DEMO-ATF-5X1M4A [ETC]

Demonstration circuit board for ATF-541M4 and ATF-551M4 ; 演示电路板ATF - 541M4和ATF- 551M4
DEMO-ATF-5X1M4A
型号: DEMO-ATF-5X1M4A
厂家: ETC    ETC
描述:

Demonstration circuit board for ATF-541M4 and ATF-551M4
演示电路板ATF - 541M4和ATF- 551M4

文件: 总24页 (文件大小:194K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Agilent ATF-551M4 Low Noise  
Enhancement Mode  
Pseudomorphic HEMT in a  
Miniature Leadless Package  
Data Sheet  
Features  
• Very low noise figure and high  
linearity  
• Single Supply Enhancement Mode  
Technology[1] optimized for 3V  
operation  
• Excellent uniformity in product  
specifications  
Description  
MiniPak 1.4 mm x 1.2 mm Package  
Agilent Technologies’ ATF-551M4  
is a high dynamic range, super  
low noise, single supply  
E-pHEMT GAAs FET housed in a  
thin miniature leadless package.  
• 400 micron gate width  
• Thin miniature package  
1.4 mm x 1.2 mm x 0.7 mm  
• Tape-and-reel packaging option  
available  
The combination of small device  
size, super low noise (under 1 dB  
Fmin from 2 to 6 GHz), high  
linearity and low power makes  
the ATF-551M4 ideal for LNA or  
hybrid module designs in wire-  
less receiver in the 450 MHz to  
10 GHz frequency band.  
Pin Connections and  
Package Marking  
Specifications  
• 2 GHz; 2.7V, 10 mA (typ.)  
• 24.1 dBm output 3rd order intercept  
Drain  
Pin 4  
Source  
Pin 3  
• 14.6 dBm output power at 1 dB gain  
compression  
Vx  
Gate  
Pin 2  
Source  
Pin 1  
Applications include Cellular/  
PCS/ WCDMA handsets and data  
modem cards, fixed wireless  
infrastructure in the 2.4, 3.5 GHz  
and UNII frequency bands, as  
well as 2.4 GHz 802.11b, 5 GHz  
802.11a and HIPERLAN/2  
• 0.5 dB noise figure  
• 17.5 dB associated gain  
Note:  
Top View. Package marking provides orientation,  
product identification and date code.  
Applications  
• Low Noise Amplifier for:  
V” = Device Type Code  
– Cellular/PCS/WCDMA hand-  
sets and modem cards  
Wireless LAN PC-cards.  
“x” = Date code character. A different  
character is assigned for each month and  
year.  
– 2.4 GHz, 3.5 GHz and UNII fixed  
wireless infrastructure  
Note:  
1. Agilent’s enhancement mode E-pHEMT  
devices are the first commercially available  
single-supply GaAs transistors that do not  
need a negative gate bias voltage for  
operation. They can help simplify the design  
and reduce the cost of receivers and  
transmitters in many applications in the  
450 MHz to 10 GHz frequency range.  
– 2.4 GHz 802.11b Wireless LAN  
– 5 GHz 802.11a and HIPERLAN  
Wireless LAN  
General purpose discrete E-pHEMT  
for other ultra low noise applications  
ATF-551M4 Absolute Maximum Ratings[1]  
Notes:  
Absolute  
1. Operation of this device above any one of  
these parameters may cause permanent  
damage.  
Symbol  
Parameter  
Units  
Maximum  
VDS  
VGS  
VGD  
IDS  
Drain-Source Voltage[2]  
Gate-Source Voltage[2]  
Gate Drain Voltage[2]  
Drain Current[2]  
V
5
2. Assumes DC quiescent conditions.  
3. Source lead temperature is 25°C. Derate  
6 mW/°C for TL > 40°C.  
V
-5 to +0.8  
V
5
4. Thermal resistance measured using  
150°C Liquid Crystal Measurement method.  
5. Device can safely handle +3 dBm RF Input  
Power provided IGS is limited to 1 mA. IGS at  
P1dB drive RF level is bias circuit dependent.  
See applications section for additional  
information.  
mA  
mA  
mW  
dBm  
°C  
100  
IGS  
Gate Current[5]  
1
Pdiss  
Pin max.  
TCH  
Total Power Dissipation[3]  
RF Input Power  
270  
3
Channel Temperature  
Storage Temperature  
Thermal Resistance[4]  
150  
TSTG  
θjc  
°C  
-65 to 150  
240  
°C/W  
70  
60  
50  
40  
30  
20  
10  
0.7V  
0.6V  
0.5V  
0.4V  
0.3V  
0
0
1
2
3
4
5
6
7
V
(V)  
DS  
Figure 1. Typical I-V Curves.  
(VGS = 0.1 V per step)  
Product Consistency Distribution Charts[6]  
180  
150  
120  
90  
150  
160  
Cpk = 1.64  
Cpk = 2.85  
Cpk = 2.46  
Stdev = 0.19  
Stdev = 0.25  
Stdev = 0.06  
120  
90  
60  
30  
0
120  
-3 Std  
+3 Std  
-3 Std  
+3 Std  
80  
60  
40  
30  
0
0.29  
0
22  
23  
24  
25  
26  
15  
16  
17  
18  
19  
0.49  
0.69  
NF  
0.89  
1.09  
OIP3  
GAIN (dBm)  
Figure 3. Capability Plot for OIP3 @ 2.7 V,  
10 mA. LSL = 22.0, Nominal = 24.1  
Figure 2. Capability Plot for Gain @ 2.7 V,  
10 mA. LSL = 15.5, Nominal = 17.5,  
USL = 18.5  
Figure 4. Capability Plot for NF @ 2.7 V,  
10 mA. Nominal = 0.5, USL = 0.9  
Note:  
6. Distribution data sample size is 398 samples taken from 4 different wafers. Future wafers allocated to this product may have nominal values anywhere  
between the upper and lower limits. Measurements made on production test board. This circuit represents a trade-off between an optimal noise match  
and a realizeable match based on production test equipment. Circuit losses have been de-embedded from actual measurements.  
2
ATF-551M4 Electrical Specifications  
TA = 25°C, RF parameters measured in a test circuit for a typical device  
Symbol  
Parameter and Test Condition  
Units  
Min.  
Typ.  
Max.  
Vgs  
Vth  
Idss  
Gm  
Operational Gate Voltage  
Threshold Voltage  
Vds = 2.7V, Ids = 10 mA  
Vds = 2.7V, Ids = 2 mA  
Vds = 2.7V, Vgs = 0V  
V
0.3  
0.47  
0.37  
0.1  
0.65  
0.53  
3
V
0.18  
Saturated Drain Current  
Transconductance  
µA  
Vds = 2.7V, gm = Idss/Vgs;  
Vgs = 0.75 0.7 = 0.05V  
mmho  
110  
220  
285  
Igss  
NF  
Gate Leakage Current  
Vgd = Vgs = -2.7V  
µA  
95  
Noise Figure[1]  
f = 2 GHz  
Vds = 2.7V, Ids = 10 mA  
Vds = 3V, Ids = 20 mA  
dB  
dB  
0.5  
0.5  
0.9  
Gain  
Gain [1]  
f = 2 GHz  
f = 2 GHz  
f = 2 GHz  
Vds = 2.7V, Ids = 10 mA  
Vds = 3V, Ids = 20 mA  
dB  
dB  
15.5  
17.5  
18.0  
18.5  
OIP3  
Output 3rd Order  
Intercept Point[1]  
Vds = 2.7V, Ids = 10 mA  
Vds = 3V, Ids = 20 mA  
dBm  
dBm  
22  
24.1  
30.0  
P1dB  
Notes:  
1dB Compressed  
Output Power[1]  
Vds = 2.7V, Ids = 10 mA  
Vds = 3V, Ids = 20 mA  
dBm  
dBm  
14.6  
16.0  
1. Measurements obtained using production test board described in Figure 5. Typical values were determined from a sample size of 398 parts from  
4 wafers.  
50Input  
Transmission  
Line Including  
Gate Bias T  
(0.3 dB loss)  
Input  
Output  
50Output  
Transmission  
Line Including  
Gate Bias T  
Input  
Output  
Matching Circuit  
Γ_mag = 0.3  
Γ_ang = 11°  
(0.3 dB loss)  
Matching Circuit  
Γ_mag = 0.3  
Γ_ang = 9°  
DUT  
(0.9 dB loss)  
(0.3 dB loss)  
Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Gain, P1dB, OIP3, and IIP3 measurements. This circuit represents a  
trade-off between an optimal noise match, maximum OIP3 match and associated impedance matching circuit losses. Circuit losses have been de-  
embedded from actual measurements.  
ATF-551M4 Electrical Specifications (see notes 2 and 3, as indicated)  
Symbol  
Parameter and Test Condition  
Units  
Min.  
Typ.  
Max.  
Fmin  
Minimum Noise Figure[2] f = 900 GHz  
Vds = 2.7V, Ids = 10 mA  
Vds = 2.7V, Ids = 10 mA  
Vds = 2.7V, Ids = 10 mA  
Vds = 2.7V, Ids = 10 mA  
dB  
dB  
dB  
dB  
0.27  
0.41  
0.61  
0.88  
f = 2 GHz  
f = 3.9 GHz  
f = 5.8 GHz  
Ga  
Associated Gain [2]  
f = 900 GHz  
f = 2 GHz  
f = 3.9 GHz  
f = 5.8 GHz  
Vds = 2.7V, Ids = 10 mA  
Vds = 2.7V, Ids = 10 mA  
Vds = 2.7V, Ids = 10 mA  
Vds = 2.7V, Ids = 10 mA  
dB  
dB  
dB  
dB  
21.8  
17.9  
14.2  
12.0  
OIP3  
Output 3rd Order  
Intercept Point[3]  
f = 900 GHz  
f = 3.9 GHz  
f = 5.8 GHz  
Vds = 2.7V, Ids = 10 mA  
Vds = 2.7V, Ids = 10 mA  
Vds = 2.7V, Ids = 10 mA  
dBm  
dBm  
dBm  
22.1  
24.3  
24.5  
P1dB  
1dB Compressed  
Output Power[3]  
f = 900 GHz  
f = 3.9 GHz  
f = 5.8 GHz  
Vds = 2.7V, Ids = 10 mA  
Vds = 2.7V, Ids = 10 mA  
Vds = 2.7V, Ids = 10 mA  
dBm  
dBm  
dBm  
14.3  
14.5  
14.3  
Notes:  
2. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these  
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.  
3. Measurements taken above and below 2 GHz was made using a double stub tuner at the input tuned for low noise and a double stub tuner at the  
output tuned for maximum OIP3. Circuit losses have been de-embedded from actual measurements.  
3
ATF-551M4 Typical Performance Curves  
26  
25  
24  
23  
22  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
32  
30  
28  
26  
24  
22  
20  
18  
16  
2V  
2.7V  
3V  
21  
20  
19  
2V  
2.7V  
3V  
2V  
2.7V  
3V  
18  
0
5
10  
15  
20  
(mA)  
25  
30  
35  
0
5
10  
15  
20  
(mA)  
25  
30  
35  
0
5
10  
15  
20  
(mA)  
25  
30  
35  
I
I
I
d
d
d
Figure 6. Gain vs. I and V at 900 MHz[1]  
ds ds  
.
Figure 7. Fmin vs. I and V at 900 MHz[2]  
ds ds  
.
Figure 8. OIP3 vs. I and V at 900 MHz[1]  
.
ds ds  
7
6
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
5
4
3
2
1
0
2V  
2.7V  
3V  
2V  
2.7V  
3V  
-1  
-2  
0
5
10  
15  
20  
(mA)  
25  
30  
35  
0
5
10  
15  
20  
(mA)  
25  
30  
35  
I
I
d
d
Figure 9. IIP3 vs. I and V at 900 MHz[1]  
ds ds  
.
Figure 10. P1dB vs. I and V at 900 MHz[1]  
.
ds ds  
Notes:  
1. Measurements at 900MHz were made using  
an ICM fixture with a double stub tuner at the  
input tuned for low noise and a double stub  
tuner at the output tuned for maximum OIP3.  
Circuit losses have been de-embedded from  
actual measurements.  
2. The Fmin values are based on a set of 16  
noise figure measurements made at 16  
different impedances using an ATN NP5 test  
system. From these measurements Fmin is  
calculated. Refer to the noise parameter  
measurement section for more information.  
4
ATF-551M4 Typical Performance Curves, continued  
20  
19  
18  
17  
16  
15  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
36  
32  
28  
24  
20  
16  
2V  
2.7V  
3V  
2V  
2.7V  
3V  
2V  
2.7V  
3V  
0
5
10  
15  
20  
(mA)  
25  
30  
35  
0
5
10  
15  
20  
(mA)  
25  
30  
35  
0
5
10  
15  
20  
(mA)  
25  
30  
35  
I
I
I
d
d
d
Figure 11. Gain vs. I and V at 2 GHz[1]  
.
Figure 12. Fmin vs. I and V at 2 GHz[2]  
.
Figure 13. OIP3 vs. I and V at 2 GHz[1]  
.
ds ds  
ds  
ds  
ds  
ds  
17  
16  
15  
14  
13  
12  
11  
10  
18  
16  
14  
12  
10  
8
6
4
2V  
2.7V  
3V  
2V  
2.7V  
3V  
2
0
0
5
10  
15  
20  
(mA)  
25  
30  
35  
0
5
10  
15  
20  
(mA)  
25  
30  
35  
I
I
d
d
Figure 14. IIP3 vs. I and V at 2 GHz[1]  
.
Figure 15. P1dB vs. I and V at 2 GHz[1]  
.
ds ds  
ds  
ds  
Notes:  
1. Measurements at 2 GHz with biasing 2.7V,  
10 mA were made on a fixed tuned  
Measurements taken other than 2.7V, 10 mA  
biasing was made using a double stub tuner  
at the input tuned for low noise and a double  
stub tuner at the output tuned for maximum  
OIP3. Circuit losses have been de-embedded  
from actual measurements.  
2. The Fmin values are based on a set of  
16 noise figure measurements made at  
16 different impedances using an ATN NP5  
test system. From these measurements Fmin  
is calculated. Refer to the noise parameter  
measurement section for more information.  
production test board that was tuned for  
optimal OIP3 match with reasonable noise  
figure. This circuit represents a trade-off  
between optimal noise match, maximum OIP3  
match and a realizable match based on  
production test board requirements.  
5
ATF-551M4 Typical Performance Curves, continued  
30  
25  
20  
15  
10  
5
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
26  
25  
24  
23  
22  
21  
20  
19  
18  
2V 10 mA  
2.7V 10 mA  
2V 10 mA  
2.7V 10 mA  
2V 10 mA  
2.7V 10 mA  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 16. Gain vs. Bias over Frequency[1]  
.
Figure 17. Fmin vs. Bias over Frequency[2]  
.
Figure 18. OIP3 vs. Bias over Frequency[1]  
.
16  
14  
12  
10  
8
16  
15  
14  
13  
12  
6
4
2
0
-2  
11  
2V 10 mA  
2V 10 mA  
-4  
-6  
2.7V 10 mA  
2.7V 10 mA  
10  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 19. IIP3 vs. Bias over Frequency[1]  
.
Figure 20. P1dB vs. Bias over Frequency[1]  
.
Notes:  
1. Measurements at 2 GHz were made on a  
requirements. Measurements taken above  
and below 2 GHz was made using a double  
stub tuner at the input tuned for low noise  
and a double stub tuner at the output tuned  
for maximum OIP3. Circuit losses have been  
de-embedded from actual measurements.  
2. The Fmin values are based on a set of  
16 noise figure measurements made at  
16 different impedances using an ATN NP5  
test system. From these measurements Fmin  
is calculated. Refer to the noise parameter  
measurement section for more information.  
fixed tuned production test board that was  
tuned for optimal OIP3 match with reasonable  
noise figure at 2.7 V, 10 mA bias. This circuit  
represents a trade-off between optimal noise  
match, maximum OIP3 match and a realizable  
match based on production test board  
6
ATF-551M4 Typical Performance Curves, continued  
30  
25  
20  
15  
10  
5
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
25  
24  
23  
22  
21  
20  
19  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 21. Gain vs. Temperature and  
Frequency with Bias at 2.7V, 10 mA[1]  
Figure 22. Fmin vs. Temperature and  
Frequency with Bias at 2.7V, 10 mA[2]  
Figure 23. OIP3 vs. Temperature and  
Frequency with Bias at 2.7V, 10 mA[1]  
.
.
.
20  
15  
10  
5
16  
15  
14  
13  
12  
0
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-5  
11  
10  
-10  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 24. IIP3 vs. Temperature and  
Frequency with Bias at 2.7V, 10 mA[1]  
Figure 25. P1dB vs. Temperature and  
Frequency with Bias at 2.7V, 10 mA[1]  
.
.
Notes:  
1. Measurements at 2 GHz were made on a  
requirements. Measurements taken above  
and below 2 GHz was made using a double  
stub tuner at the input tuned for low noise  
and a double stub tuner at the output tuned  
for maximum OIP3. Circuit losses have been  
de-embedded from actual measurements.  
2. The Fmin values are based on a set of  
16 noise figure measurements made at  
16 different impedances using an ATN NP5  
test system. From these measurements Fmin  
is calculated. Refer to the noise parameter  
measurement section for more information.  
fixed tuned production test board that was  
tuned for optimal OIP3 match with reasonable  
noise figure at 2.7 V, 10 mA bias. This circuit  
represents a trade-off between optimal noise  
match, maximum OIP3 match and a realizable  
match based on production test board  
7
ATF-551M4 Typical Scattering Parameters, VDS = 2V, IDS = 10 mA  
Freq.  
GHz  
S11  
S21  
Mag.  
S12  
S22  
MSG/MAG  
dB  
Mag.  
Ang.  
dB  
Ang.  
Mag.  
Ang.  
Mag.  
Ang.  
0.1  
0.995  
0.954  
0.906  
0.896  
0.833  
0.790  
0.781  
0.739  
0.710  
0.683  
0.679  
0.680  
0.681  
0.683  
0.690  
0.687  
0.691  
0.696  
0.713  
0.747  
0.759  
0.808  
0.828  
0.870  
-6.0  
20.41  
19.95  
19.35  
19.18  
18.15  
17.22  
17.00  
15.84  
14.74  
12.75  
11.03  
9.65  
10.479  
9.946  
9.280  
9.103  
8.080  
7.260  
7.078  
6.197  
5.459  
4.341  
3.559  
3.036  
2.638  
2.353  
2.122  
1.932  
1.775  
1.636  
1.501  
1.384  
1.255  
1.122  
0.999  
0.887  
175.9  
158.2  
144.2  
141.0  
125.6  
114.9  
112.5  
101.1  
91.2  
0.007  
0.031  
0.052  
0.056  
0.075  
0.085  
0.087  
0.095  
0.099  
0.104  
0.105  
0.107  
0.107  
0.110  
0.113  
0.117  
0.122  
0.129  
0.135  
0.143  
0.149  
0.153  
0.157  
0.159  
86.3  
71.6  
60.8  
58.3  
46.8  
39.0  
37.3  
29.8  
23.7  
14.8  
8.6  
0.803  
0.758  
0.710  
0.692  
0.611  
0.547  
0.532  
0.463  
0.404  
0.318  
0.263  
0.220  
0.199  
0.185  
0.181  
0.185  
0.196  
0.209  
0.206  
0.211  
0.237  
0.269  
0.322  
0.383  
-3.3  
31.75  
25.06  
22.52  
22.11  
20.32  
19.32  
19.10  
18.14  
17.41  
16.21  
15.30  
14.53  
13.92  
13.30  
11.27  
9.97  
0.5  
-29.1  
-50.7  
-55.7  
-79.5  
-96.5  
-100.4  
-118.5  
-134.4  
-160.0  
-179.8  
166.5  
154.0  
143.7  
132.7  
119.7  
106.5  
92.6  
-15.6  
-27.4  
-30.2  
-42.3  
-50.4  
-52.3  
-60.6  
-67.6  
-79.6  
-91.2  
-99.5  
-111.0  
-123.4  
-137.7  
-151.1  
-163.5  
-174.4  
171.4  
151.2  
131.8  
113.3  
95.4  
0.9  
1.0  
1.5  
1.9  
2.0  
2.5  
3.0  
4.0  
74.5  
5.0  
60.3  
6.0  
48.5  
5.0  
7.0  
8.43  
37.2  
2.1  
8.0  
7.43  
26.4  
-0.3  
9.0  
6.53  
15.7  
-2.6  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
5.72  
4.5  
-5.4  
4.98  
-6.4  
-8.4  
9.14  
4.28  
-17.7  
-28.6  
-40.4  
-51.8  
-62.4  
-72.7  
-82.6  
-12.3  
-16.2  
-21.8  
-27.4  
-33.3  
-39.2  
-45.2  
8.44  
81.8  
3.53  
7.80  
67.4  
2.82  
7.62  
55.5  
1.97  
6.73  
45.4  
1.00  
6.90  
37.3  
-0.01  
-1.04  
6.20  
30.9  
80.1  
7.47  
Typical Noise Parameters, VDS = 2V, IDS = 10 mA  
40  
30  
20  
10  
0
Freq  
GHz  
Fmin  
dB  
Γopt  
Γopt  
Rn/50  
Ga  
Mag.  
Ang.  
dB  
0.5  
0.9  
1.0  
1.9  
2.0  
2.4  
3.0  
3.9  
5.0  
5.8  
6.0  
7.0  
8.0  
9.0  
10.0  
0.24  
0.24  
0.28  
0.45  
0.39  
0.47  
0.55  
0.61  
0.74  
0.89  
0.90  
1.03  
1.13  
1.27  
1.53  
0.62  
0.56  
0.52  
0.47  
0.47  
0.42  
0.35  
0.32  
0.33  
0.36  
0.37  
0.38  
0.44  
0.48  
0.46  
-4.3  
0.14  
0.13  
0.12  
0.11  
0.11  
0.11  
0.09  
0.08  
0.06  
0.05  
0.05  
0.06  
0.07  
0.09  
0.17  
23.50  
21.66  
21.61  
18.04  
17.88  
16.76  
15.66  
14.10  
12.74  
11.83  
11.63  
10.71  
9.99  
MSG  
8.8  
13.5  
MAG  
MSG  
38.6  
42.9  
2
|S  
|
21  
52.8  
74.0  
-10  
105.4  
144.0  
164.3  
166.1  
-170.9  
-157.2  
-142.4  
-126.0  
0
5
10  
FREQUENCY (GHz)  
15  
20  
Figure 26. MSG/MAG and |S21|2 vs.  
Frequency at 2V, 10 mA.  
9.36  
8.46  
Notes:  
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these  
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of  
the gate pad. The output reference plane is at the end of the drain pad.  
8
ATF-551M4 Typical Scattering Parameters, VDS = 2V, IDS = 15 mA  
Freq.  
GHz  
S11  
S21  
Mag.  
S12  
S22  
MSG/MAG  
dB  
Mag.  
Ang.  
dB  
Ang.  
Mag.  
Ang.  
Mag.  
Ang.  
0.1  
0.995  
0.947  
0.892  
0.880  
0.812  
0.768  
0.758  
0.718  
0.692  
0.671  
0.670  
0.671  
0.674  
0.676  
0.684  
0.682  
0.686  
0.691  
0.708  
0.744  
0.756  
0.805  
0.825  
0.870  
-6.6  
21.93  
21.41  
20.67  
20.46  
19.26  
18.23  
17.98  
16.73  
15.55  
13.47  
11.70  
10.30  
9.06  
12.489  
11.757  
10.804  
10.547  
9.186  
8.153  
7.923  
6.859  
5.991  
4.716  
3.845  
3.273  
2.838  
2.528  
2.276  
2.072  
1.903  
1.753  
1.609  
1.483  
1.347  
1.201  
1.073  
0.954  
175.5  
156.7  
142.0  
138.6  
123.0  
112.3  
109.9  
98.9  
0.006  
0.029  
0.048  
0.052  
0.067  
0.076  
0.077  
0.084  
0.088  
0.092  
0.095  
0.098  
0.101  
0.105  
0.111  
0.117  
0.124  
0.132  
0.140  
0.148  
0.155  
0.158  
0.161  
0.163  
86.2  
70.9  
59.7  
57.1  
46.0  
38.7  
37.2  
30.5  
25.3  
18.0  
13.1  
10.5  
8.2  
0.765  
0.715  
0.659  
0.641  
0.555  
0.489  
0.474  
0.407  
0.352  
0.272  
0.222  
0.181  
0.164  
0.152  
0.150  
0.156  
0.170  
0.183  
0.181  
0.188  
0.217  
0.253  
0.310  
0.373  
-3.7  
33.18  
26.08  
23.52  
23.07  
21.37  
20.31  
20.12  
19.12  
18.33  
17.10  
16.07  
15.24  
14.49  
12.66  
11.51  
10.35  
9.57  
0.5  
-31.6  
-54.7  
-60.1  
-84.9  
-102.1  
-106.1  
-124.1  
-139.7  
-164.5  
176.6  
163.5  
151.5  
141.6  
130.9  
118.0  
105.1  
91.4  
-17.0  
-29.6  
-32.5  
-45.0  
-53.1  
-55.0  
-63.2  
-70.2  
-82.3  
-94.5  
-103.2  
-115.4  
-128.5  
-143.3  
-156.9  
-169.0  
-179.3  
165.9  
145.0  
125.0  
106.8  
89.4  
0.9  
1.0  
1.5  
1.9  
2.0  
2.5  
3.0  
89.3  
4.0  
73.3  
5.0  
59.7  
6.0  
48.3  
7.0  
37.4  
8.0  
8.06  
27.0  
6.1  
9.0  
7.14  
16.5  
3.7  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
6.33  
5.6  
0.6  
5.59  
-5.0  
-3.1  
4.88  
-16.1  
-26.9  
-38.5  
-49.7  
-60.2  
-70.4  
-80.1  
-7.6  
8.87  
80.9  
4.13  
-12.3  
-18.6  
-24.9  
-31.2  
-37.5  
-43.8  
8.27  
66.5  
3.42  
8.14  
54.9  
2.59  
7.23  
45.0  
1.59  
7.38  
37.0  
0.61  
6.61  
30.7  
-0.41  
74.9  
7.67  
Typical Noise Parameters, VDS = 2V, IDS = 15 mA  
40  
30  
20  
10  
0
Freq  
GHz  
Fmin  
dB  
Γopt  
Γopt  
Rn/50  
Ga  
Mag.  
Ang.  
dB  
0.5  
0.9  
1.0  
1.9  
2.0  
2.4  
3.0  
3.9  
5.0  
5.8  
6.0  
7.0  
8.0  
9.0  
10.0  
0.21  
0.21  
0.27  
0.42  
0.37  
0.44  
0.52  
0.57  
0.71  
0.85  
0.86  
0.97  
1.08  
1.22  
1.44  
0.61  
0.55  
0.50  
0.46  
0.43  
0.39  
0.32  
0.28  
0.30  
0.35  
0.35  
0.38  
0.43  
0.47  
0.46  
-6.1  
0.12  
0.12  
0.11  
0.10  
0.10  
0.10  
0.08  
0.07  
0.06  
0.05  
0.05  
0.06  
0.07  
0.10  
0.17  
24.12  
22.18  
22.12  
18.61  
18.52  
17.34  
16.21  
14.65  
13.27  
12.38  
12.19  
11.24  
10.49  
9.84  
MSG  
7.0  
11.4  
MAG  
MSG  
38.1  
42.7  
2
|S  
|
21  
52.9  
74.4  
-10  
108.3  
149.5  
170.0  
171.7  
-165.9  
-152.1  
-138.1  
-122.5  
0
5
10  
FREQUENCY (GHz)  
15  
20  
Figure 27. MSG/MAG and |S21|2 vs.  
Frequency at 2V, 15 mA.  
8.96  
Notes:  
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these  
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of  
the gate pad. The output reference plane is at the end of the drain pad.  
9
ATF-551M4 Typical Scattering Parameters, VDS = 2V, IDS = 20 mA  
Freq.  
GHz  
S11  
S21  
Mag.  
S12  
S22  
MSG/MAG  
dB  
Mag.  
Ang.  
dB  
Ang.  
Mag.  
Ang.  
Mag.  
Ang.  
0.1  
0.994  
0.942  
0.882  
0.869  
0.798  
0.753  
0.744  
0.706  
0.681  
0.663  
0.664  
0.666  
0.670  
0.673  
0.681  
0.678  
0.682  
0.688  
0.706  
0.743  
0.753  
0.804  
0.824  
0.869  
-6.9  
22.85  
22.27  
21.44  
21.21  
19.90  
18.79  
18.53  
17.22  
16.01  
13.88  
12.09  
10.68  
9.43  
13.876  
12.985  
11.806  
11.491  
9.881  
8.704  
8.443  
7.262  
6.314  
4.943  
4.021  
3.418  
2.962  
2.637  
2.373  
2.158  
1.982  
1.826  
1.675  
1.542  
1.400  
1.249  
1.116  
0.994  
175.3  
155.7  
140.5  
137.1  
121.3  
110.7  
108.4  
97.5  
0.006  
0.027  
0.045  
0.048  
0.062  
0.070  
0.071  
0.077  
0.081  
0.085  
0.089  
0.093  
0.097  
0.103  
0.109  
0.117  
0.125  
0.133  
0.142  
0.150  
0.157  
0.160  
0.163  
0.165  
85.6  
70.4  
59.0  
56.5  
45.7  
38.9  
37.4  
31.3  
26.7  
20.3  
16.2  
14.1  
12.0  
10.0  
7.4  
0.740  
0.687  
0.627  
0.608  
0.520  
0.455  
0.441  
0.376  
0.323  
0.248  
0.201  
0.162  
0.144  
0.133  
0.131  
0.139  
0.154  
0.168  
0.169  
0.182  
0.212  
0.250  
0.306  
0.367  
-3.9  
33.64  
26.82  
24.19  
23.79  
22.02  
20.95  
20.75  
19.75  
18.92  
17.65  
16.55  
15.65  
14.85  
12.78  
11.65  
10.56  
9.80  
0.5  
-33.3  
-57.3  
-62.8  
-88.1  
-105.5  
-109.5  
-127.4  
-142.7  
-167.0  
174.6  
161.9  
150.1  
140.4  
129.8  
117.1  
104.3  
90.6  
-17.8  
-30.9  
-33.8  
-46.4  
-54.4  
-56.3  
-64.3  
-71.0  
-82.9  
-95.2  
-103.7  
-116.4  
-130.0  
-145.9  
-160.3  
-172.7  
176.9  
161.6  
139.6  
121.2  
103.8  
87.0  
0.9  
1.0  
1.5  
1.9  
2.0  
2.5  
3.0  
88.2  
4.0  
72.5  
5.0  
59.3  
6.0  
48.1  
7.0  
37.3  
8.0  
8.42  
27.1  
9.0  
7.51  
16.8  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
6.68  
6.0  
3.7  
5.94  
-4.6  
-0.2  
5.23  
-15.6  
-26.3  
-38.0  
-48.9  
-59.3  
-69.4  
-78.9  
-5.2  
9.11  
80.3  
4.48  
-10.3  
-17.0  
-23.6  
-30.1  
-36.5  
-43.0  
8.56  
65.9  
3.76  
8.46  
54.4  
2.92  
7.48  
44.7  
1.93  
7.76  
36.7  
0.95  
6.93  
30.6  
-0.05  
73.0  
7.80  
Typical Noise Parameters, VDS = 2V, IDS = 20 mA  
40  
30  
20  
10  
0
Freq  
GHz  
Fmin  
dB  
Γopt  
Γopt  
Rn/50  
Ga  
Mag.  
Ang.  
dB  
0.5  
0.9  
1.0  
1.9  
2.0  
2.4  
3.0  
3.9  
5.0  
5.8  
6.0  
7.0  
8.0  
9.0  
10.0  
0.19  
0.20  
0.25  
0.41  
0.36  
0.43  
0.51  
0.58  
0.70  
0.85  
0.86  
0.94  
1.07  
1.20  
1.43  
0.59  
0.54  
0.48  
0.43  
0.41  
0.37  
0.29  
0.26  
0.29  
0.34  
0.35  
0.37  
0.42  
0.48  
0.46  
-7.0  
0.11  
0.11  
0.10  
0.09  
0.09  
0.09  
0.08  
0.07  
0.05  
0.05  
0.05  
0.06  
0.08  
0.10  
0.17  
23.50  
21.66  
21.61  
18.04  
17.88  
16.76  
15.66  
14.10  
12.74  
11.83  
11.63  
10.71  
9.99  
MSG  
6.3  
10.1  
MAG  
MSG  
38.7  
43.1  
2
|S  
|
21  
53.4  
76.3  
-10  
112.7  
154.0  
173.6  
175.9  
-162.3  
-148.2  
-135.2  
-119.5  
0
5
10  
FREQUENCY (GHz)  
15  
20  
Figure 28. MSG/MAG and |S21|2 vs.  
Frequency at 2V, 20 mA.  
9.36  
8.46  
Notes:  
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these  
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of  
the gate pad. The output reference plane is at the end of the drain pad.  
10  
ATF-551M4 Typical Scattering Parameters, VDS = 2.7V, IDS = 10 mA  
Freq.  
GHz  
S11  
S21  
Mag.  
S12  
S22  
MSG/MAG  
dB  
Mag.  
Ang.  
dB  
Ang.  
Mag.  
Ang.  
Mag.  
Ang.  
0.1  
0.995  
0.955  
0.907  
0.896  
0.833  
0.789  
0.779  
0.737  
0.707  
0.679  
0.674  
0.675  
0.676  
0.679  
0.686  
0.684  
0.688  
0.693  
0.710  
0.743  
0.760  
0.805  
0.830  
0.872  
-5.9  
20.55  
20.11  
19.52  
19.36  
18.34  
17.43  
17.21  
16.07  
14.98  
13.01  
11.30  
9.93  
10.656  
10.129  
9.466  
9.292  
8.265  
7.439  
7.255  
6.361  
5.610  
4.471  
3.673  
3.136  
2.728  
2.435  
2.198  
2.002  
1.841  
1.696  
1.559  
1.443  
1.314  
1.177  
1.051  
0.935  
175.9  
158.4  
144.6  
141.4  
126.1  
115.4  
113.0  
101.7  
91.8  
0.006  
0.028  
0.046  
0.050  
0.067  
0.076  
0.078  
0.085  
0.089  
0.093  
0.094  
0.095  
0.096  
0.099  
0.102  
0.107  
0.113  
0.121  
0.129  
0.139  
0.147  
0.153  
0.158  
0.163  
86.3  
72.0  
61.3  
58.8  
47.6  
40.0  
38.4  
31.0  
25.1  
16.6  
10.9  
8.1  
0.825  
0.782  
0.735  
0.717  
0.639  
0.577  
0.562  
0.495  
0.439  
0.357  
0.303  
0.264  
0.244  
0.230  
0.222  
0.222  
0.230  
0.239  
0.232  
0.222  
0.232  
0.251  
0.293  
0.353  
-3.0  
32.49  
25.58  
23.13  
22.69  
20.91  
19.91  
19.69  
18.74  
18.00  
16.82  
15.92  
15.19  
14.54  
12.94  
11.58  
10.44  
9.69  
0.5  
-28.7  
-50.0  
-55.0  
-78.6  
-95.5  
-99.4  
-117.4  
-133.4  
-159.1  
-178.9  
167.3  
154.9  
144.5  
133.5  
120.8  
107.5  
93.7  
-14.0  
-24.5  
-27.0  
-37.6  
-44.6  
-46.2  
-53.1  
-58.8  
-68.3  
-77.6  
-83.7  
-93.5  
-104.1  
-116.6  
-129.0  
-140.8  
-151.9  
-164.6  
176.6  
155.6  
134.3  
112.0  
92.7  
0.9  
1.0  
1.5  
1.9  
2.0  
2.5  
3.0  
4.0  
75.0  
5.0  
60.8  
6.0  
49.1  
7.0  
8.72  
37.7  
5.9  
8.0  
7.73  
27.0  
4.3  
9.0  
6.84  
16.2  
2.9  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
6.03  
5.1  
0.7  
5.30  
-5.9  
-1.7  
-5.2  
-8.9  
-14.3  
-20.2  
-26.2  
-32.5  
-39.1  
4.59  
-17.2  
-28.2  
-39.8  
-51.5  
-62.2  
-72.8  
-83.1  
9.02  
82.7  
3.86  
8.47  
68.6  
3.19  
8.42  
56.5  
2.37  
7.69  
46.2  
1.42  
8.26  
38.1  
0.43  
8.07  
31.5  
-0.58  
7.59  
Typical Noise Parameters, VDS = 2.7V, IDS = 10 mA  
40  
30  
20  
10  
0
Freq  
GHz  
Fmin  
dB  
Γopt  
Γopt  
Rn/50  
Ga  
Mag.  
Ang.  
dB  
0.5  
0.9  
1.0  
1.9  
2.0  
2.4  
3.0  
3.9  
5.0  
5.8  
6.0  
7.0  
8.0  
9.0  
10.0  
0.26  
0.27  
0.30  
0.46  
0.41  
0.47  
0.55  
0.61  
0.74  
0.88  
0.90  
1.00  
1.12  
1.25  
1.46  
0.64  
0.57  
0.54  
0.49  
0.48  
0.44  
0.36  
0.32  
0.32  
0.35  
0.35  
0.37  
0.41  
0.46  
0.46  
-4.4  
0.14  
0.13  
0.13  
0.11  
0.12  
0.11  
0.10  
0.08  
0.06  
0.05  
0.05  
0.06  
0.07  
0.09  
0.15  
23.79  
21.80  
21.60  
18.06  
17.92  
16.79  
15.70  
14.24  
12.86  
12.01  
11.82  
10.93  
10.24  
9.66  
MSG  
7.5  
11.1  
MAG  
MSG  
36.6  
40.4  
2
|S  
|
21  
50.3  
69.5  
-10  
101.3  
139.5  
161.5  
163.9  
-173.6  
-158.2  
-143.0  
-127.2  
0
5
10  
FREQUENCY (GHz)  
15  
20  
Figure 29. MSG/MAG and |S21|2 vs.  
Frequency at 2.7V, 10 mA.  
8.85  
Notes:  
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these  
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of  
the gate pad. The output reference plane is at the end of the drain pad.  
11  
ATF-551M4 Typical Scattering Parameters, VDS = 2.7V, IDS = 15 mA  
Freq.  
GHz  
S11  
S21  
Mag.  
S12  
S22  
MSG/MAG  
dB  
Mag.  
Ang.  
dB  
Ang.  
Mag.  
Ang.  
Mag.  
Ang.  
0.1  
0.995  
0.949  
0.894  
0.882  
0.814  
0.768  
0.758  
0.718  
0.691  
0.668  
0.667  
0.668  
0.671  
0.673  
0.682  
0.677  
0.684  
0.690  
0.707  
0.744  
0.750  
0.806  
0.824  
0.872  
-6.5  
21.98  
21.47  
20.75  
20.55  
19.37  
18.34  
18.10  
16.86  
15.70  
13.64  
11.88  
10.49  
9.26  
12.559  
11.839  
10.905  
10.650  
9.298  
8.265  
8.034  
6.966  
6.095  
4.806  
3.928  
3.345  
2.904  
2.591  
2.335  
2.128  
1.956  
1.804  
1.656  
1.528  
1.389  
1.242  
1.112  
0.991  
175.6  
156.9  
142.3  
138.9  
123.4  
112.7  
110.3  
99.3  
0.006  
0.026  
0.043  
0.047  
0.061  
0.068  
0.070  
0.076  
0.079  
0.083  
0.085  
0.088  
0.091  
0.095  
0.101  
0.107  
0.115  
0.124  
0.133  
0.143  
0.151  
0.156  
0.162  
0.166  
86.4  
71.0  
60.1  
57.5  
46.6  
39.5  
38.0  
31.4  
26.3  
19.4  
15.0  
13.1  
11.4  
10.0  
8.4  
0.793  
0.745  
0.691  
0.673  
0.589  
0.526  
0.511  
0.447  
0.393  
0.318  
0.268  
0.230  
0.212  
0.198  
0.190  
0.190  
0.198  
0.210  
0.205  
0.200  
0.212  
0.236  
0.282  
0.337  
-3.2  
33.21  
26.58  
24.04  
23.55  
21.83  
20.85  
20.60  
19.62  
18.87  
17.63  
16.65  
15.80  
15.04  
12.89  
11.88  
10.70  
10.06  
9.46  
0.5  
-31.2  
-54.0  
-59.4  
-84.0  
-101.1  
-105.1  
-123.1  
-138.7  
-163.5  
177.5  
164.3  
152.2  
142.3  
131.6  
118.5  
105.8  
91.7  
-15.2  
-26.4  
-28.9  
-39.7  
-46.6  
-48.1  
-54.6  
-59.9  
-68.8  
-77.7  
-83.3  
-93.0  
-103.4  
-116.2  
-129.6  
-142.6  
-154.2  
-167.8  
172.5  
150.9  
129.7  
107.9  
89.7  
0.9  
1.0  
1.5  
1.9  
2.0  
2.5  
3.0  
89.7  
4.0  
73.6  
5.0  
59.9  
6.0  
48.5  
7.0  
37.5  
8.0  
8.27  
27.0  
9.0  
7.37  
16.4  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
6.56  
5.4  
5.6  
5.83  
-5.3  
2.6  
5.12  
-16.7  
-27.5  
-39.4  
-50.6  
-61.2  
-71.5  
-81.5  
-1.7  
81.2  
4.38  
-6.1  
8.93  
66.4  
3.68  
-12.3  
-18.7  
-25.1  
-31.6  
-38.2  
9.10  
55.1  
2.85  
7.85  
45.2  
1.88  
9.01  
37.1  
0.92  
8.37  
31.0  
-0.08  
7.76  
Typical Noise Parameters, VDS = 2.7V, IDS = 15 mA  
40  
30  
20  
10  
0
Freq  
GHz  
Fmin  
dB  
Γopt  
Γopt  
Rn/50  
Ga  
Mag.  
Ang.  
dB  
MSG  
0.5  
0.9  
1.0  
1.9  
2.0  
2.4  
3.0  
3.9  
5.0  
5.8  
6.0  
7.0  
8.0  
9.0  
10.0  
0.18  
0.18  
0.24  
0.38  
0.33  
0.42  
0.5  
0.61  
0.56  
0.5  
-6.0  
0.12  
0.12  
0.11  
0.1  
24.49  
22.38  
22.32  
18.78  
18.65  
17.47  
16.37  
14.83  
13.4  
6.8  
10.7  
MAG  
MSG  
0.45  
0.43  
0.39  
0.31  
0.28  
0.29  
0.33  
0.34  
0.36  
0.41  
0.46  
0.44  
36.9  
2
41.9  
0.1  
|S |  
21  
50.9  
0.1  
73.0  
0.08  
0.07  
0.06  
0.05  
0.05  
0.06  
0.07  
0.1  
-10  
0.55  
0.66  
0.83  
0.84  
0.95  
1.06  
1.18  
1.43  
107.0  
146.6  
168.7  
170.7  
-166.9  
-152.3  
-138.1  
-122.5  
0
5
10  
FREQUENCY (GHz)  
15  
20  
12.54  
12.36  
11.44  
10.69  
10.12  
9.21  
Figure 30. MSG/MAG and |S21|2 vs.  
Frequency at 2.7V, 15 mA.  
0.16  
Notes:  
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these  
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of  
the gate pad. The output reference plane is at the end of the drain pad.  
12  
ATF-551M4 Typical Scattering Parameters, VDS = 2.7V, IDS = 20 mA  
Freq.  
GHz  
S11  
S21  
Mag.  
S12  
S22  
MSG/MAG  
dB  
Mag.  
Ang.  
dB  
Ang.  
Mag.  
Ang.  
Mag.  
Ang.  
0.1  
0.995  
0.943  
0.883  
0.87  
-6.8  
22.92  
22.35  
21.53  
21.30  
20.00  
18.91  
18.65  
17.35  
16.14  
14.02  
12.25  
10.84  
9.61  
13.988  
13.103  
11.932  
11.616  
10.004  
8.822  
8.557  
7.367  
6.411  
5.026  
4.095  
3.483  
3.022  
2.695  
2.429  
2.213  
2.034  
1.876  
1.722  
1.59  
175.4  
155.9  
140.7  
137.3  
121.6  
111.0  
108.6  
97.8  
0.005  
0.024  
0.04  
86.4  
70.6  
59.4  
56.9  
46.2  
39.6  
38.2  
32.3  
27.8  
22.0  
18.6  
17.4  
16.1  
14.8  
13.0  
9.9  
0.772  
0.72  
-3.4  
34.47  
27.37  
24.75  
24.32  
22.52  
21.46  
21.26  
20.28  
19.50  
18.20  
17.15  
16.23  
14.69  
13.08  
12.08  
11.08  
10.44  
9.85  
0.5  
-33.0  
-56.9  
-62.4  
-87.6  
-104.9  
-108.8  
-126.7  
-142.1  
-166.3  
175.2  
162.6  
150.9  
141.2  
130.8  
118.1  
105.4  
91.4  
-15.7  
-27.1  
-29.6  
-40.2  
-46.7  
-48.1  
-54.2  
-59.0  
-67.2  
-75.7  
-80.7  
-90.4  
-100.6  
-113.5  
-127.2  
-140.4  
-152.2  
-165.9  
173.7  
151.1  
129.5  
107.3  
88.8  
0.9  
0.662  
0.643  
0.557  
0.494  
0.48  
1.0  
0.043  
0.056  
0.063  
0.064  
0.069  
0.072  
0.076  
0.079  
0.083  
0.087  
0.093  
0.099  
0.107  
0.116  
0.126  
0.136  
0.146  
0.154  
0.159  
0.165  
0.168  
1.5  
0.798  
0.752  
0.743  
0.704  
0.68  
1.9  
2.0  
2.5  
0.417  
0.367  
0.297  
0.251  
0.216  
0.199  
0.185  
0.177  
0.178  
0.186  
0.198  
0.193  
0.188  
0.2  
3.0  
88.4  
4.0  
0.66  
72.8  
5.0  
0.662  
0.664  
0.667  
0.67  
59.5  
6.0  
48.4  
7.0  
37.6  
8.0  
8.61  
27.3  
9.0  
0.679  
0.677  
0.683  
0.688  
0.705  
0.741  
0.75  
7.71  
16.9  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
6.90  
6.0  
6.17  
-4.6  
6.4  
5.46  
-15.8  
-26.5  
-38.3  
-49.5  
-60.1  
-70.3  
-80.2  
1.8  
80.9  
4.72  
-3.2  
9.37  
66.5  
4.03  
-9.8  
9.78  
55.0  
3.19  
1.444  
1.291  
1.156  
1.032  
-16.5  
-23.2  
-29.8  
-36.6  
8.35  
0.803  
0.823  
0.872  
45.1  
2.22  
0.224  
0.269  
0.325  
9.10  
37.2  
1.26  
8.45  
31.0  
0.27  
7.88  
Typical Noise Parameters, VDS = 2.7V, IDS = 20 mA  
40  
30  
20  
10  
0
Freq  
GHz  
Fmin  
dB  
Γopt  
Γopt  
Rn/50  
Ga  
Mag.  
Ang.  
dB  
MSG  
0.5  
0.9  
1.0  
1.9  
2.0  
2.4  
3.0  
3.9  
5.0  
5.8  
6.0  
7.0  
8.0  
9.0  
10.0  
0.18  
0.18  
0.23  
0.39  
0.36  
0.43  
0.51  
0.56  
0.68  
0.83  
0.85  
0.95  
1.06  
1.19  
1.41  
0.61  
0.55  
0.49  
0.43  
0.42  
0.37  
0.29  
0.26  
0.28  
0.33  
0.33  
0.37  
0.41  
0.47  
0.46  
-6.7  
0.12  
0.11  
0.10  
0.09  
0.09  
0.09  
0.08  
0.07  
0.05  
0.05  
0.05  
0.06  
0.08  
0.10  
0.17  
24.89  
22.72  
22.68  
19.18  
18.98  
17.83  
16.69  
15.19  
13.79  
12.91  
12.73  
11.80  
11.06  
10.47  
9.59  
5.9  
9.9  
MAG  
MSG  
37.8  
2
41.6  
|S |  
21  
51.7  
73.6  
-10  
110.7  
152.8  
172.9  
175.6  
-162.4  
-148.8  
-135.5  
-119.2  
0
5
10  
FREQUENCY (GHz)  
15  
20  
Figure 31. MSG/MAG and |S21|2 vs.  
Frequency at 2.7V, 20 mA.  
Notes:  
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these  
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of  
the gate pad. The output reference plane is at the end of the drain pad.  
13  
ATF-551M4 Typical Scattering Parameters, VDS = 3V, IDS = 10 mA  
Freq.  
GHz  
S11  
S21  
Mag.  
S12  
S22  
MSG/MAG  
dB  
Mag.  
Ang.  
dB  
Ang.  
Mag.  
Ang.  
Mag.  
Ang.  
0.1  
0.996  
0.957  
0.909  
0.899  
0.836  
0.792  
0.782  
0.740  
0.709  
0.680  
0.675  
0.675  
0.676  
0.678  
0.686  
0.682  
0.688  
0.694  
0.711  
0.746  
0.753  
0.807  
0.826  
0.874  
-5.9  
20.49  
20.05  
19.48  
19.32  
18.32  
17.41  
17.20  
16.07  
14.99  
13.03  
11.33  
9.96  
10.578  
10.059  
9.420  
9.246  
8.241  
7.424  
7.241  
6.360  
5.616  
4.481  
3.684  
3.146  
2.738  
2.447  
2.209  
2.015  
1.855  
1.711  
1.571  
1.452  
1.320  
1.183  
1.057  
0.941  
176.0  
158.5  
144.8  
141.6  
126.3  
115.7  
113.2  
101.9  
91.9  
0.006  
0.027  
0.045  
0.049  
0.065  
0.074  
0.075  
0.082  
0.086  
0.090  
0.091  
0.092  
0.093  
0.095  
0.099  
0.104  
0.110  
0.118  
0.127  
0.137  
0.146  
0.152  
0.159  
0.164  
86.1  
72.0  
61.5  
59.1  
47.9  
40.3  
38.6  
31.3  
25.3  
16.9  
11.3  
8.7  
0.835  
0.792  
0.747  
0.730  
0.653  
0.593  
0.578  
0.513  
0.458  
0.378  
0.325  
0.287  
0.267  
0.252  
0.242  
0.241  
0.247  
0.256  
0.250  
0.240  
0.246  
0.260  
0.297  
0.349  
-2.8  
32.46  
25.71  
23.21  
22.76  
21.03  
20.01  
19.85  
18.90  
18.15  
16.97  
16.07  
15.34  
14.69  
12.90  
11.73  
10.56  
9.88  
0.5  
-28.4  
-49.6  
-54.6  
-78.1  
-94.9  
-98.8  
-116.8  
-132.8  
-158.5  
-178.4  
167.8  
155.1  
144.9  
133.8  
120.5  
107.5  
93.3  
-13.4  
-23.5  
-25.9  
-36.1  
-42.7  
-44.2  
-50.7  
-56.0  
-64.9  
-73.5  
-79.1  
-88.4  
-98.6  
-110.5  
-122.9  
-135.1  
-146.5  
-159.0  
-176.5  
163.0  
142.0  
119.0  
98.9  
0.9  
1.0  
1.5  
1.9  
2.0  
2.5  
3.0  
4.0  
75.1  
5.0  
60.9  
6.0  
49.1  
7.0  
8.75  
37.6  
6.6  
8.0  
7.77  
26.8  
5.4  
9.0  
6.88  
16.0  
4.1  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
6.09  
4.7  
2.1  
5.37  
-6.3  
0.0  
4.67  
-17.8  
-28.8  
-40.8  
-52.4  
-63.1  
-73.7  
-84.1  
-3.4  
-6.9  
-12.6  
-18.5  
-24.5  
-30.8  
-37.5  
9.26  
82.4  
3.92  
8.76  
67.5  
3.24  
8.90  
55.9  
2.41  
7.74  
45.8  
1.46  
8.91  
37.6  
0.48  
8.23  
31.3  
-0.53  
7.59  
Typical Noise Parameters, VDS = 3V, IDS = 10 mA  
40  
30  
20  
10  
0
Freq  
GHz  
Fmin  
dB  
Γopt  
Γopt  
Rn/50  
Ga  
Mag.  
Ang.  
dB  
MSG  
0.5  
0.9  
1.0  
1.9  
2.0  
2.4  
3.0  
3.9  
5.0  
5.8  
6.0  
7.0  
8.0  
9.0  
10.0  
0.23  
0.24  
0.26  
0.43  
0.38  
0.43  
0.51  
0.59  
0.70  
0.85  
0.86  
0.98  
1.09  
1.23  
1.45  
0.65  
0.58  
0.54  
0.50  
0.48  
0.44  
0.36  
0.31  
0.32  
0.35  
0.35  
0.36  
0.41  
0.45  
0.44  
-4.3  
0.14  
0.13  
0.13  
0.11  
0.12  
0.11  
0.10  
0.08  
0.06  
0.05  
0.05  
0.06  
0.07  
0.09  
0.15  
23.81  
21.82  
21.62  
18.05  
17.96  
16.84  
15.76  
14.23  
12.94  
12.04  
11.85  
10.99  
10.29  
9.71  
7.4  
10.7  
MAG  
MSG  
36.2  
2
40.4  
|S  
|
21  
49.8  
69.2  
-10  
99.4  
0
5
10  
FREQUENCY (GHz)  
15  
20  
139.3  
160.3  
162.3  
-173.7  
-158.6  
-143.7  
-126.8  
Figure 32. MSG/MAG and |S21|2 vs.  
Frequency at 3V, 10 mA.  
8.88  
Notes:  
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these  
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of  
the gate pad. The output reference plane is at the end of the drain pad.  
14  
ATF-551M4 Typical Scattering Parameters, VDS = 3V, IDS = 15 mA  
Freq.  
GHz  
S11  
S21  
Mag.  
S12  
S22  
MSG/MAG  
dB  
Mag.  
Ang.  
dB  
Ang.  
Mag.  
Ang.  
Mag.  
Ang.  
0.1  
0.995  
0.949  
0.894  
0.882  
0.813  
0.768  
0.758  
0.717  
0.690  
0.668  
0.666  
0.668  
0.670  
0.672  
0.681  
0.678  
0.684  
0.690  
0.707  
0.744  
0.751  
0.807  
0.824  
0.874  
-6.5  
22.02  
21.51  
20.79  
20.59  
19.41  
18.38  
18.14  
16.90  
15.74  
13.68  
11.93  
10.53  
9.31  
12.623  
11.900  
10.958  
10.701  
9.341  
8.301  
8.068  
6.996  
6.120  
4.829  
3.947  
3.363  
2.921  
2.607  
2.351  
2.142  
1.970  
1.817  
1.667  
1.540  
1.401  
1.254  
1.123  
1.002  
175.6  
156.9  
142.3  
138.9  
123.3  
112.7  
110.3  
99.2  
0.005  
0.025  
0.041  
0.045  
0.059  
0.066  
0.067  
0.073  
0.076  
0.080  
0.082  
0.084  
0.087  
0.092  
0.098  
0.104  
0.113  
0.122  
0.132  
0.142  
0.151  
0.157  
0.163  
0.167  
86.0  
71.0  
60.1  
57.6  
46.7  
39.7  
38.1  
31.6  
26.7  
20.0  
15.8  
14.2  
12.9  
11.8  
10.4  
7.8  
0.802  
0.754  
0.700  
0.682  
0.599  
0.537  
0.522  
0.459  
0.407  
0.334  
0.286  
0.250  
0.232  
0.218  
0.209  
0.209  
0.215  
0.226  
0.221  
0.211  
0.218  
0.236  
0.277  
0.330  
-3.1  
34.02  
26.78  
24.27  
23.76  
22.00  
21.00  
20.81  
19.82  
19.06  
17.81  
16.82  
16.02  
14.96  
12.99  
12.01  
10.90  
10.28  
9.70  
0.5  
-31.2  
-54.1  
-59.4  
-84.0  
-101.2  
-105.1  
-123.1  
-138.7  
-163.5  
177.5  
164.4  
152.3  
142.4  
131.7  
118.6  
105.8  
91.8  
-14.6  
-25.4  
-27.8  
-38.1  
-44.5  
-45.9  
-52.0  
-56.9  
-65.0  
-73.3  
-78.4  
-87.6  
-97.7  
-110.0  
-122.9  
-135.4  
-147.1  
-160.3  
-179.5  
159.7  
137.8  
114.5  
95.0  
0.9  
1.0  
1.5  
1.9  
2.0  
2.5  
3.0  
89.7  
4.0  
73.6  
5.0  
59.9  
6.0  
48.5  
7.0  
37.5  
8.0  
8.32  
27.0  
9.0  
7.43  
16.4  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
6.62  
5.3  
5.89  
-5.5  
4.9  
5.19  
-16.8  
-27.6  
-39.5  
-50.7  
-61.4  
-71.9  
-82.0  
0.7  
81.3  
4.44  
-3.7  
9.23  
66.6  
3.75  
-10.0  
-16.4  
-22.8  
-29.5  
-36.2  
9.62  
55.2  
2.93  
8.26  
45.3  
1.97  
9.02  
37.3  
1.01  
8.38  
31.1  
0.02  
7.78  
Typical Noise Parameters, VDS = 3V, IDS = 15 mA  
40  
30  
20  
10  
0
Freq  
GHz  
Fmin  
dB  
Γopt  
Γopt  
Rn/50  
Ga  
Mag.  
Ang.  
dB  
MSG  
0.5  
0.9  
1.0  
1.9  
2.0  
2.4  
3.0  
3.9  
5.0  
5.8  
6.0  
7.0  
8.0  
9.0  
10.0  
0.18  
0.19  
0.23  
0.39  
0.35  
0.42  
0.49  
0.56  
0.66  
0.83  
0.84  
0.94  
1.05  
1.19  
1.40  
0.63  
0.56  
0.51  
0.46  
0.44  
0.39  
0.31  
0.27  
0.29  
0.33  
0.33  
0.35  
0.40  
0.46  
0.44  
-6.3  
0.12  
0.12  
0.11  
0.10  
0.10  
0.10  
0.08  
0.07  
0.06  
0.05  
0.05  
0.06  
0.07  
0.09  
0.16  
24.41  
22.45  
22.29  
18.75  
18.61  
17.46  
16.42  
14.80  
13.48  
12.58  
12.38  
11.49  
10.77  
10.23  
9.32  
6.8  
10.0  
MAG  
MSG  
36.5  
2
40.8  
|S  
|
21  
50.1  
72.5  
-10  
104.4  
146.9  
167.4  
169.0  
-166.9  
-152.7  
-138.6  
-121.9  
0
5
10  
FREQUENCY (GHz)  
15  
20  
Figure 33. MSG/MAG and |S21|2 vs.  
Frequency at 3V, 15 mA.  
Notes:  
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these  
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of  
the gate pad. The output reference plane is at the end of the drain pad.  
15  
ATF-551M4 Typical Scattering Parameters, VDS = 3V, IDS = 20 mA  
Freq.  
GHz  
S11  
S21  
Mag.  
S12  
S22  
MSG/MAG  
dB  
Mag.  
Ang.  
dB  
Ang.  
Mag.  
Ang.  
Mag.  
Ang.  
0.1  
0.995  
0.943  
0.883  
0.870  
0.798  
0.752  
0.743  
0.704  
0.679  
0.660  
0.662  
0.664  
0.667  
0.670  
0.679  
0.677  
0.683  
0.689  
0.705  
0.742  
0.751  
0.806  
0.826  
0.874  
-6.8  
22.91  
22.35  
21.53  
21.30  
20.00  
18.91  
18.64  
17.35  
16.14  
14.03  
12.25  
10.85  
9.62  
13.987  
13.101  
11.932  
11.614  
10.004  
8.820  
8.555  
7.368  
6.412  
5.028  
4.099  
3.488  
3.027  
2.701  
2.435  
2.219  
2.040  
1.881  
1.727  
1.594  
1.451  
1.298  
1.164  
1.039  
175.4  
155.8  
140.7  
137.2  
121.5  
111.0  
108.6  
97.7  
0.005  
0.024  
0.039  
0.042  
0.054  
0.061  
0.062  
0.067  
0.070  
0.074  
0.076  
0.080  
0.084  
0.090  
0.096  
0.104  
0.114  
0.124  
0.134  
0.145  
0.153  
0.159  
0.165  
0.170  
86.1  
70.5  
59.5  
56.9  
46.3  
39.7  
38.3  
32.4  
28.1  
22.5  
19.2  
18.3  
17.2  
16.3  
14.6  
11.7  
8.4  
0.781  
0.730  
0.672  
0.654  
0.569  
0.506  
0.493  
0.431  
0.383  
0.314  
0.270  
0.237  
0.220  
0.207  
0.198  
0.198  
0.205  
0.216  
0.210  
0.199  
0.207  
0.225  
0.265  
0.320  
-3.3  
34.47  
27.37  
24.86  
24.42  
22.68  
21.60  
21.40  
20.41  
19.62  
18.32  
17.32  
16.39  
14.66  
13.18  
12.20  
11.21  
10.64  
10.10  
9.62  
0.5  
-33.0  
-56.9  
-62.4  
-87.6  
-104.9  
-108.9  
-126.7  
-142.1  
-166.3  
175.3  
162.6  
150.9  
141.3  
130.9  
118.1  
105.4  
91.4  
-15.2  
-26.1  
-28.5  
-38.5  
-44.6  
-46.0  
-51.6  
-56.0  
-63.5  
-71.5  
-76.2  
-85.2  
-95.2  
-107.6  
-120.6  
-133.4  
-145.2  
-158.4  
-178.0  
160.3  
138.1  
114.0  
94.1  
0.9  
1.0  
1.5  
1.9  
2.0  
2.5  
3.0  
88.4  
4.0  
72.7  
5.0  
59.4  
6.0  
48.3  
7.0  
37.5  
8.0  
8.63  
27.2  
9.0  
7.73  
16.8  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
6.92  
5.9  
6.19  
-4.8  
5.49  
-16.0  
-26.8  
-38.6  
-49.8  
-60.4  
-70.8  
-80.8  
3.8  
80.9  
4.75  
-1.0  
66.4  
4.05  
-7.7  
10.41  
8.80  
55.0  
3.23  
-14.4  
-21.1  
-27.9  
-34.9  
45.1  
2.27  
9.12  
37.2  
1.32  
8.48  
31.1  
0.33  
7.86  
Typical Noise Parameters, VDS = 3V, IDS = 20 mA  
40  
30  
20  
10  
0
Freq  
GHz  
Fmin  
dB  
Γopt  
Γopt  
Rn/50  
Ga  
Mag.  
Ang.  
dB  
MSG  
0.5  
0.9  
1.0  
1.9  
2.0  
2.4  
3.0  
3.9  
5.0  
5.8  
6.0  
7.0  
8.0  
9.0  
10.0  
0.17  
0.18  
0.24  
0.39  
0.36  
0.42  
0.50  
0.57  
0.68  
0.83  
0.85  
0.93  
1.05  
1.19  
1.39  
0.62  
0.55  
0.50  
0.43  
0.41  
0.37  
0.29  
0.25  
0.28  
0.32  
0.33  
0.36  
0.41  
0.46  
0.45  
-6.2  
0.12  
0.11  
0.10  
0.10  
0.09  
0.09  
0.08  
0.07  
0.06  
0.05  
0.05  
0.06  
0.08  
0.10  
0.17  
24.92  
22.79  
22.59  
19.22  
19.00  
17.83  
16.72  
15.18  
13.80  
12.93  
12.77  
11.84  
11.09  
10.53  
9.64  
6.0  
MAG  
9.5  
MSG  
MAG  
MSG  
37.5  
2
41.2  
|S  
|
21  
50.9  
73.6  
-10  
109.4  
151.6  
172.5  
175.6  
-162.7  
-149.1  
-135.5  
-119.4  
0
5
10  
FREQUENCY (GHz)  
15  
20  
Figure 34. MSG/MAG and |S21|2 vs.  
Frequency at 3V, 20 mA.  
Notes:  
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these  
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of  
the gate pad. The output reference plane is at the end of the drain pad.  
16  
ATF-551M4 Typical Scattering Parameters, VDS = 3V, IDS = 30 mA  
Freq.  
GHz  
S11  
S21  
Mag.  
S12  
S22  
MSG/MAG  
dB  
Mag.  
Ang.  
dB  
Ang.  
Mag.  
Ang.  
Mag.  
Ang.  
0.1  
0.994  
0.936  
0.870  
0.856  
0.781  
0.736  
0.726  
0.690  
0.668  
0.653  
0.656  
0.659  
0.663  
0.666  
0.676  
0.674  
0.680  
0.688  
0.705  
0.743  
0.751  
0.806  
0.826  
0.875  
-7.4  
23.90  
23.25  
22.32  
22.05  
20.61  
19.44  
19.15  
17.79  
16.54  
14.38  
12.58  
11.17  
9.93  
15.662  
14.544  
13.058  
12.665  
10.732  
9.374  
9.072  
7.753  
6.713  
5.234  
4.258  
3.618  
3.138  
2.798  
2.522  
2.296  
2.109  
1.944  
1.784  
1.648  
1.502  
1.343  
1.208  
1.080  
175.0  
154.5  
138.7  
135.2  
119.4  
108.9  
106.6  
96.0  
0.005  
0.022  
0.035  
0.038  
0.048  
0.054  
0.055  
0.059  
0.062  
0.066  
0.069  
0.074  
0.079  
0.086  
0.094  
0.103  
0.113  
0.124  
0.135  
0.147  
0.156  
0.162  
0.168  
0.174  
86.1  
69.8  
58.7  
56.2  
46.0  
40.1  
38.8  
33.7  
30.3  
26.1  
23.8  
23.6  
22.9  
21.9  
20.1  
16.9  
13.1  
8.0  
0.760  
0.705  
0.644  
0.624  
0.539  
0.480  
0.467  
0.410  
0.367  
0.307  
0.268  
0.238  
0.224  
0.211  
0.203  
0.202  
0.208  
0.219  
0.213  
0.200  
0.203  
0.218  
0.254  
0.306  
-3.4  
34.96  
28.20  
25.72  
25.23  
23.49  
22.40  
22.17  
21.19  
20.35  
18.99  
17.90  
16.89  
14.61  
13.35  
12.55  
11.58  
11.01  
10.62  
10.38  
10.50  
9.84  
0.5  
-35.3  
-60.4  
-66.1  
-92.0  
-109.4  
-113.3  
-131.0  
-146.1  
-169.6  
172.7  
160.5  
149.0  
139.6  
129.3  
116.6  
104.1  
90.3  
-15.4  
-26.2  
-28.5  
-37.7  
-43.1  
-44.2  
-49.0  
-52.7  
-59.2  
-66.7  
-70.9  
-79.8  
-89.5  
-101.5  
-114.5  
-127.3  
-139.4  
-152.3  
-170.8  
166.8  
143.9  
118.4  
97.4  
0.9  
1.0  
1.5  
1.9  
2.0  
2.5  
3.0  
86.9  
4.0  
71.7  
5.0  
58.7  
6.0  
47.9  
7.0  
37.2  
8.0  
8.94  
27.1  
9.0  
8.03  
16.8  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
7.22  
5.9  
6.48  
-4.6  
5.77  
-15.8  
-26.4  
-38.0  
-49.2  
-59.8  
-70.1  
-80.2  
80.1  
5.03  
3.0  
65.8  
4.34  
-4.1  
54.5  
3.53  
-11.1  
-18.1  
-25.2  
-32.4  
44.9  
2.56  
9.19  
37.0  
1.64  
8.57  
31.0  
0.67  
7.93  
Typical Noise Parameters, VDS = 3V, IDS = 30 mA  
40  
30  
20  
10  
0
Freq  
GHz  
Fmin  
dB  
Γopt  
Γopt  
Rn/50  
Ga  
Mag.  
Ang.  
dB  
MSG  
0.5  
0.9  
1.0  
1.9  
2.0  
2.4  
3.0  
3.9  
5.0  
5.8  
6.0  
7.0  
8.0  
9.0  
10.0  
0.16  
0.18  
0.24  
0.39  
0.36  
0.45  
0.52  
0.59  
0.71  
0.86  
0.89  
0.99  
1.12  
1.26  
1.50  
0.60  
0.55  
0.47  
0.39  
0.38  
0.33  
0.26  
0.23  
0.28  
0.33  
0.33  
0.37  
0.42  
0.48  
0.46  
-6.2  
0.11  
0.11  
0.10  
0.09  
0.09  
0.09  
0.08  
0.06  
0.05  
0.05  
0.05  
0.07  
0.09  
0.12  
0.20  
25.60  
23.17  
23.19  
19.73  
19.48  
18.36  
17.20  
15.66  
14.28  
13.39  
13.20  
12.27  
11.50  
10.96  
10.01  
6.4  
10.1  
MAG  
MSG  
39.1  
2
|S  
|
42.7  
21  
54.2  
79.0  
-10  
119.0  
162.1  
-179.3  
-176.7  
-156.1  
-143.5  
-130.8  
-115.1  
0
5
10  
FREQUENCY (GHz)  
15  
20  
Figure 35. MSG/MAG and |S21|2 vs.  
Frequency at 3V, 30 mA.  
Notes:  
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these  
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of  
the gate pad. The output reference plane is at the end of the drain pad.  
17  
S and Noise Parameter Measurements source impedance, typically 50,  
The position of the reference to an impedance represented by  
planes used for the measurement the reflection coefficient Γo. The  
of both S and Noise Parameter designer must design a matching  
measurements is shown in Figure network that will present Γo to  
ohms. Matching to such a high  
impedance requires very hi-Q  
components in order to minimize  
circuit losses. As an example at  
900 MHz, when air wound coils  
(Q>100)are used for matching  
networks, the loss can still be up  
to 0.25 dB which will add di-  
rectly to the noise figure of the  
device. Using muiltilayer molded  
inductors with Qs in the 30 to 50  
range results in additional loss  
over the air wound coil. Losses as  
high as 0.5 dB or greater add to  
the typical 0.15 dB Fmin of the  
device creating an amplifier  
36. The reference plane can be  
described as being at the center  
of both the gate and drain pads.  
the device with minimal associ-  
ated circuit losses. The noise  
figure of the completed amplifier  
is equal to the noise figure of the  
device plus the losses of the  
matching network preceding the  
device. The noise figure of the  
device is equal to Fmin only  
when the device is presented  
with Γo. If the reflection coeffi-  
cient of the matching network is  
other than Γo, then the noise  
figure of the device will be  
S and noise parameters are  
measured with a 50 ohm  
microstrip test fixture made with  
a 0.010" thickness aluminum  
substrate. Both source pads are  
connected directly to ground via  
a 0.010" thickness metal rib  
which provides a very low  
inductance path to ground for  
both source pads. The inductance  
associated with the addition of  
printed circuit board plated  
through holes and source bypass  
capacitors must be added to the  
computer circuit simulation to  
properly model the effect of  
grounding the source leads in a  
typical amplifier design.  
noise figure of nearly 0.65 dB.  
greater than Fmin based on the  
following equation.  
SMT Assembly  
The package can be soldered  
using either lead-bearing or lead-  
free alloys (higher peak tempera-  
tures). Reliable assembly of  
surface mount components is a  
complex process that involves  
many material, process, and  
equipment factors, including:  
method of heating (e.g. IR or  
vapor phase reflow, wave solder-  
ing, etc) circuit board material,  
conductor thickness and pattern,  
type of solder alloy, and the  
thermal conductivity and ther-  
mal mass of components. Compo-  
nents with a low mass, such as  
the Minipak 1412 package, will  
reach solder reflow temperatures  
faster than those with a greater  
mass.  
NF = Fmin + 4 Rn  
|Γs Γo | 2  
Zo (|1 + Γo|2)(1- |Γs|2)  
Where Rn/Zo is the normalized  
noise resistance, Γo is the opti-  
mum reflection coefficient  
required to produce Fmin and Γs  
is the reflection coefficient of the  
source impedance actually  
Reference  
Plane  
Source  
Pin 3  
Drain  
Pin 4  
presented to the device.  
The losses of the matching  
Vx  
networks are non-zero and they  
will also add to the noise figure  
of the device creating a higher  
amplifier noise figure. The losses  
of the matching networks are  
related to the Q of the compo-  
nents and associated printed  
circuit board loss. Γo is typically  
fairly low at higher frequencies  
and increases as frequency is  
lowered. Larger gate width  
Source  
Pin 1  
Gate  
Pin 2  
Microstrip  
Transmission Lines  
The recommended leaded solder  
time-temperature profile is  
Figure 36. Position of the Reference Planes.  
shown in Figure 37. This profile  
is representative of an IR reflow  
type of surface mount assembly  
process. After ramping up from  
room temperature, the circuit  
board with components attached  
to it (held in place with solder  
paste) passes through one or  
more preheat zones. The preheat  
zones increase the temperature  
of the board and components to  
prevent thermal shock and begin  
evaporating solvents from the  
solder paste. The reflow zone  
Noise Parameter Applications  
Information  
The Fmin values are based on a  
set of 16 noise figure measure-  
ments made at 16 different  
impedances using an ATN NP5  
devices will typically have a  
lower Γo as compared to nar-  
rower gate width devices. Typi-  
cally for FETs , the higher Γo  
test system. From these measure- usually infers that an impedance  
ments, a true Fmin is calculated.  
Fmin represents the true mini-  
mum noise figure of the device  
when the device is presented  
with an impedance matching  
network that transforms the  
much higher than 50is re-  
quired for the device to produce  
Fmin. At VHF frequencies and  
even lower L Band frequencies,  
the required impedance can be in  
the vicinity of several thousand  
18  
briefly elevates the temperature  
sufficiently to produce a reflow  
of the solder.  
The recommended lead-free  
reflow profile is shown in Fig-  
ure 38.  
Electronic devices may be  
subjected to ESD damage in any  
of the following areas:  
• Storage & handling  
• Inspection  
• Assembly & testing  
• In-circuit use  
The rates of change of tempera-  
ture for the ramp-up and cool-  
down zones are chosen to be low  
enough to not cause deformation  
of board or damage to compo-  
nents due to thermal shock. The  
maximum temperature in the  
reflow zone (Tmax) should not  
exceed 235°C for leaded solder.  
Electrostatic Sensitivity  
FETs and RFICs are electrostatic  
discharge (ESD) sensitive de-  
vices. Agilent devices are manu-  
factured using a very robust and  
The ATF-551M4 is an ESD Class1  
reliable PHEMT process, however, device. Therefore, proper ESD  
precautions are recommended  
when handling, inspecting,  
jected to high-energy electrostatic testing, and assembling these  
permanent damage may occur to  
these devices if they are sub-  
discharges. Electrostatic charges  
as high as several thousand volts  
(which readily accumulate on the Any user-accessible points in  
devices to avoid damage.  
These parameters are typical for  
a surface mount assembly  
process for the ATF-551M4. As a  
general guideline, the circuit  
board and components should  
only be exposed to the minimum  
temperatures and times the  
necessary to achieve a uniform  
reflow of solder.  
human body and on test equip-  
ment) can discharge without  
detection and may result in  
failure or degradation in perfor-  
mance and reliability.  
wireless equipment (e.g. antenna  
or battery terminals) provide an  
opportunity for ESD damage.  
For circuit applications in which  
the ATF-551M4 is used as an  
input or output stage with close  
coupling to an external antenna,  
the device should be protected  
from high voltage spikes due to  
human contact with the antenna.  
A good practice, illustrated in  
Figure 39, is to place a shunt  
inductor or RF choke at the  
antenna connection to protect  
the receiver and transmitter  
circuits. It is often advantageous  
to integrate the RF choke into the  
design of the diplexer or T/R  
switch control circuitry.  
250  
200  
TMAX  
150  
Reflow  
Zone  
100  
Preheat  
Zone  
Cool Down  
Zone  
50  
0
0
60  
120  
180  
240  
300  
TIME (seconds)  
Figure 37. Leaded Solder Reflow Profile.  
350  
300  
Peak Temperature  
Min. 240°C  
Max. 255°C  
250  
221  
Figure 39. In-circuit ESD Protection.  
Reflow Time  
Min. 60s  
Max. 90s  
200  
150  
100  
Preheat 130170°C  
Min. 60s  
Max. 150s  
50  
0
0
30  
60  
90  
120 150  
180 210  
240  
270  
300  
330 360  
TIME (seconds)  
Figure 38. Lead-free Solder Reflow Profile.  
19  
from the standpoint of improving  
out-of-band rejection.  
apply a positive voltage on the  
gate to set the desired amount of  
quiescent drain current Id.  
ATF-551M4 Applications  
Information  
Capacitors C2 and C5 provide a  
low impedance in-band RF  
Introduction  
Agilent Technologies’s  
ATF-551M4 is a low noise  
Whereas a depletion mode  
bypass for the matching net-  
works. Resistors R3 and R4  
provide a very important low  
frequency termination for the  
device. The resistive termination  
PHEMT pulls maximum drain  
current when Vgs=0V, an en-  
hancement mode PHEMT pulls  
only a small amount of leakage  
current when Vgs=0V. Only when  
enhancement mode PHEMT  
designed for use in low cost  
commercial applications in the  
VHF through 10 GHz frequency  
range. As opposed to a typical  
depletion mode PHEMT where the  
gate must be made negative with  
respect to the source for proper  
operation, an enhancement mode  
PHEMT requires that the gate be  
made more positive than the  
source for normal operation.  
Therefore a negative power  
supply voltage is not required for  
an enhancement mode device.  
Biasing an enhancement mode  
PHEMT is much like biasing the  
typical bipolar junction transistor.  
Instead of a 0.7V base to emitter  
voltage, the ATF-551M4 enhance-  
ment mode PHEMT requires a  
nominal 0.47V potential between  
the gate and source for a nominal  
drain current of 10 mA.  
improves low frequency stability. Vgs is increased above Vth, the  
Capacitors C3 and C6 provide  
the RF bypass for resistors R3  
and R4. Their value should be  
chosen carefully as C3 and C6  
also provide a termination for  
low frequency mixing products.  
These mixing products are as a  
result of two or more in-band  
signals mixing and producing  
third order in-band distortion  
products. The low frequency or  
difference mixing products are  
terminated by C3 and C6. For  
best suppression of third order  
distortion products based on the  
CDMA 1.25 MHz signal spacing,  
C3 and C6 should be 0.1 uF in  
value. Smaller values of capaci-  
tance will not suppress the  
generation of the 1.25 MHz  
difference signal and as a result  
will show up as poorer two tone  
IP3 results.  
device threshold voltage, will  
drain current start to flow. At a  
Vds of 2.7V and a nominal Vgs of  
0.47V, the drain current Id will be  
approximately 10 mA. The data  
sheet suggests a minimum and  
maximum Vgs over which the  
desired amount of drain current  
will be achieved. It is also impor-  
tant to note that if the gate  
terminal is left open circuited,  
the device will pull some amount  
of drain current due to leakage  
current creating a voltage differ-  
ential between the gate and  
source terminals.  
Passive Biasing  
Passive biasing of the ATF-551M4  
is accomplished by the use of a  
voltage divider consisting of R1  
and R2. The voltage for the  
divider is derived from the drain  
voltage which provides a form of  
voltage feedback through the use  
of R3 to help keep drain current  
constant. In the case of a typical  
depletion mode FET, the voltage  
divider which is normally con-  
nected to a negative voltage  
source is connected to the gate  
through resistor R4. Additional  
resistance in the form of R5  
(approximately 10K) is added  
to provide current limiting for  
the gate of enhancement mode  
devices such as the ATF-551M4.  
This is especially important  
when the device is driven to  
P1dB or Psat.  
Matching Networks  
The techniques for impedance  
matching an enhancement mode  
device are very similar to those for  
matching a depletion mode device.  
The only difference is in the  
C4  
OUTPUT  
C1  
INPUT  
Q1  
L2  
Zo  
Zo  
L1  
L4  
method of supplying gate bias. S  
and Noise Parameters for various  
bias conditions are listed in this  
data sheet. The circuit shown in  
Figure 1 shows a typical LNA  
circuit normally used for 900 and  
1900 MHz applications. Consult  
the Agilent Technologies web site  
for application notes covering  
specific designs and applications.  
High pass impedance matching  
networks consisting of L1/C1 and  
L4/C4 provide the appropriate  
match for noise figure, gain, S11  
and S22. The high pass structure  
also provides low frequency gain  
reduction which can be beneficial  
L3  
C2  
C3  
C5  
R3  
R4  
R5  
C6  
R1  
R2  
Vdd  
Figure 1. Typical ATF-551M4 LNA with Passive  
Biasing.  
Bias Networks  
One of the major advantages of  
the enhancement mode technol-  
ogy is that it allows the designer  
to be able to dc ground the  
source leads and then merely  
Resistor R3 is calculated based  
on desired Vds, Ids and available  
power supply voltage.  
20  
VDD – Vds  
Ids + IBB  
An active bias scheme is shown  
in Figure 2.  
VDD  
9
R3 =  
(1)  
R1 =  
(5A)  
p
VDD – VB  
VB  
p
IBB 1 +  
(
)
C4  
OUTPUT  
C1  
INPUT  
Q1  
Zo  
VDD is the power supply voltage.  
Vds is the device drain to source  
voltage.  
Zo  
Example Circuit  
L1  
L4  
L2  
L3  
VDD = 3 V  
C2  
C3  
C5  
R4  
I
ds is the desired drain current.  
R5  
R6  
Vds = 2.7 V  
Ids = 10 mA  
R4 = 10Ω  
VBE = 0.7V  
IBB is the current flowing  
through the R1/R2 resistor  
voltage divider network.  
C7  
Q2  
C6  
Vdd  
R7  
R3  
The value of resistors R1 and R2  
are calculated with the following  
formulas.  
R2  
R1  
Equation (1) calculates the  
required voltage at the emitter o  
the PNP transistor based o  
Figure 2. Typical ATF-551M4 LNA with Active  
Biasing.  
desired Vds and Ids throug  
Vgs  
R1 =  
(2)  
resistor R4 to be 2.8V. Equation  
(2) calculates the value of resistor  
R3 which determines the drain  
current Ids. In the example  
R3=18.2. Equation (3) calculates  
the voltage required at the junc-  
tion of resistors R1 and R2. This  
voltage plus the step-up of the  
base emitter junction determines  
the regulated Vds. Equations (4)  
and (5) are solved simultaneously  
to determine the value of resistors  
R1 and R2. In the example  
R1 and R2 provide a constant  
voltage source at the base of a  
PNP transistor at Q2. The con-  
stant voltage at the base of Q2 is  
raised by 0.7 volts at the emitter.  
The constant emitter voltage plus  
the regulated VDD supply are  
present across resistor R3.  
p
IBB  
(Vds – Vgs) R1  
Vgs  
R2 =  
(3)  
p
Example Circuit  
VDD = 3V  
Constant voltage across R3  
provides a constant current  
Vds = 2.7V  
Ids = 10 mA  
Vgs = 0.47V  
supply for the drain current.  
Resistors R1 and R2 are used to  
set the desired Vds. The combined  
series value of these resistors also  
sets the amount of extra current  
consumed by the bias network.  
The equations that describe the  
circuit’s operation are as follows.  
Choose IBB to be at least 10X the  
maximum expected gate leakage  
current. IBB was conservatively  
chosen to be 0.5 mA for this  
example. Using equations (1), (2),  
and (3) the resistors are calcu-  
lated as follows  
R1=4200and R2 =1800.  
R7 is chosen to be 1 k. This  
resistor keeps a small amount of  
current flowing through Q2 to help  
maintain bias stability. R6 is  
chosen to be 10 K. This value of  
resistance is high enough to limit  
Q1 gate current in the presence of  
high RF drive levels as experi-  
enced when Q1 is driven to the  
P1dB gain compression point. C7  
provides a low frequency bypass to  
keep noise from Q2 effecting the  
operation of Q1. C7 is typically  
0.1 µF.  
R1 = 940Ω  
R2 = 4460Ω  
R3 = 28.6Ω  
VE = Vds + (Ids R4)  
(1)  
VDD – VE  
R3 =  
(2)  
(3)  
p
Ids  
Active Biasing  
Active biasing provides a means  
of keeping the quiescent bias  
point constant over temperature  
and constant over lot to lot  
VB = VE – VBE  
R1  
VB =  
VDD  
(4)  
(5)  
p
R1 + R2  
variations in device dc perfor-  
mance. The advantage of the  
active biasing of an enhancement  
mode PHEMT versus a depletion  
mode PHEMT is that a negative  
power source is not required. The  
techniques of active biasing an  
enhancement mode device are  
very similar to those used to bias  
a bipolar junction transistor.  
VDD = IBB (R1 + R2)  
Maximum Suggested Gate Current  
The maximum suggested gate  
current for the ATF-551M4 is  
1 mA. Incorporating resistor R5  
in the passive bias network or  
resistor R6 in the active bias  
network safely limits gate current  
to 500 µA at P1dB drive levels.  
Rearranging equation (4)  
provides the following formula  
R1 (VDD – VB)  
R2 =  
(4A)  
p
VB  
and rearranging equation (5)  
provides the follow formula  
21  
In order to minimize component  
count in the passive biased  
desired. R5 can be removed if R1  
is replaced with a 5.6Kresistor  
For Further Information  
The information presented here is  
amplifier circuit, the 3 resistor  
bias circuit consisting of R1, R2,  
and R5 can be simplified if  
and if R2 is replaced with a 27Kan introduction to the use of the  
resistor. This combination should  
limit gate current to a safe level.  
ATF-551M4 enhancement mode  
PHEMT. More detailed application  
circuit information is available  
from Agilent Technologies. Consult  
the web page or your local Agilent  
Technologies sales representative.  
ATF-551M4 Die Model  
Advanced_Curtice2_Model  
MESFETM1  
NFET=yes  
PFET=no  
Vto=0.3  
Beta=0.444  
Lambda=72e-3  
Alpha=13  
Tau=  
Tnom=16.85  
Idstc=  
Ucrit=-0.72  
Vgexp=1.91  
Gamds=1e-4  
Vtotc=  
Betatce=  
Rgs=0.5 Ohm  
Rf=  
Crf=0.1 F  
N=  
Fnc=1 MHz  
R=0.08  
P=0.2  
C=0.1  
Taumdl=no  
wVgfwd=  
wBvgs=  
wBvgd=  
wBvds=  
wldsmax=  
wPmax=  
AllParams=  
Gscap=2  
Gsfwd=  
Gsrev=  
Gdfwd=  
Gdrev=  
R1=  
R2=  
Vbi=0.95  
Vbr=  
Vjr=  
Is=  
Ir=  
Imax=  
Xti=  
Cgs=0.6193 pF  
Cgd=0.1435 pF  
Gdcap=2  
Fc=0.65  
Rgd=0.5 Ohm  
Rd=2.025 Ohm  
Rg=1.7 Ohm  
Rs=0.675 Ohm  
Ld=  
Lg=0.094 nH  
Ls=  
Cds=0.100 pF  
Rc=390 Ohm  
Eg=  
ATF-551M4 Minipak Model  
INSIDE Package  
VAR  
VAR1  
K=5  
Var  
Egn  
TLINP  
TL1  
TLINP  
TL2  
Z2=85  
Z1=30  
Z=Z2/2 Ohm  
L=22 mil  
K=K  
Z=Z2/2 Ohm  
L=20 0 mil  
K=K  
C
A=0.000  
F=1 GHz  
TanD=0.001  
A=0.000  
F=1 GHz  
TanD=0.001  
C1  
GATE  
SOURCE  
C=0.28 pF  
L
L
Port  
G
Num=1  
TLINP  
TLINP  
Port  
L6  
L1  
TL7  
TL3  
S2  
L=0.147 nH  
R=0.001  
L=0.234 nH  
R=0.001  
Z=Z2/2 Ohm  
L=5.2 mil  
K=K  
A=0.000  
F=1 GHz  
TanD=0.001  
Z=Z2 Ohm  
L=23.6 mil  
K=K  
A=0.000  
F=1 GHz  
TanD=0.001  
Num=4  
C
C2  
GaAsFET  
FET1  
C=0.046 pF  
Mode1=MESFETM1  
Mode=Nonlinear  
DRAIN  
SOURCE  
L
TLINP  
Port  
D
Num=3  
L7  
TL5  
L=0.234 nH  
R=0.001  
L
Port  
TLINP  
Z=Z2 Ohm  
L=27.5 mil  
K=K  
A=0.000  
F=1 GHz  
TanD=0.001  
L4  
MSub  
S1  
TL9  
L=0.281 nH  
R=0.001  
Num=2  
Z=Z2 Ohm  
L=11 mil  
K=K  
A=0.000  
F=1 GHz  
TanD=0.001  
MSUB  
MSub2  
H=25.0 mil  
Er=9.6  
Mur=1  
Cond=1.0E+50  
Hu=3.9e+034 mil  
T=0.15 mil  
TanD=0  
Rough=0 mil  
22  
Ordering Information  
Part Number  
No. of Devices  
Container  
ATF-551M4-TR1  
ATF-551M4-TR2  
ATF-551M4-BLK  
3000  
10,000  
100  
7” Reel  
13” Reel  
antistatic bag  
MiniPak Package Outline Drawing  
Solder Pad Dimensions  
1.44 (0.058)  
1.40 (0.056)  
1.12 (0.045)  
1.08 (0.043)  
3
2
4
0.82 (0.033)  
0.78 (0.031)  
1.20 (0.048)  
1.16 (0.046)  
Vx  
0.32 (0.013)  
0.28 (0.011)  
1
0.00  
Top view  
-0.07 (-0.003)  
-0.03 (-0.001)  
0.92 (0.037)  
0.88 (0.035)  
0.00  
-0.07 (-0.003) 0.42 (0.017)  
-0.03 (-0.001) 0.38 (0.015)  
1.32 (0.053)  
1.28 (0.051)  
0.70 (0.028)  
0.58 (0.023)  
Bottom view  
Side view  
Dimensions are in millimeteres (inches)  
23  
Device Orientation for Outline 4T, MiniPak 1412  
REEL  
TOP VIEW  
4 mm  
END VIEW  
CARRIER  
TAPE  
8 mm  
USER  
FEED  
DIRECTION  
Note: Vx represents Package Marking Code.  
Device orientation is indicated by package marking.  
COVER TAPE  
Tape Dimensions  
P
P
D
2
P
0
E
F
W
C
B
0
A
1
0
D
1
t
(CARRIER TAPE THICKNESS)  
T (COVER TAPE THICKNESS)  
t
K
5° MAX.  
5° MAX.  
0
A
B
0
0
DESCRIPTION  
SYMBOL  
SIZE (mm)  
SIZE (INCHES)  
CAVITY  
LENGTH  
WIDTH  
DEPTH  
PITCH  
A
B
K
P
D
1.40 ± 0.05  
1.53 ± 0.05  
0.80 ± 0.05  
4.00 ± 0.10  
0.80 ± 0.05  
0.055 ± 0.002  
0.064 ± 0.002  
0.031 ± 0.002  
0.157 ± 0.004  
0.031 ± 0.002  
0
0
0
BOTTOM HOLE DIAMETER  
1
0
PERFORATION  
DIAMETER  
PITCH  
POSITION  
D
P
E
1.50 ± 0.10  
4.00 ± 0.10  
1.75 ± 0.10  
0.060 ± 0.004  
0.157 ± 0.004  
0.069 ± 0.004  
CARRIER TAPE WIDTH  
THICKNESS  
W
8.00 + 0.30 - 0.10 0.315 + 0.012 - 0.004  
t
0.254 ± 0.02  
0.010 ± 0.0008  
1
COVER TAPE  
WIDTH  
C
5.40 ± 0.10  
0.213 ± 0.004  
TAPE THICKNESS  
T
0.062 ± 0.001  
0.0024 ± 0.00004  
t
DISTANCE  
CAVITY TO PERFORATION  
(WIDTH DIRECTION)  
F
3.50 ± 0.05  
0.138 ± 0.002  
CAVITY TO PERFORATION  
(LENGTH DIRECTION)  
P
2
2.00 ± 0.05  
0.079 ± 0.002  
For product information and a complete list of Agilent  
contacts and distributors, please go to our web site.  
www.agilent.com/semiconductors  
E-mail: SemiconductorSupport@agilent.com  
Data subject to change.  
Copyright © 2002 Agilent Technologies, Inc.  
March 6, 2002  
5988-4455EN  

相关型号:

DEMO-ATF-5X1P8

Demonstration circuit board for ATF-511P8. ATF-521P8 and ATF-531P8
ETC

DEMO-ATF3616-3

2 to 2.4 GHz single stage LNA using ATF-36163
ETC

DEMO-ATF3X14-32

Single stage 2 GHz LNA demonstration board for ATF-3x143 series ultra low noise PHEMTs
ETC

DEMO-ATF3X14-33

Evaluation board for the ATF-3X143 on 900 MHz and 1930-1990 MHz frequencies
ETC

DEMO-ATF5X14-3A

Evaluation board for the ATF-54143 and ATF-55143
ETC

DEMO-HMPP-389T

Demonstration circuit board for HMPP-389T
ETC

DEMO-HMPP-38X0

Demonstration circuit board for the HMPP-3860 and HMPP-3890
ETC

DEMO-HPMD-7904

Demo board for HPMD-7904
ETC

DEMO-HSMP38-XX

Demonstration Circuit Board
ETC

DEMO-HSMS285-0

2.45 GHz TAG circuit using the HSMS-2850 zero bias Schottky diode
ETC

DEMO-IAM9156-3

IAM-91563 down-converting mixer demonstration board
ETC

DEMO-MGA-12516B

Low Noise, High Linearity Match Pair Low Noise Amplifier
BOARDCOM