1N6301ARL4 [ETC]

1500 Watt Mosorb TM Zener Transient Voltage Suppressors; 1500瓦Mosorb TM齐纳瞬态电压抑制器
1N6301ARL4
型号: 1N6301ARL4
厂家: ETC    ETC
描述:

1500 Watt Mosorb TM Zener Transient Voltage Suppressors
1500瓦Mosorb TM齐纳瞬态电压抑制器

瞬态抑制器 二极管 局域网
文件: 总7页 (文件大小:77K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1N6267A Series  
1500 Watt Mosorbt Zener  
Transient Voltage  
Suppressors  
Unidirectional*  
http://onsemi.com  
Mosorb devices are designed to protect voltage sensitive  
components from high voltage, high−energy transients. They have  
excellent clamping capability, high surge capability, low zener  
impedance and fast response time. These devices are  
ON Semiconductor’s exclusive, cost-effective, highly reliable  
Surmetict axial leaded package and are ideally-suited for use in  
communication systems, numerical controls, process controls,  
medical equipment, business machines, power supplies and many  
other industrial/consumer applications, to protect CMOS, MOS and  
Bipolar integrated circuits.  
Cathode  
Anode  
AXIAL LEAD  
CASE 41A  
PLASTIC  
Features  
MARKING DIAGRAM  
Working Peak Reverse Voltage Range − 5.8 V to 214 V  
Peak Power − 1500 Watts @ 1 ms  
ESD Rating of Class 3 (>16 kV) per Human Body Model  
Maximum Clamp Voltage @ Peak Pulse Current  
Low Leakage < 5 mA Above 10 V  
UL 497B for Isolated Loop Circuit Protection  
Response Time is Typically < 1 ns  
Pb−Free Packages are Available  
A
1.5KE  
xxxA  
1N6  
xxxA  
YYWWG  
G
A
= Assembly Location  
1.5KExxxA  
1N6xxxA  
YY  
= ON Device Code  
= JEDEC Device Code  
= Year  
WW  
= Work Week  
Mechanical Characteristics  
= (See Table on Page 3)  
= Pb−Free Package  
(Note: Microdot may be in either location)  
G
CASE: Void-free, transfer-molded, thermosetting plastic  
FINISH: All external surfaces are corrosion resistant and leads are  
readily solderable  
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES:  
230°C, 1/16 in from the case for 10 seconds  
POLARITY: Cathode indicated by polarity band  
MOUNTING POSITION: Any  
ORDERING INFORMATION  
Device  
1.5KExxxA  
1.5KExxxAG  
Package  
Shipping  
Axial Lead  
500 Units/Box  
500 Units/Box  
Axial Lead  
(Pb−Free)  
1.5KExxxARL4  
Axial Lead 1500/Tape & Reel  
1.5KExxxARL4G Axial Lead 1500/Tape & Reel  
(Pb−Free)  
1N6xxxA  
Axial Lead  
500 Units/Box  
500 Units/Box  
1N6xxxAG  
Axial Lead  
(Pb−Free)  
1N6xxxARL4  
Axial Lead 1500/Tape & Reel  
1N6xxxARL4G  
Axial Lead 1500/Tape & Reel  
(Pb−Free)  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
*For additional information on our Pb−Free strategy and soldering details, please  
download the ON Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
Preferred devices are recommended choices for future use  
and best overall value.  
©
Semiconductor Components Industries, LLC, 2007  
1
Publication Order Number:  
February, 2007 − Rev. 8  
1N6267A/D  
1N6267A Series  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
1500  
5.0  
Unit  
W
Peak Power Dissipation (Note 1) @ T 25°C  
P
L
PK  
Steady State Power Dissipation  
P
W
D
@ T 75°C, Lead Length = 3/8 in  
L
Derated above T = 75°C  
20  
20  
mW/°C  
°C/W  
A
L
Thermal Resistance, Junction−to−Lead  
R
q
JL  
Forward Surge Current (Note 2) @ T = 25°C  
I
200  
A
FSM  
Operating and Storage  
Temperature Range  
T , T  
− 65 to +175  
°C  
J
stg  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. Nonrepetitive current pulse per Figure 5 and derated above T = 25°C per Figure 2.  
A
2. 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum.  
NOTES: Please see 1.5KE6.8CA to 1.5KE250CA for Bidirectional Devices  
ELECTRICAL CHARACTERISTICS (T = 25°C unless  
A
otherwise noted, V = 3.5 V Max., I (Note 3) = 100 A)  
F
F
I
Symbol  
Parameter  
I
F
I
Maximum Reverse Peak Pulse Current  
Clamping Voltage @ I  
PP  
V
C
PP  
V
Working Peak Reverse Voltage  
RWM  
V
V
V
BR RWM  
C
I
Maximum Reverse Leakage Current @ V  
R
RWM  
V
I
V
R
T
F
I
V
Breakdown Voltage @ I  
BR  
T
I
Test Current  
T
QV  
Maximum Temperature Coefficient of V  
Forward Current  
BR  
BR  
I
I
F
PP  
V
Forward Voltage @ I  
F
F
Uni−Directional TVS  
http://onsemi.com  
2
 
1N6267A Series  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted, V = 3.5 V Max. @ I (Note 3) = 100 A)  
A
F
F
Breakdown Voltage  
(Note 6) (Volts)  
V @ I (Note 7)  
C PP  
V
RWM  
JEDEC  
Device  
V
@ I  
V
I
PP  
(Note 5)  
I
R
@ V  
QV  
BR  
BR  
T
C
RWM  
(Volts)  
(mA)  
Min  
Nom  
Max  
(mA)  
(Volts)  
(A)  
(%/°C)  
(Note 4)  
Device  
1.5KE6.8A, G  
1.5KE7.5A, G  
1.5KE8.2A, G  
1.5KE9.1A, G  
1N6267A, G  
1N6268A, G  
1N6269A, G  
1N6270A, G  
5.8  
6.4  
7.02  
7.78  
1000  
500  
200  
50  
6.45  
7.13  
7.79  
8.65  
6.8  
7.5  
8.2  
9.1  
7.14  
7.88  
8.61  
9.55  
10  
10  
10  
1
10.5  
11.3  
12.1  
13.4  
143  
132  
124  
112  
0.057  
0.061  
0.065  
0.068  
1.5KE10A, G  
1.5KE11A, G  
1.5KE12A, G  
1.5KE13A, G  
1N6271A, G  
1N6272A, G  
1N6273A, G  
1N6274A, G  
8.55  
9.4  
10.2  
11.1  
10  
5
5
9.5  
10  
11  
12  
13  
10.5  
11.6  
12.6  
13.7  
1
1
1
1
14.5  
15.6  
16.7  
18.2  
103  
96  
90  
0.073  
0.075  
0.078  
0.081  
10.5  
11.4  
12.4  
5
82  
1.5KE15A, G  
1.5KE16A, G  
1.5KE18A, G  
1.5KE20A, G  
1N6275A, G  
1N6276A, G  
1N6277A, G  
1N6278A, G  
12.8  
13.6  
15.3  
17.1  
5
5
5
5
14.3  
15.2  
17.1  
19  
15  
16  
18  
20  
15.8  
16.8  
18.9  
21  
1
1
1
1
21.2  
22.5  
25.2  
27.7  
71  
67  
59.5  
54  
0.084  
0.086  
0.088  
0.09  
1.5KE22A, G  
1.5KE24A, G  
1.5KE27A, G  
1.5KE30A, G  
1N6279A, G  
1N6280A, G  
1N6281A, G  
1N6282A, G  
18.8  
20.5  
23.1  
25.6  
5
5
5
5
20.9  
22.8  
25.7  
28.5  
22  
24  
27  
30  
23.1  
25.2  
28.4  
31.5  
1
1
1
1
30.6  
33.2  
37.5  
41.4  
49  
45  
40  
36  
0.092  
0.094  
0.096  
0.097  
1.5KE33A, G  
1.5KE36A, G  
1.5KE39A, G  
1.5KE43A, G  
1N6283A, G  
1N6284A, G  
1N6285A, G  
1N6286A, G  
28.2  
30.8  
33.3  
36.8  
5
5
5
5
31.4  
34.2  
37.1  
40.9  
33  
36  
39  
43  
34.7  
37.8  
41  
1
1
1
1
45.7  
49.9  
53.9  
59.3  
33  
30  
28  
0.098  
0.099  
0.1  
45.2  
25.3  
0.101  
1.5KE47A, G  
1.5KE51A, G  
1.5KE56A, G  
1.5KE62A, G  
1N6287A, G  
1N6288A, G  
1N6289A, G  
1N6290A, G  
40.2  
43.6  
47.8  
53  
5
5
5
5
44.7  
48.5  
53.2  
58.9  
47  
51  
56  
62  
49.4  
53.6  
58.8  
65.1  
1
1
1
1
64.8  
70.1  
77  
23.2  
21.4  
19.5  
17.7  
0.101  
0.102  
0.103  
0.104  
85  
1.5KE68A, G  
1.5KE75A, G  
1.5KE82A, G  
1.5KE91A, G  
1N6291A, G  
1N6292A, G  
1N6293A, G  
1N6294A, G  
58.1  
64.1  
70.1  
77.8  
5
5
5
5
64.6  
71.3  
77.9  
86.5  
68  
75  
82  
91  
71.4  
78.8  
86.1  
95.5  
1
1
1
1
92  
16.3  
14.6  
13.3  
12  
0.104  
0.105  
0.105  
0.106  
103  
113  
125  
1.5KE100A, G  
1.5KE110A, G  
1.5KE120A, G  
1.5KE130A, G  
1N6295A, G  
1N6296A, G  
1N6297A, G  
1N6298A, G  
85.5  
94  
102  
111  
5
5
5
5
95  
100  
110  
120  
130  
105  
116  
126  
137  
1
1
1
1
137  
152  
165  
179  
11  
0.106  
0.107  
0.107  
0.107  
105  
114  
124  
9.9  
9.1  
8.4  
1.5KE150A, G  
1.5KE160A, G  
1.5KE170A, G  
1.5KE180A, G  
1N6299A, G  
1N6300A, G  
1N6301A, G  
1N6302A, G*  
128  
136  
145  
154  
5
5
5
5
143  
152  
162  
171  
150  
160  
170  
180  
158  
168  
179  
189  
1
1
1
1
207  
219  
234  
246  
7.2  
6.8  
6.4  
6.1  
0.108  
0.108  
0.108  
0.108  
1.5KE200A, G  
1.5KE220A, G  
1.5KE250A, G  
1N6303A, G  
171  
185  
214  
5
5
5
190  
209  
237  
200  
220  
250  
210  
231  
263  
1
1
1
274  
328  
344  
5.5  
4.6  
5
0.108  
0.109  
0.109  
Devices listed in bold, italic are ON Semiconductor Preferred devices. Preferred devices are recommended choices for future use and best overall value.  
3. 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum.  
4. Indicates JEDEC registered data  
5. A transient suppressor is normally selected according to the maximum working peak reverse voltage (V ), which should be equal to or  
RWM  
greater than the dc or continuous peak operating voltage level.  
6. V measured at pulse test current I at an ambient temperature of 25°C  
BR  
T
7. Surge current waveform per Figure 5 and derate per Figures 1 and 2.  
†The “G” suffix indicates Pb−Free package available.  
*Not Available in the 1500/Tape & Reel  
http://onsemi.com  
3
 
1N6267A Series  
100  
NONREPETITIVE  
PULSE WAVEFORM  
SHOWN IN FIGURE 5  
100  
80  
60  
10  
40  
20  
0
1
0.1ꢀms  
1ꢀms  
10ꢀms  
100ꢀms  
1 ms  
10 ms  
0
25  
50  
75  
100 125 150 175 200  
T , AMBIENT TEMPERATURE (°C)  
A
t , PULSE WIDTH  
P
Figure 1. Pulse Rating Curve  
Figure 2. Pulse Derating Curve  
1N6373, ICTE-5, MPTE-5,  
through  
1N6267A/1.5KE6.8A  
through  
1N6389, ICTE-45, C, MPTE-45, C  
1N6303A/1.5KE200A  
10,000  
1000  
10,000  
MEASURED @  
ZERO BIAS  
MEASURED @  
ZERO BIAS  
1000  
100  
10  
MEASURED @ V  
RWM  
MEASURED @ V  
RWM  
100  
10  
1
10  
100  
1000  
1
10  
100  
1000  
V
, BREAKDOWN VOLTAGE (VOLTS)  
BR  
V
, BREAKDOWN VOLTAGE (VOLTS)  
BR  
Figure 3. Capacitance versus Breakdown Voltage  
PULSE WIDTH (t ) IS DEFINED AS  
P
THAT POINT WHERE THE PEAK  
t
r
3/8″  
CURRENT DECAYS TO 50% OF I  
tr 10ꢀms  
.
PP  
PEAK VALUE − I  
100  
50  
0
PP  
3/8″  
5
4
3
I
PP  
HALF VALUE −  
2
2
t
P
1
0
0
1
2
t, TIME (ms)  
3
4
0
25  
50  
75  
100 125 150 175  
200  
T , LEAD TEMPERATURE (°C)  
L
Figure 4. Steady State Power Derating  
Figure 5. Pulse Waveform  
http://onsemi.com  
4
 
1N6267A Series  
1N6373, ICTE-5, MPTE-5,  
through  
1.5KE6.8CA  
through  
1N6389, ICTE-45, C, MPTE-45, C  
1.5KE200CA  
1000  
500  
1000  
V
ꢀ=ꢀ6.8 to 13ꢀV  
V
ꢀ=ꢀ6.8 to 13ꢀV  
20ꢀV  
BR(NOM)  
BR(NOM)  
T ꢀ=ꢀ25°C  
P
T ꢀ=ꢀ25°C  
L
t ꢀ=ꢀ10ꢀms  
P
L
t ꢀ=ꢀ10ꢀms  
500  
20ꢀV  
24ꢀV  
43ꢀV  
75ꢀV  
43ꢀV  
24ꢀV  
200  
100  
50  
200  
100  
50  
20  
20  
180ꢀV  
120ꢀV  
10  
5
10  
5
2
1
2
1
0.3  
0.5 0.7  
1
2
3
5
7
10  
20 30  
(VOLTS)  
0.3  
DV , INSTANTANEOUS INCREASE IN V ABOVE V (VOLTS)  
BR(NOM)  
0.5 0.7  
1
2
3
5
7
10  
20 30  
DV , INSTANTANEOUS INCREASE IN V ABOVE V  
BR BR  
BR(NOM)  
BR  
BR  
Figure 6. Dynamic Impedance  
1
0.7  
0.5  
0.3  
0.2  
PULSE WIDTH  
10 ms  
0.1  
0.07  
0.05  
1 ms  
0.03  
0.02  
100 ms  
10 ms  
0.01  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50 100  
D, DUTY CYCLE (%)  
Figure 7. Typical Derating Factor for Duty Cycle  
APPLICATION NOTES  
RESPONSE TIME  
application, since the main purpose for adding a transient  
suppressor is to clamp voltage spikes. These devices have  
excellent response time, typically in the picosecond range  
and negligible inductance. However, external inductive  
effects could produce unacceptable overshoot. Proper  
circuit layout, minimum lead lengths and placing the  
suppressor device as close as possible to the equipment or  
components to be protected will minimize this overshoot.  
In most applications, the transient suppressor device is  
placed in parallel with the equipment or component to be  
protected. In this situation, there is a time delay associated  
with the capacitance of the device and an overshoot  
condition associated with the inductance of the device and  
the inductance of the connection method. The capacitance  
effect is of minor importance in the parallel protection  
scheme because it only produces a time delay in the  
transition from the operating voltage to the clamp voltage as  
shown in Figure 8.  
The inductive effects in the device are due to actual  
turn-on time (time required for the device to go from zero  
current to full current) and lead inductance. This inductive  
effect produces an overshoot in the voltage across the  
equipment or component being protected as shown in  
Figure 9. Minimizing this overshoot is very important in the  
Some input impedance represented by Z is essential to  
in  
prevent overstress of the protection device. This impedance  
should be as high as possible, without restricting the circuit  
operation.  
DUTY CYCLE DERATING  
The data of Figure 1 applies for non-repetitive conditions  
and at a lead temperature of 25°C. If the duty cycle increases,  
the peak power must be reduced as indicated by the curves  
of Figure 7. Average power must be derated as the lead or  
http://onsemi.com  
5
 
1N6267A Series  
ambient temperature rises above 25°C. The average power  
derating curve normally given on data sheets may be  
normalized and used for this purpose.  
At first glance the derating curves of Figure 7 appear to be  
in error as the 10 ms pulse has a higher derating factor than  
the 10 ms pulse. However, when the derating factor for a  
given pulse of Figure 7 is multiplied by the peak power value  
of Figure 1 for the same pulse, the results follow the  
expected trend.  
TYPICAL PROTECTION CIRCUIT  
Z
in  
LOAD  
V
in  
V
L
V
in  
(TRANSIENT)  
OVERSHOOT DUE TO  
INDUCTIVE EFFECTS  
V
V
V
in  
(TRANSIENT)  
V
L
V
L
V
in  
t
d
t = TIME DELAY DUE TO CAPACITIVE EFFECT  
D
t
t
Figure 8.  
Figure 9.  
UL RECOGNITION*  
The entire series has Underwriters Laboratory  
Recognition for the classification of protectors (QVGV2)  
under the UL standard for safety 497B and File #E210057.  
Many competitors only have one or two devices recognized  
or have recognition in a non-protective category. Some  
competitors have no recognition at all. With the UL497B  
recognition, our parts successfully passed several tests  
including Strike Voltage Breakdown test, Endurance  
Conditioning, Temperature test, Dielectric Voltage-  
Withstand test, Discharge test and several more.  
Whereas, some competitors have only passed a  
flammability test for the package material, we have been  
recognized for much more to be included in their Protector  
category.  
*Applies to 1.5KE6.8A, CA thru 1.5KE250A, CA  
CLIPPER BIDIRECTIONAL DEVICES  
1. Clipper-bidirectional devices are available in the  
1.5KEXXA series and are designated with a “CA”  
suffix; for example, 1.5KE18CA. Contact your nearest  
ON Semiconductor representative.  
3. The 1N6267A through 1N6303A series are JEDEC  
registered devices and the registration does not include  
a “CA” suffix. To order clipper-bidirectional devices  
one must add CA to the 1.5KE device title.  
2. Clipper-bidirectional part numbers are tested in both  
directions to electrical parameters in preceding table  
(except for V which does not apply).  
F
http://onsemi.com  
6
1N6267A Series  
OUTLINE DIMENSIONS  
MOSORB  
CASE 41A−04  
ISSUE D  
B
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
D
2. CONTROLLING DIMENSION: INCH.  
3. LEAD FINISH AND DIAMETER UNCONTROLLED  
IN DIMENSION P.  
4. 041A−01 THRU 041A−03 OBSOLETE, NEW  
STANDARD 041A−04.  
K
INCHES  
DIM MIN MAX  
MILLIMETERS  
P
MIN  
8.50  
4.80  
0.96  
MAX  
9.50  
5.30  
1.06  
−−−  
A
B
D
K
P
0.335  
0.189  
0.038  
1.000  
0.374  
0.209  
0.042  
P
A
−−− 25.40  
−−−  
−−− 0.050  
1.27  
K
Mosorb and Surmetic are trademarks of Semiconductor Components Industries, LLC.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5773−3850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
1N6267A/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY