505892X [ETC]

IC ; IC内部から
505892X
型号: 505892X
厂家: ETC    ETC
描述:

IC
IC内部から

文件: 总16页 (文件大小:282K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1083/LT1084/LT1085  
7.5A, 5A, 3A Low Dropout  
Positive Adjustable Regulators  
U
DESCRIPTIO  
FEATURES  
The LT®1083 series of positive adjustable regulators are  
designedtoprovide7.5A, 5Aand3Awithhigherefficiency  
than currently available devices. All internal circuitry is  
Three-Terminal Adjustable  
Output Current of 3A, 5A or 7.5A  
Operates Down to 1V Dropout  
Guaranteed Dropout Voltage at Multiple Current Levels designed to operate down to 1V input-to-output differen-  
Line Regulation: 0.015%  
Load Regulation: 0.1%  
100% Thermal Limit Functional Test  
Fixed Versions Available  
tial and the dropout voltage is fully specified as a function  
of load current. Dropout is guaranteed at a maximum of  
1.5Vatmaximumoutputcurrent, decreasingatlowerload  
currents. On-chip trimming adjusts the reference voltage  
to1%. Currentlimitisalsotrimmed, minimizingthestress  
on both the regulator and power source circuitry under  
overload conditions.  
U
APPLICATIO S  
High Efficiency Linear Regulators  
The LT1083/LT1084/LT1085 devices are pin compatible  
with older three-terminal regulators. A 10µF output ca-  
pacitor is required on these new devices. However, this is  
included in most regulator designs.  
Post Regulators for Switching Supplies  
Constant Current Regulators  
Battery Chargers  
DEVICE  
OUTPUT CURRENT*  
Unlike PNP regulators, where up to 10% of the output  
current is wasted as quiescent current, the LT1083 quies-  
cent current flows into the load, increasing efficiency.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
LT1083  
LT1084  
LT1085  
7.5A  
5.0A  
3.0A  
*For a 1.5A low dropout regulator see the LT1086 data sheet.  
U
TYPICAL APPLICATIO  
5V, 7.5A Regulator  
Dropout Voltage vs Output Current  
2
LT1083  
ADJ  
5V AT 7.5A  
OUT  
V
IN  
6.5V  
IN  
121Ω  
1%  
+
+
10µF  
10µF*  
TANTALUM  
1
0
365Ω  
1%  
*REQUIRED FOR STABILITY  
1083/4/5 ADJ TA01  
0
I
FULL LOAD  
OUTPUT CURRENT  
1083/4/5 ADJ TA02  
1
LT1083/LT1084/LT1085  
W W U W  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
Power Dissipation............................... Internally Limited  
Input-to-Output Voltage Differential  
“M” Grades: Control Section............. – 55°C to 150°C  
Power Transistor .......... – 55°C to 200°C  
“C” Grades .......................................................... 30V  
“I” Grades............................................................ 30V  
“M” Grades.......................................................... 35V  
Operating Junction Temperature Range  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U
U U  
PRECO DITIO I G  
“C” Grades: Control Section.................. 0°C to 125°C  
Power Transistor ............... 0°C to 150°C  
100% thermal shutdown functional test.  
“I” Grades: Control Section............. – 40°C to 125°C  
Power Transistor .......... – 40°C to 150°C  
U
W U  
PACKAGE/ORDER INFORMATION  
TAB IS  
FRONT VIEW  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
FRONT VIEW  
OUTPUT  
3
2
1
V
V
IN  
TAB  
IS  
OUTPUT  
3
2
1
V
V
IN  
OUT  
LT1084CT  
LT1084IT  
LT1085CT  
LT1085IT  
LT1083CP  
LT1084CP  
OUT  
ADJ  
ADJ  
T PACKAGE  
3-LEAD PLASTIC TO-220  
P PACKAGE  
3-LEAD PLASTIC TO-3P  
θJA = 50°C/W  
θJA = 35°C/W  
FRONT VIEW  
BOTTOM VIEW  
LT1083CK  
LT1083MK  
LT1084CK  
LT1084MK  
LT1085CK  
LT1085MK  
LT1085CM  
3
2
1
V
V
CASE IS  
OUTPUT  
IN  
OUT  
V
IN  
TAB  
IS  
OUTPUT  
2
1
ADJ  
M PACKAGE  
3-LEAD PLASTIC DD  
ADJ  
θJA = 30°C/W*  
K PACKAGE  
*WITH PACKAGE SOLDERED TO 0.5IN2 COPPER AREA  
OVERBACKSIDEGROUNDPLANEORINTERNALPOWER  
PLANE. θJA CAN VARY FROM 20°C/W TO > 40°C/W  
DEPENDING ON MOUNTING TECHNIQUE.  
2-LEAD TO-3 METAL CAN  
θJA = 35°C/W  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C.  
PARAMETER  
CONDITIONS  
= 10mA, T = 25°C,  
MIN  
TYP  
MAX  
UNITS  
Reference Voltage  
I
OUT  
J
(V – V ) = 3V  
1.238 1.250 1.262  
1.225 1.250 1.270  
V
V
IN  
OUT  
10mA I  
I  
OUT  
FULL LOAD  
1.5V (V – V ) 25V (Notes 4, 6, 7)  
IN  
OUT  
Line Regulation  
I
= 10mA, 1.5V (V – V ) 15V, T = 25°C (Notes 2, 3)  
0.015  
0.035  
0.05  
0.05  
0.2  
0.2  
0.5  
0.5  
%
%
%
%
LOAD  
IN  
OUT  
J
M Grade: 15V (V – V ) 35V (Notes 2, 3)  
C, I Grades: 15V (V – V ) 30V (Notes 2, 3)  
IN  
OUT  
IN  
OUT  
2
LT1083/LT1084/LT1085  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C.  
PARAMETER  
CONDITIONS  
(V – V ) = 3V  
MIN  
TYP  
MAX  
UNITS  
Load Regulation  
IN  
OUT  
10mA I  
T = 25°C (Notes 2, 3, 4, 6)  
J
I  
OUT  
FULL LOAD  
0.1  
0.2  
1.3  
0.3  
0.4  
1.5  
%
%
V
Dropout Voltage  
V = 1%, I  
REF  
= I (Notes 5, 6, 8)  
FULLLOAD  
OUT  
Current Limit  
LT1083  
(V – V ) = 5V  
8.0  
0.4  
5.5  
0.3  
3.2  
0.2  
9.5  
1.0  
6.5  
0.6  
4.0  
0.5  
A
A
A
A
A
A
IN  
OUT  
(V – V ) = 25V  
IN  
OUT  
LT1084  
LT1085  
(V – V ) = 5V  
IN OUT  
(V – V ) = 25V  
IN  
OUT  
(V – V ) = 5V  
IN  
OUT  
(V – V ) = 25V  
IN  
OUT  
Minimum Load Current  
(V – V ) = 25V  
5
10  
mA  
IN  
OUT  
Thermal Regulation  
LT1083  
T = 25°C, 30ms Pulse  
A
0.002 0.010  
0.003 0.015  
0.004 0.020  
%/W  
%/W  
%/W  
LT1084  
LT1085  
Ripple Rejection  
f = 120Hz, C  
= 25µF, C  
= 25µF Tantalum  
ADJ  
OUT  
I
= I  
FULL LOAD  
, (V – V ) = 3V (Notes 6, 7, 8)  
60  
75  
55  
dB  
µA  
µA  
OUT  
IN  
OUT  
Adjust Pin Current  
T = 25°C  
J
120  
Adjust Pin Current Change  
10mA I  
1.5V (V – V ) 25V (Note 6)  
I  
OUT FULL LOAD  
0.2  
0.5  
0.3  
5
1
µA  
%
%
IN  
OUT  
Temperature Stability  
Long Term Stability  
T = 125°C, 1000 Hrs  
A
RMS Output Noise (% of V  
)
T = 25°C  
10Hz = f 10kHz  
OUT  
A
0.003  
%
Thermal Resistance Junction-to-Case  
LT1083  
Control Circuitry/Power Transistor  
K Package  
0.6/1.6  
0.5/1.6  
0.75/2.3  
0.65/2.3  
0.65/2.7  
0.9/3.0  
0.7/3.0  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
P Package  
K Package  
P Package  
T Package  
K Package  
M, T Packages  
LT1084  
LT1085  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: See thermal regulation specifications for changes in output voltage  
due to heating effects. Load and line regulation are measured at a constant  
junction temperature by low duty cycle pulse testing.  
Note 4: I  
is defined in the current limit curves. The I  
FULL LOAD FULLLOAD  
curve is defined as the minimum value of current limit as a function of  
input-to-output voltage. Note that the 60W power dissipation for the  
LT1083 (45W for the LT1084 (K, P), 30W for the LT1084 (T), 30W for the  
LT1085) is only achievable over a limited range of input-to-output voltage.  
Note 5: Dropout voltage is specified over the full output current range of  
the device. Test points and limits are shown on the Dropout Voltage  
curve.  
Note 3: Line and load regulation are guaranteed up to the maximum power  
dissapation (60W for the LT1083, 45W for the LT1084 (K, P), 30W for the  
LT1084 (T) and 30W for the LT1085). Power dissipation is determined by  
the input/output differential and the output current. Guaranteed maximum  
power dissipation will not be available over the full input/output voltage  
range.  
Note 6: For LT1083 I  
is 5A for 55°C T < – 40°C and 7.5A for  
J
FULL LOAD  
T –40°C.  
J
Note 7: 1.7V (V – V ) 25V for LT1084 at 55°C T – 40°C.  
IN  
OUT  
J
Note 8: Dropout is 1.7V maximum for LT1084 at 55°C T 40°C.  
J
3
LT1083/LT1084/LT1085  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1083  
Dropout Voltage  
LT1083  
Short-Circut Current  
LT1083  
Load Regulation  
12  
10  
8
0.10  
0.05  
2
INDICATES GUARANTEED TEST POINT  
I = 7.5A  
25°C  
–40°C T 150°C  
J
0°C T 125°C  
J
150°C  
0
–0.05  
–0.10  
–0.15  
–0.20  
6
1
T = 150°C  
J
–55°C  
4
2
0
T = 25°C  
J
T = –55°C  
J
I
FULL LOAD  
GUARANTEED  
10  
INPUT/OUTPUT DIFFERENTIAL (V)  
0
20  
30  
35  
75 100  
125 150  
TEMPERATURE (°C)  
0
5
15  
25  
–50 –25  
0
25 50  
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT CURRENT (A)  
LT1083/4/5 ADJ G02  
LT1083/4/5 ADJ G03  
LT1083/4/5 ADJ G01  
LT1084  
Dropout Voltage  
LT1084  
LT1084  
Short-Circut Current  
Load Regulation  
10  
9
8
7
6
5
4
3
2
1
0
2
0.10  
0.05  
INDICATES GUARANTEED TEST POINT  
–55°C T 150°C  
I = 5A  
J
150°C  
25°C  
0°C T 125°C  
J
0
–55°C  
–0.05  
–0.10  
–0.15  
–0.20  
1
0
T
= –55°C  
J
T
= 25°C  
J
T
= 150°C  
J
I
FULL LOAD  
GUARANTEED  
0
10  
15  
20  
25  
30  
35  
5
75 100  
–50 –25  
0
25 50  
125 150  
0
1
3
4
5
6
2
INPUT/OUTPUT DIFFERENTIAL (V)  
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
LT1083/4/5 ADJ G05  
LT1083/4/5 ADJ G06  
LT1083/4/5 ADJ G04  
LT1085  
Dropout Voltage  
LT1085  
LT1085  
Short-Circut Current  
Load Regulation  
6
5
4
3
2
1
0
0.10  
0.05  
INDICATES GUARANTEED TEST POINT  
I = 3A  
–55°C T 150°C  
J
0°C T 125°C  
J
25°C  
0
150°C  
–0.05  
–0.10  
–0.15  
–0.20  
T = –55°C  
J
–55°C  
T = 25°C  
J
2
1
0
T = 150°C  
J
I
FULL LOAD  
GUARANTEED  
20  
30  
35  
0
5
10  
15  
25  
75 100  
0
2
3
–50 –25  
0
25 50  
125 150  
1
4
INPUT/OUTPUT DIFFERENTIAL (V)  
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
LT1083/4/5 ADJ G08  
LT1083/4/5 ADJ G07  
LT1083/4/5 ADJ G09  
4
LT1083/LT1084/LT1085  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Minimum Operating Current  
Temperature Stability  
Adjust Pin Current  
10  
9
8
7
6
5
4
3
2
1
0
1.27  
1.26  
1.25  
1.24  
1.23  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T = 150°C  
J
T = 25°C  
J
T = –55°C  
J
0
10  
15  
20  
25  
30  
35  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
5
INPUT/OUTPUT DIFFERENTIAL (V)  
LT1083/4/5 ADJ G10  
LT1083/4/5 ADJ G11  
LT1083/4/5 ADJ G12  
LT1083  
Ripple Rejection  
LT1083  
Ripple Rejection vs Current  
LT1083  
Maximum Power Dissipation*  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
3V  
P-P  
V
RIPPLE  
f
= 120Hz  
RIPPLE  
RIPPLE  
R
V
0.5V  
3V  
P-P  
P-P  
(V – V ) 3V  
IN  
OUT  
f
= 20kHz  
RIPPLE  
R
V
0.5V  
LT1083MK  
P-P  
(V – V ) V  
IN  
OUT  
DROPOUT  
LT1083CP  
LT1083CK  
C
C
I
= 200µF AT FREQUENCIES < 60Hz  
= 25µF AT FREQUENCIES > 60Hz  
= 7A  
V
C
C
= 5V  
= 25µF  
= 25µF  
ADJ  
ADJ  
OUT  
OUT  
ADJ  
OUT  
10  
100  
1k  
10k  
100k  
50 60 70 80 90 100 110 120 130 140 150  
CASE TEMPERATURE (°C)  
0
4
6
7
1
2
3
5
8
FREQUENCY (Hz)  
OUTPUT CURRENT (A)  
1083/4/5 ADJ G13  
* AS LIMITED BY MAXIMUM JUNCTION TEMPERATURE  
1083/4/5 ADJ G14  
LT1083/4/5 ADJ G15  
LT1084  
Ripple Rejection  
LT1084  
Ripple Rejection vs Current  
LT1084  
Maximum Power Dissipation*  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
f
= 120Hz  
RIPPLE  
V
3V  
V
0.5V  
R
RIPPLE  
P-P  
RIPPLE P-P  
V
3V  
P-P  
50  
(V – V ) 3V  
IN  
OUT  
LT1084MK  
f
= 20kHz  
RIPPLE  
R
40  
V
0.5V  
P-P  
(V – V ) V  
IN  
OUT  
DROPOUT  
30  
LT1084CT  
LT1084CP  
20  
C
C
I
= 200µF AT FREQUENCIES < 60Hz  
= 25µF AT FREQUENCIES > 60Hz  
= 5A  
V
OUT  
C
ADJ  
C
OUT  
= 5V  
= 25µF  
= 25µF  
ADJ  
ADJ  
OUT  
10  
0
LT1084CK  
10  
100  
1k  
10k  
100k  
50 60 70 80 90 100 110 120 130 140 150  
CASE TEMPERATURE (°C)  
0
4
1
2
3
5
FREQUENCY (Hz)  
OUTPUT CURRENT (A)  
1083/4/5 ADJ G16  
* AS LIMITED BY MAXIMUM JUNCTION TEMPERATURE  
1083/4/5 ADJ G17  
LT1083/4/5 ADJ G18  
5
LT1083/LT1084/LT1085  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1085  
Ripple Rejection  
LT1085  
Ripple Rejection vs Current  
LT1085  
Maximum Power Dissipation*  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
3V  
P-P  
V
RIPPLE  
RIPPLE  
0.5V  
P-P  
f
= 120Hz  
RIPPLE  
R
(V – V ) 3V  
IN  
OUT  
V
3V  
P-P  
LT1085MK  
(V – V ) V  
IN DROPOUT  
f
V
= 20kHz  
OUT  
R
0.5V  
RIPPLE  
P-P  
LT1085CT  
LT1085CK  
C
C
I
= 200µF AT FREQUENCIES < 60Hz  
= 25µF AT FREQUENCIES > 60Hz  
= 3A  
V
= 5V  
= 25µF  
= 25µF  
ADJ  
ADJ  
OUT  
OUT  
ADJ  
OUT  
C
C
10  
100  
1k  
10k  
100k  
50 60 70 80 90 100 110 120 130 140 150  
CASE TEMPERATURE (°C)  
0
2.5  
0.5  
1.0  
1.5  
2.0  
3.0  
FREQUENCY (Hz)  
OUTPUT CURRENT (A)  
1083/4/5 ADJ G19  
* AS LIMITED BY MAXIMUM JUNCTION TEMPERATURE  
1083/4/5 ADJ G20  
LT1083/4/5 ADJ G21  
LT1083  
Load Transient Response  
LT1084  
Load Transient Response  
LT1085  
Load Transient Response  
0.6  
0.4  
0.2  
0
0.6  
0.3  
C
ADJ  
= 0  
C
ADJ  
= 0  
0.4  
0.2  
0
0.2  
0.1  
0
C
= 0  
ADJ  
C
ADJ  
= 1µF  
C
= 1µF  
C
= 1µF  
ADJ  
ADJ  
–0.2  
–0.4  
8
–0.2  
–0.4  
–0.6  
6
–0.1  
–0.2  
–0.3  
3
C
C
= 1µF  
OUT  
IN  
C
C
= 1µF  
OUT  
= 10µF TANTALUM  
IN  
C
C
= 1µF  
OUT  
IN  
= 10µF TANTALUM  
= 10µF TANTALUM  
V
V
=10V  
OUT  
IN  
6
=13V  
PRELOAD=100mA  
V
=10V  
OUT  
V
V
=10V  
4
4
OUT  
IN  
2
V
=13V  
IN  
=13V  
2
2
1
PRELOAD=100mA  
PRELOAD=100mA  
0
0
0
0
50  
TIME (µs)  
0
50  
TIME (µs)  
0
50  
TIME (µs)  
100  
100  
100  
1083/4/5 ADJ G22  
1083/4/5 ADJ G23  
1083/4/5 ADJ G24  
LT1083  
LT1084  
Line Transient Response  
LT1085  
Line Transient Response  
Line Transient Response  
60  
40  
60  
40  
150  
100  
50  
C
= 0  
C
= 0  
C
ADJ  
= 0  
ADJ  
ADJ  
C
ADJ  
= 1µF  
C
ADJ  
= 1µF  
C
ADJ  
= 1µF  
20  
20  
0
0
0
–20  
–40  
–60  
14  
–20  
–40  
–60  
14  
–50  
–100  
–150  
14  
V
IN  
= 10V  
V
IN  
= 10V  
V
IN  
= 10V  
OUT  
OUT  
OUT  
I
= 0.2A  
I
= 0.2A  
I
= 0.2A  
C
C
= 1µF TANTALUM  
= 10µF TANTALUM  
C
C
= 1µF TANTALUM  
= 10µF TANTALUM  
C
C
= 1µF TANTALUM  
= 10µF TANTALUM  
IN  
OUT  
IN  
OUT  
IN  
OUT  
13  
13  
13  
12  
12  
12  
0
100  
TIME (µs)  
0
100  
TIME (µs)  
0
100  
TIME (µs)  
200  
200  
200  
1083/4/5 ADJ G26  
1083/4/5 ADJ G27  
1083/4/5 ADJ G25  
6
LT1083/LT1084/LT1085  
W
BLOCK DIAGRAM  
V
IN  
+
THERMAL  
LIMIT  
V
OUT  
1083/4/5 ADJ BD  
V
ADJ  
U
W U U  
APPLICATIONS INFORMATION  
The LT1083 family of three-terminal adjustable regulators  
is easy to use and has all the protection features that are  
expectedinhighperformancevoltageregulators. Theyare  
short-circuit protected, and have safe area protection as  
well as thermal shutdown to turn off the regulator should  
the junction temperature exceed about 165°C.  
theoutputwillensurestability.Normally,capacitorsmuch  
smaller than this can be used with the LT1083. Many  
different types of capacitors with widely varying charac-  
teristics are available. These capacitors differ in capacitor  
tolerance (sometimes ranging up to ±100%), equivalent  
series resistance, and capacitance temperature coeffi-  
cient. The 150µF or 22µF values given will ensure stability.  
These regulators are pin compatible with older three-  
terminal adjustable devices, offer lower dropout voltage  
and more precise reference tolerance. Further, the refer-  
ence stability with temperature is improved over older  
types of regulators. The only circuit difference between  
using the LT1083 family and older regulators is that this  
new family requires an output capacitor for stability.  
When the adjustment terminal is bypassed to improve the  
ripple rejection, the requirement for an output capacitor  
increases. The value of 22µF tantalum or 150µF aluminum  
covers all cases of bypassing the adjustment terminal.  
Without bypassing the adjustment terminal, smaller ca-  
pacitors can be used with equally good results and the  
table below shows approximately what size capacitors are  
needed to ensure stability.  
Stability  
The circuit design used in the LT1083 family requires the  
use of an output capacitor as part of the device frequency  
compensation.Foralloperatingconditions,theadditionof  
150µF aluminium electrolytic or a 22µF solid tantalum on  
Recommended Capacitor Values  
INPUT  
OUTPUT  
ADJUSTMENT  
10µF  
10µF  
10µF Tantalum, 50µF Aluminum  
22µF Tantalum, 150µF Aluminum  
None  
20µF  
7
LT1083/LT1084/LT1085  
U
W U U  
APPLICATIONS INFORMATION  
Normally, capacitor values on the order of 100µF are used  
in the output of many regulators to ensure good transient  
responsewithheavyloadcurrentchanges. Outputcapaci-  
tance can be increased without limit and larger values of  
output capacitor further improve stability and transient  
response of the LT1083 regulators.  
input pin instantaneously shorted to ground, can damage  
occur. A crowbar circuit at the input of the LT1083 can  
generate those kinds of currents, and a diode from output  
to input is then recommended. Normal power supply  
cyclingorevenpluggingandunplugginginthesystemwill  
not generate current large enough to do any damage.  
Anotherpossiblestabilityproblemthatcanoccurinmono-  
lithic IC regulators is current limit oscillations. These can  
occur because, in current limit, the safe area protection  
exhibits a negative impedance. The safe area protection  
decreases the current limit as the input-to-output voltage  
increases. That is the equivalent of having a negative  
resistance since increasing voltage causes current to  
decrease. Negative resistance during current limit is not  
unique to the LT1083 series and has been present on all  
power IC regulators. The value of the negative resistance  
is a function of how fast the current limit is folded back as  
input-to-output voltage increases. This negative resis-  
tance can react with capacitors or inductors on the input  
to cause oscillation during current limiting. Depending on  
thevalueofseriesresistance, theoverallcircuitrymayend  
up unstable. Since this is a system problem, it is not  
necessarily easy to solve; however, it does not cause any  
problemswiththeICregulatorandcanusuallybeignored.  
The adjustment pin can be driven on a transient basis  
±25V, with respect to the output without any device  
degradation. Of course, as with any IC regulator, exceed-  
ing the maximum input to output voltage differential  
causes the internal transistors to break down and none of  
the protection circuitry is functional.  
D1  
1N4002  
(OPTIONAL)  
IN  
OUT  
LT1083  
ADJ  
V
OUT  
V
IN  
+
C
OUT  
150µF  
R1  
R2  
+
C
ADJ  
10µF  
1083/4/5 ADJ F00  
Overload Recovery  
Like any of the IC power regulators, the LT1083 has safe  
area protection. The safe area protection decreases the  
current limit as input-to-output voltage increases and  
keeps the power transistor inside a safe operating region  
for all values of input-to-output voltage. The LT1083  
protection is designed to provide some output current at  
all values of input-to-output voltage up to the device  
breakdown.  
Protection Diodes  
In normal operation, the LT1083 family does not need any  
protection diodes. Older adjustable regulators required  
protection diodes between the adjustment pin and the  
output and from the output to the input to prevent over-  
stressingthedie. TheinternalcurrentpathsontheLT1083  
adjustmentpinarelimitedbyinternalresistors. Therefore,  
even with capacitors on the adjustment pin, no protection  
diodeisneededtoensuredevicesafetyundershort-circuit  
conditions.  
When power is first turned on, as the input voltage rises,  
the output follows the input, allowing the regulator to start  
up into very heavy loads. During the start-up, as the input  
voltage is rising, the input-to-output voltage differential  
remains small, allowing the regulator to supply large  
output currents. With high input voltage, a problem can  
occurwhereinremovalofanoutputshortwillnotallowthe  
output voltage to recover. Older regulators, such as the  
7800 series, also exhibited this phenomenon, so it is not  
unique to the LT1083.  
Diodes between input and output are usually not needed.  
The internal diode between the input and the output pins  
of the LT1083 family can handle microsecond surge  
currents of 50A to 100A. Even with large output capaci-  
tances, it is very difficult to get those values of surge  
currents in normal operations. Only with a high value of  
output capacitors, such as 1000µF to 5000µF and with the  
8
LT1083/LT1084/LT1085  
U
W U U  
APPLICATIONS INFORMATION  
The problem occurs with a heavy output load when the  
input voltage is high and the output voltage is low, such as  
immediatelyafterremovalofashort.Theloadlineforsuch  
aloadmayintersecttheoutputcurrentcurveattwopoints.  
If this happens, there are two stable output operating  
points for the regulator. With this double intersection, the  
power supply may need to be cycled down to zero and  
brought up again to make the output recover.  
IN  
OUT  
LT1083  
ADJ  
V
OUT  
V
IN  
V
R1  
R2  
REF  
I
ADJ  
50µA  
R2  
R1  
V
= V  
1 +  
+ I  
R2  
ADJ  
OUT  
REF  
(
)
1083/4/5 ADJ F01  
Figure 1. Basic Adjustable Regulator  
Ripple Rejection  
Load Regulation  
The typical curves for ripple rejection reflect values for a  
bypassed adjustment pin. This curve will be true for all  
values of output voltage. For proper bypassing and ripple  
rejectionapproachingthevaluesshown, theimpedanceof  
the adjust pin capacitor at the ripple frequency should be  
less than the value of R1, (normally 100to 120). The  
size of the required adjust pin capacitor is a function of the  
input ripple frequency. At 120Hz the adjust pin capacitor  
should be 25µF if R1 = 100. At 10kHz only 0.22µF is  
needed.  
Because the LT1083 is a three-terminal device, it is not  
possible to provide true remote load sensing. Load regu-  
lation will be limited by the resistance of the wire connect-  
ing the regulator to the load. The data sheet specification  
for load regulation is measured at the bottom of the  
package. Negative side sensing is a true Kelvin connec-  
tion, with the bottom of the output divider returned to the  
negative side of the load. Although it may not be immedi-  
ately obvious, best load regulation is obtained when the  
top of the resistor divider R1 is connected directly to the  
case not to the load. This is illustrated in Figure 2. If R1  
were connected to the load, the effective resistance be-  
tween the regulator and the load would be:  
For circuits without an adjust pin bypass capacitor, the  
ripple rejection will be a function of output voltage. The  
output ripple will increase directly as a ratio of the output  
voltage to the reference voltage (VOUT/VREF). For example,  
with the output voltage equal to 5V and no adjust pin  
capacitor,theoutputripplewillbehigherbytheratioof5V/  
1.25V or four times larger. Ripple rejection will be de-  
gradedby12dBfromthevalueshownonthetypicalcurve.  
R2 +R1  
R ×  
, R = Parasitic Line Resistance  
P
P
R1  
R
P
PARASITIC  
LINE RESISTANCE  
Output Voltage  
V
IN  
LT1083 OUT  
ADJ  
IN  
The LT1083 develops a 1.25V reference voltage between  
the output and the adjust terminal (see Figure 1). By  
placing a resistor R1 between these two terminals, a  
constant current is caused to flow through R1 and down  
through R2 to set the overall output voltage. Normally this  
current is the specified minimum load current of 10mA.  
Because IADJ is very small and constant when compared  
withthecurrentthroughR1,itrepresentsasmallerrorand  
can usually be ignored.  
R1*  
R2*  
R
L
*CONNECT R1 TO CASE  
CONNECT R2 TO LOAD  
1083/4/5 ADJ F02  
Figure 2. Connections for Best Load Regulation  
9
LT1083/LT1084/LT1085  
U
W U U  
APPLICATIONS INFORMATION  
Connected as shown, RP is not multiplied by the divider  
ratio. RP is about 0.004per foot using 16-gauge wire.  
This translates to 4mV/ft at 1A load current, so it is  
important to keep the positive lead between regulator and  
load as short as possible and use large wire or PC board  
traces.  
compound at the case-to-heat sink interface is strongly  
recommended. If the case of the device must be electri-  
cally isolated, a thermally conductive spacer can be used,  
as long as its added contribution to thermal resistance is  
considered. Note that the case of all devices in this series  
is electrically connected to the output.  
For example, using an LT1083CK (TO-3, Commercial) and  
assuming:  
Thermal Considerations  
The LT1083 series of regulators have internal power and  
thermal limiting circuitry designed to protect the device  
under overload conditions. For continuous normal load  
conditions however, maximum junction temperature rat-  
ings must not be exceeded. It is important to give careful  
consideration to all sources of thermal resistance from  
junction to ambient. This includes junction-to-case, case-  
to-heat sink interface, and heat sink resistance itself. New  
thermal resistance specifications have been developed to  
more accurately reflect device temperature and ensure  
safe operating temperatures. The data section for these  
newregulatorsprovidesaseparatethermalresistanceand  
maximum junction temperature for both the Control Sec-  
tion and the Power Transistor. Previous regulators, with a  
single junction-to-case thermal resistance specification,  
used an average of the two values provided here and  
therefore could allow excessive junction temperatures  
under certain conditions of ambient temperature and heat  
sink resistance. To avoid this possibility, calculations  
should be made for both sections to ensure that both  
thermal limits are met.  
VIN (max continuous) = 9V, VOUT = 5V, IOUT = 6A,  
TA = 75°C, θHEAT SINK = 1°C/W,  
θCASE-TO-HEAT SINK = 0.2°C/W for K package with  
thermal compound.  
Power dissipation under these conditions is equal to:  
PD = (VIN – VOUT )(IOUT) = 24W  
Junction temperature will be equal to:  
TJ = TA + PD (θHEAT SINK + θCASE-TO-HEAT SINK + θJC)  
For the Control Section:  
TJ =75°C+24W(1°C/W+0.2°C/W+0.6°C/W)=118°C  
118°C < 125°C = TJMAX (Control Section  
Commercial Range)  
For the Power Transistor:  
TJ =75°C+24W(1°C/W+0.2°C/W+1.6°C/W)=142°C  
142°C < 150°C = TJMAX (Power Transistor  
Commercial Range)  
In both cases the junction temperature is below the  
maximum rating for the respective sections, ensuring  
reliable operation.  
Junction-to-case thermal resistance is specified from the  
ICjunctiontothebottomofthecasedirectlybelowthedie.  
This is the lowest resistance path for heat flow. Proper  
mounting is required to ensure the best possible thermal  
flowfromthisareaofthepackagetotheheatsink.Thermal  
10  
LT1083/LT1084/LT1085  
U
TYPICAL APPLICATIONS  
7.5A Variable Regulator  
T1  
L
1MH  
TRIAD  
C30B  
F-269U  
0V TO 35V  
IN  
LT1083 OUT  
ADJ  
OA TO 7.5A  
+
20Ω  
20Ω  
T2  
750* 1.5k  
100µF  
3
+
C1  
50,000µF  
110VAC  
1N4003  
LT1004-1.2  
2
1
1N914  
16k*  
C30B  
1N4003  
2k  
OUTPUT  
ADJUST  
1N4003  
1µF  
560Ω  
15V  
LT1004-1.2  
2.7k  
82k  
10k  
15k  
16k*  
–15V  
4
8
200k  
11k*  
2
+
7
–15V  
LT1011  
3
0.1µF  
1
1N4148  
NC  
100pF  
15V  
2N3904  
8
–15V  
4
3
1
+
7
3
8
LT1011  
+
10k  
6
2
LM301A  
1% FILM RESISTOR  
L: DALE TO-5 TYPE  
*
1
2
7
15V  
15K  
15V  
T2: STANCOR 11Z-2003  
4
–15V  
11k*  
GENERAL PURPOSE REGULATOR WITH SCR PREREGULATOR  
TO LOWER POWER DISSIPATION. ABOUT 1.7V DIFFERENTIAL  
IS MAINTAINED ACROSS THE LT1083 INDEPENDENT OF OUTPUT  
VOLTAGE AND LOAD CURRENT  
LT1083/4/5 ADJ TA05  
1µF  
11  
LT1083/LT1084/LT1085  
U
TYPICAL APPLICATIONS  
Paralleling Regulators  
2 FEET #18 WIRE*  
V
IN  
IN  
LT1083 OUT  
IN  
ADJ  
R2  
R1  
V
OUT  
= 1.25V 1 +  
(
)
I
= 0A TO 15A  
OUT  
0.015Ω  
LT1083 OUT  
ADJ  
*THE #18 WIRE ACTS  
AS BALLAST RESISTANCE  
INSURING CURRENT SHARING  
BETWEEN BOTH DEVICES  
R1  
120Ω  
LT1083/4/5 ADJ TA03  
R2  
Improving Ripple Rejection  
V
OUT  
LT1083  
ADJ  
OUT  
V
IN  
IN  
5V  
R1  
121Ω  
1%  
+
+
10µF  
150µF  
R2  
365Ω  
1%  
+
C1  
25µF*  
*C1 IMPROVES RIPPLE REJECTION.  
SHOULD BE < R1 AT RIPPLE FREQUENCY  
X
C
1083/4/5 ADJ TA04  
Remote Sensing  
R
P
(MAX DROP 300mV)  
V
OUT  
V
IN  
LT1083 OUT  
ADJ  
IN  
5V  
+
V
IN  
100µF  
2
7
25Ω  
6
LM301A  
1k  
3
+
1
+
121Ω  
R
10µF  
L
8
4
5µF  
+
100pF  
365Ω  
RETURN  
25Ω  
RETURN  
1083/4/5 ADJ TA07  
12  
LT1083/LT1084/LT1085  
U
TYPICAL APPLICATIONS  
High Efficiency Regulator with Switching Preregulator  
1mH  
V
IN  
IN  
LT1083 OUT  
ADJ  
V
OUT  
28V  
+
MR1122  
10,000µF  
240Ω  
470Ω  
1N914  
10k  
2k  
28V  
1k  
1M  
4N28  
10k  
10k  
+
1083/4/5 ADJ TA06  
LT1011  
28V  
1N914  
1.2V to 15V Adjustable Regulator  
V
LT1083 OUT  
ADJ  
V
OUT  
IN  
IN  
R1  
90.9Ω  
+
+
C1*  
10µF  
C2  
100µF  
R2  
1k  
*NEEDED IF DEVICE IS FAR FROM FILTER CAPACITORS  
R2  
R1  
V
= 1.25V 1 +  
OUT  
1083/4/5 ADJ TA08  
(
)
5V Regulator with Shutdown*  
V
OUT  
LT1083  
ADJ  
V
OUT  
IN  
IN  
5V  
121Ω  
1%  
+
10µF  
1k  
+
100µF  
365Ω  
1%  
2N3904  
TTL  
1k  
1083/4/5 ADJ TA09  
*OUTPUT SHUTS DOWN TO 1.3V  
13  
LT1083/LT1084/LT1085  
U
PACKAGE DESCRIPTION Dimension in inches (millimeters) unless otherwise noted.  
K Package  
2-Lead TO-3 Metal Can  
(LTC DWG # 05-08-1310)  
0.760 – 0.775  
(19.30 – 19.69)  
0.320 – 0.350  
(8.13 – 8.89)  
0.060 – 0.135  
(1.524 – 3.429)  
0.420 – 0.480  
(10.67 – 12.19)  
0.038 – 0.043  
(0.965 – 1.09)  
1.177 – 1.197  
(29.90 – 30.40)  
0.655 – 0.675  
(16.64 – 17.15)  
0.210 – 0.220  
(5.33 – 5.59)  
0.151 – 0.161  
(3.86 – 4.09)  
DIA, 2PLCS  
0.167 – 0.177  
(4.24 – 4.49)  
R
0.425 – 0.435  
(10.80 – 11.05)  
0.067 – 0.077  
(1.70 – 1.96)  
0.490 – 0.510  
(12.45 – 12.95)  
R
K2 (TO-3) 1098  
M Package  
3-Lead Plastic DD Pak  
(LTC DWG # 05-08-1460)  
0.060  
(1.524)  
TYP  
0.390 – 0.415  
(9.906 – 10.541)  
0.060  
(1.524)  
0.165 – 0.180  
(4.191 – 4.572)  
0.256  
(6.502)  
0.045 – 0.055  
(1.143 – 1.397)  
15° TYP  
+0.008  
0.004  
–0.004  
0.060  
(1.524)  
0.059  
(1.499)  
TYP  
0.183  
(4.648)  
0.330 – 0.370  
(8.382 – 9.398)  
+0.203  
–0.102  
0.102  
(
)
0.095 – 0.115  
(2.413 – 2.921)  
0.075  
(1.905)  
0.090 – 0.110  
(2.286 – 2.794)  
0.050 ± 0.012  
(1.270 ± 0.305)  
0.300  
(7.620)  
+0.012  
0.143  
0.013 – 0.023  
(0.330 – 0.584)  
0.020  
0.050  
(1.270)  
BSC  
+0.305  
3.632  
BOTTOM VIEW OF DD PAK  
HATCHED AREA IS SOLDER PLATED  
COPPER HEAT SINK  
(
)
–0.508  
M (DD3) 1098  
14  
LT1083/LT1084/LT1085  
U
PACKAGE DESCRIPTION Dimension in inches (millimeters) unless otherwise noted.  
P Package  
3-Lead Plastic TO-3P (Similar to TO-247)  
(LTC DWG # 05-08-1450)  
0.560  
0.187 – 0.207  
(4.75 – 5.26)  
(14.224)  
0.620 – 0.64O  
(15.75 – 16.26)  
0.325  
(8.255)  
0.275  
(6.985)  
0.060 – 0.080  
(1.52 – 2.03)  
MOUNTING HOLE  
0.115 – 0.145  
(2.92 – 3.68)  
DIA  
18° – 22°  
0.580  
(14.732)  
0.830 – 0.870  
0.170 – 0.2OO  
(21.08 – 22.10)  
(4.32 – 5.08)  
0.700  
(17.780)  
EJECTOR PIN MARKS  
0.105 – 0.125  
(2.67 – 3.18)  
DIA  
0.580 – 0.6OO  
(14.73 – 15.24)  
0.098  
(2.489)  
3° – 7°  
0.170  
(4.32)  
MAX  
0.124  
(3.149)  
0.780 – 0.800  
(19.81 – 20.32)  
0.042 – 0.052  
(1.07 – 1.32)  
0.215  
(5.46)  
BSC  
0.087 – 0.102  
(2.21 – 2.59)  
BOTTOM VIEW OF TO-3P  
HATCHED AREA IS SOLDER PLATED  
COPPER HEAT SINK  
0.020 – 0.040  
(0.51 – 1.02)  
P3 0996  
0.074 – 0.084  
(1.88 – 2.13)  
0.113 – 0.123  
(2.87 – 3.12)  
T Package  
3-Lead Plastic TO-220  
(LTC DWG # 05-08-1420)  
0.147 – 0.155  
(3.734 – 3.937)  
DIA  
0.165 – 0.180  
(4.191 – 4.572)  
0.390 – 0.415  
(9.906 – 10.541)  
0.045 – 0.055  
(1.143 – 1.397)  
0.230 – 0.270  
(5.842 – 6.858)  
0.570 – 0.620  
0.460 – 0.500  
(14.478 – 15.748)  
(11.684 – 12.700)  
0.330 – 0.370  
(8.382 – 9.398)  
0.980 – 1.070  
(24.892 – 27.178)  
0.520 – 0.570  
(13.208 – 14.478)  
0.218 – 0.252  
(5.537 – 6.401)  
0.013 – 0.023  
(0.330 – 0.584)  
0.100  
(2.540)  
BSC  
0.095 – 0.115  
(2.413 – 2.921)  
0.050  
(1.270)  
TYP  
0.028 – 0.038  
(0.711 – 0.965)  
T3 (TO-220) 1098  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1083/LT1084/LT1085  
U
TYPICAL APPLICATIONS  
Automatic Light Control  
LT1083  
ADJ  
V
OUT  
IN  
IN  
1.2k  
+
100µF  
10µF  
1083/4/5 ADJ TA10  
Protected High Current Lamp Driver  
12V  
5A  
LT1083  
ADJ  
15V  
IN  
OUT  
TTL OR  
CMOS  
1083/4/5 ADJ TA11  
10k  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1086  
1.5A Low Dropout Regulator  
800mA Low Dropout Regulator  
Fixed 2.85V, 3.3V, 3.6V, 5V and 12V Output  
Fixed 2.85V, 3.3V, 5V or Adjustable Output  
For High Performance Microprocessors  
LT1117  
LT1584/LT1585/LT1587 7A/4.6A/3A Fast Response Low Dropout Regulators  
LT1580  
LT1581  
LT1430  
LT1575  
LT1573  
7A Very Low Dropout Linear Regulator  
0.54V Dropout at 7A, Fixed 2.5V  
and Adjustable  
OUT  
10A Very Low Dropout Linear Regulator  
High Power Step-Down Switching Regulator  
UltraFastTM Transient Response LDO Controller  
UltraFast Transient Response LDO Controller  
0.43V Dropout at 10A, Fixed 2.5V  
and Adjustable  
OUT  
5V to 3.3V at 10A, >90% Efficiency  
External MOSFET Pass Element  
External PNP Pass Element  
UltraFast is a trademark of Linear Technology Corporation.  
108345fd LT/TP 0200 2K REV D • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1994  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY