E672-EDGE672 [ETC]

500 MHz Pin Electronics Window Comparator and Load ; 500兆赫引脚电子窗口比较器和负载\n
E672-EDGE672
型号: E672-EDGE672
厂家: ETC    ETC
描述:

500 MHz Pin Electronics Window Comparator and Load
500兆赫引脚电子窗口比较器和负载\n

比较器 电子
文件: 总15页 (文件大小:118K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Edge672  
500 MHz Pin Electronics  
Window Comparator and Load  
PRELIMINARY  
EDGE HIGH-PERFORMANCE PRODUCTS  
Features  
Description  
The Edge672 is a monolithic ATE pin electronics • 11V Common Mode Range  
comparator and load solution manufactured in a high- • Programmable to ±35 mA  
performance complementary bipolar process. In • Comparator Input Tracking > 6 V/ns with  
automatic test equipment, the Edge672 incorporates a  
< ±25 ps dispersion  
dynamic load and window comparator suitable for very • Low Leakage (L+C) < 1 µA  
fast, bidirectional channels in Memory, VLSI, and Mixed- • Comparator Input Power Down Mode  
Signal test systems.  
(for extremely low leakage operation < 250 nA)  
• Small footprint (32 pin TQFP)  
The three-statable load is capable of sourcing and sinking  
35 mA over an 11V common mode range. Source and  
sink currents are independently programmable. The load  
is configurable to support a clamping function, a  
termination function, plus any custom load  
configurations.  
Functional Block Diagram  
The comparator is capable of tracking very fast edges  
and passing sub-ns pulses over a 11V common mode  
range while maintaining excellent timing accuracy. The  
differential digital outputs are adjustable to  
accommodate ECL levels, PECL levels, or custom levels  
to interface directly with a CMOS ASIC.  
ISOURCE  
ISCIN  
X
40  
The inclusion of a high performance load and comparator  
in a 32 pin TQFP (7 mm X 7 mm) package offers a  
highly integrated solution traditionally implemented with  
multiple integrated circuits or discrete components.  
BRIDGE  
SOURCE  
VCMOUT  
LOAD  
VCMIN  
BRIDGE  
SINK  
ISINK  
X –40  
ISKIN  
LDEN  
LDEN*  
QA*  
CVA  
VINP  
CVB  
+
A
B
QA  
IPD  
QB  
+
QB*  
PECL  
www.semtech.com  
Revision 1/ June 13, 2000  
1
Edge672  
EDGE HIGH-PERFORMANCE PRODUCTS  
PRELIMINARY  
PIN Description  
Pin Name  
Pin #  
Description  
Load  
VCMIN  
28  
Analog input that programs the commutating voltage.  
ISCIN  
ISKIN  
31  
29  
Analog current inputs that program the load source and sink currents.  
Wide voltage differential input pins that turn the load on and off.  
LDEN  
LDEN*  
1
2
VCMCOMP  
LOAD  
27  
21  
26  
Analog input pin. A .01 µF or greater caacitor to ground should be connected.  
Load diode bridge output.  
VCMOUT  
Analog voltage which drives the diode bridge.  
BRIDGE SOURCE  
BRIDGE SINK  
25  
24  
Upper and lower half (respectively) of the diode bridge.  
Comparator  
VINP  
19  
Analog voltage input for the window comparator. The VINP connects to both of  
the noninverting (+) inputs of the comparators.  
QA / QA*  
QB / QB*  
4, 5  
8, 7  
Differential output pins from the window comparator.  
CVA, CVB  
15, 16  
Analog input pins used to set the high and low levels for the window  
comparator.  
IPD  
14  
TTl compatible input which activates the input power down mode of the window  
comparator.  
Power  
VEE  
6, 18, 23, 32  
3, 9, 17, 20  
10, 22, 30  
11  
Negative power supply.  
VCC  
Positive power supply.  
GND  
Device ground.  
PECL  
Analog power supply which sets the comparator output levels.  
Test Pins  
CATHODE  
ANODE  
12  
13  
Cathode and anode ends of a series of diodes used to monitor the die  
temperature.  
www.semtech.com  
2000 Semtech Corp.  
2
Edge672  
EDGE HIGH-PERFORMANCE PRODUCTS  
PRELIMINARY  
PIN Description (continued)  
25  
32  
1
BRIDGE SINK  
LD EN  
LD EN*  
VCC  
QA  
VEE  
GND  
LOAD  
VCC  
VINP  
VEE  
QA*  
VEE  
QB*  
VCC  
QB  
17  
9
2000 Semtech Corp.  
3
www.semtech.com  
Edge672  
EDGE HIGH-PERFORMANCE PRODUCTS  
PRELIMINARY  
Circuit Description  
Load  
Commutating Voltage  
Introduction  
VCMIN is a high input impedance voltage input node  
that sets the voltage level at which the diode bridge  
switches from sourcing to sinking currents. If LOAD is  
more positive than VCMIN, the bridge will sink current  
from the DUT into the Edge672 (see Figure 1). If LOAD  
is more negative than VCMIN, the bridge will source  
current from the Edge672 into the DUT (see Figure 2).  
The load section is capable of sourcing and sinking up  
to 35 mA, both statically and dynamically, or being placed  
in a high impedance state.  
Load Enable  
The load is controlled by the load enable input (LDEN /  
LDEN*). If LDEN is more positive than LDEN*, the output  
diode bridge will be active. If LDEN is more negative  
than LDEN*, the LOAD pin will be placed in a high  
impedance state.  
I
SOURCE  
LOAD  
DUT  
VCMIN  
I
SINK  
Source and Sink Levels  
Figure 1. LOAD > VCMIN  
The Edge 672 sinks DUT current.  
The amount of current that the diode bridge can source  
and sink is adjustable from 0 mA to 35 mA. The source  
and sink levels are separate and independent.  
I
SOURCE  
ISCIN is a current input node which programs the bridge  
source current. There is a gain of 40 between the ISCIN  
current and the bridge source current. ISKIN is a current  
input node that programs the bridge sink current. There  
is a gain of 40 between the ISKIN current and the bridge  
sink current.  
LOAD  
DUT  
VCMIN  
I
SINK  
Figure 2. LOAD < VCMIN  
The Edge 672 sources DUT current.  
ISOURCE = 40 * ISCIN  
ISINK = 40 * ISKIN  
Commutating Voltage Compensation  
Caution: The ISKIN and ISCIN inputs are designed for  
positive current between 0 mA and .875 mA flowing into  
the Edge672. Care should be taken to insure that current  
is never required to flow out of the Edge672 on these two  
nodes.  
The VCMOUT pin is the actual commutation voltage seen  
by the load diode bridge (see Figure 3). This node  
requires a fixed .01 µF capacitor (with good high  
frequency characteristics) to ground.  
The VCMCOMP pin is an analog output pin that requires  
a fixed .01 µF chip capacitor (with good high frequency  
characteristics) to ground (See Figure 3). This capacitor  
is used to compensate an internal node on the on-chip  
op amp used to buffer the commutating voltage input.  
VCMIN  
LOAD  
VCMCOMP  
.01 µF  
VCMOUT  
BRIDGE BRIDGE  
SINK SOURCE  
.01 µF  
Figure 3. Commutating Voltage Compensation  
www.semtech.com  
2000 Semtech Corp.  
4
Edge672  
EDGE HIGH-PERFORMANCE PRODUCTS  
PRELIMINARY  
Circuit Description (continued)  
Load Configuration  
Clamping Function  
The load is flexible in that VCMOUT, BRIDGE SINK, and  
BRIDGE SOURCE are all brought out to separate pins.  
This flexibility allows the load to be configured in several  
different ways.  
The load can also act as set of programmable clamps  
that can absorb any DUT overshoot that would normally  
be present when the pin electronics are receiving a DUT  
signal. By connecting VCMOUT and BRIDGE SINK  
together, and then bringing in an externally buffered  
voltage to BRIDGE SOURCE (see Figure 5), VCMIN  
becomes the low voltage clamp and the external voltage  
becomes the high voltage clamp.  
The standard load topology, where VCMOUT, BRIDGE  
SINK, and BRIDGE SOURCE are all connected together  
(see Figure 4), behaves like the traditional active load.  
VCMIN  
LOAD  
VCMIN  
(V clamp Lo)  
LOAD  
BRIDGE  
SOURCE  
VCMOUT BRIDGE BRIDGE  
SINK SOURCE  
VCMOUT BRIDGE  
SINK  
VCMIN  
Figure 4. Standard Active Load Configuration  
Figure 5. Load as a Programmable Clamp  
2000 Semtech Corp.  
5
www.semtech.com  
Edge672  
EDGE HIGH-PERFORMANCE PRODUCTS  
PRELIMINARY  
Circuit Description (continued)  
Window Comparator  
allowing any noise present to cause repeated threshold  
crossings.  
Introduction  
The Edge672 is designed with 4 mV of hysteresis. This  
hysteresis is nonadjustable and requires no external  
support. The amount of hysteresis was chosen to allow  
stable and reliable transitions in most system  
environments, without noticeably affecting the  
comparator performance.  
The Edge672 has two comparators connected on-chip  
as a window comparator to determine whether the DUT  
is in a high, low, or indeterminate state.  
Functionality  
Actual Threshold Voltage  
The VINP pin is tied to the positive inputs of both  
comparators (see Figure 6).  
2 mV  
4 mV  
Input Condition  
VINP > CVA  
VINP < CVA  
VINP > CVB  
VINP < CVB  
Output Condition  
QA = High; QA* = Low  
QA = Low; QA* = High  
QB = High; QB* = Low  
QB = Low; QB* = High  
Programmed Threshold  
Voltage  
Figure 7. Hysteresis  
The effects of hysteresis are visible in two categories -  
offset voltage and propagation delay. The amount of  
hysteresis must be large enough to overcome the system  
noise floor, yet small enough not to increase offset  
voltage effects significantly.  
QA*  
QA  
CVA  
+
VINP  
+
QB  
QB*  
CVB  
Input Protection  
Figure 6. Comparator Functionality  
The VINP pin has an internal 50series resistor and  
two over-voltage diodes capable of shunting up to 100  
mA (see Figure 8) and, therefore, requires no external  
protection circuitry. The over-voltage input range that  
the comparator can withstand is determined by the power  
supply rails and the following equations:  
Thresholds  
CVA and CVB are the two comparator threshold levels.  
These inputs are high impedance voltage controlled  
inputs that determine at which VINP input voltage the  
comparator will change states.  
VEE .7 (100 mA * 50) < VINP <  
VCC + .7 + (100 mA * 50)  
Hysteresis  
or  
Hysteresis is a measure of the change in threshold  
voltage as a function of the comparator output state  
(see Figure 7). Typically, hysteresis is used to prevent  
multiple comparator output transitions due to slow input  
slew rates in a noisy environment. These slower inputs  
remain in the transition region for longer periods of time,  
VEE 5.7V < VINP < VCC + 5.7V.  
www.semtech.com  
2000 Semtech Corp.  
6
Edge672  
EDGE HIGH-PERFORMANCE PRODUCTS  
PRELIMINARY  
Circuit Description (continued)  
and can no longer track fast edges, in particular, fast  
falling edges.  
VCC  
The IPD pin is a TTL compatible input which controls the  
two modes. With IPD = low, the comparator is in its  
normal high speed mode, supporting maximum AC  
performance.  
+
50  
VINP  
+
With IPD = high, the comparator is in Power Down Mode.  
The input bias current decreases to < 250 nA. The  
comparator still functions, but can track edges only up  
to 25 mV/ns.  
VEE  
Thermal Monitor  
Figure 8. Input Protection  
An on-chip thermal monitor is accessible through the  
CATHODE and ANODE pins. These nodes connect to  
five diodes in series (see Figure 9) and may be used to  
accurately measure the junction temperature at any time.  
For a wider protected input range, an additional external  
series resistor may be added.  
Comparator PECL Output Capability  
An external bias current of 100 µA is injected through  
the string, and the measured voltage corresponds to a  
specific junction temperature with the following equation:  
PECL is a variable analog voltage power supply that  
determines the common mode voltage of the comparator  
digital outputs. With PECL connected to ground, the  
outputs generate standard differential ECL levels.  
However, the outputs will track the PECL input, remaining  
one diode drop below it as PECL is varied between ground  
and +5V. By setting PECL appropriately, a fully differential  
comparator output may interface directly to a CMOS ASIC  
without any translators.  
Tj[°C] = {(ANODE - CATHODE)/5 - .7} / (-.00208).  
ANODE  
Bias Current  
Input Power Down  
Temperature coefficient = –10 mV/ C  
˚
The comparator has a mechanism where it can drastically  
reduce the input bias current flowing into the VINP pin,  
while still maintaining a functional comparator. In this  
mode, however, the comparator slows down significantly  
CATHODE  
Figure 9. Thermal Diode String  
2000 Semtech Corp.  
7
www.semtech.com  
Edge672  
EDGE HIGH-PERFORMANCE PRODUCTS  
PRELIMINARY  
Circuit Description (continued)  
Delay Dispersion  
Propagation delay dispersion is defined as the maximum  
deviation of the propagation delay taken at the eight  
measurement points (see Figure 10) for 1V and 3 V  
input signals described below. The parameters of interest  
are:  
Given a constant temperature and voltage environment  
(within the bounds of the recommended operating  
conditions), the propagation delay dispersion (TSD)  
indicates how much variation in propagation delay time  
can be expected for one comparator over a wide range  
of input conditions. Thus, the propagation delay of a  
comparator can be described as:  
Slew rate  
Edge direction  
Overdrive  
Tpd ± TSD  
Common mode voltage.  
where TPD is the nominal delay that will vary with  
temperature and voltage, and part-to-part. In many ATE  
applications, Tpd is calibrated or compensated for on a  
channel-by-channel basis. TSD includes factors that  
normally may be difficult to calibrate, and therefore  
directly impact overall system timing accuracy.  
Low dispersion numbers indicate the accuracy of a  
system under a variety of input conditions, and are an  
important figure of merit for any comparator.  
While not production tested, the Edg672 is designed  
specifically to exhibit low dispersion. The typical Edge672  
will show less than 25 ps Tpd dispersion.  
3 V  
2.7 V  
3V / NS  
SLEW RATE  
INPUT  
3 V  
THRESHOLD  
1V / NS  
SLEW RATE  
LEVELS  
.3 V  
0 V  
-0.8 V  
-1.0 V  
3V / NS  
SLEW RATE  
INPUT  
THRESHOLD  
LEVELS  
1V  
1V / NS  
SLEW RATE  
-1.6 V  
-1.8 V  
Figure 10. Dispersion Measurement Conditions  
www.semtech.com  
2000 Semtech Corp.  
8
Edge672  
EDGE HIGH-PERFORMANCE PRODUCTS  
PRELIMINARY  
Package Information  
32-Pin TQFP  
7 mm x 7 mm  
TOP VIEW  
PIN Descriptions  
4
D
D / 2  
b
3
e
E
4
N / 4 TIPS  
E / 2  
SEE DETAIL "A"  
0.20  
C
A – B  
D
4 X  
BOTTOM VIEW  
5
7
D1  
D1 / 2  
E1 / 2  
E1  
5
7
0.20  
H
A – B  
D
4 X  
2000 Semtech Corp.  
9
www.semtech.com  
Edge672  
EDGE HIGH-PERFORMANCE PRODUCTS  
PRELIMINARY  
Package Information (continued)  
DETAIL "A"  
DETAIL "B"  
0
MIN.  
3
0.08 / 0.20 R.  
0.25  
S
0.05  
DATUM  
PLANE  
e / 2  
A1  
A2  
– H –  
GAUGE PLANE  
C.08  
R. MIN.  
0 – 7  
b
0.20 MIN.  
1.00 REF.  
L
SECTION C–C  
ddd  
M
C
A – B  
S
D S  
9
8 PLACES  
11 / 13  
WITH LEAD FINISH  
b
A
– H –  
ccc  
– C –  
SEE DETAIL "B"  
2
0.05  
/ / 0.10  
C
Lead  
Cross Section  
0.09 / 0.20  
0.09 / 0.16  
M
b
1
BASE METAL  
JEDEC VARIATION  
Notes:  
1.  
2.  
All dimensions and tolerances conform to ANSI Y14.5-1982.  
Datum plane -H- located at mold parting line and coincident  
with lead, where lead exits plastic body at bottom of parting  
line.  
AC  
Sym  
A
Min  
Nom  
Max  
Note  
1.60  
0.15  
1.45  
A1  
A2  
D
0.05  
1.35  
0.10  
1.40  
3.  
Datums A-B and -D- to be determined at centerline between  
leads where leads exit plastic body at datum plane -H-.  
To be determined at seating plane -C-.  
Dimensions D1 and E1 do not include mold protrusion.  
Nis the total # of terminals.  
4.  
5.  
6.  
7.  
8.  
9.00 BSC  
7.00 BSC  
9.00 BSC  
7.00 BSC  
0.60  
4
D1  
E
7, 8  
4
These dimensions to be determined at the datum plane -H-.  
Package top dimensions are smaller than bottom dimensions  
and top of package will not overhang bottom of package.  
Dimension b does not include dambar protrusion. Allowable  
dambar protrusion shall be 0.08 mm total in excess of the b  
dimension at maximum material condition. Dambar cannot be  
located on the lower radius or the foot.  
E1  
L
7, 8  
0.45  
0.15  
0.75  
9.  
M
N
32  
0.80 BSC  
0.37  
e
10. Controlling dimension: millimeter.  
11. Maximum allowable die thickness to be assembled in this  
package family is 0.30 millimeters.  
12. This outline conforms to JEDEC publication 95, registration  
MO-136, variations AC, AE, and AF.  
b
0.30  
0.30  
0.45  
0.40  
0.10  
0.20  
9
b1  
ccc  
ddd  
0.35  
www.semtech.com  
2000 Semtech Corp.  
10  
Edge672  
EDGE HIGH-PERFORMANCE PRODUCTS  
PRELIMINARY  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
8.5  
-8.5  
13.0  
0
Typ  
11.5  
-5.2  
16.7  
3.3  
Max  
12.0  
-4.5  
Units  
Positive Power Supply  
Negative Power Supply  
Total Analog Supply  
VCC  
VEE  
V
V
VCC - VEE  
PECL  
TJ  
17.0  
5.0  
V
Comparator Output Positive Supply  
Junction Temperature  
V
+110  
oC  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Positive Supply (Relative to GND)  
Negative Supply (Relative to GND)  
Total Power Supply  
VCC  
VEE  
VCC - VEE  
PECL  
0
-9.0  
+13.0  
0
+20.0  
+6.0  
V
V
V
V
Comparator Output Positive Supply  
0
Digital Input Voltages  
LDEN, LDEN*  
LDEN - LDEN*  
VEE  
-5.0  
0
+6.0  
+5.0  
50  
V
V
Differential Digital Input Voltages  
Digital Output Currents  
QA, QA*, QB, QB*  
mA  
Comparator Input to Threshold  
VINP - CVA  
VINP - CVB  
-13  
-13  
+13  
+13  
V
V
Load to Commutating Voltage  
Analog Voltages  
LOAD - VCMIN  
-10  
+10  
V
VCMIN  
LOAD, VINP  
CVA, CVB  
VEE  
VEE  
VEE  
VEE  
VEE  
VCC  
VCC  
VCC  
VCC  
VCC  
V
V
V
V
V
BRIDGE SOURCE  
BRIDGE SINK  
Analog Input Currents  
ISCIN  
ISKIN  
0
0
2.0  
2.0  
mA  
mA  
Ambient Operating Temperature  
Storage Temperature  
Junction Temperature  
TA  
TS  
TJ  
-55  
-65  
+125  
+150  
+150  
+160  
oC  
oC  
oC  
oC  
Process Temperature (< 30 hours)  
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the  
device. This is a stress rating only, and functional operation of the device at these, or any other conditions  
beyond those listed in the operational sections of this specification are not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2000 Semtech Corp.  
11  
www.semtech.com  
Edge672  
EDGE HIGH-PERFORMANCE PRODUCTS  
PRELIMINARY  
DC Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Load  
Commutating Voltage  
Differential Load Range  
Programmable Range  
Offset Voltage  
LOAD - VCMIN  
VCMIN  
VCOUT - VCMIN  
-6.0  
VEE + 2.9  
-100  
+6.0  
VCC - 2.9  
+100  
V
V
mV  
µA  
VCMIN Input Current  
-100  
5
+100  
Accuracy  
ISC Offset (Note 1)  
ISK Offset (Note 1)  
Gain (sourcing current)  
Gain (sinking current)  
Input Currents  
+4  
-150  
35  
35  
0
+100  
-100  
37  
+150  
+4  
40  
42  
.875  
µA  
µA  
ILOAD / ISCIN  
ILOAD / ISKIN  
39  
mA  
µA  
µA  
Linearity (Note 2)  
INL  
-600  
-1  
+600  
+1  
HiZ Leakage (LDEN = False) (Note 3)  
Output Impedance (Note 4)  
±.1  
7.5  
ROUT  
5.0  
15  
Digital Inputs  
LDEN, LDEN*  
Input Current  
Input Voltage Range  
Differential Input Swing  
-500  
0.0  
0.25  
+500  
+3.5  
+3.0  
µA  
V
V
Programming Current Input  
Voltage Compliance (Note 5)  
V_ISKIN, V_ISCIN  
-100  
+100  
mV  
DC test conditions (unless otherwise specified): "Recommended Operating Conditions".  
Note 1: Offset is measured with ISCIN or ISKIN equal to 6 µA, producing an absolute output current of  
100 µA nominal.  
Note 2: Error = Measured IOUT vs. calculated IOUT. Calculated IOUT = (I * LSB) + Offset.  
LSB = (Fullscale Offset) / 9. I = Index = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.  
Index  
ISCIN, ISKIN  
6 µA  
0
1
2
3
4
5
6
7
8
9
100 µA  
200 µA  
300 µA  
400 µA  
500 µA  
600 µA  
700 µA  
800 µA  
900 µA  
Note 3: Tested @  
1) LOAD = 3V, VCMIN = +3V  
2) LOAD = +6.5V, VCMIN = +0.5V.  
Note 4: Tested @ LOAD = +2V, IOUT = 5 mA and 15 mA.  
Note 5: Tested @ ISCIN, ISKIN = 6 µA, 50 µA, 100 µA, 875 µA.  
www.semtech.com  
2000 Semtech Corp.  
12  
Edge672  
EDGE HIGH-PERFORMANCE PRODUCTS  
PRELIMINARY  
DC Characteristics (continued)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Comparator  
Threshold voltage  
Input Voltage Range  
Input Differential Voltage  
CVA, CVB  
VINP  
VINP - CVA, B  
VEE + 2.9  
VEE + 2.9  
-11  
VCC - 2.9  
VCC - 2.9  
+11  
V
V
V
Threshold Input Current  
IPD Pin Input Current  
-50  
-150  
+50  
+10  
µA  
µA  
VINP Input Current  
Normal Operation IPD = 0 (Note 1)  
VINP = VCC - 2.9V, CVA,B = VCC - 13.9V  
VINP = VEE + 2.9V, CVA,B = VEE + 13.9V  
IBIAS  
IBIAS  
IBIAS  
-1  
-3  
-3  
+1  
+3  
+3  
µA  
µA  
µA  
Offset Voltage  
VOS  
-50  
+50  
mV  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Comparator Hysteresis  
CMRR  
PSRR  
60  
60  
4
dB  
dB  
mV  
Digital Output Swing  
|QA - QA*|  
|QB - QB*|  
600  
600  
700  
700  
1,000  
1,000  
mV  
mV  
Common Mode Voltage  
(QA + QA*) / 2  
(QB + QB*) / 2  
PECL - 1.5  
PECL - 1.5  
PECL - 1.1  
PECL - 1.1  
V
V
Power Supply (Load + Comp)  
Positive Supply Current  
Negative Supply Current  
PECL Supply Current  
ICC  
IEE  
IDD  
35  
55  
35  
50  
75  
55  
75  
95  
90  
mA  
mA  
mA  
DC test conditions (unless otherwise specified): "Recommended Operating Conditions".  
Note 1: Tested @ VINP = +7.0V and 1.0V.  
2000 Semtech Corp.  
13  
www.semtech.com  
Edge672  
EDGE HIGH-PERFORMANCE PRODUCTS  
PRELIMINARY  
AC Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Load  
Propagation Delay  
Inhibit to Iout (Note 2)  
Iout to Inhibit (Note 2)  
Tpd (on)  
Tpd (off)  
1.0  
1.0  
3.0  
3.0  
5.0  
5.0  
ns  
ns  
Output Capacitance  
Load Active  
Cout  
Cout  
5.5  
2.5  
pf  
pF  
Load Off  
Comparator  
Propagation Delay (Notes 1, 2)  
Tpd  
1.0  
2.0  
4.0  
ns  
Propagation Delay Dispersion (Note 2)  
800 mV  
3V  
5V  
-100  
-100  
-100  
<±25  
<±25  
<±25  
+100  
+100  
+100  
ps  
ps  
ps  
Input Slew Rate Tracking (Note 2)  
IPD = 0  
IPD = 1  
5.0  
25  
6.0  
V/ns  
mV/ns  
Input Capacitance  
Cin  
1.5  
pF  
ps  
ns  
Output Rise and Fall Times (20% to 80%)  
Minimum Pulse Width (Note 2)  
Tr, Tf  
250  
1.5  
DC test conditions (unless otherwise specified): "Recommended Operating Conditions".  
Note 1: Assumes normal operating mode of IPD = 0.  
Note 2: Guaranteed by characterization. This parameter is not production tested.  
www.semtech.com  
2000 Semtech Corp.  
14  
Edge672  
EDGE HIGH-PERFORMANCE PRODUCTS  
PRELIMINARY  
Ordering Information  
Model Number  
Package  
E672BTF  
32-Pin 7mm x 7mm TQFP  
EVM672BTF  
Evaluation Module  
Contact Information  
Semtech Corporation  
Edge High-Performance Division  
10021 Willow Creek Rd., San Diego, CA 92131  
Phone: (858)695-1808 FAX (858)695-2633  
2000 Semtech Corp.  
15  
www.semtech.com  

相关型号:

E672BTF

Interface Circuit, BIPolar, PQFP32, 7 X 7 MM, TQFP-32
SEMTECH

E6750

Core2 Extreme Processor
INTEL

E6832A

W-CDMA Calibration Application
AGILENT

E68330-000

Label format - Old format order code cross reference
TE

E6833A

Wireless Communications Test Set
AGILENT

E6835A

TD-SCDMA Calibration Application
AGILENT

E6850

Core2 Extreme Processor
INTEL

E6890A

Wireless Communications Test Set
AGILENT

E68I

E68i T8 LED Tube
P-TEC

E69-0001

Options and ordering codes
ETC

E69-0002

Options and ordering codes
ETC

E69-0003

Options and ordering codes
ETC