Q b 1  
D c 0  
D d 0  
D d 1  
tC D L  
W E  
* N o t e 1  
* N o t e 3  
D Q M  
Read  
( A - Bank )  
Read  
( A - Bank )  
Write  
( A - Bank )  
Write  
( A - Bank )  
Row Active  
( A - Bank )  
P r e c h a r g e  
( A B a n k )  
-
: D o n ' t C a r e  
Note: 1. To Write data before burst read ends. DQM should be asserted three cycles prior to write command to avoid bus  
contention.  
2. Row precharge will interrupt writing. Last data input, tRDL before row precharge, will be written.  
3. DQM should mask invalid input data on precharge command cycle when asserting precharge before end of burst.  
Input data after Row precharge cycle will be masked internally.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 32/46  
ESMT  
M52D5121632A  
Page Read Cycle at Different Bank @ Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
13  
14  
15  
16  
17  
18  
19  
10  
11  
12  
C L O C K  
C K E  
H I G H  
* N o t e 1  
C S  
R A S  
* N o t e 2  
C A S  
A D D R  
B A 1  
R A a  
C A a  
R C c  
C C c  
R D d  
C D d  
R B b  
C B b  
B A 0  
A1 0/AP  
RCc  
RAa  
RBb  
RDd  
D Q  
C L = 3  
QCc2  
QCc1  
QAa0 QAa1 QAa2 QBb0 QBb1 QBb2 QCc0  
QDd0 QDd1 QDd2  
W E  
D Q M  
P r e c h a r g e  
( D - B a n k )  
R e a d  
( B - B a n k )  
R e a d  
( A - B a n k )  
R e a d  
( C - B a n k )  
R e a d  
( D - B a n k )  
R o w A c t i v e  
( A - B a n k )  
R o w A c t i v e  
( D - B a n k )  
P r e c h a r g e  
( C - B a n k )  
R o w A c t i v e  
( B - B a n k )  
R o w A c t i v e  
( C - B a n k )  
P r e c h a r g e  
( A - B a n k )  
P r e c h a r g e  
( B - B a n k )  
: D o n ' t C a r e  
Note: 1. CS can be don’t cared when RAS , CAS and WE are high at the clock high going edge.  
2. To interrupt a burst read by row precharge, both the read and the precharge banks must be the same.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 33/46  
ESMT  
M52D5121632A  
Page Write Cycle at Different Bank @ Burst Length = 4  
13  
14  
15  
16  
17  
18  
19  
0
1
2
3
4
5
6
7
8
9
11  
12  
10  
C L O C K  
C K E  
H I G H  
C S  
R A S  
* N o t e 2  
C A S  
A D D R  
R A a  
R B b C A a  
R C c  
C C c  
C D d  
C B b  
R D d  
B A 0  
B A 1  
R A a  
R B b  
R C c  
R D d  
A1 0/AP  
D Q  
DA a 0  
D C c 1  
D D d 1  
DA a 1 D A a 2 D Aa 3 DB b 0 DB b 1  
tC D L  
D Bb 3 D C c 0  
D D d 0  
C D d 2  
D Bb 2  
tR D L  
W E  
* N o t e 1  
D Q M  
W r i t e  
( D - B a n k )  
R o w A c t i v e  
( D - B a n k )  
W r i t e  
( A - B a n k )  
W r i t e  
( B - B a n k )  
P r e c h a r g e  
( A l l B a n k s )  
R o w A c t i v e  
A - Bank )  
(
R o w A c t i v e  
( B - B a n k )  
W r i t e  
( C - B a n k )  
R o w A c t i v e  
( C - B a n k )  
:
D o n ' t c a r e  
*Note: 1. To interrupt burst write by Row precharge, DQM should be asserted to mask invalid input data.  
2. To interrupt burst write by Row precharge, both the write and the precharge banks must be the same.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 34/46  
ESMT  
M52D5121632A  
Read & Write Cycle at Different Bank @ Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
13  
14  
15  
16  
17  
18  
19  
11  
12  
10  
C L O C K  
C K E  
H I G H  
C S  
R A S  
C A S  
A D D R  
C B c  
R A a  
R D b  
C D b R B c  
C A a  
B A 1  
B A 0  
A10/AP  
R A a  
R B b  
R A c  
* N o t e 1  
t
C D L  
D Q  
C L = 3  
Q Aa 3  
Dd b 1  
D D b 0  
QAa0  
Q Aa2  
D D b 2 D D d 3  
Q B c 0  
QAa 1  
Q Bc1  
W E  
D Q M  
R e a d  
( B - B a n k )  
W r i t e  
( D - B a n k )  
Read  
(A-Bank)  
Row Active  
(A-Bank)  
Precharge  
(A-Bank)  
Row Active  
(D-Bank)  
Row Active  
(B-Bank)  
: D o n ' t C a r e  
*Note: 1. tCDL should be met to complete write.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 35/46  
ESMT  
M52D5121632A  
Read & Write cycle with Auto Precharge @ Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
C L O C K  
C K E  
C S  
H IG H  
R A S  
C A S  
A D D R  
R a  
C a  
R b  
C b  
B A 0  
BA 1  
A1 0/AP  
R a  
R b  
D Q  
C L = 3  
Q Aa1 QAa2 QAa 3  
QAa 0  
D D b 0 Dd b 1 D D b 2 D D d 3  
W E  
D Q M  
Read with  
Auto Precharge  
( A - Bank )  
Write with  
Auto Precharge  
(D-Bank)  
Row Active  
A - Bank )  
Auto Precharge  
Start Point  
(D-Bank)  
(
Row Active  
( D - Bank )  
Auto Precharge  
Start Point  
: D o n ' t C a r e  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1  
36/46  
ESMT  
M52D5121632A  
Clock Suspension & DQM Operation Cycle @ CAS Latency = 3, Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
C L O C K  
C K E  
C S  
R A S  
C A S  
A D D R  
C a  
R a  
C c  
C b  
B A 1  
BA 0  
A 10/AP  
D Q  
R a  
Q a 0  
Q a 1  
Q a 2 Q a3  
Q b0  
D c 0  
D c 2  
t
S H Z  
t
S H Z  
W E  
* N o t e 1  
D Q M  
Cl ock  
S upe nsi on  
W r i t e  
D Q M  
Ro w A c t i ve  
Read  
R ead  
W r i t e  
D Q M  
R ea d D QM  
W r i t e  
Cl ock  
Susp en sion  
: D o n ' t C a r e  
*Note: 1. DQM is needed to prevent bus contention  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 37/46  
ESMT  
M52D5121632A  
Read interrupted by Precharge Command & Read Burst Stop Cycle @ Burst Length = Full page  
13  
14  
15  
16  
17  
18  
19  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
C L O C K  
H I G H  
C K E  
C S  
R A S  
C A S  
A D D R  
C A b  
R A a  
C A a  
B A 1  
B A 0  
A10/AP  
D Q  
R A a  
1
1
QAb4 QAb5  
C L= 3  
QAa1 QAa 2 QAa 3 QAa4  
QAb0 QAb1  
QAb2 QAb3  
QAa0  
W E  
D Q M  
R ea d  
( A - B a n k )  
B u rst S to p  
R e a d  
( A - B a n k )  
P r ec h ar g e  
( A - B an k )  
R o w A c t i ve  
( A - B a n k)  
: D o n 't C a r e  
*Note: 1. About the valid DQs after burst stop, it is same as the case of RAS interrupt.  
This case is illustrated above timing diagram. See the label 1  
But at burst write, Burst stop and RAS interrupt should be compared carefully.  
Refer the timing diagram of “Full page write burst stop cycles”.  
2. Burst stop is valid at every burst length.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 38/46  
ESMT  
M52D5121632A  
Write interrupted by Precharge Command & Write Burst Stop Cycle @ Burst Length = Full page  
16  
17  
18  
11  
12  
13  
14  
15  
19  
0
1
2
5
9
1 0  
3
4
6
7
8
C L O C K  
C K E  
H I G H  
C S  
R A S  
C A S  
A D D R  
C A b  
R A a  
C A a  
B A 0  
BA 1  
A 10/AP  
D Q  
R A a  
t
R D L  
t
B D L  
* N o t e 1  
D Ab0  
D Aa0 DA a 1 DA a 2  
DA b 2  
D Ab 3 D Ab 4 DA b5  
D A a 3 D Aa 4  
D Ab 1  
W E  
D Q M  
W r i t e  
( A - B a n k )  
B u rs t S t o p  
R o w A c ti v e  
( A - B a n k)  
P r e c h a r ge  
( A -B an k )  
W r i t e  
( A - B a n k )  
: D o n ' t C a re  
*Note: 1. Data-in at the cycle of interrupted by precharge can not be written into the corresponding memory cell. It is defined  
by AC parameter of tRDL  
.
DQM at write interrupted by precharge command is needed to prevent invalid write.  
DQM should mask invalid input data on precharge command cycle when asserting precharge before end of burst.  
Input data after Row precharge cycle will be masked internally.  
2. Burst stop is valid at every burst length.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 39/46  
ESMT  
M52D5121632A  
Active/Precharge Power Down Mode @ CAS Latency = 3, Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
13  
14  
15  
16  
17  
18  
19  
10  
11  
12  
C L O C K  
C K E  
* N o t e 2  
t
S S  
t
S S  
* N o t e 1  
C S  
R A S  
C A S  
A D D R  
C a  
R a  
B A 1  
B A 0  
A 1 0 / A P  
R a  
t
S H Z  
Q a 0 Q a 1 Q a 2  
DQ  
W E  
D Q M  
R e a d  
P r e c h a r g e  
P r e c h ar g e  
Po we r- Do w n  
E n t ry  
R o w A c t i v e  
P r e ch a r ge  
Po w e r- Down  
E xi t  
A c t i v e  
P o w e r - d o w n  
E x i t  
A c t i ve  
P o we r - d o wn  
E n t r y  
:
D o n ' t c a r e  
*Note: 1. All banks should be in idle state prior to entering precharge power down mode.  
2. CKE should be set high at least 1CLK + tSS prior to Row active command.  
3. Can not violate minimum refresh specification. (64ms)  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 40/46  
ESMT  
M52D5121632A  
Deep Power Down Mode Entry & Exit Cycle  
Note:  
DEFINITION OF DEEP POWER MODE FOR Mobile SDRAM:  
Deep Power Down Mode is an operating mode to achieve maximum power reduction by cutting the power of the whole memory  
of the device. Once the device enters in Deep Power Down Mode, data will not be retained. Full initialization is required when  
the device exits from Deep Power Down Mode.  
TO ENTER DEEP POWER DOWN MODE  
1) The deep power down mode is entered by having CS and WE held low with RAS and CAS high at the rising edge of  
the clock. While CKE is low.  
2) Clock must be stable before exited deep power down mode.  
3) Device must be in the all banks idle state prior to entering Deep Power Down mode.  
TO EXIT DEEP POWER DOWN MODE  
4) The deep power down mode is exited by asserting CKE high.  
5) 200  
μs wait time is required to exit from Deep Power Down.  
6) Upon exiting deep power down an all bank precharge command must be issued followed by two auto refresh commands  
and a load mode register sequence.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 41/46  
ESMT  
M52D5121632A  
Self Refresh Entry & Exit Cycle  
*Note: TO ENTER SELF REFRESH MODE  
1. CS , RAS & CAS with CKE should be low at the same clock cycle.  
2. After 1 clock cycle, all the inputs including the system clock can be don’t care except for CKE.  
3. The device remains in self refresh mode as long as CKE stays “Low”.  
cf.) Once the device enters self refresh mode, minimum tRAS is required before exit from self refresh.  
TO EXIT SELF REFRESH MODE  
4. System clock restart and be stable before returning CKE high.  
5. CS starts from high.  
6. Minimum tRFC is required after CKE going high to complete self refresh exit.  
7. 8K cycles of burst auto refresh is required immediately before self refresh entry and immediately after self refresh  
exit.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 42/46  
ESMT  
M52D5121632A  
Mode Register Set Cycle  
Extended Mode Register Set Cycle  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
C L O C K  
C K E  
C S  
C L O C K  
C K E  
C S  
H I G H  
H I G H  
* N o t e 2  
* N o t e 2  
R A S  
R A S  
* N o t e 1  
* N o t e 3  
* N o t e 1  
* No t e 3  
C A S  
C A S  
A D D R  
A D D R  
Ke y  
Ra  
K e y  
Ra  
B A 1  
B A 0  
B A 1  
B A 0  
BS  
B S  
B S  
BS  
A 1 0  
A 1 0  
DQ  
H I - Z  
H I -Z  
D Q  
W E  
W E  
DQ M  
D Q M  
N e w  
C o mm a n d  
N e w  
Co m ma n d  
M R S  
E M RS  
: Do n 't Ca r e  
All banks precharge should be completed before Mode Register Set cycle and auto refresh cycle.  
MODE REGISTER SET CYCLE  
*Note: 1. CS , RAS , CAS , & WE activation at the same clock cycle with address key will set internal  
mode register.  
2. Minimum 2 clock cycles should be met before new RAS activation.  
3. Please refer to Mode Register Set table.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 43/46  
ESMT  
M52D5121632A  
PACKING  
DIMENSIONS  
54-BALL  
SDRAM ( 8x8 mm )  
Symbol  
Dimension in mm  
Dimension in inch  
Min  
Norm  
Max  
1.00  
0.30  
0.71  
0.40  
8.10  
8.10  
Min  
Norm  
Max  
A
A1  
A2  
Φb  
D
0.039  
0.012  
0.028  
0.016  
0.319  
0.319  
0.20  
0.61  
0.30  
7.90  
7.90  
0.25  
0.66  
0.35  
8.00  
8.00  
6.40  
6.40  
0.80  
0.008  
0.024  
0.012  
0.311  
0.311  
0.010  
0.026  
0.014  
0.315  
0.315  
0.252  
0.252  
0.031  
E
D1  
E1  
e
Controlling dimension : Millimeter.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1  
44/46  
ESMT  
M52D5121632A  
Revision History  
Revision  
Date  
Description  
0.1  
0.2  
2013.07.17  
2014.11.14  
Original  
Modify the specification of tRDL  
1. Modify the specification of Icc2p/Icc2ps, Icc2ns,  
Icc3p/Icc3ps, Icc5, Icc6 and Icc7.  
0.3  
2015.03.10  
2. Modify the specification of tRFC  
1. Add –5 speed specification  
2. Modify CAPACITANCE specification  
Modify the specification of IDD2P, IDD2PS and IDD6  
1.0  
1.1  
2015.07.06  
2016.01.15  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 45/46  
ESMT  
M52D5121632A  
Important Notice  
All rights reserved.  
No part of this document may be reproduced or duplicated in any form or by  
any means without the prior permission of ESMT.  
The contents contained in this document are believed to be accurate at the  
time of publication. ESMT assumes no responsibility for any error in this  
document, and reserves the right to change the products or specification in  
this document without notice.  
The information contained herein is presented only as a guide or examples  
for the application of our products. No responsibility is assumed by ESMT for  
any infringement of patents, copyrights, or other intellectual property rights of  
third parties which may result from its use. No license, either express ,  
implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of ESMT or others.  
Any semiconductor devices may have inherently a certain rate of failure. To  
minimize risks associated with customer's application, adequate design and  
operating safeguards against injury, damage, or loss from such failure,  
should be provided by the customer when making application designs.  
ESMT's products are not authorized for use in critical applications such as,  
but not limited to, life support devices or system, where failure or abnormal  
operation may directly affect human lives or cause physical injury or property  
damage. If products described here are to be used for such kinds of  
application, purchaser must do its own quality assurance testing appropriate  
to such applications.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Jan. 2016  
Revision: 1.1 46/46  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY