ADSP-21MOD980 [ETC]

ADSP-21MOD980: MultiPort Internet Gateway Processor Data Sheet (Rev. 0. 9/00) ; ADSP - 21MOD980 :多端口网络网关处理器数据手册(修订版0 9/00 )\n
ADSP-21MOD980
型号: ADSP-21MOD980
厂家: ETC    ETC
描述:

ADSP-21MOD980: MultiPort Internet Gateway Processor Data Sheet (Rev. 0. 9/00)
ADSP - 21MOD980 :多端口网络网关处理器数据手册(修订版0 9/00 )\n

文件: 总31页 (文件大小:235K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MultiPort Internet  
Gateway Processor  
a
ADSP-21mod980  
FEATURES  
INTEGRATION  
PERFORMANCE  
ADSP-2100 Family Code-Compatible, with Instruction  
Set Extensions  
2.00M Bytes of On-Chip SRAM, Configured as 1.125M  
Bytes of Program Memory and 0.875M Bytes of Data  
Memory  
Complete Single-Chip MultiPort Internet Gateway  
Processor (No External Memory Required)  
Implements Sixteen Modem Channels or Forty Voice  
Channels in One Package  
Each Processor Can Implement One V.34/V.90 Data/  
Fax Modem (Includes Datapump and Controller)  
Standard Power Version: 600 MIPS Sustained Perfor-  
mance, 13.3 ns Instruction Time @ 2.75 V (Internal)  
Low Power Version: 600 MIPS Sustained Performance,  
13.3 ns Instruction Time @ 1.80 V (Internal)  
Open Architecture Extensible to Voice-over-Network  
(VoN) and Other Applications  
Dual-Purpose Program Memory, for Both Instruction  
and Data Storage  
352-Ball PBGA with a 1.9 Square Inch (1225 Square mm)  
Footprint  
SYSTEM CONFIGURATION  
16-Bit Internal DMA Port for High-Speed Access to  
On-Chip Memory (Mode-Selectable)  
Programmable Multichannel Serial Port Supports  
24/32 Channels  
Two Double-Buffered Serial Ports with Companding  
Hardware and Automatic Data Buffering  
Separate RESET Pins for Each Internal Processor  
Low Power Dissipation, 45 mW (Typical) Per Channel  
Power-Down Mode Featuring Low CMOS Standby  
Power Dissipation  
FUNCTIONAL BLOCK DIAGRAM  
17  
DATA<23:8>,  
A<0>  
CLKIN  
20  
20  
3
IAD<15:0>,  
IDMA CNTL  
IAD<15:0>,  
IDMA CNTL  
PF<0:2>  
/MODE A:C  
218x  
1
218x  
2
218x  
3
218x  
4
218x  
5
218x  
6
218x  
7
218x  
8
4
4
SPORT0A  
SPORT0B  
4
8
SPORT1  
EMULATOR  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
ADSP-21mod980  
GENERAL DESCRIPTION  
DEVELOPMENT SYSTEM  
The ADSP-21mod980 is a multiport Internet gateway processor  
optimized for implementation of a complete V.34/56K modem.  
All data pump and controller functions can be implemented on a  
single device, offering the lowest power consumption and high-  
est possible modem port density.  
The ADSP-2100 Family Development Software, a complete set  
of tools for software and hardware system development, sup-  
ports the ADSP-21mod980. The System Builder provides a  
high-level method for defining the architecture of systems under  
development. The Assembler has an algebraic syntax that is easy  
to program and debug. The Linker combines object files into an  
executable file. The Simulator provides an interactive instruction-  
level simulation with a reconfigurable user interface to display  
different portions of the hardware environment.  
The ADSP-21mod980 combines the ADSP-2100 Family base  
architecture (three computational units, data address generators,  
and a program sequencer) with two serial ports, a 16-bit internal  
DMA port, a byte DMA port, a programmable timer, Flag I/O,  
extensive interrupt capabilities, and on-chip program and  
data memory.  
A PROM Splitter generates PROM programmer-compatible  
files. The C Compiler, based on the Free Software Foundation’s  
GNU C Compiler, generates ADSP-21mod980 assembly source  
code. The source code debugger allows programs to be corrected  
in the C environment. The Runtime Library includes over 100  
ANSI-standard mathematical and DSP-specific functions.  
The ADSP-218x EZ-ICE® Emulator aids in the hardware  
debugging of an ADSP-21mod980 system. The EZ-ICE, in  
conjunction with the required processor selection hardware, allows  
the user to independently debug code on individual modem  
processors. The emulator consists of hardware, host computer  
resident software, and target board connector. The ADSP-  
21mod980 integrates on-chip emulation support with a 14-pin  
ICE-Port interface. The ADSP-21mod980 device need not be  
removed from the target system when using the EZ-ICE, nor are  
any adapters needed. Due to the small footprint of the EZ-ICE  
connector, emulation can be supported in final board designs.  
The ADSP-21mod980 integrates 2.0M bytes of on-chip memory,  
configured as 384K words (24-bit) of program RAM, and 448K  
words (16-bit) of data RAM. Power-down circuitry is also pro-  
vided to reduce the average and standby power consumption of  
equipment which, in turn, reduces equipment cooling require-  
ments. The ADSP-21mod980 is available in a 35 sq-mm., 352-lead  
PBGA package.  
Fabricated in a high-speed, low-power, CMOS process, the  
ADSP-21mod980 operates with a 13.3 ns instruction cycle time.  
Every instruction can execute in a single processor cycle.  
The ADSP-21mod980’s flexible architecture and comprehensive  
instruction set allow the processor to perform multiple operations  
in parallel. In one processor cycle, the ADSP-21mod980 can:  
Generate the next program address  
Fetch the next instruction  
Perform one or two data moves  
Update one or two data address pointers  
Perform a computational operation  
The EZ-ICE performs a full range of functions, including:  
In-target operation  
Up to 20 breakpoints  
Single-step or full-speed operation  
Registers and memory values can be examined and altered  
PC upload and download functions  
Instruction-level emulation of program booting and execution  
Complete assembly and disassembly of instructions  
C source-level debugging  
This takes place while the processor continues to:  
Receive and transmit data through the two serial ports  
Receive and/or transmit data through the internal DMA port  
Receive and/or transmit data through the byte DMA port  
Decrement timer  
See “Designing An EZ-ICE-Compatible Target System” in the  
ADSP-2100 Family EZ-Tools Manual (ADSP-2181 sections), as  
well as the Designing an EZ-ICE Compatible System section of  
this data sheet, for the exact specifications of the EZ-ICE target  
board connector.  
Modem Software  
The modem software executes general modem control, command  
sets, error correction and data compression, data modulations  
(for example, V.90 and V.34), and host interface functions. The  
host interface allows system access to modem statistics, such as  
call progress, connect speed, retrain count, symbol rate, and  
other modulation parameters.  
Additional Information  
This data sheet provides a general overview of ADSP-21mod980  
functionality. For specific information about the modem  
processors, refer to the ADSP-2188M Preliminary data sheet.  
For additional information on the architecture and instruction  
set of the modem processors, refer to the ADSP-2100 Family  
User’s Manual, Third Edition. For more information about the  
development tools, refer to the ADSP-2100 Family Development  
Tools data sheet.  
The modem data pump and controller software resides in on-  
chip SRAM and does not require additional memory. The  
ADSP-21mod980 can be dynamically configured by download-  
ing software from the host through the 16-bit DMA interface.  
This SRAM-based architecture provides a software upgrade path  
to other applications, such as Voice-Over-IP (VOIP), and to  
future standards. The modem software is available as object code.  
EZ-ICE is a registered trademark of Analog Devices, Inc.  
–2–  
REV. 0  
ADSP-21mod980  
17  
DATA<23:8>,  
A<0>  
CLKIN  
20  
20  
3
IAD<15:0>,  
IDMA CNTL  
IAD<15:0>,  
IDMA CNTL  
PF<0:2>  
/MODE A:C  
218x  
1
218x  
2
218x  
3
218x  
4
218x  
5
218x  
6
218x  
7
218x  
8
4
4
SPORT0A  
SPORT0B  
4
8
SPORT1  
EMULATOR  
SIGNALS ROUTED TO EACH RESPECTIVE DIE  
IDMA CNTL = IAL, IRD, IWR, IACK  
INTERRUPTS= IRQE (PF4), IRQL0 (PF5), IRQL1 (PF6), IRQ2 (PF7)  
EMULATOR = EMS, EINT, ELIN, EBR, EBG, ECLK, ELOUT, ERESET  
SPORT 0A, SPORT 0B = RFS0, DR0, DT0. SCLK0  
SPORT 1 = RFS1, TFS1, DR1, SCLK1  
8
8
8
8
BR<8:1>  
BG<8:1>  
RESET<8:1>  
CLKOUT<8:1>  
8
EE<8:1>  
8
IS<8:1>  
TFS0<8:1>  
8
8
DT1<8:1>  
32  
INTERRUPTS <8:1>  
NOTE:  
SUBTOTAL = 177 SIGNAL BALLS  
1) PWD AND PF3/MODE D ARE TIED HIGH  
109  
44  
22  
GND  
DDINT  
V
V
DDEXT  
SUBTOTAL = 175 POWER BALLS  
TOTAL = 352 BALLS  
Figure 1. ADSP-21mod980 Processor Pool  
ARCHITECTURE OVERVIEW  
Serial Ports  
Figure 1 is an overall block diagram of the ADSP-21mod980  
MultiPort Internet Gateway Processor. It contains eight inde-  
pendent digital signal processors.  
The ADSP-21mod980 has a multichannel serial port (SPORT)  
connected to each internal digital modem processor for serial  
communications.  
Every modem processor has:  
The following is a brief list of ADSP-21mod980 SPORT fea-  
tures. For additional information on the internal Serial Ports,  
refer to the ADSP-2100 Family User’s Manual. Each SPORT:  
A DSP core  
256K bytes of RAM  
Two serial ports  
A DMA port  
Is bidirectional and has a separate, double-buffered transmit  
and receive section.  
Can use an external serial clock or generate its own serial  
clock internally.  
The signals of each modem processor are accessed through the  
external pins of the ADSP-21mod980. Some signals are bused  
with the signals of the other processors and are accessed through  
a single external pin. Other signals remain separate and are  
accessed through separate external pins for each processor.  
Has independent framing for the receive and transmit sections.  
Sections run in a frameless mode, or with frame synchroniza-  
tion signals internally or externally generated. Frame sync  
signals are active high or inverted, with either of two pulse-  
widths and timings.  
Supports serial data word lengths from 3 to 16 bits and pro-  
vides optional A-law and µ-law companding according to  
CCITT recommendation G.711.  
The arrangement of the eight modem processors in the  
ADSP-21mod980 makes one basic configuration possible: a  
slave configuration. In this configuration, the data pins of all  
eight processors connect to a single bus structure.  
Receive and transmit sections can generate unique interrupts  
on completing a data word transfer.  
Can receive and transmit an entire circular buffer of data with  
one overhead cycle per data word. An interrupt is generated  
after a data buffer transfer.  
All eight modem processors have identical functions and equal  
status. Each of the four modem processors are connected to a  
common DMA bus and each modem processor is configured to  
operate in the same mode (see the Slave Mode and the Memory  
Mode descriptions in the Memory Architecture section. The  
slave mode is considered to be the only mode of operation in the  
ADSP-21mod980 modem pool.  
A multichannel interface selectively receives and transmits a 24-  
or 32-word, time-division multiplexed, serial bitstream.  
–3–  
REV. 0  
ADSP-21mod980  
PIN DESCRIPTIONS  
Host Pins (Mode C = 1) Modem Processors 1–8  
The ADSP-21mod980 is available in a 352-lead PBGA package.  
In order to maintain maximum functionality and reduce pack-  
age size and pin count, some serial port, programmable flag,  
interrupt, and external bus pins have dual, multiplexed func-  
tionality. The external bus pins are configured during RESET  
only, while serial port pins are software configurable during  
program execution. Flag and interrupt functionality is retained  
concurrently on multiplexed pins. In cases where pin functional-  
ity is reconfigurable, the default state is shown in plain text;  
alternate functionality is shown in italics.  
#
of  
Pins  
Input/  
Out-  
put  
Pin  
Name(s)  
Function  
IAD15:0  
A0  
32  
1
I/O  
O
IDMA Port Address/Data Bus  
Address Pin for External I/O, Program,  
Data, or Byte Access  
Data I/O Pins for Program, Data Byte  
and I/O Spaces  
IDMA Write Enable  
IDMA Read Enable  
IDMA Address Latch Pin  
IDMA Select  
IDMA Port Acknowledge Configurable  
D23:8  
16  
I/O  
IWR  
IRD  
IAL  
IS  
2
2
2
8
2
I
I
I
I
Common-Mode Pins  
IACK  
O
#
of  
Input/  
Out-  
in Mode D; Open Drain  
Pin  
Name(s)  
Pins put  
Function  
RESET  
BR  
BG  
IRQ2/  
PF7  
IRQL0/  
PF5  
IRQL1/  
PF6  
IRQE/  
PF4  
8
8
8
8
I
I
O
I
I/O  
I
I/O  
I
I/O  
I
I/O  
I
Processor Reset Input  
Bus Request Input  
Bus Grant Output  
INTERRUPTS  
The interrupt controller allows each modem processor in the  
modem pool to respond individually to 11 possible interrupts  
and reset with minimum overhead. The ADSP-21mod980 pro-  
vides four dedicated external interrupt input pins, IRQ2, IRQL1,  
IRQL0, and IRQE (shared with the PF7:4 pins) for each modem  
processor. The ADSP-21mod980 also supports internal inter-  
rupts from the timer, the byte DMA port, the serial port, software,  
and the power-down control circuit. The interrupt levels are  
internally prioritized and individually maskable (except power-  
down and reset). The IRQ2, IRQ1, and IRQ0 input pins can be  
programmed to be either level- or edge-sensitive. IRQL0 and  
IRQL1 are level-sensitive and IRQE is edge-sensitive. The pri-  
orities and vector addresses of all interrupts are shown in Table I.  
Edge- or Level-Sensitive Interrupt Request1  
Programmable I/O Pin  
Level-Sensitive Interrupt Request1  
Programmable I/O Pin  
Level-Sensitive Interrupt Requests1  
Programmable I/O Pin  
Edge-Sensitive Interrupt Requests1  
Programmable I/O Pin  
Mode Select Input—Checked Only  
During RESET  
8
8
8
1
Mode C/  
PF2  
I/O  
I
Programmable I/O Pin During Normal  
Operation  
Mode Select Input—Checked Only  
During RESET  
Programmable I/O Pin During Normal  
Operation  
Mode B/  
PF1  
1
1
Table I. Interrupt Priority and Interrupt Vector Addresses  
Interrupt Vector  
I/O  
I
Mode A/  
PF0  
Mode Select Input—Checked Only  
During RESET  
Source of Interrupt  
Address (Hex)  
I/O  
Programmable I/O Pin During Normal  
Operation  
Clock Input  
Reset (or Power-Up with PUCR = 1) 0000 (Highest Priority)  
Power-Down (Nonmaskable)  
IRQ2  
002C  
0004  
CLKIN  
CLKOUT  
SPORT  
VDD and GND 175  
1
8
28  
I
O
I/O  
I
I/O  
Processor Clock Output  
Serial Port I/O Pins2  
IRQL1  
0008  
IRQL0  
000C  
Power and Ground  
For Emulation Use  
SPORT0 Transmit  
SPORT0 Receive  
IRQE  
0010  
0014  
0018  
EZ-Port  
16  
NOTES  
1Interrupt/Flag Pins retain both functions concurrently. If IMASK is set to enable  
the corresponding interrupts, the modem pool will vector to the appropriate  
interrupt vector address when the pin is asserted, either by external devices, or  
set as a programmable flag.  
BDMA Interrupt  
SPORT1 Transmit or IRQ1  
SPORT1 Receive or IRQ0  
Timer  
001C  
0020  
0024  
2SPORT configuration determined by the modem pool’s System Control Regis-  
ter. Software configurable.  
0028 (Lowest Priority)  
When the modem pool is reset, interrupt servicing is disabled.  
MEMORY INTERFACE PINS  
The ADSP-21mod980 modem pool is used in slave mode. In  
slave mode, the modem processors operate in host configura-  
tion. The operating mode is determined by the state of the  
Mode C pin during RESET and cannot be changed while the  
modem pool is running. See the Memory Architecture section  
for more information.  
LOW POWER OPERATION  
The ADSP-21mod980 has three low-power modes that signifi-  
cantly reduce the power dissipation when the device operates  
under standby conditions. These modes are:  
Power-Down  
Idle  
Slow Idle  
The CLKOUT pin may also be disabled to reduce external  
power dissipation.  
–4–  
REV. 0  
ADSP-21mod980  
Power-Down  
where n = 16, 32, 64, or 128. This instruction keeps the modem  
pool fully functional, but operating at the slower clock rate.  
While it is in this state, the modem pool’s other internal clock  
signals, such as SCLK, CLKOUT, and timer clock, are reduced  
by the same ratio. The default form of the instruction, when no  
clock divisor is given, is the standard IDLE instruction.  
The ADSP-21mod980 modem pool has a low-power feature  
that lets the modem pool enter a very low-power dormant state  
through software control. Here is a brief list of power-down fea-  
tures. Refer to the ADSP-2100 Family User’s Manual, “System  
Interface” chapter, for detailed information about the power-  
down feature.  
When the IDLE (n) instruction is used, it effectively slows down  
the modem pool’s internal clock and thus its response time to  
incoming interrupts. The one-cycle response time of the stan-  
dard idle state is increased by n, the clock divisor. When an  
enabled interrupt is received, the ADSP-21mod980 will remain  
in the idle state for up to a maximum of n modem pool cycles  
(n = 16, 32, 64, or 128) before resuming normal operation.  
Quick recovery from power-down. The modem pool begins  
executing instructions in as few as 200 CLKIN cycles.  
Support for an externally generated TTL or CMOS processor  
clock. The external clock can continue running during power-  
down without affecting the lowest power rating and 200 CLKIN  
cycle recovery.  
When the IDLE (n) instruction is used in systems that have an  
externally generated serial clock (SCLK), the serial clock rate  
may be faster than the modem pool’s reduced internal clock  
rate. Under these conditions, interrupts must not be generated  
at a faster rate than can be serviced, due to the additional time  
the modem pool takes to come out of the idle state (a maximum  
of n cycles).  
Power-down is initiated by the software power-down force bit.  
Interrupt support allows an unlimited number of instructions  
to be executed before optionally powering down.  
Context clear/save control allows the modem pool to continue  
where it left off or start with a clean context when leaving the  
power-down state.  
The RESET pin also can be used to terminate power-down.  
SYSTEM CONFIGURATION  
Idle  
Figure 2 shows the hardware interfaces for a typical multichan-  
nel modem configuration with the ADSP-21mod980. Other  
system design considerations, such as host processing require-  
ments, electrical loading, and overall bus timing, must all be  
met. A line interface can be used to connect the multichannel  
subscriber or client data stream to the multichannel serial  
port of the ADSP-21mod980. The IDMA port of the ADSP-  
21mod980 is used to give a host processor full access to the  
internal memory of the ADSP-21mod980. This lets the host  
dynamically configure the ADSP-21mod980 by loading code  
and data into its internal memory. This configuration also lets  
the host access server data directly from the ADSP-21mod980’s  
internal memory. In this configuration, the Modem Processors  
should be put into host memory mode where Mode C = 1,  
Mode B = 0, and Mode A = 1.  
When the ADSP-21mod980 is in the Idle Mode, the modem pool  
waits indefinitely in a low power state until an interrupt occurs.  
When an unmasked interrupt occurs, it is serviced; execution  
then continues with the instruction following the IDLE instruc-  
tion. In Idle mode IDMA, BDMA, and autobuffer cycle steals  
still occur.  
Slow Idle  
The IDLE instruction is enhanced on the ADSP-21mod980 to  
let the modem pool’s internal clock signal be slowed, further  
reducing power consumption. The reduced clock frequency, a  
programmable fraction of the normal clock rate, is specified by  
a selectable divisor given in the IDLE instruction.  
The format of the instruction is:  
IDLE (n);  
T1/E1  
LINE  
INTERFACE  
SPORT  
SPORT  
ADSP-21mod980  
ADSP-21mod980  
ST/CNTL IDMA  
ST/CNTL IDMA  
STATUS  
AND CONTROL  
HOST CONTROL  
HOST ADDRESS  
HOST DATA  
STATUS  
AND  
CONTROL  
PAL  
HOST  
MICRO  
IDMA CONTROL  
IDMA ADDRESS  
IDMA  
PAL  
Figure 2. Multichannel Modem Configuration  
REV. 0  
–5–  
ADSP-21mod980  
CLOCK SIGNALS  
The RESET inputs contains some hysteresis; however, if an RC  
circuit is used to generate the RESET signals, the use of exter-  
nal Schmitt triggers is recommended.  
The ADSP-21mod980 is clocked by a TTL-compatible clock  
signal that runs at half the instruction rate; a 37.5 MHz input  
clock yields a 13.3 ns processor cycle, which is equivalent to  
75 MHz. Normally, instructions are executed in a single proces-  
sor cycle. All device timing is relative to the internal instruction  
clock rate, which is indicated by the CLKOUT signal when  
enabled. The clock input signal is connected to the processor’s  
CLKIN input.  
The reset for each individual modem processor sets the internal  
stack pointers to the empty stack condition, masks all interrupts  
and clears the MSTAT register. When a RESET is released, if  
there is no pending bus request and the modem processor is  
configured for booting, the boot-loading sequence is performed.  
The first instruction is fetched from on-chip program memory  
location 0x0000 once boot loading completes.  
The CLKIN input cannot be halted, changed during operation,  
or operated below the specified frequency during normal operation.  
The only exception is while the processor is in the power-down  
state. For additional information, refer to Chapter 9, ADSP-  
2100 Family User’s Manual for a detailed explanation of this  
power-down feature.  
MEMORY ARCHITECTURE  
The ADSP-21mod980 provides a variety of memory and  
peripheral interface options for Modem Processor 1. The key  
functional groups are Program Memory, Data Memory, Byte  
Memory, and I/O. Refer to the following figures and tables for  
PM and DM memory allocations in the ADSP-21mod980.  
A clock output (CLKOUT) signal is generated by the processor  
at the processor’s cycle rate.  
The ADSP-21mod980 modem pool operates in one memory  
mode: Slave Mode. The following figures and tables describe  
the memory of the ADSP-21mod980:  
Reset  
The RESET signals initiate a reset of each modem processor in  
the ADSP-21mod980. The RESET signals must be asserted  
during the power-up sequence to assure proper initialization.  
RESET during initial power-up must be held long enough to let  
the internal clocks stabilize. If RESETs are activated any time  
after power up, the clocks continue to run and do not require  
stabilization time.  
Figure 3 shows Program Memory.  
Figure 4 shows Data Memory.  
Table II explains the generation of address bits based on the  
PMOVLAY values.  
Table III explains the generation of address bits based on the  
DMOVLAY values. Access to external memory is not available.  
The power-up sequence is defined as the total time required for  
the oscillator circuits to stabilize after a valid VDD is applied to  
the processors, and for the internal phase-locked loops (PLL) to  
lock onto the specific frequency. A minimum of 2000 CLKIN  
cycles ensures that the PLLs have locked, but this does not include  
the oscillators’ start-up time. During this power-up sequence,  
the RESET signals should be held low. On any subsequent  
resets, the RESET signals must meet the minimum pulsewidth  
specification, tRSP  
.
–6–  
REV. 0  
ADSP-21mod980  
PROGRAM MEMORY  
PM MODE B = 0  
PROGRAM MEMORY  
MODE B = 0  
ADDR  
0x3FFF  
8K INTERNAL  
PMOVLAY =  
0, 4, 5, 6, 7  
ALWAYS  
ACCESSIBLE  
AT ADDRESS  
0x0000 – 0x1FFF  
0x2000  
0x1FFF  
8K  
INTERNAL  
0x2000 – 0x3FFF  
0x0000  
0x2000 – 0x3FFF  
ACCESSIBLE WHEN  
PMOVLAY = 0  
0x2000 – 0x3FFF  
0x2000 – 0x3FFF  
ACCESSIBLE WHEN  
PMOVLAY = 4  
0x2000 – 0x3FFF  
ACCESSIBLE WHEN  
PMOVLAY = 5  
INTERNAL  
MEMORY  
ACCESSIBLE WHEN  
PMOVLAY = 6  
ACCESSIBLE WHEN  
PMOVLAY = 7  
Figure 3. Program Memory  
Table II. PMOVLAY Bits  
PMOVLAY  
Memory  
A13  
A12:0  
0, 4, 5, 6, 7  
Internal  
Not Applicable  
Not Applicable  
DATA MEMORY  
DATA MEMORY  
ADDR  
0x3FFF  
32 MEMORY  
MAPPED  
ALWAYS  
REGISTERS  
ACCESSIBLE  
AT ADDRESS  
0x2000 0x3FFF  
0x3FE0  
0x3FDF  
INTERNAL 8160  
WORDS  
0x2000  
0x1FFF  
0x0000 0x1FFF  
8K INTERNAL  
DMOVLAY =  
0, 4, 5, 6, 7, 8  
0x0000 0x1FFF  
ACCESSIBLE WHEN  
DMOVLAY = 0  
0x0000 0x1FFF  
0x0000 0x1FFF  
ACCESSIBLE WHEN  
DMOVLAY = 4  
0x0000 0x1FFF  
ACCESSIBLE WHEN  
DMOVLAY = 5  
ACCESSIBLE WHEN  
DMOVLAY = 6  
INTERNAL  
MEMORY  
0x0000 0x1FFF  
ACCESSIBLE WHEN  
DMOVLAY = 7  
ACCESSIBLE WHEN  
DMOVLAY = 8  
Figure 4. Data Memory Map  
Table III. DMOVLAY Bits  
DMOVLAY  
Memory  
A13  
A12:0  
Not Applicable  
0, 4, 5, 6, 7, 8 Internal  
Not Applicable  
REV. 0  
–7–  
ADSP-21mod980  
Memory-Mapped Registers (New to the ADSP-21mod980)  
The ADSP-21mod980 has three memory-mapped registers that  
differ from other ADSP-21xx Family DSPs. The slight modifi-  
cations to these registers (Wait State Control, Programmable  
Flag and Composite Select Control, and System Control) provide  
the ADSP-21mod980’s wait state and BMS control features.  
processor’s memory-mapped control registers. A typical IDMA  
transfer process is described as follows:  
1. Host starts IDMA transfer.  
2. Host uses IS and IAL control lines to latch either the DMA  
starting address (IDMAA) or the PM/DM OVLAY selection  
into the processor’s IDMA control registers.  
Slave Mode  
If IAD [15] = 1, the value of IAD [7:07] represents the IDMA  
overlay: IAD[14:8] must be set to 0.  
This section describes the Slave Mode memory configuration of  
the Modem Processors.  
If IAD [15] = 0, the value of IAD [13:0] represents the starting  
address of internal memory to be accessed and IAD [14] reflects  
PM or DM for access.  
Internal Memory DMA Port (IDMA Port)  
The IDMA Port provides an efficient way for a host system and  
the ADSP-21mod980 to communicate. The port is used to  
access the on-chip program memory and data memory of each  
modem processor with only one processor cycle per word over-  
head. The IDMA port cannot be used, however, to write to the  
3. Host uses IS and IRD (or IWR) to read (or write) processor  
internal memory (PM or DM).  
4. Host ends IDMA transfer.  
15  
1
14  
1
13  
1
12  
1
11  
1
10  
0
9
1
8
1
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
DM(0x3FFE)  
DWAIT  
IOWAIT3  
IOWAIT2  
IOWAIT1  
IOWAIT0  
WAIT STATE MODE SELECT  
0 = NORMAL MODE (PWAIT, DWAIT, IOWAIT03 = N WAIT STATES, RANGING FROM 0 TO 7)  
1 = 2N + 1 MODE (PWAIT, DWAIT, IOWAIT03 = 2N + 1 WAIT STATES, RANGING FROM 0 TO 15)  
Figure 5. Wait State Control Register  
15  
1
14  
1
13  
1
12  
1
11  
1
10  
0
9
1
8
1
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
DM(0x3FE6)  
BMWAIT  
CMSSEL  
0 = DISABLE CMS  
1 = ENABLE CMS  
PFTYPE  
0 = INPUT  
1 = OUTPUT  
(WHERE BIT: 11-IOM, 10-BM, 9-DM, 8-PM)  
Figure 6. Programmable Flag and Composite Select  
Control Register  
NOTE: Since they are multiplexed within the ADSP-21mod980, PF[2:0] should be configured as an output for only one processor at a  
time. Bit [3] of DM (0x3F36) must also be 0.  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
1
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
1
1
1
0
1
DM(0x3FFF)  
RESERVED  
SET TO 0  
RESERVED  
ALWAYS  
SET TO 0  
PWAIT  
PROGRAM MEMORY  
WAIT STATES  
SPORT0 ENABLE  
0 = DISABLE  
1 = ENABLE  
DISABLE BMS  
0 = ENABLE BMS  
1 = DISABLE BMS, EXCEPT WHEN  
MEMORY STROBES ARE  
THREE-STATED  
SPORT1 ENABLE  
0 = DISABLE  
1 = ENABLE  
SPORT1 CONFIGURE  
0 = FI, FO, IRQ0, IRQ1, SCLK  
1 = SPORT1  
Figure 7. System Control Register  
Table IV. ADSP-21mod980 Mode of Operation  
MODE C MODE B MODE A Booting Method  
1
0
1
IDMA feature is used to load internal memory as desired. Program execution is held off until  
internal program memory location 0x0000 is written to. Chip is configured in Slave Mode.1  
IACK requires external pull-down.1  
1Considered standard operating settings. These configurations simplify your design and improve memory management. IDMA timing details and the correct  
usage of IACK are described in the ADSP-2100 Family User’s Manual; refer to pages 11-18 thru 11-19.  
–8–  
REV. 0  
ADSP-21mod980  
and IWR respectively) signals the ADSP-21mod980 that a par-  
ticular transaction is required. In either case, there is a one-  
processor-cycle delay for synchronization. The memory access  
consumes one additional processor cycle.  
The IDMA port has a 16-bit multiplexed address and data  
bus and supports 24-bit program memory. The IDMA port is  
completely asynchronous and can be written to, while the  
ADSP-21mod980 is operating at full speed.  
Once an access has occurred, the latched address is automati-  
cally incremented, and another access can occur.  
The processor memory address is latched and then automati-  
cally incremented after each IDMA transaction. An external  
device can, therefore, access a block of sequentially addressed  
memory by specifying only the starting address of the block.  
This increases throughput as the address does not have to be  
sent for each memory access.  
Through the IDMAA register, the processor can also specify the  
starting address and data format for DMA operation. Asserting  
the IDMA port select (IS) and address latch enable (IAL) directs  
the ADSP-21mod980 to write the address onto the IAD [14:0]  
bus into the IDMA Control Register. If IAD [15] is set to 0,  
IDMA latches the address. If IAD [15] is set to 1, IDMA latches  
OVLAY memory. The IDMAA register is memory mapped at  
address DM (0x3FE0). Note that the latched address (IDMAA)  
or overlay register cannot be read back by the host. The IDMA  
OVERLAY register is memory mapped at address DM(0x3FE7).  
See Figure 8 for more information on IDMA memory map-  
ping. When Bit 14 in 0x3FE7 is set to 1, timing in Figure 25  
applies for short reads. When Bit 14 in 0x3FE7 is set to zero  
short reads, use the timing shown in Figure 26.  
IDMA Port access occurs in two phases. The first is the IDMA  
Address Latch cycle. When the acknowledge is asserted, a 14-bit  
address and 1-bit destination type can be driven onto the bus by  
an external device. The address specifies an on-chip memory  
location, the destination type specifies whether it is a DM or  
PM access. The falling edge of the address latch signal latches  
this value into the IDMAA register.  
Once the address is stored, data can then be either read from, or  
written to, the ADSP-21mod980’s on-chip memory. Asserting  
the select line (IS) and the appropriate read or write line (IRD  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
1
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
1
1
1
0
1
DM(0x3FE7)  
RESERVED  
SET TO 0  
ID DMOVLAY  
ID PMOVLAY  
SHORT READ ONLY  
ENABLE  
0 = DISABLE  
1 = ENABLE  
RESERVED  
SET TO 0  
a. IDMA Overlay  
15  
14  
U
13  
U
12  
U
11  
U
10  
U
9
8
7
6
5
4
3
2
1
0
DM(0x3FE0)  
U
U
U
U
U
U
U
U
U
U
IDMAA  
ADDRESS  
IDMAD  
DESTINATION MEMORY TYPE:  
0 = PM  
1 = DM  
b. IDMA Control (U = Undefined at Reset)  
Figure 8. IDMA Control/OVLAY Registers  
–9–  
REV. 0  
ADSP-21mod980  
DMA  
PROGRAM MEMORY  
OVLAY  
DMA  
DATA MEMORY  
OVLAY  
ALWAYS  
ALWAYS  
ACCESSIBLE  
AT ADDRESS  
0x0000 0x1FFF  
ACCESSIBLE  
AT ADDRESS  
0x2000 0x3FFF  
0x2000 0x3FFF  
0x0000 0x1FFF  
0x2000 0x3FFF  
ACCESSIBLE WHEN  
PMOVLAY = 0  
0x0000 0x1FFF  
ACCESSIBLE WHEN  
DMOVLAY = 0  
0x2000 0x3FFF  
0x0000 0x1FFF  
0x2000 0x3FFF  
ACCESSIBLE WHEN  
PMOVLAY = 4  
0x0000 0x1FFF  
ACCESSIBLE WHEN  
DMOVLAY = 4  
0x2000 0x3FFF  
ACCESSIBLE WHEN  
PMOVLAY = 5  
0x0000 0x1FFF  
ACCESSIBLE WHEN  
DMOVLAY = 5  
ACCESSIBLE WHEN  
PMOVLAY = 6  
ACCESSIBLE WHEN  
DMOVLAY = 6  
0x0000 0x1FFF  
ACCESSIBLE WHEN  
PMOVLAY = 7  
ACCESSIBLE WHEN  
DMOVLAY = 7  
ACCESSIBLE WHEN  
DMOVLAY = 8  
Figure 9. Direct Memory Access—PM and DM Memory Maps  
DESIGNING AN EZ-ICE-COMPATIBLE SYSTEM  
The ADSP-21mod980 has on-chip emulation support and an  
ICE-Port, a special set of pins that interface to the EZ-ICE.  
These features allow in-circuit emulation, without replacing the  
target system processor, by using only a 14-pin connection from  
the target system to the EZ-ICE. Target systems must have a  
14-pin connector to accept the EZ-ICE’s in-circuit probe, a  
14-pin plug.  
IDMA Port Booting  
The ADSP-21mod980 boots programs through its Internal  
DMA port. When Mode C = 1, Mode B = 0, and Mode A = 1,  
the ADSP-21mod980 boots from the IDMA port. IDMA feature  
can load as much on-chip memory as desired. Program execu-  
tion is held off until on-chip program memory location 0 is  
written to.  
The EZ-ICE can emulate only one modem processor at a time.  
You must include hardware to select which processor in the  
ADSP-21mod980 you want to emulate. Figure 10 is a functional  
representation of the modem processor selection hardware. One  
ICE-Port connector can be used with two ADSP-21mod980  
processors without using additional buffers.  
Flag I/O Pins  
Each modem processor has eight general-purpose program-  
mable input/output flag pins. They are controlled by two  
memory-mapped registers. The PFTYPE register determines  
the direction, 1 = output and 0 = input. The PFDATA register  
is used to read and write the values on the pins. Data being read  
from a pin configured as an input is synchronized to the ADSP-  
21mod980’s clock. Bits that are programmed as outputs will  
read the value being output. The PF pins default to input dur-  
ing reset.  
Issuing the “chip reset” command during emulation causes the  
modem processor to perform a full chip reset, including a reset  
of its memory mode. Therefore, it is vital that the mode pins are  
set correctly prior to issuing a chip reset command from the  
emulator user interface. As the mode pins share functionality  
with PF0:2 on the ADSP-21mod980, it may be necessary to  
reset the target hardware separately to ensure the proper mode  
selection state on emulator chip reset. See the ADSP-2100 Fam-  
ily EZ-Tools data sheet for complete information on ICE products.  
Note: Pins PF0, PF1, and PF2 are also used for device con-  
figuration during reset. Since they are multiplexed within the  
ADSP-21mod980, PF[0:2] should be configured as an output  
for only one processor at a time.  
–10–  
REV. 0  
ADSP-21mod980  
ADSP-21  
mod980  
ELOUT  
EBR  
EBG  
EINT  
ELIN  
ECLK  
EMS  
ERESET  
GND  
BG  
BG0  
1
3
5
7
2
4
BR0  
RESET0  
EE0  
EBG  
EBR  
BR  
BG1  
BR1  
RESET1  
EE1  
EINT  
ELIN  
ECLK  
6
KEY  
8
BG2  
BR2  
RESET2  
EE2  
ELOUT  
EE  
9
10  
12  
14  
EMS  
BG3  
BR3  
RESET3  
EE3  
11  
13  
RESET  
ERESET  
BG4  
BR4  
RESET4  
EE4  
BG5  
BR5  
RESET5  
EE5  
BG6  
BR6  
RESET6  
EE6  
BG7  
BR7  
RESET7  
EE7  
Figure 10. Selecting a Modem Processor in the ADSP-21mod980  
The ICE-Port interface consists of the following ADSP-21mod980  
pins:  
The EZ-ICE uses the EE (emulator enable) signal to take con-  
trol of the ADSP-21mod980 in the target system. This causes  
the processor to use its ERESET, EBR, and EBG pins instead  
of the RESET, BR, and BG pins. The BG output is three-stated.  
These signals do not need to be jumper-isolated in a system.  
EBR  
EBG  
ERESET  
EMS  
EINT  
ECLK  
ELIN  
ELOUT  
EE  
The EZ-ICE connects to the target system via a ribbon cable  
and a 14-pin female plug. The female plug is plugged onto the  
14-pin connector (a pin strip header) on the target board.  
These ADSP-21mod980 pins must be connected only to the  
EZ-ICE connector in the target system. These pins have no  
function except during emulation, and do not require pull-up or  
pull-down resistors. The traces for these signals between the  
ADSP-21mod980 and the connector must be kept as short as  
possible, no longer that 3 inches.  
The following pins are also used by the EZ-ICE:  
BR RESET  
BG GND  
REV. 0  
–11–  
ADSP-21mod980  
Target Board Connector for EZ-ICE Probe  
The 14-pin, 2-row pin strip header is keyed at the Pin 7 loca-  
tion—Pin 7 must be removed from the header. The pins must  
be 0.025 inch square and at least 0.20 inch in length. Pin spac-  
ing should be 0.1 × 0.1 inches. The pin strip header must have  
at least 0.15 inch clearance on all sides to accept the EZ-ICE  
probe plug.  
The EZ-ICE connector (a standard pin strip header) is shown  
in Figure 10. This connector must be added to the target board  
design in order to use the EZ-ICE. Be sure to allow enough  
room in the system to fit the EZ-ICE probe onto the 14-pin  
connector.  
Pin strip headers are available from vendors such as 3M,  
McKenzie, and Samtec.  
1
2
GND  
EBG  
BG  
Target Memory Interface  
For a target system to be compatible with the EZ-ICE emulator,  
it must comply with the memory interface guidelines listed below.  
3
4
BR  
5
6
EBR  
EINT  
ELIN  
ECLK  
EMS  
ERESET  
Target System Interface Signals  
7
8
When the EZ-ICE board is installed, the performance on some  
system signals change. Design your system to be compatible  
with the following system interface signal changes introduced by  
the EZ-ICE board:  
KEY (NO PIN)  
ELOUT  
EE  
9
10  
12  
14  
11  
13  
EZ-ICE emulation introduces an 8 ns propagation delay  
between target circuitry and the processor on the  
RESET signal.  
RESET  
EZ-ICE emulation introduces an 8 ns propagation delay  
between target circuitry and the processor on the BR signal.  
TOP VIEW  
Figure 11. Target Board Connector for EZ-ICE  
EZ-ICE emulation ignores RESET and BR when single-  
stepping.  
EZ-ICE emulation ignores RESET and BR when in Emulator  
Space (processor halted).  
EZ-ICE emulation ignores the state of target BR in certain  
modes. As a result, the target system may take control of the  
processor’s external memory bus only if bus grant (BG) is  
asserted by the EZ-ICE board’s processor.  
–12–  
REV. 0  
ADSP-21mod980  
SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS  
Parameter  
Min  
Max  
Unit  
VDDEXT  
VDDINT  
TAMB  
2.97  
2.61  
0
3.63  
2.89  
70  
V
V
°C  
ELECTRICAL CHARACTERISTICS  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
VIH, Hi-Level Input Voltage1, 2  
VIH, Hi-Level CLKIN Voltage  
VIL, Lo-Level Input Voltage1, 3  
@ VDDINT = max  
@ VDDINT = max  
@ VDDINT = min  
@ VDDEXT = min,  
IOH = –0.5 mA  
1.5  
2.0  
V
V
V
V
0.7  
V
OH, Hi-Level Output Voltage1, 4 , 5  
2.0  
2.4  
@ VDDEXT = 3.0 V,  
V
V
I
OH = –0.5 mA  
@ VDDEXT = min,  
DDEXT – 0.3  
OH = –100 µA6  
@ VDDEXT = min,  
OL = 2 mA  
VDDEXT – 0.3  
V
I
VOL, Lo-Level Output Voltage1, 4, 5  
IIH, Hi-Level Input Current3  
IIL, Lo-Level Input Current3  
0.4  
10  
10  
10  
10  
V
I
@ VDDINT = max,  
VIN = 3.6 V  
@ VDDINT = max,  
VIN = 0 V  
µA  
µA  
µA  
µA  
mA  
mA  
I
OZH, Three-State Leakage Current7  
@ VDDEXT = max,  
V
IN = 3.6 V8  
IOZL, Three-State Leakage Current7  
IDD, Supply Current (Idle)9  
@ VDDEXT = max,  
V
IN = 0 V8  
@ VDDINT = 2.75,  
tCK = 13.3 ns  
80  
I
DD, Supply Current (Dynamic)10  
@ VDDINT = 2.75,  
373  
t
CK = 13.3 ns11,  
TAMB = 25°C  
I
DD, Supply Current (Power-Down)12  
Lowest Power Mode  
@ VIN = 2.5 V,  
fIN = 1.0 MHz,  
200  
mA  
pF  
CI, Input Pin Capacitance1, 3, 6, 9  
64  
64  
T
AMB = 25°C  
CO, Output Pin Capacitance1, 6, 7, 12, 10  
@ VIN = 2.5 V,  
fIN = 1.0 MHz,  
TAMB = 25°C  
pF  
NOTES  
1Bidirectional pins: RFS0, RFS1, SCLK0, SCLK1, TFS0, TFS1, IAD [15:0], PF[2:0], PF[7:4].  
2Input only pins: RESET, BR, DR0, DR1, IS, IAL, IRD, IWR.  
3Input only pins: CLKIN, RESET, BR, DR0, DR1.  
4Output pins: BG, A0, DT0, DT1, CLKOUT, IACK.  
5Although specified for TTL outputs, all ADSP-21mod980 outputs are CMOS-compatible and will drive to VDDEXT and GND, assuming no dc loads.  
6Guaranteed but not tested.  
7Three-statable pins: DT0, DT1, SCLK0, SCLK1, TFS0, TFS1, RFS0, IAD[15:0], RFS1.  
80 V son BR.  
9Applies to PBGA package type.  
10Output pin capacitance is the capacitive load for any three-stated output pin.  
11  
V
= 0 V and 3 V. For typical supply current figures refer to Power Dissipation section.  
IN  
12See the ADSP-2100 Family User’s Manual for details.  
Specifications subject to change without notice.  
REV. 0  
–13–  
ADSP-21mod980  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Min  
Max  
Internal Supply Voltage (VDDINT  
)
)
–0.3 V  
–0.3 V  
–0.5 V  
–0.5 V  
+3.0 V  
+4.6 V  
+4.6 V  
VDDEXT + 0.5 V  
External Supply Voltage (VDDEXT  
Input Voltage1  
Output Voltage Swing2  
Storage Temperature Range  
–65 °C +150 °C  
NOTES  
1Applies to bidirectional pins (D0–D23, RFS0, RFS1, SCLK0, SCLK1, TFS0, TFS1,  
A1–A13, PF0–PF7) and input only pins (CLKIN, RESET, BR, DR0, DR1).  
2Applies to Output pins (BG, PWDACK, A0, DT0, DT1, CLKOUT).  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADSP-21mod980 features proprietary ESD protection circuitry, permanent damage may occur  
on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions  
are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
MEMORY TIMING SPECIFICATIONS  
The table below shows common memory device specifications  
and the corresponding ADSP-21mod980 timing parameter.  
TIMING PARAMETERS  
GENERAL NOTES  
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of others.  
While addition or subtraction would yield meaningful results for  
an individual device, the values given in this data sheet reflect  
statistical variations and worst cases. Consequently, the user  
cannot meaningfully add up parameters to derive longer times.  
FREQUENCY DEPENDENCY FOR TIMING  
SPECIFICATIONS  
tCK is defined as 0.5 tCKI. The ADSP-21mod980 uses an input  
clock with a frequency equal to half the instruction rate: a  
37.5 MHz input clock (which is equivalent to 26.6 ns) yields a  
13.3 ns processor cycle (equivalent to 75 MHz). tCK values  
within the range of 0.5 tCKI period should be substituted for all  
relevant timing parameters to obtain the specification value.  
TIMING NOTES  
Switching characteristics specify how the processor changes its  
signals. The user has no control over this timing—circuitry  
external to the processor must be designed for compatibility  
with these signal characteristics. Switching characteristics tell  
what the processor will do in a given circumstance. Switching  
characteristics can also be used to ensure that any timing  
requirement of a device connected to the processor (such as  
memory) is satisfied.  
Example: tCKH = 0.5 tCK – 5 ns = 0.5 (13.3 ns) – 5 ns = 1.67 ns  
ENVIRONMENTAL CONDITIONS  
Ambient Temperature Rating:  
TAMB  
TJ  
PD  
θJA  
=
=
=
=
TCASE – (PD × θJA)  
Junction Temperature in °C  
Power Dissipation in W  
Thermal Resistance (Junction-to-Ambient)  
Timing requirements apply to signals that are controlled by  
circuitry external to the processor, such as the data input for a  
read operation. Timing requirements guarantee that the proces-  
sor operates correctly with other devices.  
Package  
JA  
Airflow  
PBGA  
28.2°C/W  
0 lfm  
–14–  
REV. 0  
ADSP-21mod980  
POWER DISSIPATION  
CAPACITIVE LOADING  
To determine total power dissipation in a specific application,  
the following equation should be applied for each output:  
Figures 13 and 14 show the capacitive loading characteristics of  
the ADSP-21mod980.  
C × VDD2 × f  
30  
T
V
= 85؇C  
C = load capacitance, f = output switching frequency.  
A
= 0V TO 2.0V  
DD  
25  
20  
15  
10  
5
Example  
In an application where external data memory is used and no  
other outputs are active, power dissipation is calculated as follows:  
Assumptions:  
• Data memory is accessed every fourth cycle with 50% of the  
address pins switching.  
• Data memory writes occur every fourth cycle with 50% of the  
data pins switching.  
• Each address and data pin has a 64 pF total load at the pin.  
• The application operates at VDD = 3.3 V and tCK = 13.3 ns.  
Total Power Dissipation = PINT + (C × VDD2 × f)  
0
50  
0
100  
150  
pF  
200  
250  
300  
C
L
P
INT = internal power dissipation from Power vs. Frequency  
Figure 13. Typical Output Rise Time vs. Load Capacitance,  
CL (at Maximum Ambient Operating Temperature)  
graph (Figure 12).  
(C × VDD2 × f) is calculated for each output:  
18  
16  
14  
12  
10  
Table V. Example of Calculating Power Dissipation  
# of  
Pins 
؋
 C  
2
؋
 VDD 
؋
f  
8
6
4
Address, DMS  
Data Output, WR 9  
8
× 64 pF × 3.32 V 18.8 MHz = 104.9 mW  
× 64 pF × 3.32 V 18.8 MHz = 117.9 mW  
222.8 m W  
2
Total power dissipation for this example is PINT + 222.8 mW.  
NOMINAL  
2  
4  
6  
410  
400mW  
390  
0
50  
100  
150  
200  
250  
C
pF  
373mW  
L
370  
Figure 14. Typical Output Valid Delay or Hold vs. Load  
Capacitance, CL (at Maximum Ambient Operating  
Temperature)  
350  
= 2.9V  
340mW  
DD  
V
330  
= 2.75V  
D
D
V
310  
= 2.6V  
D
D
V
290  
270  
250  
278mW  
256mW  
240mW  
230  
45  
55  
60  
65  
70  
75  
80  
50  
1/t MHz  
CK  
VALID FOR ALL TEMPERATURE GRADES  
1. POWER REFLECTS DEVICE OPERATING WITH NO OUTPUT LOADS.  
2. TYPICAL POWER DISSIPATION AT 25؇C  
3.  
I
MEASUREMENT TAKEN WITH ALL INSTRUCTIONS EXECUTING  
DD  
FROM INTERNAL MEMORY. 50% OF THE INSTRUCTIONS ARE  
MULTIFUNCTION (TYPES 1,4,5,12,13,14), 30% ARE TYPE 2 AND  
TYPE 6, AND 20% ARE IDLE INSTRUCTIONS.  
Figure 12. Power vs. Frequency  
REV. 0  
–15–  
ADSP-21mod980  
TEST CONDITIONS  
Output Disable Time  
REFERENCE  
SIGNAL  
tMEASURED  
tDIS  
Output pins are considered to be disabled when they have  
stopped driving and started a transition from the measured  
output high or low voltage to a high-impedance state. The out-  
put disable time (tDIS) is the difference of tMEASURED and tDECAY  
as shown in Figure 16. The time is the interval from when a  
reference signal reaches a high or low voltage level to when  
the output voltages have changed by 0.5 V from the measured  
output high or low voltage.  
tENA  
V
V
OH  
(MEASURED)  
OH  
(MEASURED)  
,
V
V
(MEASURED) 0.5V  
2.0V  
1.0V  
OH  
OUTPUT  
(MEASURED) +0.5V  
OL  
V
V
OL  
OL  
(MEASURED)  
tDECAY  
(MEASURED)  
OUTPUT STARTS  
DRIVING  
OUTPUT STOPS  
DRIVING  
The decay time, tDECAY, is dependent on the capacitive load,  
CL, and the current load, iL, on the output pin. It can be  
approximated by the following equation:  
HIGH-IMPEDANCE STATE. TEST CONDITIONS CAUSE  
THIS VOLTAGE LEVEL TO BE APPROXIMATELY 1.5V.  
Figure 16. Output Enable/Disable  
CL ×0.5V  
tDECAY  
=
iL  
I
OL  
from which  
t
DIS = tMEASURED tDECAY  
is calculated. If multiple pins (such as the data bus) are  
disabled, the measurement value is that of the last pin to  
stop driving.  
TO  
OUTPUT  
PIN  
1.5V  
50pF  
1.5V  
1.5V  
I
OH  
OUTPUT, INPUT  
Figure 17. Equivalent Device Loading for AC Measure-  
ments (Including All Fixtures)  
Figure 15. Voltage Reference Levels for AC Measure-  
ments (Except Output Enable/Disable)  
Output Enable Time  
Output pins are considered to be enabled when they have made  
a transition from a high-impedance state to when they start  
driving. The output enable time (tENA) is the interval from when  
a reference signal reaches a high or low voltage level to when the  
output has reached a specified high or low trip point, see Figure  
16. If multiple pins (such as the data bus) are enabled, the mea-  
surement value is that of the first pin to start driving.  
–16–  
REV. 0  
ADSP-21mod980  
TIMING PARAMETERS  
75 MHz  
Parameter  
Min  
Max  
Unit  
Clock Signals and Reset  
Timing Requirements:  
tCKI  
CLKIN Period  
26.6  
8
8
80  
ns  
ns  
ns  
tCKIL  
tCKIH  
CLKIN Width Low  
CLKIN Width High  
Switching Characteristics:  
tCKL  
CLKOUT Width Low  
0.5 tCK 2  
0.5 tCK 2  
0
ns  
ns  
ns  
tCKH  
tCKOH  
CLKOUT Width High  
CLKIN High to CLKOUT High  
13  
Control Signals  
Timing Requirements:  
1
tRSP  
tMS  
tMH  
RESET Width Low  
Mode Setup before RESET High  
Mode Setup after RESET High  
5 tCK  
2
5
ns  
ns  
ns  
NOTE  
1Applies after power-up sequence is complete. Internal phase lock loop requires no more than 2000 CLKIN cycles, assuming stable CLKIN (not including crystal  
oscillator start-up time).  
tCKI  
tCKIH  
CLKIN  
tCKIL  
tCKOH  
tCKH  
CLKOUT  
tCKL  
PF (2:0)*  
tMH  
tMS  
RESET  
*PF2 IS MODE C, PF1 IS MODE B, PF0 IS MODE A  
Figure 18. Clock Signals  
REV. 0  
–17–  
ADSP-21mod980  
Parameter  
Min  
Max  
Unit  
Interrupts and Flags  
Timing Requirements:  
tIFS  
IRQx, FI, or PFx Setup before CLKOUT Low1, 2, 3, 4  
IRQx, FI, or PFx Hold after CLKOUT High1, 2, 3, 4  
0.25 tCK + 10  
0.25 tCK  
ns  
ns  
tIFH  
Switching Characteristics:  
tFOH  
Flag Output Hold after CLKOUT Low5  
tFOD  
Flag Output Delay from CLKOUT Low5  
0.25 tCK 5  
ns  
ns  
0.5 tCK + 4  
NOTES  
1If IRQx and FI inputs meet tIFS and tIFH setup/hold requirements, they will be recognized during the current clock cycle; otherwise the signals will be recognized on the  
following cycle. (Refer to Interrupt Controller Operation in the Program Control chapter of the ADSP-2100 Family Users Manual, Third Edition, for further information  
on interrupt servicing.)  
2Edge-sensitive interrupts require pulsewidths greater than 10 ns; level-sensitive interrupts must be held low until serviced.  
3IRQx = IRQ0, IRQ1, IRQ2, IRQL0, IRQL1, IRQE.  
4PFx = PF0, PF1, PF2, PF4, PF5, PF6, PF7.  
5Flag outputs = PFx, Flag_out4.  
CLKOUT  
tIFH  
IRQx  
FI  
PFx  
tIFS  
Figure 19. Interrupts and Flags  
–18–  
REV. 0  
ADSP-21mod980  
TIMING PARAMETERS  
Parameter  
Min  
Max  
Unit  
Serial Ports  
Timing Requirements:  
tSCK  
tSCS  
tSCH  
tSCP  
SCLK Period  
26.67  
4
7
12  
ns  
ns  
ns  
ns  
DR/TFS/RFS Setup before SCLK Low  
DR/TFS/RFS Hold after SCLK Low  
SCLKIN Width  
Switching Characteristics:  
tCC  
CLKOUT High to SCLKOUT  
SCLK High to DT Enable  
SCLK High to DT Valid  
TFS/RFSOUT Hold after SCLK High  
TFS/RFSOUT Delay from SCLK High  
DT Hold after SCLK High  
0.25 tCK  
0
0.25 tCK + 6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCDE  
tSCDV  
tRH  
12  
12  
0
tRD  
tSCDH  
tTDE  
tTDV  
tSCDD  
tRDV  
0
0
TFS (Alt) to DT Enable  
TFS (Alt) to DT Valid  
12  
12  
12  
SCLK High to DT Disable  
RFS (Multichannel, Frame Delay Zero) to DT Valid  
CLKOUT  
tCC  
tCC  
tSCK  
SCLK  
tSCP  
tSCP  
tSCS tSCH  
DR  
TFS  
RFS  
IN  
IN  
tRD  
tRH  
RFS  
TFS  
OUT  
tSCDD  
OUT  
tSCDV  
tSCDH  
tSCDE  
DT  
tTDE  
tTDV  
TFS  
OUT  
ALTERNATE  
FRAME MODE  
tRDV  
RFS  
OUT  
MULTICHANNEL MODE,  
FRAME DELAY 0  
(MFD = 0)  
tTDE  
tTDV  
TFS  
IN  
ALTERNATE  
FRAME MODE  
tRDV  
RFS  
IN  
MULTICHANNEL MODE,  
FRAME DELAY 0  
(MFD = 0)  
Figure 20. Serial Ports  
REV. 0  
–19–  
ADSP-21mod980  
Parameter  
Min  
Max  
Unit  
IDMA Address Latch  
Timing Requirements:  
tIALP  
tIASU  
tIAH  
Duration of Address Latch1, 2  
10  
5
2
0
3
ns  
ns  
ns  
ns  
ns  
ns  
IAD150 Address Setup before Address Latch End2  
IAD150 Address Hold after Address Latch End2  
IACK Low before Start of Address Latch2, 3  
tIKA  
tIALS  
tIALD  
Start of Write or Read after Address Latch End1, 2  
Address Latch Start after Address Latch End1, 2  
2
NOTES  
1Start of Address Latch = IS Low and IAL High.  
2End of Address Latch = IS High or IAL Low.  
3Start of Write or Read = IS Low and IWR Low or IRD Low.  
IACK  
tIKA  
tIALD  
IAL  
tIALP  
tIALP  
IS  
IAD150  
tIASU  
tIASU  
tIAH  
tIAH  
tIALS  
IRD OR  
IWD  
Figure 21. IDMA Address Latch  
–20–  
REV. 0  
ADSP-21mod980  
TIMING PARAMETERS  
Parameter  
Min  
Max  
Unit  
IDMA Write, Short Write Cycle  
Timing Requirements:  
tIKW  
tIWP  
tIDSU  
tIDH  
IACK Low before Start of Write1  
0
10  
3
ns  
ns  
ns  
ns  
Duration of Write1, 2  
IAD150 Data Setup before End of Write2, 3, 4  
IAD150 Data Hold after End of Write2, 3, 4  
2
Switching Characteristic:  
tIKHW  
Start of Write to IACK High  
10  
ns  
NOTES  
1Start of Write = IS Low and IWR Low.  
2End of Write = IS High or IWR High.  
3If Write Pulse ends before IACK Low, use specifications tIDSU, tIDH  
.
4If Write Pulse ends after IACK Low, use specifications tIKSU, tIKH  
.
tIKW  
IACK  
tIKHW  
IS  
IWR  
tIWP  
tIDH  
tIDSU  
DATA  
IAD150  
Figure 22. IDMA Write, Short Write Cycle  
REV. 0  
–21–  
ADSP-21mod980  
Parameter  
Min  
Max  
Unit  
IDMA Write, Long Write Cycle  
Timing Requirements:  
tIKW  
tIKSU  
tIKH  
IACK Low before Start of Write1  
0
ns  
ns  
ns  
IAD150 Data Setup before End of Write2, 3, 4  
IAD150 Data Hold after End of Write2, 3, 4  
0.5 tCK + 5  
0
Switching Characteristics:  
tIKLW  
Start of Write to IACK Low4  
tIKHW Start of Write to IACK High  
1.5 tCK  
ns  
ns  
10  
NOTES  
1Start of Write = IS Low and IWR Low.  
2If Write Pulse ends before IACK Low, use specifications tIDSU, tIDH  
.
3If Write Pulse ends after IACK Low, use specifications tIKSU, tIKH  
.
4This is the earliest time for IACK Low from Start of Write. For IDMA Write cycle relationships, please refer to the ADSP-2100 Family Users Manual, Third Edition.  
tIKW  
IACK  
tIKHW  
tIKLW  
IS  
IWR  
tIKH  
tIKSU  
DATA  
IAD150  
Figure 23. IDMA Write, Long Write Cycle  
–22–  
REV. 0  
ADSP-21mod980  
TIMING PARAMETERS  
Parameter  
Min  
Max  
Unit  
IDMA Read, Long Read Cycle  
Timing Requirements:  
tIKR  
tIRK  
IACK Low before Start of Read1  
End of Read after IACK Low2  
0
2
ns  
ns  
Switching Characteristics:  
tIKHR  
tIKDS  
tIKDH  
tIKDD  
tIRDE  
tIRDV  
tIRDH1  
tIRDH2  
IACK High after Start of Read1  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IAD150 Data Setup before IACK Low  
0.5 tCK 2  
0
IAD150 Data Hold after End of Read2  
IAD150 Data Disabled after End of Read2  
10  
10  
IAD150 Previous Data Enabled after Start of Read  
IAD150 Previous Data Valid after Start of Read  
IAD150 Previous Data Hold after Start of Read (DM/PM1)3  
IAD150 Previous Data Hold after Start of Read (PM2)4  
0
2 tCK 5  
tCK 5  
NOTES  
1Start of Read = IS Low and IRD Low.  
2End of Read = IS High or IRD High.  
3DM read or first half of PM read.  
4Second half of PM read.  
IACK  
IS  
tIKHR  
tIKR  
tIRK  
IRD  
tIKDS  
tIKDH  
tIRDE  
PREVIOUS  
DATA  
READ  
DATA  
IAD150  
tIRDV  
tIKDD  
tIRDH  
Figure 24. IDMA Read, Long Read Cycle  
REV. 0  
–23–  
ADSP-21mod980  
Parameter  
Min  
Max  
Unit  
IDMA Read, Short Read Cycle1  
Timing Requirements:  
tIKR  
tIRP  
IACK Low before Start of Read2  
Duration of Read  
0
10  
ns  
ns  
Switching Characteristics:  
tIKHR  
tIKDH  
tIKDD  
tIRDE  
tIRDV  
tIRDH1  
tIRDH1  
IACK High after Start of Read2  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IAD150 Data Hold after End of Read3  
0
0
IAD150 Data Disabled after End of Read3  
IAD150 Previous Data Enabled after Start of Read  
IAD150 Previous Data Valid after Start of Read  
IAD150 Previous Data Hold after Start of Read (DM/PM1)4  
IAD150 Previous Data Hold after Start of Read (PM2)5  
2tCK 5  
tCK 5  
NOTES  
1Timing applies to ADSP-21mod980 when Short Read only is disabled. See next page.  
2Start of Read = IS Low and IRD Low.  
3End of Read = IS High or IRD High.  
4DM read or first half of PM read.  
5Second half of PM read.  
IACK  
tIKHR  
tIKR  
IS  
IRD  
tIKDH  
tIRDE  
PREVIOUS  
DATA  
NEW READ DATA  
IAD150  
tIRDV  
tIKDD  
tIRDH  
Figure 25. IDMA Read, Short Read Cycle  
–24–  
REV. 0  
ADSP-21mod980  
TIMING PARAMETERS  
Parameter  
Min  
Max  
Unit  
IDMA Read, Short Read Cycle in Short Read Only Mode1  
Timing Requirements:  
tIKR  
tIRP  
IACK Low before Start of Read2  
0
10  
ns  
ns  
Duration of Read1  
Switching Characteristics:  
tIKHR  
tIKDH  
tIKDD  
tIRDE  
tIRDV  
IACK High after Start of Read2  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
IAD150 Data Hold after End of Read3  
0
0
IAD150 Data Disabled after End of Read3  
IAD150 Previous Data Enabled after Start of Read  
IAD150 Previous Data Valid after Start of Read  
NOTES  
1Short Read Only is enabled by setting Bit 14 of the IDMA Overlay Register to 1 (0x3FE7). Short Read Only can be enabled by the processor core writing to the  
register or by an external host writing to the register. Disabled by default.  
2Start of Read = IS Low and IRD Low. Previous data remains until end of read.  
3End of Read = IS High or IRD High.  
IACK  
tIKHR  
tIKR  
IS  
tIRP  
IRD  
tIKDH  
tIRDE  
PREVIOUS  
DATA  
IAD150  
tIKDD  
tIRDV  
Figure 26. IDMA Read, Short Read Cycle  
REV. 0  
–25–  
ADSP-21mod980  
Pinout—Top View Left  
1
2
3
4
5
6
7
8
9
10  
11  
12  
DT1_2 VDDEXT  
GND BR_2  
13  
A
B
C
D
E
F
GND  
A0  
VDDINT  
VDDINT  
GND  
VDDINT  
IAD0_A  
IRD_A  
GND  
GND  
GND  
GND  
GND  
PF0  
PF1  
PF2  
IS_1  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
IAL_A  
IWR_A  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
CLKOUT_2 GND  
IAD1_A  
IAD4_A  
IAD14_A  
DR0A  
GND  
PF6_2  
PF4_2  
PF5_2  
GND  
GND  
GND  
IAD2_A  
IAD5_A  
IAD13_A  
GND  
TFS0_2 EE_2  
PF7_2 RESET_2  
IAD3_A  
CLKIN  
BG_1  
IAD15_A  
GND  
GND  
G
H
J
CLKOUT_1  
GND  
GND  
GND  
BR_1  
GND  
GND  
GND  
RESET_1  
VDDEXT  
VDDEXT  
PF4_1  
TFS0_1  
VDDEXT  
VDDEXT  
PF5_1  
GND  
RFS0A  
VDDEXT  
VDDEXT  
PF6_1  
GND  
PF7_1  
VDDEXT  
VDDEXT  
EE_1  
K
L
M
N
P
R
T
U
V
W
Y
GND  
GND  
SCLK0A  
VDDINT  
PF4_6  
DT0A  
VDDINT  
PF6_6  
GND  
DT1_1  
VDDINT  
GND  
CLKOUT_6  
BG_6  
IACK_A  
BR_6  
GND  
DT1_6  
IAD11_A  
GND  
PF5_6  
PF7_6  
GND  
IAD6_A  
GND  
GND  
TFS0_6  
EE_6  
IAD9_A  
IS_4  
IAD7_A  
IAD12_A  
VDDINT  
GND  
AA RESET_6  
AB VDDINT  
AC CLKOUT_4  
AD PF6_4  
AE GND  
AF GND  
1
IAD10_A  
VDDINT  
PF4_4  
GND  
VDDINT  
PF5_4  
GND  
BG_4  
GND  
IS_6  
GND  
DR1  
GND  
GND  
GND  
GND  
8
BR_4  
PF6_7  
EE_4  
PF7_7  
9
GND  
RESET_7 GND  
EE_7  
DT1_7  
VDDINT  
VDDINT  
13  
GND  
GND  
IAD8_A  
CLKOUT_7 GND  
GND  
GND  
GND  
12  
GND  
PF7_4  
TFS1  
GND  
TFS0_4 RFS1  
GND  
GND  
10  
PF5_7  
TFS0_7  
11  
DT1_4  
2
GND  
SCLK1 RESET_4 PF4_7  
3
4
5
6
7
–26–  
REV. 0  
ADSP-21mod980  
Pinout—Top View Right  
14  
IS_2  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
GND  
GND  
GND  
GND  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
PF7_3  
PF6_3  
PF5_3  
PF4_3  
GND  
GND  
GND  
GND  
GND  
TFS0_3  
GND  
GND  
D23  
D22  
D21  
D18  
GND  
A
VDDEXT  
VDDEXT  
BG_2  
VDDEXT  
RESET_3  
VDDEXT  
D19  
D17  
GND  
D15  
D16  
B
CLKOUT_3 GND  
D20  
GND  
D13  
D14  
C
GND  
DT1_3  
GND  
EMS  
D12  
D11  
D
D10  
D09  
ERESET  
EBG  
E
D08  
IS_3  
BG_3  
BR_3  
GND  
ELIN  
VDDEXT  
F
EE_3  
PF5_5  
GND  
ELOUT  
VDDEXT  
EBR  
G
GND  
ECLK  
VDDEXT  
IAD11_B  
IAD8_B  
TFS0_5  
VDDINT  
GND  
RESET_5  
GND  
IAD1_B  
GND  
IWR_B  
GND  
VDDINT  
GND  
GND  
GND  
GND  
23  
GND  
H
EINT  
VDDEXT  
IAD10_B  
IAD6_B  
IAD7_B  
VDDINT  
PF6_5  
EE_5  
J
K
CLKOUT_5 PF4_5  
L
IAD9_B  
BR_5  
IAD12_B  
M
N
PF7_5  
VDDINT  
BG_5  
DT1_5  
GND  
VDDINT  
GND  
P
R
GND  
T
GND  
GND  
U
IAD2_B  
IAD3_B  
IRD_B  
GND  
IS_5  
IAD0_B  
IAD5_B  
IS_8  
V
IAD4_B  
IAL_B  
GND  
W
Y
GND  
AA  
AB  
AC  
AD  
AE  
AF  
VDDINT  
IAD14_B  
GND  
VDDINT  
IAD15_B  
BG_8  
GND  
VDDINT  
IACK_B  
IAD13_B  
BR_8  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
14  
VDDEXT  
BG_7  
BR_7  
IS-7  
GND  
GND  
GND  
GND  
17  
PF6_8  
PF4_8  
PF5_8  
PF7_8  
18  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
19  
TFS0_8  
RFS0B  
DT1_8  
DT0B  
20  
GND  
GND  
GND  
GND  
21  
RESET_8  
GND  
EE_8  
DR0B  
22  
GND  
GND  
SCLK0B  
VDDINT  
24  
CLKOUT_8 GND  
15 16  
VDDINT  
25  
GND  
26  
REV. 0  
–27–  
ADSP-21mod980  
The ADSP-21mod980 package pinout is shown in the table below.  
352-Ball PBGA Package Pinout  
Signal  
Name  
Ball  
Number  
Signal  
Name  
Ball  
Number  
Signal  
Name  
Ball  
Number  
Signal  
Name  
Ball  
Number  
Signal  
Name  
Ball  
Number  
A0  
A2  
D11  
D26  
EE_1  
M4  
GND  
AC12  
GND  
AF1  
BG_1  
F3  
D12  
D25  
EE_2  
C13  
GND  
AC17  
GND  
AF4  
BG_2  
BG_3  
BG_4  
BG_5  
BG_6  
BG_7  
BG_8  
BR_1  
D14  
F25  
AC5  
R25  
R4  
D13  
D24  
C26  
C25  
B26  
B24  
A25  
B23  
C23  
A24  
A23  
A22  
E1  
EE_3  
EE_4  
EE_5  
EE_6  
EE_7  
EE_8  
EINT  
ELIN  
ELOUT  
EMS  
G23  
AE9  
T26  
Y2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
AC21  
AC23  
AD2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
AF8  
AF10  
AF12  
AF16  
AF17  
AF21  
AF23  
AF26  
B2  
D14  
D15  
D16  
AD3  
D17  
AC13  
AE22  
J26  
AD4  
AD15  
AD25  
G4  
D18  
AD5  
D19  
AD7  
D20  
J25  
AD8  
BR_2  
B13  
G25  
AC9  
N24  
U4  
D21  
J24  
AD11  
AD12  
AD16  
AD17  
AD21  
AD22  
AD23  
AD24  
AE1  
BR_3  
D22  
E23  
E26  
A1  
B5  
BR_4  
D23  
ERESET  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
B11  
B12  
B16  
B19  
B21  
B25  
C3  
BR_5  
DR0A  
DR0B  
DR1  
BR_6  
AF22  
AE7  
P2  
A5  
BR_7  
AE15  
AE26  
E3  
A11  
A16  
A19  
A20  
A21  
A26  
AA23  
AA24  
AA25  
AA26  
AC4  
AC6  
AC8  
AC10  
BR_8  
DT0A  
DT0B  
DT1_1  
DT1_2  
DT1_3  
DT1_4  
DT1_5  
DT1_6  
DT1_7  
DT1_8  
EBG  
CLKIN  
CLKOUT1  
AF20  
P3  
G1  
CLKOUT_2 A10  
CLKOUT_3 C20  
CLKOUT_4 AC1  
CLKOUT_5 L24  
CLKOUT_6 P4  
CLKOUT_7 AD10  
CLKOUT_8 AF15  
A12  
D21  
AF2  
T25  
U3  
AE2  
C5  
AE4  
C11  
C16  
C19  
C21  
C24  
D4  
AE8  
AE10  
AE12  
AE16  
AE17  
AE21  
AE23  
AE25  
AD13  
AE20  
F26  
G26  
J23  
D08  
D09  
D10  
F23  
E25  
E24  
D5  
EBR  
D11  
D16  
ECLK  
–28–  
REV. 0  
ADSP-21mod980  
Signal  
Name  
Ball  
Number  
Signal  
Name  
Ball  
Number  
Signal  
Name  
Ball  
Number  
Signal  
Name  
Ball  
Number  
Signal  
Name  
Ball  
Number  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
D19  
D20  
D23  
F1  
GND  
W23  
T4  
IAD8_B  
IAD9_A  
IAD9_B  
IAL_A  
IAL_B  
IRD_A  
IRD_B  
IS_1  
M23  
Y3  
PF5_5  
G24  
V1  
SCLK0B  
SCLK1  
TFS0_1  
TFS0_2  
TFS0_3  
TFS0_4  
TFS0_5  
TFS0_6  
TFS0_7  
TFS0_8  
TFS1  
AE24  
AF5  
J2  
IACK_A  
IACK_B  
IAD0_A  
IAD0_B  
IAD1_A  
IAD1_B  
IAD10_A  
IAD10_B  
IAD11_A  
IAD11_B  
IAD12_A  
IAD12_B  
IAD13_A  
IAD13_B  
IAD14_A  
IAD14_B  
IAD15_A  
IAD15_B  
IAD2_A  
IAD2_B  
IAD3_A  
IAD3_B  
IAD4_A  
IAD4_B  
IAD5_A  
IAD5_B  
IAD6_A  
IAD6_B  
IAD7_A  
IAD7_B  
IAD8_A  
PF5_6  
AC26  
B4  
M24  
C8  
PF5_7  
AE11  
AE18  
M3  
PF5-8  
C12  
B20  
AE5  
N23  
Y1  
F2  
V26  
B1  
Y25  
C4  
PF6_1  
F4  
PF6_2  
B10  
B18  
AD1  
R26  
T2  
G2  
V23  
AA2  
L26  
V3  
Y24  
D6  
PF6_3  
G3  
PF6_4  
H1  
IS_2  
A14  
F24  
AA3  
V25  
AC7  
AC16  
Y26  
D8  
PF6_5  
AF11  
AC20  
AF3  
A7  
H2  
IS_3  
PF6_6  
H3  
L23  
AA4  
M25  
E2  
IS_4  
PF6_7  
AD9  
AC18  
J4  
H4  
IS_5  
PF6_8  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
H23  
H24  
H25  
H26  
N1  
IS_6  
PF7_1  
A8  
IS_7  
PF7_2  
D12  
A18  
AE3  
N25  
V2  
A9  
AD26  
D1  
IS_8  
PF7_3  
A13  
A15  
A17  
AC14  
AC15  
AC19  
AD14  
AD19  
AE14  
AE19  
AF14  
AF19  
B7  
IWR_A  
IWR_B  
PF0  
PF7_4  
AC24  
E4  
Y23  
A6  
PF7_5  
N2  
PF7_6  
N3  
AC25  
C2  
PF1  
B6  
PF7_7  
AF9  
AF18  
J1  
N4  
PF2  
C6  
PF7_8  
R23  
R24  
T3  
V24  
D3  
PF4_1  
PF4_2  
PF4_3  
PF4_4  
PF4_5  
PF4_6  
PF4_7  
PF4_8  
PF5_1  
PF5_2  
PF5_3  
PF5_4  
M1  
RESET_1  
RESET_2  
RESET_3  
RESET_4  
RESET_5  
RESET_6  
RESET_7  
RESET_8  
RFS0A  
RFS0B  
RFS1  
C10  
D18  
AC2  
L25  
T1  
D13  
C22  
AF6  
T23  
AA1  
AC11  
AC22  
J3  
W24  
C1  
T24  
U1  
W25  
D2  
U2  
U23  
U24  
U25  
U26  
W1  
W2  
W3  
W4  
W26  
V4  
AF7  
AD18  
M2  
B8  
M26  
Y4  
B9  
D10  
C18  
AC3  
AD20  
AE6  
P1  
B14  
B15  
B17  
N26  
AD6  
SCLK0A  
REV. 0  
–29–  
ADSP-21mod980  
Signal  
Name  
Ball  
Number  
Signal  
Name  
Ball  
Number  
Signal  
Name  
Ball  
Number  
Signal  
Name  
Ball  
Number  
Signal  
Name  
Ball  
Number  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
B22  
C7  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
D17  
D22  
K1  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
K26  
L1  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
AB3  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
AF25  
B3  
AB4  
C9  
L2  
AB23  
AB24  
AB25  
AB26  
AE13  
AF13  
AF24  
P23  
P24  
P25  
P26  
R1  
C14  
C15  
C17  
D7  
K2  
L3  
K3  
L4  
K4  
A3  
K23  
K24  
K25  
A4  
D9  
AB1  
AB2  
R2  
D15  
R3  
ORDERING GUIDE  
Ambient  
Temperature  
Range  
Package  
Description  
Package  
Option  
Part Number  
Processor Clock  
ADSP-21mod980-000  
0°C to 70°C  
37.5 MHz  
Plastic Ball Grid Array (PBGA)  
B-352  
RELATED DOCUMENTS  
ADSP-21mod980-210 Multiport Internet Gateway Processor Solution.  
ADSP-21mod Family Dynamic Internet Voice AccessTM (DIVA) Voice Over Network Solution.  
DIVA is a trademark of Analog Devices, Inc.  
–30–  
REV. 0  
ADSP-21mod980  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
352-Ball Grid Array (PBGA)  
(B-352)  
26 24 22 20 18 16 14 12 10  
25 23 21 19 17 15 13 11  
8
6
4
2
1.378 (35.00) SQ  
9
7
5
3
1
A
B
C
BALL A1  
INDICATOR  
D
E
F
G
H
J
K
L
M
N
P
(0.05) 1.27  
BSC  
TOP VIEW  
BOTTOM VIEW  
R
T
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
AF  
1.209 (30.70)  
1.181 (30.00) SQ  
1.161 (29.50)  
(0.05) 1.27 BSC  
1.25 (31.75) BSC  
DETAIL A  
0.103 (2.62)  
0.093 (2.37)  
0.083 (2.12)  
DETAIL A  
0.048 (1.22)  
0.046 (1.17)  
0.044 (1.12)  
0.028 (0.70)  
0.024 (0.60)  
0.020 (0.50)  
NOTES  
1. THE ACTUAL POSITION OF THE BALL GRID IS WITHIN 0.012 (0.30)  
OF THE IDEAL POSITION RELATIVE TO THE PACKAGE EDGES.  
2. THE ACTUAL POSITION OF EACH BALL IS WITHIN 0.006 (0.15) OF ITS  
IDEAL POSITION RELATIVE TO THE BALL GRID.  
3. CENTER FIGURES ARE TYPICAL UNLESS OTHERWISE NOTED.  
4. CONTROLLING DIMENSIONS ARE IN MILLIMETERS  
0.008 (0.20)  
MAX  
0.028 (0.70)  
0.024 (0.60)  
0.020 (0.50)  
0.035 (0.90)  
0.030 (0.75)  
0.024 (0.60)  
SEATING  
PLANE  
BALL DIAMETER  
REV. 0  
–31–  

相关型号:

ADSP-21MOD980-000

SPECIALTY TELECOM CIRCUIT, PBGA352, PLASTIC, BGA-352
ROCHESTER

ADSP-21MOD980-000X

SPECIALTY TELECOM CIRCUIT, PBGA352, PLASTIC, BGA-352
ROCHESTER

ADSP-21MOD980N

MultiPort Internet Gateway Processor
ADI

ADSP-21MOD980N-000

MultiPort Internet Gateway Processor
ADI

ADSP-21MOD980N-210

ADSP-21mod980N-210: MultiPort Internet Gateway Processor Preliminary Data Sheet (Rev. PrB. 9/01)
ETC

ADSP-21MPS5X

ADSP-2100 Family DSP Microcomputers
ADI

ADSP-21MSP50ABG-52

16-Bit Digital Signal Processor
ETC

ADSP-21MSP50AKG-52

IC 24-BIT, 13 MHz, MIXED DSP, CPGA144, PGA-144, Digital Signal Processor
ADI

ADSP-21MSP55ABS-52

IC 24-BIT, 13 MHz, OTHER DSP, PQFP100, PLASTIC, QFP-100, Digital Signal Processor
ADI

ADSP-21MSP55AKS-52

IC 24-BIT, 13 MHz, OTHER DSP, PQFP100, PLASTIC, QFP-100, Digital Signal Processor
ADI

ADSP-21MSP56ABS-52

IC 24-BIT, 13 MHz, OTHER DSP, PQFP100, PLASTIC, QFP-100, Digital Signal Processor
ADI

ADSP-21MSP56AKS-52

IC 24-BIT, 13 MHz, OTHER DSP, PQFP100, PLASTIC, QFP-100, Digital Signal Processor
ADI