DHM0950AQS1B [ETC]

MICROPROCESSOR|32-BIT|PGA|462PIN|CERAMIC ;
DHM0950AQS1B
型号: DHM0950AQS1B
厂家: ETC    ETC
描述:

MICROPROCESSOR|32-BIT|PGA|462PIN|CERAMIC

外围集成电路 时钟
文件: 总104页 (文件大小:869K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary Release  
TM  
Mobile AMD Duron  
Processor  
Model 7 Data Sheet  
Featuring:  
Publication # 24068  
Rev: F  
Issue Date: December 2001  
Preliminary Release  
© 2001 Advanced Micro Devices, Inc. All rights reserved.  
The contents of this document are provided in connection with Advanced  
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or  
warranties with respect to the accuracy or completeness of the contents of  
this publication and reserves the right to make changes to specifications and  
product descriptions at any time without notice. No license, whether express,  
implied, arising by estoppel or otherwise, to any intellectual property rights  
is granted by this publication. Except as set forth in AMDs Standard Terms  
and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims  
any express or implied warranty, relating to its products including, but not  
limited to, the implied warranty of merchantability, fitness for a particular  
purpose, or infringement of any intellectual property right.  
AMDs products are not designed, intended, authorized or warranted for use  
as components in systems intended for surgical implant into the body, or in  
other applications intended to support or sustain life, or in any other applica-  
tion in which the failure of AMDs product could create a situation where per-  
sonal injury, death, or severe property or environmental damage may occur.  
AMD reserves the right to discontinue or make changes to its products at any  
time without notice.  
Trademarks  
AMD, the AMD Arrow logo, AMD Athlon, AMD Duron, and combinations thereof, AMD PowerNow!, and 3DNow!  
are trademarks of Advanced Micro Devices, Inc.  
HyperTransport is a trademark of the HyperTransport Technology Corporation.  
MMX is a trademark of Intel Corporation.  
Other product names used in this publication are for identification purposes only and may be trademarks of  
their respective companies.  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Contents  
List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii  
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1
2
1.1  
Mobile AMD Duron™ Processor Model 7 Upgrades Versus  
the Mobile AMD Duron Processor Model 3 . . . . . . . . . . . . . . . 2  
Mobile AMD Duron Processor Model 7 Microarchitecture  
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.2  
Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.1  
2.2  
2.3  
2.4  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Signaling Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Push-Pull (PP) Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
AMD Duron System Bus Signals . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
4
Logic Symbol Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.1  
Power Management States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Working State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Halt State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Stop Grant States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Probe State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
FID_Change State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Processor Performance States and the FID_Change  
Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Connect and Disconnect Protocol . . . . . . . . . . . . . . . . . . . . . . 18  
Connect Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Connect State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Clock Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SYSCLK Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Special Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.2  
4.3  
4.4  
4.5  
5
6
7
CPUID Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Thermal Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
7.1  
7.2  
7.3  
7.4  
7.5  
Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Interface Signal Groupings . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Soft Voltage Identification (SOFTVID[4:0]) . . . . . . . . . . . . . 35  
Frequency Identification (FID[3:0]) . . . . . . . . . . . . . . . . . . . . 35  
VCCA AC and DC Characteristics . . . . . . . . . . . . . . . . . . . . . 35  
Table of Contents  
iii  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
7.6  
7.7  
7.8  
7.9  
Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Valid Voltage and Frequency Combinations . . . . . . . . . . . . . 36  
VCC_CORE AC and DC Characteristics . . . . . . . . . . . . . . . . 37  
Absolute Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7.10 VCC_CORE Voltage and Current . . . . . . . . . . . . . . . . . . . . . . 40  
7.11 SYSCLK and SYSCLK# AC and DC Characteristics . . . . . . 41  
7.12 AMD Duron System Bus AC and DC Characteristics . . . . . . 43  
7.13 General AC and DC Characteristics . . . . . . . . . . . . . . . . . . . . 45  
7.14 Open Drain Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
7.15 Thermal Diode Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 48  
7.16 Reserved Pins DC Characteristics . . . . . . . . . . . . . . . . . . . . . 51  
7.17 FID_Change Induced PLL Lock Time . . . . . . . . . . . . . . . . . . 52  
8
Signal and Power-Up Requirements . . . . . . . . . . . . . . . . . . . . 53  
8.1  
8.2  
Power-Up Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Signal Sequence and Timing Description . . . . . . . . . . . . . . . . 53  
Clock Multiplier Selection (FID[3:0]) . . . . . . . . . . . . . . . . . . . 56  
Processor Warm Reset Requirements . . . . . . . . . . . . . . . . . . 56  
Mobile AMD Duron Processor Model 7 and Northbridge  
Reset Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
9
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
9.1  
9.2  
9.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Die Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Package Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
10  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
10.1 Pin Diagram and Pin Name Abbreviations . . . . . . . . . . . . . . 61  
10.2 Pin List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
10.3 Detailed Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
A20M# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
AMD Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
AMD Duron System Bus Pins . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Analog Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
CLKFWDRST Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
CLKIN and RSTCLK (SYSCLK) Pins . . . . . . . . . . . . . . . . . . . 78  
CONNECT Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
COREFB and COREFB# Pins . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
CPU_PRESENCE# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
DBRDY and DBREQ# Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
FERR Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
FID[3:0] Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
FLUSH# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
IGNNE# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
INIT# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
INTR Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
J TAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
K7CLKOUT and K7CLKOUT# Pins. . . . . . . . . . . . . . . . . . . . . 80  
iv  
Table of Contents  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Key Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
NC Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
NMI Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
PGA Orientation Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
PLL Bypass and Test Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
PWROK Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
RSVD Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
SADDIN[1:0]# and SADDOUT[1:0]# Pins . . . . . . . . . . . . . . . . 81  
Scan Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
SMI# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
SOFTVID[4:0] and VID[4:0] Pins. . . . . . . . . . . . . . . . . . . . . . . 81  
STPCLK# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
SYSCLK and SYSCLK#. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
THERMDA and THERMDC Pins . . . . . . . . . . . . . . . . . . . . . . . 83  
VCCA Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
VREF_SYS Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
ZN and ZP Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
11  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
11.1 Standard Mobile AMD Duron Processor Model 7  
Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Appendix A Conventions, Abbreviations, and References . . . . . . . . . . . . . . . . . . . . 87  
Signals and Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Data Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Abbreviations and Acronyms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Related Publications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
AMD Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Websites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Table of Contents  
v
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
vi  
Table of Contents  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
List of Figures  
Figure 1. Typical Mobile AMD Duron™ Processor Model 7 System  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2. Logic Symbol Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 3. Mobile AMD Duron Processor Model 7 Power Management  
States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 4. SOFTVID Transition During the AMD Duron System Bus  
Disconnect for FID_Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 5. AMD Duron System Bus Disconnect Sequence in the Stop  
Grant State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 6. Exiting the Stop Grant State and Bus Connect Sequence . . . . 21  
Figure 7. Northbridge Connect State Diagram . . . . . . . . . . . . . . . . . . . . . 22  
Figure 8. Processor Connect State Diagram . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 9. VCC_CORE Voltage Waveform . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 10. SYSCLK and SYSCLK# Differential Clock Signals . . . . . . . . . 41  
Figure 11. SYSCLK Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 12. General ATE Open Drain Test Circuit . . . . . . . . . . . . . . . . . . . . 47  
Figure 13. Signal Relationship Requirements During Power-Up  
Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 14. Mobile AMD Duron Processor Model 7 CPGA Package . . . . . . 59  
Figure 15. Mobile AMD Duron Processor Model 7 Pin Diagram —  
Topside View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 16. Mobile AMD Duron Processor Model 7 Pin Diagram —  
Bottomside View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 17. OPN Example for the Mobile AMD Duron Processor  
Model 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
List of Figures  
vii  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
viii  
List of Figures  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
List of Tables  
Table 1.  
FID[4:0] SYSCLK Multiplier Combinations . . . . . . . . . . . . . . . 25  
Processor Special Cycle Definition . . . . . . . . . . . . . . . . . . . . . . 27  
Thermal Design Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Interface Signal Groupings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
SOFTVID[4:0] DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 35  
FID[3:0] DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
VCCA AC and DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 35  
Valid Voltage and Frequency Combinations . . . . . . . . . . . . . . 36  
VCC_CORE AC and DC Characteristics . . . . . . . . . . . . . . . . . . 37  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10. Absolute Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 11. VCC_CORE Voltage and Current . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 12. SYSCLK and SYSCLK# DC Characteristics . . . . . . . . . . . . . . . 41  
Table 13. SYSCLK and SYSCLK# AC Characteristics . . . . . . . . . . . . . . . 42  
Table 14. AMD Duron™ System Bus DC Characteristics . . . . . . . . . . . . . 43  
Table 15. AMD Duron System Bus AC Characteristics . . . . . . . . . . . . . . . 44  
Table 16. General AC and DC Characteristics . . . . . . . . . . . . . . . . . . . . . . 45  
Table 17. Thermal Diode Electrical Characteristics . . . . . . . . . . . . . . . . . 48  
Table 18. Guidelines for Platform Thermal Protection of the  
Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 19. Reserved Pins (N1, N3, and N5) DC Characteristics . . . . . . . . 51  
Table 20. FID_Change Induced PLL Lock Time . . . . . . . . . . . . . . . . . . . . 52  
Table 21. CPGA Mechanical Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 22. Dimensions for the CPGA Package . . . . . . . . . . . . . . . . . . . . . . 58  
Table 23. Pin Name Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 24. Cross-Reference by Pin Location . . . . . . . . . . . . . . . . . . . . . . . . 70  
Table 25. SOFTVID[4:0] and VID[4:0] Code to Voltage Definition . . . . . 82  
Table 26. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Table 27. Acronyms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
List of Tables  
ix  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
x
List of Tables  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Revision History  
Date  
Rev  
Description  
Updated data sheet for the 1.0 GHz AMD Duron Processor Model 7 release.  
Revised the following sections:  
Table 3, “Thermal Design Power,” on page 31  
December 2001  
November 2001  
F
Table 8, “Valid Voltage and Frequency Combinations,” on page 36  
Table 11, “VCC_CORE Voltage and Current,” on page 40  
“Ordering Information” on page 85  
E
Revised “Thermal Protection Characterization” on page 49.  
Updated data sheet for the 950 MHz AMD Duron Processor Model 7 release.  
Revised the following sections:  
“Processor Performance States and the FID_Change Protocol” on page 12  
“SYSCLK Multipliers” on page 24  
Thermal Diode Characteristics” on page 48  
Figure 13, “Signal Relationship Requirements During Power-Up Sequence” on page 53  
“Power-Up Timing Requirements” on page 54  
November 2001  
D
“Clock Multiplier Selection (FID[3:0])” on page 56  
Added the following sections and figures:  
“Open Drain Test Circuit” and Figure 12, “General ATE Open Drain Test Circuit” on page 47.  
Thermal Protection Characterization” on page 49 and Table 18, “Guidelines for Platform Thermal  
Protection of the Processor,” on page 51  
September 2001  
August 2001  
C
B
Updated Figure 9 on page 38.  
Initial public release.  
Revision History  
xi  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
xii  
Revision History  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
1
Overview  
The Mobile AMD Duron™ Processor Model 7 enables an optimized  
PC solution for value-conscious business and home users by  
providing the capability and flexibility to meet their computing  
needs for both today and tomorrow.  
Th e m ob ile AMD Du ron ™ p roce ssor m od e l 7 is t h e la t e st  
offe r in g from AMD d e sign e d for t h e va lu e se gm e n t of t h e  
notebook PC market. The innovative design was developed to  
accommodate new and more advanced applications, meeting  
the requirements of today's most demanding value-conscious  
buyers without compromising their budget. Model 7 is the CPU  
m od e l nu m b e r re t u r n e d by t h e CP U ID in st r u ct ion for t h is  
processor. See Chapter 5, “CPUID Support” on page 29 for  
more information.  
De live r e d in a CP GA p a ck a ge , t h e m ob ile AMD Du r on  
processor model 7 is the new AMD workhorse processor for  
value notebook systems, delivering high performance integer,  
floating-point and 3D multimedia capabilities for applications  
running on notebook PC platforms. The mobile AMD Duron  
processor model 7 provides value-conscious cust omers with  
a cce ss t o a d va n ce d t e ch n ology t h a t a llows t h e ir syst e m  
investment to last for years to come.  
Whether at work or at play, the mobile AMD Duron processor  
m od e l 7 p rovid es a n op t imum b ala n ce of p e rform a n ce an d  
value for todays advanced operating system software, business  
p rod u ct ivit y a p p lica t ion s, In t e r n e t com p u t in g a n d d igit a l  
entertainment.  
Th e m ob ile AMD Du r on p r oce ssor m od e l 7 fe a t u r e s a  
se ve n t h -ge n e r a t ion m icr oa r ch it e ct u r e wit h a fu ll-sp e e d  
integrated L2 cache, which supports the growing processor and  
syst e m b a n d wid t h r e q u ir e m e n t s of e m e r gin g soft wa r e ,  
gra p h ics, I/O, a n d m e m ory t e ch n ologie s. Th e h igh -sp e e d  
e xe cu t ion cor e of t h e p r oce ssor in clu d e s m u lt ip le x86  
instruction decoders, a dual-ported 128-Kbyte split level-one  
(L1) cache, a 64-Kbyte on-chip L2 cache, three independent  
integer pipelines, three address calculation pipelines, and a  
s u p e r s c a l a r, f u l ly p i p e l i n e d , o u t -o f -o r d e r, t h r e e -wa y  
floating-point engine. The floating-point engine is capable of  
delivering 4.0 gigaflops (Gflops) of single-precision and more  
than 2.0 Gflops of double-precision floating-point resu lts at  
Chapter 1  
Overview  
1
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
1.0 GHz, for superior performa nce on nume rica lly com plex  
applications.  
This processor incorpora tes AMD PowerNow!™ te chnology,  
enabling performance and power saving modes specifically for  
notebook designs and is available in a low-profile, lidless CPGA  
package.  
The mobile AMD Duron processor model 7 microarchitecture  
in corp ora t e s AMDs 3DNow!™ P rofe ssion a l t e ch n ology, a  
h igh -p e r for m a n ce ca ch e a r ch it e ct u r e , a n d t h e 200-MH z  
1 .6 -G i g a b y t e p e r s e c o n d A M D D u r o n s y s t e m b u s . Th e  
AMD Du ron syst e m b u s com b in e s t h e la t e st t e ch n ologica l  
advances, such as point-to-point topology, source-synchronous  
packet-based transfers, and low-voltage signaling, to provide a  
powerful, scalable bus architecture.  
The mobile AMD Duron processor model 7 is binary-compatible  
with existing x86 software and substantially compatible with  
applications optimized for 3DNow! Professional, MMX™, and  
SSE in st r u ct ion s. AMDs 3DNow! P rofe ssion a l t e ch n ology  
im p le m en t ed in t h e m ob ile AMD Du ron p roce ssor m od e l 7  
i n c l u d e s n e w i n t e g e r m u l t i m e d i a i n s t r u c t i o n s a n d  
soft wa re -d ire ct e d d a t a m ove m e n t in st r u ct ion s t o d e live r  
exceptional performance in multimedia applications.  
1.1  
Mobile AMD Duron™ Processor Model 7 Upgrades Versus the  
Mobile AMD Duron™ Processor Model 3  
Th e followin g fe a t u re s su m m a r ize t h e m ob ile AMD Du ron  
processor model 7 feature upgrades and differences from the  
mobile AMD Duron processor model 3:  
AMD PowerNow! technology for improved battery life  
Model Specific Registers (MSRs) and SOFTVID and FID  
control pins which are compatible with the mobile  
AMD Athlon™ processor model 6  
Automatic load sense  
Redesigned core, optimized for lower power and improved  
frequency scalability  
On-die temperature sensing diode  
2
Overview  
Chapter 1  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
1.2  
Mobile AMD Duron™ Processor Model 7 Microarchitecture  
Summary  
Th e followin g fe a t u re s su m m a r ize t h e m ob ile AMD Du ron  
processor model 7 microarchitecture:  
Performance on demand and extended battery life  
specifically for notebook designs with AMD PowerNow!  
technology  
The industry's first nine-issue, superpipelined, superscalar  
x86 processor microarchitecture designed for high clock  
frequencies  
Multiple x86 instruction decoders  
Three  
out-of-order,  
superscalar,  
fully  
pipelined  
floating-point execution units, which execute all x87  
(floating-point), SSE, MMX, and 3DNow! Professional  
instructions  
Three out-of-order, superscalar, pipelined integer units  
Three  
out-of-order,  
superscalar,  
pipelined  
address  
calculation units  
72-entry instruction control unit  
Advanced dynamic branch prediction  
3DNow! Professional technology with added instructions to  
enable improved integer math calculations for speech or  
video encoding and improved data movement for internet  
plug-ins and other streaming applications  
200-MHz AMD Duron system bus for high-performance main  
memory access, multimedia, graphics, and I/O  
High-performance  
cache  
architecture  
featuring an  
integrated 128-Kbyte L1 cache and a 16-way, on-chip  
64-Kbyte L2 cache  
Chapter 1  
Overview  
3
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
The mobile AMD Duron processor model 7 delivers superior  
n o t e b o o k P C s y s t e m p e r fo r m a n c e i n a c o s t -e f f e c t ive ,  
industry-standard Socket A compatible 462-pin CPGA package.  
Figure 1 shows a typical mobile AMD Duron processor model 7  
system block diagram.  
Mobile AMD Duron™  
Processor Model 7  
Programmable  
Voltage Regulator  
Thermal Monitor  
AGP Bus  
AMD Duron  
System Bus  
AGP  
Memory Bus  
System Controller  
SDRAM or DDR  
(Northbridge)  
PCI Bus  
Peripheral Bus  
Controller  
(Southbridge)  
Docking  
Controller  
LAN  
PC Card  
Modem / Audio  
ISA or LPC  
USB  
Dual EIDE  
Super I/O  
Embedded Controller  
Battery  
Figure 1. Typical Mobile AMD Duron™ Processor Model 7 System Block Diagram  
4
Overview  
Chapter 1  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
2
Interface Signals  
2.1  
Overview  
Th e AMD Du ron ™ syst e m b u s a rch it e ct u re is d e sign e d t o  
d e l ive r e x ce l l e n t d a t a m ove m e n t b a n d w id t h fo r n e x t -  
ge n e ra t ion x86 p la t for m s a s we ll a s t h e h igh -p e r for m a n ce  
required by enterprise-class application software. The system  
b u s a rch it e ct u re con sist s of t h re e h igh -sp e e d ch a n n e ls (a  
u n id ire ct ion a l p roce ssor re q u e st ch a n n e l, a u n id ire ct ion a l  
p r ob e ch a n n e l, a n d a 72-b it b id ire ct ion a l d a t a ch a n n e l),  
source-synchronous clocking, and a packet-based protocol. In  
addition, the system bus supports several control, clock, and  
le ga cy sign a ls. Th e in t e r fa ce sign a ls u se a n im p e d a n ce  
controlled push-pull, low-voltage, swing-signaling technology  
contained within the Socket A socket.  
For more information, see “AMD Duron™ System Bus Signals”  
on page 6, Chapter 10, “Pin Descriptions” on page 61, and the  
AMD At h lon ™ a n d AMD Du ron ™ Syst em Bu s Specificat ion,  
order# 21902.  
2.2  
Signaling Technology  
The AMD Duron system bus uses a low-voltage, swing-signaling  
technology, that ha s been enhanced to provide large r noise  
ma rgin s, re d u ce d r in gin g, a n d va r iab le volt a ge leve ls. Th e  
signals are push-pull and impedance compensated. The signal  
in p u t s u se d iffe re n t ia l re ce ive rs t h a t re q u ire a re fe re n ce  
voltage (VREF). The reference signal is used by the receivers to  
determine if a signal is asserted or deasserted by the source.  
Te rm in a t ion resist ors are n ot n ee d ed b e ca u se t h e d river is  
impedance-matched to the motherboard and a high impedance  
reflection is used at the receiver to bring the signal past the  
input threshold.  
For more information about pins and signals, see Chapter 10,  
“Pin Descriptions” on page 61.  
Chapter 2  
Interface Signals  
5
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
2.3  
Push-Pull (PP) Drivers  
The mobile AMD Duron processor model 7 supports Push-Pull  
(PP) drivers. The system logic configures the processor with the  
con figu ra t ion p a ra m e t e r ca lle d SysP u sh P u ll (1=P P ). Th e  
impedance of the PP drivers is set to match the impedance of  
the motherboard by two external resistors connected to the ZN  
and ZP pins.  
See “ZN and ZP Pins” on page 83 for more information.  
2.4  
AMD Duron™ System Bus Signals  
The AMD Duron system bus is a clock-forwarded, point-to-point  
interface with the following three point-to-point channels:  
A 13-bit unidirectional output address/command channel  
A 13-bit unidirectional input address/command channel  
A 72-bit bidirectional data channel  
For more information, see Chapter 7, “Electrical Data” on page  
33 a n d t h e AMD At h lon ™ a n d AMD Du r on ™ Syst em Bu s  
Specification, order# 21902.  
6
Interface Signals  
Chapter 2  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
3
Logic Symbol Diagram  
Figure 2 is the logic symbol diagram of the processor. This  
diagram shows the logical grouping of the input and out put  
signals.  
Clock  
SYSCLK SYSCLK#  
SOFTVID[4:0]  
SDATA[63:0]#  
VID[4:0]  
COREFB  
COREFB#  
PWROK  
Voltage  
Control  
SDATAINCLK[3:0]#  
SDATAOUTCLK[3:0]#  
SDATAINVALID#  
SDATAOUTVALID#  
SFILLVALID#  
Data  
Frequency  
Control  
FID[3:0]  
Mobile AMD Duron™  
Processor Model 7  
FERR  
IGNNE#  
INIT#  
SADDIN[14:2]#  
SADDINCLK#  
Probe/SysCMD  
Request  
Legacy  
INTR  
NMI  
A20M#  
SMI#  
SADDOUT[14:2]#  
SADDOUTCLK#  
PROCRDY  
CLKFWDRST  
CONNECT  
STPCLK#  
FLUSH#  
Power  
Management  
and Initialization  
Thermal  
Diode  
THERMDA  
THERMDC  
RESET#  
Figure 2. Logic Symbol Diagram  
Chapter 3  
Logic Symbol Diagram  
7
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
8
Logic Symbol Diagram  
Chapter 3  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
4
Power Management  
This chapter describes the power management features of the  
m o b i l e A M D D u r o n ™ p r o c e s s o r m o d e l 7 . Th e p owe r  
management features of the processor are compliant with the  
AC P I 1 . 0 b a n d AC P I 2 . 0 s p e c i f i c a t i o n s a n d s u p p o r t  
AMD PowerNow!™ technology.  
4.1  
Power Management States  
The mobile AMD Duron™ processor model 7 has a variety of  
operating states that are designed to support different power  
management goals. In addition to the standard operating state,  
the processor supports low-power Halt and Stop Grant states  
and the FID_Change state. These states are used by Advanced  
Configuration and Power Interface (ACPI) enabled operating  
systems, for processor power management. AMD PowerNow!  
software is used to control processor performance states with  
op e r a t in g syst e m s t h a t d o n ot su p p or t ACP I 2.0-d e fin e d  
processor performance state control.  
Figure 3 on page 10 shows the power management states of the  
p r oce ssor. Th e figu r e in c lu d e s t h e AC P I “ Cx” n a m in g  
convention for these states.  
Chapter 4  
Power Management  
9
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Write to FidVidCtl MSR  
Execute HLT  
C1  
Halt  
C0  
Working4  
FID_Change  
SIP Stream and  
SMI#, INTR, NMI, INIT#, RESET#  
System Bus Connect  
P
S
T
P
C
L
K
#
r
S
T
P
C
L
K
#
o
b
e
S
S
d
S
d
T
T
e
e
e
P
P
a
a
r
C
L
K
C
s
s
s
v
L
s
e
K
e
r
i
r
t
#
c
#
t
e
e
d
e
a
d
3
a
s
d
s
s
s
e
e
r
t
r
t
e
e
d
2
d
C3/S1  
Stop Grant  
Cache Not Snoopable  
Sleep  
Incoming Probe  
Probe Serviced  
C2  
Probe  
State1  
Stop Grant  
Cache Snoopable  
Legend  
Hardware transitions  
Software transitions  
Note:  
The AMD DuronTM System Bus is connected during the following states:  
1) The Probe state  
2) During transitions between the Halt state and the C2 Stop Grant state  
3) During transitions between the C2 Stop Grant state and the Halt state  
4) C0 Working state  
Figure 3. Mobile AMD Duron™ Processor Model 7 Power Management States  
Th e followin g se ct ion s p r ovid e a n ove r vie w of t h e p owe r  
management states. For more details, refer to the AMD Athlon™  
and AMD Duron™ System Bus Specification, order# 21902.  
Note: In all power management states that the processor is  
powered, the system must not stop the system clock  
(SYSCLK/SYSCLK#) to the processor.  
Working State  
Halt State  
The Working state is the state in which the processor is executing  
instructions.  
When the processor executes the HLT instruction, the processor  
e n t e rs t h e H a lt st a t e a n d issu e s a H a lt sp e cia l cycle t o t h e  
AMD Duron system bus. The processor only enters the low power  
st at e d ict a t e d by t h e CLK_Ct l MSR if t h e syst em con t roller  
(Nor t h b r id ge ) d iscon n e ct s t h e AMD Du ron syst e m b u s in  
response to the Halt special cycle.  
10  
Power Management  
Chapter 4  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
If STPCLK# is asserted, the processor will exit the Halt state  
and enter the Stop Grant state. The processor will initiate a  
syste m bus conne ct, if it is disconne ct ed, t hen issue a Stop  
Gr a n t sp e cia l cycle . Wh e n STP CLK# is d e a sse r t e d , t h e  
processor will exit the Stop Grant state and re-enter the Halt  
st a t e . Th e p roce ssor will issu e a H a lt sp e cia l cycle wh e n  
re-entering the Halt state.  
Th e H a lt st a t e is e xit e d wh e n t h e p r oce ssor d e t e ct s t h e  
assertion of INIT#, INTR, NMI, RESET#, or SMI#. When the  
Halt state is exited the processor will initiate an AMD Duron  
system bus connect if it is disconnected.  
Stop Grant States  
When the processor executes the HLT instruction, the processor  
e n t e rs t h e H alt st a t e an d issu e s a H alt sp ecial cycle t o t h e  
AMD Du ron syst em b u s. Th e p roce ssor on ly e n t e rs t h e low  
p owe r st a t e d ict a t e d b y t h e CLK_Ct l MSR if t h e syst e m  
controller (Northbridge) disconnects the AMD Duron system  
bus in response to the Halt special cycle.  
If STPCLK# is asserted, the processor will exit the Halt state  
and enter the Stop Grant state. The processor will initiate a  
syste m bus conne ct, if it is disconne ct ed, t hen issue a Stop  
Gr a n t sp e cia l cycle . Wh e n STP CLK# is d e a sse r t e d , t h e  
processor will exit the Stop Grant state and re-enter the Halt  
st a t e . Th e p roce ssor will issu e a H a lt sp e cia l cycle wh e n  
re-entering the Halt state.  
Th e H a lt st a t e is e xit e d wh e n t h e p r oce ssor d e t e ct s t h e  
assertion of INIT#, INTR, NMI, RESET#, or SMI#. When the  
Halt state is exited the processor will initiate an AMD Duron  
system bus connect if it is disconnected.  
In C2, probes are allowed, as shown in Figure 3 on page 10.  
The operating syst em places th e processor into t he C3 Stop  
Grant state by reading the P_LVL3 register in the Southbridge.  
In C3, the operating system and Northbridge hardware enforce  
a policy that prevents the processor from being probed. The  
Southbridge will deassert STPCLK# and bring the processor  
out of the C3 Stop Grant state if a bus master request, interrupt,  
or any other enabled resume event occurs.  
The Stop Grant state is also entered for the S1, Powered On  
Suspend, system sleep state based on a write to the SLP_TYP  
Chapter 4  
Power Management  
11  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
and SLP_EN fields in the ACPI-defined Power Management 1  
control register in the Southbridge. During the S1 sleep state,  
system software ensures no bus master or probe activity occurs.  
The Southbridge deasserts STPCLK# and brings the processor  
out of the S1 Stop Grant state when any enabled resume event  
occurs.  
Probe State  
The Probe state is entered when the Northbridge connects the  
AMD Duron system bus to probe the processor (for example, to  
snoop the processor caches) when the processor is in the Halt or  
St op Gra n t st a t e . Wh e n in t h e P rob e st a t e , t h e p roce ssor  
responds to a probe cycle in the same manner as when it is in  
t h e Work in g st a t e . Wh e n t h e p rob e h a s b e e n se rvice d , t h e  
p roce ssor re t u r n s t o t h e sa m e st a t e a s wh e n it e n t e red t h e  
Probe state (Halt or Stop Grant state). When probe activity is  
completed the processor only returns to a low-power state after  
the Northbridge disconnects the AMD Duron system bus again.  
FID_Change State  
The FID_Change State is part of the AMD Duron system bus  
F ID_Ch a n ge P rot ocol. Du r in g t h e F ID_Ch a n ge st a t e t h e  
Frequency Identification (FID[4:0]) code that determines the  
core fre q u en cy of th e p roce ssor a n d Volt age Id e n t ificat ion  
(VID[4:0]) driven on the SOFTVID[4:0] pins are transitioned to  
change the core frequency and core voltage of the processor.  
Note: The FID[3:0] pins of the processor do not transition as part  
of the FID_Change protocol.  
Processor  
The FID_Change protocol is used by AMD PowerNow! software  
t o t ra n sit ion t h e p roce ssor from on e p e r for m a n ce st a t e t o  
a n ot h e r. Th e F ID_Ch a n ge p r ot ocol is a lso u se d for ACP I  
2.0-compliant processor performance state control.  
Performance States  
and the FID_Change  
Protocol  
Processor performance states are combinations of processor  
core voltage and core frequency. Processor performance states  
are used in mobile systems to optimize the power consumption  
of t h e p roce ssor (a n d t h e re fore b a t t e ry p owe re d r u n -t im e )  
based upon processor utilization.  
See “Valid Voltage and Frequency Combinations” on page 36  
for more information.  
The core frequency is determined by a 5-bit Frequency ID (FID)  
code. The core voltage is determined by a 5-bit Voltage ID (VID)  
code.  
12  
Power Management  
Chapter 4  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Before PWROK is asserted to the processor, the VID[4:0]  
outputs of the processor dictate the core voltage level of the  
processor.  
After PWROK is asserted, the core voltage of the processor  
is dictated by the SOFTVID[4:0] outputs. The SOFTVID[4:0]  
outputs of the processor are not driven to a deterministic  
value until after PWROK is asserted to the processor. The  
motherboard therefore must provide a VID Multiplexer’ to  
drive the VID[4:0] outputs to the DC/DC converter for the  
core voltage of the processor before PWROK is asserted and  
drive the SOFTVID[4:0] outputs to the DC to DC converter  
after PWROK is asserted.  
The FID[3:0] signals are valid after PWROK is asserted. The  
chipset must not sample the FID[3:0] signals until they  
become valid.  
After RESET# is deasserted, the FID[3:0] outputs are not  
used to transmit FID information for subsequent software  
controlled changes in the operating frequency of the  
processor.  
Processor performance state transitions are required to  
occur as two separate transitions. The order of these  
transitions depends on whether the transition is to a higher  
or lower performance state. When transitioning from a lower  
performance state to a higher performance state the order  
of the transitions is:  
1. The FID_Change protocol is used to transition to the  
higher voltage, while keeping the frequency fixed at  
the current setting.  
2. The FID_Change protocol is then used to transition to  
the higher frequency, while keeping the voltage fixed  
at the higher setting.  
When transitioning from a high performance state to a  
lower performance state the order of the transitions is:  
1. The FID_Change protocol is used to transition to the  
lower frequency, while keeping the voltage fixed at its  
current setting.  
2. The FID_Change protocol is then used to transition to  
the lower voltage, while keeping the frequency fixed at  
the lower setting.  
The processor provides two MSRs to support the  
FID_Change protocol: the FidVidCtl MSR and the  
Chapter 4  
Power Management  
13  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
FidVidStatus MSR. For a definition of these MSRs and their  
use, refer to the Mobile AMD Athlon™ and Mobile  
AMD Duron™ Processors BIOS Developers Application Note,  
order# 24141.  
FID_Change Protocol Description By Example:  
Note: In any FID_Change transition only the core voltage or core  
frequency of the processor is transitioned. Two FID_Change  
transitions are required to transition the voltage and  
frequency to a valid performance state. When the voltage is  
being transitioned, the frequency is held constant by  
transitioning to the same FID[3:0] as the current FID  
reported in the FidVidStatus MSR.  
For d e t a ile d in for m a t ion on t h e op t im ize d volt a ge a n d  
frequency combinations, see “Valid Voltage and Frequency  
Combinations” on page 36.  
System software determines that a change in processor  
performance state is required.  
System software executes a WRMSR instruction to write to  
the FidVidCtl MSR to dictate:  
The new VID[4:0] code that will be driven to the DC/DC  
converter from the SOFTVID[4:0] outputs of the  
processor that selects the new core voltage level.  
The new FID[4:0] code that will be used by the processor  
to dictate its new operating frequency.  
A Stop Grant Timout Count (SGTC)[19:0] value that  
determines how many SYSCLK/SYSCLK# 100-MHz clock  
periods the processor will remain in the FID_Change  
state. This time accounts for the time that it takes for the  
PLL of the processor to lock to the new core frequency  
and the time that it takes for the core voltage of the  
processor to ramp to the new value.  
The FIDCHGRATIO bit must be set to 1.  
The VIDC bit must be set to a 1 if the voltage is going to  
be changed.  
The FIDC bit must be set to a 1 if the frequency is going  
to be changed.  
Writing the SGTC field to a non-zero value initiates the  
FID_Change protocol.  
14  
Power Management  
Chapter 4  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
On the instruction boundary that the SGTC field of the  
FidVidCtl MSR is written to a non-zero value, the processor  
stops code execution and issues a FID_Change special cycle  
on the AMD Duron system bus.  
The FID_Change special cycle has a data encoding of  
0007_0002h that is passed on SDATA[31:0].  
SDATA[36:32] contain the new FID[4:0] code during the  
FID_Change special cycle. The Northbridge is required to  
capture this FID[4:0] code when the FID_Change special  
cycle is run.  
In response to receiving the FID_Change special cycle, the  
Northbridge is required to disconnect. The Northbridge will  
complete any in-progress bus cycles and then disable its  
arbiter before disconnecting the AMD Duron system bus so  
that it will not initiate a AMD Duron system bus connect  
based on bus master or other activity. The Northbridge must  
disconnect the AMD Duron system bus or the system will  
hang because the processor is not executing any operating  
system or application code and is waiting for the  
AMD Duron system bus to disconnect so that it can continue  
with the FID_Change protocol. The Northbridge initiates an  
AMD Duron system bus disconnect in the usual manner: it  
deasserts CONNECT.  
The processor allows the disconnect to complete by  
deasserting PROCRDY. The Northbridge completes the  
disconnect by asserting CLKFWDRST.  
Once the AMD Duron system bus has been disconnected in  
response to a FID_Change special cycle, the Northbridge is  
not allowed to initiate a re-connect, the processor is  
responsible for the eventual re-connect.  
After the AMD Duron system bus is disconnected, the  
processor enters a low-power state where the clock grid is  
ramped down by a value specified in the CLK_Ctl MSR.  
After entering the low-power state, the processor will:  
begin counting down the value that was programmed into  
the SGTC field  
drive the new VID[4:0] value on SOFTVID[4:0], causing  
its core voltage to transition  
drive the new FID[4:0] value to its PLL, causing the PLL  
to lock to the new core frequency.  
Chapter 4  
Power Management  
15  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
When the SGTC count reaches zero, the processor will ramp  
its entire clock grid to full frequency (the PLL is already  
locked to) and signal that it is ready for the Northbridge to  
transmit the new SIP (Serial Initialization Protocol) stream  
associated with the new processor core operating frequency.  
The processor signals this by pulsing PROCRDY high and  
then low.  
The Northbridge responds to this high pulse on PROCRDY  
by pulsing CLKFWDRST low and then transferring a SIP  
stream as it does after PROCRDY is deasserted after the  
deassertion of RESET#. The difference is that the SIP  
stream that the Northbridge transmits to the processor now  
corresponds to the FID[4:0] that was transmitted on  
SDATA[36:32] during the FID_Change special cycle.  
After the SIP stream is transmitted, the processor initiates  
the AMD Duron system bus connect sequence by asserting  
PROCRDY. The Northbridge responds by deasserting  
CLKFWDRST. The forward clocks are started and the  
processor issues a Connect special cycle.  
The AMD Duron system bus connection causes the processor  
to resume execution of operating system and application  
code at the instruction that follows the WRMSR to the  
FidVidCtl MSR that started the FID_Change protocol and  
processor performance state transition.  
16  
Power Management  
Chapter 4  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Figure 4 below illustrates the processor SOFTVID transition during the  
AMD Du ron syst e m b u s d iscon n e ct in re sp on se t o a F ID_Ch a n ge  
special cycle.  
< 100 µs  
1.4 V  
1.2 V  
CPUCOREVCC  
SOFTVID[4:0] from the  
processor  
VID combination that  
VID combination that selects 1.2 V  
selects 1.4 V  
ProcRdy  
Connect  
ClkFwdRst  
The processor core frequency changes and new  
SOFTVID[4:0] values are driven after the system  
bus interface disconnect occurs and the  
processor has entered a low power state. The  
duration of the disconnect is dictated by  
software programming the FidVidControl MSR in  
the processor.  
Figure 4. SOFTVID Transition During the AMD Duron™ System Bus Disconnect for FID_Change  
Chapter 4  
Power Management  
17  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
4.2  
Connect and Disconnect Protocol  
Sign ifica n t p owe r savin gs of t h e p roce ssor on ly occu r if t h e  
processor is disconnected from the system bus by the Northbridge  
wh ile in t h e H a lt or St op Gra n t st a t e . Th e Nor t h b r id ge ca n  
optionally initiate a bus disconnect upon the receipt of a Halt or  
Stop Grant special cycle. The option of disconnecting is controlled  
by an enable bit in the Northbridge. If the Northbridge requires  
the processor to service a probe after the system bus has been  
disconnected, it must first initiate a system bus connect.  
Connect Protocol  
In addition to the legacy STPCLK# signal and the Halt and Stop  
Grant special cycles, the AMD Duron system bus connect protocol  
includes the CONNECT, PROCRDY, and CLKFWDRST signals and  
a Connect special cycle.  
A MD Du r o n sy st e m b u s d isc o n n e ct s a r e i n i t i a t e d b y t h e  
Northbridge in response to the receipt of a Halt, Stop Grant, or  
FID_Change special cycle. Reconnect is initiated by the processor  
in response to a n interrupt for Halt, STP CLK# deassertion, or  
completion of a FID_Change transition. Reconnect is initiated by  
the Northbridge to probe the processor. The Northbridge contains  
BIOS programmable registers to enable the system bus disconnect  
in re sp on se t o H a lt a n d St op Gra n t sp e cia l cycle s. Wh e n t h e  
Northbridge receives the Halt or Stop Grant special cycle from the  
p r oce ssor a n d , if t h e r e a r e n o ou t st a n d in g p r ob e s or d a t a  
movements, the Northbridge deasserts CONNECT a minimum of  
e igh t SYSCLK p e r iod s a ft e r t h e la st com m a n d se n t t o t h e  
processor. The processor detects the deassertion of CONNECT on a  
r i s i n g e d g e o f S YS C L K a n d d e a s s e r t s P R O C R DY t o t h e  
Northbridge. In return, the Northbridge asserts CLKFWDRST in  
anticipation of reestablishing a connection at some later point.  
Note: The Northbridge must disconnect the processor from the  
AMD Duron system bus before issuing the Stop Grant special  
cycle to the PCI bus or passing the Stop Grant special cycle to  
the Southbridge for systems that connect to the Southbridge  
with HyperTransport™ technology.  
This note applies to current chipset implementation—  
alternate chipset implementations that do not require this are  
possible.  
Note: In response to Halt special cycles, the Northbridge passes the  
Halt special cycle to the PCI bus or Southbridge immediately.  
18  
Power Management  
Chapter 4  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
The processor can receive an interrupt after it sends a Halt  
special cycle, or STPCLK# deassertion after it sends a Stop  
Gr a n t s p e cia l cycle t o t h e Nor t h b r id ge b u t b e for e t h e  
disconnect actually occurs. In this case, the processor sends the  
Con n e ct sp e cia l cycle t o t h e Nor t h b r id ge , r a t h e r t h a n  
continuing with the disconnect sequence. In response to the  
Connect special cycle, the Northbridge cancels the disconnect  
request.  
The system is required to assert the CONNECT signal before  
returning the C-bit for the connect special cycle (assum ing  
CONNECT has been deasserted).  
For more information, see the AMD Athlon™ and AMD Duron™  
System Bus Specification, order# 21902 for the definition of the  
C-bit and the Connect special cycle.  
Chapter 4  
Power Management  
19  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Figure 5 shows STPCLK# assertion resulting in the processor in the  
Stop Grant state and the AMD Duron system bus disconnected.  
STPCLK#  
AMD Duron™  
System Bus  
Stop Grant  
CONNECT  
PROCRDY  
CLKFWDRST  
PCI Bus  
Stop Grant  
Figure 5. AMD Duron™ System Bus Disconnect Sequence in the Stop Grant State  
An example of the AMD Duron system bus disconnect sequence is as  
follows:  
1. The peripheral controller (Southbridge) asserts STPCLK# to  
place the processor in the Stop Grant state.  
2. When the processor recognizes STPCLK# asserted, it enters the  
Stop Grant state and then issues a Stop Grant special cycle.  
3. When the special cycle is received by the Northbridge, it  
deasserts CONNECT, assuming no probes are pending, initiating  
a bus disconnect to the processor.  
4. The processor responds to the Northbridge by deasserting  
PROCRDY.  
5. The Northbridge asserts CLKFWDRST to complete the bus  
disconnect sequence.  
6. After the processor is disconnected from the bus, the processor  
enters a low-power state. The Northbridge passes the Stop Grant  
special cycle along to the Southbridge.  
20  
Power Management  
Chapter 4  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Figu re 6 sh ows t h e sign a l se q u e n ce of e ve n t s t h a t t a k e s t h e  
processor out of the Stop Grant state, connects the processor to the  
AMD Duron system bus, and puts the processor into the Working  
state.  
STPCLK#  
PROCRDY  
CONNECT  
CLKFWDRST  
Figure 6. Exiting the Stop Grant State and Bus Connect Sequence  
The following sequence of events removes the processor from the  
Stop Grant state and connects it to the system bus:  
1. The Southbridge deasserts STPCLK#, informing the processor of  
a wake event.  
2. When the processor recognizes STPCLK# deassertion, it exits  
the low-power state and asserts PROCRDY, notifying the  
Northbridge to connect to the bus.  
3. The Northbridge asserts CONNECT.  
4. The Northbridge deasserts CLKFWDRST, synchronizing the  
forwarded clocks between the processor and the Northbridge.  
5. The processor issues a Connect special cycle on the system bus  
and resumes operating system and application code execution.  
Chapter 4  
Power Management  
21  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Connect State  
Diagram  
Figure 7 and Figure 8 on page 23 describe the Northbridge and  
processor connect state diagrams, respectively.  
4/A  
1
2/A  
Disconnect  
Pending  
Disconnect  
Requested  
Connect  
3/C  
3
5/B  
8
8
Reconnect  
Pending  
Probe  
Pending 2  
Disconnect  
7/D,C  
6/C  
7/D  
Probe  
Pending 1  
Condition  
Action  
1 A disconnect is requested and probes are still pending.  
2 A disconnect is requested and no probes are pending.  
3 A Connect special cycle from the processor.  
4 No probes are pending.  
Deassert CONNECT eight SYSCLK periods  
after last SysDC sent.  
A
B Assert CLKFWDRST.  
C Assert CONNECT.  
D Deassert CLKFWDRST.  
5 PROCRDY is deasserted.  
6 A probe needs service.  
7 PROCRDY is asserted.  
Three SYSCLK periods after CLKFWDRST is deasserted.  
Although reconnected to the system interface, the  
8
Northbridge must not issue any non-NOP SysDC  
commands for a minimum of four SYSCLK periods after  
deasserting CLKFWDRST.  
Figure 7. Northbridge Connect State Diagram  
22 Power Management  
Chapter 4  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Connect  
6/B  
1
2/B  
Connect  
Pending 2  
Disconnect  
Pending  
5
Connect  
Pending 1  
3/A  
Disconnect  
4/C  
Condition  
Action  
CONNECT is deasserted by the Northbridge (for a  
previously sent Halt or Stop Grant special cycle).  
A CLKFWDRST is asserted by the Northbridge.  
B Issue a Connect special cycle.*  
1
2
Processor receives a wake-up event and must cancel  
the disconnect request.  
Return internal clocks to full speed and assert  
C
PROCRDY.  
3 Deassert PROCRDY and slow down internal clocks.  
Note:  
*
The Connect special cycle is only issued after a  
processor wake-up event (interrupt or STPCLK#  
deassertion) occurs. If the AMD Duron™ system  
bus is connected so the Northbridge can probe the  
processor, a Connect special cycle is not issued at  
that time (it is only issued after a subsequent  
processor wake-up event).  
Processor wake-up event or CONNECT asserted by  
Northbridge.  
4
5 CLKFWDRST is deasserted by the Northbridge.  
Forward clocks start three SYSCLK periods after  
CLKFWDRST is deasserted.  
6
Figure 8. Processor Connect State Diagram  
Chapter 4  
Power Management  
23  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
4.3  
Clock Control  
The processor implem ents a Clock Control (CLK_Ct l) MSR  
(a d d re ss C001_001Bh ) t h a t d e t e r m in e s t h e in t e r n a l clock  
divisor when the AMD Duron system bus is disconnected.  
Refer to the AMD Athlon and AMD Duron™ Processors BIOS,  
Software, and Debug Developers Guide, order# 21656, for more  
details on the CLK_Ctl register.  
4.4  
SYSCLK Multipliers  
The processor provides two mechanisms for communicating  
p r oce ssor cor e op e r a t in g fr e q u e n cy in for m a t ion t o t h e  
Northbridge. These are the processor FID[3:0] outputs and the  
FID_Change special cycle. The FID[3:0] outputs specify the  
core frequency of the processor as a multiple of the 100-MHz  
input clock (SYSCLK/SYSCLK#) of the processor.  
The FID[3:0] signals are valid after PWROK is asserted. The  
chipset must not sample the FID[3:0] signals until they become  
valid.The FID[3:0] outputs of the processor provide processor  
operating frequency information that the Northbridge uses  
when creating the SIP stream that the Northbridge sends to the  
processor after RESET# is deasserted. The FID[3:0] outputs  
always select a 5x SYSCLK multiplier:  
FID[3:0] = 0 1 0 0  
Software will use the FID_Change protocol to transition the  
processor to the desired performance state.  
The FID[3:0] outputs are not used as part of the FID_Change  
protocol and do not change from their RESET# value during  
software-controlled processor core frequency transitions.  
Th e F ID_Ch a n ge sp e cia l cycle is u se d t o com m u n ica t e  
processor operating frequency information to the Northbridge  
d u r in g soft wa r e -con t r olle d p r oce ssor cor e volt a ge a n d  
frequency (performance state) transitions. The FidVidCtl MSR  
a l l o w s s o f t wa r e t o s p e c i f y a 5 -b i t F I D v a l u e d u r i n g  
software-controlled processor performance state transitions.  
Th e a d d it ion a l b it a llows t r a n sit ion s t o lowe r SYSCLK  
multipliers of 3x to 4x as well as all other SYSCLK multipliers  
supported by the processor.  
24  
Power Management  
Chapter 4  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
For a d e scr ip t ion of t h e F ID_Ch a n ge p rot ocol re fe r t o t h e  
earlier section in this chapter.  
Table 1 lists the FID[4:0] SYSCLK multiplier codes for the  
processor used by software to dictate the core frequency of the  
processor and the 5-bit value driven on SDATA[36:32]# by the  
processor during the FID_Change special bus cycle.  
Note: Only clock multipliers associated with operating frequencies  
specified in the “Electrical Data” chapter are valid for this  
processor.  
Note: Software distinguishes the speed grade of the processor by  
reading the MFID field of the FidVidStatus MSR.  
Table 1. FID[4:0] SYSCLK Multiplier Combinations1  
2,3,5  
4
Clock Mode  
11x  
FID[4:0]  
SDATA[36:32]#  
11111  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
11.5x  
12x  
11110  
11101  
12.5x  
5x  
11100  
11011  
5.5x  
6x  
11010  
11001  
6.5x  
7x  
11000  
10111  
7.5x  
10110  
8x  
10101  
8.5x  
10100  
Notes:  
1. On power up, the FID[3:0] balls are set to a clock multiplier value of 5x. After reset, software  
is responsible for transitioning the processor to the desired frequency.  
2. Value programmed into the FidVidCtl MSR.  
3. The maximum FID that may be selected by software is reported in the FidVidStatus MSR.  
4. Value driven on SDATA[36:32]# balls during the FID_Change special bus cycle. The SDATA  
bus is active Low, so the SDATA[36:32]# values listed are what would be observed on the  
motherboard with a digital storage scope.  
5. BIOS initializes the CLK_Ctl MSR to 6007_9263h during the POST routine. This CLK_Ctl setting  
is used with all FID combinations and selects a halt disconnect divisor of 128 and a Stop–Grant  
disconnect divisor of 512.  
Chapter 4  
Power Management  
25  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Table 1. FID[4:0] SYSCLK Multiplier Combinations1  
2,3,5  
4
Clock Mode  
9x  
FID[4:0]  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
SDATA[36:32]#  
10011  
10010  
9.5x  
10x  
10001  
10.5x  
3x  
10000  
01111  
Reserved  
4x  
Reserved  
01101  
Reserved  
13x  
Reserved  
11100  
13.5x  
14x  
11100  
11100  
Reserved  
15x  
Reserved  
11100  
Reserved  
16x  
Reserved  
11100  
16.5x  
17x  
11100  
11100  
18x  
11100  
Reserved  
Reserved  
Reserved  
Reserved  
Notes:  
1. On power up, the FID[3:0] balls are set to a clock multiplier value of 5x. After reset, software  
is responsible for transitioning the processor to the desired frequency.  
2. Value programmed into the FidVidCtl MSR.  
3. The maximum FID that may be selected by software is reported in the FidVidStatus MSR.  
4. Value driven on SDATA[36:32]# balls during the FID_Change special bus cycle. The SDATA  
bus is active Low, so the SDATA[36:32]# values listed are what would be observed on the  
motherboard with a digital storage scope.  
5. BIOS initializes the CLK_Ctl MSR to 6007_9263h during the POST routine. This CLK_Ctl setting  
is used with all FID combinations and selects a halt disconnect divisor of 128 and a Stop–Grant  
disconnect divisor of 512.  
26  
Power Management  
Chapter 4  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
4.5  
Special Cycles  
I n a d d i t i o n t o t h e s p e c i a l cy c l e s d o c u m e n t e d i n t h e  
AMD At h lon ™ a n d AMD Du ron ™ Syst em Bu s Specificat ion ,  
order# 21902, t he processor support s the SMM Ent er, SMM  
Exit, and FID_Change special cycles.  
Table 2 defines the contents of SDATA[31:0] during the special  
cycles.  
Table 2. Processor Special Cycle Definition  
Special Cycle  
SMM Enter  
SMM Exit  
Contents of SDATA[31:0]  
0005_0002h  
0006_0002h  
*
0007_0002h  
FID_Change  
Note:  
*
The new FID[4:0] taken from the FID[4:0] field of the FidVidCtl MSR is driven on  
SDATA[36:32] during the FID_Change special cycle.  
Chapter 4  
Power Management  
27  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
28  
Power Management  
Chapter 4  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
5
CPUID Support  
Th e m ob ile AMD Du ron ™ p roce ssor m od e l 7 ve rsion a n d  
feature set recognition can be performed through the use of the  
CPUID instruction, that provides complete information about  
the processor—vendor, type, name, etc., and its capabilities.  
Software can make use of this information to accurately tune  
the system for maximum performance and benefit to users.  
For information about the CPUID features supported by the  
mobile AMD Duron processor model 7, refer to the following  
documents:  
AMD Processor Recognition Application Note, order# 20734  
Chapter 5  
CPUID Support  
29  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
30  
CPUID Support  
Chapter 5  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
6
Thermal Design  
The mobile AMD Duron™ processor model 7 provides a diode  
that can be used in conjunction with an external temperature  
sensor to determine the die temperature of the processor.  
The diode anode (THERMDA) and cathode (THERMDC) are  
available as pins on the processor.  
R e fe r t o “ Th e r m a l Diod e Ch a ra ct e r ist ics” on p a ge 48 a n d  
“THERMDA and THERMDC Pins” on page 83 for more details.  
For in form at ion ab ou t t h e u sa ge of t h is d iod e a n d t h e rm a l  
design, including layout and airflow considerations, see the  
Mobile System Thermal Design Guidelines, order# 24383.  
Table 3 shows the thermal design power.  
Table 3. Thermal Design Power  
Thermal Design  
Frequency  
(MHz)  
Voltage  
1
Power  
1.50 V  
1.50 V  
1.45 V  
1.45 V  
1.40 V  
25 W  
25 W  
25 W  
25 W  
25 W  
800  
850  
900  
950  
1000  
Notes:  
1. Thermal design power represents the maximum sustained power dissipated while executing  
publicly-available software or instruction sequences under normal system operation at  
nominal VCC_CORE. Thermal solutions must monitor the temperature of the processor to  
prevent the processor from exceeding its maximum die temperature. Specified through  
characterization for a die temperature of 95°C.  
Chapter 6  
Thermal Design  
31  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
32  
Thermal Design  
Chapter 6  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
7
Electrical Data  
7.1  
Conventions  
The conventions used in this chapter are as follows:  
Current specified as being sourced by the processor is  
negative.  
Current specified as being sunk by the processor is positive.  
7.2  
Interface Signal Groupings  
The electrical data in this chapter is presented separately for  
each signal group.  
Table 4 defines each group and the signals contained in each  
group.  
Table 4. Interface Signal Groupings  
Signal Group  
Signals  
Notes  
See “” on page 38, “Soft Voltage  
Identification (SOFTVID[4:0])” on  
page 35, “VCCA AC and DC  
Characteristics” on page 35,  
VCC_CORE AC and DC  
Characteristics” on page 37,  
COREFB and COREFB# Pins” on  
page 78, “SOFTVID[4:0] and  
VID[4:0] Pins” on page 81, and  
VCCA Pin” on page 83.  
Power  
VID[4:0], SOFTVID[4:0], VCCA, VCC_CORE, COREFB, COREFB#  
See “Frequency Identification  
(FID[3:0])” on page 35 and  
“FID[3:0] Pins” on page 79.  
Frequency  
FID[3:0]  
See “SYSCLK and SYSCLK# AC and  
DC Characteristics” on page 41,  
“SYSCLK and SYSCLK#on  
page 83, and “PLL Bypass and Test  
Pins” on page 80.  
SYSCLK, SYSCLK# (Tied to CLKIN/CLKIN# and  
RSTCLK/RSTCLK#), PLLBYPASSCLK, PLLBYPASSCLK#,  
System Clocks  
Chapter 7  
Electrical Data  
33  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Table 4. Interface Signal Groupings (continued)  
Signal Group  
Signals  
Notes  
SADDIN[14:2]#, SADDOUT[14:2]#, SADDINCLK#,  
SADDOUTCLK#, SFILLVALID#, SDATAINVALID#,  
SDATAOUTVALID#, SDATA[63:0]#, SDATAINCLK[3:0]#,  
SDATAOUTCLK[3:0]#, CLKFWDRST, PROCRDY, CONNECT  
See AMD Duron™ System Bus AC  
and DC Characteristics” on page  
43 and “CLKFWDRST Pin” on  
page 78.  
System Bus  
See “General AC and DC  
Characteristics” on page 45, “INTR  
Pin” on page 79, “NMI Pin” on  
page 80, “SMI# Pin” on page 81,  
“INIT# Pin” on page 79, “A20M#  
Pin” on page 78, “FERR Pin” on  
page 79, “IGNNE# Pin” on  
page 79, “STPCLK# Pin” on  
page 82, and “FLUSH# Pin” on  
page 79.  
RESET#, INTR, NMI, SMI#, INIT#, A20M#, FERR, IGNNE#,  
STPCLK#, FLUSH#  
Southbridge  
See “General AC and DC  
Characteristics” on page 45.  
JTAG  
Test  
TMS, TCK, TRST#, TDI, TDO  
See “General AC and DC  
Characteristics” on page 45, “PLL  
Bypass and Test Pins” on page 80,  
“Scan Pins” on page 81, and  
“Analog Pin” on page 78,  
PLLTEST#, PLLBYPASS#, PLLMON1, PLLMON2, SCANCLK1,  
SCANCLK2, SCANSHIFTEN, SCANINTEVAL, ANALOG  
See “General AC and DC  
Characteristics” on page 45,  
“DBRDY and DBREQ# Pins” on  
page 79, and “PWROK Pin” on  
page 80.  
Miscellaneous DBREQ#, DBRDY, PWROK  
See “Reserved Pins DC  
Characteristics” on page 51, and  
RSVD Pins” on page 80.  
Reserved  
Pins N1, N3, and N5  
(RSVD)  
See “Thermal Diode  
Characteristics” on page 48 and  
THERMDA and THERMDC Pins”  
on page 83  
Thermal  
THERMDA, THERMDC  
34  
Electrical Data  
Chapter 7  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
7.3  
Soft Voltage Identification (SOFTVID[4:0])  
Table 5 shows the SOFTVID[4:0] DC Characteristics. For more  
information, see “SOFTVID[4:0] and VID[4:0] Pins” on  
page 81.  
Table 5. SOFTVID[4:0] DC Characteristics  
Parameter  
Description  
Output Current Low  
SOFTVID[4:0] Output High Voltage  
Min  
16 mA  
Max  
I
OL  
SOFTVID_V  
2.625V *  
OH  
Note:  
*
The SOFTVID pins must not be pulled above this voltage by an external pullup resistor.  
7.4  
Frequency Identification (FID[3:0])  
Table 6 shows the FID[3:0] DC characteristics. For more  
information, see “FID[3:0] Pins” on page 79.  
Table 6. FID[3:0] DC Characteristics  
Parameter  
Description  
Output Current Low  
Output High Voltage  
Min  
16 mA  
Max  
I
OL  
V
2.625 V *  
OH  
Note:  
*
The FID pins must not be pulled above this voltage by an external pullup resistor.  
7.5  
VCCA AC and DC Characteristics  
Table 7 shows the AC and DC characteristics for VCCA. For  
more information, see “VCCA Pin” on page 83.  
Table 7. VCCA AC and DC Characteristics  
Symbol  
Parameter  
Min  
2.25  
0
Nom  
Max  
2.75  
50  
Units  
V
Notes  
V
VCCA Pin Voltage (AC and DC)  
VCCA Pin Current  
2.5  
1
2
VCCA  
I
mA/GHz  
VCCA  
Notes:  
1. Minimum and maximum voltages are absolute. No transients below minimum nor above maxiumum voltages are permitted.  
2. Measured at 2.5 V.  
Chapter 7  
Electrical Data  
35  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
7.6  
Decoupling  
Se e t h e AMD At h lon ™ Processor-Ba sed Mot h erboa rd Design  
Gu ide, ord e r # 24363, or con t a ct you r loca l AMD office for  
information about the decoupling required on the motherboard  
for use with the mobile AMD Duron™ processor model 7.  
7.7  
Valid Voltage and Frequency Combinations  
Table 8 specifies the valid voltage and frequency combinations  
that this processor is characterized to operate. The Maximum  
Frequency column corresponds to the rated frequency of the  
processor. The Maximum FID (MFID) field in the FidVidStatus  
MSR is used by software to determine the maximum frequency  
of t he processor. Each row in the table shows the m aximum  
frequency allowable at the voltage specified in each column.  
“ P o w e r M a n a g e m e n t ” o n p a g e 9 d e s c r i b e s h o w  
A M D P owe r N ow !™ s o f t wa r e u s e s t h i s i n fo r m a t i o n t o  
implement processor performance states.  
Table 8. Valid Voltage and Frequency Combinations  
VCC_CORE_NOM Voltage  
Maximum  
Frequency  
1.50 V  
800 MHz  
850 MHz  
N/A  
1.45 V  
700 MHz  
750 MHz  
900 MHz  
950 MHz  
N/A  
1.40 V  
650 MHz  
700 MHz  
800 MHz  
850 MHz  
1000 MHz  
1.35 V  
600 MHz  
650 MHz  
750 MHz  
800 MHz  
900 MHz  
1.30 V  
550 MHz  
600 MHz  
700 MHz  
750 MHz  
850 MHz  
1.25 V  
500 MHz  
550 MHz  
650 MHz  
700 MHz  
800 MHz  
1.20 V  
500 MHz  
500 MHz  
550 MHz  
600 MHz  
700 MHz  
800 MHz  
850 MHz  
900 MHz  
950 MHz  
1000 MHz  
Notes:  
N/A  
N/A  
1. All voltages listed are nominal.  
2. The ” symbol indicates that any BIOS vendor can use any performance state equal to or less than the specified frquency at that  
given voltage. For example, “700 MHz” means that the BIOS may use 700 MHz, 600 MHz, 550 MHz, 500 MHz, 400 Mhz, or  
300 Mhz provided that the chipset and system support the chosen processor operating frequencies.  
3. The maximum processor die temperature is 95º C for all voltage and frequency combinations.  
36  
Electrical Data  
Chapter 7  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
7.8  
VCC_CORE AC and DC Characteristics  
Table 9 shows the AC and DC characteristics for VCC_CORE.  
For more information, see Table 24, “Cross-Reference by Pin  
Location,on page 70 and Figure 9 on page 38.  
Table 9. VCC_CORE AC and DC Characteristics  
2
Symbol  
Parameter  
Maximum static voltage above V  
Maximum static voltage below V  
Maximum excursion above V  
Units  
mV  
mV  
mV  
Limit in Working State  
1
V
100  
CC_CORE_DC_MAX  
CC_CORE_NOM  
1
V
–50  
150  
CC_CORE_DC_MIN  
CC_CORE_NOM  
1
V
CC_CORE_AC_MAX  
CC_CORE_NOM  
1, 3  
V
Maximum excursion below V  
–100  
10  
mV  
µs  
CC_CORE_AC_MIN  
CC_CORE_NOM  
t
Positive excursion time for AC transients  
Negative excursion time for AC transients  
MAX_AC  
t
5
µs  
MIN_AC  
Notes:  
1. VCC_CORE nominal values are shown in Table 8, “Valid Voltage and Frequency Combinations,” on page 36.  
2. All voltage measurements are taken differentially at the COREFB/COREFB# pins.  
3. Absolute minimum allowable VCC_CORE voltage, including all transients, is 1.10 V.  
Chapter 7  
Electrical Data  
37  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Figu re 9 sh ows t h e p roce ssor core volt a ge (VCC_COR E )  
waveform response to perturbation. The tMIN_AC (negative AC  
transient excursion time) and tMAX_AC (positive AC transient  
excursion time) represent the maximum allowable time below  
or above the DC tolerance thresholds.  
tmax_AC  
V
CC_CORE_MAX_AC  
V
CC_CORE_MAX_DC  
V
CC_CORE_NOM  
V
CC_CORE_MIN_DC  
V
CC_CORE_MIN_AC  
tmin_AC  
ICORE_MAX  
dI /dt  
ICORE_MIN  
Figure 9. VCC_CORE Voltage Waveform  
38  
Electrical Data  
Chapter 7  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
7.9  
Absolute Ratings  
Do n ot su b j ect t h e p rocessor t o con d it ion s t h a t exce ed t h e  
ab solu t e ra t in gs list ed in Tab le 10, a s su ch con d it ion s m ay  
adversely affect long-term reliability or result in functional  
damage.  
Table 10. Absolute Ratings  
Parameter  
Description  
Min  
Max  
VCC_CORE  
VCCA  
Mobile AMD Duron™ Processor Model 7 core supply  
AMD Duron Processor Model 7 PLL supply  
–0.5 V  
–0.5 V  
VCC_CORE Max + 0.5 V  
VCCA Max + 0.5 V  
V
Voltage on any signal pin  
–0.5 V  
–40ºC  
VCC_CORE Max + 0.5 V  
100ºC  
PIN  
T
Storage temperature of processor  
STORAGE  
Chapter 7  
Electrical Data  
39  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
7.10  
VCC_CORE Voltage and Current  
Table 11 shows the voltage and current of the processor during  
normal and reduced power states.  
Table 11. VCC_CORE Voltage and Current  
Maximum I (Power  
Frequency  
(MHz)  
Nominal  
Voltage  
CC  
Die Temperature  
Notes  
Supply Current)  
800  
850  
1.50 V  
16.70 A  
900  
1.45 V  
1.40 V  
17.20 A  
95°C  
950  
17.90  
1000  
2.00 A  
1.07 A  
0.80 A  
1, 2, 3  
Halt/Stop Grant C2  
Stop Grant C2  
Stop Grant C3/S1  
1.20 V  
1, 2, 3, 4  
1, 2, 3, 4  
50°C  
Notes:  
1. See also Figure 3, “Mobile AMD Duron™ Processor Model 7 Power Management States” on page 10.  
2. The maximum Stop Grant currents are absolute worst case currents for parts that may yield from the worst case corner of the  
process, and are not representative of the typical Stop Grant current that is currently about one-third of the maximum specified  
current.  
3. These currents occur when the AMD Duron system bus is disconnected and a low power ratio of 1/512 is applied to the core clock  
grid of the processor as dictated by a value of 6007_9263h programmed into the Clock Control (CLK_Ctl) MSR.  
4. The Stop Grant current consumption is characterized and not tested.  
40  
Electrical Data  
Chapter 7  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
7.11  
SYSCLK and SYSCLK# AC and DC Characteristics  
Tab le 12 sh ows t h e DC ch ara ct e r ist ics of t h e SYSCLK a n d  
SYSCLK# differential clocks. The SYSCLK signal represents  
CLKIN and RSTCLK tied together while the SYSCLK# signal  
represents CLKIN# and RSTCLK# tied together.  
Table 12. SYSCLK and SYSCLK# DC Characteristics  
Symbol  
Description  
Min  
400  
Max  
Units  
mV  
mV  
µA  
V
Crossing before transition is detected (DC)  
Threshold-DC  
V
Crossing before transition is detected (AC)  
450  
Threshold-AC  
I
Leakage current through P-channel pullup to VCC_CORE  
Leakage current through N-channel pulldown to VSS (Ground)  
–250  
LEAK_P  
I
250  
µA  
LEAK_N  
VCC_CORE/2  
+/100  
V
Differential signal crossover  
Capacitance  
mV  
pF  
CROSS  
C
4
12  
PIN  
Figure 10 shows the DC cha racteristics of the SYSCLK and  
SYSCLK# signals.  
V
VThreshold-DC = 400 mV  
VThreshold-AC = 450 mV  
CROSS  
Figure 10. SYSCLK and SYSCLK# Differential Clock Signals  
Chapter 7  
Electrical Data  
41  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Tab le 13 sh ows t h e m ob ile AMD Du ron p roce ssor m od e l 7  
SYSCLK/SYSCLK# differential clock AC characteristics.  
Table 13. SYSCLK and SYSCLK# AC Characteristics  
Symbol  
Description  
Clock Frequency  
Min  
50  
Max  
100  
Units  
MHz  
Notes  
Duty Cycle  
Period  
30%  
10  
70%  
t
ns  
1, 2  
1
t
High Time  
Low Time  
Fall Time  
1.8  
1.8  
ns  
ns  
ns  
ns  
ps  
2
t
3
t
2
2
4
t
Rise Time  
Period Stability  
5
± 300  
Notes:  
1. Circuitry driving the SYSCLK and SYSCLK# inputs must exhibit a suitably low closed-loop jitter bandwidth to allow the PLL to track  
the jitter. The –20 dB attenuation point, as measured into a 10-pF or 20-pF load must be less than 500 kHz.  
2. Circuitry driving the SYSCLK and SYSCLK# inputs may purposely alter the SYSCLK and SYSCLK# period (spread spectrum clock  
generators). In no cases can the period violate the minimum specification above. SYSCLK and SYSCLK# inputs may vary from  
100% of the specified period to 99% of the specified period at a maximum rate of 100 kHz.  
Figure 11 shows a sample waveform.  
t2  
V
V
Threshold-AC  
CROSS  
t3  
t4  
t5  
t1  
Figure 11. SYSCLK Waveform  
42  
Electrical Data  
Chapter 7  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
7.12  
AMD Duron™ System Bus AC and DC Characteristics  
Tab le 14 sh ows t h e DC ch a ra ct e r ist ics of t h e AMD Du ron  
system bus.  
Table 14. AMD Duron™ System Bus DC Characteristics  
Symbol  
Parameter  
Condition  
Min  
Max  
Units Notes  
(0.5 x VCC_CORE) (0.5 x VCC_CORE)  
V
DC Input Reference Voltage  
mV  
µA  
µA  
1
REF  
–50  
+50  
I
V
Tristate Leakage Pullup V =V  
–100  
VREF_LEAK_P  
REF IN REFNominal  
V
Tristate Leakage  
REF  
I
V =V  
+100  
VREF_LEAK_N  
IN REFNominal  
Pulldown  
V
V
+ 200  
Input High Voltage  
Input Low Voltage  
Output High Voltage  
Output Low Voltage  
VCC_CORE + 500 mV  
IH  
REF  
V
V
– 200  
–500  
mV  
mV  
mV  
IL  
REF  
V
I
= –200 µA  
0.85*VCC_CORE VCC_CORE+500  
2
2
OH  
OUT  
V
I
= 1 mA  
–500  
–250  
400  
OL  
OUT  
V = VSS  
IN  
I
Tristate Leakage Pullup  
µA  
LEAK_P  
(Ground)  
V = VCC_CORE  
IN  
I
Tristate Leakage Pulldown  
Input Pin Capacitance  
+250  
12  
µA  
pF  
LEAK_N  
Nominal  
C
4
IN  
Notes:  
1. V  
RVERFEF is nominally set by a (1%) resistor divider from VCC_CORE.  
The suggested divider resistor values are 100 ohms over 100 ohms to produce a divisor of 0.50.  
Example: VCC_CORE = 1.4 V, VREF = 750 mV (1.4 x 0.50).  
Peak-to-Peak AC noise on VREF (AC) should not exceed 2% of VREF (DC).  
2. Specified at T = 95°C and VCC_CORE.  
Chapter 7  
Electrical Data  
43  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
The AC characteristics of the AMD Duron system bus are shown  
in Table 15. The parameters are grouped based on the source or  
destination of the signals involved.  
Table 15. AMD Duron™ System Bus AC Characteristics  
Group  
Symbol  
Parameter  
Output Rise Slew Rate  
Output Fall Slew Rate  
Min  
1
Max  
3
Units  
V/ns  
V/ns  
Notes  
T
1
RISE  
All Signals  
T
1
3
1
2
FALL  
Output skew with respect to  
the same clock edge  
T
385  
770  
ps  
ps  
SKEW-SAMEEDGE  
Output skew with respect to a  
different clock edge  
T
2
SKEW-DIFFEDGE  
T
Input Data Setup Time  
Input Data Hold Time  
Capacitance on input Clocks  
Capacitance on output Clocks  
RSTCLK to Output Valid  
Setup to RSTCLK  
300  
300  
4
ps  
ps  
pF  
pF  
ps  
ps  
ps  
3
3
SU  
T
HD  
C
12  
12  
2000  
IN  
C
4
OUT  
T
250  
500  
1000  
4, 5  
4, 6  
4, 6  
VAL  
T
SU  
T
Hold from RSTCLK  
HD  
Notes:  
1. Rise and fall time ranges are guidelines over which the I/O has been characterized.  
2. TSKEW-SAMEEDGE is the maximum skew within a clock forwarded group between any two signals or between any signal and its  
forward clock, as measured at the package, with respect to the same clock edge.  
TSKEW-DIFFEDGE is the maximum skew within a clock forwarded group between any two signals or between any signal and its  
forward clock, as measured at the package, with respect to different clock edges.  
3. Input SU and HD times are with respect to the appropriate Clock Forward Group input clock.  
4. The synchronous signals include PROCRDY, CONNECT, and CLKFWDRST.  
5. TVAL is RSTCLK rising edge to output valid for PROCRDY. Test Load is 25 pF.  
6. T is setup of CONNECT/CLKFWDRST to rising edge of RSTCLK. THD is hold of CONNECT/CLKFWDRST from rising edge of  
SU  
RSTCLK.  
44  
Electrical Data  
Chapter 7  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
7.13  
General AC and DC Characteristics  
Table 16 shows the mobile AMD Duron processor model 7 AC  
and DC charact erist ics of t he Sout hbridge, J TAG, te st , and  
miscellaneous pins.  
Table 16. General AC and DC Characteristics  
Symbol  
Parameter Description  
Input High Voltage  
Condition  
Min  
Max  
VCC_CORE Max  
350  
Units Notes  
(VCC_CORE/2) +  
200mV  
V
V
1, 2  
1, 2  
IH  
V
Input Low Voltage  
–300  
mV  
mV  
IL  
VCC_CORE +  
300  
V
Output High Voltage  
VCC_CORE – 400  
OH  
V
Output Low Voltage  
–300  
–250  
400  
mV  
µA  
OL  
I
V = VSS (Ground)  
Tristate Leakage Pullup  
LEAK_P  
IN  
V = VCC_CORE  
IN  
I
Tristate Leakage Pulldown  
250  
–16  
µA  
LEAK_N  
Nominal  
I
Output High Current  
Output Low Current  
Sync Input Setup Time  
Sync Input Hold Time  
mA  
mA  
ns  
3
OH  
I
16  
2.0  
0.0  
3
OL  
T
4, 5  
4, 5  
SU  
T
ps  
HD  
Output Delay with respect to  
RSTCLK  
T
0.0  
6.1  
ns  
ns  
5
DELAY  
T
Input Time to Acquire  
20.0  
7, 8  
BIT  
Notes:  
1. Characterized across DC supply voltage range.  
2. Values specified at nominal VCC_CORE. Scale parameters between VCC_CORE Min and VCC_CORE Max.  
3. IOL and IOH are measured at V maximum and V minimum, respectively.  
OL  
OH  
4. Synchronous inputs/outputs are specified with respect to RSTCLK and RSTCK# at the pins.  
5. These are aggregate numbers.  
6. Edge rates indicate the range over which inputs were characterized.  
7. In asynchronous operation, the signal must persist for this time to enable capture.  
8. This value assumes RSTCLK frequency is 10 ns ==> TBIT = 2*fRST.  
9. The approximate value for standard case in normal mode operation.  
10. This value is dependent on RSTCLK frequency, divisors, Low Power mode, and core frequency.  
11. Reassertions of the signal within this time are not guaranteed to be seen by the core.  
12. This value assumes that the skew between RSTCLK and K7CLKOUT is much less than one phase.  
13. This value assumes RSTCLK and K7CLKOUT are running at the same frequency, though the processor is capable of other  
configurations.  
14. Time to valid is for any open drain pins. See requirements 7 and 8 in Chapter 8, “Power–Up Timing Requirements,“ for more  
information.  
Chapter 7  
Electrical Data  
45  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Table 16. General AC and DC Characteristics  
Symbol  
Parameter Description  
Input Time to Reacquire  
Signal Rise Time  
Condition  
Min  
40.0  
1.0  
1.0  
4
Max  
Units Notes  
T
ns  
V/ns  
V/ns  
pF  
9–13  
RPT  
T
3.0  
3.0  
12  
6
6
RISE  
T
Signal Fall Time  
FALL  
C
Pin Capacitance  
PIN  
T
Time to data valid  
100  
ns  
14  
VALID  
Notes:  
1. Characterized across DC supply voltage range.  
2. Values specified at nominal VCC_CORE. Scale parameters between VCC_CORE Min and VCC_CORE Max.  
3. IOL and IOH are measured at V maximum and V minimum, respectively.  
OL  
OH  
4. Synchronous inputs/outputs are specified with respect to RSTCLK and RSTCK# at the pins.  
5. These are aggregate numbers.  
6. Edge rates indicate the range over which inputs were characterized.  
7. In asynchronous operation, the signal must persist for this time to enable capture.  
8. This value assumes RSTCLK frequency is 10 ns ==> TBIT = 2*fRST.  
9. The approximate value for standard case in normal mode operation.  
10. This value is dependent on RSTCLK frequency, divisors, Low Power mode, and core frequency.  
11. Reassertions of the signal within this time are not guaranteed to be seen by the core.  
12. This value assumes that the skew between RSTCLK and K7CLKOUT is much less than one phase.  
13. This value assumes RSTCLK and K7CLKOUT are running at the same frequency, though the processor is capable of other  
configurations.  
14. Time to valid is for any open drain pins. See requirements 7 and 8 in Chapter 8, “Power–Up Timing Requirements,“ for more  
information.  
46  
Electrical Data  
Chapter 7  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
7.14  
Open Drain Test Circuit  
Figure 12 is a test circuit that may be used on Automated Test  
Equipment (ATE) to test for validity on open drain pins.  
Refer to Table 16, “General AC and DC Characteristics,on  
page 45 for timing requirements.  
1
V
Termination  
50 ±3%  
IOL = Output Current2  
Open Drain Pin  
Notes:  
1. VTermination = 1.2 V for VID and FID pins  
2. IOL = –16 mA for VID and FID pins  
Figure 12. General ATE Open Drain Test Circuit  
Chapter 7  
Electrical Data  
47  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
7.15  
Thermal Diode Characteristics  
Thermal Diode Electrical Characteristics. Table 17 shows the mobile  
AMD Duron processor model 7 electrical characteristics of the  
on-die thermal diode.  
Table 17. Thermal Diode Electrical Characteristics  
Symbol Parameter Description Min  
Nom  
Max  
300  
Units  
Notes  
1
I
Forward bias current  
Diode ideality factor  
5
µA  
fw  
n
1.002  
1.008  
1.016  
2, 3, 4, 5  
Notes:  
1. The sourcing current should always be used in forward bias only.  
2. Characterized at 95°C with a forward bias current pair of 10 µA and 100 µA.  
3. Not 100% tested. Specified by design and limited characterization.  
4. The diode ideality factor, n, is a correction factor to the ideal diode equation.  
For the following equations, use the following variables and constants:  
n
k
q
T
Diode ideality factor  
Boltzmann constant  
Electron charge constant  
Diode temperature (Kelvin)  
VBE Voltage from base to emitter  
IC  
IS  
N
Collector current  
Saturation current  
Ratio of collector currents  
The equation for V is:  
BE  
IC  
----  
IS  
nkT  
q
.
---------  
VBE  
=
ln  
 
0
By sourcing two currents and using the above equation, a difference in base emitter voltage  
can be found that leads to the following equation for temperature:  
VBE  
T = -----------------------------  
k
--  
n ln(N)  
q
5. If a different sourcing current pair is used other than 10 µA and 100 µA, the following equation  
should be used to correct the temperature. Subtract this offset from the temperature measured  
by the temperature sensor.  
For the following equations, use the following variables and constants:  
I
High sourcing current  
Low sourcing current  
high  
I
low  
Toffset (in °C) can be found using the following equation:  
(Ihigh Ilow  
)
Toffset = (6.0 104)  
2.34  
-------------------------------  
Ihigh  
.
----------  
ln  
 
0
Ilow  
48  
Electrical Data  
Chapter 7  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Thermal Protection Characterization. The following section describes  
parameters relating to thermal protection. The implementation  
of thermal control circuitry to control processor temperature is  
left to the manufacturer to determine how to implement.  
Thermal limits in motherboard design are necessary to protect  
t h e p r oce ssor fr om t h e r m a l d a m a ge . TS H U T D OW N is t h e  
t e m p e ra t u re for t h e r m a l p r ot e ct ion circu it r y t o in it ia t e  
shutdown of the processor. TSD_DELAY is the maximum time  
allowed from the detection of the over-temperature condition to  
p r oce ssor sh u t d own t o p r e ve n t t h e r m a l d a m a ge t o t h e  
processor.  
Systems that do not implement thermal protection circuitry or  
that do not react within the time specified by TSD_DELAY can  
cause t he rmal damage to the processor during t he unlikely  
events of fan failure or powering up the processor without a  
h e a t -sin k . Th e p roce ssor re lie s on t h e r ma l circu it ry on t h e  
m ot h e r b oa rd t o t u r n off t h e re gu la t e d core volt a ge t o t h e  
processor in response to a thermal shutdown event.  
Thermal protection circuitry reference designs and thermal  
solution guidelines are found in the following documents:  
AMD Athlon™ Processor-Based Motherboard Design Guide,  
order# 24363  
Thermal Diode Monitoring Circuits, order# 25658  
AMD Thermal, Mechanical, and Chassis Cooling Design Guide,  
order# 23794  
http://www1.amd.com/products/athlon/thermals  
Mobile specific thermal documentation:  
Measuring Processor and system Power in a Mobile System,  
order# 24353  
Mobile System Thermal Design Guide, order# 24383  
Measuring Temperature on AMD Athlon™ and AMD Duron™  
Pin Grid Array Processors with and without an On-Die Thermal  
Diode, order#24228  
Chapter 7  
Electrical Data  
49  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Table 18 shows the TSHUTDOWN and TSD_DELAY specifications  
for circu it ry in m ot h e r b oa rd d e sign n e ce ssa ry for t h e r m a l  
protection of the processor.  
Table 18. Guidelines for Platform Thermal Protection of the Processor  
Symbol  
Parameter Description  
Max  
Units  
Notes  
T
Thermal diode shutdown temperature for processor protection  
125  
°C  
1, 2, 3  
SHUTDOWN  
Maximum allowed time from T  
shutdown  
detection to processor  
SHUTDOWN  
T
500  
ms  
1, 3  
SD_DELAY  
Notes:  
1. The thermal diode is not 100% tested, it is specified by design and limited characterization.  
2. The thermal diode is capable of responding to thermal events of 40°C/s or faster.  
3. The mobile AMD Duron™ processor model 7 provides a thermal diode for measuring die temperature of the processor. The  
processor relies on thermal circuitry on the motherboard to turn off the regulated core voltage to the processor in response to a  
thermal shutdown event. Refer to Thermal Diode Monitoring Circuits, order# 25658, for thermal protection circuitry designs.  
50  
Electrical Data  
Chapter 7  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
7.16  
Reserved Pins DC Characteristics  
Table 19 shows the DC characteristics of the Reserved (RSVD)  
pins.  
Table 19. Reserved Pins (N1, N3, and N5) DC Characteristics  
Symbol Parameter Description  
Min  
Max  
Units  
µA  
Note  
I
Tristate Leakage Pullup  
–250  
*
*
LEAK_P  
I
Tristate Leakage Pulldown  
250  
µA  
LEAK_N  
Note:  
*
Measured at 2.5 V  
Chapter 7  
Electrical Data  
51  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
7.17  
FID_Change Induced PLL Lock Time  
Table 20 shows the time required for the PLL of the processor to  
lock at the new frequency specified in a FID_Change transition.  
Software must program the SGTC field of the FidVidCtl MSR to  
produce a FID_Change duration equal to or greater than the  
FID_Change induced PLL lock time.  
For m ore in for m a t ion ab ou t t h e F ID_Ch a n ge p rot ocol, se e  
“Power Management” on page 9.  
Table 20. FID_Change Induced PLL Lock Time  
Parameter Description  
Max  
Units  
FID_Change Induced PLL Lock Time  
50  
µs  
52  
Electrical Data  
Chapter 7  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
8
Signal and Power-Up Requirements  
This chapte r de scr ibe s the mobile AMD Duron™ proce ssor  
model 7 power-up requirements during system power-up and  
warm resets.  
8.1  
Power-Up Requirements  
Signal Sequence and  
Timing Description  
Figure 13 shows the relationship between key signals in the  
syste m during a powe r-up se que nce. This figure details the  
requirements of the processor.  
3.3 V Supply  
VCCA (2.5 V)  
(for PLL)  
VCC_CORE  
2
(Processor Core)  
Warm reset  
condition  
1
RESET#  
6
4
NB_RESET#  
5
PWROK  
FID[3:0]  
8
7
3
System Clock  
Figure 13. Signal Relationship Requirements During Power-Up Sequence  
Notes:  
1. Figure 13 represents several signals generically by using names not necessarily consistent  
with any pin lists or schematics.  
2. Requirements 1–8 in Figure 13 are described in “Power-Up Tim ing Requirements” on  
page 54.  
Chapter 8  
Signal and Power-Up Requirements  
53  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Power-Up Timing Requirements. The signal timing requirements are  
as follows:  
1. RESET# must be asserted before PWROK is asserted.  
The mobile AMD Duron™ processor model 7 does not set  
the correct clock multiplier if PWROK is asserted prior to a  
RESET# assertion. It is recommended that RESET# be  
asserted at least 10 nanoseconds prior to the assertion of  
PWROK.  
In practice, Southbridges will assert RESET# milliseconds  
before PWROK is deasserted.  
2. All motherboard voltage planes must be within  
specification before PWROK is asserted.  
PWROK is an output of the voltage regulation circuit on the  
motherboard. PWROK indicates that VCC_CORE and all  
other voltage planes in the system are within specification.  
The motherboard is required to delay PWROK assertion for  
a minimum of 3 milliseconds from the 3.3 V supply being  
within specification. This ensures that the system clock  
(SYSCLK/SYSCLK#) is operating within specification when  
PWROK is asserted.  
The processor core voltage, VCC_CORE, must be within  
specification before PWROK is asserted as dictated by the  
VID[4:0] pins strapped on the processor package. Before  
PWROK assertion, the processor is clocked by a ring  
oscillator. Before PWROK is asserted, the SOFTVID[4:0]  
outputs of the processor are not driven to a deterministic  
value. The processor drives the SOFTVID[4:0] outputs to  
the same value as dictated by the VID[4:0] pins within 20  
nanoseconds of PWROK assertion.  
The processor PLL is powered by VCCA. The processor PLL  
does not lock if VCCA is not high enough for the processor  
logic to switch for some period before PWROK is asserted.  
VCCA must be within specification at least 5 microseconds  
before PWROK is asserted.  
In practice VCCA, VCC_CORE, and all other voltage planes  
must be within specification for several milliseconds before  
PWROK is asserted.  
After PWROK is asserted, the processor PLL locks to its  
operational frequency.  
3. The system clock (SYSCLK/SYSCLK#) must be running  
before PWROK is asserted.  
54  
Signal and Power-Up Requirements  
Chapter 8  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
When PWROK is asserted, the processor switches from  
driving the internal processor clock grid from the ring  
oscillator to driving from the PLL. The reference system  
clock must be valid at this time. The system clocks are  
guaranteed to be running after 3.3 V has been within  
specification for 3 milliseconds.  
4. PWROK assertion to deassertion of RESET#  
The duration of RESET# assertion during cold boots is  
intended to satisfy the time it takes for the PLL to lock with  
a less than 1 ns phase error. The processor PLL begins to  
run after PWROK is asserted and the internal clock grid is  
switched from the ring oscillator to the PLL. The PLL lock  
time may take from hundreds of nanoseconds to tens of  
microseconds. It is recommended that the minimum time  
between PWROK assertion to the deassertion of RESET# be  
at least 1.0 milliseconds. Southbridges enforce a delay of  
1.5 to 2.0 milliseconds between PWRGD (Southbridge  
version of PWROK) assertion and NB_RESET# deassertion.  
5. PWROK must be monotonic and meet the timing  
requirements as defined in Table 16, “General AC and DC  
Characteristics,on page 45. The processor should not  
switch between the ring oscillator and the PLL after the  
initial assertion of PWROK.  
6. NB_RESET# must be asserted (causing CONNECT to also  
assert) before RESET# is deasserted. In practice all  
Southbridges enforce this requirement.  
If NB_RESET# does not assert until after RESET# has  
deasserted, the processor misinterprets the CONNECT  
assertion (due to NB_RESET# being asserted) as the  
beginning of the SIP transfer. There must be sufficient  
overlap in the resets to ensure that CONNECT is sampled  
asserted by the processor before RESET# is deasserted.  
7. The FID[3:0] signals are valid within 100 ns after PWROK is  
asserted. The chipset must not sample the FID[3:0] signals  
until they become valid. Refer to the AMD Athlon™  
Processor-Based Motherboard Design Guide, order# 24363, for  
the specific implementation and additional circuitry  
required.  
Chapter 8  
Signal and Power-Up Requirements  
55  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
8. The FID[3:0] signals become valid within 100 ns after  
RESET# is asserted. Refer to the AMD Athlon™ Processor-  
Based Motherboard Design Guide, order# 24363, for the  
specific implementation and additional circuitry required.  
Clock Multiplier  
Selection (FID[3:0])  
The chipset samples the FID[3:0] signals in a chipset-specific  
m a n n e r fr om t h e p roce ssor a n d u se s t h is in for m a t ion t o  
determine the correct Serial Initialization Packet (SIP). The  
chipset then sends the SIP information to t he processor for  
con figu ra t ion of t h e AMD Du ron syst e m b u s for t h e clock  
multiplier that determines the processor frequency indicated  
by the FID[3:0] code. The SIP is sent to the processor using the  
SIP protocol. This protocol uses the PROCRDY, CONNECT, and  
CLKFWDRST signals, that are synchronous to SYSCLK.  
For more information, seeSee “FID[3:0] Pins” on page 79.  
Serial Initialization Packet (SIP) Protocol. Refer to AMD Athlon™ and  
AMD Duron™ System Bus Specification, order# 21902 for details  
of the SIP protocol.  
8.2  
Processor Warm Reset Requirements  
Mobile AMD Duron™ RESET# cannot be asserted to the processor without also being  
Processor Model 7  
and Northbridge  
Reset Pins  
asserted to the Northbridge. RESET# to the Northbridge is the  
same as PCI RESET#. The minimum assertion for PCI RESET#  
is one millisecond. Southbridges enforce a minimum assertion  
of RESET# for the processor, Northbridge, and PCI of 1.5 to 2.0  
milliseconds.  
56  
Signal and Power-Up Requirements  
Chapter 8  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
9
Mechanical Data  
9.1  
Introduction  
Th e m ob ile AMD Du ron p roce ssor m od e l 7 con n ect s t o t h e  
motherboard through a CPGA socket named Socket A. For more  
information, see the AMD Athlon™ Processor-Based Motherboard  
Design Guide, order# 24363.  
9.2  
Die Loading  
The processor die on the CPGA package is exposed at the top of  
the package. This is done to facilitate heat transfer from the die  
t o an ap p rove d h ea t sin k . It is cr it ica l t h a t t h e m e ch an ica l  
loading of the heat sink does not exceed the limits shown in  
Table 21. Any heat sink design should avoid loads on corners  
and edges of die. The CPGA package has compliant pads that  
serve to bring surfaces in planar contact.  
Table 21. CPGA Mechanical Loading1  
Location  
Die Surface  
Die Edge  
Notes:  
Dynamic (MAX)  
Static (MAX)  
Units  
lbf  
Note  
100  
10  
30  
10  
2
3
lbf  
1. Tool-assisted zero insertion force sockets should be designed such that no load is placed on  
the ceramic substrate of the package.  
2. Load specified for coplanar contact to die surface.  
3. Load defined for a surface at no more than a two degree angle of inclination to die surface.  
Chapter 9  
Mechanical Data  
57  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
9.3  
Package Description  
Figu re 14 on p age 59 sh ows t he m e ch a n ica l d rawin g of t h e  
C P G A p a ck a g e . Ta b l e 2 2 p r ov i d e s t h e d i m e n s i o n s i n  
millimeters assigned to the letters and symbols shown in the  
Figure 14 diagram.  
Table 22. Dimensions for the CPGA Package  
Minimum  
Maximum  
Minimum  
Maximum  
Letter or  
Symbol  
Letter or  
Symbol  
1
1
1
1
Dimension Dimension  
49.27 49.78  
45.72 BSC  
11.698 REF  
3.30  
Dimension Dimension  
D/E  
D1/E1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
E2  
E9  
G/H  
A
1.66  
1.96  
4.50  
2.24 REF  
3.60  
12.39  
12.39  
6.46  
A1  
A2  
A3  
A4  
φP  
φb  
φb1  
S
1.27  
0.80  
0.116  
1.53  
0.88  
11.84  
11.84  
5.91  
1.90  
6.60  
0.50  
10.65  
3.05  
11.20  
3.35  
0.43  
9.034 REF  
1.40 REF  
37  
E3  
2.35  
7.25  
2.65  
7.80  
1.435  
3.05  
2.375  
3.31  
E4  
L
E5  
7.25  
7.80  
M
N
E6  
8.86  
8.86  
15.59  
9.41  
9.41  
16.38  
453 (pins)  
1.27 BSC  
2.54 BSC  
E7  
e
E8  
e1  
Note:  
1. Dimensions are given in millimeters.  
58  
Mechanical Data  
Chapter 9  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Figure 14. Mobile AMD Duron™ Processor Model 7 CPGA Package  
Chapter 9  
Mechanical Data  
59  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
60  
Mechanical Data  
Chapter 9  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
10  
Pin Descriptions  
10.1  
Pin Diagram and Pin Name Abbreviations  
Figure 15 on page 62 shows the staggered pin grid array (SPGA)  
for the mobile AMD Duron processor model 7. Because some of  
t h e p in n a m e s a r e t oo lon g t o fit in t h e g r id , t h e y a r e  
a b b r e v i a t e d . Ta b l e 2 3 o n p a g e 6 4 l i s t s a l l t h e p i n s i n  
alphabetical order by pin name, along with the abbreviation  
where necessary.  
Chapter 10  
Pin Descriptions  
61  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
62  
Pin Descriptions  
Chapter 10  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Chapter 10  
Pin Descriptions  
63  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Table 23. Pin Name Abbreviations  
Abbreviation  
Full Name  
A20M#  
Pin  
AE1  
Abbreviation  
Full Name  
Pin  
A19  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
AMD  
AH6  
AJ13  
AJ21  
AN17  
AL17  
AL23  
AG11  
AG13  
AK6  
AA1  
AA3  
AG1  
W1  
A31  
C13  
E25  
E33  
F30  
G11  
G13  
G19  
G21  
G27  
G29  
G31  
H28  
H30  
H32  
J5  
ANLOG  
ANALOG  
CLKFWDRST  
CLKIN  
CLKIN#  
CONNECT  
COREFB  
COREFB#  
CPU_PRESENCE#  
DBRDY  
DBREQ#  
FERR  
CLKFR  
CNNCT  
CPR#  
FID[0]  
FID[1]  
FID[2]  
FID[3]  
FLUSH#  
IGNNE#  
INIT#  
W3  
Y1  
Y3  
AL3  
AJ1  
J31  
K30  
L31  
AJ3  
INTR  
AL1  
AL21  
AN21  
G7  
L35  
N31  
Q31  
S31  
K7CO  
K7CLKOUT  
K7CLKOUT#  
KEY  
K7CO#  
KEY  
G9  
U31  
U37  
W7  
KEY  
G15  
G17  
G23  
G25  
N7  
KEY  
KEY  
W31  
Y5  
KEY  
KEY  
Y31  
KEY  
Q7  
Y33  
AA5  
AA31  
AC7  
AC31  
AD8  
AD30  
AE7  
AE31  
KEY  
Y7  
KEY  
AA7  
AG7  
AG9  
AG15  
AG17  
AG27  
AG29  
KEY  
KEY  
KEY  
KEY  
KEY  
KEY  
64  
Pin Descriptions  
Chapter 10  
Preliminary Information  
24068FDecember 2001  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
Table 23. Pin Name Abbreviations (continued)  
Abbreviation  
Full Name  
Pin  
AF6  
Abbreviation  
PLTST#  
Full Name  
PLLTEST#  
Pin  
AC3  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NMI  
AF8  
PRCRDY  
PROCREADY  
PWROK  
AN23  
AE3  
N1  
AF10  
AF28  
AF30  
AF32  
AG5  
RSVD  
RSVD  
N3  
RSVD  
N5  
RESET#  
AG3  
AN19  
AL19  
AJ29  
AL29  
AG33  
AJ37  
AL35  
AE33  
AJ35  
AG37  
AL33  
AN37  
AL37  
AG35  
AN29  
AN35  
AN31  
AJ33  
J1  
AG19  
AG21  
AG23  
AG25  
AG31  
AH8  
RCLK  
RSTCLK  
RCLK#  
SAI#0  
RSTCLK#  
SADDIN[0]#  
SADDIN[1]#  
SADDIN[2]#  
SADDIN[3]#  
SADDIN[4]#  
SADDIN[5]#  
SADDIN[6]#  
SADDIN[7]#  
SADDIN[8]#  
SADDIN[9]#  
SADDIN[10]#  
SADDIN[11]#  
SADDIN[12]#  
SADDIN[13]#  
SADDIN[14]#  
SADDINCLK#  
SADDOUT[0]#  
SADDOUT[1]#  
SADDOUT[2]#  
SADDOUT[3]#  
SADDOUT[4]#  
SADDOUT[5]#  
SADDOUT[6]#  
SADDOUT[7]#  
SADDOUT[8]#  
SADDOUT[9]#  
SADDOUT[10]#  
SADDOUT[11]#  
SADDOUT[12]#  
SADDOUT[13]#  
SAI#1  
SAI#2  
SAI#3  
AH30  
AJ7  
SAI#4  
SAI#5  
AJ9  
SAI#6  
AJ11  
AJ15  
AJ17  
AJ19  
AJ27  
AK8  
SAI#7  
SAI#8  
SAI#9  
SAI#10  
SAI#11  
SAI#12  
SAI#13  
SAI#14  
SAIC#  
AL7  
AL9  
AL11  
AL25  
AL27  
AM8  
AN7  
AN9  
AN11  
AN25  
AN27  
AN3  
AJ25  
AN15  
AL15  
AN13  
AL13  
SAO#0  
SAO#1  
SAO#2  
SAO#3  
SAO#4  
SAO#5  
SAO#6  
SAO#7  
SAO#8  
SAO#9  
SAO#10  
SAO#11  
SAO#12  
SAO#13  
J3  
C7  
A7  
E5  
A5  
E7  
C1  
C5  
PLBYP#  
PLLBYPASS#  
PLLBYPASSCLK  
PLLBYPASSCLK#  
PLLMON1  
C3  
PLBYC  
PLBYC#  
PLMN1  
PLMN2  
G1  
E1  
A3  
PLLMON2  
G5  
Chapter 10  
Pin Descriptions  
65  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Table 23. Pin Name Abbreviations (continued)  
Abbreviation  
SAO#14  
Full Name  
SADDOUT[14]#  
SADDOUTCLK#  
SCANCLK1  
SCANCLK2  
SCANINTEVAL  
SCANSHIFTEN  
SDATA[0]#  
Pin  
Abbreviation  
SD#33  
Full Name  
SDATA[33]#  
Pin  
E29  
G3  
E3  
S1  
S5  
S3  
Q5  
SAOC#  
SCNCK1  
SCNCK2  
SCNINV  
SCNSN  
SD#0  
SD#34  
SD#35  
SD#36  
SD#37  
SD#38  
SD#39  
SD#40  
SD#41  
SD#42  
SD#43  
SD#44  
SD#45  
SD#46  
SD#47  
SD#48  
SD#49  
SD#50  
SD#51  
SD#52  
SD#53  
SD#54  
SD#55  
SD#56  
SD#57  
SD#58  
SD#59  
SD#60  
SD#61  
SD#62  
SD#63  
SDIC#0  
SDIC#1  
SDIC#2  
SDIC#3  
SDINV#  
SDOC#0  
SDOC#1  
SDOC#2  
SDATA[34]#  
A27  
A25  
E21  
C23  
C27  
A23  
A35  
C35  
C33  
C31  
A29  
C29  
E23  
C25  
E17  
SDATA[35]#  
SDATA[36]#  
SDATA[37]#  
SDATA[38]#  
AA35  
W37  
W35  
Y35  
SDATA[39]#  
SD#1  
SDATA[1]#  
SDATA[40]#  
SD#2  
SDATA[2]#  
SDATA[41]#  
SD#3  
SDATA[3]#  
SDATA[42]#  
SD#4  
SDATA[4]#  
U35  
U33  
S37  
SDATA[43]#  
SD#5  
SDATA[5]#  
SDATA[44]#  
SD#6  
SDATA[6]#  
SDATA[45]#  
SD#7  
SDATA[7]#  
S33  
SDATA[46]#  
SD#8  
SDATA[8]#  
AA33  
AE37  
AC33  
AC37  
Y37  
SDATA[47]#  
SD#9  
SDATA[9]#  
SDATA[48]#  
SD#10  
SD#11  
SD#12  
SD#13  
SD#14  
SD#15  
SD#16  
SD#17  
SD#18  
SD#19  
SD#20  
SD#21  
SD#22  
SD#23  
SD#24  
SD#25  
SD#26  
SD#27  
SD#28  
SD#29  
SD#30  
SD#31  
SD#32  
SDATA[10]#  
SDATA[11]#  
SDATA[12]#  
SDATA[13]#  
SDATA[14]#  
SDATA[15]#  
SDATA[16]#  
SDATA[17]#  
SDATA[18]#  
SDATA[19]#  
SDATA[20]#  
SDATA[21]#  
SDATA[22]#  
SDATA[23]#  
SDATA[24]#  
SDATA[25]#  
SDATA[26]#  
SDATA[27]#  
SDATA[28]#  
SDATA[29]#  
SDATA[30]#  
SDATA[31]#  
SDATA[32]#  
SDATA[49]#  
E13  
E11  
C15  
E9  
SDATA[50]#  
SDATA[51]#  
AA37  
AC35  
S35  
SDATA[52]#  
SDATA[53]#  
A13  
C9  
SDATA[54]#  
Q37  
Q35  
N37  
J33  
SDATA[55]#  
A9  
SDATA[56]#  
C21  
A21  
E19  
C19  
C17  
A11  
A17  
A15  
W33  
J35  
SDATA[57]#  
SDATA[58]#  
G33  
G37  
E37  
SDATA[59]#  
SDATA[60]#  
SDATA[61]#  
G35  
Q33  
N33  
L33  
SDATA[62]#  
SDATA[63]#  
SDATAINCLK[0]#  
SDATAINCLK[1]#  
SDATAINCLK[2]#  
SDATAINCLK[3]#  
SDATAINVALID#  
SDATAOUTCLK[0]#  
SDATAOUTCLK[1]#  
SDATAOUTCLK[2]#  
N35  
L37  
E27  
E15  
AN33  
AE35  
C37  
A33  
J37  
A37  
E35  
E31  
66  
Pin Descriptions  
Chapter 10  
Preliminary Information  
24068FDecember 2001  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
Table 23. Pin Name Abbreviations (continued)  
Abbreviation  
SDOC#3  
Full Name  
SDATAOUTCLK[3]#  
SDATAOUTVALID#  
SFILLVALID#  
SMI#  
Pin  
C11  
Abbreviation  
Full Name  
VCC_CORE  
Pin  
F28  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
SDOV#  
SFILLV#  
AL31  
AJ31  
AN5  
F8  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
F32  
F34  
F36  
H2  
SVID[0]  
SVID[1]  
SVID[2]  
SVID[3]  
SVID[4]  
STPC#  
SOFTVID[0]  
SOFTVID[1]  
SOFTVID[2]  
SOFTVID[3]  
SOFTVID[4]  
STPCLK#  
K8  
H4  
H6  
H12  
H16  
H20  
H24  
K32  
K34  
K36  
M2  
M4  
M6  
M8  
P30  
P32  
P34  
P36  
R2  
H8  
H10  
AC1  
Q1  
TCK  
TDI  
U1  
TDO  
U5  
THDA  
THDC  
THERMDA  
THERMDC  
TMS  
S7  
U7  
Q3  
TRST#  
U3  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
B4  
B8  
B12  
B16  
B20  
B24  
B28  
B32  
B36  
D2  
R4  
R6  
R8  
T30  
T32  
T34  
T36  
V2  
D4  
D8  
D12  
D16  
D20  
D24  
D28  
D32  
F12  
F16  
F20  
F24  
V4  
V6  
V8  
X30  
X32  
X34  
X36  
Z2  
Z4  
Chapter 10  
Pin Descriptions  
67  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Table 23. Pin Name Abbreviations (continued)  
Abbreviation  
Full Name  
VCC_CORE  
Pin  
Abbreviation  
Full Name  
VCC_CORE  
Pin  
AM34  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Z6  
Z8  
VCC  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCCA  
VID[0]  
VID[1]  
VID[2]  
VID[3]  
VID[4]  
VREF_SYS  
VSS  
AJ23  
L1  
AB30  
AB32  
AB34  
AB36  
AD2  
L3  
L5  
L7  
J7  
AD4  
VREF_S  
W5  
B2  
AD6  
AF14  
AF18  
AF22  
AF26  
AF34  
AF36  
AH2  
VSS  
B6  
VSS  
B10  
B14  
B18  
B22  
B26  
B30  
B34  
D6  
VSS  
VSS  
VSS  
VSS  
VSS  
AH4  
VSS  
AH10  
AH14  
AH18  
AH22  
AH26  
AJ5  
VSS  
VSS  
D10  
D14  
D18  
D22  
D26  
D30  
D34  
D36  
F2  
VSS  
VSS  
VSS  
VSS  
AK10  
AK14  
AK18  
AK22  
AK26  
AK30  
AK34  
AK36  
AL5  
VSS  
VSS  
VSS  
VSS  
VSS  
F4  
VSS  
F6  
VSS  
F10  
F14  
F18  
F22  
F26  
H14  
H18  
H22  
H26  
H34  
VSS  
VSS  
AM2  
AM10  
AM14  
AM18  
AM22  
AM26  
AM30  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
68  
Pin Descriptions  
Chapter 10  
Preliminary Information  
24068FDecember 2001  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
Table 23. Pin Name Abbreviations (continued)  
Abbreviation  
Full Name  
Pin  
H36  
Abbreviation  
Full Name  
Pin  
AF12  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ZN  
K2  
AF16  
AF2  
K4  
K6  
AF20  
AF24  
AH16  
AH34  
AF4  
M30  
M32  
M34  
M36  
P2  
AH12  
AH20  
AH24  
AH28  
AH32  
AH36  
AK2  
P4  
P6  
P8  
R30  
R32  
R34  
R36  
T2  
AK4  
AK12  
AK16  
AK20  
AK24  
AK28  
AK32  
AM4  
AM6  
AM12  
AM16  
AM20  
AM24  
AM28  
AM32  
AM36  
AC5  
T4  
T6  
T8  
V30  
V32  
V34  
V36  
X2  
X4  
X6  
X8  
Z30  
Z32  
Z34  
Z36  
AB2  
AB8  
AB4  
AB6  
AD32  
AD34  
AD36  
ZP  
AE5  
Chapter 10  
Pin Descriptions  
69  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
10.2  
Pin List  
Table 24 cross-references Socket A pin location to signal name.  
The “L(Level) column shows the electrical specification for  
t h is p in . “ P” in d ica t e s a p u sh -p u ll mod e d r ive n by a sin gle  
source. “O” indicates open-drain mode that allows devices to  
share the pin.  
Note: Socket A AMD Duron processors support push-pull drivers.  
For more information, see “Push-Pull (PP) Drivers” on  
page 6.  
The “P” (Port) column indicates if this signal is an input (I),  
output (O), or bidirectional (B) signal. The “R” (Reference)  
column indicates if this signal should be referenced to VSS (G)  
or VCC_CORE (P) planes for the purpose of signal routing with  
respect to the current return paths. The “” is used to indicate  
that this description is not applicable for this pin.  
Table 24. Cross-Reference by Pin Location  
Pin  
A1  
Name  
Description  
L
P
P
P
P
P
P
P
P
-
P
R
Pin  
A35  
Name  
SDATA[40]#  
SDATA[30]#  
VSS  
Description  
L
P
P
-
P
B
B
-
R
G
P
-
No Pin  
page 80  
A3  
SADDOUT[12]#  
SADDOUT[5]#  
SADDOUT[3]#  
SDATA[55]#  
SDATA[61]#  
SDATA[53]#  
SDATA[63]#  
SDATA[62]#  
NC Pin  
O
O
O
B
B
B
B
B
-
G
G
G
P
A37  
B2  
A5  
A7  
B4  
VCC_CORE  
VSS  
-
-
A9  
B6  
-
-
-
A11  
A13  
A15  
A17  
A19  
A21  
A23  
A25  
A27  
A29  
A31  
A33  
P
B8  
VCC_CORE  
VSS  
-
-
-
G
G
G
-
B10  
B12  
B14  
B16  
B18  
B20  
B22  
B24  
B26  
B28  
B30  
-
-
-
VCC_CORE  
VSS  
-
-
-
-
-
-
page 80  
page 80  
VCC_CORE  
VSS  
-
-
-
SDATA[57]#  
SDATA[39]#  
SDATA[35]#  
SDATA[34]#  
SDATA[44]#  
NC Pin  
P
P
P
P
P
-
B
B
B
B
B
-
G
G
P
-
-
-
VCC_CORE  
VSS  
-
-
-
-
-
-
P
VCC_CORE  
VSS  
-
-
-
G
-
-
-
-
VCC_CORE  
VSS  
-
-
-
SDATAOUTCLK[2]#  
P
O
P
-
-
-
Chapter 10  
Pin Descriptions  
70  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Table 24. Cross-Reference by Pin Location (continued)
Pin  
B32  
Name  
VCC_CORE  
VSS  
Description  
L
-
P
-
R
-
Pin  
D26  
Name  
Description  
L
-
P
-
R
-
VSS  
B34  
B36  
C1  
-
-
-
D28  
D30  
D32  
D34  
D36  
E1  
VCC_CORE  
VSS  
-
-
-
VCC_CORE  
SADDOUT[7]#  
SADDOUT[9]#  
SADDOUT[8]#  
SADDOUT[2]#  
SDATA[54]#  
SDATAOUTCLK[3]#  
NC Pin  
-
-
-
-
-
-
P
P
P
P
P
P
-
O
O
O
O
B
O
-
G
G
G
G
P
G
-
VCC_CORE  
VSS  
-
-
-
C3  
-
-
-
C5  
VSS  
-
-
-
C7  
SADDOUT[11]#  
SADDOUTCLK#  
SADDOUT[4]#  
SADDOUT[6]#  
SDATA[52]#  
SDATA[50]#  
SDATA[49]#  
SDATAINCLK[3]#  
SDATA[48]#  
SDATA[58]#  
SDATA[36]#  
SDATA[46]#  
NC Pin  
P
P
P
P
P
P
P
P
P
P
P
P
-
O
O
O
O
B
B
B
I
P
G
P
G
P
P
G
G
P
G
P
P
-
C9  
E3  
C11  
C13  
C15  
C17  
C19  
C21  
C23  
C25  
C27  
C29  
C31  
C33  
C35  
C37  
D2  
E5  
page 80  
E7  
SDATA[51]#  
SDATA[60]#  
SDATA[59]#  
SDATA[56]#  
SDATA[37]#  
SDATA[47]#  
SDATA[38]#  
SDATA[45]#  
SDATA[43]#  
SDATA[42]#  
SDATA[41]#  
SDATAOUTCLK[1]#  
VCC_CORE  
VCC_CORE  
VSS  
P
P
P
P
P
P
P
P
P
P
P
P
-
B
B
B
B
B
B
B
B
B
B
B
O
-
P
G
G
G
P
G
G
G
G
G
G
G
-
E9  
E11  
E13  
E15  
E17  
E19  
E21  
E23  
E25  
E27  
E29  
E31  
E33  
E35  
E37  
F2  
B
B
B
B
-
page 80  
page 80  
SDATAINCLK[2]#  
SDATA[33]#  
SDATA[32]#  
NC Pin  
P
P
P
-
I
G
P
P
-
B
B
-
D4  
-
-
-
SDATA[31]#  
SDATA[22]#  
VSS  
P
P
-
B
B
-
P
G
-
D6  
-
-
-
D8  
VCC_CORE  
VSS  
-
-
-
D10  
D12  
D14  
D16  
D18  
D20  
D22  
D24  
-
-
-
F4  
VSS  
-
-
-
VCC_CORE  
VSS  
-
-
-
F6  
VSS  
-
-
-
-
-
-
F8  
SOFTVID[0]  
VSS  
page 81  
O
-
O
-
-
VCC_CORE  
VSS  
-
-
-
F10  
F12  
F14  
F16  
F18  
-
-
-
-
VCC_CORE  
VSS  
-
-
-
VCC_CORE  
VSS  
-
-
-
-
-
-
-
-
-
VCC_CORE  
VSS  
-
-
-
VCC_CORE  
-
-
-
-
-
-
Chapter 10  
Pin Descriptions  
71  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Table 24. Cross-Reference by Pin Location (continued)
Pin  
F20  
Name  
VCC_CORE  
VSS  
Description  
L
-
P
-
R
-
Pin  
H14  
Name  
Description  
L
-
P
-
R
-
VSS  
F22  
F24  
F26  
F28  
F30  
F32  
F34  
F36  
G1  
-
-
-
H16  
H18  
H20  
H22  
H24  
H26  
H28  
H30  
H32  
H34  
H36  
J1  
VCC_CORE  
VSS  
-
-
-
VCC_CORE  
VSS  
-
-
-
-
-
-
-
-
-
VCC_CORE  
VSS  
-
-
-
VCC_CORE  
NC Pin  
-
-
-
-
-
-
page 80  
-
-
-
VCC_CORE  
VSS  
-
-
-
VCC_CORE  
VCC_CORE  
VCC_CORE  
SADDOUT[10]#  
SADDOUT[14]#  
SADDOUT[13]#  
Key Pin  
-
-
-
-
-
-
-
-
-
NC Pin  
page 80  
page 80  
page 80  
-
-
-
-
-
-
NC Pin  
-
-
-
P
P
P
-
O
O
O
-
P
G
G
-
NC Pin  
-
-
-
G3  
VSS  
-
-
-
G5  
VSS  
-
-
-
G7  
page 80  
page 80  
page 80  
page 80  
page 80  
page 80  
page 80  
page 80  
page 80  
page 80  
page 80  
page 80  
page 80  
SADDOUT[0]#  
SADDOUT[1]#  
NC Pin  
page 81  
page 81  
page 80  
page 81  
page 80  
P
P
-
O
O
-
-
G9  
Key Pin  
-
-
-
J3  
-
G11  
G13  
G15  
G17  
G19  
G21  
G23  
G25  
G27  
G29  
G31  
G33  
G35  
G37  
H2  
NC Pin  
-
-
-
J5  
-
NC Pin  
-
-
-
J7  
VID[4]  
O
-
O
-
-
Key Pin  
-
-
-
J31  
J33  
J35  
J37  
K2  
NC Pin  
-
Key Pin  
-
-
-
SDATA[19]#  
SDATAINCLK[1]#  
SDATA[29]#  
VSS  
P
P
P
-
B
I
G
P
P
-
NC Pin  
-
-
-
NC Pin  
-
-
-
B
-
Key Pin  
-
-
-
Key Pin  
-
-
-
K4  
VSS  
-
-
-
NC Pin  
-
-
-
K6  
VSS  
-
-
-
NC Pin  
-
-
-
K8  
SOFTVID[1]  
NC Pin  
page 81  
page 80  
O
-
O
-
-
NC Pin  
-
-
-
K30  
K32  
K34  
K36  
L1  
-
SDATA[20]#  
SDATA[23]#  
SDATA[21]#  
VCC_CORE  
VCC_CORE  
SOFTVID[2]  
SOFTVID[3]  
SOFTVID[4]  
VCC_CORE  
P
P
P
-
B
B
B
-
G
G
G
-
VCC_CORE  
VCC_CORE  
VCC_CORE  
VID[0]  
-
-
-
-
-
-
-
-
-
page 81  
page 81  
page 81  
page 81  
page 80  
O
O
O
O
-
O
O
O
O
-
-
H4  
-
-
-
L3  
VID[1]  
-
H6  
page 81  
page 81  
page 81  
O
O
O
-
O
O
O
-
-
L5  
VID[2]  
-
H8  
-
L7  
VID[3]  
-
H10  
H12  
-
L31  
L33  
NC Pin  
-
-
SDATA[26]#  
P
B
P
72  
Pin Descriptions  
Chapter 10  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Table 24. Cross-Reference by Pin Location (continued)
Pin  
L35  
Name  
NC Pin  
Description  
L
-
P
-
R
-
Pin  
R2  
Name  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VSS  
Description  
L
-
P
-
R
-
page 80  
L37  
M2  
M4  
M6  
M8  
M30  
M32  
M34  
M36  
N1  
SDATA[28]#  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VSS  
P
-
B
-
P
-
R4  
-
-
-
R6  
-
-
-
-
-
-
R8  
-
-
-
-
-
-
R30  
R32  
R34  
R36  
S1  
-
-
-
-
-
-
VSS  
-
-
-
-
-
-
VSS  
-
-
-
VSS  
-
-
-
VSS  
-
-
-
VSS  
-
-
-
SCANCLK1  
SCANINTEVAL  
SCANCLK2  
THERMDA  
NC Pin  
page 81  
page 81  
page 81  
page 83  
page 80  
P
P
P
-
I
-
VSS  
-
-
-
S3  
I
-
RSVD  
page 80  
page 80  
page 80  
page 80  
page 80  
-
-
-
S5  
I
-
N3  
RSVD  
-
-
-
S7  
-
-
N5  
RSVD  
-
-
-
S31  
S33  
S35  
S37  
T2  
-
-
-
N7  
Key Pin  
-
-
-
SDATA[7]#  
SDATA[15]#  
SDATA[6]#  
VSS  
P
P
P
-
B
B
B
-
G
P
G
-
N31  
N33  
N35  
N37  
P2  
NC Pin  
-
-
-
SDATA[25]#  
SDATA[27]#  
SDATA[18]#  
VSS  
P
P
P
-
B
B
B
-
P
P
G
-
T4  
VSS  
-
-
-
T6  
VSS  
-
-
-
P4  
VSS  
-
-
-
T8  
VSS  
-
-
-
P6  
VSS  
-
-
-
T30  
T32  
T34  
T36  
U1  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
TDI  
-
-
-
P8  
VSS  
-
-
-
-
-
-
P30  
P32  
P34  
P36  
Q1  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
TCK  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
page 79  
page 79  
page 79  
page 83  
page 80  
P
P
P
-
I
-
-
-
-
U3  
TRST#  
I
-
page 79  
page 79  
page 81  
page 80  
page 80  
P
P
P
-
I
-
U5  
TDO  
O
-
-
Q3  
TMS  
I
-
U7  
THERMDC  
NC Pin  
-
Q5  
SCANSHIFTEN  
Key Pin  
I
-
U31  
U33  
U35  
U37  
V2  
-
-
-
Q7  
-
-
SDATA[5]#  
SDATA[4]#  
NC Pin  
P
P
-
B
B
-
G
G
-
Q31  
Q33  
Q35  
Q37  
NC Pin  
-
-
-
SDATA[24]#  
SDATA[17]#  
SDATA[16]#  
P
P
P
B
B
B
P
G
G
page 80  
VCC_CORE  
VCC_CORE  
-
-
-
V4  
-
-
-
Chapter 10  
Pin Descriptions  
73  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Table 24. Cross-Reference by Pin Location (continued)
Pin  
V6  
Name  
VCC_CORE  
VCC_CORE  
VSS  
Description  
L
-
P
-
R
-
Pin  
Z30  
Name  
Description  
L
-
P
-
R
-
VSS  
VSS  
VSS  
VSS  
V8  
-
-
-
Z32  
Z34  
Z36  
AA1  
AA3  
AA5  
AA7  
-
-
-
V30  
V32  
V34  
V36  
W1  
W3  
W5  
W7  
W31  
W33  
W35  
W37  
X2  
-
-
-
-
-
-
VSS  
-
-
-
-
-
-
VSS  
-
-
-
DBRDY  
DBREQ#  
NC Pin  
page 79  
page 79  
page 80  
page 80  
page 80  
P
P
-
O
I
-
VSS  
-
-
-
-
FID[0]  
page 79  
page 79  
page 83  
page 80  
page 80  
O
O
P
-
O
O
-
-
-
-
FID[1]  
-
Key Pin  
-
-
-
VREF_SYS  
NC Pin  
-
AA31 NC Pin  
-
-
-
-
-
AA33 SDATA[8]#  
AA35 SDATA[0]#  
AA37 SDATA[13]#  
P
P
P
-
B
B
B
-
P
G
G
-
NC Pin  
-
-
-
SDATAINCLK[0]#  
SDATA[2]#  
SDATA[1]#  
VSS  
P
P
P
-
I
G
G
P
-
B
B
-
AB2  
AB4  
AB6  
AB8  
VSS  
VSS  
VSS  
VSS  
-
-
-
-
-
-
X4  
VSS  
-
-
-
-
-
-
X6  
VSS  
-
-
-
AB30 VCC_CORE  
AB32 VCC_CORE  
AB34 VCC_CORE  
AB36 VCC_CORE  
-
-
-
X8  
VSS  
-
-
-
-
-
-
X30  
X32  
X34  
X36  
Y1  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
FID[2]  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AC1  
AC3  
AC5  
AC7  
STPCLK#  
PLLTEST#  
ZN  
page 81  
page 80  
page 83  
page 80  
page 80  
P
P
P
-
I
-
-
-
-
I
-
page 79  
page 79  
page 80  
page 80  
page 80  
page 80  
O
O
-
O
O
-
-
-
-
Y3  
FID[3]  
-
NC Pin  
-
-
Y5  
NC Pin  
-
AC31 NC Pin  
-
-
-
Y7  
Key Pin  
-
-
-
AC33 SDATA[10]#  
AC35 SDATA[14]#  
AC37 SDATA[11]#  
P
P
P
-
B
B
B
-
P
G
G
-
Y31  
Y33  
Y35  
Y37  
Z2  
NC Pin  
-
-
-
NC Pin  
-
-
-
SDATA[3]#  
SDATA[12]#  
VCC_CORE  
VCC_CORE  
VCC_CORE  
VCC_CORE  
P
P
-
B
B
-
G
P
-
AD2  
AD4  
AD6  
AD8  
VCC_CORE  
VCC_CORE  
VCC_CORE  
NC Pin  
-
-
-
-
-
-
Z4  
-
-
-
page 80  
page 80  
-
-
-
Z6  
-
-
-
AD30 NC Pin  
AD32 VSS  
-
-
-
Z8  
-
-
-
-
-
-
74  
Pin Descriptions  
Chapter 10  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Table 24. Cross-Reference by Pin Location (continued)
Pin  
Name  
Description  
L
-
P
-
R
-
Pin  
Name  
Description  
page 78  
page 80  
page 80  
page 80  
page 80  
page 80  
page 80  
page 80  
page 80  
page 80  
L
-
P
-
-
-
-
-
-
-
-
-
-
I
I
I
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I
I
-
R
-
AD34 VSS  
AD36 VSS  
AG13 COREFB#  
AG15 Key Pin  
AG17 Key Pin  
AG19 NC Pin  
-
-
-
-
-
AE1  
AE3  
AE5  
AE7  
A20M#  
PWROK  
P
P
P
-
I
-
-
-
I
-
-
-
ZP  
page 83  
page 80  
page 80  
-
-
AG21 NC Pin  
-
-
NC Pin  
-
-
AG23 NC Pin  
-
-
AE31 NC Pin  
-
-
-
AG25 NC Pin  
-
-
AE33 SADDIN[5]#  
AE35 SDATAOUTCLK[0]#  
AE37 SDATA[9]#  
P
P
P
-
I
G
P
G
-
AG27 Key Pin  
AG29 Key Pin  
AG31 NC Pin  
-
-
O
B
-
-
-
-
-
AF2  
AF4  
AF6  
AF8  
VSS  
AG33 SADDIN[2]#  
AG35 SADDIN[11]#  
AG37 SADDIN[7]#  
P
P
P
-
G
G
P
-
VSS  
-
-
-
NC Pin  
NC Pin  
page 80  
page 80  
page 80  
-
-
-
-
-
-
AH2  
AH4  
AH6  
AH8  
VCC_CORE  
VCC_CORE  
AMD Pin  
NC Pin  
AF10 NC Pin  
AF12 VSS  
-
-
-
-
-
-
-
-
page 78  
page 80  
-
-
AF14 VCC_CORE  
AF16 VSS  
-
-
-
-
-
-
-
-
AH10 VCC_CORE  
AH12 VSS  
-
-
AF18 VCC_CORE  
AF20 VSS  
-
-
-
-
-
-
-
-
AH14 VCC_CORE  
AH16 VSS  
-
-
AF22 VCC_CORE  
AF24 VSS  
-
-
-
-
-
-
-
-
AH18 VCC_CORE  
AH20 VSS  
-
-
AF26 VCC_CORE  
AF28 NC Pin  
AF30 NC Pin  
AF32 NC Pin  
AF34 VCC_CORE  
AF36 VCC_CORE  
-
-
-
-
-
page 80  
page 80  
page 80  
-
-
-
AH22 VCC_CORE  
AH24 VSS  
-
-
-
-
-
-
-
-
-
-
AH26 VCC_CORE  
AH28 VSS  
-
-
-
-
-
-
-
-
-
-
AH30 NC Pin  
AH32 VSS  
page 80  
-
-
AG1  
AG3  
AG5  
AG7  
AG9  
FERR  
page 79  
P
-
O
I
-
-
-
RESET#  
NC Pin  
Key Pin  
Key Pin  
-
AH34 VSS  
-
-
page 80  
page 80  
page 80  
page 78  
-
-
-
AH36 VSS  
-
-
-
-
-
AJ1  
AJ3  
AJ5  
IGNNE#  
INIT#  
page 79  
page 79  
P
P
-
-
-
-
-
-
AG11 COREFB  
-
-
-
VCC_CORE  
-
Chapter 10  
Pin Descriptions  
75  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Table 24. Cross-Reference by Pin Location (continued)
Pin  
AJ7  
Name  
Description  
page 80  
page 80  
page 80  
page 78  
page 80  
page 80  
page 80  
page 78  
page 83  
page 80  
page 80  
page 81  
L
-
P
-
-
-
-
-
-
-
I
-
I
-
I
I
I
I
I
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
R
-
Pin  
AL1  
Name  
Description  
page 79  
L
P
P
-
P
I
R
-
NC Pin  
NC Pin  
NC Pin  
INTR  
AJ9  
-
-
AL3  
AL5  
AL7  
AL9  
FLUSH#  
VCC_CORE  
NC Pin  
page 79  
I
-
AJ11  
AJ13  
AJ15  
AJ17  
AJ19  
AJ21  
-
-
-
-
Analog  
-
-
page 80  
page 80  
page 80  
page 80  
page 80  
page 78  
page 78  
page 80  
page 78  
page 80  
page 80  
page 81  
-
-
-
NC Pin  
-
-
NC Pin  
-
-
-
NC Pin  
-
-
AL11 NC Pin  
-
-
-
NC Pin  
-
-
AL13 PLLMON2  
AL15 PLLBYPASSCLK#  
O
P
P
P
P
P
-
O
I
-
CLKFWDRST  
P
-
P
-
-
AJ23 VCCA  
AL17  
CLKIN#  
I
P
P
-
AJ25 PLLBYPASS#  
AJ27 NC Pin  
P
-
-
AL19 RSTCLK#  
I
-
AL21 K7CLKOUT  
AL23 CONNECT  
AL25 NC Pin  
O
I
AJ29 SADDIN[0]#  
P
P
P
P
P
-
-
P
-
AJ31  
SFILLVALID#  
G
G
P
G
-
-
AJ33 SADDINCLK#  
AJ35 SADDIN[6]#  
AL27 NC Pin  
-
-
-
AL29 SADDIN[1]#  
AL31 SDATAOUTVALID#  
AL33 SADDIN[8]#  
AL35 SADDIN[4]#  
AL37 SADDIN[10]#  
P
P
P
P
P
-
I
-
AJ37  
AK2  
AK4  
AK6  
AK8  
SADDIN[3]#  
VSS  
O
I
P
P
G
G
-
VSS  
-
-
I
CPU_PRESENCE#  
NC Pin  
page 78  
page 80  
-
-
I
-
-
AM2  
AM4  
AM6  
AM8  
VCC_CORE  
VSS  
-
AK10 VCC_CORE  
AK12 VSS  
-
-
-
-
-
-
-
VSS  
-
-
-
AK14 VCC_CORE  
AK16 VSS  
-
-
NC Pin  
page 80  
-
-
-
-
-
AM10 VCC_CORE  
AM12 VSS  
-
-
-
AK18 VCC_CORE  
AK20 VSS  
-
-
-
-
-
-
-
AM14 VCC_CORE  
AM16 VSS  
-
-
-
AK22 VCC_CORE  
AK24 VSS  
-
-
-
-
-
-
-
AM18 VCC_CORE  
AM20 VSS  
-
-
-
AK26 VCC_CORE  
AK28 VSS  
-
-
-
-
-
-
-
AM22 VCC_CORE  
AM24 VSS  
-
-
-
AK30 VCC_CORE  
AK32 VSS  
-
-
-
-
-
-
-
AM26 VCC_CORE  
AM28 VSS  
-
-
-
AK34 VCC_CORE  
AK36 VCC_CORE  
-
-
-
-
-
-
-
AM30 VCC_CORE  
-
-
-
76  
Pin Descriptions  
Chapter 10  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Table 24. Cross-Reference by Pin Location (continued)  
Pin  
Name  
Description  
L
-
P
-
R
-
AM32 VSS  
AM34 VCC_CORE  
AM36 VSS  
-
-
-
-
-
-
AN1  
AN3  
AN5  
AN7  
AN9  
No Pin  
NMI  
page 80  
-
-
-
P
P
-
I
-
SMI#  
I
-
NC Pin  
NC Pin  
page 80  
page 80  
page 80  
page 80  
page 80  
page 78  
page 78  
page 80  
-
-
-
-
-
AN11 NC Pin  
-
-
-
AN13 PLLMON1  
AN15 PLLBYPASSCLK  
AN17 CLKIN  
O
P
P
P
P
P
-
B
I
-
-
I
P
P
-
AN19 RSTCLK  
I
AN21 K7CLKOUT#  
AN23 PROCRDY  
AN25 NC Pin  
O
O
-
P
-
page 80  
page 80  
AN27 NC Pin  
-
-
-
AN29 SADDIN[12]#  
AN31 SADDIN[14]#  
AN33 SDATAINVALID#  
AN35 SADDIN[13]#  
AN37 SADDIN[9]#  
P
P
P
P
P
I
G
G
P
G
G
I
I
I
I
Chapter 10  
Pin Descriptions  
77  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
10.3  
Detailed Pin Descriptions  
The information in this section pertains to Table 23 on page 64  
and Table 24 on page 70.  
A20M# Pin  
AMD Pin  
A20M# is an input from the system used to simulate address  
wrap-around in the 20-bit 8086.  
AMD Socket A processors do not implement a pin at location  
AH6. All Socket A designs must have a top plate or cover that  
b lock s t h is p in loca t ion . Wh e n t h e cove r p la t e b lock s t h is  
location, a non-AMD part (e.g., PGA370) does not fit into the  
socket. However, socket manufacturers are allowed to have a  
contact loaded in the AH6 position. Therefore, motherboard  
socket design should account for the possibility that a contact  
could be loaded in this position.  
AMD Duron™ System  
Bus Pins  
S e e t h e AM D At h l on ™ a n d AM D Du r on ™ Sy st em Bu s  
Specification, order# 21902 for information about the system  
b u s p in s —P ROCR DY, P WROK, R E SE T#, SADDIN[14:2]#,  
S A D D I N C L K # , S A D D O U T [ 1 4 :2 ] # , S A D D O U T C L K # ,  
SDATA[63:0]#, SDATAINCLK[3:0]#, SDATAINVALID#,  
SDATAOUTCLK[3:0]#, SDATAOUTVALID#, SFILLVALID#.  
Analog Pin  
Treat this pin as a NC.  
CLKFWDRST Pin  
CLKFWDRST resets clock-forward circuitry for both the system  
and processor.  
CLKIN and RSTCLK  
(SYSCLK) Pins  
Con n e ct CLKIN (AN17) wit h R STCLK (AN19) a n d n a m e it  
SYSCLK. Connect CLKIN# (AL17) with RSTCLK# (AL19) and  
n a me it SYSCLK#. Le n gt h ma t ch t h e clock s from t h e clock  
generator to the Northbridge and processor.  
See “SYSCLK and SYSCLK#” on page 83 for more information.  
CONNECT Pin  
CONNE CT is a n in p u t fr om t h e syst e m u se d for p owe r  
management and clock-forward initialization at reset.  
COREFB and  
COREFB# Pins  
COREFB and COREFB# are outputs to the system that provide  
processor core voltage feedback to the system.  
CPU_PRESENCE# Pin  
CP U _P R E SE NCE # is con n e ct e d t o VSS on t h e p r oce ssor  
package. If pulled-up on the motherboard, CPU_PRESENCE#  
may be used to detect the presence or absence of a processor.  
78  
Pin Descriptions  
Chapter 10  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
DBRDY and DBREQ#  
Pins  
DBRDY (AA1) and DBREQ# (AA3) are rout ed t o the debug  
con n e ct or. DBR E Q# is t ie d t o VCC_COR E wit h a p u llu p  
resistor.  
FERR Pin  
F E R R is a n ou t p u t t o t h e syst e m t h a t is a sse r t e d for a ny  
unmasked numerical exception independent of the NE bit in  
CR 0. F E R R is a p u sh -p u ll a ct ive H igh sign a l t h a t mu st b e  
inverted and level shifted to an active Low signal. For more  
in for m a t ion a b ou t F E R R a n d F E R R #, se e t h e “ R e q u ire d  
Cir cu it s” ch a p t e r of t h e AMD At h lon ™ Pr ocessor-Ba sed  
Motherboard Design Guide, order# 24363.  
FID[3:0] Pins  
The FID[3:0] pins drive a value of:  
FID[3:0] = 0 1 0 0  
that corresponds to a 5x SYSCLK multiplier after PWROK is  
asserted to the processor. This information is used by the  
Northbridge to create the SIP stream that the Northbridge  
sends to the processor after RESET# is deasserted.  
For more information, see “SYSCLK Multipliers” on page 24  
and “Frequency Identification (FID[3:0])” on page 35 for the  
AC and DC characteristics for FID[3:0].  
FLUSH# Pin  
FLUSH# must be tied to VCC_CORE with a pullup resistor. If a  
d eb u g con n e ct or is im p le me n t ed , F LU SH # is rou t e d t o t h e  
debug connector.  
IGNNE# Pin  
INIT# Pin  
IGNNE# is an input from the system that tells the processor to  
ignore numeric errors.  
INIT# is a n in p u t from t h e syst e m t h a t re se t s t h e in t e ge r  
registers without affecting the floating-point registers or the  
internal caches. Execution starts at 0FFFF FFF0h.  
INTR Pin  
JTAG Pins  
INTR is an input from the system that causes the processor to  
start an interrupt acknowledge transaction that fetches the  
8-bit interrupt vector and starts execution at that location.  
TCK (Q1), TMS (Q3), TDI (U1), TRST# (U3), and TDO (U5) are  
t h e J TAG in t e r fa ce . Con n e ct t h e se p in s d ir e ct ly t o t h e  
mot h e r b oa rd d eb u g con n e ct or. Pu llu p TDI, TCK, TMS, a n d  
TRST# to VCC_CORE with pullup resistors.  
Chapter 10  
Pin Descriptions  
79  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
K7CLKOUT and  
K7CLKOUT# Pins  
K7CLKOUT (AL21) and K7CLKOUT# (AN21) are each run for 2  
to 3 inches and then terminated with a resistor pair, 100 ohms to  
VCC_CORE and 100 ohms to VSS. The effective termination  
resistance and voltage are 50 ohms and VCC_CORE/2.  
Key Pins  
These 16 locations are for processor type keying for forwards  
and backwards compatibility (G7, G9, G15, G17, G23, G25, N7,  
Q7, Y7, AA7, AG7, AG9, AG15, AG17, AG27, a n d AG29).  
Mot h e r b oa rd d e sign e rs sh ou ld t re a t key p in s like NC (No  
Connect) pins. A socket designer has the option of creating a  
top mold piece that allows PGA key pins only where designated.  
However, sockets that populate all 16 key pins must be allowed,  
so the motherboard must always provide for pins at all key pin  
locations.  
NC Pins  
The motherboard should provide a plated hole for an NC pin.  
The pin hole should not be electrically connected to anything.  
NMI Pin  
NMI is an input from the system that causes a non-maskable  
interrupt.  
PGA Orientation Pins  
No pin is present at pin locations A1 and AN1. Motherboard  
d e sign e rs sh ou ld n ot a llow for a P GA socke t p in a t t h e se  
locations.  
For more information, see the AMD Athlon™ Processor-Based  
Motherboard Design Guide, order# 24363.  
PLL Bypass and Test  
Pins  
PLLTEST# (AC3), PLLBYPASS# (AJ 25), PLLMON1 (AN13),  
P L L M O N 2 ( A L 1 3 ) , P L L BY PA S S C L K ( A N 1 5 ) , a n d  
P LLBYPASSCLK# (AL15) a r e t h e P LL b yp a ss a n d t e st  
interface. This interface is tied disabled on the motherboard.  
All six pin signals are routed to the debug connector. All four  
processor inputs (PLLTEST#, PLLBYPASS#, PLLMON1, and  
PLLMON2) are tied to VCC_CORE with pullup resistors.  
PWROK Pin  
The PWROK input to the processor must not be asserted until  
all voltage planes in the system are within specification and all  
system clocks are running within specification.  
F o r m o r e i n f o r m a t i o n , s e e “ S i g n a l a n d P o w e r -U p  
Requirements” on page 53.  
RSVD Pins  
Reserved pins (N1, N3, and N5) must have pulldown resistors to  
ground on the motherboards.  
80  
Pin Descriptions  
Chapter 10  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
SADDIN[1:0]# and  
SADDOUT[1:0]# Pins  
The mobile AMD Duron processor model 7 does not support  
SADDIN[1:0]# or SADDOUT[1:0]#. SADDIN[1]# is tied to VCC  
wit h p u llu p r e sist or s, if t h is b it is n ot su p p or t e d b y t h e  
Nor t h b r id ge (fu t u r e m od e ls of t h e m ob ile AMD Du r on  
processors may support SADDIN[1]#). SADDOUT[1:0]# are tied  
to VCC with pullup resistors if these pins are supported by the  
Northbridge. For more information, see the AMD Athlon™ and  
AMD Duron™ System Bus Specification, order# 21902.  
Scan Pins  
SMI# Pin  
SCANSHIFTEN (Q5), SCANCLK1 (S1), SCANINTEVAL (S3),  
and SCANCLK2 (S5) are the scan interface. This interface is  
AMD internal and is tied disabled with pulldown resistors to  
ground on the motherboard.  
SMI# is an input that causes the processor to enter the system  
management mode.  
SOFTVID[4:0] and  
VID[4:0] Pins  
The VID[4:0] (Voltage ID) and SOFTVID[4:0] (Software driven  
Voltage ID) outputs are used by the DC to DC power converter  
t o se le ct t h e p rocessor core volt a ge. Th e VID[4:0] p in s a re  
st rapped to ground or left unconnected on the package and  
must be pulled up on the motherboard. The SOFTVID[4:0] pins  
are open drain and 2.5-V tolerant. The SOFTVID[4:0] pins of  
the processor must not be pulled to voltages higher than 2.5 V.  
The motherboard is required to implement a VID multiplexer to  
select a deterministic voltage for the processor at power–up  
b e fore t h e P WROK in p u t is a sse r t e d . Be fore P WROK is  
a sse r t e d , t h e VID m u lt ip le xe r d r ive s t h e VID va lu e from  
VID[4:0] pins to the DC to DC converter for VCC_CORE. After  
PWROK is asserted, the VID multiplexer drives the VID value  
from t h e SOFTVID[4:0] p in s t o t h e DC t o DC conver te r for  
VCC_COR E of t h e p roce ssor. R e fe r t o t h e AMD At h lon ™  
Processor-Based Motherboard Design Guide, order# 24363 for the  
recommended VID multiplexer circuit.  
The SOFTVID[4:0] pins are driven by the processor to select the  
m a ximu m VCC_COR E of t h e p roce ssor a s re p or t e d by t h e  
Maximum VID field of the FidVidStatus MSR within 20 ns of  
P W R O K a s s e r t i o n . Be f o r e P W R O K i s a s s e r t e d , t h e  
SOFTVID[4:0] outputs are not driven to a deterministic value.  
The SOFTVID[4:0] outputs must be used to select VCC_CORE  
a ft e r P WROK is a sse r t e d . An y t im e t h e R E SE T# in p u t is  
asserted, the SOFTVID[4:0] pins will be driven to select the  
maximum voltage.  
Chapter 10  
Pin Descriptions  
81  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Note: The Startup VID and Maximum VID fields of the  
FidVidStatus MSR report the same value that corresponds  
to the nominal voltage that the processor requires to operate  
at maximum frequency.  
AMD Powe r Now!™ t e ch n ology ca n u se t h e F ID_Ch a n ge  
p rot ocol d e scr ib e d in Se ct ion on p a ge 9 t o t ra n sit ion t h e  
SOFTVID[4:0] out put s and therefore VCC_COR E as part of  
processor performance state transitions.  
The VID codes used by the mobile AMD Duron processor model  
7 are defined in Table 25.  
Note: VID codes for the mobile AMD Duron processors are  
different from the VID codes for the desktop AMD Duron  
processors.  
Table 25. SOFTVID[4:0] and VID[4:0] Code to Voltage Definition  
VID[4:0]  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
VCC_CORE (V)  
2.000  
VID[4:0]  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
VCC_CORE (V)  
1.275  
1.950  
1.250  
1.900  
1.225  
1.850  
1.200  
1.800  
1.175  
1.750  
1.150  
1.700  
1.125  
1.650  
1.100  
1.600  
1.075  
1.550  
1.050  
1.500  
1.025  
1.450  
1.000  
1.400  
0.975  
1.350  
0.950  
1.300  
0.925  
Shutdown  
Shutdown  
STPCLK# Pin  
STPCLK# is an input that causes the processor to enter a lower  
power mode and issue a Stop Grant special cycle.  
82  
Pin Descriptions  
Chapter 10  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
SYSCLK and SYSCLK#  
SYSCLK a n d SYSCLK# a re d iffe re n tial in p u t clock sign a ls  
provided to the processors PLL from a system-clock generator.  
See “CLKIN and RSTCLK (SYSCLK) Pins” on page 78 for more  
information.  
THERMDA and  
THERMDC Pins  
Thermal Diode anode (THERMDA) and cathode (THERMDC)  
p in s a r e u se d t o m on it or t h e a ct u a l t e m p e r a t u r e of t h e  
processor die, providing more accurate temperature control to  
the system. See Table 17 on page 48 for more details.  
VCCA Pin  
VCCA is the processor PLL supply. For information about the  
VCCA pin, see Table 7, “VCCA AC and DC Characteristics,on  
page 35 and the AMD At hlon™ Processor-Ba sed Mot herboard  
Design Guide, order# 24363.  
VREF_SYS Pin  
VREF_SYS (W5) drives the threshold voltage for the system  
bus input receivers. The value of VREF_SYS is system specific.  
In a d d it ion , t o m in im ize VCC_COR E n oise re j e ct ion from  
V R E F _S YS , i n c l u d e d e c o u p l i n g c a p a c i t o r s . Fo r m o r e  
information, see the AMD Athlon™ Processor-Based Motherboard  
Design Guide, order# 24363.  
ZN and ZP Pins  
ZN (AC5) and ZP (AE5) are the push-pull compensation circuit  
p in s. In P u sh -P u ll m od e (se le ct e d b y t h e SIP p a r a m e t e r  
SysPushPull asserted), ZN is tied to VCC_CORE with a resistor  
t h a t h a s a re sist a n ce m a t ch in g t h e im p e d a n ce Z0 of t h e  
transmission line. ZP is tied to VSS with a resistor that has a  
resistance matching the impedance Z0 of the transmission line.  
Chapter 10  
Pin Descriptions  
83  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
84  
Pin Descriptions  
Chapter 10  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
11  
Ordering Information  
11.1  
Standard Mobile AMD Duron™ Processor Model 7 Products  
AMD st a n d a rd p rod u ct s a re ava ilab le in seve ra l op e ra t in g  
ra n ge s. Th e or d e r in g p a r t n u m b e r (OP N) is for m e d b y a  
combination of the elements shown in Figure 17. This OPN is  
given as an example only.  
CPGA OPN  
D HM 1000 A V S 1 B  
Max FSB: B= 200 MHz  
Size of L2 Cache: 1=64Kbytes  
Die Temperature: S=95ºC  
Operating Voltage: L=1.50 V, Q=1.45 V, V=1.40 V  
Package Type: A = CPGA  
Speed: 0800=800 MHz, 0850=850, 0900=900 MHz,  
0950=950 MHz, 1000=1000 MHz  
Generation: HM = High-Performance Processor for Mobile Systems  
Family/Architecture: D = AMD Duron™ Processor Architecture  
Note: Spaces are added to the number shown  
above for viewing clarity only.  
Figure 17. OPN Example for the Mobile AMD Duron™ Processor Model 7  
Chapter 11  
Ordering Information  
85  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
86  
Ordering Information  
Chapter 11  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Signals and Bits  
Appendix A  
Appendix A  
Conventions, Abbreviations,  
and References  
This section contains information about the conventions and  
abbreviations used in this document.  
Active-Low Signals—Signal names containing a pound sign,  
such as SFILL#, indicate active-Low signals. They are  
asserted in their Low-voltage state and negated in their  
High-voltage state. When used in this context, High and  
Low are written with an initial upper case letter.  
Signal Ranges—In a range of signals, the highest and lowest  
signal numbers are contained in brackets and separated by  
a colon (for example, D[63:0]).  
Reserved Bits and Signals—Signals or bus bits marked  
reserved must be driven inactive or left unconnected, as  
indicated in the signal descriptions. These bits and signals  
are reserved by AMD for future implementations. When  
software reads registers with reserved bits, the reserved bits  
must be masked. When software writes such registers, it  
must first read the register and change only the  
non-reserved bits before writing back to the register.  
Three-State —In timing diagrams, signal ranges that are  
high impedance are shown as a straight horizontal line  
half-way between the high and low levels.  
87  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Invalid and Dont-Care —In timing diagrams, signal ranges  
that are invalid or don't-care are filled with a screen  
pattern.  
Data Terminology  
The following list defines data terminology:  
Quantities  
A word is two bytes (16 bits)  
A doubleword is four bytes (32 bits)  
A quadword is eight bytes (64 bits)  
A mobile AMD Duron processor model 7 cache line is  
eight quadwords (64 bytes)  
Addressing—Memory is addressed as a series of bytes on  
eight-byte (64-bit) boundaries in which each byte can be  
separately enabled.  
Abbreviations—The following notation is used for bits and  
bytes:  
Kilo (K, as in 4-Kbyte page)  
Mega (M, as in 4 Mbits/sec)  
Giga (G, as in 4 Gbytes of memory space)  
See Table 26 for more abbreviations.  
Little-Endian Convention —The byte with the address  
xx...xx00 is in the least-significant byte position (little end).  
In byte diagrams, bit positions are numbered from right to  
left —the little end is on the right and the big end is on the  
left. Data structure diagrams in memory show low addresses  
at the bottom and high addresses at the top. When data  
items are aligned, bit notation on a 64-bit data bus maps  
directly to bit notation in 64-bit-wide memory. Because byte  
addresses increase from right to left, strings appear in  
reverse order when illustrated.  
Bit Ranges—In text, bit ranges are shown with a dash (for  
example, bits 9–1). When accompanied by a signal or bus  
name, the highest and lowest bit numbers are contained in  
brackets and separated by a colon (for example, AD[31:0]).  
Bit Values—Bits can either be set to 1 or cleared to 0.  
Hexadecimal and Binary Numbers—Unless the context  
makes interpretation clear, hexadecimal numbers are  
followed by an h and binary numbers are followed by a b.  
88  
Appendix A  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Abbreviations and Acronyms  
Table 26 contains the definitions of abbreviations used in this  
document.  
Table 26.  
Abbreviations  
Abbreviation  
A
Meaning  
Ampere  
F
Farad  
G
Giga–  
Gbit  
Gbyte  
H
Gigabit  
Gigabyte  
Henry  
h
Hexadecimal  
Kilo–  
K
Kbyte  
M
Kilobyte  
Mega–  
Mbit  
Mbyte  
MHz  
m
Megabit  
Megabyte  
Megahertz  
Milli–  
ms  
Millisecond  
Milliwatt  
Micro–  
mW  
µ
µA  
µF  
Microampere  
Microfarad  
Microhenry  
Microsecond  
Microvolt  
nano–  
µH  
µs  
µV  
n
nA  
nF  
nanoampere  
nanofarad  
nanohenry  
nanosecond  
Ohm  
nH  
ns  
ohm  
pF  
picofarad  
picohenry  
picosecond  
pH  
ps  
Appendix A  
89  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Table 26.  
Abbreviations (continued)  
Abbreviation  
Meaning  
Second  
Volt  
s
V
W
Watt  
Table 27 cont a ins t he defin it ions of acronym s u sed in t his  
document.  
Table 27.  
Acronyms  
Abbreviation  
ACPI  
Meaning  
Advanced Configuration and Power Interface  
Accelerated Graphics Port  
AGP  
APCI  
AGP Peripheral Component Interconnect  
Application Programming Interface  
Basic Input/Output System  
API  
BIOS  
BIST  
Built-In Self-Test  
BIU  
Bus Interface Unit  
CPGA  
DDR  
Ceramic Pin Grid Array  
Double-Data Rate  
DIMM  
DMA  
DRAM  
EIDE  
EISA  
Dual Inline Memory Module  
Direct Memory Access  
Direct Random Access Memory  
Enhanced Integrated Device Electronics  
Extended Industry Standard Architecture  
Enhanced Programmable Read Only Memory  
First In, First Out  
EPROM  
FIFO  
GART  
HSTL  
IDE  
Graphics Address Remapping Table  
High-Speed Transistor Logic  
Integrated Device Electronics  
Industry Standard Architecture  
Joint Electron Device Engineering Council  
Joint Test Action Group  
ISA  
JEDEC  
JTAG  
LAN  
Large Area Network  
LRU  
Least-Recently Used  
LVTTL  
MSB  
Low Voltage Transistor to Transistor Logic  
Most Significant Bit  
MTRR  
Memory Type and Range Registers  
90  
Appendix A  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Table 27.  
Acronyms (continued)  
Abbreviation  
MUX  
NMI  
Meaning  
Multiplexer  
Non-Maskable Interrupt  
Organic Ball Grid Array  
Open Drain  
OBGA  
OD  
PBGA  
PA  
Plastic Ball Grid Array  
Physical Address  
PCI  
Peripheral Component Interconnect  
Page Directory Entry  
PDE  
PDT  
Page Directory Table  
PLL  
Phase Locked Loop  
PMSM  
POS  
Power Management State Machine  
Power-On Suspend  
POST  
RAM  
ROM  
RXA  
Power-On Self-Test  
Random Access Memory  
Read Only Memory  
Read Acknowledge Queue  
System DRAM Interface  
Synchronous Direct Random Access Memory  
Serial Initialization Packet  
System Management Bus  
Serial Presence Detect  
Synchronous Random Access Memory  
Serial Read Only Memory  
Translation Lookaside Buffer  
Top of Memory  
SDI  
SDRAM  
SIP  
SMbus  
SPD  
SRAM  
SROM  
TLB  
TOM  
TTL  
Transistor to Transistor Logic  
Virtual Address Space  
VAS  
VPA  
Virtual Page Address  
VGA  
USB  
Video Graphics Adapter  
Universal Serial Bus  
ZDB  
Zero Delay Buffer  
Appendix A  
91  
Preliminary Information  
Mobile AMD Duron™ Processor Model 7 Data Sheet  
24068FDecember 2001  
Related Publications  
Th e followin g b ook s d iscu ss va r iou s a sp e ct s of com p u t e r  
architecture that may enhance your understanding of AMD  
products:  
AMD Publications  
Mobile AMD At h lon ™ a n d Mobile AMD Du r on ™ Pr ocessor  
System Requirements, order# 24106  
Mobile AMD Athlon™ and Mobile AMD Duron™ Processor Power  
Module Supply Design Guide, order# 24125  
Mobile System Thermal Design Guide, order# 24383  
Measuring Temperature on AMD Athlon™ and AMD Duron™ Pin  
Grid Array Processors with and without an On-die Thermal Diode,  
order# 24228  
Thermal Characterization of Notebook PCs, order# 24382  
Methodologies for Measuring Power, order# 24353  
Methodologies for Measuring Temperature on AMD Athlon™ and  
AMD Duron™ Processors, order# 24228  
Instruction Sheet for Mobile Thermal Kits, order# 24400  
AMD Mobile Thermal Kit Documentation and Software CD–ROM,  
order# 24406  
Websites  
Visit the AMD website for documentation of AMD products.  
www.amd.com  
Other websites of interest include the following:  
J EDEC home page —www.jedec.org  
IEEE home page —www.computer.org  
AGP Forum —www.agpforum.org  
92  
Appendix A  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY