DATA28 [ETC]

Figure 1 shows the NS7520 modules. Dashed lines indicate shared pins;
DATA28
型号: DATA28
厂家: ETC    ETC
描述:

Figure 1 shows the NS7520 modules. Dashed lines indicate shared pins

文件: 总68页 (文件大小:1557K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NS7520 Data Sheet  
T
he Digi NS7520 is a high-performance, highly integrated, 32-bit system-on-a chip ASIC designed  
for use in intelligent networked devices and Internet appliances. The NS7520 is based on the  
standard architecture in the NET+ARM™ family of devices.  
The NS7520 can support most any networking scenario,  
and includes a 10/100 BaseT Ethernet MAC and two  
independent serial ports (each of which can run in UART  
or SPI mode).  
The CPU is an ARM7TDMI 32-bit RISC processor core with  
a rich complement of support peripherals and memory  
controllers for various types of memory (including Flash,  
SDRAM, EEPROM, and others), programmable timers, a  
13-channel DMA controller, an external bus expansion  
module, and 16 general-purpose input/output (GPIO)  
pins.  
NET+ARM is the hardware foundation for the  
NET+Works™ family of integrated hardware and software solutions for device networking. These  
comprehensive platforms include drivers, popular operating systems, networking software,  
development tools, APIs, and complete development boards.  
Contents  
NS7520 Overview........................................................................... 1  
Key Features................................................................................ 2  
Operating frequency ...................................................................... 3  
Packaging and pinout ..................................................................... 4  
Pinout detail tables ....................................................................... 6  
System Bus interface............................................................. 6  
Chip select controller...........................................................10  
Ethernet interface MAC.........................................................11  
“No connect” pins...............................................................13  
General Purpose I/O ............................................................13  
System clock and reset .........................................................15  
System mode (test support) ...................................................16  
JTAG test .........................................................................16  
Power supply.....................................................................17  
NS7520 modules...........................................................................18  
CPU module ......................................................................18  
GEN module ......................................................................18  
System (SYS) module............................................................18  
BBus module......................................................................19  
Memory module (MEM)..........................................................19  
DMA controller ...................................................................19  
Ethernet controller..............................................................19  
Serial controller .................................................................21  
NS7520 bootstrap initialization.........................................................22  
JTAG...............................................................................22  
ARM Debug........................................................................22  
DC characteristics and other operating specifications..............................23  
Absolute maximum ratings.....................................................24  
Pad pullup and pulldown characteristics ....................................24  
AC characteristics ........................................................................25  
AC electrical specifications....................................................25  
Oscillator Characteristics................................................................27  
Timing Diagrams ..........................................................................28  
Timing_Specifications...........................................................28  
Reset_timing .....................................................................29  
SRAM timing ......................................................................30  
SDRAM timing ....................................................................40  
FP DRAM timing..................................................................48  
Ethernet timing..................................................................55  
JTAG timing ......................................................................57  
External DMA timing ............................................................59  
Serial internal/external timing................................................61  
GPIO timing.......................................................................63  
iii  
NS7520 Overview  
NS7520 Overview  
Figure 1 shows the NS7520 modules. Dashed lines indicate shared pins.  
Debugger  
PLL  
JTAG Debug  
Interface  
NS7520  
Reset  
System  
Clock  
FIRQ  
IRQ  
ARM7TDMI  
Watchdog  
timer  
2 timers  
BBUS  
D
M
A
D
M
A
D
M
A
D
M
A
3.3V  
1.5V  
Serial-A  
Serial-B  
4
Ethernet  
controller  
Power  
level  
interrupt  
inputs  
External  
memory  
controller  
UART  
SPI  
UART  
SPI  
802.3  
compliant  
16 GPIO  
Address bus  
MII  
Serial transceivers and other  
devices  
Memory  
devices  
Flash  
SRAM  
FP DRAM  
SDRAM  
Boot  
config  
Figure 1: NS7520 module overview  
www.digi.com  
1
Key Features  
Key Features  
This table lists the key features of the NS7520.  
CPU core  
Integrated 10/100 Ethernet MAC  
ARM7TDMI 32-bit RISC processor  
32-bit internal bus  
10/100 Mbps MII-based PHY interface  
10 Mbps ENDEC interface  
32-bit ARM and 16-bit Thumb mode  
15 general purpose 32-bit registers  
32-bit program counter (PC) and status register  
Five supervisor modes, one user mode  
TP-PMD and fiber-PMD device support  
Full-duplex and half-duplex modes  
Optional 4B/5B coding  
Station, broadcast, and multicast address  
detection  
512-byte transmit FIFO, 2 Kbyte receive FIFO  
Intelligent receive-side buffer selection  
13-Channel DMA controller  
Programmable Timers  
Two channels dedicated to Ethernet transmit  
and receive  
Two independent timers (2μs–20.7 hours)  
Watchdog timer (interrupt or reset on expiration)  
Programmable bus monitor or timer  
Four channels dedicated to two serial modules’  
transmit and receive  
Four channels for external peripherals. Only two  
channels — either 3 and 5 or 4 and 6 — can be  
configured at one time.  
Three channels available for memory-to-memory  
transfers  
Flexible buffer management  
General purpose I/O pins  
Operating frequency  
16 programmable GPIO interface pins  
36, 46, or 55 MHz internal clock operation from  
18.432 MHz crystal  
4 pins programmable with level-sensitive  
interrupt  
fMAX = 36, 46, or 55 (grade–dependent)  
System clock source by external quartz crystal  
or crystal oscillator, or clock signal  
Programmable PLL, which allows a range of  
operating frequencies from 10 to fMAX  
Maximum operating frequency from external  
clock or using PLL multiplication fMAX  
2
NS7520 Datasheet 03/2006  
Operating frequency  
Serial ports  
Bus interface  
Two fully independent serial ports (UART, SPI)  
Five independent programmable chip selects  
with 256 Mb addressing per chip select  
Digital phase lock loop (DPLL) for receive clock  
extractions  
Chip select support for SRAM, FP/EDO DRAM,  
SDRAM, Flash, and EEPROM without external  
glue  
32-byte transmit/receive FIFOs  
Internal programmable bit-rate generators  
Bit rates 75–230400 in 16X mode  
Bit rates 1200 bps–4 Mbps in 1X mode  
8-, 16-, and 32-bit peripheral support  
External address decoding and cycle termination  
Dynamic bus sizing  
Flexible baud rate generator, external clock for  
synchronous operation  
Internal DRAM/SDRAM controller with address  
multiplexer and programmable refresh frequency  
Receive-side character and buffer gap timers  
Four receive-side data match detectors  
Internal refresh controller (CAS before RAS)  
Burst-mode support  
0–63 wait states per chip select  
Address pins that configurem chip operating  
modes (see "NS7520 bootstrap initialization" on  
page 22)  
Power and Operating Voltages  
500 mW maximum at 55 MHz (all outputs  
switching)  
418 mW maximum at 46 MHz (all outputs  
switching)  
291 mW maximum at 36 MHz (all outputs  
switching)  
3.3 V — I/O  
1.5 V — Core  
Operating frequency  
The NS7520 is available in grades operating at three maximum operating frequencies: 36 MHz,  
46 MHz, and 55 MHz. The operating frequency is set during bootstrap initialization, using pins  
A[8:0]. These address pins load the PLL Settings register on powerup reset. A[8:7] determines IS  
(charge pump current); A[6:5] determines FS (output divider), and A[4:0] defines ND (PLL  
multiplier). Each bit in A[8:0] can be set individually. See the discussion of the PLL Settings register  
in the NS7520 Hardware Reference for more information.  
www.digi.com  
3
Packaging and pinout  
Packaging and pinout  
Table 1 provides the NS7520 packaging dimensions. Figure 2 shows the NS7520 pinout and  
dimensions.  
Symbol  
Min  
Nom  
Max  
1.4  
A
A1  
A2  
b
0.35  
0.40  
0.45  
0.95  
0.55  
0.45  
0.50  
D
13.0 BSC  
11.2 BSC  
13.0 BSC  
11.2 BSC  
0.8 BSC  
0.1  
D1  
E
E1  
e
aaa  
Table 1: NS7520 packaging dimensions  
4
NS7520 Datasheet 03/2006  
Packaging and pinout  
177 PFBGA  
Figure 2: NS7520 pinout and dimensions  
www.digi.com  
5
Pinout detail tables  
Pinout detail tables  
Each pinout table applies to a specific interface and contains the following information:  
Signal  
Pin  
The pin name for each I/O signal. Some signals have multiple function modes and are identified  
accordingly. The mode is configured through firmware using one or more configuration registers.  
The pin number assignment for a specific I/O signal.  
U next to the pin number indicates that the pin is a pullup resistor.  
D next to the pin number indicates that the pin is a pulldown resistor.  
No value next to the pin indicates that the pin has neither a pullup nor pulldown resistor.  
See Figure 5, "Internal pullup characteristics," on page 24 and Figure 6, "Internal pulldown  
characteristics," on page 25 for an illustration of the characteristics of these pins. Use the figures  
to select the appropriate value of the complimentary resistor to drive the signal to the opposite  
logic state. For those pins with no pullup or pulldown resistor, you must select the appropriate  
value per your design requirements.  
An underscore (bar) indicates that the pin is active low.  
_
I/O  
OD  
The type of signal — input, output, or input/output.  
The output drive strength of an output buffer. The NS7520 uses one of three drivers:  
2 mA  
4 mA  
8 mA  
Notes:  
NO CONNECTas a pin description means do not connect to this pin.  
The 177th pin (package ball) is for alignment of the package on the PCB.  
System Bus interface  
Symbol  
Pin  
I/O  
OD  
Description  
BCLK  
A6  
0
8
Synchronous bus clock  
External bus  
ADDR27  
ADDR26  
External bus  
ADDR25  
ADDR24  
ADDR23  
ADDR22  
ADDR21  
Other  
External bus  
Addr bit 27  
Addr bit 26  
External bus  
Other  
CS0OE_  
CS0WE_  
N10 U  
P10 U  
I/O  
I/O  
4
4
Logical AND of CS0_ and OE_  
Logical AND of CS_ and WE_  
M10 U  
R10 U  
N9 U  
I/O  
I/O  
I/O  
I/O  
I/O  
4
4
4
4
4
Remainder of address bus (through ADDR0)  
R9 U  
M9 U  
6
NS7520 Datasheet 03/2006  
System Bus interface  
Symbol  
ADDR20  
ADDR19  
ADDR18  
ADDR17  
ADDR16  
ADDR15  
ADDR14  
ADDR13  
ADDR12  
ADDR11  
ADDR10  
ADDR9  
Pin  
N8 U  
P8 U  
M7 U  
R7 U  
N7 U  
R6 U  
M6 U  
P6 U  
N6 U  
M5 U  
P5 U  
N5 U  
R4 U  
R3 U  
R2 U  
M4 U  
N4 U  
R1 U  
M3 U  
N2 U  
P1 U  
N1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
OD  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
Description  
ADDR8  
ADDR7  
ADDR6  
ADDR5  
ADDR4  
ADDR3  
ADDR2  
ADDR1  
ADDR0  
DATA31  
DATA30  
DATA29  
DATA28  
DATA27  
DATA26  
DATA25  
DATA24  
DATA23  
DATA22  
DATA21  
DATA20  
Data bus  
M1  
L3  
L2  
L4  
L1  
K3  
K2  
K1  
J2  
J3  
J1  
www.digi.com  
7
System Bus interface  
Symbol  
DATA19  
DATA18  
DATA17  
DATA16  
DATA15  
DATA14  
DATA13  
DATA12  
DATA11  
DATA10  
DATA9  
DATA8  
DATA7  
DATA6  
DATA5  
DATA4  
DATA3  
DATA2  
DATA1  
DATA0  
BE3_  
Pin  
H3  
H4  
H1  
H2  
G4  
G1  
G3  
G2  
F4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
OD  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
2
2
2
2
4
Description  
F2  
F3  
E1  
E2  
E3  
D1  
C1  
B1  
D4  
D3  
C2  
D9  
A9  
C9  
B9  
A8  
Byte enable D31:D24  
Byte enable D23:D16  
Byte enable D15:D08  
Byte enable D07:D00  
BE2_  
BE1_  
BE0_  
TS_  
DO NOT USE  
Add an external 820 ohm pullup to 3.3 V.  
TA_  
D8 U  
I/O  
4
Data transfer acknowledge  
Add an external 820 ohm pullup to 3.3 V.  
TA_ is bidirectional. It is used in input mode to  
terminate a memory cycle externally. It is used in  
output mode for reference purposes only.  
TEA_  
C8 U  
I/O  
4
Data transfer error acknowledge  
Add an external 820 ohm pullup to 3.3 V.  
TEA_ is bidirectional. It is used in input mode to  
terminate a memory cycle externally. It is used in  
output mode for reference purposes only.  
8
NS7520 Datasheet 03/2006  
System Bus interface  
Symbol  
RW_  
Pin  
D6  
D7  
C7  
B7  
I/O  
OD  
Description  
I/O  
2
Transfer direction  
BR_  
NO CONNECT  
NO CONNECT  
NO CONNECT  
BG_  
BUSY_  
System bus interface signal descriptions  
Mnemonic  
Signal  
Description  
BCLK  
Bus clock  
Provides the bus clock. All system bus interface signals are  
referenced to the BCLK signal.  
ADDR[27:0]  
DATA[31:0]  
Address bus  
Data bus  
Identifies the address of the peripheral being addressed by the  
current bus master. The address bus is bi-directional.  
Provides the data transfer path between the NS7520 and external  
peripheral devices. The data bus is bi-directional.  
Recommendation: Less than x32 (S)DRAM/SRAM memory  
configurations. Unconnected data bus pins will float during memory  
read cycles. Floating inputs can be a source of wasted power.  
For other than x32 DRAM/SRAM configurations, the unused data  
bus signals should be pulled up.  
TS_  
BE_  
Transfer start  
Byte enable  
NO CONNECT  
Identifies which 8-bit bytes of the 32-bit data bus are active during  
any given system bus memory cycle. The BE_ signals are active low  
and bi-directional.  
TA_  
Transfer acknowledge  
Indicates the end of the current system bus memory cycle. This  
signal is driven to 1 prior to  
tri-stating its driver.  
TA_ is bi-directional.  
TEA_  
Transfer error  
acknowledge  
Indicates an error termination or burst cycle termination:  
In conjunction with TA_ to signal the end of a burst cycle.  
Independently of TA_ to signal that an error occurred during the  
current bus cycle. TEA_ terminates the current burst cycle.  
This signal is driven to 1 prior to tri-stating its driver.  
TEA_ is bi-directional. The NS7520 or the external peripheral can  
drive this signal.  
RW_  
Read/write indicator  
Indicates the direction of the system bus memory cycle. RW_ high  
indicates a read operation; RW_ low indicates a write operation. The  
RW_ signal is bi-directional.  
BR_  
Bus request  
Bus grant  
Bus busy  
NO CONNECT  
NO CONNECT  
NO CONNECT  
BG_  
BUSY_  
www.digi.com  
9
Chip select controller  
Chip select controller  
The NS7520 supports five unique chip select configurations.  
Symbol  
CS4_  
Pin  
B4  
A4  
C5  
B5  
D5  
A1  
C4  
B3  
A2  
C6  
B6  
I/O  
O
OD  
4
Description  
Chip select/DRAM RAS_  
CS3_  
O
4
Chip select/DRAM RAS_  
CS2_  
O
4
Chip select/DRAM RAS_  
CS1_  
O
4
Chip select/DRAM RAS_  
CS0_  
O
4
Chip select (boot select)  
CAS3_  
CAS2_  
CAS1_  
CAS0_  
WE_  
O
4
FP/EDO DRAM column strobe D31:D24/SDRAM RAS_  
FP/EDO DRAM column strobe D23:D16/SDRAM CAS_  
FP/EDO DRAM column strobe D15:D08/SDRAM WE_  
FP/EDO DRAM column strobe D07:D00/SDRAM A10(AP)  
Write enable for NCC Ctrl’d cycles  
Output enable for NCC Ctrl’d cycles  
O
4
O
4
O
4
O
4
OE_  
O
4
Chip select controller signal descriptions  
Mnemonic  
Signal  
Description  
CS0_  
CS1_  
CS2_  
CS3_  
CS4_  
Chip select 0  
Chip select 1  
Chip select 2  
Chip select 3  
Chip select 4  
Unique chip select outputs supported by the NS7520. Each chip select  
can be configured to decode a portion of the available address space  
and can address a maximum of 256 Mbytes of address space. The  
chip selects are configured using registers in the memory module.  
A chip select signal is driven low to indicate the end of the current  
memory cycle. For FP/EDO DRAM, these signals provide the RAS  
signal.  
CAS0_  
CAS1_  
CAS2_  
CAS3_  
Column address  
strobe signals  
Activated when an address is decoded by a chip select module  
configured for DRAM mode. The CAS_ signals are active low and  
provide the column address strobe function for DRAM devices.  
The CAS_ signals also identify which 8-bit bytes of the 32-bit data bus  
are active during any given system bus memory cycle.  
For SDRAM, CAS[3:1]_ provides the SDRAM command field. CAS0_  
provides the auto-precharge signal.  
For non-DRAM settings, these signals are 1.  
WE_  
OE_  
Write enable  
Active low signal that indicates that a memory write cycle is in  
progress. This signal is activated only during write cycles to  
peripherals controlled by one of the chip selects in the memory  
module.  
Output enable  
Active low signal that indicates that a memory read cycle is in  
progress. This signal is activated only during read cycles from  
peripherals controlled by one of the chip selects in the memory  
module.  
1 0  
NS7520 Datasheet 03/2006  
Ethernet interface MAC  
Ethernet interface MAC  
Note:  
ENDEC values for general-purpose output and TXD refer to bits in the Ethernet General  
Control register. ENDEC values for general-purpose input and RXD refer to bits in the  
Ethernet General Status register.  
In this table, GP designates general-purpose.  
Symbol  
Pin  
I/O  
OD  
Description  
MII  
MII  
ENDEC  
ENDEC  
MDC  
GP output  
D10  
O
2
MII  
State of (LPBK bit XOR  
(Mode=SEEQ))  
management  
clock  
MDIO  
TXCLK  
TXD3  
TXD2  
TXD1  
GP output  
B10 U  
C10  
A12  
B11  
I/O  
I
2
MII data  
State of UTP_STP bit  
TX clock  
TX data 3  
TX data 2  
TX data 1  
GP output  
GP output  
GP output  
O
O
O
2
2
2
State of AUI_TP[0] bit  
State of AUI_TP[1] bit  
D11  
Inverted state of PDN bit, open  
collector  
TXD0  
TXER  
TXD  
A11  
A13  
B12  
A14  
D12  
C12  
D14  
B15  
A15  
B13  
C15  
D15  
O
O
O
I
2
2
2
TX data 0  
TX code error  
TX enable  
Collision  
Transmit data  
GP output  
State of LNK_DIS_ bit  
TXEN  
TXCOL  
RXCRS  
RXCLK  
RXD3  
RXD2  
RXD1  
RXD0  
RXER  
I
Carrier sense  
RX clock  
I
GP input  
GP input  
GP input  
RXD  
I
RX data 3  
RX data 2  
RX data 1  
RX data 0  
RX error  
Read state in bit 12  
Read state in bit 15  
Read state in bit 13  
Receive data  
I
I
I
GP input  
GP input  
I
Read state in bit 11  
Read state in bit 10  
RXDV  
I
RX data valid  
Ethernet interface MAC signal descriptions  
The Ethernet MII (media independent interface) provides the connection between the Ethernet PHY  
and the MAC (media access controller).  
www.digi.com  
11  
Ethernet interface MAC  
Mnemonic Signal  
Description  
MDC  
MII management clock  
Provides the clock for the MDIO serial data channel. The MDC signal  
is an NS7520 output. The frequency is derived from the system  
operating frequency per the CLKS field setting (see the CLKS field in  
Table 69: "MII Management Configuration register bit definition" on  
page 191).  
MDIO  
Management data IO  
Transmit clock  
A bi-directional signal that provides a serial data channel between the  
NS7520 and the external Ethernet PHY module.  
TXCLK  
An input to the NS7520 from the external PHY module. TXCLK  
provides the synchronous data clock for transmit data.  
TXD3  
TXD2  
TXD1  
TXD0  
Transmit data signals  
Nibble bus used by the NS7520 to drive data to the external Ethernet  
PHY. All transmit data signals are synchronized to TXCLK.  
In ENDEC mode, only TXD0 is used for transmit data.  
TXER  
TXEN  
COL  
Transmit coding error  
Transmit enable  
Output asserted by the NS7520 when an error has occurred in the  
transmit data stream.  
Asserted when the NS7520 drives valid data on the TXD outputs.  
This signal is synchronized to TXCLK.  
Transmit collision  
Receive carrier sense  
Receive clock  
Input signal asserted by the external Ethernet PHY when a collision  
is detected.  
CRS  
Asserted by the external Ethernet PHY whenever the receive medium  
is non-idle.  
RXCLK  
An input to the NS7520 from the external PHY module. The receive  
clock provides the synchronous data clock for receive data.  
RXD3  
RXD2  
RXD1  
RXD0  
Receive data signals  
Nibble bus used by the NS7520 to input receive data from the  
external Ethernet PHY. All receive data signals are synchronized to  
RXCLK.  
In ENDEC mode, only RXD0 is used for receive data.  
RXER  
Receive error  
Input asserted by the external Ethernet PHY when the Ethernet PHY  
encounters invalid symbols from the network.  
RXDV  
Receive data valid  
Input asserted by the external Ethernet PHY when the PHY drives  
valid data on the RXD inputs.  
1 2  
NS7520 Datasheet 03/2006  
“No connect” pins  
“No connect” pins  
Pin  
R13  
P12  
N12  
R15  
M11  
P11  
N11  
R12  
R14  
P13  
Description  
Tie to VCC  
Tie to VCC  
XTALB1: Tie to VCC  
XTALB2: NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
NO CONNECT  
General Purpose I/O  
GPIO signal Serial  
signal  
Other  
signal  
Serial channel  
description  
Other  
description  
Pin  
I/O  
OD  
2
PORTA7  
PORTA6  
TXDA  
J14 U I/O  
J13 U I/O  
Channel 1 TXD  
Channel 1 DTR_  
DTRA_  
DREQ1_  
2
DMA channel 3/5  
Req  
PORTA5  
PORTA4  
RTSA_  
J15 U I/O  
J12 U I/O  
2
2
Channel 1 RTS_  
RXCA/RIA_/  
OUT1A_  
Pgm’able Out/  
Channel 1  
RXCLK/ Channel  
1 ring signal/  
Channel 1 SPI  
clock (CLK)  
PORTA3  
RXDA  
DACK1_  
H15 U I/O  
2
Channel 1 RXD  
DMA channel 3/5  
ACK  
PORTA2  
PORTA1  
DSRA_  
CTSA_  
AMUX  
H12 U I/O  
H13 U I/O  
2
2
Channel 1 DSR_  
Channel 1 CTS_  
DRAM addr mux  
DONE1_ (O)  
DMA channel 3/5  
DONE_Out  
PORTA0  
TXCA/  
OUT2A_/  
DCDA_  
DONE1_ (I)  
DREQ2_  
G12 U I/O  
2
Pgm’able Out/  
Channel 1 DCD/  
Channel 1 SPI  
enable (SEL_)/  
Channel 1 TXCLK  
DMA channel 3/5  
DONE_In  
PORTC7  
PORTC6  
TXDB  
G13 U I/O  
G14 U I/O  
2
2
Channel 2 TXD  
Channel 2 DTR_  
GEN interrupt out  
DTRB_  
DMA Channel 4/6  
Req  
www.digi.com  
13  
General Purpose I/O  
GPIO signal Serial  
signal  
Other  
signal  
Serial channel  
description  
Other  
description  
Pin  
I/O  
OD  
2
PORTC5  
RTSB_  
REJECT_  
RESET_  
F15 U I/O  
F12 U I/O  
Channel 2 RTS_  
CAM reject  
PORTC41  
RXCB/RIB_/  
OUT1B_  
2
Pgm’able Out/  
Channel 2  
RESET output  
RXCLK/Channel 2  
ring signal/  
Channel 2 SPI  
clock (CLK)  
PORTC32  
RXDB  
LIRQ3/  
DACK2_  
F13 U I/O  
2
Channel 2 RXD  
LevelsensitiveIRQ/  
DMA channel 4/6  
ACK  
PORTC22  
PORTC12  
DSRB_  
CTSB_  
LIRQ2/RPSF_ E15 U I/O  
2
2
Channel 2 DSR_  
Channel 2 CTS_  
Level sensitive IRQ/  
CAM request  
LIRQ1/  
DONE2_(O)  
E12 U I/O  
E14 U I/O  
LevelsensitiveIRQ/  
DMA channel 4/6  
DONE_Out  
PORTC02  
TXCB/  
OUT2B_/  
DCDB_  
LIRQ0/  
2
Pgm’able Out/  
Channel 2 DCD/  
Channel 2 SPI  
enable (SEL_)/  
Channel 2 TXCLK  
LevelsensitiveIRQ/  
DMA channel 4/6  
DONE_In  
DONE2_(I)  
Notes:  
1
RESET output indicates the reset state of the NS7520. PORTC4 persists beyond the negation of  
RESET_ for approximately 512 clock cycles if the PLL is disabled. When the PLL is enabled,  
PORTC4 persists beyond the negation of RESET_ to allow for PLL lock for 100 microseconds  
times the ratio of the VCO to XTALA.  
This GPIO is left in output mode active following a hardware RESET.  
2
PORTC[3:0] pins provide level-sensitive interrupts. The inputs do not need to be synchronous  
to any clock. The interrupt remains active until cleared by a change in the input signal level.  
1 4  
NS7520 Datasheet 03/2006  
System clock and reset  
System clock and reset  
Symbol  
XTALA1  
Pin  
K14  
K12  
L15  
L12  
A10  
I/O  
OD  
Description  
I
ARM/system oscillator circuit  
XTALA2  
O
P
P
I
PLLVDD (1.5V)  
PLLVSS  
PLL clean power  
PLL return  
RESET_  
System reset  
Signal descriptions  
The NS7520 has three clock domains:  
System clock (SYSCLK)  
Bit rate generation and programmable timer reference clock (XTALA1/2)  
System bus clock (BCLK)  
The SYS module provides the NS7520 with these clocks, as well as system reset and backup  
resources.  
Mnemonic  
Signal  
Description  
XTALA1  
XTALA2  
Oscillator input  
Oscillator output  
A standard parallel quartz crystal or crystal oscillator can be  
attached to these pins to provide the main input clock to the  
NS7520.  
PLLVDD  
PLLVSS  
Clean PLL power  
Connect directly to the  
GND plane  
Power and ground for PLL circuit.  
RESET_  
System reset  
Resets the NS7520 hardware.  
Table 2: Clock generation and reset signal description  
This figure shows the timing and specification for RESET_ rise/fall times:  
tF  
tR  
tF max= 18ns  
Vin = 2.0Vto 0.8V  
tR max= 18ns  
Vin = 0.8Vto 2.0V  
www.digi.com  
15  
System mode (test support)  
System mode (test support)  
PLLTST_, BISTEN_, and SCANEN_ primary inputs control different test modes for both functional  
and manufacturing test operations (see Table 3: "NS7520 test modes" on page 22).  
Symbol  
Pin  
I/O  
OD  
Description  
PLLTST_  
N15  
I
Encoded with BISTEN_ and SCANEN_  
Add an external pullup to 3.3V or pulldown to GND.  
BISTEN_  
M15  
L13  
I
I
Encoded with PLLTST_ and SCANEN_  
Add an external pullup to 3.3V or pulldown to GND.  
SCANEN_  
Encoded with BISTEN_ and PLLTST_  
Add an external pullup to 3.3V or pulldown to GND.  
JTAG test  
JTAG boundary scan allows a tester to check the soldering of all signal pins and tri-state all  
outputs.  
Symbol  
TDI  
Pin  
I/O  
OD  
Description  
Test data in.  
N14 U  
M13  
I
TDO  
O
I
2
Test data out.  
Test mode select.  
Test mode reset.  
TMS  
M12 U  
M14  
TRST_  
I
Requires external termination when not being used (see  
Figure 3, "TRST_ termination," on page 17 for an  
illustration of the termination circuit on the development  
PCB).  
TCK  
P15  
I
Test mode clock.  
Add an external pullup to 3.3V.  
ARM debugger signal descriptions  
Mnemonic  
Signal  
Description  
TDI  
Test data in  
TDI operates the JTAG standard. Consult the JTAG specifications  
for use in boundary-scan testing. These signals meet the  
requirements of the Raven and Jeeni debuggers.  
TDO  
TMS  
Test data out  
TDO operates the JTAG standard. Consult the JTAG specifications  
for use in boundary-scan testing. These signals meet the  
requirements of the Raven and Jeeni debuggers.  
Test mode select  
TMS operates the JTAG standard. Consult the JTAG specifications  
for use in boundary-scan testing. These signals meet the  
requirements of the Raven and Jeeni debuggers.  
1 6  
NS7520 Datasheet 03/2006  
Power supply  
Mnemonic  
Signal  
Description  
TRST_  
Test mode reset  
TRST_ operates the JTAG standard. Consult the JTAG  
specifications for use in boundary-scan testing. These signals meet  
the requirements of the Raven and Jeeni debuggers.  
TCK  
Test mode clock  
TCK operates the JTAG standard. Consult the JTAG specifications  
for use in boundary-scan testing. These signals meet the  
requirements of the Raven and Jeeni debuggers.  
Figure 3: TRST_ termination  
Power supply  
Signal  
Pin  
Description  
Oscillator VCC (3.3V)  
Core VCC (1.5V)  
I/O VCC (3.3V)  
GND  
N13, C3  
Oscillator power supply  
R8, L14, C14, C13  
Core power supply  
I/O power supply  
E4, K4, M2, N3, P3, R5, H14, F14, B8, A3  
D2, F1, J4, P4, P7, M8, P9, R11, K15, G15, E13, Ground  
D13, B14, C11, A7, A5, B2, P2, P14, K13  
www.digi.com  
17  
NS7520 modules  
NS7520 modules  
CPU module  
The CPU uses an ARM7TDMI core processor. The ARM architecture is based on Reduced Instruction  
Set Computer (RISC) principles, which result in high instruction throughput and impressive real-  
time interrupt response for a small, cost-effective circuit. For more information about ARM7TDMI,  
see the ARM7TDMI Data Sheet from ARM Ltd. (www.arm.com).  
GEN module  
The GEN module provides the NS7520 with its main system control functions, as well as these  
features:  
Two programmable timers with interrupt  
One programmable bus-error timer  
One programmable watchdog timer  
Two 8-bit programmable general-purpose I/O ports  
System (SYS) module  
The system module provides the system clock (SYS_CLK)and system reset (SYS_RESET)resources.  
The system control signals determine the basic operation of the chip:  
Signal mnemonic  
Signal name  
Description  
{XTALA1, XTALA2}  
Clock source  
Operate in one of two ways:  
The signals are affixed with a 10-20 MHz parallel mode  
quartz crystal or crystal oscillator and the appropriate  
components per the component manufacturer.  
XTALA1 is driven with a clock signal and XTALA2 is  
left open.  
{PLLVDD, PLLVSS}  
RESET_  
PLL power  
Chip reset  
Provide an isolated power supply for the PLL.  
Active low signal asserted to initiate a hardware reset of the  
chip.  
{TDI, TDO, TNS,  
TRST_, TCK}  
JTAG interface  
Chip mode  
Provide a JTAG interface for the chip. This interface is used  
for both boundary scan and ICE control of the internal  
processor.  
{PLLTEST_, BISTEN_,  
SCANEN_}  
Encoded to determine the chip mode.  
1 8  
NS7520 Datasheet 03/2006  
BBus module  
The NS7520 clock module creates the BCLK and FXTAL signals. Both signals are used internally, but  
BCLK can also be accessed at ball A6 by setting the BCLKD field in the System Control register to 0.  
BCLK functions as the system clock and provides the majority of the NS7520’s timing.  
FXTAL provides the timing for the DRAM refresh counter, can be selected instead of BCLK  
to provide timing for the watchdog timer, the two internal timers, and the Serial module.  
BBus module  
The BBus module provides the data path among NS7520 internal modules. This module provides the  
address and data multiplexing logic that supports the data flow through the NS7520. The BBus  
module is the central arbiter for all the NS7520 bus masters and, once mastership is granted,  
handles the decoding of each address to one (or none) of the NS7520 modules.  
Memory module (MEM)  
The MEM module provides a glueless interface to external memory devices such as Flash, DRAM,  
and EEPROM. The memory controller contains an integrated DRAM controller and supports five  
unique chip select configurations.  
The MEM module monitors the BBus interface for access to the bus module; that is, any access not  
addressing internal resources. If the address to be used corresponds to a Base Address register in  
the MEM module, the MEM module provides the memory access signals and responds to the BBus  
with the necessary completion signal.  
The MEM module can be configured to interface with FP, EDO, or SDRAM (synchronous DRAM),  
although the NS7520 cannot interface with more than one device type at a time.  
DMA controller  
The NS7520 contains one DMA controller, with 13 DMA channels. Each DMA channel moves blocks of  
data between memory and a memory peripheral.  
The DMA controller supports both fly-by operations and memory-to-memory operations:  
When configured for fly-by operation, the DMA controller transfers data between one of the  
NS7520 peripherals and a memory location.  
When configured for memory-to-memory operations, the DMA controller uses a temporary  
holding register between read and write operations. Two memory cycles are executed.  
Ethernet controller  
The Ethernet controller provides the NS7520 with one IEEE 802.3u compatible Ethernet interface.  
The Ethernet interface includes the Ethernet front-end (EFE) and media access controller (MAC).  
The Ethernet module supports both media independent interface (MII) and ENDEC modes.  
www.digi.com  
19  
Ethernet controller  
The MAC module interfaces to an external physical layer (PHY) device using the MII standard  
defined by IEEE 802.3u. The MAC interface includes the MII clock and data signals.  
Figure 4 shows a high-level block diagram of the EFE module, which provides the FIFO handling  
interface between the NS7520 BBus and the MAC modules.  
MAC RX interface  
RX  
filtering &  
statistics  
MAC TX interface  
2K  
byte  
512  
byte  
Local  
Receive  
FIFO  
local  
Transmit  
FIFO  
BBus  
Figure 4: EFE module block diagram  
2 0  
NS7520 Datasheet 03/2006  
Serial controller  
Serial controller  
The NS7520 supports two independent universal asynchronous/synchronous receiver/transmitter  
channels. Each channel supports these features:  
Independent programmable bit-rate generator  
UART and SPI (master) modes  
High-speed data transfer:  
x1 mode: 4Mbits/sec  
x16 mode: 230 Kbits/sec  
32–byte TX FIFO  
32–byte RX FIFO  
Programmable data format: 5–8 data bits; odd, even, or no parity; 1, 2 stop bits  
Programmable channel modes: normal, local loopback, remote loopback  
Control signal support  
Maskable interrupt conditions:  
Receive break detection  
Receive framing error  
Receive parity error  
Receive overrun error  
Receive FIFO ready  
Receive FIFO half-full  
Transmit FIFO ready  
Transmit FIFO half-empty  
CTS, DSR, DCD, RI state change detection  
Clock/data encoding: NRZ, NRZB, NRZI, FM, Manchester  
Multi-drop capable  
www.digi.com  
21  
NS7520 bootstrap initialization  
NS7520 bootstrap initialization  
Many internal NS7520 features are configured when the RESET pin is asserted. The address bus  
configures the appropriate control register bits at powerup. This table shows which bits control  
which functions:  
Address bit  
Name  
Description  
ADDR[27]  
Endian configuration  
0
1
Little Endian configuration  
Big Endian configuration  
ADDR[26]  
CPU bootstrap  
0
1
CPU disabled; GEN_BUSER=1  
CPU enabled; GEN_BUSER=0  
ADDR[24:23]  
CS0/MMCR[19:18] setting  
00 8-bit SRAM, 63 wait-states/b00  
01 32-bit SRAM, 63 wait-states/b01  
10 32-bit SRAM  
11 16-bit SRAM, 63 wait-states/b11  
ADDR[19:9]  
ADDR[8:7]  
ADDR[6:5]  
ADDR[4:0]  
GEN_ID setting  
PLL IS setting  
PLL FS setting  
PLL ND setting  
GEN_ID=A[19:09],default=’h3ff  
IS=A[8:7], default=’b10  
FS=A[6:5], default=’b00  
ND=A[4:0], default=’b01011  
Table 3: NS7520 test modes  
JTAG  
The NS7520 provides full support for 1149.1 JTAG boundary scan testing. All NS7520 pins can be  
controlled using the JTAG interface port. The JTAG interface provides access to the ARM7TDMI  
debug module when the appropriate combination of PLLTST_, BISTEN_, and SCANEN_is selected (as  
shown in Table 3: "NS7520 test modes").  
ARM Debug  
The ARM7TDMI core uses a JTAG TAP controller that shares the pins with the TAP controller used for  
1149.1 JTAG boundary scan testing. To enable the ARM7TDMI TAP controller,  
{PLLTST_,BISTEN_,SCANEN_}must be set as shown in Table 3: "NS7520 test modes".  
2 2  
NS7520 Datasheet 03/2006  
DC characteristics and other operating specifications  
DC characteristics and other operating specifications  
The NS7520 operates using an internal core VDD supply voltage of 1.5V. A 3.3VC supply is required  
for the I/O cells, which drive/accept 3.3V levels.  
Table 4 provides the DC characteristics for inputs; Table 5 provides the DC characteristics for  
outputs.  
Sym  
VIH  
Parameter  
Conditions  
Min  
Typ  
Max  
3.6  
Unit  
V
Input high voltage  
Input low voltage  
2.0  
VIL  
VSS – 0.3  
0.8  
V
Table 4: DC characteristics — Inputs  
Sym  
Parameter  
Conditions  
Min  
Max  
Unit  
P
Power consumption  
FSYSCLK = 55 MHz  
FSYSCLK = 46 MHz  
FSYSCLK = 36 MHz  
508  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
Core  
I/O  
192  
316  
425  
333  
Core  
I/O  
161  
264  
Core  
I/O  
126  
207  
VOL  
VOH  
Output low voltage  
Output high voltage  
Outputs & bi-directional  
Outputs & bi-directional  
0
0.4  
V
V
2.4  
VDD  
Table 5: DC characteristics — Outputs  
Table 6 defines the DC operating (thermal) conditions for the NS7520. Operating the NS7520 outside  
these conditions results in unpredictable behavior.  
Sym  
VDD  
VCC  
TOP  
TJ  
Parameter  
Conditions  
Min  
1.4  
3.0  
-40  
Typ  
1.5  
Max  
1.6  
3.6  
85  
Unit  
V
Core supply voltage  
I/O supply voltage  
Ambient temperature  
Junction temperature  
Storage temperature  
Pkg thermal resistance  
Input threshold  
3.3  
V
oC  
110  
50  
oC  
TSTG  
θJ  
-40  
-10  
125  
10  
oC  
oC/W  
IIH  
No pullup  
μΑ  
Table 6: Recommended operating temperatures  
www.digi.com  
23  
Absolute maximum ratings  
Sym  
IIL  
Parameter  
Conditions  
No pullup  
Any input  
VO=0  
Min  
10  
Typ  
Max  
10  
Unit  
μA  
Input current as “0”  
HighZ leakage current  
Pin capacitance  
IOZ  
-10  
10  
μA  
CIO  
7
pF  
Table 6: Recommended operating temperatures  
Absolute maximum ratings  
This table defines the maximum values for the voltages that the NS7520 can withstand without  
being damaged.  
Sym  
Parameter  
Min  
Max  
VDD  
VCC  
VIN  
Core supply voltage  
I/O supply voltage  
Input voltage  
-0.3  
-0.3  
-0.3  
-0.3  
3.15  
3.9  
3.9  
3.9  
VOUT  
Output voltage  
Pad pullup and pulldown characteristics  
Figure 5 illustrates characteristics for a pad with internal pullup; Figure 6 illustrates characteristics  
for a pad with internal pulldown. See "Pinout detail tables," beginning on page 6, for information  
about which pins use pullup and pulldown resistors.  
Figure 5: Internal pullup characteristics  
2 4  
NS7520 Datasheet 03/2006  
AC characteristics  
Figure 6: Internal pulldown characteristics  
AC characteristics  
AC electrical specifications define the timing relationship between signals for interfaces and modes  
within a given interface.  
AC electrical specifications  
The AC electrical specifications are based on the system configuration shown in Figure 7, with a  
5pF allowance for PCB capacitance and a 0.25 ns allowance for PCB delay. The timing of the  
buffers, SDRAM, and the like must be added to complete timing analysis. In systems where SDRAM is  
not used, two devices are expected to replace the SDRAMs shown in Figure 7; that is, they are tied  
directly to the chip. System loading information is shown in Table 7: "System loading details" on  
page 26.  
www.digi.com  
25  
AC electrical specifications  
SDRAM  
SDRAM  
NS7520  
Buffer  
other  
memory  
devices  
Figure 7: System configuration for specified timing  
Signal  
Estimated load (pF)  
Device loads  
BCLK  
23  
Two SDRAMs, 1 clock buffer/clock  
input to PLD  
A[27:0], CAS[3:0]_  
CS[4:0]_  
23  
13  
18  
19  
Two SDRAM An, 1 buffer/PLD  
Two SDRAM CSn, 1 buffer PLD  
One SDRAM DQ, 1 buffer/PLD  
One SDRAM DQ, 1 buffer/PLD  
1 buffer/PLD  
DATA[31:0]  
BE*_  
TS_, TA_, TEA_, BR_, BG_, BUSY_, WE_, 15  
OE_  
PORTA3, PORTA1, PORTC3, PORTC1  
(operating external DMA)  
15  
1 buffer/PLD  
Other PORTA[*] and PORTC[*], TDO  
MDC, MDIO, TXEN, TXER, TXD[3:0]  
85  
20  
Tester load  
One PHY  
Table 7: System loading details  
Exceeding the loading shown in Table 7 can result in additional signal delay. The delay can be  
approximated by derating the output buffer based on the expected load capacitance per the values  
shown in Table 8.  
Signal  
Derating (ns/pF)  
BCLK  
0.069  
A[27:0], TS_, TA_, TEA_, BR_, BG_, BUSY_, DATA[31:0] 0.150  
BE[3:0]  
0.300  
Table 8: Output buffer derating by load capacitance  
2 6  
NS7520 Datasheet 03/2006  
Oscillator Characteristics  
Signal  
Derating (ns/pF)  
CS[4:0]_, CAS[3:0], RW_, WE_, OE_  
MDC, TXD[3:0], TXER, TXEN, TDO  
0.137  
0.274  
Table 8: Output buffer derating by load capacitance  
Oscillator Characteristics  
Figure 8 illustrates the recommended oscillator circuit details.  
Rise/fall time. The max rise/fall time on the system clock input pin is 1.5ns when used  
with an external oscillator.  
Duty cycle. The duty cycle is system-dependent with an external oscillator. It affects the  
setup and hold times of signals that change in the falling clock edges, such as WE_/OE_.  
Recommendation: Use a 3.3V, 50±10% duty cycle oscillator with a 100 ohm series resistor  
at the output. The PLLs can handle a 25% duty cycle clock (minimum high/low time  
4.5nS).  
3R3V  
U1  
R1  
5
4
3
10K  
1
2
R2  
L13  
A10  
NC  
SCANEN_  
RESET_  
Rise time = 18ns;  
0.8V to 2.0V  
0 OHM  
LVC04  
RESET_  
Optional 36.864-55.296MHz Oscillator  
PLL bypassed - U1 & R2 OUT, R1 IN  
3R3V  
TB1  
Y2  
4
VCC  
2
NS7520  
R11  
GND  
1
3
C3  
100nF  
TEST  
OUT  
SM_Oscillator  
100 OHM  
A 18.432MHz crystal or 55.296MHz  
oscillator allows full speed operation.  
C1  
K14  
K12  
XTAL1  
XTAL1  
XTAL2  
10pF  
X2  
R3  
1M  
C2  
R4  
XTAL2  
10pF  
10-20MHz  
0 OHM  
PLL enabled - U1 & R2 IN, R1 OUT  
Figure 8: Oscillator circuit details  
www.digi.com  
27  
Timing Diagrams  
Timing Diagrams  
Timing_Specifications  
All timing specifications consist of the relationship between a reference clock and a signal:  
There are bussed and non–bussed signals. Non–bussed signals separately illustrate 0–to–1  
and 1–to–0 transitions.  
Inputs have setup/hold times versus clock rising.  
Outputs have switching time relative to either clock rising or clock falling.  
Note:  
Timing relationships in this diagram are drawn without proportion to actual delay.  
Clock  
0-to-1 from rising edge  
1-to-0 from rising edge  
Signal  
0-to-1 from falling edge  
1-to-0 from falling edge  
Setup time  
Hold time  
Valid from falling edge  
Valid from rising edge  
Hold  
Bus  
Setup time  
2 8  
NS7520 Datasheet 03/2006  
Reset_timing  
Reset_timing  
From a cold start, RESET_ must be asserted until all power supplies are above their specified  
thresholds. An additional 8 microseconds is required for oscillator settling time (allow 40ms for  
crystal startup).  
Due to an internal three flip-flop delay on the external RESET_ signal, after the oscillator is  
settled, RESET_ must be asserted for three periods of the XTALA1 clock in these situations:  
Before release of reset after application of power  
While valid power is maintained to initiate hot reset (reset while power is at or above  
specified thresholds)  
Before loss of valid power during power outage/power down  
The PORTC4 output indicates the reset state of the chip. PORTC4 persists beyond the negation of  
RESET_ for approximately 512 system clock cycles if the PLL is disabled. When the PLL is enabled,  
PORTC4 persists beyond the negation of RESET_ to allow for PLL lock for 100 microseconds times  
the ratio of the VCO to XTALA.  
VDD, VCC  
1
XTALA1  
2
3
4
RESET_  
Reset timing parameters  
Num  
Description  
Min  
Typ  
Max  
Units  
1
Power valid before reset negated  
40  
ms  
Note: RESET_ should remain low  
for at least 40ms after power  
reaches 3.0V.  
2
3
4
Reset asserted after power valid  
Reset asserted while power valid  
Reset asserted before power invalid  
3
3
3
TXTALA1  
TXTALA1  
TXTALA1  
www.digi.com  
29  
SRAM timing  
SRAM timing  
BCLK max frequency: 55.296 MHz  
Operating conditions:  
Temperature:  
Voltage:  
-15.00 (min)  
1.60 (min)  
25.0pf  
110.00 (max)  
1.40 (max)  
Output load:  
Input drive:  
CMOS buffer  
SRAM timing parameters  
Num  
36  
6
Description  
Min  
Max  
15.5  
13.5  
14  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK high to BE* valid  
BCLK high to address valid  
BCLK high to data out valid  
BCLK high to data out high impedance  
Data in valid to BCLK high (setup)  
BCLK high to data in invalid (hold)  
TA* valid to BCLK high (setup)  
BCLK high to TA* invalid (hold)  
BCLK high to CS* valid  
5
9
13  
10  
11  
14  
15  
27  
28  
29  
30  
31  
18  
19  
12  
13  
5
3
5
3
12.5  
12.5  
13  
BCLK low to OE* valid  
BCLK low to WE* valid  
BCLK high to TA* valid  
13.5  
16  
BCLK high to TEA* valid  
BCLK low to A27 (CS0OE*) valid  
BCLK low A26 (CS0WE*) valid  
BCLK high to RW* valid  
13.5  
13.5  
13.5  
3 0  
NS7520 Datasheet 03/2006  
SRAM timing  
SRAM read  
CS* controlled read (wait = 2)  
T1  
TW  
TW  
T2  
Note-1  
T1  
BCLK  
30  
31  
30  
TA* (Note-4)  
31  
TEA* (Note-4)  
15  
14  
TA* (input)  
6
A[27:0]  
36  
36  
27  
Note-2  
BE[3:0]*  
CS[4:0]*  
27  
18  
11  
10  
read D[31:0]  
Sync OE*  
CS0OE*  
RW*  
28  
28  
18  
12  
Notes:  
1
If the next transfer is DMA, null periods between memory transfers can occur. Thirteen clock  
pulses are required for DMA context switching.  
2
Port size determines which byte enable signals are active:  
8-bit port = BE3*  
16-bit port = BE[3:0]  
32-bit port = BE[3:0]  
3
4
The TW cycles are present when the WAIT field is set to 2 or more.  
The TA* and TEA*/LAST signals are for reference only.  
www.digi.com  
31  
SRAM timing  
SRAM burst read  
CS* controlled, four word (4-2-2-2), burst read (wait = 2, BCYC = 01)  
T1  
TW  
TW  
T2  
30  
TW  
30  
T2  
TW  
T2  
TW  
T2 Note-1 T1  
BCLK  
TA* (Note-4)  
31  
31  
TEA*/LAST (Note-4)  
A[27:0]  
6
36  
36  
27  
BE[3:0]* (Note-2)  
CS[4:0]*  
27  
18  
11  
10  
read D[31:0]s  
Sync OE*  
CS0OE*  
RW*  
28  
28  
18  
12  
Notes:  
1
If the next transfer is DMA, null periods between memory transfers can occur. Thirteen clock  
pulses are required for DMA context switching.  
2
Port size determines which byte enable signals are active:  
8-bit port = BE3*  
16-bit port = BE[3:0]  
32-bit port = BE[3:0]  
3
4
The TW cycles are present when the WAIT field is set to 2 or more.  
The TA* and TEA*/LAST signals are for reference only.  
3 2  
NS7520 Datasheet 03/2006  
SRAM timing  
SRAM burst read (2111)  
CS* controlled read (wait = 0, BCYC = 00)  
T1  
T2  
T2  
T2  
T2  
Note-1  
T1  
BCLK  
TA* (Note-3)  
TEA* (Note-3)  
A[27:0]  
30  
30  
31  
31  
6
36  
36  
27  
Note-2  
BE[3:0]*  
27  
CS[4:0]*  
11  
10  
read D[31:0]  
Sync OE*  
CS0OE*  
RW*  
28  
28  
18  
18  
12  
Notes:  
1
If the next transfer is DMA, null periods between memory transfers can occur. Thirteen clock  
pulses are required for DMA context switching.  
2
Port size determines which byte enable signals are active:  
8-bit port = BE3*  
16-bit port = BE[3:0]  
32-bit port = BE[3:0]  
3
The TA* and TEA*/LAST signals are for reference only.  
www.digi.com  
33  
SRAM timing  
SRAM write  
CS controlled write (internal and external), (wait = 2)  
T1  
TW  
TW  
T2  
Note-1  
T1  
BCLK  
TA* (Note-4)  
TEA* (Note-4)  
30  
31  
30  
31  
15  
14  
TA* (input)  
A[27:0]  
6
36  
36  
27  
13  
Note-2  
BE[3:0]*  
CS[4:0]*  
write D[31:0]  
Sync WE*  
CS0WE*  
RW*  
27  
9
29  
29  
19  
19  
12  
Notes:  
1
If the next transfer is DMA, null periods between memory transfers can occur. Thirteen clock  
pulses are required for DMA context switching.  
2
Port size determines which byte enable signals are active:  
8-bit port = BE3*  
16-bit port = BE[3:0]  
32-bit port = BE[3:0]  
3
4
The TW cycles are present when the WAIT field is set to 2 or more.  
The TA* and TEA*/LAST signals are for reference only.  
3 4  
NS7520 Datasheet 03/2006  
SRAM timing  
SRAM burst write  
CS controlled, four word (4-2-2-2), burst write (wait = 2, BCYC = 01)  
T1  
TW  
TW  
T2  
30  
TW  
30  
T2  
TW  
T2  
TW  
T2  
Note-1 T1  
BCLK  
TA* (Note-4)  
TEA*/LAST (Note-4)  
A[27:0]  
31  
31  
6
36  
36  
27  
13  
29  
19  
BE[3:0]* (Note-2)  
CS[4:0]*  
27  
9
write D[31:0]  
Sync WE*  
29  
19  
CS0WE*  
12  
RW*  
Notes:  
1
If the next transfer is DMA, null periods between memory transfers can occur. Thirteen clock  
pulses are required for DMA context switching.  
2
Port size determines which byte enable signals are active:  
8-bit port = BE3*  
16-bit port = BE[3:0]  
32-bit port = BE[3:0]  
3
4
The TW cycles are present when the WAIT field is set to 2 or more.  
The TA* and TEA*/LAST signals are for reference only.  
www.digi.com  
35  
SRAM timing  
SRAM OE read  
OE* controlled read (wait = 2)  
T1  
TW  
T2  
Note-1  
T1  
BCLK  
30  
31  
30  
31  
TA* (Note-4)  
TEA*/LAST (Note-4)  
15  
14  
TA* (input)  
6
A[27:0]  
36  
36  
27  
Note-2  
BE[3:0]*  
CS[4:0]*  
27  
11  
10  
read D[31:0]  
Async OE*  
CS0OE*  
RW*  
28  
18  
28  
18  
12  
Notes:  
1
At least one null period occurs between memory transfers. More null periods can occur if the  
next transfer is DMA. Thirteen clock pulses are required for DMA context switching.  
2
Port size determines which byte enable signals are active:  
8-bit port = BE3*  
16-bit port = BE[3:0]  
32-bit port = BE[3:0]  
3
4
The TW cycles are present when the WAIT field is set to 2 or more.  
The TA* and TEA*/LAST signals are for reference only.  
3 6  
NS7520 Datasheet 03/2006  
SRAM timing  
SRAM OE burst read  
OE* controlled, four word (3-2-2-2), burst read (wait = 2, BCYC = 01)  
T1  
TW  
T2  
TW  
30  
T2  
TW  
T2  
TW  
T2  
Note-1  
T1  
BCLK  
TA* (Note-4)  
TEA*/LAST (Note-4)  
A[27:0]  
30  
31  
31  
6
36  
36  
27  
BE[3:0]* (Note-2)  
CS[4:0]*  
27  
11  
10  
read D[31:0]  
Async OE*  
CS0OE*  
RW*  
28  
18  
28  
18  
12  
Notes:  
1
At least one null period occurs between memory transfers. More null periods can occur if the  
next transfer is DMA. Thirteen clock pulses are required for DMA context switching.  
2
Port size determines which byte enable signals are active:  
8-bit port = BE3*  
16-bit port = BE[3:0]  
32-bit port = BE[3:0]  
3
4
The TW cycles are present when the WAIT field is set to 2 or more.  
The TA* and TEA*/LAST signals are for reference only.  
www.digi.com  
37  
SRAM timing  
SRAM WE write  
WE* controlled write (wait = 2)  
T1  
TW  
T2  
Note-1  
T1  
BCLK  
30  
31  
30  
31  
TA* (Note-4)  
TEA*/LAST (note-4)  
TA* (input)  
15  
14  
6
A[27:0]  
36  
36  
27  
13  
Note-2  
BE[3:0]*  
CS[4:0]*  
27  
9
write D[31:0]  
Async WE*  
CS0WE*  
RW*  
29  
19  
29  
19  
12  
Notes:  
1
At least one null period occurs between memory transfers. More null periods can occur if the  
next transfer is DMA. Thirteen clock pulses are required for DMA context switching.  
2
Port size determines which byte enable signals are active:  
8-bit port = BE3*  
16-bit port = BE[3:0]  
32-bit port = BE[3:0]  
3
4
The TW cycles are present when the WAIT field is set to 2 or more.  
The TA* and TEA*/LAST signals are for reference only.  
3 8  
NS7520 Datasheet 03/2006  
SRAM timing  
SRAM WE burst write  
WE* controlled, four word (3-2-2-2), burst write (wait = 2, BCYC = 01)  
T1  
TW  
T2  
30  
TW  
30  
T2  
TW  
T2  
TW  
T2  
Note-1  
T1  
BCLK  
TA* (Note-4)  
TEA*/LAST (Note-4)  
A[27:0]  
31  
31  
6
36  
Note-2  
36  
27  
13  
BE[3:0]*  
27  
9
CS[4:0]*  
write D[31:0]  
Async WE*  
CS0WE*  
29  
29  
19  
19  
12  
RW*  
Notes:  
1
At least one null period occurs between memory transfers. More null periods can occur if the  
next transfer is DMA. Thirteen clock pulses are required for DMA context switching.  
2
Port size determines which byte enable signals are active:  
8-bit port = BE3*  
16-bit port = BE[3:0]  
32-bit port = BE[3:0]  
3
4
The TW cycles are present when the WAIT field is set to 2 or more.  
The TA* and TEA*/LAST signals are for reference only.  
www.digi.com  
39  
SDRAM timing  
SDRAM timing  
BCLK max frequency: 55.296 MHz  
Operating conditions:  
Temperature:  
Voltage:  
-15.00 (min)  
1.60 (min)  
25.0pf  
110.00 (max)  
1.40 (max)  
Output load:  
Input drive:  
CMOS buffer  
SDRAM timing parameters  
Num  
36  
6
Description  
Min  
Max  
15.5  
13.5  
14  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK high to BE*/DQM* valid  
BCLK high to non-muxed address valid  
BCLK high to data out valid  
5
9
13  
10  
11  
27  
30  
31  
37  
35  
34  
12  
BCLK high to data out high impedance  
Data in valid to BCLK high (setup)  
BCLK high to data in invalid (hold)  
BCLK high to CS* valid  
13  
5
3
15.5  
13.5  
16  
BCLK high to TA* valid  
BCLK high to TEA* valid  
BCLK high to PORTA2/AMUX valid  
BCLK high to muxed address valid  
BCLK high to CAS* valid  
14  
6
14.5  
12  
BCLK high to RW* valid  
13.5  
4 0  
NS7520 Datasheet 03/2006  
SDRAM timing  
SDRAM read  
SDRAM read, CAS latency = 2  
T1  
T2  
bterm  
T1  
prechg  
active  
read  
nop  
inhibit  
30  
inhibit  
BCLK  
TA* (Note-5)  
30  
31  
31  
TEA*/LAST* (Note-5)  
PortA2/AMUX  
37  
37  
6
Non-muxed address  
Muxed address  
35  
36  
35  
36  
BE[3:0]* (DQM)  
10  
11  
read D[31:0]  
CS[4:0]*  
27  
34  
27  
34  
34  
CAS3* (RAS)  
CAS2* (CAS)  
CAS1* (WE)  
CAS0* (A10/AP)  
RW*  
34  
34  
34  
12  
34  
34  
34  
34  
34  
A10  
Notes:  
1
Port size determines which byte enable signals are active:  
8-bit port = BE3*  
16-bit port = BE[3:2]  
32-bit port = BE[3:0]  
2
The precharge and/or active commands are not always present. These commands depend on  
the address of the previous SDRAM access.  
3
4
5
If CAS latency = 3, 2 NOPs occur between the read and burst terminate commands.  
If CAS latency = 3, 3 inhibits occur after burst terminate.  
The TA* and TEA*/LAST signals are for reference only.  
www.digi.com  
41  
SDRAM timing  
SDRAM read  
SDRAM read, CAS latency = 1  
T1  
prechg  
T2  
bterm  
T1  
active  
read  
inhibit  
BCLK  
TA* (Note-3)  
30  
30  
31  
31  
37  
TEA*/LAST* (Note-3)  
PortA2/AMUX  
37  
35  
6
Non-muxed address  
35  
Muxed address  
36  
36  
BE[3:0]* (DQM)  
10  
11  
read D[31:0]  
27  
27  
CS[4:0]*  
34  
34  
34  
CAS3* (RAS#)  
34  
34  
34  
CAS2* (CAS#)  
34  
34  
34  
34  
CAS1* (WE#)  
34  
A10  
CAS0* (A10/AP)  
12  
RW*  
Notes:  
1
Port size determines which byte enable signals are active:  
8-bit port = BE3*  
16-bit port = BE[3:2]  
32-bit port = BE[3:0]  
2
3
The precharge and/or active commands are not always present. These commands depend on  
the address of the previous SDRAM access.  
The TA* and TEA*/LAST signals are for reference only.  
4 2  
NS9360 Datasheet 03/2006  
SDRAM timing  
SDRAM burst read  
SDRAM read, CAS latency = 2  
T1  
T2  
nop  
T2  
T2  
nop  
T2  
T1  
prechg active  
read  
nop  
nop  
bterm inhibit inhibit  
BCLK  
TA* (Note-5)  
30  
30  
31  
31  
TEA*/LAST* (Note-5)  
PortA2/AMUX  
37  
35  
37  
6
Non-muxed address  
Muxed address  
35  
36  
36  
27  
BE*[3:0]* (DQM)  
11  
10  
read D[31:0]  
CS[4:0]*  
27  
34  
34  
34  
CAS3* (RAS)  
CAS2* (CAS)  
CAS1* (WE)  
CAS0* (A10/AP)  
RW*  
34  
34  
34  
12  
34  
34  
34  
34  
34  
A10  
Notes:  
1
Port size determines which byte enable signals are active:  
8-bit port = BE3*  
16-bit port = BE[3:2]  
32-bit port = BE[3:0]  
2
The precharge and/or active commands are not always present. These commands depend on  
the address of the previous SDRAM access.  
3
4
5
If CAS latency = 3, 5 NOPs occur between the read and burst terminate commands.  
If CAS latency = 3, 3 inhibits occur after burst terminate.  
The TA* and TEA*/LAST signals are for reference only.  
www.digi.com  
43  
SDRAM timing  
SDRAM burst read  
SDRAM read, CAS latency = 1  
T1  
T2  
nop  
T2  
T2  
nop  
T2  
T1  
prechg  
active  
read  
nop  
bterm  
inhibit  
BCLK  
TA* (Note-5)  
30  
30  
31  
31  
TEA*/LAST* (Note-5)  
PortA2/AMUX  
37  
37  
6
Non-muxed address  
Muxed address  
35  
36  
35  
36  
27  
BE[3:0]* (DQM)  
11  
10  
read D[31:0]  
CS[4:0]*  
27  
34  
34  
34  
CAS3* (RAS)  
CAS2* (CAS)  
CAS1* (WE)  
CAS0* (A10/AP)  
RW*  
34  
34  
34  
12  
34  
34  
34  
34  
34  
A10  
Notes:  
1
Port size determines which byte enable signals are active:  
8-bit port = BE3*  
16-bit port = BE[3:2]  
32-bit port = BE[3:0]  
2
The precharge and/or active commands are not always present. These commands depend on  
the address of the previous SDRAM access.  
3
4
5
If CAS latency = 3, 5 NOPs occur between the read and burst terminate commands.  
If CAS latency = 3, 3 inhibits occur after burst terminate.  
The TA* and TEA*/LAST signals are for reference only.  
4 4  
NS9360 Datasheet 03/2006  
SDRAM timing  
SDRAM write  
SDRAM write  
T1  
prechg  
T2  
write  
T1  
active  
inhibit  
BCLK  
TA* (Note-3)  
30  
31  
37  
30  
31  
37  
TEA*/LAST* (Note-3)  
PortA2/AMUX  
Non-muxed address  
Muxed address  
BE[3:0]* (DQM)  
write D[31:0]  
6
35  
36  
35  
36  
13  
27  
Note-1  
9
27  
34  
CS[4:0]*  
34  
34  
34  
34  
CAS3* (RAS)  
CAS2* (CAS)  
CAS1* (WE)  
34  
34  
34  
34  
12  
34  
34  
A10  
CAS0* (A10/AP)  
RW*  
Notes:  
1
Port size determines which byte enable signals are active:  
8-bit port = BE3*  
16-bit port = BE[3:2]  
32-bit port = BE[3:0]  
2
3
The precharge and/or active commands are not always present. These commands depend on  
the address of the previous SDRAM access.  
The TA* and TEA*/LAST signals are for reference only.  
www.digi.com  
45  
SDRAM timing  
SDRAM burst write  
SDRAM burst write  
T1  
prechg  
T2  
write  
T2  
write  
T2  
write  
T2  
write  
T1  
active  
inhibit  
30  
BCLK  
TA* (Note-3)  
30  
31  
31  
37  
TEA*/LAST* (Note-3)  
PortA2/AMUX  
Non-muxed address  
Muxed address  
write D[31:0]1  
BE[3:0]* (DQM)  
CS[4:0]*  
37  
35  
6
35  
9
13  
36  
27  
36  
27  
34  
34  
34  
34  
34  
CAS3* (RAS)  
CAS2* (CAS)  
CAS1* (WE)  
34  
34  
34  
34  
12  
34  
34  
A10  
CAS0* (A10/AP)  
RW*  
Notes:  
1
Port size determines which byte enable signals are active:  
8-bit port = BE3*  
16-bit port = BE[3:2]  
32-bit port = BE[3:0]  
2
3
The precharge and/or active commands are not always present. These commands depend on  
the address of the previous SDRAM access. When the active command is not present,  
parameter #35 is valid during the write (T2) cycle.  
The TA* and TEA*/LAST signals are for reference only.  
4 6  
NS9360 Datasheet 03/2006  
SDRAM timing  
SDRAM load mode  
prechg  
nop  
load  
BCLK  
CS[4:0]*  
27  
27  
34  
34  
34  
34  
34  
CAS3* (RAS)  
CAS2* (CAS)  
CAS1* (WE)  
CAS0* (A10/AP)  
A[13:0]  
34  
34  
34  
34  
35  
34  
35  
op code  
SDRAM refresh  
prechg  
inhibit  
refresh  
BCLK  
CS[4:0]*  
27  
27  
27  
27  
34  
34  
34  
34  
CAS3* (RAS)  
CAS2* (CAS)  
CAS1* (WE)  
CAS0* (A10/AP)  
34  
34  
34  
34  
www.digi.com  
47  
FP DRAM timing  
FP DRAM timing  
BCLK max frequency: 55.296 MHz  
Operating conditions:  
Temperature:  
Voltage:  
-15.00 (min)  
1.60 (min)  
25.0pf  
110.00 (max)  
1.40 (max)  
Output load:  
Input drive:  
CMOS buffer  
FP DRAM timing parameters  
Num  
36  
6
Description  
Min  
Max  
15.5  
13.5  
14  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK high to BE* valid  
BCLK high to address valid  
BCLK high to data out valid  
BCLK high to data out high impedance  
Data in valid to BCLK high (setup)  
BCLK high to data in invalid (hold)  
TA* valid to BCLK high (setup)  
BCLK high to TA* invalid (hold)  
BCLK low to OE* valid  
5
9
13  
10  
11  
14  
15  
28  
29  
30  
31  
37  
35  
43  
27  
12  
13  
5
3
5
3
12.5  
13  
BCLK low to WE* valid  
BCLK high to TA* valid  
13.5  
16  
BCLK high to TEA* valid  
BCLK high to PORTA2/AMUX valid  
BCLK high to muxed address valid  
BCLK low to CAS* valid  
14  
6
14.5  
13  
BCLK low to RAS* valid  
12  
BCLK high to RW* valid  
13.5  
4 8  
NS9360 Datasheet 03/2006  
FP DRAM timing  
FP DRAM read  
Fast Page read  
T1  
TW  
T2  
Note-1  
T1  
BCLK  
TA* (Note-4)  
30  
31  
30  
31  
TEA*/LAST (Note-4)  
15  
14  
TA* (input)  
BE[3:0]*  
36  
6
36  
Note-2  
Non-muxed address  
Muxed address  
35  
35  
11  
10  
read D[31:0]1  
OE*  
28  
27  
28  
27  
RAS[4:0]*1  
CAS[3:0]*1  
PortA2/AMUX  
RW*  
43  
43  
37  
Note-3  
37  
12  
Notes:  
1
If the next transfer is DMA, null periods between memory transfers can occur. Thirteen clock  
pulses are required for DMA context switching.  
2
Port size determines which byte enable signals are active:  
8-bit port = BE3*  
16-bit port = BE[3:2]  
32-bit port = BE[3:0]  
3
4
Port size determines which CAS signals are active:  
8-bit port = CAS3*  
16-bit port = CAS[3:2]  
32-bit port = CAS[3:0]  
The TA* and TEA*/LAST signals are for reference only.  
www.digi.com  
49  
FP DRAM timing  
FP DRAM burst read  
Fast Page burst read  
T1  
TW  
T2  
TW  
T2  
TW  
T2  
TW  
T2  
Note-1  
T1  
BCLK  
30  
30  
TA* (Note-4)  
31  
31  
36  
TEA*/LAST (Note-4)  
36  
Note-2  
BE[3:0]*  
Non-muxed address  
Muxed address  
6
35  
11  
10  
read D[31:0]  
OE*  
28  
27  
28  
37  
27  
RAS[4:0]*  
CAS[3:0]*  
PortA2/AMUX  
RW*  
43  
43  
Note-3  
37  
12  
Notes:  
1
If the next transfer is DMA, null periods between memory transfers can occur. Thirteen clock  
pulses are required for DMA context switching.  
2
Port size determines which byte enable signals are active:  
8-bit port = BE3*  
16-bit port = BE[3:2]  
32-bit port = BE[3:0]  
3
4
Port size determines which CAS signals are active:  
8-bit port = CAS3*  
16-bit port = CAS[3:2]  
32-bit port = CAS[3:0]  
The TA* and TEA*/LAST signals are for reference only.  
5 0  
NS9360 Datasheet 03/2006  
FP DRAM timing  
FP DRAM write  
Fast Page write  
T1  
TW  
T2  
Note-1  
T1  
BCLK  
TA* (Note-4)  
30  
31  
30  
31  
TEA*/LAST (Note-4)  
15  
14  
TA* (input)  
BE[3:0]*  
36  
6
36  
13  
Note-2  
Non-muxed address  
Muxed address  
write D[31:0]  
WE*  
35  
9
29  
27  
29  
27  
(FP)RAS[4:0]*  
(FP)CAS[3:0]*  
PortA2/AMUX  
RW*  
43  
43  
37  
Note-3  
37  
12  
Notes:  
1
If the next transfer is DMA, null periods between memory transfers can occur. Thirteen clock  
pulses are required for DMA context switching.  
2
Port size determines which byte enable signals are active:  
8-bit port = BE3*  
16-bit port = BE[3:2]  
32-bit port = BE[3:0]  
3
4
Port size determines which CAS signals are active:  
8-bit port = CAS3*  
16-bit port = CAS[3:2]  
32-bit port = CAS[3:0]  
The TA* and TEA*/LAST signals are for reference only.  
www.digi.com  
51  
FP DRAM timing  
FP DRAM burst write  
Fast Page burst write  
T1  
TW  
T2  
TW  
T2  
TW  
T2  
TW  
T2  
Note-1  
T1  
BCLK  
30  
30  
TA* (Note-4)  
31  
31  
36  
TEA*/LAST (Note-4)  
36  
Note-2  
BE[3:0]*  
Non-muxed address  
Muxed address  
writeD[31:0]  
WE*  
6
35  
9
13  
29  
29  
27  
27  
RAS[4:0]*  
43  
43  
43  
Note-3  
CAS[3:0]*  
37  
37  
PortC3/AMUX  
RW*  
12  
Notes:  
1
If the next transfer is DMA, null periods between memory transfers can occur. Thirteen clock  
pulses are required for DMA context switching.  
2
Port size determines which byte enable signals are active:  
8-bit port = BE3*  
16-bit port = BE[3:2]  
32-bit port = BE[3:0]  
3
Port size determines which CAS signals are active:  
8-bit port = CAS3*  
16-bit port = CAS[3:2]  
32-bit port = CAS[3:0]  
4
5
The TA* and TEA*/LAST signals are for reference only.  
The BCYC field should never be set to 00.  
5 2  
NS9360 Datasheet 03/2006  
FP DRAM timing  
fp_refresh_cycles  
Fast page refresh (RCYC = 00)  
RF1  
RF2  
RF3  
RF4  
27  
RF5  
RF6  
RF7  
RF8  
T1  
BCLK  
RAS[4:0]*  
CAS3*  
CAS2*  
CAS1*  
CAS0*  
WE*  
27  
43  
43  
43  
43  
12  
43  
43  
43  
43  
12  
Fast page refresh (RCYC = 01)  
RF1  
RF2  
RF3  
RF4  
RF5  
RF6  
RF8  
T1  
BCLK  
RAS[4:0]*  
CAS3*  
CAS2*  
CAS1*  
CAS0*  
WE*  
27  
43  
43  
43  
43  
12  
27  
43  
43  
43  
43  
12  
www.digi.com  
53  
FP DRAM timing  
Fast page refresh (RCYC = 10)  
RF1  
RF2  
RF3  
RF4  
RF5  
RF8  
T1  
BCLK  
RAS[4:0]*  
CAS3*  
CAS2*  
CAS1*  
CAS0*  
WE*  
27  
27  
43  
43  
43  
43  
12  
43  
43  
43  
43  
12  
Fast page refresh (RCYC = 11)  
RF1  
RF2  
RF3  
RF4  
RF8  
T1  
BCLK  
RAS[4:0]*  
CAS3*  
CAS2*  
CAS1*  
CAS0*  
WE*  
27  
27  
43  
43  
43  
43  
12  
43  
43  
43  
43  
12  
5 4  
NS9360 Datasheet 03/2006  
Ethernet timing  
Ethernet timing  
Operating conditions:  
Temperature:  
Voltage:  
-15.00 (min)  
110.00 (max)  
1.40 (max)  
1.60 (min)  
25.0pf  
Output load:  
Input drive:  
CMOS buffer  
Ethernet timing parameters  
Num  
44  
45  
46  
49  
47  
48  
50  
52  
53  
Description  
Min  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TXCLK high to TXD*, TXEN, TXER valid  
RXD*, RXER, RXDV, TXCOL, RXCRS valid to RXCLK high (setup)  
RXCLK high to RXD*, RXER, RXDV, TXCOL, RXCRS hold time  
MDC high to MDIO valid  
11.5  
3
2
50  
MDIO valid to MDC high (setup)  
3
3
MDC high to MDIO hold time  
RXCLK high to RSPF* valid  
15.5  
REJECT* valid to RXCLK high (setup)  
REJECT* valid from RXCLK high (hold)  
3
1.5  
Ethernet PHY timing  
TXCLK  
44  
46  
TXD[3:0],TXEN,TXER  
RXCLK  
45  
RXD[3:0],RXER,RXDV,CRS,COL  
47  
48  
49  
MDIO (input)  
MDC  
MDIO (output)  
www.digi.com  
55  
Ethernet timing  
Ethernet cam timing  
RXCLK  
50  
50  
RPSF_  
53  
51  
52  
REJECT_  
5 6  
NS9360 Datasheet 03/2006  
JTAG timing  
JTAG timing  
Operating conditions:  
Temperature:  
Voltage:  
-15.00 (min)  
110.00 (max)  
1.40 (max)  
1.60 (min)  
25.0pf  
Output load:  
Input drive:  
CMOS buffer  
jtag arm ice timing parameters  
Num  
54  
Description  
Min  
Max  
21  
Units  
ns  
TCK to TDO valid  
55  
TCK to TDO HighZ  
TDI setup to TCK rising  
TDI hold from TCK rising  
TRST* width  
21  
ns  
56  
1
3
1
1
3
ns  
57  
ns  
58  
TTCK  
ns  
60  
TMS setup to TCK rising  
TMS hold from TCK rising  
61  
ns  
jtag arm ice timing diagram  
TCK  
54  
55  
TDO  
57  
61  
56  
60  
TDI  
58  
TRST_  
TMS  
www.digi.com  
57  
JTAG timing  
jtag bscan timing parameters  
Num  
62  
Description  
Min  
Max  
21  
Units  
ns  
TCK to TDO valid  
63  
TCK to TDO HighZ  
TDI setup to TCK rising  
TDI hold from TCK rising  
TRST* width  
21  
ns  
64  
1
3
1
1
3
ns  
65  
ns  
66  
TTCK  
ns  
68  
TMS setup to TCK rising  
TMS hold to TCK rising  
69  
ns  
jtag bscan timing diagram  
TCK  
62  
63  
TDO  
65  
69  
64  
68  
TDI  
66  
TRST_  
TMS  
5 8  
NS9360 Datasheet 03/2006  
External DMA timing  
External DMA timing  
BCLK max frequency: 55.296 MHz  
Operating conditions:  
Temperature:  
Voltage:  
-15.00 (min)  
1.60 (min)  
25.0pf  
110.00 (max)  
1.40 (max)  
Output load:  
Input drive:  
CMOS buffer  
External DMA timing parameters  
Num  
72  
Description  
Min  
Max  
14  
Unit  
ns  
BCLK high to DACK* valid  
75  
BCLK high to DONE* (output) valid  
DREQ* low to BCLK high (setup)  
BCLK high to DREQ* valid (hold)  
DONE* (input) valid BCLK high (setup)  
BLCK high to DONE* (input) valid (hold)  
15  
ns  
70  
5
0
5
0
ns  
71  
ns  
73  
ns  
74  
ns  
Fly-by external DMA  
T1  
TW  
T2  
BCLK  
Mem signals (Note-1)  
71  
70  
DREQ*  
DACK*  
72  
75  
72  
75  
DONE* (output)  
74  
73  
Note2  
DONE* (input)  
Notes:  
1
The memory signals are data[31:0], addr[27:0], BE[3:0], CS/RAS[4:0], CAS[3:0], RW, OE*. WE*,  
and PORTC3/AMUX. The timing of these signals depends on how the memory is configured  
(Sync SRAM, Async SRAM, FP DRAM, or SDRAM).  
2
The DONE* signal works as an input only when the DMA channel is configured as fly-by write.  
www.digi.com  
59  
External DMA timing  
Memory-to-memory external DMA  
T1  
TW  
T2  
Note-1  
T1  
TW  
T2  
BCLK  
Mem signals (Note-2)  
R/W  
71  
71  
70  
70  
DREQ*  
DACK*  
72  
72  
75  
72  
72  
75  
75  
75  
DONE* (output)  
Notes:  
1
A null period sometimes occurs between memory cycles.  
2
The memory signals are data[31:0], addr[27:0], BE[3:0], CS/RAS[4:0], CAS[3:0], RW, OE*. WE*,  
and PORTA2/AMUX. The timing of these signals depends on how the memory is configured  
(Sync SRAM, Async SRAM, FP DRAM, or SDRAM).  
6 0  
NS9360 Datasheet 03/2006  
Serial internal/external timing  
Serial internal/external timing  
Operating conditions:  
Temperature:  
Voltage:  
-15.00 (min)  
1.60 (min)  
25.0pf  
110.00 (max)  
1.40 (max)  
Output load:  
Input drive:  
CMOS buffer  
Note:  
SPI timing diagrams are in Chapter 10, "Serial Controller Module." See Figure 25, "SPI  
master mode 0 and 1 two-byte transfer," on page 219 and Figure 26, "SPI slave mode 0  
and 1 two-byte transfer," on page 222. Only SPI modes 0 and 1 are supported.  
Serial internal timing characteristics  
Num  
76  
Description  
Min  
Max  
Unit  
TSCLK  
ns  
SCLK to ENABLE high  
SCLK to TXD (PORTA7/C7)  
RXD (PORTA3/C3) setup to SCLK  
RXD hold to SCLK  
1
77  
1 TSYS*  
78  
1
1
ns  
79  
ns  
* The TSYS parameter represents one period of the internal system clock.  
Serial external timing characteristics  
Num  
Description  
Min  
Max  
10  
Unit  
MHz  
%
80  
SCLK frequency  
SCLK duty cycle  
45  
1
55  
81  
82  
83  
84  
SCLK to ENABLE  
TSCLK  
ns  
SCLK to TXD (PORTA7/C7)  
RXD (PORTA3/C3) setup to SCLK  
RXD hold to SCLK  
2TSYS*  
2
ns  
1.5  
ns  
* The TSYS parameter represents one period of the internal system clock.  
www.digi.com  
61  
Serial internal/external timing  
synchronous serial internal clock  
SCLK  
Enable  
TXD  
76  
77  
79  
76  
77  
78  
RXD  
synchronous serial external clock  
80  
SCLK  
Enable  
TXD  
81  
82  
84  
81  
82  
83  
RXD  
6 2  
NS9360 Datasheet 03/2006  
GPIO timing  
GPIO timing  
Operating conditions:  
Temperature:  
Voltage:  
-15.00 (min)  
110.00 (max)  
1.40 (max)  
1.60 (min)  
25.0pf  
Output load:  
Input drive:  
CMOS buffer  
GPIO timing parameters  
Num  
85  
Description  
Min  
3
Max  
Unit  
ns  
GPIO (setup) to BCLK rising  
GPIO (hold) from BCLK rising  
BCLK to GPIO (output)  
86  
0
ns  
87  
17  
ns  
GPIO timing diagram  
BCLK  
86  
87  
85  
GPIO (input)  
GPIO (output)  
www.digi.com  
63  
P/N: 90000303_D  
Release date: March 2006  
© Digi International Inc. 2005-2006 All rights reserved.  
Digi, Digi International, the Digi logo, the Making Device Networking Easy logo, NetSilicon, a Digi  
International Company, NET+, NET+OS and NET+Works are trademarks or registered trademarks of  
Digi International, Inc. in the United States and other countries worldwide. All other trademarks  
are the property of their respective owners.  
Information in this document is subject to change without notice and does not represent a  
committment on the part of Digi International.  
Digi provides this document “as is,” without warranty of any kind, either expressed or implied,  
including, but not limited to, the implied warranties of, fitness or merchantability for a particular  
purpose. Digi may make improvements and/or changes in this manual or in the product(s) and/or  
the program(s) described in this manual at any time.  
This product could include technical inaccuracies or typographical errors. Changes are made  
periodically to the information herein; these changes may be incorporated in new editions of the  
publication.  
Digi International  
11001 Bren Road East  
Minnetonka, MN 55343 U.S.A.  
United States: +1 877 912-3444  
Other locations: +1 952 912-3444  
Fax: +1 952 912-4960  
www.digi.com/support  
www.digi.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY