BM3451 [ETC]

3/4/5 Cell Battery Protectors;
BM3451
型号: BM3451
厂家: ETC    ETC
描述:

3/4/5 Cell Battery Protectors

电池
文件: 总28页 (文件大小:782K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BM3451 Series  
3/4/5 Cell Battery Protectors  
BYD Microelectronics Co., Ltd.  
General Description  
The BM3451 is a professional protection IC for 3/4/5 cells rechargeable battery pack; it is highly  
integrated, and generally used in power tools, electric bicycles and UPS applications.  
The BM3451 works constantly to monitor each cell’s voltage, the current of charge or discharge, and  
the temperature of the environment to provide overcharge, over-discharge, discharge overcurrent, short  
circuit, charge overcurrent and over-temperature protections, etc. Besides, it also can change the  
protection delay time of overcharge, over-discharge and discharge overcurrent by setting the external  
capacitors.  
The BM3451 provides external bleeding for cell-capacity balance function to avoid unbalanced  
capacity between each cell. Thus, the batteries can work for longer.  
Extended function module embedded in the BM3451 ICs can make them work for more battery packs  
with multiple chips, and they can protect 6-cell batteries or more than 6-cell batteries.  
Features  
(1) High-accuracy voltage detection for each cell  
·overcharge threshold  
3.6V~4.6V  
accuracy: ±25 mV (+25)  
accuracy: ±40 mV (-40to +85)  
accuracy: ±50 mV  
·overcharge hysteresis  
·over-discharge threshold  
·over-discharge hysteresis  
0.1V  
1.6V~3.0V  
accuracy: ±80 mV  
0V / 0.2V / 0.4V accuracy: ±100 mV  
(2) Three grades voltage detection of discharge overcurrent  
·discharge overcurrent 1  
·discharge overcurrent 2  
·short circuit  
0.025 V ~ 0.30 V  
(50 mV step)  
0.2 V / 0.3V / 0.4V / 0.6 V  
0.8V / 1.2 V  
(3) Charge overcurrent detection  
·detection voltage  
-0.03V / -0.05V / -0.1V / -0.15V / -0.2 V  
(4) 3/4/5 cell protection enable  
(5) Setting of output delay time  
·overcharge, over-discharge, discharge overcurrent 1 and discharge overcurrent 2 protection delay  
time can be set by external capacitors  
(6) Supports external bleeding for balance  
(7) Controlling the state of charge or discharge by external signals  
(8) The maximum output voltage of CO / DO: 12V  
(9) Over-temperature protection  
(10) Breaking wire protection  
(11) Low power consumption  
·operation modewith Temp protection)  
·operation modewithout Temp protection)  
·sleeping mode  
25 μA typical  
15 μA typical  
6 μA typical  
Datasheet  
WI-D06-J-0036 Rev.A/1  
1 / 28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
Applications  
·Power tool  
·Electric bicycle  
·UPS backup battery  
Packages  
·TSSOP28  
·TSSOP20  
Block Diagram  
VCC  
Balance  
BALUP  
Control 1  
VC5  
BAL5  
VC4  
OR  
CO DO  
Series  
DOIN  
COIN  
TOV  
TOVD  
TOC1  
TOC2  
BAL4  
VC3  
External  
DelayTime  
Logic Circuit  
BAL3  
VC2  
NTC  
TRH  
TEMP  
Protection  
BAL2  
VC1  
Charger /  
Load  
Detection  
VM  
CO DO  
Driver  
CO  
DO  
BAL1  
GND  
SET  
OR  
Balance  
Control 2  
BALDN  
VIN  
3/4/5 Cell  
selection  
Dsicharge  
overcurrent  
Detection  
OCCT  
Figure 1  
Datasheet  
WI-D06-J-0036 Rev.A/1  
2 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
Selection Guides  
1. Products name structure  
Figure 2  
2. Products catalogue  
Overcharge Overcharge  
Over-  
Over-  
Discharge  
Discharge  
Short  
circuit  
Charge  
Balance  
protection  
voltage  
release  
voltage  
discharge discharge overcurrent overcurrent  
overcurrent detection  
Type/Item  
protection  
voltage  
release  
voltage  
1 detection 2 detection detection  
voltage voltage voltage  
[VOC1 [VOC2  
detection  
voltage  
voltage  
[VDET1  
]
[VREL1  
]
[VDET2  
]
[VREL2  
]
]
]
[VSHORT  
]
[VOVCC  
]
[VBAL]  
BM3451VJDC-T28A  
BM3451SMDC-T28A  
BM3451HEDC-T28A  
BM3451VJDC-T20A  
BM3451SMDC-T20A  
BM3451HEDC-T20A  
4.300V  
4.225V  
3.850V  
4.300V  
4.225V  
3.850V  
4.200V  
4.125V  
3.750V  
4.200V  
4.125V  
3.750V  
2.500V  
2.800V  
2.000V  
2.500V  
2.800V  
2.000V  
2.700V  
3.000V  
2.500V  
2.700V  
3.000V  
2.500V  
Table 1  
0.100V  
0.100V  
0.100V  
0.100V  
0.100V  
0.100V  
0.400V  
0.400V  
0.400V  
0.400V  
0.400V  
0.400V  
0.800V  
0.800V  
0.800V  
0.800V  
0.800V  
0.800V  
-0.100V  
-0.100V  
-0.100V  
-0.100V  
-0.100V  
-0.100V  
4.120V  
4.050V  
3.590V  
-
-
-
Datasheet  
WI-D06-J-0036 Rev.A/1  
3 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
Pin Configurations  
Figure 3  
Pin Definition  
TSSOP28  
TSSOP20  
Name  
Description  
Pin number Pin number  
1
2
3
-
BALUP  
DOIN  
Balance signal transfer terminal 1  
1
2
DO controller for extended application  
COIN  
CO controller for extended application  
Connect to a capacitor for setting the delay time of  
overcharge protection  
4
5
6
7
3
4
5
6
TOV  
TOVD  
TOC1  
TOC2  
Connect to a capacitor for setting the delay time of  
over-discharge protection  
Connect to a capacitor for setting the delay time of discharge  
overcurrent 1 protection  
Connect to a capacitor for setting the delay time of discharge  
overcurrent 2 protection  
8
7
8
NTC  
TRH  
VM  
Cell temperature detection  
9
Temperature protection reference  
10  
11  
12  
9
Voltage detection terminal 1 for detecting load or charger  
Charge power mosfet control terminal, Open-Drain output  
Discharge power mosfet control terminal, CMOS output  
10  
11  
CO  
DO  
Datasheet  
WI-D06-J-0036 Rev.A/1  
4 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
13  
14  
-
BALDN  
VIN  
Balance signal transfer terminal 2  
Charge and Discharge overcurrent Voltage detection  
terminal 2  
12  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
-
OCCT  
SET  
Discharge overcurrent release control terminal by load  
13  
14  
-
Select terminal for 3/4/5 cell application  
Ground pin of the IC, Cell1 negative input  
Cell1 external bleeding control  
Cell1 positive input, Cell2 negative input  
Cell2 external bleeding control  
Cell2 positive input, Cell3 negative input  
Cell3 external bleeding control  
Cell3 positive input, Cell4 negative input  
Cell4 external bleeding control  
Cell4 positive input, Cell5 negative input  
Cell5 external bleeding control  
Cell5 positive input  
GND  
BAL1  
VC1  
15  
-
BAL2  
VC2  
16  
-
BAL3  
VC3  
17  
-
BAL4  
VC4  
18  
-
BAL5  
VC5  
19  
20  
VCC  
Power supply,Cell5 positive input  
Table 2  
Absolute Maximum Ratings  
Item  
Symbol  
Description  
-
Ratings  
Unit  
V
Power supply voltage  
VCC  
GND-0.3 ~ GND+30  
Vcell5,Vcell4,Vcell3  
Vcell2,Vcell1  
Single cell input voltage  
VCELL  
GND-0.3 ~ GND+6  
V
VM input voltage  
DO output voltage  
CO output voltage  
Operating temperature  
Storage temperature  
VM  
VDO  
VCO  
TA  
VM  
DO  
CO  
-
GND-20 ~ GND+30  
GND-0.3 ~ VCC+0.3  
GND-20 ~ VCC+0.3  
-40 ~ 85  
V
V
V
TSTG  
-
-40 ~ 125  
Table 3  
Caution: The absolute maximum ratings are rated values exceeding which the product could suffer  
physical damage. These values must therefore not be exceeded in any conditions.  
Datasheet  
WI-D06-J-0036 Rev.A/1  
5 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
Electrical Characteristics  
TA=25unless otherwise specified)  
Test  
Item  
Symbol  
Test conditions*1  
Min.  
Typ.  
Max.  
Unit  
circuit  
Power supply voltage  
Operating consumption  
Sleeping consumption  
VCC  
ICC  
ISLP  
-
5
-
-
-
-
-
30  
25  
10  
V
1
V1=V2=V3=V4=V5=3.5V  
V1=V2=V3=V4=V5=2.0V  
μA  
μA  
Protection  
threshold  
V1=V2=V3=V4=3.5V  
VDET1  
VDET1  
VDET1  
VDET1  
1.0  
V
s
V5=3.54.4V  
-0.025  
+0.025  
Protection  
delay time  
V1=V2=V3=V4=3.5V  
TOV  
0.5  
1.5  
COV=0.1μF V5=3.5V4.4V  
Release  
Overcharge  
V1=V2=V3=V4=3.5V  
VREL1  
-0.05  
VREL1  
+0.05  
VREL1  
TREL1  
KU1  
VREL1  
V
threshold  
V5=4.4V3.5V  
Release  
V1=V2=V3=V4=3.5V  
10  
20  
30  
ms  
mV/℃  
V
delay time  
V5=4.4V3.5V  
Temperature  
factor(1)  
-0.6  
0
0.6  
Ta= -40to 85℃  
2
Protection  
threshold  
V1=V2=V3=V4=3.5V  
VDET2  
-0.08  
VDET2  
+0.08  
VDET2  
VDET2  
V5=3.5V2.0V  
V1=V2=V3=V4=3.5V  
COVD=0.1μF  
Protection  
TOVD  
0.5  
1.0  
1.5  
s
delay time  
Over-  
V5=3.5V2.0V  
discharge  
Release  
V1=V2=V3=V4=3.5V  
VREL2  
-0.10  
VREL2  
+0.10  
VREL2  
TREL2  
VOC1  
TOC1  
VREL2  
V
threshold  
V5=2.0V3.5V  
Release  
V1=V2=V3=V4=3.5V  
10  
20  
30  
ms  
V
delay time  
V5=2.0V3.5V  
Protection  
threshold  
V1=V2=V3=V4=V5=3.5V  
VOC1  
VOC1  
VOC1  
200  
200  
V6=0V0.12V  
*85%  
*115%  
Protection  
delay time  
V1=V2=V3=V4=V5=3.5V  
100  
100  
300  
300  
ms  
ms  
C
OC1=0.1μF V6=0V0.12V  
Discharge  
overcurrent  
1
Release  
V1=V2=V3=V4=V5=3.5V  
TROC1  
delay time  
V6=0V0.12V0V  
Resistance  
between VM  
and GND  
V1=V2=V3=V4=V5=3.5V  
RVMS  
100  
-0.1  
300  
500  
0.1  
kΩ  
3
V6=0V0.12V  
Temperature  
factor(2)  
KU2  
VOC2  
TOC2  
0
Ta= -40to 85℃  
mV/℃  
V
Protection  
threshold  
V1=V2=V3=V4=V5=3.5V  
VOC2  
VOC2  
VOC2  
20  
Discharge  
overcurrent  
2
V6=0V0.5V  
*80%  
*120%  
Protection  
delay time  
V1=V2=V3=V4=V5=3.5V  
10  
30  
ms  
C
OC2=0.1μF V6=0V0.5V  
Datasheet  
WI-D06-J-0036 Rev.A/1  
6 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
VSHORT  
*80%  
VSHORT  
Protection  
threshold  
V1=V2=V3=V4=V5=3.5V  
VSHORT  
VSHORT  
TSHORT  
VOVCC  
TOVCC  
V
μs  
V
*120%  
V6=0V1.2V  
Short circuit  
3
4
Protection  
delay time  
V1=V2=V3=V4=V5=3.5V  
100  
300  
VOVCC  
20  
600  
V6=0V1.2V0V  
Protection  
threshold  
V1=V2=V3=V4=V5=3.5V  
VOVCC  
-0.03  
VOVCC  
+0.03  
V6=0V-0.2V  
Charge  
overcurrent  
Protection  
delay time  
V1=V2=V3=V4=V5=3.5V  
10  
30  
ms  
V6=0V-0.2V  
External bleeding voltage  
for balance  
V1=V2=V3=V4=3.5V  
VBAL  
VBAL  
VBAL  
RCO  
VBAL  
V
5
6
V5=3.5V4.30V  
-0.05  
+0.05  
CO  
Normal time, Co ”H” (12V)  
3
3
5
5
8
8
kΩ  
Normal time, Do ”H” (12V)  
DO  
RDO  
kΩ  
7
Protecting time, Do ”L”  
On ”H”  
0.20  
1.4  
0.5  
1.4  
0.5  
1.4  
0.5  
1.4  
0.5  
1.4  
0.5  
0.35  
2.0  
0.8  
2.0  
0.8  
2.0  
0.8  
2.0  
0.8  
2.0  
0.8  
0.50  
2.6  
1.1  
2.6  
1.1  
2.6  
1.1  
2.6  
1.1  
2.6  
1.5  
BAL1  
RBAL1  
RBAL2  
RBAL3  
RBAL4  
RBAL5  
Off ”L”  
On ”H”  
BAL2  
BAL3  
BAL4  
BAL5  
Output  
Off ”L”  
resistances  
On ”H”  
kΩ  
8
Off ”L”  
On ”H”  
Off ”L”  
On ”H”  
Off ”L”  
Table 4  
*1: All the test condition parameters above are designed based on Li+ parameters, other grade parameters  
can adjust by their own actual voltages.  
Datasheet  
WI-D06-J-0036 Rev.A/1  
7 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
Function Description  
1. Overcharge  
During charging, VIN >VOVCC when IC doesn’t work in the state of charge overcurrent, If any of VC1,  
(VC2-VC1), (VC3-VC2), (VC4-VC3) and (VC5-VC4) is higher than VDET1 and lasts longer than TOV,  
BM3451 chip considers that the batteries work in the state of overcharge, the output voltage of CO will  
become to high resistance from high level, and then it will be pulled down to low level by external resistor.  
The charge MOSFET will be turned off and stop charging.  
The overcharge protection state will be released if any of the next conditions occurs:  
(1) All cells’ voltage is less than the Overcharge release threshold VREL1 and stays a period of time  
TREL1.  
(2) VM> 100mV (connecting to the load), Battery voltage is lower than VDET1 and stays a period of time  
TREL1.  
2. Over-discharge  
During discharging, VIN<VOVCC when IC doesn’t work in the state of discharge overcurrent. If any of  
VC1, (VC2-VC1), (VC3-VC2), (VC4-VC3) and (VC5-VC4) is less than VDET2 and lasts longer than TOVD  
.
BM3451 chip considers that the batteries work in the state of over-discharge and the output voltage of DO  
will turn to GND. The discharge MOSFET will be turned off and stop discharging, then the chip will enter  
sleeping mode.  
The over-discharge protection state will be released if any of the next conditions occurs:  
(1) VM =0mV, all cells’ voltage is higher than VREL2 and stays a period of time TREL2.  
(2) VM <-100mV (connecting to the charger), all cells’ voltage is higher than VDET2 and stays a period of  
time TREL2.  
3. Discharge Overcurrent  
During discharging, the current varies with the load. The voltage of VIN becomes higher with the current  
increasing. When the voltage of VIN is higher than VOC1 and stays longer than TOC1, we think the IC works in  
the state of discharge overcurrent 1; When the voltage of VIN is higher than VOC2 and stays longer than  
T
OC2, we consider the IC works in the state of discharge overcurrent 2; When the voltage of VIN is higher  
than VSHORT and stays longer than TSHORT, we think the IC works in the state of short circuit. When any of the  
three states occurs, the output voltage of DO changes to low level to turn off the discharge MOSFET and  
stop discharging. At the same time, RVMS which is the inner pulling down resistance of VM is connected,  
and we know that VM is pad which we can lock the output voltage of DO by when chip works in the state of  
over-current discharge. Usually VOC1 < VOC2 < VSHORT, TOC1 > TOC2 > TSHORT .When IC works in discharge  
overcurrent, the output voltage of DO is locked in low level. The discharge overcurrent protection state will  
be released when disconnect the load.  
4. Delay Time Setting  
Overcharge and Over-discharge delay time can be calculated as follow:  
Tov = 107 x COV; Tovd = 107 x COVD  
Discharge overcurrent 1 delay time can be calculated as follow: Toc1 = 2 x 106 x COC1  
Discharge overcurrent 2 delay time can be calculated as follow: Toc2 = 2 x 105 x COC2  
Datasheet  
WI-D06-J-0036 Rev.A/1  
8 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
5. Charge Overcurrent  
During charging, if the current is biggish with VIN<VOVCC and stays longer than TOVCC, the BM3451 chip  
considers that the batteries work in the state of charge overcurrent, the output voltage of CO will be pulled  
down to low level and the charge MOSFET will be turned off and stop charging. Charge overcurrent  
protection will be released when we disconnect the charger.  
6. Balance Function  
Cells’ balance function is used to balance the cells’ capacity in a pack. When all voltages of VC1,  
(VC2-VC1), (VC3-VC2), (VC4-VC3) and (VC5-VC4) are lower or higher than VBAL , all the external balance  
discharge circuits will not work. Otherwise the cell, whose voltage is higher than VBAL, will turn on the  
external discharge circuit and make its voltage lower than VBAL. During charging, If the highest voltage of  
five cells enters overcharge state and its cell balance circuit turns on, the charge control MOSFET turns off  
and the external discharge circuit works and makes the battery voltage fall down to VREL1 which is the  
overcharge release threshold, then turn on the charge control MOSFET for continuing charge .For a long  
enough time of charge and discharge cycles, the voltages of all cells will reach to more than VBAL, and avoid  
the capacity differences between batteries.  
7. Over-temperature  
Usually, batteries should be prevented charging and discharging from over-temperature. The BM3451  
chip has this over-temperature protection. The thermostat resistor connecting to NTC pad is used to induct  
the pack’s temperature, the resistor connecting TRH pad is used to set the reference of over-temperature  
protection. Assuming the resistance of NTC is RNTC when the pack gets to the temperature of charge  
over-temperature protection, and then we set the resistance RTRH of TRH be RTRH =2* RNTC. The  
over-discharge protection temperature is the temperature when the resistance of NTC become to 0.54*  
R
NTC. We can set the temperature of charge and discharge protection by changing the value of RTRH  
.
Take 103AT-4 for example, NTC resistance is 10Kin normal temperature (25), and the temperature  
of charge over-temperature protection is 55.When the temperature is 55and chip works in the state of  
charging, RNTC is 3.5K, so RTRH is equal to 7K. We also know the NTC resistance is 0.54*RNTC=1.89 KΩ  
when the pack arrive to the temperature of discharge over-temperature, the temperature is 75in this  
condition. The hysteresial temperature of charge over-temperature is 5and the hysteresial temperature  
of discharge over-temperature is 15. During charging, when the temperature is higher than 55, the  
output voltage of CO turns to high resistance, and will be pulled down to low level by external resistor,  
charge control MOSFET will be turned off and stops charging. And when the pack’s temperature falls down  
to 50, CO changes to high level and charge control MOSFET be turned on again. During discharging,  
when the temperature is higher than 75, the output voltage of DO becomes to low level, discharge  
control MOSFET will be turned off and stop discharging, at the same time charge control MOSFET will also  
be turned off and stops charging. When pack’s temperature falls down to 60, the output of CO and DO  
turn to high level, charge and discharge control MOSFET will both be turned on again.  
8. Breaking wire protection  
When one or multi wires of VC1, VC2, VC3, VC4 and VC5 are detected cut from the batteries by the  
BM3451 chip, the IC will consider it enters a state of breaking wire, then CO will be in high resistance and  
DO will turn to GND level, then the IC enters low consumption state.  
When the breaking wires are connected correctly again, the IC will exit breaking wire protection.  
Specially attention, regardless one chip application or multi-chip application, the GND pin must not be open  
from the battery, or the IC cannot operate normally, and it cannot protect correctly.  
Datasheet  
WI-D06-J-0036 Rev.A/1  
9 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
9. 3/4/5 cells application selection  
SET voltage  
Floating  
VCC  
Cells  
Short pins  
-
5
4
3
VC1=GND  
GND  
VC1=VC2=GND  
Chart 5  
10.Extended application  
When the BM3451 chip is used in extended condition, each IC transfers its information of overcharge,  
over-discharge, and balance to neighboring ICs. Take application of figure 6 for example, the information of  
DO and CO of IC1 will transfer to DOIN and COIN of IC2, then IC2 control external MOSFETs turn on or  
turn off by the voltage of DOIN and COIN. DOIN and COIN have precedence to control DO and CO over  
internal protection signals. Balance information transfer by BALUP and BALDN, IC follows the rule that  
inner balance has precedence over external balance.  
Take extended application of three ICs with A, B, C for example, the external rule of balance is as  
follows:  
Balance of A  
(ON or OFF)  
OFF  
Balance of B  
(ON or OFF)  
OFF  
Balance of C  
(ON or OFF)  
OFF  
A
B
C
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
OFF  
OFF  
ON  
OFF  
ON  
OFF  
OFF  
ON  
ON  
ON  
OFF  
OFF  
ON  
OFF  
ON  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
Signal descriptions: “1” shows that any of the batteries is equal to or above VBAL, “0” shows that at least  
one of the batteries is lower than VBAL.  
Datasheet  
WI-D06-J-0036 Rev.A/1  
10 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
Operation Timing Charts  
1. Overcharge/Over-discharge Protection  
VDET1  
VREL1  
VCELL  
VREL2  
VDET2  
VCC  
12V  
VCO  
GND  
VCHR-  
VCC  
12V  
VDO  
GND  
VCHR-  
VCC  
VM  
GND  
VCHR-  
Connecting to load  
Connecting to charger  
TDET1  
TDET2  
(1)  
(2)  
(1)  
(3)  
(1)  
Figure 4  
Assuming the charging current is constant, VCHR- is the voltage of the charger’s negative terminal:  
1Normal condition;  
2Overcharge protection state;  
3Over-discharge protection state.  
Datasheet  
WI-D06-J-0036 Rev.A/1  
11 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
2. Discharge Overcurrent / Short Circuit / Charge Overcurrent Protection  
VDET1  
VREL1  
VCELL  
VREL2  
VDET2  
VCC  
12V  
VCO  
GND  
VCHR-  
VCC  
12V  
VDO  
GND  
VCHR-  
VCC  
VM  
GND  
VCHR-  
VCC  
VSHORT  
VIN  
VOC2  
VOC1  
GND  
VOVCC  
VCHR-  
Connecting to load  
Connecting to charger  
TOC2  
(1)  
TSHORT  
TOVCC  
TOC1  
(1)  
(2)  
(3)  
(1)  
(4)  
(1)  
(5)  
(1)  
Figure 5  
Assuming the charging current is constant, VCHR- is the voltage of the charger’s negative terminal:  
1Normal condition;  
2Discharge overcurrent 1 protection state;  
3Discharge overcurrent 2 protection state;  
4Short circuit protection state;  
5Charge overcurrent protection state.  
Datasheet  
WI-D06-J-0036 Rev.A/1  
12 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
Application Circuits  
1. Single chip application  
Figure 6a-15-cell application (SET floating)  
---with balance function, charge and discharge circuits together  
Figure 6a-25-cell application (SET floating)  
---with balance function, charge and discharge circuits separated  
Datasheet  
WI-D06-J-0036 Rev.A/1  
13 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
Figure 6b4-cell application (SET be connected to VCC) ---with balance function  
Figure 6c3-cell application (SET be connected to GND)---with balance function  
Datasheet  
WI-D06-J-0036 Rev.A/1  
14 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
Figure 6d-15-cell application (SET floating)  
---without balance function, charge and discharge circuits together  
Figure 6d-25-cell application (SET floating)  
---without balance function, charge and discharge circuits separated  
Datasheet  
WI-D06-J-0036 Rev.A/1  
15 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
Figure 6e4-cell application (SET be connected to VCC) ---without balance function  
Figure 6f3-cell application (SET be connected to GND) ---without balance function  
Datasheet  
WI-D06-J-0036 Rev.A/1  
16 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
Constants for External Components:  
Component Symbol  
Typ.  
Range  
100 ~ 1000  
3~10  
Unit  
R1, R2, R3, R4, R5  
1000  
4.7  
1000  
1
RB1, RB2, RB3, RB4, RB5  
MΩ  
RVCC  
100 ~ 1000  
1 ~ 2  
R6, R7  
MΩ  
R8, R9, R10, R11, R12  
47  
10  
7
10 ~ 200  
-
RNTC  
kΩ  
kΩ  
kΩ  
MΩ  
kΩ  
mΩ  
μF  
RTRH  
RVM  
-
220  
10  
2
10-500  
5~15  
RCO, RS  
RDO  
1~10  
Rsense  
5
1 ~ 20  
10 ~ 100  
CVCC  
10  
1.0  
0.1  
C1, C2, C3, C4, C5  
0.1 ~ 10  
Maximum  
μF  
endurable  
COV, COVD, COC1, COC2  
-
μF  
voltage >50V  
Table 6  
Datasheet  
WI-D06-J-0036 Rev.A/1  
17 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
2. Two chips extended application  
P+  
RVCC2  
R10  
CVCC2  
C10  
R20  
R19  
R18  
R17  
R16  
RB10  
RB9  
RB8  
RB7  
RB6  
V10  
V9  
V8  
V7  
V6  
R23  
R9  
R8  
R7  
R6  
C9  
R24  
VCC  
VC5  
BALUP  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
C8  
DOIN  
COIN  
BAL5  
VC4  
COV2  
TOV  
COVD2  
TOVD  
BAL4  
C7  
TOC1  
23 VC3  
BAL3  
TOC2  
22  
21  
20  
19  
18  
17  
16  
15  
BM3451  
NTC  
TRH  
VM  
VC2  
BAL2  
9
C6  
VC1  
10  
11  
12  
13  
14  
CO  
BAL1  
DO  
GND  
BALDN  
VIN  
SET  
Rp  
OCCT  
P1  
RVCC1  
R5  
CVCC1  
R25  
R21  
C5  
R15  
R14  
R13  
R12  
R11  
RB5  
R22  
V5  
V4  
V3  
V2  
V1  
R4  
R3  
R2  
R1  
C4  
RB4  
RB3  
RB2  
RB1  
CDOIN  
VCC  
BALUP  
DOIN  
COIN  
TOV  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
CCOIN  
C3  
VC5  
BAL5  
COV1  
COVD1  
COC1  
COC2  
VC4  
TOVD  
TOC1  
TOC2  
NTC  
BAL4  
C2  
VC3  
D2  
BAL3  
BM3451  
RNTC  
VC2  
RTRH  
BAL2  
TRH  
M1  
RVM  
C1  
VM  
VC1  
CO  
BAL1  
DO  
GND  
D1  
BALDN  
VIN  
SET  
RCO  
OCCT  
RDO  
Rsense  
P–  
RS  
Figure 7 10-cell application——with balance function  
Datasheet  
WI-D06-J-0036 Rev.A/1  
18 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
P+  
RVCC2  
CVCC2  
R23  
R10  
C10  
V10  
R24  
R9  
V9  
C9  
R8  
C8  
V8  
DOIN  
VCC  
VC5  
VC4  
VC3  
VC2  
VC1  
GND  
SET  
VIN  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
COIN  
COV2  
R7  
TOV  
V7  
C7  
COVD2  
TOVD  
TOC1  
R6  
BM3451  
TOC2  
NTC  
TRH  
VM  
V6  
C6  
CO  
DO  
10  
Rp  
P1  
CVCC1  
RVCC1  
R5  
R22  
R21  
V5  
C5  
R25  
R4  
V4  
C4  
CDOIN  
R3  
CCOIN  
V3  
C3  
DOIN  
COIN  
TOV  
VCC  
VC5  
VC4  
VC3  
VC2  
VC1  
GND  
SET  
VIN  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
COV1  
COVD1  
COC1  
COC2  
R2  
R1  
V2  
V1  
C2  
D2  
TOVD  
TOC1  
TOC2  
NTC  
TRH  
VM  
BM3451  
C1  
RNTC  
RTRH  
RVM  
M1  
CO  
DO  
10  
D1  
RCO  
RDO  
Rsense  
P–  
RS  
Figure 8 10-cell application——without balance function  
CautionThe maximum endurable voltage of the MOS M1, the diode D1, D2 and the transistor P1 must  
be more than the total voltage of the whole battery packages, and keep enough voltage room.  
Above of 4-cell, 3-cell, and 10cell applications are charge and discharge circuits together,  
charge and discharge separated circuits can refer to 5-cell application.  
Datasheet  
WI-D06-J-0036 Rev.A/1  
19 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
Constants for External Components:  
Component Symbol  
R1, R2, R3,R4, R5,  
R6,R7, R8, R9, R10  
RB1, RB2, RB3, RB4, RB5,  
RB6, RB7, RB8, RB9, RB10  
RVCC1, RVCC2  
Typ.  
Range  
Unit  
1000  
100 ~ 1000  
4.7  
1000  
47  
3 ~ 10  
100 ~ 1000  
10 ~ 200  
MΩ  
R11, R12,R13, R14, R15,  
R16, R17, R18, R19, R20  
R21, R22, R25  
R23, R24, RP  
10  
1
8 ~ 15  
1 ~ 2  
-
MΩ  
MΩ  
kΩ  
RNTC1, RNTC2  
10  
7
RTRH1,RTRH2  
-
kΩ  
RVM  
200  
10  
2
10-500  
5~15  
0~10  
0.1 ~ 20  
kΩ  
RCO, RS  
MΩ  
kΩ  
RDO  
Rsense  
5
mΩ  
μF  
CVCC1, CVCC2  
10  
10 ~ 100  
C1, C2, C3, C4, C5,  
C6, C7, C8, C9, C10  
0.1  
0 ~ 0.33  
μF  
Maximum  
endurable  
COV1, COVD1, COV2, COVD2  
OC1, COC2  
CDOIN, CCOIN  
,
voltage >50V  
0.1  
33  
-
μF  
C
33~100  
nF  
Table 7  
Datasheet  
WI-D06-J-0036 Rev.A/1  
20 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
Test Circuits  
The next tests take 5-cell application for example, so that SET pin is floating. If 4-cell application is  
selected, we set SET pin to VCC level and force GND voltage level to VC1; else if 3-cell application is  
selected, we set SET pin to GND level and force GND voltage level to VC1 and VC2. The test methods of  
4-cell and 3-cell application are as same as 5-cell application.  
1. Normal and Sleeping Current Consumption  
Test circuit 1  
(1) Set V1=V2=V3=V4=V5=3.50V, the current flowing to GND is the normal operating current  
consumption.  
(2) On the condition of (1), then set V1=V2=V3=V4=V5=2.0V, the current flowing to GND is the  
sleeping current consumption.  
2. Overcharge Protection Test  
Test circuit 2  
2.1 Overcharge threshold (VDET1) and Overcharge release threshold (VREL1  
)
Set V1=V2=V3=V4=V5=3.50V, make sure the output voltages of DO and CO pins are “H” level.  
Increase V5 gradually, monitor CO voltage and keep the condition not shorter than Tdet1, the value  
of V5 when CO turns from “H” to “L” is the overcharge threshold voltage. Decrease V5, the V5  
when CO returns to “H” level again is the overcharge release threshold.  
2.2 Overcharge protection delay time and Overcharge release delay time  
(1) Set V1=V2=V3=V4=V5=3.50V, make sure the output voltages of DO and CO pins are “H” level.  
Increase V5 to 4.4V from 3.5V instantaneously, monitor CO voltage and keep a period of time. The  
time interval when CO turns from “H” to “L” is the overcharge protection delay time.  
(2) Set V1=V2=V3=V4=3.50V, V5=4.4V, make sure the output voltage of DO is “H” level, CO is “L”  
level. Decrease V5 to 3.5V from 4.4V instantaneously, monitor CO voltage and keep a period of  
time. The time interval when the output voltage of CO turns from “L” to “H” is the overcharge  
release delay time.  
3. Over-discharge Protection Test  
Test circuit 2  
3.1 Over-discharge threshold (VDET2) and Over-discharge release threshold (VREL2  
)
Set V1=V2=V3=V4=V5=3.50V, make sure the output voltages of DO and CO pins are “H” level.  
Decrease V5 gradually, monitor DO voltage and keep the condition not shorter than Tdet2, the  
value of V5 when the output voltage of DO turns from “H” to “L” is the over-discharge threshold  
voltage. Increase V5, the value of V5 when DO returns to “H” level again is the over-discharge  
release threshold.  
3.2 Over-discharge protection delay time and Over-discharge release delay time  
(1) Set V1=V2=V3=V4=V5=3.50V, make sure the output voltages of DO and CO pins are “H” level.  
Decrease V5 to 2.0V instantaneously, monitor DO voltage and keep a period of time. The time  
interval when DO turns from “H” to “L” is the over-discharge protection delay time.  
(2) Set V1=V2=V3=V4=3.50V, V5=2.0V, make sure CO is “H” level, DO is “L” level. Increase V5 to  
3.5V instantaneously, monitor DO voltage and keep a period of time. The time interval when the  
output voltage of DO turns from “L” to “H” is the overcharge release delay time.  
Datasheet  
WI-D06-J-0036 Rev.A/1  
21 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
4. Discharge overcurrent and short circuit Protection Test  
Test circuit 3  
4.1 Discharge overcurrent1 and 2 threshold (VDET3, VDET4) and short circuit threshold (VSHORT  
)
Set V1=V2=V3=V4=V5=3.5V, V6=0V, make sure the output voltages of DO and CO pins are “H”  
level. Increase V6 gradually, monitor Do voltage and keep the condition for a period of time, the  
value of V6 when the output voltage of Do turns from “H” to “L”, is the discharge overcurrent 1  
threshold (VDET3). Decrease V6, the discharge overcurrent 1 protection will be released. VDET4 and  
V
SHORT can also be tested by their protection time differences, but V6 has a larger change.  
4.2 Discharge overcurrent protection delay time and release delay time  
(1) Set V1=V2=V3=V4=V5=3.50V, V6=0V, make sure the output voltages of DO and CO pins are “H”.  
Increase V6 to 0.2V instantaneously, monitor DO voltage and keep a period of time. The time  
interval when the output voltage of DO turns from “H” to “L” is the discharge overcurrent 1  
protection delay time.  
(2) Set V1=V2=V3=V4=V5=3.50V, V6=0V, make sure the output voltages of DO and CO pins are “H”.  
Increase V6 instantaneously with its value be larger, monitor DO voltage and keep a period of time.  
The time interval when the output voltage of DO turns from “H” to “L” is the discharge overcurrent  
2 protection delay time, make sure its value is less than the discharge overcurrent 1 protection  
delay time, then the value of V6 at this time is the discharge overcurrent 2 threshold.  
(3) Set V1=V2=V3=V4=V5=3.50V, V6=0V, make sure the voltages of DO and CO pins are “H”.  
Increase V6 instantaneously with its value lager and larger, monitor DO voltage and keep a period  
of time. The time interval when DO turns from “H” to “L” is the short circuit protection delay time,  
make sure its value is less than the discharge overcurrent 2 protection delay time, and the value of  
V6 at this time is the short circuit threshold.  
(4) Set V1=V2=V3=V4=V5=3.50V, V6=0.2V, make sure the output voltage of DO pin and CO pin is “L”  
and “H”. Decrease V6 to 0V instantaneously, monitor DO voltage and last a period of time. The  
time interval when DO turns from “L” to “H” is the discharge overcurrent 1 release delay time, we  
can test the release delay time of discharge overcurrent 2 and short circuit by using the same  
method.  
5. Charge overcurrent Protection Test  
Test circuit 4  
5.1 Charge overcurrent threshold  
Set V1=V2=V3=V4=V5=3.50V, V7=0V, make sure the output voltages of DO and CO pins are “H”.  
Increase V6 gradually, monitor CO voltage and keep a period of time. The value of V7 when the  
output voltage of CO turns from “H” to “L” is the charge overcurrent threshold.  
5.2 Charge overcurrent protection delay time  
Set V1=V2=V3=V4=V5=3.50V, V7=0V, make sure the output voltages of DO and CO pins are “H”.  
Increase V7 to 0.3V instantaneously, monitor the CO voltage and keep a period of time. The time  
interval when the output voltage of CO pin turns from “H” to “L” is the charge overcurrent  
protection delay time.  
6. Cell Balance threshold Test  
Test circuit 5  
Set V1=V2=V3=V4=V5=3.50V, make sure the output voltage of BAL1 pin is 0V. Increase V1  
Datasheet  
WI-D06-J-0036 Rev.A/1  
22 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
gradually and monitor the voltage of BAL1. The value of V1 when the output voltage of BAL1 pin  
turns from “0” to “H” (the voltage of V1) is the cell balance threshold. The test method of other cells  
balance is as same as the method of V1.  
7. Output/Input Resistance Test  
7.1 The output resistances of CO and DO  
(1) The output resistance when the output voltages of CO and DO pins are both “H”.  
Test circuit 6  
Set V1=V2=V3=V4=V5=3.50V, V6=12.0V, turn off the switch K and make sure the output voltage  
of CO pin is “H”. Measure the voltage VA of CO pin; turn on the switch K, decrease the voltage V6  
gradually from 12V, monitor the value of IA, and note down the output voltage VB of CO pin when  
the value of IA is 50uA, then the output resistance of CO is calculated as follows: RCOH = (VA -  
VB)/50 (M)  
We can also test the output resistance RDOH of DO pin with using the same method.  
(2) The output resistance when the output voltage of DO pin is “L”.  
Test circuit 7  
Set V1=V2=V3=V4=V5=2.00V, V8=0.00V, turn off the switch K and make sure the output voltage  
of DO pin is “L”. Turn on the switch K, increase the voltage V8 gradually from 0V, monitor the value  
of IA, note down the output voltage VDO of DO pin when the value of IA is 50uA, then the output  
resistance of DO is calculated as follows: RDOL= VDO/50 (M)  
7.2 The output resistances of balance pins BAL1, BAL2, BAL3, BAL4, BAL5  
Test circuit 8  
(1) Set VBAL < V1 < VDET1, V2=V3=V4=V5=3.5V, turn on the switch K1 and turn off K2, K3, K4,  
K5,decrease V9 from VBAL ,note down the value V_9, which is the value of V9 when the current is  
50uA, then the output resistance when the cell balance turn on is calculated as follows:  
RBAL1H=(V1-V_9)/50 (M);  
(2) Set V1=V2=V3=V4=V5=3.50V, turn on the switch K1 and turn off K2, K3, K4, K5, increase V9 from  
0V ,note down the value V_9, which is the value of V9 when the current is -50uA, then the output  
resistance when the cell balance turn off is calculated as follows: RBAL1L=V_9/50 (M);  
(3) Set VBAL < V2 < VDET1, V1=V3=V4=V5=3.5V, turn on the switch K2 and turn off K1, K3, K4,  
K5,decrease V9 from (V1+VBAL) ,note down the value V_9, which is the value of V9 when the  
current is 50uA, then the output resistance when the cell balance turn on is calculated as follows:  
RBAL2H=(V1+V2-V_9)/50 (M);  
(4) Set V1=V2=V3=V4=V5=3.50V, turn on the switch K2 and turn off K1, K3, K4, K5, increase V9 from  
V1 ,note down the value V_9, which is the value of V9 when the current is -50uA, then the output  
resistance when the cell balance turn off is calculated as follows: RBAL1L=(V_9-V1)/50 (M);  
(5) Set VBAL < V3 < VDET1, V1=V2=V4=V5=3.5V, turn on the switch K3 and turn off K1, K2, K4,  
K5,decrease V9 from (V1+V2+VBAL) ,note down the value V_9, which is the value of V9 when the  
current is 50uA, then the output resistance when the cell balance turn on is calculated as follows:  
RBAL2H=(V1+V2+V3-V_9)/50 (M);  
(6) Set V1=V2=V3=V4=V5=3.50V, turn on the switch K3 and turn off K1, K2, K4, K5, increase V9 from  
(V1 +V2),note down the value V_9, which is the value of V9 when the current is -50uA, then the  
output resistance when the cell balance turn off is calculated as follows: RBAL1L=(V_9-V1-V2)/50  
(M);  
Datasheet  
WI-D06-J-0036 Rev.A/1  
23 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
(7) Set VBAL < V4 < VDET1, V1=V2=V4=V5=3.5V, turn on the switch K4 and turn off K1, K2, K3,  
K5,decrease V9 from (V1+V2+V3+VBAL) ,note down the value V_9, which is the value of V9 when  
the current is 50uA, then the output resistance when the cell balance turn on is calculated as  
follows: RBAL2H=(V1+V2+V3+V4-V_9)/50 (M);  
(8) Set V1=V2=V3=V4=V5=3.50V, turn on the switch K4 and turn off K1, K2, K3, K5, increase V9 from  
(V1 +V2+V3),note down the value V_9, which is the value of V9 when the current is -50uA, then  
the output resistance when the cell balance turn off is calculated as follows:  
RBAL1L=(V_9-V1-V2-V3)/50 (M);  
(9) Set VBAL < V5 < VDET1, V1=V2=V4=V5=3.5V, turn on the switch K5 and turn off K1, K2, K3,  
K4,decrease V9 from (V1+V2+V3++V4VBAL) ,note down the value V_9, which is the value of V9  
when the current is 50uA, then the output resistance when the cell balance turn on is calculated as  
follows: RBAL2H=(V1+V2+V3+V4+V5-V_9)/50 (M);  
(10) Set V1=V2=V3=V4=V5=3.50V, turn on the switch K5 and turn off K1, K2, K3, K4, increase V9  
from (V1 +V2+V3+V4),note down the value V_9, which is the value of V9 when the current is  
-50uA, then the output resistance when the cell balance turn off is calculated as follows:  
RBAL1L=(V_9-V1-V2-V3-V4)/50 (M);  
1MΩ  
1MΩ  
VCC  
VC5  
BALUP  
DOIN  
COIN  
TOV  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
BAL5  
VC4  
V5  
V4  
V3  
V2  
V1  
TOVD  
TOC1  
TOC2  
NTC  
BAL4  
VC3  
BAL3  
BM3451  
VC2  
BAL2  
TRH  
VM  
VC1  
BAL1  
GND  
SET  
CO  
-
DO  
A
BALDN  
VIN  
OCCT  
Test Circuit 1  
Test Circuit 2  
1M  
1MΩ  
VCC  
BALUP  
DOIN  
COIN  
TOV  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VC5  
BAL5  
VC4  
V5  
V4  
V3  
V2  
V1  
0.1μF  
TOVD  
TOC1  
TOC2  
NTC  
BAL4  
0.1μF  
VC3  
BAL3  
BM3451  
VC2  
BAL2  
TRH  
VM  
VC1  
BAL1  
GND  
SET  
CO  
DO  
BALDN  
VIN  
10MΩ  
OCCT  
V7  
Test Circuit 3  
Test Circuit 4  
Datasheet  
WI-D06-J-0036 Rev.A/1  
24 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
Test Circuit 5  
Test Circuit 6  
Test Circuit 7  
Test Circuit 8  
Datasheet  
WI-D06-J-0036 Rev.A/1  
25 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
Package Information  
TSSOP28  
Datasheet  
WI-D06-J-0036 Rev.A/1  
26 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
TSSOP20  
Datasheet  
WI-D06-J-0036 Rev.A/1  
27 /28  
BYD Microelectronics Co., Ltd.  
BM3451 Series  
Restrictions on Product Use  
„
„
The information contained herein is subject to change without notice.  
BYD Microelectronics Co., Ltd. (short for BME) exerts the greatest possible effort to ensure high  
quality and reliability. Nevertheless, semiconductor devices in general can malfunction or fail due to  
their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the  
buyer, when utilizing BME products, to comply with the standards of safety in making a safe design  
for the entire system, including redundancy, fire-prevention measures, and malfunction prevention,  
to prevent any accidents, fires, or community damage that may ensue. In developing your designs,  
please ensure that BME products are used within specified operating ranges as set forth in the most  
recent BME products specifications.  
„
The BME products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics,  
domestic appliances, etc.). These BME products are neither intended nor warranted for usage in  
equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of  
which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage  
include atomic energy control instruments, airplane or spaceship instruments, transportation  
instruments, traffic signal instruments, combustion control instruments, medical instruments, all  
types of safety devices, etc.. Unintended Usage of BME products listed in this document shall be  
made at the customer’s own risk.  
„
BME is not responsible for any problems caused by circuits or diagrams described herein whose  
related industrial properties, patents, or other rights belong to third parties. The application circuit  
examples explain typical applications of the products, and do not guarantee the success of any  
specific mass-production design.  
Datasheet  
WI-D06-J-0036 Rev.A/1  
28 /28  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY