CH7005C-V [ETC]

Digital PC to TV Encoder with Macrovision; 数码电脑使用Macrovision电视编码器
CH7005C-V
型号: CH7005C-V
厂家: ETC    ETC
描述:

Digital PC to TV Encoder with Macrovision
数码电脑使用Macrovision电视编码器

电视 电脑 编码器 PC
文件: 总49页 (文件大小:338K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CH7005C  
CHRONTEL  
Digital PC to TV Encoder with MacrovisionTM  
Features  
General Description  
• Supports MacrovisionTM 7.X anti-copy protection  
• Function compatible with CH7004  
Chrontel’s CH7005 digital PC to TV encoder is a stand-  
alone integrated circuit which provides a PC 99 compliant  
solution for TV output. Suggested application use with the  
Intel I740.* It provides a universal digital input port to  
accept a pixel data stream from a compatible VGA  
controller (or equivalent) and converts this directly into  
NTSC or PAL TV format.  
• Universal digital interface accepts YCrCb (CCIR601  
or 656) or RGB (15,16 or 24-bit) video data in both  
non-interlaced and interlaced formats  
• TrueScale TM rendering engine supports undescam  
operations for various graphic resolutions† ¥  
• Enhanced text sharpness and adaptive flicker removal  
with up to 5-lines of filtering†  
• Enhanced dot crawl control and area reduction  
This circuit integrates a digital NTSC/PAL encoder with  
9-bit DAC interface, and new adaptive flicker filter, and  
high accuracy low-jitter phase locked loop to create  
outstanding quality video. Through its TrueScaleTM  
scaling and deflickering engine, the CH7005 supports full  
vertical and horizontal underscan capability and operates  
in 5 different resolutions including 640x480 and 800x600.  
2
• Fully programmable through I C port  
• Supports NTSC, NTSC-EIA (Japan), and PAL (B, D,  
G, H, I, M and N) TV formats  
A new universal digital interface along with full  
programmability make the CH7005 ideal for system-level  
PC solutions. All features are software programmable  
through a standard I2C port, to enable a complete PC  
solution using a TV as the primary display.  
• Provides Composite, S-Video and SCART outputs  
• Auto-detection of TV presence  
• Supports VBI pass-through  
• Programmable power management  
• 9-bit video DAC outputs  
• Complete Windows and DOS driver software  
• Offered in 44-pin PLCC, 44-pin TQFP  
Patent number 5,781,241  
¥ Patent number 5,914,753  
LINE  
YUV-RGB CONVERTER  
MEMORY  
RGB-YUV  
CONVERTER  
TRUE SCALE  
DIGITAL  
Y/R  
SCALING &  
DEFLICKERING  
ENGINE  
NTSC/PAL  
ENCODER  
& FILTERS  
D[15:0]  
TRIPLE  
DAC  
INPUT  
C/G  
INTERFACE  
PIXEL DATA  
CVBS/B  
RSET  
SYSTEM CLOCK  
2
TIMING & SYNC  
GENERATOR  
I C REGISTER &  
PLL  
CONTROL BLOCK  
SC  
SD  
RESET*  
XCLK  
DS/BCO  
P-OUT  
H
XI  
V
XO/FIN CSYNC  
Figure 1: Functional Block Diagram  
201-0000-025 Rev 2.1, 8/2/99  
*Intel I740 is a Trademark of Intel Corp  
1
CHRONTEL  
CH7005C  
D[3]  
D[4]  
7
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
XO/FIN  
XI  
8
D[5]  
9
AVDD  
DVDD  
RESET*  
DGND  
SC  
D[6]  
10  
11  
12  
13  
14  
15  
16  
17  
DVDD  
D[7]  
CHRONTEL  
CH7005  
D[8]  
DGND]  
D[9]  
SD  
VDD  
D[10]  
D[11]  
RSET  
GND  
Figure 2: 44-Pin PLCC  
2
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
1
D[3]  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
XO/FIN  
2
D[4]  
D[5]  
XI  
3
AVDD  
4
D[6]  
DVDD  
CHRONTEL  
CH7005  
5
DVDD  
D[7]  
RESET*  
6
DGND  
7
D[8]  
SC  
8
DGND]  
D[9]  
SD  
9
VDD  
10  
11  
D[10]  
D[11]  
RSET  
GND  
Figure 3: 44-Pin TQFP  
201-0000-025 Rev 2.1, 8/2/99  
3
CHRONTEL  
CH7005C  
Table 1. Pin Descriptions  
44-Pin  
PLCC  
44-Pin  
TQFP  
Type  
Symbol  
Description  
Digital Pixel Inputs  
21-15  
13-12,  
10-4  
15,14,  
13,12,  
11,10,  
9,7,6,  
4,3,  
2,1,  
44,43,  
42  
In  
D15-D0  
These pins accept digital pixel data streams with either 8, 12, or 16-bit  
multiplexed or 16-bit non-multiplexed formats, determined by the input  
mode setting (see Registers and Programming section). Inputs D0 - D7  
are used when operating in 8-bit multiplexed mode. Inputs D0 - D11  
are used when operating in 12-bit mode. Inputs D0 - D15 are used  
when operating in 16-bit mode. The data structure and timing  
sequence for each mode is described in the section on Digital Input  
Port.  
Pixel Clock Output  
43  
37  
Out  
P-OUT  
The CH7005, operating in master mode, provides a pixel data clocking  
signal to the VGA controller. This clock will only be provided in master  
clock modes and will be tri-stated otherwise. This pin provides the pixel  
clock output signal (adjustable as 1X,2X or 3x) to the VGA controller  
(see the section on Digital Video Interface, Registers and Programming  
for more details). The capacitive loading on this pin should be kept to a  
minimum.  
Pixel Clock Input  
1
39  
In  
XCLK  
To operate in a pure master mode, the P-OUT signal should be  
connected to the XCLK input pin. To operate in a pseudo-master mode,  
the P-OUT clock is used as a reference frequency, and a signal locked  
to this output (at 1X, 1/2X, or 1/3X the P-OUT frequency) is input to the  
XCLK pin. To operate in slave mode, the CH7005 accepts an external  
pixel clock input at this pin. The capacitive loading on this pin should be  
kept to a minimum.  
Vertical Sync Input/Output  
3
2
41  
40  
35  
In/Out  
In/Out  
In/Out  
V
H
This pin accepts the vertical sync signal from the VGA controller, or  
outputs a vertical sync to the VGA controller. The capacitive loading on  
this pin should kept to a minimum.  
Horizontal Sync Input/Output  
This pin accepts the horizontal sync from the VGA controller, or outputs  
a horizontal sync to the VGA controller. The capacitive loading on this  
pin should be kept to a minimum.  
Data/Start (input) / Buffered Clock (output)  
41  
DS/BCO  
When configured as an input, the rising edge of this signal identifies the  
first active pixel of data for each active line.  
When configured as an output this pin provides a buffered clock output.  
The output clock can be selected using the BCO register (17h) (see  
Registers and Programming).  
Crystal Input  
38  
39  
32  
33  
In  
In  
XI  
A parallel resonance 14.31818 MHz (± 50 ppm) crystal should be  
attached between XI and XO/FIN. However, if an external CMOS clock  
is attached to XO/FIN, XI should be connected to ground.  
Crystal Output or External Fref  
XO/FIN  
A 14.31818 MHz (± 50 ppm) crystal may be attached between XO/FIN  
and XI. An external CMOS compatible clock can be connected to  
XO/FIN as an alternative.  
4
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
Table 1. Pin Descriptions  
44-Pin  
PLCC  
44-Pin  
TQFP  
Type  
Symbol  
Description  
Reference Resistor  
30  
28  
24  
22  
In  
RSET  
A 360 W resistor with short and wide traces should be attached  
between RSET and ground. No other connections should be made to  
this pin.  
Luminance Output  
Out  
Out  
Out  
Y/R  
C/G  
A 75 W termination resistor with short traces should be attached  
between Y and ground for optimum performance. In normal operating  
modes other than SCART and RGB bypass, this pin outputs the  
composite video signal. In SCART and RGB Bypass modes, this pin  
outputs the red signal.  
Chrominance Output  
27  
26  
21  
20  
A 75 W termination resistor with short traces should be attached  
between C and ground for optimum performance. In normal operating  
modes other than SCART and RGB bypass, this pin outputs the  
composite video signal. In SCART and RGB Bypass modes, this pin  
outputs the green signal.  
Composite Video Output  
CVBS/B  
A 75 W termination resistor with short traces should be attached  
between CVBS and ground for optimum performance. In normal  
operating modes other than SCART and RGB bypass, this pin outputs  
the composite video signal. In SCART and RGB Bypass modes, this pin  
outputs the blue signal.  
Composite Sync Output  
23  
32  
33  
35  
40  
17  
26  
27  
29  
34  
Out  
In/Out  
In  
CSYNC  
SD  
A 75 W termination resistor with short traces should be attached  
between CSYNC and ground for optimum performance. In SCART  
mode, this pin outputs the composite sync signal.  
Serial Data (External pull-up required)  
2
This pin functions as the serial data pin of the I C interface port (see the  
2
I C Port Operation section for details). This pin uses the DVDD supply  
and is not 5V tolerant.  
Serial Clock (Internal pull-up)  
SC  
2
This pin functions as the serial clock pin of the I C interface port (see  
2
the I C Port Operation section for details). This pin uses the DVDD  
supply and is not 5V tolerant.  
Reset Input  
In  
Reset*  
AGND  
When this pin is low, the CH7005 is held in the power-on reset  
condition. When this pin is high, the device operates normally and  
reset is controlled through the I C register.  
2
Analog ground  
Power  
This pin provides the ground reference for the analog section of the  
CH7005, and MUST be connected to the system ground, to prevent  
latchup. Refer to the Application Information section for information on  
proper supply decoupling.  
Analog Supply Voltage  
37  
31  
31  
25  
Power  
Power  
AVDD  
VDD  
This pins supplies the 5V power to the analog section of the CH7005.  
DAC Power Supply  
This pins supplies the 5V power to CH7005’s internal DAC’s.  
201-0000-025 Rev 2.1, 8/2/99  
5
CHRONTEL  
CH7005C  
Table 1. Pin Descriptions  
44-Pin  
PLCC  
44-Pin  
TQFP  
Type  
Symbol  
Description  
DAC Ground  
29, 25  
19,23  
Power  
GND  
These pins provide the ground reference for CH7005’s internal DACs.  
For information on proper supply decoupling, please refer to the  
Application Information section.  
Digital Supply Voltage  
44, 36,  
22, 11  
5,16,  
30,38  
Power  
Power  
DVDD  
DGND  
These pins supply the 3.3V power to the digital section of CH7005.  
Digital Ground  
42, 34,  
24, 14  
8,18,  
28,36  
These pins provide the ground reference for the digital section of  
CH7005, and MUST be connected to the system ground to prevent  
latchup.  
R (Red) Component Output  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Out  
Out  
Out  
R
G
B
This pin provides the analog Red component of the digital RGB input in  
the RGB Pass-Through mode.  
G (Green) Component Output  
This pin provides the analog Green component of the digital RGB input  
in the RGB Pass-Through mode.  
B (Blue) Component Output  
This pin provides the analog Blue component of the digital RGB input in  
the RGB Pass-Through mode.  
Digital Video Interface  
The CH7005 digital video interface provides a flexible digital interface between a computer graphics controller and  
the TV encoder IC, forming the ideal quality/cost configuration for performing the TV-output function. This digital  
interface consists of up to 16 data signals and 4 control signals, all of which are subject to programmable control  
through the CH7005 register set. This interface can be configured as 8, 12 or 16-bit inputs operating in either  
multiplexed mode or 16-bit input operation in demultiplexed mode. It will also accept either YCrCb or RGB (15, 16  
or 24-bit) data formats and will accept both non-interlaced and interlaced data formats. A summary of the input data  
format modes is as follows:  
Table 2. Input Data Formats  
Bus  
Transfer Mode  
Color Space and Depth  
Format Reference  
Width  
16-bit  
15-bit  
16-bit  
8-bit  
Non-multiplexed  
Non-multiplexed  
Non-multiplexed  
2X-multiplexed  
2X-multiplexed  
3X-multiplexed  
2X-multiplexed  
2X-multiplexed  
2X-multiplexed  
2X-multiplexed  
RGB 16-bit  
RGB 15-bit  
YCrCb (24-bit)  
RGB 15-bit  
RGB 16-bit  
RGB 24-bit  
YCrCb (24-bit)  
RGB 24  
5-6-5 each word  
5-5-5 each word  
CbY0,CrY1...(CCIR656 style)  
5-5-5 over two bytes  
8-bit  
5-6-5 over two bytes  
8-bit  
8-8-8 over three bytes  
8-bit  
Cb,Y0,Cr,Y1,(CCIR656 style)  
8-8-8 over two words - ‘C’ version  
8-8-8 over two words - ‘I’ version  
8-8,8X over two words  
12-bit  
12-bit  
16-bit  
RGB 24  
RGB 24 (32)  
6
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
The clock and timing signals used to latch and process the incoming pixel data is dependent upon the clock mode.  
The CH7005 can operate in either master (the CH7004 generates a pixel frequency which is either returned as a  
phase-aligned pixel clock or used directly to latch data), or slave mode (the graphics chip generates the pixel clock).  
The pixel clock frequency will change depending upon the active image size (e.g., 640x480 or 800x600), the desired  
output format (NTSC or PAL), and the amount of scaling desired. The pixel clock may be requested to be 1X, 2X,  
or 3X the pixel data rate (subject to a 100MHz frequency limitation). In the case of a 1X pixel clock the CH7005  
will automatically use both clock edges, if a multiplexed data format is selected.  
Sync Signals: Horizontal and vertical sync signals will normally be supplied by the VGA controller, but may be  
selected to be generated by the CH7005. In the case of CCIR656 style input (IDF = 1 or 9), embedded sync may  
also be used. (In each case, the period of the horizontal sync should be equal to the duration of the pixel clock, time  
the first value of the (Total Pixels/line x Total Lines/Frame) column of Table 16 on page 31 (Display Mode  
Register 00H description). The leading edge of the horizontal sync is used to determine the start of each line. The  
Vertical sync signal must be able to be set to the second value in the (Total Pixels/Line x Total Lines/Frame) column  
of Table 16 on page 31.)  
Master Clock Mode: The CH7005 generates a clock signal (output at the P-OUT pin) which will be used by the  
VGA controller as a frequency reference. The VGA controller will then generate a clock signal which will be input  
via the XCLK input. This incoming signal will be used to latch (and de-multiplex, if required) incoming data. The  
XCLK input clock rate must match the input data rate, and the P-OUT clock can be requested to be 1X, 2X or 3X  
the pixel data rate. As an alternative, the P-OUT clock signal can also be used as the input clock signal (connected  
directly to the XCLK input) to latch the incoming data. If this mode is used, the incoming data must meet setup and  
hold times with respect to the XCLK input (with the only internal adjustment being XCLK polarity).  
Slave Clock Mode: The VGA controller will generate a clock which will be input to the XCLK pin (no clock  
signal will be output on the P-OUT pin). This signal must match the input data rate, must occur at 1X, 2X or 3X the  
pixel data rate, and will be used to latch (and de-multiplex if required) incoming data. Also, the graphics IC  
transmits back to the TV encoder the horizontal and vertical timing signals, and pixel data, each of which must meet  
the specified setup and hold times with respect to the pixel clock.  
Pixel Data: Active pixel data will be expected after a programmable number pixels times the multiplex rate after  
the leading edge of Horizontal Sync. In other words, specifying the horizontal back porch value (as a pixel count),  
plus horizontal sync width, will determine when the chip will begin to sample pixels.  
Non-multiplexed Mode  
In the 15/16-bit mode shown in Figure 4, the pixel data bus represents a 15/16-bit non-multiplexed data stream,  
which contains either RGB or YCrCb formatted data. When operating in RGB mode, each 15/16-bit Pn value will  
contain a complete pixel encoded in either 5-6-5 or 5-5-5 format. When operating in YCrCb mode, each 16-bit Pn  
word will contain an 8-bit Y (luminance) value on the upper 8 bits, and an 8-bit C (color difference) value on the  
lower 8 bits. The color difference will be transmitted at half the data rate of the luminance data, with the sequence-  
being set as Cb followed by Cr. The Cb and Cr data will be cosited with the Y value transmitted with the Cb value,  
with the data sequence described in Table 3. The first active pixel is SAV pixels after the leading edge of horizon-  
tal sync, where SAV is a bus-controlled register.  
201-0000-025 Rev 2.1, 8/2/99  
7
CHRONTEL  
CH7005C  
tHSW  
HSYNC  
tP  
tPH  
tHD  
POut/  
XCLK  
AVR  
tSP  
t
HP  
P2b  
Pixel  
Data  
P0a  
P0b  
P1a  
P1b  
P2a  
Figure 4: Non-multiplexed Data Transfers  
When IDF = 1, (YCrCb 16-bit mode), H and V sync signals can be embedded into the data stream. In this mode, the  
embedded sync will be similar to the CCIR656 convention (not identical, since that convention is for 8-bit data  
streams), and the first byte of the ‘video timing reference code’ will be assumed to occur when a Cb sample would  
occur – if the video stream was continuous. This is delineated in Table 4 below.  
Table 3. YCrCb Non-multiplexed Mode with Embedded Syncs  
IDF#  
1
Format  
YCrCb 16-bit  
Pixel#  
Bus Data  
P0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
P1  
S[7]  
S[6]  
S[5]  
S[4]  
S[3]  
S[2]  
S[1]  
S[0]  
0
0
0
0
0
0
0
0
P2  
P3  
P4  
P5  
P6  
P7  
D[15]  
D[14]  
D[13]  
D[12]  
D[11]  
D[10]  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
Y0[7]  
Y0[6]  
Y0[5]  
Y0[4]  
Y0[3]  
Y0[2]  
Y0[1]  
Y0[0]  
Cb0[7]  
Cb0[6]  
Cb0[5]  
Cb0[4]  
Cb0[3]  
Cb0[2]  
Cb0[1]  
Cb0[0]  
Y1[7]  
Y1[6]  
Y1[5]  
Y1[4]  
Y1[3]  
Y1[2]  
Y1[1]  
Y1[0]  
Cr0[7]  
Cr0[6]  
Cr0[5]  
Cr0[4]  
Cr0[3]  
Cr0[2]  
Cr0[1]  
Cr0[0]  
Y2[7]  
Y2[6]  
Y2[5]  
Y2[4]  
Y2[3]  
Y2[2]  
Y2[1]  
Y2[0]  
Cb2[7]  
Cb2[6]  
Cb2[5]  
Cb2[4]  
Cb2[3]  
Cb2[2]  
Cb2[1]  
Cb2[0]  
Y3[7]  
Y3[6]  
Y3[5]  
Y3[4]  
Y3[3]  
Y3[2]  
Y3[1]  
Y3[0]  
Cr2[7]  
Cr2[6]  
Cr2[5]  
Cr2[4]  
Cr2[3]  
Cr2[2]  
Cr2[1]  
Cr2[0]  
Y4[7]  
Y4[6]  
Y4[5]  
Y4[4]  
Y4[3]  
Y4[2]  
Y4[1]  
Y4[0]  
Cb4[7]  
Cb4[6]  
Cb4[5]  
Cb4[4]  
Cb4[3]  
Cb4[2]  
Cb4[1]  
Cb4[0]  
Y5[7]  
Y5[6]  
Y5[5]  
Y5[4]  
Y5[3]  
Y5[2]  
Y5[1]  
Y5[0]  
Cr4[7]  
Cr4[6]  
Cr4[5]  
Cr4[4]  
Cr4[3]  
Cr4[2]  
Cr4[1]  
Cr4[0]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
In this mode, the S[7-0] byte contains the following data:  
S[6]  
S[5]  
S[4]  
=
=
=
F
V
H
=
=
=
1 during field 2, 0 during field 1  
1 during field blanking, 0 elsewhere  
1 during EAV (the synchronization reference at the end of active video)  
0 during SAV (the synchronization reference at the start of active video)  
Bits S[7] and S[3-0] are ignored.  
8
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
Multiplexed Mode  
Each rising edge (or each rising and falling edge) of the XCLK signal will latch data from the graphics chip. The  
multiplexed input data formats are shown in Figure 5 and 6. The Pixel Data bus represents an 8, 12, or 16-bit  
multiplexed data stream, which contains either RGB or YCrCb formatted data. In IDF settings of 2, 4, 5, 7, 8 and 9,  
the input data rate is 2X PCLK, and each pair of Pn values (e.g., P0a and P0b) will contain a complete pixel,  
encoded as shown in the tables below. When IDF = 6, the input data rate is 3X PCLK, and each triplet of Pn values  
(e.g., P0a, P0b and P0c) will contain a complete pixel, encoded as shown in the tables below. When the input is  
YCrCb, the color-difference data will be transmitted at half the data rate of the luminance data, with the sequence  
being set as Cb, Y, Cr, Y where Cb0,Y0,Cr0 refers to co-sited luminance and color-difference samples — and the  
following Y1 byte refers to the next luminance sample, per CCIR656 standards. However, the clock frequency is  
dependent upon the current mode, (not 27MHz, as specified in CCIR656).  
tHSW  
HS  
tP2  
tPH2  
tHD  
XCLK  
DEC = 0  
tSP2  
tHP2  
XCLK  
DEC = 1  
tSP2  
tHP2  
tSP2  
tHP2  
D[15:0]  
P0a  
P0b  
P1a  
P1b  
P2a  
P2b  
Figure 5: Multiplexed Pixel Data Transfer Mode  
Table 4. RGB 8-bit Multiplexed Mode  
IDF#  
7
8
Format  
RGB 5-6-5  
RGB 5-5-5  
Pixel#  
Bus Data  
P0a  
P0b  
P1a  
P1b  
P0a  
P0b  
x
P1a  
G1[2]  
P1b  
x
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
G0[2]  
G0[1]  
G0[0]  
B0[4]  
B0[3]  
B0[2]  
B0[1]  
B0[0]  
R0[4]  
R0[3]  
R0[2]  
R0[1]  
R0[0]  
G0[5]  
G0[4]  
G0[3]  
G1[2]  
G1[1]  
G1[0]  
B1[4]  
B1[3]  
B1[2]  
B1[1]  
B1[0]  
R1[4]  
R1[3]  
R1[2]  
R1[1]  
R1[0]  
G1[5]  
G1[4]  
G1[3]  
G0[2]  
G0[1]  
G0[0]  
B0[4]  
B0[3]  
B0[2]  
B0[1]  
B0[0]  
R0[4]  
R0[3]  
R0[2]  
R0[1]  
R0[0]  
G0[4]  
G0[3]  
G1[1]  
G1[0]  
B1[4]  
B1[3]  
B1[2]  
B1[1]  
B1[0]  
R1[4]  
R1[3]  
R1[2]  
R1[1]  
R1[0]  
G1[4]  
G1[3]  
201-0000-025 Rev 2.1, 8/2/99  
9
CHRONTEL  
CH7005C  
Table 5. RGB 12-bit Multiplexed Mode  
IDF#  
4
5
Format  
12-bit RGB (12-12)  
12-bit RGB (12-12)  
Pixel#  
P0a  
P0b  
P1a  
P1b  
P0a  
P0b  
P1a  
P1b  
Bus Data  
D[11]  
D[10]  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
G0[3]  
G0[2]  
G0[1]  
G0[0]  
B0[7]  
B0[6]  
B0[5]  
B0[4]  
B0[3]  
B0[2]  
B0[1]  
B0[0]  
R0[7]  
R0[6]  
R0[5]  
R0[4]  
R0[3]  
R0[2]  
R0[1]  
R0[0]  
G0[7]  
G0[6]  
G0[5]  
G0[4]  
G1[3]  
G1[2]  
G1[1]  
G1[0]  
B1[7]  
B1[6]  
B1[5]  
B1[4]  
B1[3]  
B1[2]  
B1[1]  
B1[0]  
R1[7]  
R1[6]  
R1[5]  
R1[4]  
R1[3]  
R1[2]  
R1[1]  
R1[0]  
G1[7]  
G1[6]  
G1[5]  
G1[4]  
G0[4]  
G0[3]  
G0[2]  
B0[7]  
B0[6]  
B0[5]  
B0[4]  
B0[3]  
G0[0]  
B0[2]  
B0[1]  
B0[0]  
R0[7]  
R0[6]  
R0[5]  
R0[4]  
R0[3]  
G0[7]  
G0[6]  
G0[5]  
R0[2]  
R0[1]  
R0[0]  
G0[1]  
G1[4]  
G1[3]  
G1[2]  
B1[7]  
B1[6]  
B1[7]  
B1[4]  
B1[3]  
G1[0]  
B1[2]  
B1[1]  
B1[0]  
R1[7]  
R1[6]  
R1[5]  
R1[4]  
R1[3]  
G1[7]  
G1[6]  
G1[5]  
R1[2]  
R1[1]  
R1[0]  
G1[1]  
Table 6. RGB 16-bit Muliplexed Mode  
IDF#  
2
Format  
16-bit RGB (16-8)  
Pixel#  
P0a  
P0b  
P1a  
P1b  
Bus Data  
D[15]  
D[14]  
D[13]  
D[12]  
D[11]  
D[10]  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
G0[7]  
G0[6]  
G0[5]  
G0[4]  
G0[3]  
G0[2]  
G0[1]  
G0[0]  
B0[7]  
B0[6]  
B0[5]  
B0[4]  
B0[3]  
B0[2]  
B0[1]  
B0[0]  
A0[7]  
A0[6]  
A0[5]  
A0[4]  
A0[3]  
A0[2]  
A0[1]  
A0[0]  
R0[7]  
R0[6]  
R0[5]  
R0[4]  
R0[3]  
R0[2]  
R0[1]  
R0[0]  
G1[7]  
G1[6]  
G1[5]  
G1[4]  
G1[3]  
G1[2]  
G1[1]  
G1[0]  
B1[7]  
B1[6]  
B1[5]  
B1[4]  
B1[3]  
B1[2]  
B0[1]  
B0[0]  
R1[7]  
R1[6]  
R1[5]  
R1[4]  
R1[3]  
R1[2]  
R1[1]  
R1[0]  
A1[7]  
A1[6]  
A1[5]  
A1[4]  
A1[3]  
A1[2]  
A1[1]  
A1[0]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Note: The AX[7:0] data is ignored.  
Table 7. YCrCb Multiplexed Mode  
IDF#  
Format  
9
YCrCb 8-bit  
Pixel#  
P0a  
P0b  
P1a  
P1b  
P2a  
P2b  
P3a  
P3b  
Bus Data  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Cb0[7]  
Cb0[6]  
Cb0[5]  
Cb0[4]  
Cb0[3]  
Cb0[2]  
Cb0[1]  
Cb0[0]  
Y0[7]  
Y0[6]  
Y0[5]  
Y0[4]  
Y0[3]  
Y0[2]  
Y0[1]  
Y0[0]  
Cr0[7]  
Y1[7]  
Y1[6]  
Y1[5]  
Y1[4]  
Y1[3]  
Y1[2]  
Y1[1]  
Y1[0]  
Cb2[7]  
Cb2[6]  
Cb2[5]  
Cb2[4]  
Cb2[3]  
Cb2[2]  
Cb2[1]  
Cb2[0]  
Y2[7]  
Y2[6]  
Y2[5]  
Y2[4]  
Y2[3]  
Y2[2]  
Y2[1]  
Y2[0]  
Cr2[7]  
Cr2[6]  
Cr2[5]  
Cr2[4]  
Cr2[3]  
Cr2[2]  
Cr2[1]  
Cr2[0]  
Y3[7]  
Y3[6]  
Y3[5]  
Y3[4]  
Y3[3]  
Y3[2]  
Y3[1]  
Y3[0]  
Cr0[6]  
Cr0[5]  
Cr0[4]  
Cr0[3]  
Cr0[2]  
Cr0[1]  
Cr0[0]  
10  
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
When IDF = 9 (YCrCb 8-bit mode), H and V sync signals can be embedded into the data stream. In this mode, the  
embedded sync will follow the CCIR656 convention, and the first byte of the “video timing reference code” will be  
assumed to occur when a Cb sample would occur if the video stream was continuous. This is delineated in Table 8  
shown below.  
Table 8. YCrCb Multiplexed Mode with Embedded Syncs  
IDF#  
9
Format  
YCrCb 8-bit  
Pixel#  
Bus Data  
P0a  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
P0b  
0
0
0
0
0
0
0
0
P1a  
0
0
0
0
0
0
0
0
P1b  
P2a  
P2b  
P3a  
P3b  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
S[7]  
S[6]  
S[5]  
S[4]  
S[3]  
S[2]  
S[1]  
S[0]  
Cb2[7]  
Cb2[6]  
Cb2[5]  
Cb2[4]  
Cb2[3]  
Cb2[2]  
Cb2[1]  
Cb2[0]  
Y2[7]  
Y2[6]  
Y2[5]  
Y2[4]  
Y2[3]  
Y2[2]  
Y2[1]  
Y2[0]  
Cr2[7]  
Cr2[6]  
Cr2[5]  
Cr2[4]  
Cr2[3]  
Cr2[2]  
Cr2[1]  
Cr2[0]  
Y3[7]  
Y3[6]  
Y3[5]  
Y3[4]  
Y3[3]  
Y3[2]  
Y3[1]  
Y3[0]  
In this mode the S[7.0} contains the following data:  
S[6]  
S[5]  
S[4]  
=
=
=
F
V
H
=
=
=
1 during field 2, 0 during field 1  
1 during field blanking, 0 elsewhere  
1 during EAV (the synchronization reference at the end of active video)  
0 during SAV (the synchronization reference at the start of active video)  
Bits S[7] and S[3-0] are ignored.  
tHSW  
HSC  
tP3  
tPH3  
tHD  
XCLK  
tSP3  
tHP3  
P0c  
Pixel  
P0a  
P0b  
P1a  
P1b  
P1c  
D[7:0]  
Figure 6: Multiplexed Pixel Data Transfer Mode (IDF = 6)  
Table 9. RGB 8-bit Multiplexed Mode (24-bit Color)  
IDF#  
6
Format  
Pixel#  
Bus Data  
RGB 8-bit  
P0a  
P0b  
P0c  
P1a  
P1b  
P1c  
P2a  
P2b  
P2c  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
B0[7]  
B0[6]  
B0[5]  
B0[4]  
B0[3]  
B0[2]  
B0[1]  
B0[0]  
G0[7]  
G0[6]  
G0[5]  
G0[4]  
G0[3]  
G0[2]  
G0[1]  
G0[0]  
R0[7]  
R0[6]  
R0[5]  
R0[4]  
R0[3]  
R0[2]  
R0[1]  
R0[0]  
B1[7]  
B1[6]  
B1[5]  
B1[4]  
B1[3]  
B1[2]  
B1[1]  
B1[0]  
G1[7]  
G1[6]  
G1[5]  
G1[4]  
G1[3]  
G1[2]  
G1[1]  
G1[0]  
R1[7]  
R1[6]  
R1[5]  
R1[4]  
R1[3]  
R1[2]  
R1[1]  
R1[0]  
B2[7]  
B2[6]  
B2[5]  
B2[4]  
B2[3]  
B2[2]  
B2[1]  
B2[0]  
G2[7]  
G2[6]  
G2[5]  
G2[4]  
G2[3]  
G2[2]  
G2[1]  
G2[0]  
R2(7)  
R2(6)  
R2(5)  
R2(4)  
R2(3)  
R2(2)  
R2(1)  
R2(0)  
201-0000-025 Rev 2.1, 8/2/99  
11  
CHRONTEL  
CH7005C  
Functional Description  
The CH7005 is a TV-output companion chip to graphics controllers providing digital output in either YUV or RGB  
format. This solution involves both hardware and software elements which work together to produce an optimum  
TV screen image based on the original computer generated pixel data. All essential circuitry for this conversion are  
integrated onchip. Onchip circuitry includes memory, memory control, scaling, PLL, DAC, filters, and NTSC/PAL  
encoder. All internal signal processing, including NTSC/PAL encoding, is performed using digital techniques to  
ensure that the high-quality video signals are not affected by drift issues associated with analog components. No  
additional adjustment is required during manufacturing.  
CH7005 is ideal for PC motherboards, web browsers, or VGA add-in boards where a minimum of discrete support  
components (passive components, parallel resonance 14.31818 MHz crystal) are required for full operation.  
Architectural Overview  
The CH7005 is a complete TV output subsystem which uses both hardware and software elements to produce an  
image on TV which is virtually identical to the image that would be displayed on a monitor. Simply creating a  
compatible TV output from a VGA input involves a relatively straightforward process. This process includes a  
standard conversion from RGB to YUV color space, converting from a non-interlaced to an interlaced frame  
sequence, and encoding the pixel stream into NTSC or PAL compliant format. However, creating an optimum  
computer-generated image on a TV screen involves a highly sophisticated process of scaling, deflickering, and  
filtering. This results in a compatible TV output that displays a sharp and subtle image, of the right size, with  
minimal artifacts from the conversion process.  
As a key part of the overall system solution, the CH7005 software establishes the correct framework for the VGA  
input signal to enable this process. Once the display is set to a supported resolution (either 640x480 or 800x600),  
the CH7005 software may be invoked to establish the appropriate TV output display. The software then programs  
the various timing parameters of the VGA controller to create an output signal that will be compatible with the  
chosen resolution, operating mode, and TV format. Adjustments performed in software include pixel clock rates,  
total pixels per line, and total lines per frame. By performing these adjustments in software, the CH7005 can render  
a superior TV image without the added cost of a full frame buffer memory – normally used to implement features  
such as scaling and full synchronization.  
The CH7005 hardware accepts digital RGB or YCrCb inputs, which are latched in synchronization with the pixel  
clock. These inputs are then color-space converted into YUV in 4-2-2 format, and stored in a line buffer memory.  
The stored pixels are fed into a block where scan-rate conversion, underscan scaling and 2-line, 3-line, 4-line and 5-  
line vertical flicker filtering are performed. The scan-rate converter transforms the VGA horizontal scan-rate to  
either NTSC or PAL scan rates; the vertical flicker filter eliminates flicker at the output while the underscan scaling  
reduces the size of the displayed image to fit onto a TV screen. The resulting YUV signals are filtered through  
digital filters to minimize aliasing problems. The digital encoder receives the filtered signals and transforms them to  
composite and S-Video outputs, which are converted by the three 9-bit DACs into analog outputs.  
Color Burst Generation*  
The CH7005 allows the subcarrier frequency to be accurately generated from a 14.31818 MHz crystal oscillator,  
leaving the subcarrier frequency independent of the sampling rate. As a result, the CH7005 may be used with any  
VGA chip (with an appropriate digital interface) since the CH7005 subcarrier frequency can be generated without  
being dependent on the precise pixel rates of VGA controllers. This feature is a significant benefit, since even a  
± 0.01% subcarrier frequency variation may be enough to cause some television monitors to lose color lock.  
In addition, the CH7005 has the capability to genlock the color burst signal to the VGA horizontal sync frequency,  
which enables a fully synchronous system between the graphics controller and the television. When genlocked, the  
CH7005 can also stop “dot crawl” motion (for composite mode operation in NTSC modes) to eliminate the  
annoyance of moving borders. Both of these features are under programmable control through the register set.  
Display Modes  
The CH7005 display mode is controlled by three independent factors: input resolution, TV format, and scale factor,  
which are programmed via the display mode register. It is designed to accept input resolutions of 640x480,  
800x600, 640x400 (including 320x200 scan-doubled output), 720x400, and 512x384.  
12  
* Patent number 5,874,846  
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
Display Modes (continued)  
It is disigned to support output to either NTSC or PAL television formats. The CH7005 provides interpolated scaling  
with selectable factors of 5:4, 1:1, 7:8, 5:6, 3:4 and 7:10 in order to support adjustable overscan or underscan  
operation when displayed on a TV. This combination of factors results in a matrix of useful operating modes which  
are listed in detail in Table 10.  
Table 10. CH7005 Display Modes  
TVFormat  
Standard  
Input  
(active)  
Scale  
Factor  
Active  
TV Lines  
Percent (1)  
Overscan  
Pixel  
Clock  
Horizontal  
Total  
Vertical  
Total  
Resolution  
640x480  
640x480  
640x480  
800x600  
800x600  
800x600  
640x400  
640x400  
640x400  
720x400  
720x400  
512x384  
512x384  
1:1  
7:8  
5:6  
5:6  
3:4  
7:10  
10%  
(3%)  
(8%)  
16%  
4%  
(3%)  
16%  
(8%)  
(19%)  
16%  
(8%)  
10%  
(11%)  
NTSC  
NTSC  
NTSC  
NTSC  
NTSC  
NTSC  
NTSC  
NTSC  
NTSC  
NTSC  
NTSC  
NTSC  
NTSC  
480  
420  
400  
500  
450  
420  
500  
400  
350  
500  
400  
480  
384  
24.671  
28.196  
30.210  
39.273  
43.636  
47.832  
21.147  
26.434  
30.210  
23.790  
29.455  
20.140  
24.671  
784  
784  
800  
1040  
1040  
1064  
840  
840  
840  
945  
936  
800  
784  
525  
600  
630  
630  
700  
750  
420  
525  
600  
420  
525  
420  
525  
5:4  
1:1  
7:8  
5:4  
1:1  
5:4  
1:1  
640x480  
640x480  
640x480  
800x600  
800x600  
800x600  
640x400  
640x400  
720x400  
720x400  
512x384  
512x384  
5:4  
1:1  
5:6  
1:1  
5:6  
3:4  
5:4  
1:1  
5:4  
1:1  
5:4  
1:1  
600  
480  
400  
600  
500  
450  
500  
400  
500  
400  
480  
384  
14%  
(8%)  
(29%)  
14%  
(4%)  
(15%)  
(4%)  
(29%)  
(4%)  
(29%)  
(8%)  
21.000  
26.250  
31.500  
29.500  
36.000  
39.000  
25.000  
31.500  
28.125  
34.875  
21.000  
26.250  
840  
840  
840  
944  
960  
500  
625  
750  
625  
750  
836  
500  
625  
500  
625  
500  
625  
PAL  
PAL  
PAL  
PAL  
PAL  
PAL  
PAL  
PAL  
PAL  
PAL  
PAL  
PAL  
936  
1000  
1008  
1125  
1116  
840  
(35%)  
840  
(1) Note:Percent underscan is a calculated value based on average viewable lines on each TV format, assuming an average TV over-  
scan of 10%. (Negative values) indicate modes which are operating in underscan.  
For NTSC: 480 active lines - 10% (overscan) = 432 viewable lines (average)  
For PAL: 576 active lines - 10% (overscan) = 518 viewable lines (average)  
The inclusion of multiple levels of scaling for each resolution have been created to enable optimal use of the  
CH7005 for different application needs. In general, underscan (modes where percent overscan is negative provides  
an image that is viewable in its entirety on screen; it should be used as the default for most applications (e.g.,  
viewing text screens, operating games, running productivity applications and working within Windows).  
Overscanning provides an image that extends past the edges of the TV screen, exactly like normal television  
programs and movies appear on TV, and is only recommended for viewing movies or video clips coming from the  
computer. In addition to the above mode table, the CH7005 also support interlaced input modes, both in CCIR 656  
and proprietary formats (see Display Mode Register section.)  
Flicker Filter and Text Enhancement  
The CH7005 integrates an advanced 2-line, 3-line, 4-line and 5-line (depending on mode) vertical deflickering filter  
circuit to help eliminate the flicker associated with interlaced displays. This flicker circuit provides an adaptive  
filter algorithm for implementing flicker reduction with selections of high, medium or low flicker content for both  
luma and chroma channels (see register descriptions). In addition, a special text enhancement circuit incorporates  
201-0000-025 Rev 2.1, 8/2/99  
13  
CHRONTEL  
CH7005C  
Display Modes (continued)  
additional filtering for enhancing the readability of text. These modes are fully programmable via I2C under the  
flicker filter register.  
Internal Voltage Reference  
An onchip bandgap circuit is used in the DAC to generate a reference voltage which, in conjunction with a reference  
resistor at pin RSET, and register controlled divider, sets the output ranges of the DACs. The CH7005 bandgap  
reference voltage is 1.235 volts nominal for NTSC or PAL-M, or 1.317 volts nominal (for PAL or NTSC-J), which  
is determined by IDF register bit 6 (DACG bit). The recommended value for the reference resistor RSET is 360  
ohms (though this may be adjusted in order to achieve a different output level). The gain setting for DAC output is  
th  
1/48 . Therefore, for each DAC, the current output per LSB step is determined by the following equation:  
I
= V(RSET)/RSET reference resistor * 1/GAIN  
LSB  
For DACG=0, this is: I  
For DACG=1, this is: I  
= 1.235/360 * 1/48 = 71.4 mA (nominal)  
= 1.317/360 * 1/48 = 76.2 mA (nominal)  
LSB  
LSB  
Power Management  
The CH7005 supports five operating states including Normal [On], Power Down, Full Power Down, S-Video Off,  
and Composite Off to provide optimal power consumption for the application involved. Using the programmable  
power down modes accessed over the I2C port, the CH7005 may be placed in either Normal state, or any of the four  
power managed states, as listed below (see Power Management Register” under the Register Descriptions section  
for programming information). To support power management, a TV sensing function (see “Connection Detect  
Register” under the Register Descriptions section) is provided, which identifies whether a TV is connected to either  
S-Video or composite. This sensing function can then be used to enter into the appropriate operating state (e.g., if  
TV is sensed only on composite, the S-Video Off mode could be set by software).  
Table 11. Power Management  
Operating State  
Normal (On):  
Functional Description  
In the normal operating state, all functions and pins are active  
Power Down:  
In the power-down state, most pins and circuitry are disabled.The DS/BCO pin  
will continue to provide either the VCO divided by K3, or 14.318 MHz out when  
selected as an output, and the P-OUT pin will continue to output a clock  
reference when in master clock mode.  
S-Video Off:  
Power is shut off to the unused DACs associated with S-Video outputs.  
Composite Off:  
In Composite-off state, power is shut off to the unused DAC associated with  
CVBS output.  
2
Full Power Down:  
In this power-down state, all but the I C circuits are disabled. This places the  
CH7005 in its lowest power consumption mode.  
Luminance and Chrominance Filter Options  
The CH7005 contains a set of luminance filters to provide a controllable bandwidth output on both CVBS and S-  
Video outputs. All values are completely programmable via the Video Bandwidth Register. For all graphs shown,  
the horizontal axis is frequency in MHz, and the vertical axis is attenuation in dBs. The composite luminance and  
chrominance video bandwidth output is shown in Table 12.  
MacrovisionTM Anti-copy Protection  
The CH7005 implements the Macrovision 7.X anti-copy protection process. This process changes the encoded  
output of the NTSC/PAL signals to inhibit recording on VCR devices while not affecting viewing on a TV. The  
parameters that control this process are fully programmable and can be described by Chrontel only after a suitable  
Non-Disclosure Agreement has been executed between MacrovisionTM, Inc. and the customer.  
14  
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
VBI Pass-Through Support  
The CH7005 provides the ability to pass-through data with minimal filtering, on vertical blanking lines 10-21 for  
Intercast or close captioned applications (see register descriptions).  
Table 12. Video Bandwidth  
Mode  
Chrominance  
Luminance Bandwidth with Sin(X) /X (MHz)  
CVBS  
YCV  
S-Video  
S-Video  
CBW[1:0]  
YSV[1:0], YPEAK = 0  
YSV[1:0], YPEAK = 1  
00  
01  
10  
11  
00  
01  
1X  
00  
01  
1X  
0
1
0
1
2
3
4
5
6
7
0.62  
0.78  
0.53  
0.65  
0.83  
1.03  
0.70  
0.87  
0.74  
0.93  
0.63  
0.78  
0.89  
0.62  
0.78  
0.93  
0.64  
0.74  
0.79  
0.77  
0.95  
1.02  
0.77  
0.86  
0.94  
0.71  
0.71  
0.47  
0.38  
0.68  
0.85  
0.58  
0.71  
0.91  
1.13  
0.77  
0.95  
0.81  
1.02  
0.68  
0.86  
0.98  
0.68  
0.85  
1.02  
0.71  
0.81  
0.87  
0.85  
1.03  
1.12  
0.85  
0.94  
1.03  
0.78  
0.78  
0.51  
0.41  
0.80  
1.00  
0.68  
0.83  
1.07  
1.32  
0.90  
1.12  
0.95  
1.20  
0.80  
1.00  
1.15  
0.80  
1.00  
1.20  
0.83  
0.95  
1.02  
1.00  
1.22  
1.32  
0.99  
1.11  
1.21  
0.91  
0.91  
0.60  
0.48  
0.95  
1.18  
0.81  
0.99  
1.27  
1.57  
1.07  
1.33  
1.13  
1.42  
0.95  
1.19  
1.36  
0.95  
1.18  
1.42  
0.98  
1.13  
1.21  
1.18  
1.44  
1.56  
1.18  
1.31  
1.44  
1.08  
1.08  
0.71  
0.57  
2.26  
2.82  
1.93  
2.36  
3.03  
3.75  
2.56  
3.17  
2.69  
3.39  
2.28  
2.84  
3.25  
2.26  
2.82  
3.39  
2.35  
2.70  
2.89  
2.82  
3.44  
3.73  
2.82  
3.13  
3.43  
2.58  
2.58  
1.70  
1.37  
3.37  
4.21  
2.87  
3.52  
4.51  
5.59  
3.81  
4.72  
4.01  
5.05  
3.39  
4.24  
4.84  
3.37  
4.21  
5.05  
3.50  
4.02  
4.31  
4.20  
5.13  
5.56  
4.20  
4.66  
5.11  
3.85  
3.85  
2.53  
2.04  
2.26  
2.82  
1.93  
2.36  
3.03  
3.75  
2.56  
3.17  
2.69  
3.39  
2.28  
2.84  
3.25  
2.26  
2.82  
3.39  
2.35  
2.70  
2.89  
2.82  
3.44  
3.73  
2.82  
3.13  
3.43  
2.58  
2.58  
1.70  
1.37  
3.37  
4.21  
2.87  
3.52  
4.51  
5.59  
3.81  
4.72  
4.01  
5.05  
3.39  
4.24  
4.84  
3.37  
4.21  
5.05  
3.50  
4.02  
4.31  
4.20  
5.13  
5.56  
4.20  
4.66  
5.11  
3.85  
3.85  
2.53  
2.04  
5.23  
6.53  
4.46  
5.46  
7.00  
8.68  
5.92  
7.33  
6.22  
7.84  
5.26  
6.58  
7.52  
5.23  
6.53  
7.84  
5.43  
6.24  
6.68  
6.53  
7.97  
8.63  
6.52  
7.24  
7.94  
5.97  
5.97  
3.92  
3.17  
2.57  
3.21  
2.19  
2.68  
3.44  
4.27  
2.91  
3.60  
3.06  
3.85  
2.59  
3.23  
3.70  
2.57  
3.21  
3.85  
2.67  
3.07  
3.29  
3.21  
3.92  
4.24  
3.20  
3.56  
3.90  
2.94  
2.94  
1.93  
1.56  
4.44  
5.56  
3.79  
4.64  
5.95  
7.38  
5.04  
6.23  
5.29  
6.67  
4.48  
5.59  
6.39  
4.44  
5.56  
6.67  
4.62  
5.30  
5.68  
5.55  
6.77  
7.34  
5.54  
6.16  
6.75  
5.08  
5.08  
3.34  
2.69  
5.23  
6.53  
4.46  
5.46  
7.00  
8.68  
5.92  
7.33  
6.22  
7.84  
5.26  
6.58  
7.52  
5.23  
6.53  
7.84  
5.43  
6.24  
6.68  
6.53  
7.97  
8.63  
6.52  
7.24  
7.94  
5.97  
5.97  
3.92  
3.17  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
The composite luminance and chrominance frequency response is depicted in Figures 7 through 9.  
201-0000-025 Rev 2.1, 8/2/99  
15  
CHRONTEL  
CH7005C  
Luminance and Chrominance Filter Options (continued)  
0
-6  
-12  
-18
<i>  
(YCVdB  
)
n  
-24  
-
30  
-36  
-42  
1
2
2
3
5
9
10  
11  
12  
7
8
5
6
4
0
f
n,i  
6
10  
Figure 7: Composite Luminance Frequency Response (YCV = 0)  
0
-6  
-12  
-18  
-24  
-30  
<i>  
(YSVdB  
)
n
-36  
-42  
0
9
8
10  
11  
12  
3
5
7
4
1
2
6
n, i  
f
6
10  
Figure 8: S-Video Luminance Frequency Response (YSV = 1X, YPEAK = 0)  
16  
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
Luminance and Chrominance Filter Options (continued)  
0
-6  
-12
-18  
)
<i>  
(UVfirdB  
n
-24  
-30  
-36  
-42  
0  
1
2
3
4
7
8
9
10  
11  
12  
5
6
f
f
n,i  
6
10  
Figure 9: Chrominance Frequency Response  
201-0000-025 Rev 2.1, 8/2/99  
17  
CHRONTEL  
CH7005C  
NTSC and PAL Operation  
Composite and S-Video outputs are supported in either NTSC or PAL format. The general parameters used to  
characterize these outputs are listed in Table 13 and shown in Figure 10. (See Figure 13 through 18 for illustrations  
of composite and S-Video output waveforms.)  
CCIR624-3 Compliance  
The CH7005 is predominantly compliant with the recommendations called out in CCIR624-3. The following are the  
only exceptions to this compliance:  
• The frequencies of Fsc, Fh, and Fv can only be guaranteed in master or pseudo-master modes, not in slave mode  
when the graphics device generates these frequencies.  
• It is assumed that gamma correction, if required, is performed in the graphics device which establishes the color  
reference signals.  
• All modes provide the exact number of lines called out for NTSC and PAL modes respectively, except mode 21,  
which outputs 800x600 resolution, scaled by 3:4, to PAL format with a total of 627 lines (vs. 625).  
• Chroma signal frequency response will fall within 10% of the exact recommended value.  
• Pulse widths and rise/fall times for sync pulses, front/back porches, and equalizing pulses are designed to  
approximate CCIR624-3 requirements, but will fall into a range of values due to the variety of clock frequencies  
used to support multiple operating modes  
Table 13. NTSC/PAL Composite Output Timing Parameters (in mS)  
Level (mV)  
Duration (uS)  
NTSC  
Symbol  
Description  
NTSC  
PAL  
PAL  
Front Porch  
Horizontal Sync  
Breezeway  
Color Burst  
Back Porch  
Black  
1.49 - 1.51  
4.69 - 4.72  
0.59 - 0.61  
2.50 - 2.53  
1.55 - 1.61  
0.00 - 7.50  
37.66 - 52.67  
0.00 - 7.50  
1.48 - 1.51  
4.69 - 4.71  
0.88 - 0.92  
2.24 - 2.26  
2.62 - 2.71  
0.00 - 8.67  
34.68 - 52.01  
0.00 - 8.67  
A
B
C
D
E
F
287  
0
300  
0
287  
287  
287  
340  
340  
340  
300  
300  
300  
300  
300  
300  
Active Video  
Black  
G
H
For this table and all subsequent figures, key values are:  
Note:  
1. RSET = 360 ohms; V(RSET) = 1.235V; 75 ohms doubly terminated load.  
2. Durations vary slightly in different modes due to the different clock frequencies used.  
3. Active video and black (F, G, H) times vary greatly due to different scaling ratios used in different modes.  
4. Black times (F and H) vary with position controls.  
18  
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
A
B
C
D
E
F
G
H
Figure 10: NTSC / PAL Composite Output  
SSTTAARRTT  
OF  
VSYNC  
ANALOG  
Start of  
field 1  
523  
521 522
524  
9
12  
10  
525  
11  
3
1
2
1  
4
5
6  
7  
8  
Pre-equalizing  
pulse interval  
Post-equalizing  
pulse interval  
Vertical sync  
pulse interval  
Reference  
sub-carrier phase  
color field 1  
Line  
vertical  
ANALOG  
interval  
t +V  
1
262  
263  
264  
270  
261  
265  
267  
268  
269  
271  
272  
273  
274  
275  
266  
START  
Start of  
field 2  
Reference  
sub-carrier phase  
t +V  
2
color field 2  
523  
10  
12  
524  
11  
6
2
7
8
9
525  
4
5
1
Start of  
field 3  
3
Reference  
sub-carrier phase  
t +V  
3
color field 3  
263  
264  
274  
261  
262  
269  
270  
273  
272  
265  
2
6
6
2
6
7
2
68  
27  
1
275  
Start of  
field 4  
Reference  
sub-carrier phase  
color field 4  
Figure 11: Interlaced NTSC Video Timing  
201-0000-025 Rev 2.1, 8/2/99  
19  
CHRONTEL  
CH7005C  
START  
OF  
VSYNC  
FIELD 1  
620 621  
622 623  
624 625  
1
2
3
4
5
6
7
8
9
10  
FIELD 2  
308 309 310 311 312 313  
314 315  
316 317 318 319 320 321 322 323  
FIELD 3  
620 621 622 623 624 625  
1
2
3
4
5
6
7
8
9
10  
FIELD 4  
308 309 310 311 312 313  
314 315  
316 317 318 319 320 321 322 323  
BURST  
BLANKING  
4
3
INTERVALS  
2
1
Figure 12: Interlaced PAL Video Timing  
20  
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
Color bars:  
Color/Level  
mA  
V
White  
Yellow  
26.66  
24.66  
1.000  
0.925  
Cyan  
Green  
21.37  
19.37  
0.801  
0.726  
Magenta  
Red  
16.22  
14.22  
0.608  
0.533  
Blue  
Black  
11.08  
9.08  
0.415  
0.340  
Blank  
7.65  
0.287  
Sync  
0.00  
0.000  
Figure 13: NTSC Y (Luminance) Output Waveform (DACG = 0)  
Color bars:  
Color/Level  
mA  
V
White  
Yellow  
26.75  
24.62  
1.003  
0.923  
Cyan  
Green  
21.11  
18.98  
0.792  
0.712  
Magenta  
Red  
15.62  
13.49  
0.586  
0.506  
Blue  
10.14  
8.00  
0.380  
0.300  
Blank/ Black  
Sync  
0.00  
0.000  
Figure 14: PAL Y (Luminance) Video Output Waveform (DACG = 1)  
201-0000-025 Rev 2.1, 8/2/99  
21  
CHRONTEL  
CH7005C  
Color bars:  
Color/Level  
mA  
V
Cyan/Red  
Green/Magenta 25.01  
25.80  
0.968  
0.938  
Yellow/Blue  
22.44  
0.842  
Peak Burst  
Blank  
18.08  
14.29  
0.678  
0.536  
Peak Burst  
10.51  
0.394  
3.579545 MHz Color Burst  
(9 cycles)  
Yellow/Blue  
6.15  
0.230  
Green/Magenta  
Cyan/Red  
3.57  
2.79  
0.134  
0.105  
Figure 15: NTSC C (Chrominance) Video Output Waveform (DACG = 0)  
Color bars:  
Color/Level  
mA  
V
Cyan/Red  
Green/Magenta 26.68  
27.51  
1.032  
1.000  
Yellow/Blue  
23.93  
0.897  
Peak Burst  
Blank  
19.21  
15.24  
0.720  
0.572  
Peak Burst  
11.28  
0.423  
4.433619 MHz Color Burst  
(10 cycles)  
Yellow/Blue  
6.56  
0.246  
Green/Magenta  
Cyan/Red  
3.81  
2.97  
0.143  
0.111  
Figure 16: PAL C (Chrominance) Video Output Waveform (DACG = 1)  
22  
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
Color/Level  
mA  
V
Color bars:  
Peak Chrome 32.88  
1.233  
White  
26.66  
1.000  
Peak Burst  
11.44  
0.429  
Black  
Blank  
9.08  
7.65  
0.340  
0.281  
Peak Burst  
Sync  
4.45 0.145  
0.00 0.000  
3.579545 MHz Color Burst  
(9 cycles)  
Figure 17: Composite NTSC Video Output Waveform (DACG = 0)  
mA  
Color/Level  
V
Color bars:  
Peak Chrome 33.31  
1.249  
White  
26.75  
1.003  
Peak Burst  
Blank/Black  
11.97  
8.00  
0.449  
0.300  
Peak Burst  
Sync  
4.04  
0.00  
0.151  
0.000  
4.433619 MHz Color Burst  
(10 cycles)  
Figure 18: Composite PAL Video Output Waveform (DACG = 1)  
201-0000-025 Rev 2.1, 8/2/99  
23  
CHRONTEL  
CH7005C  
I2C Port Operation  
The CH7005 contains a standard I2C control port, through which the control registers can be written and read. This  
port is comprised of a two-wire serial interface, pins SD (bidirectional) and SC, which can be connected directly to  
the SDB and SCB buses as shown in Figure 19.  
The Serial Clock line (SC) is input only and is driven by the output buffer of the master device (also shown in  
Figure 19). The CH7005 acts as a slave, and generation of clock signals on the bus is always the responsibility of  
the master device. When the bus is free, both lines are HIGH. The output stages of devices connected to the bus  
must have an open-drain or open-collector to perform the wired-AND function. Data on the bus can be transferred  
up to 400 kbit/s.  
+DVDD  
RP  
SDB (Serial Data Bus)  
SCB (Serial Clock Bus)  
SD  
SC  
DATAN2  
OUT  
MASTER  
DATAN2  
OUT  
DATAN2  
OUT  
SCLK  
OUT  
FROM  
MASTER  
DATA IN  
MASTER  
SCLK  
IN1  
DATA  
IN1  
SCLK  
IN2  
DATA  
IN2  
BUS MASTER  
SLAVE  
SLAVE  
Figure 19: Connection of Devices to the Bus  
Electrical Characteristics for Bus Devices  
The electrical specifications of the bus devices’ inputs and outputs and the characteristics of the bus lines connected  
to them are shown in Figure 19. A pull-up resistor (RP) must be connected to a 3.3V ± 10% supply. The CH7005 is  
a device with input levels related to DVDD.  
Maximum and minimum values of pull-up resistor (R )  
P
The value of R depends on the following parameters:  
P
• Supply voltage  
• Bus capacitance  
• Number of devices connected (input current + leakage current = I  
)
input  
The supply voltage limits the minimum value of resistor R due to the specified minimum sink current of 2mA at  
P
VOL  
= 0.4 V for the output stages:  
max  
R >= (V – 0.4) / 2 (R in kW)  
P
DD  
P
The bus capacitance is the total capacitance of wire, connections and pins. This capacitance limits the maximum  
value of R due to the specified rise time. The equation for RP is shown below:  
P
3
R <= 10 /C (where: R is in kW and C, the total capacitance, is in pF)  
P
P
The maximum HIGH level input current of each input/output connection has a specified maximum value of 10 mA.  
Due to the desired noise margin of 0.2V for the HIGH level, this input current limits the maximum value of R .  
DD  
P
The R limit depends on V and is shown below:  
P
DD  
R <= (100 x V )/ I  
(where: R is in kW and I  
is in mA)  
input  
P
DD input  
P
24  
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
Transfer Protocol  
Both read and write cycles can be executed in “Alternating” and “Auto-increment” modes. Alternating mode  
expects a register address prior to each read or write from that location (i.e., transfers alternate between address and  
data). Auto-increment mode allows you to establish the initial register location, then automatically increments the  
register address after each subsequent data access (i.e., transfers will be address, data data data...). A basic serial port  
transfer protocol is shown in Figure 20 and described below.  
SD  
2
I C  
1 - 8  
CH7  
1 - 8  
9
8
9
9
SC  
Stop  
Condition  
Start  
Condition  
Data  
ACK  
Device ID  
R/W*  
ACK  
Data1  
ACK  
n
CH7005  
CH7005  
CH7005  
acknowledge  
acknowledge  
acknowledge  
Figure 20: Serial Port Transfer Protocol  
1. The transfer sequence is initiated when a high-to-low transition of SD occurs while SC is high; this is the  
“START” condition. Transitions of address and data bits can only occur while SC is low.  
2. The transfer sequence is terminated when a low-to-high transition of SD occurs while SC is high; this is the  
“STOP” condition.  
3. Upon receiving the first START condition, the CH7005 expects a Device Address Byte (DAB) from the  
master device. The value of the device address is shown in the DAB data format below.  
4. After the DAB is received, the CH7005 expects a Register Address Byte (RAB) from the master. The  
format of the RAB is shown in the RAB data format below (note that B7 is not used).  
Device Address Byte (DAB)  
B7  
1
B6  
1
B5  
1
B4  
0
B3  
1
B2  
0
B1  
1
B0  
R/W  
R/W  
Read/Write Indicator  
“0”: master device will write to the CH7005 at the register location specified by the address  
AR[5:0]  
“1”: master device will read from the CH7005 at the register location specified by the  
address AR[5:0].  
Register Address Byte (RAB)  
B0  
B7  
1
B6  
B5  
B4  
B3  
B2  
B1  
AutoInc  
AR[5]  
AR[4]  
AR[3]  
AR[2]  
AR[1]  
AR[0]  
201-0000-025 Rev 2.1, 8/2/99  
25  
CHRONTEL  
CH7005C  
Transfer Protocols (continued)  
AutoInc  
Register Address Auto-Increment - to facilitate sequential R/W of registers.  
“1”: Auto-Increment enabled (auto-increment mode).  
Write: After writing data into a register, the Address Register will automatically be  
incremented by one.  
Read: Before loading data from a register to the on-chip temporary register (getting ready to  
be serially read), the Address Register will automatically be incremented by one.  
However, for the first read after an RAB, the Address Register will not be changed.  
“0”: Auto-Increment disabled (alternating mode).  
Write: After writing data into a register, the Address Register will remain unchanged until a  
new RAB is written.  
Read: Before loading data from a register to the on-chip temporary register (getting ready to  
be serially read), the Address Register will remain unchanged.  
AR[5:0]  
Specifies the Address of the Register to be Accessed.  
This register address is loaded into the Address Register of the CH7005. The R/W access, which  
follows, is directed to the register specified by the content stored in the Address Register.  
The following two sections describe the operation of the serial interface for the four combinations of R/W = 0,1 and  
AutoInc = 0,1.  
CH7005 Write Cycle Protocols (R/W = 0)  
Data transfer with acknowledge is required. The acknowledge-related clock pulse is generated by the master-  
transmitter. The master-transmitter releases the SD line (HIGH) during the acknowledge clock pulse. The slave-  
receiver must pull down the SD line, during the acknowledge clock pulse, so that it remains stable LOW during the  
HIGH period of the clock pulse. The CH7005 always acknowledges for writes (see Figure 21). Note that the  
resultant state on SD is the wired-AND of data outputs from the transmitter and receiver.  
SD Data Output  
By Master-Transmitter  
not acknowledge  
SD Data Output  
By the CH7005  
acknowledge  
SC from  
Master  
1
2
8
9
clock pulse for  
Start  
Condition  
acknowledgment  
Figure 21: Acknowledge on the Bus  
Figure 22 shows two consecutive alternating write cycles for AutoInc = 0 and R/W = 0. The byte of information,  
following the Register Address Byte (RAB), is the data to be written into the register specified by AR[5:0]. If  
AutoInc = 0, then another RAB is expected from the master device, followed by another data byte, and so on.  
26  
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
CH7005  
CH7005  
CH7005  
CH7005  
CH7005  
acknowledge  
acknowledge  
acknowledge  
acknowledge  
acknowledge  
SD  
2
I C  
1 - 8  
1 - 8  
1 - 8  
1 - 8  
1 - 7  
8
9
9
9
9
9
SC  
Start  
Condition  
Stop  
Condition  
Device ID R/W*  
ACK  
RAB  
ACK  
Data  
ACK  
RAB  
ACK  
Data  
ACK  
Note: The acknowledge is from the CH7005 (slave).  
Figure 22: Alternating Write Cycles  
If AutoInc = 1, then the register address pointer will be incremented automatically and subsequent data bytes will be  
written into successive registers without providing an RAB between each data byte. An Auto-increment write cycle  
is shown in Figure 23.  
.
CH7005  
CH7005  
CH7005  
CH7005  
acknowledge  
acknowledge  
acknowledge  
acknowledge  
SD  
SC  
2
I C  
1 - 7  
1 - 8  
1 - 8  
1 - 8  
8
9
9
9
9
Start  
Condition  
Stop  
Condition  
Device ID R/W*  
ACK  
RAB  
ACK  
Data  
ACK  
Data  
n+1  
ACK  
n
n
Note: The acknowledge is from the CH7005 (slave).  
Figure 23: Auto-Increment Write Cycle  
When the auto-increment mode is enabled (AutoInc is set to 1), the register address pointer continues to increment  
for each write cycle until AR[5:0] = 3F (3F is the address of the Address Register). The next byte of information  
represents a new auto-sequencing “Starting address,” which is the address of the register to receive the next byte.  
The auto-sequencing then resumes based on this new “Starting address.” The auto-increment sequence can be  
terminated any time by either a “STOP” or “RESTART” condition. The write operation can be terminated with a  
“STOP” condition.  
CH7005 Read Cycle Protocols (R/W = 1)  
If a master-receiver is involved in a transfer, it must signal the end of data to the slave-transmitter by not generating  
an acknowledge on the last byte that was clocked out of the slave. The slave-transmitter CH7005 releases the data  
line to allow the master to generate the STOP condition or the RESTART condition.  
To read the content of the registers, the master device starts by issuing a “START” condition (or a “RESTART”  
condition). The first byte of data, after the START condition, is a DAB with R/W = 0. The second byte is the RAB  
with AR[5:0], containing the address of the register that the master device intends to read from in AR[5:0]. The  
master device should then issue a “RESTART” condition (“RESTART” = “START,” without a previous “STOP”  
condition). The first byte of data, after this RESTART condition, is another DAB with R/W=1, indicating the  
master’s intention to read data hereafter. The master then reads the next byte of data (the content of the register  
specified in the RAB). If AutoInc = 0, then another RESTART condition, followed by another DAB with R/W = 0  
and RAB, is expected from the master device. The master device then issues another RESTART, followed by  
another DAB. After that, the master may read another data byte, and so on. In summary, a RESTART condition,  
followed by a DAB, must be produced by the master before each of the RAB, and before each of the data read  
events. Two consecutive alternating read cycles are shown in Figure 24.  
201-0000-025 Rev 2.1, 8/2/99  
27  
CHRONTEL  
CH7005C  
Transfer Protocols (continued)  
.
CH7005  
CH7005  
CH7005  
acknowledge  
acknowledge  
acknowledge  
Master  
SD  
does not  
acknowledge  
2
2
I C  
I C  
1 - 8  
1 - 8  
1 - 7  
8
9
9
10  
1 - 7  
8
9
9
10  
SC  
Start  
Condition  
Device ID R/W* ACK  
RAB  
ACK Restart  
Condition  
Device ID R/W* ACK  
Data  
ACK  
Restart  
1
1
Condition  
Master does  
not acknowledge  
CH7005  
acknowledge  
CH7005  
acknowledge  
CH7005  
acknowledge  
2
2
I C  
I C  
1 - 8  
1 - 8  
1 - 7  
8
9
9
10  
1 - 7  
8
9
9
Stop  
Condition  
DeviceID  
R/W* ACK  
RAB  
ACK  
Restart DeviceID R/W* ACK  
Condition  
Data  
ACK  
2
2
Figure 24: Alternating Read Cycle  
If AutoInc = 1, then the address register will be incremented automatically and subsequent data bytes can be read  
from successive registers, without providing a second RAB  
Master does  
not acknowledge  
just before Stop  
condition  
CH7005  
acknowledge  
CH7005  
acknowledge  
CH7005  
acknowledge  
Master  
acknowledge  
SD  
2
I C  
1 - 8  
1 - 8  
1 - 8  
1 - 7  
8
9
9
10  
1 - 7  
8
9
9
9
SC  
Start  
Condition  
Stop  
Condition  
Device ID R/W* ACK RAB  
ACK Restart Device ID R/W* ACK Data  
Condition  
ACK  
Data  
n+1  
ACK  
n
n
Figure 25: Auto-increment Read Cycle  
When the auto-increment mode is enabled (AutoInc is set to 1), the Address Register will continue incrementing for  
each read cycle. When the content of the Address Register reaches 2A, it will wrap around and start from 00h again.  
The auto increment sequence can be terminated by either a “STOP” or “RESTART” condition. The read operation  
can be terminated with a “STOP” condition. Figure 25 shows an auto-increment read cycle terminated by a STOP  
or RESTART condition.  
28  
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
Registers and Programming  
The CH7005 is a fully programmable device, providing for full functional control through a set of registers accessed  
from the I2C port. The CH7005 contains a total of 37 registers, which are listed in Table 14 and described in detail  
under Register Descriptions. Detailed descriptions of operating modes and their effects are contained in the previ-  
ous section, Functional Description. An addition (+) sign in the Bits column below signifies that the parameter con-  
tains more than 8 bits, and the remaining bits are located in another register.  
Table 14. Register Map  
Register  
Display Mode  
Symbol  
DMR  
FFR  
VBW  
IDF  
Address  
00H  
Bits  
Functional Summary  
Display mode selection  
8
Flicker Filter  
01H  
6
Flicker filter mode selection  
Video Bandwidth  
Input Data Format  
Clock Mode  
03H  
7
Luma and chroma filter bandwidth selection  
Data format and bit-width selections  
Sets the clock mode to be used  
Active video delay setting  
04H  
7
CM  
06H  
8
Start Active Video  
Position Overflow  
Black Level  
SAV  
PO  
07H  
8+  
3
08H  
MSB bits of position values  
BLR  
HPR  
09H  
8
Black level adjustment input latch clock edge select  
0AH  
8+  
Enables horizontal movement of displayed image on  
TV  
Horizontal Position  
Vertical Position  
VPR  
0BH  
8+  
Enables vertical movement of displayed image on  
TV  
SPR  
PMR  
CDR  
CE  
0DH  
0EH  
4
Determines the horizontal and vertical sync polarity  
Enables power saving modes  
Sync Polarity  
Power Management  
Connection Detect  
Contrast Enhancement  
PLL M and N extra bits  
PLL-M Value  
5
10H  
4
Detection of TV presence  
11H  
3
Contrast enhancement setting  
MNE  
PLLM  
PLLN  
BCO  
FSCI  
13H  
5
Contains the MSB bits for the M and N PLL values  
Sets the PLL M value - bits (7:0)  
14H  
8+  
8+  
6
PLL-N Value  
15H  
Sets the PLL N value - bits (7:0)  
Buffered Clock  
17H  
Determines the clock output at pin 41  
Determines the subcarrier frequency  
Subcarrier Frequency  
Adjust  
18H -1FH  
4 or 8  
each  
PLL and Memory Control  
CIV Control  
PLLC  
CIVC  
CIV  
20H  
21H  
6
Controls for the PLL and memory sections  
Control of CIV value  
5
Calculated Fsc Increment  
Value  
22H -  
24H  
8 each  
Readable register containing the calculated  
subcarrier increment value  
Version ID  
Test  
VID  
TR  
25H  
8
Device version number  
26H -  
29H  
30  
Reserved for test (details not included herein)  
Address  
AR  
3FH  
6
Current register being addressed  
201-0000-025 Rev 2.1, 8/2/99  
29  
CHRONTEL  
CH7005C  
Register Descriptions (continued)  
2
Table 15. I C Alternate Register Map (Note: MacrovisionTM controls available only by special arrangement)  
Register  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
3FH  
Bit 7  
Bit 6  
Bit 5  
IRO  
Bit 4  
VOS1  
FC0  
Bit 3  
VOS0  
FY1  
Bit 2  
SR2  
FY0  
Bit 1  
SR1  
FT1  
Bit 0  
SR0  
FT0  
IR2  
IR1  
FC1  
FLFF  
CVBW  
DACG  
CBW1  
CBW0  
YPEAK  
IDF3  
YSV1  
IDF2  
YSV0  
IDF1  
YCV  
IDF0  
RGBBP  
CFRB  
SAV7  
M/S*  
Reserved  
SAV5  
MCP  
XCM1  
SAV3  
XCM0  
SAV2  
SAV8  
BL2  
PCM1  
SAV1  
HP8  
PCM0  
SAV0  
VP8  
SAV6  
SAV4  
BL7  
HP7  
VP7  
BL6  
HP6  
VP6  
BL5  
HP5  
VP5  
BL4  
HP4  
VP4  
BL3  
HP3  
VP3  
BL1  
BL0  
HP2  
HP1  
HP0  
VP0  
VP2  
VP1  
DES  
SYO  
PD2  
VSP  
PD1  
HSP  
PD0  
SCART  
Reset*  
YT  
CT  
CVBST  
CE1  
SENSE  
CE0  
CE2  
SNE  
M4  
SPE  
M3  
N9  
M2  
N2  
N8  
M1  
N1  
M8  
M0  
N0  
M7  
N7  
M6  
N6  
M5  
N5  
N4  
N3  
SHF2  
SHF1  
SHF0  
FSCI31  
FSCI27  
FSCI23  
FSCI19  
FSCI15  
FSCI11  
FSCI7  
FSCI3  
PLLS  
SCO2  
FSCI30  
FSCI26  
FSCI22  
FSCl18  
FSCl14  
FSCl10  
FSCI6  
FSCI2  
PLL5VD  
ClVH1  
CIV18  
CIV10  
CIV2  
SCO1  
FSCI29  
FSCI25  
FSCI21  
FSCl17  
FSCl13  
FSCl9  
FSCI5  
FSCI1  
PLL5VA  
ClVH0  
CIV17  
CIV9  
SCO0  
FSCI28  
FSCI24  
FSCI20  
FSCl16  
FSCI12  
FSCI8  
FSCI4  
FSCI0  
MEM5V  
AClV  
P-OUTP  
DSEN  
PLLCPl  
PLLCAP  
CIV25  
CIV20  
CIV12  
CIV4  
CIV24  
CIV19  
CIV11  
CIV3  
CIV23  
CIV15  
CIV7  
VID7  
TS3  
CIV22  
CIV14  
CIV6  
VID6  
TS2  
CIV21  
CIV13  
CIV5  
VID5  
TS1  
CIV16  
CIV8  
CIV1  
CIVO  
VID4  
VID3  
VID2  
VID1  
VID0  
TS0  
RSA  
BST  
NST  
TE  
MS2  
MS1  
MSO  
MTD  
YLM8  
YLM1  
CLM1  
AR1  
CLM8  
YLM0  
CLM0  
AR0  
YLM7  
YLM6  
YLM5  
CLM5  
AR5  
YLM4  
CLM4  
AR4  
YLM3  
CLM3  
AR3  
YLM2  
CLM2  
AR2  
CLM7  
CLM6  
reserved  
reserved  
30  
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
Register Descriptions (continued)  
Display Mode Register  
Address: 00H  
Bits: 8  
Bit:  
7
6
5
4
3
2
1
0
IR2  
IR1  
IR0  
VOS1  
VOS0  
SR2  
SR1  
R/W  
1
SR0  
Symbol:  
Type:  
R/W  
0
R/W  
1
R/W  
1
R/W  
0
R/W  
1
R/W  
0
R/W  
0
Default:  
This register provides programmable control of the CH7005 display mode, including input resolution (IR[2:0]),  
output TV standard (VOS[1:0]), and scaling ratio (SR[2:0]). The mode of operation is determined according to the  
table below (default is 640x480 input, NTSC output, 7/8’s scaling).  
Table 16. Display Modes  
Input Data  
Format  
(Active  
Total  
Pixels/Line  
x Total  
Output  
Format  
VOS  
[1:0]  
SR  
[2:0]  
Pixel Clock  
(MHz)  
Mode  
0
IR[2:0]  
000  
000  
000  
000  
001  
001  
001  
001  
010  
010  
010  
010  
010  
011  
011  
011  
011  
011  
011  
100  
100  
100  
100  
100  
100  
101  
101  
110  
110  
Video)  
Lines/Frame  
Scaling  
5/4  
1/1  
5/4  
1/1  
5/4  
1/1  
5/4  
1/1  
5/4  
1/1  
5/4  
1/1  
7/8  
5/4  
1/1  
5/6  
1/1  
7/8  
5/6  
1/1  
5/6  
3/4  
5/6  
3/4  
7/10  
1/1  
1/1  
1/1  
1/1  
00  
00  
01  
01  
00  
00  
01  
01  
00  
00  
01  
01  
01  
00  
00  
00  
01  
01  
01  
00  
00  
00  
01  
01  
01  
00  
01  
00  
01  
000  
001  
000  
001  
000  
001  
000  
001  
010  
001  
000  
001  
010  
000  
001  
011  
001  
010  
011  
001  
011  
100  
011  
100  
101  
001  
001  
001  
001  
512x384  
512x384  
512x384  
512x384  
720X400  
720x400  
720x400  
720x400  
640x400  
640x400  
640x400  
640x400  
640x400  
640x480  
640x480  
640x480  
640x480  
640x480  
640x480  
800x600  
800x600  
800x600  
800x600  
800x600  
800x600  
720x576  
720x480  
800x500  
640X400  
840x500  
840x625  
800x420  
784x525  
1125X500  
1116x625  
945x420  
936x525  
1000x500  
1008x625  
840x420  
840x525  
840x600  
840x500  
840x625  
840x750  
784x525  
784x600  
800x630  
944x625  
960x750  
936x836  
1040x630  
1040x700  
1064x750  
864x625  
858x525  
1135x625  
910X525  
PAL  
21.000000  
26.250000  
20.139860  
24.671329  
28.125000  
34.875000  
23.790210  
29.454545  
25.000000  
31.5000000  
21.146853  
26.433566  
30.209790  
21.000000  
26.250000  
31.5000000  
24.671329  
28.195804  
30.209790  
29.500000  
36.0000000  
39.000000  
39.272727  
43.636364  
47.832168  
13.500000  
13.500000  
17.734375  
14.318182  
1
PAL  
2
NTSC  
NTSC  
PAL  
3
4
5
PAL  
6
NTSC  
NTSC  
PAL  
7
8
9
PAL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25*  
26*  
27*  
28*  
NTSC  
NTSC  
NTSC  
PAL  
PAL  
PAL  
NTSC  
NTSC  
NTSC  
PAL  
PAL  
PAL  
NTSC  
NTSC  
NTSC  
PAL  
NTSC  
PAL  
NTSC  
* Interlaced modes of operation. (For those modes, some functions will be bypassed. For details, please contact the  
application department.)  
201-0000-025 Rev 2.1, 8/2/99  
31  
CHRONTEL  
CH7005C  
Register Descriptions (continued)  
00  
01  
10  
11  
VOS[1:0]  
PAL  
NTSC  
PAL-M  
NTSC-J  
Output Format  
Flicker Filter Register  
Symbol: FFR  
Address: 01H  
Bits: 6  
Bit:  
7
6
5
4
3
2
1
0
FC1  
R/W  
1
FC0  
R/W  
1
FY1  
R/W  
0
FY0  
R/W  
0
FT1  
R/W  
1
FT0  
R/W  
0
Symbol:  
Type:  
Default:  
The flicker filter register provides for adjusting the operation of the various filters used in rendering the on-screen  
image. Adjusting settings between minimal and maximal values enables optimization between sharpness and flicker  
content. The FC[1:0] bits determine the settings for the chroma channel. The FT[1:0] bits determine the settings for  
the text enhancement circuit. The FY[1:0] bits determine the settings for the luma channel. In addition, the Chroma  
channel filtering includes a setting to enable the chroma dot crawl reduction circuit.  
Note: When writing to register O1H, FY[1:0] is bits 3:2. FT[1:0] is bits 1:0. When reading from the register O1H, FY  
[1:0] is bits 1:0 and FT[1:0] is bits 3:2.  
Table 17. Flicker Filter Settings  
FY[1:0]  
00  
Settings for Luma Channel  
Minimal Flicker Filtering  
Slight Flicker Filtering  
Maximum Flicker Filtering  
Invalid  
01  
10  
11  
FT[1:0]  
00  
Settings for Text Enhancement Circuit  
Maximum Text Enhancement  
Slight Text Enhancement  
Minimum Text Enhancement  
Invalid  
01  
10  
11  
FC[1:0]  
00  
Settings for Chroma Channel  
Minimal Flicker Filtering  
01  
Slight Flicker Filtering  
10  
Maximum Flicker Filtering  
Enable Chroma DotCrawl Reduction  
11  
32  
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
Register Descriptions (continued)  
Symbol: VBW  
Video Bandwidth Register  
Address: 03H  
Bits: 7  
Bit:  
7
6
5
4
3
2
1
0
FLFF  
R/W  
0
CVBW  
R/W  
0
CBW1  
R/W  
0
CBW0  
R/W  
0
YPEAK  
R/W  
0
YSV1  
R/W  
0
YSV0  
R/W  
0
YCV  
R/W  
0
Symbol:  
Type:  
Default:  
This register enables the selection of alternative filters for use in the luma and chroma channels. There are currently  
four filter options defined for the chroma channel, 4 filter options in the S-Video luma channel and two filter options  
in the composite luma channel. The Table 18 and 19 below show the various settings.  
Table 18. Luma Filter Bandwidth  
YCV  
Luma Composite Video Filter Adjust  
Low bandwidth  
0
1
High bandwidth  
YSV[1:0]  
Luma S-Video Filter Adjust  
00  
Low bandwidth  
01  
Medium bandwidth  
10  
High bandwidth  
11  
Reserved (decode this and handle the same as 10)  
Disables the Y-peaking circuit  
Disables the peaking filter in luma S-Video channel  
Enables the peaking filter in luma S-Video channel  
YPEAK  
0
1
Table 19. Chroma Filter Bandwidth  
CBW[1:0]  
0 0  
Chroma Filter Adjust  
Low bandwidth  
0 1  
Medium bandwidth  
Med-high bandwidth  
High bandwidth  
1 0  
1 1  
Bit 6 (CVBW) outputs the S-Video luma signal on both the S-Video luma output and the CVBS output. A "1" in this  
location enables the output of a black and white image on composite, thereby eliminating the degrading effects of  
the color signal (such as dot crawl or false colors), which is useful for viewing text with high accuracy.  
Bit 7 (FLFF) controls the flicker filter used in the 7/10’s scaling modes. In these scaling modes, setting FLFF to 1  
causes a five line flicker filter to be used. The default setting of 0 uses a four line flicker filter.  
201-0000-025 Rev 2.1, 8/2/99  
33  
CHRONTEL  
CH7005C  
Register Descriptions (continued)  
Input Data Format Register  
Symbol: IDF  
Address: 04H  
Bits: 7  
Bit:  
7
6
5
4
3
2
1
0
DACG  
RGBBP  
IDF3  
IDF2  
IDF1  
IDF0  
Symbol:  
Type:  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default:  
This register sets the variables required to define the incoming pixel data stream.  
Table 20. Input Data Format  
IDF[3:0]  
0000  
Description  
16-bit non-multiplexed RGB (16-bit color, 565) input  
0001  
16-bit non-multiplexed YCrCb (24-bit color) input (Y non-multiplexed, CrCb multiplexed)  
16-bit multiplexed RGB (24-bit color) input  
0010  
0011  
15-bit non-multiplexed RGB (15-bit color, 555) input  
0100  
12-bit multiplexed RGB (24-bit color) input (“C” multiplex scheme)  
12-bit multiplexed RGB2 (24-bit color) input (“I” multiplex scheme)  
8-bit multiplexed RGB (24-bit color, 888) input  
0101  
0110  
0111  
8-bit multiplexed RGB (16-bit color, 565) input  
1000  
8-bit multiplexed RGB (15-bit color, 555) input  
1001-1111  
8-bit multiplexed YCrCb (24-bit color) input (Y, Cr and Cb are multiplexed)  
RGBBP (bit 5): Setting this bit enables the RGB pass-through mode. Setting this bit to a 1 causes the input RGB  
signal to be directly output at the DACs (subject to a pipeline delay). If RGBBP=0, the bypass mode is disabled.  
DACG (bit 6): This bit controls the gain of the D/A converters. When DACG=0, the nominal DAC current is 71  
mA, which provides the correct levels for NTSC and PAL-M. When DACG=1, the nominal DAC current is 76mA,  
which provides the correct levels for PAL and NTSC-J.  
Clock Mode Register  
Symbol: CM  
Address: 06H  
Bits: 8  
Bit:  
7
6
5
4
3
2
1
0
CFRB  
R/W  
0
M/S*  
R/W  
0
Reserved  
MCP  
R/W  
1
XCM1  
R/W  
0
XCM0  
R/W  
0
PCM1  
R/W  
0
PCM0  
R/W  
0
Symbol:  
Type:  
R/W  
0
Default:  
The setting of the clock mode bits determines the clocking mechanism used in the CH7005. The clock modes are  
shown in the table below. PCM controls the frequency of the pixel clock, and XCM identifies the frequency of the  
XCLK input clock.  
34  
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
Register Descriptions (continued)  
Note: For what was formerly defined as the master mode, the user must now externally connect the P-OUT clock to the  
XCLK input pin. Although it is possible to set the XCM [1:0] and PCM[1:0] values independent of the input data format,  
there are only certain combinations of input data format, XCM and PCM, that will result in valid data being demultiplexed  
at the input of the device. Refer to the “Input Data Format Register” for these combinations.  
Note: Display modes 25 and 26 must use a 2X multiplexed input data format and a 2X XCLK. Display modes 27  
and 28 must use a 1X XCLK input data format.  
Table 21. Input Data Format Register  
XCM[1:0]  
PCM[1:0]  
XCLK  
1X  
P-OUT  
1X  
Input Data Modes Supported  
0, 1, 2, 3, 4, 5, 7, 8, 9  
0, 1, 2, 3, 4, 5, 7, 8, 9  
0, 1, 2, 3, 4, 5, 7, 8, 9  
2, 4, 5, 7, 8, 9  
00  
00  
00  
01  
01  
01  
1X  
1X  
1X  
00  
01  
1X  
00  
01  
1X  
00  
01  
1X  
1X  
2X  
1X  
3X  
2X  
1X  
2X  
2X  
2, 4, 5, 7, 8, 9  
2X  
3X  
2, 4, 5, 7, 8, 9  
3X  
1X  
6
6
6
3X  
2X  
3X  
3X  
The Clock Mode Register also contains the following bits:  
MCP (bit 4) determines which edge of the pixel clock output will be used to latch input data. Zero selects the  
negative edge, one selects the positive edge.  
M/S* (bit 6) determines whether the device operates in master or slave clock mode. In master mode (1), the  
14.31818MHz clock is used as a frequency reference to the PLL. In slave mode (0) the XCLK input is used as  
a reference to the PLL, and is divided by the value specified by XCM[1:0]. The divide by N and M are forced  
to one.  
CFRB (bit 7) sets whether the chroma subcarrier free-runs, or is locked to the video signal. One causes the  
subcarrier to lock to the TV vertical rate, and should be used when the ACIV bit is set to zero. Zero causes the  
subcarrier to free-run, and should be used when the ACIV bit is set to one.  
Start Active Video Register  
Symbol: SAV  
Address: 07H  
Bits: 8  
Bit:  
7
6
5
4
3
2
1
0
SAV7  
R/W  
0
SAV6  
R/W  
0
SAV5  
R/W  
0
SAV4  
R/W  
0
SAV3  
R/W  
0
SAV2  
R/W  
0
SAV1  
R/W  
0
SAV0  
R/W  
0
Symbol:  
Type:  
Default:  
This register sets the delay in pixel increments from leading edge of horizontal sync, or the rising edge of data start,  
to the start of active video. The entire bit field SAV[8:0] is comprised of this register SAV[7:0], plus the MSB value  
contained in the position overflow register, bit SAV8. This is decoded as a whole number of pixels, which can be set  
anywhere between 0 and 511 pixels. Therefore, in any 2X clock mode, the number of 2X clocks from the leading  
edge of sync to the first active data must be a multiple of two clocks. In any 3X clock mode, the number of 3X  
clocks from the leading edge of sync to the first active data must be a multiple of three clocks. When using the  
DS/BCO pin as a data start input, this register should be set to decimal value 11.  
201-0000-025 Rev 2.1, 8/2/99  
35  
CHRONTEL  
CH7005C  
Register Descriptions (continued)  
Position Overflow Register  
Symbol: PO  
Address: 08H  
Bits: 3  
Bit:  
7
6
5
4
3
2
1
0
SAV8  
HP8  
VP8  
Symbol:  
Type:  
R/W  
0
R/W  
0
R/W  
0
Default:  
This position overflow register contains the MSB values for the SAV, HP, and VP values, as follows:  
VP8 (bit 0) is the MSB of the vertical position value (see explanation under “Vertical Position Register”).  
HP8 (bit 1) is the MSB of the horizontal position value (see explanation under “Horizontal Position  
Register”).  
SAV8 (bit 2) is the MSB of the start of active video value (see explanation under “Start Active Video  
Register”).  
Black Level Register  
Symbol: BLR  
Address: 09H  
Bits: 8  
Bit:  
7
6
5
4
3
2
1
0
BL7  
R/W  
0
BL6  
R/W  
1
BL5  
R/W  
1
BL4  
R/W  
1
BL3  
R/W  
1
BL2  
R/W  
1
BL1  
R/W  
1
BL0  
R/W  
1
Symbol:  
Type:  
Default:  
This register sets the black level. The luminance data is added to this black level, which must be set between 90 and  
208, with the default value being 127. Recommended values for NTSC and PAL-M are 127, 105 for PAL and 100  
for NTSC-J.  
Horizontal Position Register  
Symbol: HPR  
Address: 0AH  
Bits: 8  
Bit:  
7
6
5
4
3
2
1
0
HP7  
HP6  
HP5  
HP4  
HP3  
HP2  
HP1  
HP0  
Symbol:  
Type:  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default:  
The horizontal position register is used to shift the displayed TV image in a horizontal direction (left or right) to  
achieve a horizontally centered image on screen. The entire bit field, HP[8:0] is comprised of this register HP[7:0]  
plus the MSB value contained in the position overflow register, bit HP8. Increasing this value moves the displayed  
image position RIGHT; decreasing this value moves the displayed image position LEFT. Each increment moves the  
image position by 4 input pixels.  
36  
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
Register Descriptions (continued)  
Vertical Position Register  
Symbol: VPR  
Address: 0BH  
Bits: 8  
Bit:  
7
6
5
4
3
2
1
0
VP7  
VP6  
VP5  
VP4  
VP3  
VP2  
VP1  
VP0  
Symbol:  
Type:  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default:  
This register is used to shift the displayed TV image in a vertical direction (up or down) to achieve a vertically cen-  
tered image on screen. This bit field, VP[8:0] represents the TV line number (relative to the VGA vertical sync)  
used to initiate the generation and insertion of the TV vertical interval (i.e., the first sequence of equalizing pulses).  
Increasing values delay the output of the TV vertical sync, causing the image position to move UP on the TV screen.  
Decreasing values, therefore, move the image position DOWN. Each increment moves the image position by one  
TV lines (approximately 4 input lines). The maximum value that should be programmed into the VP[8:0] value is  
the number of TV lines minus one, divided by two (262, 312 or 313). When panning the image up, the number  
should be increased until (TVLPF-1) /2 is reached; the next step should be to reset the register to zero. When pan-  
ning the image down the screen, the VP[8:0] value should be decremented until the value zero is reached. The next  
step should set the register to (TVLPF-1) /2, and then decrementing can continue. If this value is programmed to a  
number greater than (TV lines per frame-1) /2, a TV vertical SYNC will not be generated.  
Sync Polarity Register  
Symbol: SPR  
Address: 0DH  
Bits: 4  
Bit:  
7
6
5
4
3
2
1
0
DES  
SYO  
VSP  
HSP  
Symbol:  
Type:  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default:  
This register provides selection of the synchronization signal input to, or output from, the CH7005.  
HSP (bit 0) is Horizontal Sync Polarity - an HSP value of zero means the horizontal sync is active low and a  
value of one means the horizontal sync is active high.  
VSP (bit 1) is Vertical Sync Polarity - a VSP value of zero means the vertical sync is active low and a value of  
one means the vertical sync is active high.  
SYO (bit 2) is Sync Direction - a SYO value of zero means that H and V sync are input to the CH7005. A  
value of one means that H and V sync are output from the CH7005.  
DES (bit 3) is Detect Embedded Sync - a DES value of zero means that H and V sync will be obtained from  
the direct pin inputs. A DES value of one means that H and V sync will be detected from the embedded codes  
on the pixel input stream. Note that this will only be valid for the YCrCb input modes.  
Note: When sync direction is set to be an output, horizontal sync will use a fixed pulse width of 64 pixels and vertical  
sync will use a fixed pulse width of 1 line.  
201-0000-025 Rev 2.1, 8/2/99  
37  
CHRONTEL  
CH7005C  
Register Descriptions (continued)  
Power Management Register  
Symbol: PMR  
Address: 0EH  
Bits: 5  
Bit:  
7
6
5
4
3
2
1
0
SCART  
Reset*  
PD2  
PD1  
PD0  
Symbol:  
Type:  
R/W  
0
R/W  
1
R/W  
0
R/W  
1
R/W  
1
Default:  
This register provides control of the power management functions, a software reset (ResetB), and the SCART output  
enable. The CH7005 provides programmable control of its operating states, as described in the table below.  
Table 22. Power Management  
PD[2:0]  
Operating State  
Composite Off  
Power Down  
Functional Description  
CVBS DAC is powered down  
000  
001  
Most pins and circuitry are disabled (except for the buffered clock outputs  
which are limited to the 14MHz output and VCO divided output when the  
DS/BCO pin is selected to be an output).  
010  
011  
S-Video Off  
S-Video DACs are powered down  
All circuits and pins are active.  
Normal (On)  
2
1XX  
Full Power Down  
All circuitry is powered down, except I C circuit.  
Reset* (bit 3) is soft reset. Setting this bit to 0 will reset all circuitry requiring a power on reset, except for this bit  
2
itself and the I C state machines. After reset, this bit should be set back to 1 for normal operation to continue.  
SCART (bit 4) is the SCART enable. Setting SCART = 0 means the CH7005 will operate normally, outputting Y/C  
and CVBS from the three DACs. SCART=1 enables SCART output, which will cause R, G and B to be output from  
the DACs and composite sync from the CSYNC pin.  
Note: For complete details regarding the operation of these modes, see the Power Management in Functional Description  
sections.  
Connection Detect Register  
Symbol: CDR  
Address: 10H  
Bits: 4  
Bit:  
7
6
5
4
3
2
1
0
YT  
R
0
CT  
R
CVBST  
SENSE  
Symbol:  
Type:  
R
0
W
0
0
Default:  
The Connection Detect Register provides a means to sense the connection of a TV to either S-Video or Composite  
video outputs. The status bits, YT, CT, and CVBST correspond to the DAC outputs for S-Video (Y and C outputs)  
and Composite video (CVBS), respectively. However, the values contained in these status bits are NOT VALID  
until a sensing procedure is performed. Use of this register requires a sequence of events to enable the sensing of  
outputs, then reading out the applicable status bits. The detection sequence works as follows:  
1. Ensure the power management register Bits 2-0 is set to 011(normal mode).  
38  
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
Register Descriptions (continued)  
2. Set the SENSE bit to a 1. This forces a constant current output onto the Y, C, and CVBS outputs. Note that  
during SENSE = 1, these 3 analog outputs are at steady state and no TV synchronization pulses are asserted.  
3. Reset the SENSE bit to 0. This triggers a comparison between the voltage sensed on these analog outputs  
and the reference value expected (V  
= 1.235V). If the measured voltage is below this threshold  
threshold  
value, it is considered connected, if it is above this voltage it is considered unconnected. During this step,  
each of the three status bits corresponding to individual analog outputs will be set if they are NOT  
connected.  
4. Read the status bits. The status bits, Y, C, and CVBST (corresponding to S-Video Y and C outputs and  
composite video) now contain valid information which can be read to determine which outputs are  
connected to a TV. Again, a “0” indicates a valid connection, a “1” indicates an unconnected output.  
Contrast Enhancement Register  
Symbol: CE  
Address: 11H  
Bits: 3  
Bit:  
7
6
5
4
3
2
1
0
CE2  
CE1  
CE0  
Symbol:  
Type:  
R/W  
0
R/W  
1
R/W  
1
Default:  
This register provides control of the contrast enhancement feature of the CH7005, according to the table below. At  
a setting of 000, the video signal will be pulled towards the maximum black level. As the value of CE[2:0] is  
increased, the amount that the signal is pulled towards black is decreased until unity gain is reached at a setting of  
011. From this point on, the video signal is pulled towards the white direction, with the effect increasing with  
increasing settings of CE[2:0].  
Table 23. Contrast Enhancement Function  
CE[2:0]  
000  
Description (all gains limited to 0-255)  
Contrast enhancement gain 3 Y = (5/4)*(Y -102) = Enhances Black  
out  
in  
001  
Contrast enhancement gain 2 Y = (9/8)*(Y -57)  
out in  
010  
Contrast enhancement gain 1 Y = (17/16)*(Y -30)  
out in  
011  
Normal mode Y = (1/1)*(Yin-0) = Normal Contrast  
out  
100  
Contrast enhancement gain 1 Y = (17/16)*(Y -0)  
out in  
101  
Contrast enhancement gain 2 Y = (9/8)*(Y -0)  
out in  
110  
Contrast enhancement gain 3 Y = (5/4)*(Y -0)  
out in  
111  
Contrast enhancement gain 4 Y = (3/2)*(Y -0) = Enhances White  
out in  
201-0000-025 Rev 2.1, 8/2/99  
39  
CHRONTEL  
CH7005C  
Register Descriptions (continued)  
256  
224  
192  
160  
128  
96  
64  
32  
0
0
32  
64  
96  
128  
160  
192  
224 256  
Figure 26: Luma Transfer Function at different contrast enhancement settings.  
PLL Overflow Register  
Symbol: MNE  
Address: 13H  
Bits: 5  
Bit:  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
N9  
R/W  
0
N8  
R/W  
0
M8  
R/W  
0
Symbol:  
Type:  
R/W  
0
R/W  
0
Default:  
The PLL Overflow Register contains the MSB bits for the ‘M’ and ‘N’ values, which will be described in the PLL-  
M and PLL-N registers, respectively. The reserved bits should not be written to.  
PLL M Value Register  
Symbol: PLLM  
Address: 14H  
Bits: 8  
Bit:  
7
6
5
4
3
2
1
0
M7  
R/W  
0
M6  
R/W  
1
M5  
R/W  
0
M4  
R/W  
0
M3  
R/W  
0
M2  
R/W  
0
M1  
R/W  
0
M0  
R/W  
1
Symbol:  
Type:  
Default:  
The PLL M value register determines the division factor applied to the frequency reference clock before it is input to  
the PLL phase detector when the CH7005 is operating in master or pseudo-master clock mode. In slave mode, an  
external pixel clock is used instead of the frequency reference, and the division factor is determined by the  
XCM[3:0] value. This register contains the lower 8 bits of the complete 9-bit M value.  
40  
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
Register Descriptions (continued)  
CH7005C  
PLL N Value Register  
Symbol: PLLN  
Address: 15H  
Bits: 8  
Bit:  
7
6
5
4
3
2
1
0
N7  
R/W  
1
N6  
R/W  
0
N5  
R/W  
0
N4  
R/W  
0
N3  
R/W  
0
N2  
R/W  
0
N1  
R/W  
0
N0  
R/W  
0
Symbol:  
Type:  
Default:  
The PLL N value register determines the division factor applied to the VCO output before being applied to the PLL  
phase detector, when the CH7005 is operating in master or pseudo-master mode. In slave mode, the value of ‘N’ is  
always 1. This register contains the lower 8 bits of the complete 10-bit N value. The pixel clock generated in a  
master and pseudo-master modes is calculated according to the equation below:  
Fpixel = Fref* [(N+2) / (M+2)]  
When using a 14.318 MHz frequency reference, the required M and N values for each mode are shown in the table  
below  
Table 24. M and N Values for Each Mode  
Mode  
VGA Resolution, TV  
Standard, Scaling Ratio  
N 10-  
bits  
M 9-  
bits  
Mode  
VGA Resolution, TV  
Standard, Scaling Ratio  
N 10-  
bits  
M 9-  
bits  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
640X480, PAL, 5:6  
640X480, NTSC, 1:1  
640X480, NTSC, 7:8  
640X480, NTSC, 5:6  
800X600, PAL, 1:1  
800X600, PAL, 5:6  
800X600, PAL, 3:4  
800X600, NTSC, 5:6  
800X600, NTSC, 3:4  
800X600, NTSC, 7:10  
720X576, PAL, 1:1  
720X480, NTSC, 1:1  
800X500, PAL, 1:1  
640X400, NTSC, 1:1  
9
3
63  
63  
89  
313  
33  
103  
33  
19  
89  
33  
33  
197  
2
0
1
512x384, PAL, 5:4  
512x384, PAL, 1:1  
512X384, NTSC, 5:4  
512X384, NTSC, 1:1  
720X400, PAL, 5:4  
720X400, PAL, 1:1  
720X400, NTSC, 5:4  
720X400, NTSC, 1:1  
640X400, PAL, 5:4  
640X400, PAL, 1:1  
640X400, NTSC, 5:4  
640x400, NTSC, 1:1  
640X400, NTSC, 7:8  
640X480, PAL, 5:4  
640X480, PAL, 1:1  
20  
9
13  
4
110  
126  
190  
647  
86  
89  
63  
26  
138  
63  
33  
61  
3
2
126  
110  
53  
3
4
5
339  
106  
70  
284  
94  
6
7
62  
8
108  
9
302  
31  
9
63  
11  
89  
13  
4
10  
11  
12  
13  
14  
94  
31  
22  
242  
2
190  
20  
9
Buffered Clock Output Register  
Symbol: BCO  
Address: 17H  
Bits: 6  
Bit:  
7
6
5
4
3
2
1
0
SHF2  
SHF1  
R/W  
0
SHF0  
SCO2  
SCO1  
SCO0  
R/W  
0
Symbol:  
Type:  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default:  
When this pin is selected to be an output, the buffered clock output register determines which clock is selected to be  
output at the DS/BCO clock output pin and what frequency value is output when a VCO derived signal is out-  
put.The tables below show the possible outputs.  
201-0000-025 Rev 2.1, 8/2/99  
41  
CHRONTEL  
CH7005C  
Register Descriptions (continued)  
Table 25. Clock Output Selection  
SCO[2:0]  
000  
Buffered Clock Output  
14MHz crystal  
001  
(for test use only)  
010  
VCO divided by K3 (see Table 26)  
Field ID signal  
011  
100  
(for test use only)  
101  
(for test use only)  
110  
TV horizontal sync (for test use only)  
TV vertical sync (for test use only)  
111  
Table 26. K3 Selection  
SHF[2:0]  
000  
K3  
2.5  
3.5  
4
010  
011  
100  
4.5  
5
101  
110  
6
111  
7
Subcarrier Value Registers  
Symbol: FSCI  
Address: 18H - 1FH  
Bits: 4 or 8 each  
Bit:  
7
6
5
4
3
2
1
0
FSCI#  
R/W  
FSCI#  
R/W  
FSCI#  
R/W  
FSCI#  
R/W  
Symbol:  
Type:  
Default:  
The lower four bits of registers 18H through 1FH contain a 32-bit value which is used as an increment value for the  
ROM address generation circuitry. The bit locations are specified as the following:  
Register  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
Contents  
FSCI[31:28]  
FSCI[27:24]  
FSCI[23:20]  
FSCI[19:16]  
FSCI[15:12]  
FSCI[11:8]  
FSCI[7:4]  
1FH  
FSCI[3:0]  
42  
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
Register Descriptions (continued)  
CH7005C  
When the CH7005 is operating in the master clock mode, the tables below should be used to set the FSCI registers.  
When using these values, the ACIV bit in register 21H should be set to “0” and the CFRB bit in register 06H should  
be set to “1”.  
Table 27. FSCI Values (525-Line Modes)  
NTSC  
“Normal Dot Crawl”  
NTSC  
“No Dot Crawl”  
PAL-M  
“Normal Dot Crawl  
Mode  
2
763,363,328  
623,153,737  
574,429,782  
463,962,517  
646,233,505  
516,986,804  
452,363,454  
623,153,737  
545,259,520  
508,908,885  
521,957,831  
469,762,048  
428,554,851  
569,408,543  
1,073,741,824  
763,366,524  
623,156,346  
574,432,187  
463,964,459  
646,236,211  
5165,988,968  
452,365,347  
623,156,346  
545,261,803  
508,911,016  
521,960,016  
469,764,015  
438,556,645  
569,410,927  
1,073,746,319  
762,524,467  
622,468,953  
573,798,541  
463,452,668  
645,523,358  
516,418,687  
451,866,351  
622,468,953  
544,660,334  
508,349,645  
521,384,251  
469,245,826  
428,083,911  
568,782,819  
1,072,561,888  
3
6
7
10  
11  
12  
16  
17  
18  
22  
23  
24  
26  
28  
Table 28. FSCI Values (625-Line Modes)  
PAL  
PAL-N  
Mode  
0
“Normal Dot Crawl”  
806,021,060  
644,816,848  
601,829,058  
485,346,014  
677,057,690  
537,347,373  
806,021,060  
644,816,848  
537,347,373  
645,499,916  
528,951,320  
488,262,757*  
705,268,427  
1,073,747,879  
“Normal Dot Crawl”  
651,209,077  
520,967,262  
486,236,111  
392,125,896  
547,015,625  
434,139,385  
651,209,077  
520,967,262  
434,139,385  
521,519,134  
427,355,957  
394,482,422  
569,807,942  
867,513,766  
1
4
5
8
9
13  
14  
15  
19  
20  
21  
25  
27  
When the CH7005 is operating in the slave clock mode, the ACIV bit in register 21H should be set to “1” and the  
CFRB bit in register 06H should be set to “0”.  
*Note: For reduced corss-color and cross-luminance artifacts, a value of 488,265,597 can be used with CFRB = "0"  
& ACIV = "0".  
201-0000-025 Rev 2.1, 8/2/99  
43  
CHRONTEL  
CH7005C  
Register Descriptions (continued)  
Symbol:  
Address: 1BH  
Bits: 8  
Bit:  
7
6
5
4
3
2
1
0
P-OUTP  
R/W  
0
FSCI19  
R/W  
0
FSCI18  
R/W  
0
FSCI17  
R/W  
0
FSCI16  
R/W  
0
Symbol:  
Type:  
Default:  
Note: P-OUTP (bit 4) is used to invert the P-OUT signal.  
Symbol:  
Address: 1CH  
Bits: 6  
Bit:  
7
6
5
4
3
2
1
0
DSEN  
FSCI15  
FSCI14  
FSCI13  
FSCI12  
Symbol:  
Type:  
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default:  
Note: DSEN (bit4) controls the BCO / Data Start I/O pin. When this bit is low, the pin continues to operate as the BCO  
pin described in the BCO register description. When this bit is high, the pin becomes an input for the Data Start signal.  
PLL Control Register  
Symbol: PLLC  
Address: 20H  
Bits: 6  
Bit:  
7
6
5
4
3
2
1
0
PLLCPI  
R/W  
0
PLLCAP  
R/W  
0
PLLS  
R/W  
1
PLL5VD  
R/W  
0
PLL5VA  
R/W  
1
MEM5V  
R/W  
0
Symbol:  
Type:  
Default:  
The following PLL and memory controls are available through the PLL control register:  
MEM5V  
PLL5VA  
PLL5VD  
PLLS  
MEM5V is set to 1 when the memory supply is 5 volts. The default value of 0 is used when the  
memory supply is 3.3 volts.  
PLL5VA is set to 1 when the phase-locked loop analog supply is 5 volts (default). A value of 0 is  
used when the phase-locked loop analog supply is 3.3 volts.  
PLL5VD is set to 1 when the phase-locked loop digital supply is 5 volts. A value of 0 is used when  
the phase-locked loop digital supply is 3.3 volts (default).  
PLLS controls the number of stages used in the PLL. When the PLL5VA is 1 (5V analog PLL  
supply) PLLS should be 1, and seven stages are used. When PLL5VA is 0 (3.3V analog PLL  
supply) PLLS should be 0, and five stages are used.  
PLLCAP  
PLLCPI  
PLLCAP controls the loop filter capacitor of the PLL. A recommended listing of PLLCAP vs.  
Mode is shown below  
PLLCHI controls the charge pump current of the PLL. The default value should be used.  
44  
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
Register Descriptions (continued)  
Table 29. PLL Capacitor Setting  
Mode  
PLLCAP  
Value  
0
1
1
1
0
1
0
1
1
0
1
1
1
0
1
1
1
0
0
0
0
1
0
1
1
0
1
1
0
1
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
201-0000-025 Rev 2.1, 8/2/99  
45  
CHRONTEL  
CH7005C  
Register Descriptions (continued)  
CIV Control Register  
Symbol: CIVC  
Address: 21H  
Bits: 5  
Bit:  
7
6
5
4
3
2
1
0
CIV25  
CIV24  
CIVH1  
R/W  
0
CIVH0  
R/W  
0
ACIV  
R/W  
1
Symbol:  
Type:  
R
0
R
0
Default:  
The following controls are available through the CIV control register:  
ACIV  
When the automatic calculated increment value is 1, the number calculated and present at the CIV  
registers will automatically be used as the increment value for subcarrier generation, removing the  
need for the user to read the CIV value and write in a new FSCI value. Whenever this bit is set to  
1, the subcarrier generation must be forced to free-run mode.  
These bits control the hysteresis circuit which is used to calculate the CIV value.  
See descriptions in the next section.  
CIVH[1:0]  
CIV[25:24]  
Calculated Increment Value Register  
Symbol: CIV  
Address: 22H - 24H  
Bits: 8  
Bit:  
7
6
5
4
3
2
1
0
CIV#  
CIV#  
CIV#  
CIV#  
CIV#  
CIV#  
CIV#  
CIV#  
Symbol:  
Type:  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Default:  
The CIV registers 22H through 24H contain a 26-bit value, which is the calculated increment value that should be  
used as the upper 26 bits of FSCI. This value is determined by a comparison of the pixel clock and the 14MHz  
clock. The bit locations and calculation of CIV are specified as the following:  
Register  
21H  
22H  
23H  
24H  
Contents  
CIV[25:24]  
CIV[23:16]  
CIV[15:8]  
CIV[7:0]  
Version ID Register  
Symbol: VID  
Address: 25H  
Bits: 8  
Bit:  
7
6
5
4
3
2
1
0
VID7  
VID6  
R
VID5  
R
VID4  
R
VID3  
R
VID2  
R
VID1  
R
VID0  
R
Symbol:  
Type:  
R
0
0
1
1
1
0
1
0
Default:  
This read-only register contains a 8-bit value indicating the identification number assigned to this version of the  
CH7005. The default value shown is pre-programmed into this chip and is useful for checking for the correct  
version of this chip, before proceeding with its programming.  
46  
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
Register Descriptions (Continued)  
Address Register  
Symbol: AR  
Address: 3FH  
Bits: 6  
Bit:  
7
6
5
4
3
2
1
0
AR5  
AR4  
AR3  
AR2  
AR1  
AR0  
Symbol:  
Type:  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
Default:  
The Address Register points to the register currently being accessed.  
Electrical Specifications  
Table 30. Absolute Maximum Ratings  
Symbol  
Description  
relative to GND  
Min  
- 0.5  
Typ  
Max  
Units  
V
7.0  
V
V
DD  
1
Input voltage of all digital pins  
GND - 0.5  
VDD + 0.5  
Analog output short circuit duration  
Ambient operating temperature  
Storage temperature  
T
Indefinite  
Sec  
° C  
° C  
° C  
° C  
SC  
T
- 55  
- 65  
125  
150  
150  
220  
AMB  
TSTOR  
TJ  
Junction temperature  
Vapor phase soldering (one minute)  
TVPS  
Notes:  
1. Stresses greater than those listed under absolute maximum ratings may cause permanent damage to the  
device. These are stress ratings only. Functional operation of the device at these or any other conditions  
above those indicated under the normal operating condition of this specification is not recommended.  
Exposure to absolute maximum rating conditions for extended periods my affect reliability.  
2. The device is fabricated using high-performance CMOS technology. It should be handled as an  
ESDsensitive device. Voltage on any signal pin that exceeds the power supply voltage by more than +0.5V  
can induce destructive latch.  
Table 31. Recommended Operating Conditions  
Symbol  
VDD  
Description  
DAC power supply voltage  
Min  
Typ  
5.00  
5.00  
3.3  
Max  
5.25  
5.25  
3.6  
Units  
4.75  
V
AVDD  
DVDD  
RL  
Analog supply voltage  
Digital supply voltage  
Output load to DAC outputs  
37.5  
W
201-0000-025 Rev 2.1, 8/2/99  
47  
CHRONTEL  
CH7005C  
o
o
Table 32. Electrical Characteristics (Operating Conditions: TA = 0 C - 70 C, VDD = 5V ± 5%)  
Symbol  
Description  
Video D/A resolution  
Min  
Typ  
9
Max  
Unit  
Bits  
mA  
%
9
9
Full scale output current  
Video level error  
33.89  
10  
VDD & AVDD (5V) current (simultaneous  
S-Video & composite outputs)  
105  
40  
mA  
DVDD (3.3V) current  
mA  
Note: RSET = 360 W, VREF = 1.235V, and NTSC CCIR601 operation.  
Table 33. Timing - TV Encoder  
Symbol  
Description  
Pixel Clock Period  
Min  
Typ  
Max  
Unit  
t
t
20  
8
50  
25  
60  
25  
nS  
P1  
PH1  
Pixel Clock High Time  
Pixel Clock Duty Cycle (t  
Pixel Clock Period  
nS  
%
tdc1  
/t  
)
40  
10  
50  
50  
50  
PH1 P1  
t
t
nS  
nS  
%
P2  
Pixel Clock High Time  
Pixel Clock Duty Cycle (t  
Pixel Clock Period  
PH2  
tdc2  
/t  
)
40  
10  
60  
17  
PH2 P2  
t
t
nS  
nS  
%
P3  
Pixel Clock High Time  
Pixel Clock Duty Cycle (t  
PH3  
tdc3  
/t  
)
40  
60  
PH3 P3  
Table 34. Digital Inputs / Outputs  
Symbol  
Description  
SD Output  
Test Condition  
IOL = 2.0 mA  
Min  
Typ  
Max  
Unit  
V
0.4  
V
SDOL  
Low Voltage  
SD Input  
V
2.7  
VDD + 0.5  
1.4  
V
V
V
V
V
V
IICIH  
High Voltage  
SD Input  
V
GND-0.5  
2.5  
IICIL  
Low Voltage  
D[0-15] Input  
High Voltage  
D[0-15] Input  
Low Voltage  
P-OUT Output  
High Voltage  
P-OUT Output  
Low Voltage  
V
DVDD+0.5  
0.8  
DATAIH  
V
GND-0.5  
2.8  
DATAIL  
V
IOL = - 400 mA  
P-OUTOH  
V
IOL = 3.2 mA  
0.2  
P-OUTOL  
Note:  
1. VIIC -refers to I2C pins SD and SC.  
2. VDATA - refers to all digital pixel and clock inputs.  
3. VSD - refers to I2C pin SD as an output.  
4. VP-OUT - refers to pixel data output Time - Graphics.  
48  
201-0000-025 Rev 2.1, 8/2/99  
CHRONTEL  
CH7005C  
Table 35. Timing Graphics  
Symbol  
Description  
Min  
Typ  
Max  
17  
Unit  
t
Horizontal Sync Pulse Width  
1
2
2
t
p
HSW  
t
Pixel Clock to Horizontal Leading Edge Delay  
Setup time from Pixel Data to Pixel Clock  
nS  
nS  
HD  
t
t
t
SP1, SP2, SP3  
t
t
t
Hold time from Pixel Clock to Pixel Data  
2
nS  
PH1, HP2, PH3  
ORDERING INFORMATION  
Part number  
CH7005C-V  
CH7005C-T  
Package type  
Number of pins  
Voltage supply  
3V/5V  
PLCC  
44  
44  
TQFP  
3V/5V  
Chrontel  
2210 O’Toole Avenue  
San Jose, CA 95131-1326  
Tel: (408) 383-9328  
Fax: (408) 383-9338  
www.chrontel.com  
E-mail: sales@chrontel.com  
Ó1998 Chrontel, Inc. All Rights Reserved.  
Chrontel PRODUCTS ARE NOT AUTHORIZED FOR AND SHOULD NOT BE USED WITHIN LIFE SUPPORT SYSTEMS OR NUCLEAR FACILITY APPLICATIONS WITHOUT THE  
SPECIFIC WRITTEN CONSENT OF Chrontel. Life support systems are those intended to support or sustain life and whose failure to perform when used as directed can reasonably  
expect to result in personal injury or death. Chrontel reserves the right to make changes at any time without notice to improve and supply the best possible product and is not  
responsible and does not assume any liability for misapplication or use outside the limits specified in this document. We provide no warranty for the use of our products and assume no  
liability for errors contained in this document. Printed in the U.S.A.  
201-0000-025 Rev 2.1, 8/2/99  
49  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY