LM2596 [ESTEK]

Simple high-efficiency step-down (buck) regulator; 简单的高英法fi效率步降(降压)稳压器
LM2596
型号: LM2596
厂家: Estek Electronics Co. Ltd    Estek Electronics Co. Ltd
描述:

Simple high-efficiency step-down (buck) regulator
简单的高英法fi效率步降(降压)稳压器

稳压器
文件: 总13页 (文件大小:388K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM2596  
GENERAL DESCRIPTION  
FEATURES  
The LM2596 series of regulators are monolithic integrated  
circuits that provide all the active functions for a step-down  
(buck) switching regulator, capable of driving a 3A load with  
excellent line and load regulation. These devices are available  
in fixed output voltages of 3.3V, 5V, 12V, and an adjustable  
output version.  
Requiring a minimum number of external components, these  
regulators are simple to use and include internal frequency  
compensation, and a fixed-frequency oscillator.  
The LM2596 series operates at a switching frequency of 150  
kHz thus allowing smaller sized filter components than what  
would be needed with lower frequency switching regulators.  
Available in a standard 5-lead TO-220 package with several  
different lead bend options, and a 5-lead TO-263 surface mount  
package.  
3.3V, 5V, 12V, and adjustable output versions  
Adjustable version output voltage range, 1.2V to 37V  
4% max over line and load conditions  
Available in TO-220 and TO-263 packages  
Guaranteed 3A output load current  
Input voltage range up to 40V  
Requires only 4 external components  
Excellent line and load regulation specifications  
150 kHz fixed frequency internal oscillator  
TTL shutdown capability  
Low power standby mode, IQ typically 80 µA  
High efficiency  
Uses readily available standard inductors  
Thermal shutdown and current limit protection  
A standard series of inductors are available from several  
different manufacturers optimized for use with the LM2596  
series. This feature greatly simplifies the design of switch-mode  
power supplies.  
APPLICATIONS  
Simplehigh-efficiencystep-down (buck) regulator  
On-card switching regulators  
Positive to negative converter  
Other features include a guaranteed 4% tolerance on output  
voltage under specified input voltage and output load  
conditions, and 15% on the oscillator frequency. External  
shutdown is included, featuring typically 80 µA standby  
current. Self protection features include a two stage frequency  
reducing current limit for the output switch and an over  
temperature shutdown for complete protection under fault  
conditions.  
TYPICAL APPLICATION (Fixed Output Voltage Versions)  
4
+V  
IN  
12V  
L1  
5.0V  
1
5.0  
+
CIN  
680  
2
+
COUT  
220  
5
3
F
BLOCK DIAGRAM  
ON/OFF  
V
IN  
+
+
START  
UP  
+
COM  
-
2.5V  
-
COM  
+
FEEDBACK  
GM  
AMP  
+
R2  
-
-
LATCH  
DRIVER  
Active  
capacitor  
+
+
-
OUTPUT  
GND  
150kHz  
OSC  
BEIJING ESTEK ELECTRONICS CO.,LTD  
1
LM2596  
PIN FUNCTIONS  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
Maximum Supply Voltage  
ON /OFF Pin Input Voltage  
+25V  
45V  
+VIN - This is the positive input supply for the IC switching  
regulator. A suitable input bypass capacitor must be present at  
this pin to minimize voltage transients and to supply the  
switching currents needed by the regulator.  
-0.3  
V
Feedback Pin Voltage  
Output Voltage to Ground  
(Steady State)  
-0.3 V +25V  
Ground - Circuit ground.  
Output - Internal switch. The voltage at this pin switches  
between (+VIN - VSAT ) and approximately -0.5V, with a duty  
cycle of approximately VOUT /VIN. To minimize coupling to  
sensitive circuitry, the PC board copper area connected to this  
pin should be kept to a minimum.  
-1V  
Power Dissipation  
Internally limited  
0C to +1500SCtorage Temperature Range  
ESD Susceptibility  
-65  
Human Body Model (Note 2)  
Lead Temperature  
2 kV  
Feedback — Senses the regulated output voltage to complete  
the feedback loop.  
S Package  
Vapor Phase (60 sec.)  
Infrared (10 sec.)  
T Package (Soldering, 10 sec.)  
Maximum Junction Temperature  
+2150C  
ON/OFF - Allows the switching regulator circuit to be shut  
down using logic level signals thus dropping the total input  
supply current to approximately 80 µA. Pulling this pin below a  
threshold voltage of approximately 1.3V turns the regulator on,  
and pulling this pin above 1.3V (up to a maximum of 25V) shuts  
the regulator down. If this shutdown feature is not needed, the  
ON /OFF pin can be wired to the ground pin or it can be left  
open, in either case the regulator will be in the ON condition.  
+2450C  
+2600C  
+1500C  
OPERATING CONDITIONS  
Temperature Range  
-400C +1250C  
TJ  
LM2596-3.3  
ELECTRICAL CHARACTERISTICS  
Specifications with standard type face are for TJ = 250C, and those with boldface type apply over full Operating Temperature  
Range  
LM2596-3.3  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Typ  
Limit  
(Note 3)  
(Note 4)  
SYSTEM PARAMETERS (Note 5)Test Circuit Figure 1  
V
VOUT  
Output Voltage  
4.7V5  
VIN40V, 0.2AILOAD3A  
3.3  
3.168/3.135  
3.432/3.465  
V(min)  
V(max)  
73  
Efficiency  
%
VIN=12V, ILOAD=3A  
LM2596-5.0  
ELECTRICAL CHARACTERISTICS  
Specifications with standard type face are for TJ = 250C, and those with boldface type apply over full Operating Temperature  
LM2596-5.0  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Typ  
Limit  
(Note 3)  
(Note 4)  
SYSTEM PARAMETERS (Note 5)Test Circuit Figure 1  
V
VOUT  
Output Voltage  
7V  
VIN40V, 0.2AILOAD3A  
5.0  
4.800/4.750  
5.200/5.250  
V(min)  
V(max)  
80  
Efficiency  
%
VIN=12V, ILOAD=3A  
LM2596-12  
ELECTRICAL CHARACTERISTICS  
Specifications with standard type face are for TJ = 250C, and those with boldface type apply over full Operating Temperature  
LM2596-12  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Typ  
Limit  
(Note 3)  
(Note 4)  
SYSTEM PARAMETERS (Note 5)Test Circuit Figure 1  
V
VOUT  
Output Voltage  
15V  
VIN40V, 0.2AILOAD3A  
12.0  
11.52/11.40  
12.48/12.60  
V(min)  
V(max)  
90  
Efficiency  
%
VIN=12V, ILOAD=3A  
LM2596-ADJ  
BEIJING ESTEK ELECTRONICS CO.,LTD  
2
LM2596  
Specifications with standard type face are for TJ = 250C, and those with boldface type apply over full Operating  
Temperature Range  
LM2596-ADJ  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Typ  
Limit  
(Note 3)  
(Note 4)  
SYSTEM PARAMETERS (Note 5)Test Circuit Figure 1  
1.230  
V
VOUT  
Output Voltage  
4.5VVIN40V, 0.2AILOAD3A  
VOUT programmed for 3V. Circuit of  
Figure 1.  
1.193/1.180  
1.267/1.280  
V(min)  
V(max)  
Efficiency  
VIN=12V, VOUT=3V, ILOAD=3A  
ALL OUTPUT VOLTAGE VERSIONS  
ELECTRICAL CHARACTERISTICS  
Specifications with standard type face are for TJ = 250C, and those with boldface type apply over full Operating Temperature  
Range. Unless otherwise specified, VIN = 12V for the 3.3V, 5V, and Adjustable version and VIN = 24V for the 12V version. ILOAD  
= 500 mA  
LM2596-XX  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Typ  
(Note 3)  
Limit  
(Note 4)  
DEVICE PARAMETERS  
nA  
nA (max)  
kHz  
Feedback Bias Current  
Adjustable Version Only, VFB=1.3V  
(Note 6)  
10  
I
b
50/100  
fO  
Oscillator Frequency  
150  
kHz (min)  
kHz (max)  
V
127/110  
173/173  
VSAT  
DC  
ICL  
Saturation Voltage  
IOUT=3A (Notes 7, 8)  
1.16  
V (max)  
1.4/1.5  
(Note 8)  
(Note 9)  
Peak Current (Notes 7, 8)  
100  
0
4.5  
Max Duty Cycle (ON)  
Min Duty Cycle (OFF)  
Current Limit  
A
A (min)  
A (max)  
3.6/3.4  
6.9/7.5  
50  
IL  
Output Leakage Current  
Output=0V (Notes 7, 9)  
Output=-0.9V (Note 10)  
A (max)  
mA  
10  
5
30  
10  
mA (max)  
mA  
mA (max)  
IQ  
Quiescent Current  
Standby  
(Note 9)  
ON/OFF pin=5V (OFF) (Note 10)  
80  
ISTBY  
Quiescent  
A  
200/250  
A (max)  
0C/W  
0C/W  
0C/W  
0C/W  
0C/W  
JC  
JA  
JA  
JA  
JA  
Thermal Resistance  
TO-220 orTO-263Package, Junction to Case  
TO-220Package,Junction to Ambient(Note11)  
TO-263Package,Junction to Ambient(Note12)  
TO-263Package,Junction to Ambient(Note13)  
TO-263Package,Junction to Ambient(Note14)  
2
50  
50  
30  
20  
ON/OFF CONTROL Test Circuit Figure 1  
ON/OFF Pin Logic Input  
1.3  
V
Threshold Voltage  
Low (Regulator ON)  
High (Regulator OFF)  
V (max)  
V (min)  
VIH  
VIL  
0.6  
2.0  
IH  
LOGIC=2.5V (Regulator OFF)  
5
A
15  
VON/OFF Pin Input Current  
A (max)  
VLOGIC=0.5V (Regulator ON)  
0.02  
A
5
A (max)  
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate  
conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed  
specifications and test conditions, see the Electrical Characteristics.  
Note 2: The human body model is a 100 pF capacitor discharged through a 1.5k resistor into each pin.  
Note 3: Typical numbers are at 250C and represent the most likely norm.  
Note 4: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room  
temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard  
Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).  
Note 5: External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can  
affect switching regulator system performance. When the LM2596 is used as shown in the Figure 1 test circuit, system performance  
will be as shown in system parameters section of Electrical Characteristics.  
BEIJING ESTEK ELECTRONICS CO.,LTD  
3
LM2596  
Note 6: The switching frequency is reduced when the second stage current limit is activated. The amount of reduction is  
determined by the severity of current over-load.  
Note 7: No diode, inductor or capacitor connected to output pin.  
Note 8: Feedback pin removed from output and connected to 0V to force the output transistor switch ON.  
Note 9: Feedback pin removed from output and connected to 12V for the 3.3V, 5V, and the ADJ. version, and 15V for the 12V  
version, to force the output transistor switch OFF.  
Note 10: VIN = 40V.  
Note 11: Junction to ambient thermal resistance (no external heat sink) for the TO-220 package mounted vertically, with the leads  
soldered to a printed circuit board with (1 oz.) copper area of approximately 1 in2  
Note 12: Junction to ambient thermal resistance with the TO-263 package tab soldered to a single printed circuit board with 0.5 in2  
of (1 oz.) copper area.  
Note 13: Junction to ambient thermal resistance with the TO-263 package tab soldered to a single sided printed circuit board with  
2.5 in2 of (1 oz.) copper area.  
Note 14: Junction to ambient thermal resistance with the TO-263 package tab soldered to a double sided printed circuit board with  
3 in2 of (1 oz.) copper area on the LM2596S side of the board, and approximately 16 in2 of copper on the other side of the p-c  
board.  
TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 1)  
Normalized Output Voltage  
1.5  
Line Regulation  
Efficiency  
0.4  
0.3  
0.2  
0.1  
0
95  
90  
85  
80  
20V  
1.0  
0.5  
0
12V  
5V  
5
-0.1  
-0.2  
-0.3  
-0.5  
-1.0  
75  
70  
65  
-0.4  
-50 -25  
0
25  
50 75  
0
5
10 15 20 25 30  
0
10 15 20 25 30  
35 40  
35 40  
INPUT VOLTAGE (V)  
Switch Saturation  
Voltage  
Switch Current Limit  
V =12VIN  
Dropout Voltage  
1.4  
5.5  
5.0  
1.6  
1.4  
V =12V  
IN  
1.3  
1.2  
1.1  
VOUT =5V  
-0 40 C  
T =  
I
3A  
50  
1.2  
4.5  
4.0  
3.5  
1.0  
0.9  
0.8  
0.7  
0.6  
=
LOAD  
1.0  
I
250C  
10 25 C  
1
0.6  
-50 -25  
0
25  
50  
-50 -25  
0
25  
0
2 3  
4
SWITCH CURRENT (A)  
BEIJING ESTEK ELECTRONICS CO.,LTD  
4
LM2596  
TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 1) (Continued)  
Operating  
Quiescent Current  
Shutdown  
Quiescent Current  
Minimum Operating  
Supply Voltage  
120  
100  
5
4
24  
20  
_
V
5V  
I
0
20 5 C  
T =  
16  
12  
80  
60  
3
2
1
0
8
4
0
40  
20  
0
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
-50 -25  
0
25  
50  
SUPPLY VOLTAGE (V)  
ON/OFF Threshold  
Voltage  
ON/OFF Pin  
Switching Frequency  
Current (Sinking)  
2.5  
2.0  
8
7
6
5
4
160  
155  
150  
OFF  
ON  
1.5  
1.0  
0.5  
145  
140  
3
2
135  
130  
1
0
-50 -25  
0
25  
50  
-50 -25  
0
25  
50  
10  
15  
20  
25  
0
ON/OF PIN VOLTAGE (V)  
Feedback Pin  
10  
7.5  
5.0  
2.5  
0
ADJUSTABLE VERSION ONLY  
-2.5  
-5.0  
-50 -25  
0
25  
50  
BEIJING ESTEK ELECTRONICS CO.,LTD  
5
LM2596  
TYPICAL PERFORMANCE CHARACTERISTICS  
Continuous Mode Switching Waveforms  
VIN=20V, VOUT=5V, ILOAD=2A  
Discontinuous Mode Switching Waveforms  
VIN=20V, VOUT=5V, ILOAD=500mA L=10 H,  
L=32H, COUT=220F, COUTESR=50m  
COUT=330F, COUTESR=45m  
20V  
20V  
10V  
10V  
A
A
0V  
1A  
0V  
2A  
B
C
B
C
1A  
0A  
0A  
AC/  
div  
AC/  
div  
A: Output Pin Voltage,10V/ div  
B: Inductor Current 1A/ div  
A: Output Pin Voltage,10V/ div  
B: Inductor Current 1A/ div  
C: Output Ripple Voltage,50mV/ div  
C: Output Ripple Voltage,100mV/div  
Horizontal Time Base: 2
s/ div  
Horizontal Time Base: 2s/ div  
Load Transient Response for Discontinuous Mode  
VIN=20V, VOUT=5V, ILOAD=500mA to 2A  
Load Transient Response for Continuous Mode  
VIN=20V, VOUT=5V, ILOAD=500mA to 2A  
L=10H, COUT=330F, COUTESR=45m  
L=32H, COUT=220F, COUTESR=50m  
A
AC  
div  
A
AC  
div  
B
1A  
0A  
B
1A  
0A  
A: Output Voltage,100mV/ div. (AC)  
B: 500mA to 2A Load Pulse  
A: Output Voltage,100mV/ div.(AC)  
B: 500mA to 2A Load Pulse  
/ div  
Horizontal Time Base: 200s/div  
Horizontal Time Base: 100  
BEIJING ESTEK ELECTRONICS CO.,LTD  
6
LM2596  
TEST CIRCUIT AND LAYOUT GUIDELINES  
Fixed Output Voltage Versions  
4
+V  
IN  
+
L1  
+
L1  
2
+
+
3
5
COUT  
CIN  
CIN  
-
470  
F
,50V,Aluminum Electrolytic Nichicon “PL  
,25V,Aluminum Electrolytic Nichicon PL  
COUT - 220  
Series” D1 - 5A,40V SchottkyRectifer,1N5825  
,L38  
L1  
-
Adjustable Output Voltage Versions  
CFF  
R1  
R2  
4
+V  
IN  
+
L1  
2
+
+
3
5
COUT  
CIN  
R
REF  
2
V
(
V
1+  
)
R1  
where VREF=1.23V  
V
OUT -1)  
R =R (  
2
Select R1 to be approximately1k  
,use a1% resistor for best  
CIN  
-
470  
,50V,Aluminum Electrolytic Nichicon “PL  
COUT - 220  
F  
,35V,Aluminum Electrolytic Nichicon PL  
Series” D1 - 5A,40V SchottkyRectifer,1N5825  
,L38  
L1  
R1  
C
-
-
s
ee Application Information Section  
Figure 1. Standard Test Circuits and Layout Guides  
As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance can generate  
voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by heavy lines should  
be wide printed circuit traces and  
should be kept as short as possible. For best results, external components should be located as close to the switcher lC as possible  
using ground plane construction or single point grounding.  
If open core inductors are used, special care must be taken as to the location and positioning of this type of inductor. Allowing  
the inductor flux to intersect sensitive feedback, lC groundpath and COUT wiring can cause problems.  
When using the adjustable version, special care must be taken as to the location of the feedback resistors and the associated wiring.  
Physically locate both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor.  
BEIJING ESTEK ELECTRONICS CO.,LTD  
7
LM2596  
LM2596 SERIES BUCK REGULATOR DESIGN PROCEDURE (FIXED OUTPUT)  
PROCEDURE (Fixed Output Voltage Version)  
EXAMPLE (Fixed Output Voltage Version)  
Given:  
Given:  
VOUT = Regulated Output Voltage (3.3V, 5V or 12V)  
VIN (max) = Maximum DC Input Voltage  
VOUT =5V  
VIN (max) = 12V  
1. Inductor Selection (L1)  
1. Inductor Selection (L1)  
A. Select the correct inductor value selection guide from Figures  
Figure 4, Figure 5,or Figure 6. (Output voltages of 3.3V, 5V, or  
12V respectively.) For all other voltages, see the design procedure  
for the adjustable version.  
A. Use the inductor selection guide for the 5V version shown in Figure 5.  
B. From the inductor value selection guide, identify the inductance B. From the inductor value selection guide shown in Figure 5, the  
region intersected by the Maximum Input Voltage line and the  
Maximum Load Current line. Each region is identified by an  
inductance value and an inductor code (LXX).  
inductance region intersected by the 12V horizontal line and the 3A  
vertical line is 33 µH, and the inductor code is L40.  
C. Select an appropriate inductor from the four manufacturer’s part C. The inductance value required is33 µH. Fromthetable in Figure8, go to the  
numbers listed in Figure 8.  
L40 line and choose an inductorpartnumber fromanyofthe four manufacturers  
shown. (In most in-stance, both through hole and surface mount inductors are  
available.)  
2. Output Capacitor Selection (COUT  
)
2. Output Capacitor Selection (COUT)  
A. See section on output capacitors in application information section.  
A. In the majority of applications, low ESR (Equivalent Series  
Resistance) electrolytic capacitors between 82 µF and 820 µF and  
low ESR solid tantalum capacitors between 10 µF and 470 µF  
provide the best results. This capacitor should be located close to  
the IC using short capacitor leads and short copper traces. Do not  
use capacitors larger than 820 µF.  
B. Fromthequickdesign component selection table shown in Figure2, locate the  
5V output voltage section. In the load current column, choose theload current line  
that is closest to the current needed in your application, for this example, use the3A  
line. In themaximuminput voltage column, select thelinethat covers theinput  
voltage needed in your application, in this example, use the15V line. Continuing on  
this line are recommended inductors and capacitors that will providethebest overall  
performance.  
B. To simplify the capacitor selection procedure, refer to the quick  
design component selection table shown in Figure 2. This table  
contains different input voltages, output voltages, and load  
currents, and lists various inductors and output capacitors that will  
provide the best design solutions.  
The capacitorlist contains both through hole electrolytic and surface mount tantalum  
capacitors fromfourdifferent capacitor manufacturers. It is recommended that both  
the manufacturers and the manufacturer’s series that are listed in the tablebe used.  
In this example aluminumelectrolytic capacitors fromseveral different  
manufacturers are available with the range ofESR numbers needed.  
330 µF 35V PanasonicHFQSeries  
330 µF 35V Nichicon PLSeries  
C. The capacitor voltage rating for electrolytic capacitors should be C. Fora 5V output, a capacitor voltage rating at least 7.5V ormore is needed. But  
even a lowESR, switchinggrade, 220µF 10V aluminumelectrolytic capacitor  
would exhibit approximately225 mWofESR (see the curve in Figure 14 for the  
ESR vs voltage rating). This amount ofESR would result in relativelyhigh output  
ripple voltage. To reduce the rippleto 1%oftheoutput voltage, orless, a capacitor  
with ahigher valueorwith ahigher voltage rating (lower ESR) should be selected.  
A
1
6V o
r
2
5V capacitor will reduce the ripple volt-age b
y
a
pproximatel
y
h
alf.  
at least 1.5 times greater than the output voltage, and often much  
higher voltage ratings are needed to satisfy the low ESR  
requirements for low output ripple voltage.  
3. Catch Diode Selection (D1)  
3. Catch Diode Selection (D1)  
A. The catch diode current rating must beat least 1.3 times greater than the A. Refer to thetable shown in Figure 11. In this example, a5A, 20V, 1N5823  
maximumload current. Also, ifthepower supplydesign must withstand a Schottkydiode willprovide thebestperformance, and willnot beoverstressed even  
continuousoutput short, thediode should have a current ratingequal to the for a shorted output.  
maximumcurrent limit ofthe LM2596. The most stressful condition for  
thisdiode isan overload orshorted output condition.  
B. The reverse voltage rating ofthediode should beat least 1.25 times the  
maximuminput voltage.  
C. This diode must be fast (short reverse recoverytime) and must be located  
close to the LM2596 using short leads and short printed circuit traces.  
Because oftheir fast switching speed and lowforward voltage drop,  
Schottkydiodesprovidethebest performance and efficiency, and should be  
the first choice, especiallyin lowoutput voltage applications.  
Ultra-fast recovery, or High-Efficiencyrectifiers also provide good results.  
Ultra-fast recoverydiodes typicallyhave reverse recoverytimes of50 nsor  
less. Rectifiers such as the 1N5400 series are much too slowand should not  
beused.  
BEIJING ESTEK ELECTRONICS CO.,LTD  
8
LM2596  
PROCEDURE (Fixed Output Voltage Version)  
4. Input Capacitor (CIN)  
A lowESRaluminumor tantalumbypass capacitor isneeded between the  
inputpin and ground pin to prevent large volt-age transients from appearing  
at the input. This capacitorshould belocated close to the IC  
EXAMPLE (Fixed Output Voltage Version)  
4. Input Capacitor (CIN)  
The important parameters for the Input capacitor are the input voltage ratingand the  
RMS current rating. With anominal  
input voltage of12V, an aluminumelectrolytic capacitor with a voltage rating  
using shortleads. In addition, the RMS current ratingofthe input capacitor greater than 18V (1.5 xVIN ) would be needed. The next higher capacitor voltage  
rating is25V.  
should be selected to be at least 1/2 the DC load current. The capacitor  
manufacturers data sheet must be checked to assure that this current rating  
is not exceeded. The curve shown in Figure 9 shows typical RMS current  
ratings for several different aluminumelectrolytic capacitor values.  
Foran aluminumelectrolytic, the capacitorvoltage rating should be  
approximately1.5 times the maximuminput voltage.  
The tantalumcapacitor voltage ratingshould be2 times the maximum  
input voltage and it is recommended that theybe surge current tested by  
the manufacturer.  
The RMS current rating requirement for theinput capacitorin  
a buck regulator is approximately1 /2 theDC load current. In this example, with a  
3Aload, a capacitor with a RMS current rating ofat least 1.5Ais needed. The  
curves shown in Figure9 can beused to select an appropriate input capacitor.  
Fromthe curves, locate the35V line and note which capacitor values have RMS  
current ratings greater than 1.5A. A680µF/35V capacitor could beused.  
Fora through holedesign, a680µF/35V electrolytic capacitor (PanasonicHFQ  
series or Nichicon PLseries or equivalent)would be adequate. other types or other  
manufacturers capacitors can be used provided the RMS ripple current ratings are  
adequate.  
For surface mountdesigns, solid tantalumcapacitors can beused, but caution must  
be exercised with regard to the capacitor surge current rating. The TPS series  
available fromAVX, and the593D series fromSprague are both surge current  
tested.  
Use caution when using ceramic capacitors for input bypassing, because it  
maycause severe ringing at theV
IN
pin.  
LM2596 SERIES BUCK REGULATOR DESIGN PROCEDURE (FIXED OUTPUT) (Continued)  
Output Capacitor  
Conditions  
Through Hole Electrolytic  
Panasonic  
Surface Mount Tantalum  
AVXTPS  
Series  
Output  
Voltage  
(V)  
Load  
Current  
(A)  
Max Input  
Voltage (V)  
Inductance  
H)  
Inductor  
(#)  
Sprague 595DSeries  
F/V)  
Nichicon PL  
HFQ Series  
(
(  
Series (
F/V)  
(F/V)  
(
F/V)  
3.3  
3
5
7
22  
390/6.3  
22  
390/6.3  
22  
390/6.3  
33  
390/6.3  
22  
390/6.3  
33  
390/6.3  
47  
330/10  
22  
330/10  
22  
330/10  
33  
330/10  
47  
330/10  
22  
330/10  
L41  
L41  
L41  
L40  
L33  
L32  
L39  
L41  
L41  
L40  
L39  
L33  
470/25  
560/35  
680/35  
560/35  
470/25  
330/35  
330/35  
470/25  
560/25  
330/35  
330/35  
470/25  
560/16  
560/35  
680/35  
470/35  
470/35  
330/35  
270/50  
560/16  
560/25  
330/35  
270/35  
560/16  
330/6.3  
330/6.3  
330/6.3  
330/6.3  
330/6.3  
330/6.3  
220/10  
220/10  
220/10  
220/10  
220/10  
220/10  
10  
40  
6
2
3
5
10  
40  
8
2
3
12  
10  
15  
40  
9
2
LM2596 SERIES BUCK REGULATOR DESIGN PROCEDURE (ADJUSTABLE OUTPUT)  
PROCEDURE (Adjustable Output Voltage Version)  
EXAMPLE (Adjustable Output Voltage Version)  
Given:  
Given:  
VOUT = Regulated Output Voltage  
VIN(max) = Maximum Input Voltage  
ILOAD(max) = Maximum Load Current  
VOUT = 20V  
VIN(max) = 28V  
ILOAD(max) = 3A  
1. Programming Output Voltage (Selecting R1 and R2, as shown in  
Figure 1)  
1. Programming Output Voltage (Selecting R1 and R2, as shown  
in Figure 1)  
Use the following formula to select the appropriate resistor values.  
Select R1 to be 1 k, 1%. Solve for R2.  
R
R
2
V
OUT VREF (1  
)
V
REF  
1.23  
V
OUT  
20V  
1
R
2
R
1
(
1)  
1k(  
1.23V  
Select a value for R1 between 240  
and 1.5k. The lower resistor  
V
REF  
values minimize noise pickup in the sensitive feedback pin. (For the  
lowest temperature coefficient and the best stability with time, use 1%  
metal film resistors.)  
R2=1k (16.26-1)=15.26k, closest 1% value is 15.4k  
  
R2 = 15.4 k  
.
BEIJING ESTEK ELECTRONICS CO.,LTD  
9
LM2596  
PROCEDURE (Adjustable Output Voltage Version)  
OUT  
EXAMPLE (Adjustable Output Voltage Version)  
V
R
2
R
1
(
1) VREF  
2. Inductor Selection (L1)  
2. Inductor Selection (L1)  
A.
Calculate the inductor Volt • microsecond constant E  
T (V  
µs), from
 
A.
Calculate the inductor Volt  
microsecond constant  
the following formula:  
(E T),  
1000  
D
200  
V
1000  
E T (V V V )  
s)  
 
IN  
OUT  
SAT  
E
  
T
20  
1.  
kHz  
1
0  
150  
VIN  
VSATV  
D
28  
(V
  
s)  
where VSAT = internal switch saturation voltage = 1.16V  
and VD = diode forward voltage drop = 0.5V  
E
T
(
.684  
)  
2. 05  
B. Use the E  
T value from the previous formula and match it with the  
E
T number on the vertical axis of the Inductor Value Selection Guide  
shown in Figure 7.  
C. on the horizontal axis, select the maximum load current.  
C.  
D. From the inductor value selection guide shown in Figure 7, the  
inductance region intersected by the 34 (V µs) horizontal line and  
the 3A vertical line is 47 µH, and the inductor code is L39.  
E. From the table in Figure 8, locate line L39, and select an  
inductor part number from the list of manufacturers part numbers.  
D. Identify the inductance region intersected by the ET value and the  
Maximum Load Current value. Each region is identified by an  
inductance value and an inductor code (LXX).  
E. Select an appropriate inductor from the four manufacturer’s part  
numbers listed in Figure 8.  
3. Output Capacitor Selection (COUT  
)
3. Output Capacitor SeIection (COUT)  
A. In the majorityofapplications, lowESR electrolytic or solid tantalum  
capacitors between 82 µF and 820 µF provide the best results. This capacitor  
should be located close to the IC using short capacitor leads and short copper  
traces. Do not use capacitors larger than 820 µF.  
B. To simplify the capacitor selection procedure, refer to the quick  
design table shown in Figure 3. This table contains different output  
voltages, and lists various output capacitors that will provide the best  
design solutions.  
B. Fromthequickdesign table shown in Figure 3, locate theoutput voltage  
column. Fromthat column, locate theoutput voltage closest to theoutput  
voltage in yourapplication. In this example, select the24V line. Under the  
output capacitor section, select a capacitor fromthe list ofthrough hole  
electrolytic orsurface mount tantalumtypes fromfour different capacitor  
manufacturers. It is recommended that both the manufacturers and the  
manufacturers series that are listed in the tablebeused.  
In this example, through hole aluminumelectrolytic capacitors from  
several different manufacturers are available.  
220 µF/35V Panasonic HFQ Series  
150 µF/35V Nichicon PLSeries  
C. The capacitor voltage rating should be at least 1.5 times greater than C. For a 20V output, a capacitor rating of at least 30V or more is  
the output voltage, and often much higher voltage ratings are needed to needed. In this example, either a 35V or 50V capacitor would  
satisfy the low ESR requirements needed for low output ripple voltage. work. A 35V rating was chosen, although a 50V rating could also  
be used if a lower output ripple voltage is needed.  
Other manufacturers or other types of capacitors may also be used,  
provided the capacitor specifications (especially the 100 kHz  
ESR) closely match the types listed in the table. Refer to the  
capacitor manufacturers data sheet for this information.  
4. Feedforward Capacitor (CFF ) (See Figure 1)  
4. Feedforward Capacitor (CFF )  
For output voltages greater than approximately 10V, an additional  
capacitor is required. The compensation capacitor is typically between  
100 pF and 33 nF, and is wired in parallel with the output voltage  
setting resistor, R2. It provides additional stability for high output  
voltages, low input-output voltages, and/or very low ESR output  
capacitors, such as solid tantalum capacitors.  
The table shown in Figure 3 contains feed forward capacitor  
values for various output voltages. In this example, a 560 pF  
capacitor is needed.  
C
FF  
1
3
31  
10  
R
This capacitor type can be ceramic, plastic, silver mica, etc. (Because of  
the unstable characteristics of ceramic capacitors made with Z5U  
material, they are not recommended.)  
BEIJING ESTEK ELECTRONICS CO.,LTD  
10  
LM2596  
LM2596 SERIES BUCK REGULATOR DESING PROCEDURE (ADJUSTABLE OUTPUT)  
Through Hole Output Capacitor Surface Mount Output Capacitor  
Output  
Voltage (V)  
Nichicon PL Series  
AVX TPS Series  
F/V)  
Panasonic HFQ  
Series  
Sprague 595D  
Series  
Feedforward  
Capacitor  
Feedforward  
(
(
F/V)  
(
F/V)  
(
F/V)  
2
4
6
820/35  
560/35  
470/25  
330/25  
330/25  
220/35  
220/35  
100/50  
820/35  
470/35  
470/25  
330/25  
330/25  
220/35  
150/35  
100/50  
33 nF  
10 nF  
3.3 nF  
1.5 nF  
1 nF  
680 pF  
560 pF  
390 pF  
330/6.3  
330/6.3  
220/10  
100/16  
100/16  
68/20  
470/4  
390/6.3  
330/10  
180/16  
180/16  
120/20  
33/25  
33 nF  
10 nF  
3.3 nF  
1.5 nF  
1 nF  
680 pF  
220 pF  
220 pF  
9
12  
15  
24  
28  
33/25  
10/35  
15/50  
Figure 3. Output Capacitor and Feedforward Capacitor Selection Table  
LM2596 SERIES BUCK REGULATOR DESIGN PROCEDURE  
Inductor Value Selection Guides (For Continuous Mode Operation)  
40V  
30V  
25V  
40V  
L29  
20V  
L43  
L39  
L30  
L27  
L36  
L40  
L31  
L37  
L38  
L21  
L22  
L32  
10V  
L28  
20V  
19V  
18V  
17V  
L33  
L30  
8V  
7V  
L29  
L40  
L31  
L23  
L34  
L21  
16V  
L32  
6V  
L24  
L25  
L33  
L22  
L23  
15V  
14V  
L15  
L24  
L34  
L16  
5V  
0.6 0.8 1.0 1.5 2.0 2.5  
3.0  
0.6 0.8 1.0 1.5 2.0 2.5  
3.0  
Figure 6. LM2596-12  
Figure 4. LM2596-3.3  
BEIJING ESTEK ELECTRONICS CO.,LTD  
11  
LM2596  
70  
60  
50  
40V  
20V  
15V  
Figure 7. LM2596-ADJ  
L38  
L29  
L27  
L35  
L28  
L39  
L40  
L43  
L30  
L36  
L44  
L37  
40  
L31  
12V  
L29  
L38  
L39  
L40  
30  
25  
L21  
L22  
L32  
10V  
9V  
L30  
20  
15  
L31  
L32  
L21  
L22  
L23  
L33  
L34  
L33  
L34  
8V  
10  
9
L23  
8
L24  
L24  
7
6
L15  
5
4
L25  
L25  
7V  
0.6 0.8 1.0  
3.0  
1.5 2.0 2.5  
0.6 0.8 1.0  
3.0  
1.5 2.0 2.5  
MAXIMUM LOAD CURRENT (A)  
LM2596 SERIES BUCK REGULATOR DESIGN PROCEDURE (Continued)  
Cur-  
rent  
(A)  
Schott  
Through  
Hole  
Renco  
Through  
Hole  
Pulse  
Surface Mount  
Surface  
Mount  
Through Hole  
RL-1284-22-43  
RL-5471-5  
RL-5471-6  
RL-5471-7  
RL-1283-22-43  
RL-1283-15-43  
RL-5471-1  
RL-5471-2  
RL-5471-3  
RL-5471-4  
RL-5471-5  
RL-5471-6  
RL-5471-7  
RL-1283-22-43  
RL-1283-15-43  
Surface  
Mount  
RL1500-22  
Surface  
Mount  
(H)  
L15  
DO3308-223  
L21 68  
DO3316-683  
L22 47  
DO3316-473  
L23 33  
DO3316-333  
L24 22  
DO3316-223  
L25 15  
DO3316-153  
L26 330  
DO5022P-334  
L27 220  
DO5022P-224  
L28 150  
DO5022P-154  
L29 100  
DO5022P-104  
L30 68  
DO5022P-683  
L31 47  
DO5022P-473  
L32 33  
DO5022P-333  
L33 22  
DO5022P-223  
L34 15  
22  
0.99  
67148350 67148460  
67144070 67144450  
67144080 67144460  
67144090 67144470  
67148370 67148480  
67148380 67148490  
67144100 67144480  
67144110 67144490  
67144120 67144500  
67144130 67144510  
67144140 67144520  
67144150 67144530  
67144160 67144540  
67148390 67148500  
67148400 67148790  
PE-53815  
PE-53815-S  
0.99  
1.17  
1.40  
1.70  
2.10  
0.80  
1.00  
1.20  
1.47  
1.78  
2.20  
2.50  
3.10  
3.40  
RL1500-68  
PE-53821  
PE-53822  
PE-53823  
PE-53821-S  
-
-
PE-53822-S  
PE-53823-S  
-
PE-53824  
PE-53825  
PE-53825-S  
-
PE-53824-S  
-
-
-
-
-
-
-
PE-53826  
PE-53827  
PE-53828  
PE-53829  
PE-53830  
PE-53831  
PE-53932  
PE-53826-S  
PE-53827-S  
PE-53828-S  
PE-53829-S  
PE-53830-S  
PE-53831-S  
PE-53932-S  
-
-
PE-53933  
PE-53934  
PE-53933-S  
PE-53934-S  
2200  
2000  
1800  
1600  
1400  
1200  
Figure 9. RMS Current Ratings for Low ESR  
Electrolytic Capacitors (typical)  
1000  
800  
600  
400  
10 20 30 40 50 60 70  
0
CAPACITOR VOLTAGE RATING (V)  
BEIJING ESTEK ELECTRONICS CO.,LTD  
12  
LM2596  
Address :  
6A06--6A07  
Rm 6A07,Changyin Office Building ,No.88,Yong Ding Road,Hai Dian District ,Beijing  
Postalcode:100039  
Tel: 86-010-58895780 / 81 / 82 / 83 / 84  
Http://www.estek.com.cn  
Fax : 010-58895793  
Email:sales@estek.com.cn  
REV No:01-060814  
BEIJING ESTEK ELECTRONICS CO.,LTD  
13  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY