FGSD12SR6012A [ETC]

3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output; 3-14.4Vdc输入,12A, 0.45-5.5Vdc输出
FGSD12SR6012A
型号: FGSD12SR6012A
厂家: ETC    ETC
描述:

3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output
3-14.4Vdc输入,12A, 0.45-5.5Vdc输出

文件: 总41页 (文件大小:798K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
The Digital Tomodachi Series of non-isolated dc-dc  
converters deliver exceptional electrical and thermal  
performance in DOSA based footprints for  
Point-of-Load converters. Operating from  
a
3.0Vdc-14.4Vdc input, these are the converters of  
choice for Intermediate Bus Architecture (IBA) and  
Distributed Power Architecture applications that  
require high efficiency, tight regulation, and high  
reliability in elevated temperature environments with  
low airflow. The PMBus interface supports a range of  
commands to both control and monitor the module.  
The module also includes the Tunable Loop™  
feature that allows the user to optimize the dynamic  
response of the converter to match the load with  
reduced amount of output capacitance leading to  
savings on cost and PWB area.  
The FGSD12SR6012*A converter of the Tomodachi  
Series delivers 12A of output current at a tightly  
regulated programmable and PMBus control output  
voltage of 0.45Vdc to 5.5Vdc. The thermal  
Features  
Compliant to RoHS II EU Directive 2011/65/EC“  
Delivers up to 12A (66W)  
High efficiency, no heatsink required  
Negative and Positive ON/OFF logic  
DOSA based  
Small size: 12.2 x 12.2 x 8.5mm  
(0.48 in x 0.48 in x 0.335 in)  
Tape & reel packaging  
performance  
of  
the  
FGSD12SR6012*A  
is  
best-in-class: Little derating is needed up to 85,  
under natural convection.  
Applications  
Programmable output voltage from 0.6V to 5.5V  
via external resistor. Digitally adjustable down to  
0.45Vdc  
Intermediate Bus Architecture  
Telecommunications  
Data/Voice processing  
Distributed Power Architecture  
Computing (Servers, Workstations)  
Test Equipments  
Digital interface through the PMBus™ # protocol  
Tunable Loop™ to optimize dynamic output  
voltage response  
Flexible output voltage sequencing  
EZ-SEQUENCE  
Power Good signal  
Fixed switching frequency with capability of  
external synchronization  
Auto-reset output over-current protection  
Remote ON/OFF  
Ability to sink and source current  
No minimum load required  
Start up into pre-biased output  
UL* 60950-1 2nd Ed. Recognized, CSAC22.2 No.  
60950-1-07 Certified, and VDE(EN60950-1 2nd Ed.)  
(Pending)  
ISO** 9001 and ISO 14001 certified manufacturing  
facilities  
* UL is a registered trademark of Underwriters Laboratories, Inc.  
CSA is a registered trademark of Canadian Standards Association.  
VDE is a trademark of Verband Deutscher Elektrotechniker e.V.  
** ISO is a registered trademark of the International Organization of Standards  
# The PMBus name and logo are registered trademarks of the System Management Interface Forum (SMIF)  
Page 1 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings may lead to degradation in performance and reliability of  
the converter and may result in permanent damage.  
PARAMETER  
ABSOLUTE MAXIMUM RATINGS1  
Input Voltage  
NOTES  
MIN  
TYP  
MAX  
UNITS  
Continuous  
-0.3  
15  
7
Vdc  
Vdc  
Vdc  
°C  
SEQ, SYNC, Vs+  
CLK, DATA, SMBALERT  
Operating Temperature  
Storage Temperature  
Output Voltage  
3.6  
85  
Ambient temperature  
-40  
-55  
125  
5.5  
°C  
0.45  
Vdc  
Electrical Specifications  
All specifications apply over specified input voltage, output load, and temperature range, unless otherwise  
noted.  
PARAMETER  
INPUT CHARACTERISTICS  
Operating Input Voltage Range  
Maximum Input Current  
NOTES  
MIN  
TYP  
MAX  
UNITS  
3.0  
14.4  
9
Vdc  
Adc  
mA  
mA  
mA  
A2s  
Vin=3V to 14V, Io-max  
Input Stand-by Current  
Vin=12V, module disabled  
Vout=5.0V  
6.5  
85  
52  
Input No Load Current  
Vout=0.6V  
Inrush Transient, I2t  
1
Peak-to-peak (5Hz to 20MHz, 1uH  
source impedance; Vin=0 to 14V, Io-max  
Input Reflected-Ripple Current  
Input Ripple Rejection (120Hz)  
400  
-55  
mAp-p  
dB  
Page 2 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Electrical Specifications (Continued)  
PARAMETER  
NOTES  
MIN  
TYP  
MAX  
UNITS  
OUTPUT CHARACTERISTICS  
With 0.1% tolerance for external resistor  
used to set output voltage  
Output Voltage Set Point  
Output Voltage Range  
-1.0  
-3.0  
+1.0  
+3.0  
%Vout  
%Vout  
(Over all operating input voltage,  
resistive load and temperature  
conditions until end of life)  
Some output voltages may not be  
possible depending on the input voltage  
– see feature description section  
Adjustment Range  
(selected by an external resistor)  
0.6  
5.5  
Vdc  
PMBus Adjustable Output Voltage Range  
PMBus Output Voltage Adjustment Step Size  
Remote Sense Range  
-25  
0.4  
+25  
%Vout  
%Vout  
Vdc  
0.5  
0.4  
10  
5
Output Regulation (for Vo 2.5Vdc)  
Line (Vin = min to max)  
Load (Io = min to max)  
Line (Vin = min to max)  
Load (Io = min to max)  
Temperature (Ta = min to max)  
% Vout  
mV  
Output Regulation (for Vo < 2.5Vdc)  
Output Ripple and Noise  
mV  
10  
0.4  
mV  
% Vout  
Vin=12V, Io= min to max, Co =  
0.1uF+22uF ceramic capacitors  
Peak to Peak  
5MHz to 20MHz bandwidth  
5MHz to 20MHz bandwidth  
Plus full load (resistive)  
ESR 1mΩ  
50  
20  
100  
38  
mVp-p  
mVrms  
%
RMS  
External Load Capacitance 1  
Without the Tunable Loop  
With the Tunable Loop  
22  
22  
22  
0
47  
1,000  
5,000  
12  
uF  
ESR 0.15mΩ  
uF  
ESR 10mΩ  
uF  
Output Current Range  
(in either sink or source mode)  
Adc  
Current limit does not operate in sink  
mode  
Output Current Limit Inception (Hiccup mode)  
130  
% Io-max  
Arms  
Output Short-Circuit Current  
Efficiency  
Vo 250mV, Hiccup mode  
0.92  
Vin = 12Vdc, Ta = 25°C, Io = max  
Vout=5.0Vdc  
Vout=3.3Vdc  
Vout=2.5Vdc  
Vout=1.8Vdc  
Vout=1.2Vdc  
Vout=0.6Vdc  
95.4  
93.6  
92.2  
89.9  
86.0  
76.4  
%
%
%
%
%
%
1 External capacitors may require using the new Tunable LoopTM feature to ensure that the module is stable as well as  
getting the best transient response. See the Tunable LoopTM section for details.  
Page 3 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Electrical Specifications (Continued)  
PARAMETER  
NOTES  
MIN  
TYP  
MAX  
UNITS  
Switching Frequency  
600  
kHz  
Frequency Synchronization  
Synchronization Frequency Range  
High Level Input Voltage  
Low Level Input Voltage  
Input Current, SYNC  
510  
2.0  
720  
kHz  
V
0.4  
V
100  
nA  
nS  
nS  
Minimum Pulse Width, SYNC  
Maximum SYNC rise time  
100  
100  
General Specifications  
PARAMETER  
NOTES  
Io = 0.8 * Io-max, Ta = 40°C  
MIN  
TYP  
MAX  
UNITS  
Hours  
g (oz.)  
Calculated MTBF  
21,774,843  
2.23(0.079)  
Telecordia Issue 2 Method 1 Case 3  
Weight  
Feature Specifications  
PARAMETER  
NOTES  
MIN  
TYP  
MAX  
UNITS  
Vin = min to max, open collector or  
equivalent, Signal reference to GND  
ON/OFF Signal Interface  
Positive Logic  
Logic High (Module ON)  
Input High Current  
Input High Voltage  
Logic Low (Module OFF)  
Input Low Current  
Input Low Voltage  
1
mA  
V
2.0  
Vin-max  
1
mA  
V
-0.2  
0.6  
On/Off pin is open collector/drain logic input  
with external pull-up resistor; signal  
reference to GND  
Negative Logic  
Logic High (Module OFF)  
Input High Current  
1
mA  
V
Input High Voltage  
Logic Low (Module ON)  
Input Low Current  
2.0  
Vin-max  
10  
uA  
V
Input Low Voltage  
-0.2  
0.6  
Page 4 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Feature Specifications  
PARAMETER  
NOTES  
MIN  
TYP  
MAX  
UNITS  
Vin = Vin-nom, Io = Io-max , Vo to within  
±1% of steady state  
Turn-On Delay Time  
Case 1: On/Off input is enabled and  
then input power is applied  
delay from instant at which Vin =  
Vin-min until Vo = 10% of Vo-set)  
1.1  
700  
3.1  
ms  
us  
Case 2: Input power is applied for at least  
one second and then the On/Off input  
is enabled  
delay from instant at which Von/Off is  
enabled until Vo = 10% of Vo-set  
time for Vo to rise from 10% of Vo-set to  
90% of Vo-set  
Output voltage Rise time  
ms  
Output voltage overshoot with or without  
maximum external capacitance  
Ta = 25oC, Vin = Vin-min to Vin-max,  
Io = Io-min to Io-max  
3.0  
%Vout  
°C  
Over Temperature Protection  
(See Thermal Considerations section)  
120  
130  
PMBus Over Temperature Warning Threshold  
*
°C  
Vin-min to Vom-max, Io-min to Io-max,  
VSEQ < Vo  
Tracking Accuracy  
Power-Up: 2V/ms  
Power-Down: 2V/ms  
Input Under Voltage Lockout  
Turn-on Threshold  
Turn-off Threshold  
Hysteresis  
100  
100  
mV  
mV  
2.475  
2.25  
3.025  
2.75  
Vdc  
Vdc  
Vdc  
0.25  
PMBus Adjustable Input Under Voltage  
Lockout Thresholds  
2.5  
14  
Vdc  
mV  
Resolution of Adjustable Input Under  
Voltage Threshold  
500  
PGOOD (Power Good)  
Signal Interface Open Drain,  
Vsupply 5VDC  
Overvoltage threshold for PGOOD ON  
Overvoltage threshold for PGOOD OFF  
Undervoltage threshold for PGOOD ON  
Undervoltage threshold for PGOOD OFF  
Pulldown resistance of PGOOD pin  
Sink current capability into PGOOD pin  
108  
110  
92  
%Vout  
%Vout  
%Vout  
%Vout  
90  
50  
5
mA  
* Over temperature Warning – Warning may not activate before alarm and unit may shutdown before warning  
Page 5 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Digital Interface Specifications  
PARAMETER  
PMBus Signal Interface Characteristics  
Input High Voltage (CLK, DATA)  
NOTES  
MIN  
TYP  
MAX  
UNITS  
2.1  
3.6  
0.8  
10  
V
V
Input Low Voltage (CLK, DATA)  
Input high level current (CLK, DATA)  
Input low level current (CLK, DATA)  
Output Low Voltage (CLK, DATA, SMBALERT#)  
-10  
-10  
uA  
uA  
V
10  
IOUT=2mA  
VOUT=3.6V  
0.4  
Output high level open drain leakage current (DATA,  
SMBALERT#)  
0
10  
uA  
Pin capacitance  
0.7  
pF  
kHz  
nS  
PMBus Operating frequency range  
Data hold time  
Slave Mode  
10  
0
400  
Receive Mode  
Transmit Mode  
300  
250  
nS  
Data setup time  
nS  
Measurement System Characteristics  
Read delay time  
153  
0
192  
231  
18  
us  
A
Output current measurement range  
Output current measurement resolution  
Output current measurement gain accuracy (at 25°C)  
Output current measurement offset  
Vout measurement range  
62.5  
mA  
%
±5  
0.1  
5.5  
A
0
V
Vout measurement resolution  
Vout measurement accuracy  
Vout measurement offset  
15.625  
32.5  
mV  
%
-15  
-3  
3
15  
3
%
Vinmeasurement range  
14.4  
V
Vin measurement resolution  
Vin measurement accuracy  
Vin measurement offset  
mV  
%
-15  
15  
-5.5  
1.4  
LSB  
Page 6 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
provides output ripple information for different  
external capacitance values at various Vo and a full  
load current of 12A. For stable operation of the  
module, limit the capacitance to less than the  
maximum output capacitance as specified in the  
electrical specification table. Optimal performance of  
the module can be achieved by using the Tunable  
Loop™ feature described later in this data sheet.  
Design Considerations  
Input Filtering  
The FGSD12SR6012*A converter should be  
connected to a low ac-impedance source. A highly  
inductive source can affect the stability of the module.  
An input capacitance must be placed directly  
adjacent to the input pin of the module, to minimize  
input ripple voltage and ensure module stability.  
60  
1x22uF Ext Cap  
1x47uF Ext Cap  
50  
2x47uF Ext Cap  
To minimize input voltage ripple, ceramic capacitors  
are recommended at the input of the module. Fig-1  
shows the input ripple voltage for various output  
voltages at 12A of load current with 2x22uF or  
3x22uF ceramic capacitors and an input of 12V.  
4x47uF Ext Cap  
40  
30  
20  
10  
0
250  
2x22uF  
3x22uF  
200  
0.5  
1.5  
2.5  
3.5  
4.5  
150  
100  
50  
Output Voltage(Volts)  
Fig-2: Output ripple voltage for various output  
voltages with external 1x22uF, 1x47uF, 2x47uF  
or 4x47uF ceramic capacitors at the output (12A  
load). Input voltage is 12V.  
0.5  
1.5  
2.5  
3.5  
4.5  
Output Voltage(Volts)  
Safety Consideration  
Fig-1: Input ripple voltage for various output  
voltages with 2x22uF or 3x22uF ceramic  
capacitors at the input (12A load). Input voltage  
is 12V.  
For safety agency approval the power module must  
be installed in compliance with the spacing and  
separation requirements of the end-use safety  
agency standards, i.e., UL 60950-1 2nd, CSA C22.2  
No. 60950-1-07, DIN EN 60950-1:2006 + A11  
(VDE0805 Teil 1 + A11):2009-11; EN 60950-1:2006  
+ A11:2009-03.  
Output Filtering  
For the converter output to be considered meeting  
the requirements of safety extra-low voltage (SELV),  
the input must meet SELV requirements. The power  
module has extra-low voltage (ELV) outputs when all  
inputs are ELV.  
The FGSD12SR6012*A is designed for low output  
ripple voltage and will meet the maximum output  
ripple specification with 0.1uF ceramic and 22uF  
ceramic capacitors at the output of the module.  
However, additional output filtering may be required  
by the system designer for a number of reasons.  
First, there may be a need to further reduce the  
output ripple and noise of the module. Second, the  
dynamic response characteristics may need to be  
customized to a particular load step change.  
The input to these units is to be provided with a  
slow-blow fuse with a maximum rating of 15 A in the  
positive input lead.  
To reduce the output ripple and improve the dynamic  
response to a step load change, additional  
capacitance at the output can be used. Low ESR  
polymer and ceramic capacitors are recommended to  
improve the dynamic response of the module. Fig-2  
Page 7 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
is turned ON pulling the On/Off pin low, turning  
transistor Q1 OFF resulting in the PWM Enable pin  
going high.  
Analog Feature Descriptions  
Remote On/Off  
MODULE  
+3.3V  
The module can be turned ON and OFF either by  
using the ON/OFF pin (Analog interface) or through  
the PMBus interface (Digital). The module can be  
configured in a number of ways through the PMBus  
interface to react to the two ON/OFF inputs:  
Module ON/OFF can be controlled only through  
the analog interface (digital interface ON/OFF  
commands are ignored)  
+VIN  
Rpullup  
I
10K  
ENABLE  
22K  
ON/OFF  
Q1  
+
Q2  
V
22K  
Module ON/OFF can be controlled only through  
the PMBus interface (analog interface is ignored)  
Module ON/OFF can be controlled by either the  
analog or digital interface  
ON/OFF  
_
GND  
The default state of the module (as shipped from the  
factory) is to be controlled by the analog interface  
only. If the digital interface is to be enabled, or the  
module is to be controlled only through the digital  
interface, this change must be made through the  
PMBus. These changes can be made and written to  
non-volatile memory on the module so that it is  
remembered for subsequent use.  
Fig-3: Circuit configuration for using positive  
On/Off logic.  
MODULE  
+3.3V  
+VIN  
Rpullup  
I
10K  
ENABLE  
Analog ON/OFF  
ON/OFF  
22K  
The FGSD12SR6012*A power modules feature an  
On/Off pin for remote On/Off operation. Two On/Off  
logic options are available. In the Positive Logic  
On/Off option, (device code suffix “P” - see Part  
Number System), the module turns ON during a logic  
High on the On/Off pin and turns OFF during a logic  
Low. With the Negative Logic On/Off option, (device  
code suffix “N” - see Part Number System), the  
module turns OFF during logic High and ON during  
logic Low. The On/Off signal should be always  
referenced to ground. For either On/Off logic option,  
leaving the On/Off pin disconnected will turn the  
module ON when input voltage is present.  
Q1  
+
Q2  
V
22K  
ON/OFF  
_
GND  
Fig-4: Circuit configuration for using negative  
On/Off logic.  
Digital ON/OFF  
For positive logic modules, the circuit configuration  
for using the On/Off pin is shown in Fig-3. When the  
external transistor Q2 is in the OFF state, the internal  
transistor Q1 is turned ON, and the internal PWM  
#Enable signal is pulled low causing the module to be  
ON. When transistor Q2 is turned ON, the On/Off pin  
is pulled low and the module is OFF. A suggested  
value for Rpullup is 20k.  
Please see the Digital Feature Descriptions section.  
Monotonic Start-up and Shut-down  
The module has monotonic start-up and shutdown  
behavior for any combination of rated input voltage,  
output current and operating temperature range.  
For negative logic On/Off modules, the circuit  
configuration is shown in Fig-4. The On/Off pin  
should be pulled high with an external pull-up resistor  
(suggested value for the 3V to 14V input range is  
20K). When transistor Q2 is in the OFF state, the  
On/Off pin is pulled high, transistor Q1 is turned ON  
and the module is OFF. To turn the module ON, Q2  
Startup into Pre-biased Output  
The module can start into a prebiased output as long  
as the prebias voltage is 0.5V less than the set output  
voltage.  
Page 8 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Analog Output Voltage Programming  
0.6Vdc. To calculate the value of the trim resistor,  
Rtrim for a desired output voltage, should be as per  
the following equation:  
The output voltage of the module is programmable to  
any voltage from 0.6dc to 5.5Vdc by connecting a  
resistor between the Trim and SIG_GND pins of the  
module. Certain restrictions apply on the output  
voltage set point depending on the input voltage.  
These are shown in the Output Voltage vs. Input  
Voltage Set Point Area plot in Fig-5. The Upper  
Limit curve shows that for output voltages lower than  
1V, the input voltage must be lower than the  
maximum of 14.4V. The Lower Limit curve shows  
that for output voltages higher than 0.6V, the input  
voltage needs to be larger than the minimum of 3V.  
12  
RTRIM  
[kΩ]  
(VO-REQ - 0.6)  
Rtrim is the external resistor in kohm  
Vo-req is the desired output voltage  
Note that the tolerance of a trim resistor will affect the  
tolerance of the output voltage. Standard 1% or 0.5%  
resistors may suffice for most applications; however,  
a tighter tolerance can be obtained by using two  
resistors in series instead of one standard value  
resistor.  
Table 1 provides RTRIM values required for some  
common output voltages.  
Table 1: Trim Resistor Value  
VO-REG [V]  
0.6  
RTRIM [k]  
Open  
40  
0.9  
1.0  
30  
1.2  
20  
1.5  
13.33  
10  
1.8  
2.5  
6.316  
4.444  
2.727  
3.3  
5.0  
Fig-5: Output Voltage vs. Input Voltage Set  
Point Area plot showing limits where the output  
voltage can be set for different input voltages.  
Digital Output Voltage Adjustment  
Please see the Digital Feature Descriptions section.  
Remote Sense  
The power module has a Remote Sense feature to  
minimize the effects of distribution losses by  
regulating the voltage between the sense pins (VS+  
and VS-). The voltage drop between the sense pins  
and the VOUT and GND pins of the module should  
not exceed 0.5V.  
Analog Voltage Margining  
Caution – Do not connect SIG_GND to  
GND elsewhere in the layout.  
Output voltage margining can be implemented in the  
module by connecting a resistor, Rmargin-up, from  
the Trim pin to the ground pin for margining-up the  
Fig-6: Output Voltage vs. Input Voltage Set  
Point Area plot showing limits where the output  
voltage can be set for different input voltages.  
output voltage and by connecting  
a
resistor,  
Rmargin-down, from the Trim pin to output pin for  
margining-down. Fig-7 shows the circuit configuration  
for output voltage margining. The POL Programming  
Tool, available at www.fdk.com under the Downloads  
section, also calculates the values of Rmargin-up and  
Without an external resistor between Trim and  
SIG_GND pins, the output of the module will be  
Page 9 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Rmargin-down for a specific output voltage and %  
margin. Please consult your local FDK FAE for  
additional details.  
Fig-8: Circuit showing connection of the  
sequencing signal to the SEQ pin.  
When the scaled down sequencing voltage is applied  
to the SEQ pin, the output voltage tracks this voltage  
until the output reaches the set-point voltage. The  
final value of the sequencing voltage must be set  
higher than the set-point voltage of the module. The  
output voltage follows the sequencing voltage on a  
one-to-one basis. By connecting multiple modules  
together, multiple modules can track their output  
voltages to the voltage applied on the SEQ pin.  
Fig-7: Circuit Configuration for margining Output  
Voltage.  
Digital Output Voltage Margining  
Please see the Digital Feature Descriptions section.  
The module’s output can track the SEQ pin signal  
with slopes of up to 0.5V/msec during power-up or  
power-down.  
Output Voltage Sequencing  
To initiate simultaneous shutdown of the modules,  
the SEQ pin voltage is lowered in a controlled  
manner. The output voltage of the modules tracks the  
The power module includes a sequencing feature,  
EZSEQUENCE that enables users to implement  
various types of output voltage sequencing in their  
applications. This is accomplished via an additional  
sequencing pin. When not using the sequencing  
feature, leave it unconnected.  
voltages below their set-point voltages on  
a
one-to-one basis. A valid input voltage must be  
maintained until the tracking and output voltages  
reach ground potential.  
The voltage applied to the SEQ pin should be scaled  
down by the same ratio as used to scale the output  
voltage down to the reference voltage of the module.  
This is accomplished by an external resistive divider  
connected across the sequencing voltage before it is  
fed to the SEQ pin as shown in Fig-8. In addition, a  
small capacitor (suggested value 100pF) should be  
connected across the lower resistor R1.  
Note that in all digital Tomodachi series of modules,  
the PMBus Output Undervoltage Fault will be tripped  
when sequencing is employed. This will be detected  
using the STATUS_WORD and STATUS_VOUT  
PMBus commands. In addition, the SMBALERT#  
signal will be asserted low as occurs for all faults and  
warnings. To avoid the module shutting down due  
to the Output Undervoltage Fault, the module must  
be set to continue operation without interruption as  
the response to this fault (see the description of the  
PMBus command VOUT_UV_FAULT_RESPONSE  
for additional information).  
For all Tomodachi modules, the minimum  
recommended delay between the ON/OFF signal and  
the sequencing signal is 10ms to ensure that the  
module output is ramped up according to the  
sequencing signal. This ensures that the module  
soft-start routine is completed before the sequencing  
signal is allowed to ramp up.  
Page 10 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Over-Current Protection  
done by using the external signal applied to the  
SYNC pin of the module as shown in Fig-9, with the  
converter being synchronized by the rising edge of  
the external signal. The Electrical Specifications table  
specifies the requirements of the external SYNC  
signal. If the SYNC pin is not used, the module  
should free run at the default switching frequency. If  
synchronization is not being used, connect the  
SYNC pin to GND.  
To provide protection in a fault (output overload)  
condition, the unit is equipped with internal  
current-limiting circuitry and can endure current  
limiting continuously. At the point of current-limit  
inception, the unit enters hiccup mode. The unit  
operates normally once the output current is brought  
back into its specified range.  
Digital Adjustable Overcurrent Warning  
Please see the Digital Feature Descriptions section.  
Over-Temperature Protection  
To provide protection in a fault condition, the unit is  
equipped with a thermal shutdown circuit. The unit  
will shut down if the over-temperature threshold of  
150°C (typ) is exceeded at the thermal reference  
point Tref. Once the unit goes into thermal shutdown  
it will then wait to cool before attempting to restart.  
Fig-9:  
External  
source  
connections  
to  
synchronize switching frequency of the module.  
Measuring Output Current, Output Voltage  
and Input Voltage  
Digital Temperature Status via PMBus  
Please see the Digital Feature Descriptions section.  
Please see the Digital Feature Descriptions section.  
Digitally Adjustable Output Over and Under  
Voltage Protection  
Dual Layout  
Identical dimensions and pin layout of Analog and  
Digital Tomodachi modules permit migration from  
one to the other without needing to change the  
layout. To support this, 2 separate Trim Resistor  
locations have to be provided in the layout. As shown  
in Fig. 10, for the digital modules, the resistor is  
connected between the TRIM pad and SGND and in  
the case of the analog module it is connected  
between TRIM and GND.  
Please see the Digital Feature Descriptions section.  
Input Under-Voltage Lockout (UVLO)  
At input voltages below the input under-voltage  
lockout limit, the module operation is disabled. The  
module will begin to operate at an input voltage  
above the under-voltage lockout turn-on threshold.  
MODULE  
TRIM  
Digitally Adjustable Input Undervoltage  
Lockout  
Rtrim1  
for  
Digital  
Rtrim2  
for  
Analog  
SIG_GND  
Please see the Digital Feature Descriptions section.  
GND(Pin 7)  
Digitally Adjustable Power Good Thresholds  
Please see the Digital Feature Descriptions section.  
Fig-10: Connections to support either Analog or  
Digital Tomodachi on the same layout.  
Synchronization  
The module switching frequency can be  
synchronized to a signal with an external frequency  
within a specified range. Synchronization can be  
Page 11 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Tunable Loop™  
meet 2% output voltage deviation limits for some  
common output voltages in the presence of a 6A to  
12A step change (50% of full load), with an input  
voltage of 12V.  
The module has a feature that optimizes transient  
response of the module called Tunable Loop™  
Please contact your FDK technical representative to  
obtain more details of this feature as well as for  
guidelines on how to select the right value of external  
R-C to tune the module for best transient  
performance and stable operation for other output  
capacitance values or input voltages other than 12V.  
External capacitors are usually added to the output of  
the module for two reasons: to reduce output ripple  
and noise (see Fig-2) and to reduce output voltage  
deviations from the steady-state value in the  
presence of dynamic load current changes. Adding  
external capacitance however affects the voltage  
control loop of the module, typically causing the loop  
to slow down with sluggish response. Larger values  
of external capacitance could also cause the module  
to become unstable.  
Table 2: General recommended value of RTUNE  
and CTUNE for Vin=12V and various external  
ceramic capacitor combinations.  
1x47uF 2x47uF 4x47uF 6x47uF 10x47uF  
The Tunable Loop™ allows the user to externally  
adjust the voltage control loop to match the filter  
network connected to the output of the module. The  
Tunable Loop™ is implemented by connecting a  
series R-C between the SENSE and TRIM pins of the  
module, as shown in Fig-11. This R-C allows the user  
to externally adjust the voltage loop feedback  
compensation of the module.  
Co  
330  
330  
330  
330  
220  
RTUNE  
CTUNE  
100pF  
560pF  
1500pF 2200pF  
10nF  
20x47uF  
180  
Co  
RTUNE  
CTUNE  
6800pF  
Table 3: Recommended values of RTUNE and  
CTUNE to obtain transient deviation of 2% of Vout  
for a 6A step load with Vin=12V.  
Vo  
5V  
5x47uF  
330  
3.3V 2.5V 1.8V 1.2V 0.6V  
1x47uF 3x47uF 1x47uF 1x47uF 3x47uF  
+
+
+
+
+
Co  
330uF  
330uF 2x330uF 3x330uF 6x330uF  
Polymer Polymer Polymer Polymer Polymer  
330  
270  
270  
220  
180  
RTUNE  
CTUNE  
V  
1500pF 2700pF 3300pF 5600pF 10nF  
47nF  
99mV 58mV 47mV 34mV 24mV 12mV  
Fig-11: Circuit diagram showing connection of  
RTUNE and CTUNE to tune the control loop of the  
module.  
Note: The capacitors used in the Tunable Loop  
table are 47uF/3m Ω ESR ceramic and  
330uF/12mΩ ESR polymer capacitors.  
Recommended values of RTUNE and CTUNE for  
different output capacitor combinations are given in  
Table 2. Table 2 shows the recommended values of  
R
TUNE and CTUNE for different values of ceramic output  
capacitors up to 1000uF that might be needed for an  
application to meet output ripple and noise  
requirements. Selecting RTUNE and CTUNE according to  
Table 2 will ensure stable operation of the module.  
In applications with tight output voltage limits in the  
presence of dynamic current loading, additional  
output capacitance will be required. Table 3 lists  
recommended values of RTUNE and CTUNE in order to  
Page 12 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
PMBus Addressing  
Digital Feature Description  
The power module can be addressed through the  
PMBus using a device address. The module has 64  
possible addresses (0 to 63 in decimal) which can be  
set using resistors connected from the ADDR0 and  
ADDR1 pins to SIG_GND. Note that some of these  
addresses (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 12, 40,  
44, 45, 55 in decimal) are reserved according to the  
SMBus specifications and may not be useable. The  
address is set in the form of two octal (0 to 7) digits,  
with each pin setting one digit. The ADDR1 pin sets  
the high order digit and ADDR0 sets the low order  
digit. The resistor values suggested for each digit are  
shown in Table 4 (1% tolerance resistors are  
recommended). Note that if either address resistor  
value is outside the range specified in Table 4, the  
module will respond to address 127.  
PMBus Interface Capability  
The 12A Digital Tomodachi power modules have a  
PMBus interface that supports both communication  
and control. The PMBus Power Management  
Protocol Specification can be obtained from  
www.pmbus.org. The modules support a subset of  
version 1.1 of the specification (see Table 6 for a list  
of the specific commands supported). Most module  
parameters can be programmed using PMBus and  
stored as defaults for later use.  
All communication over the module PMBus interface  
must support the Packet Error Checking (PEC)  
scheme. The PMBus master must generate the  
correct PEC byte for all transactions, and check the  
PEC byte returned by the module.  
Table 4:  
Digit  
0
Resistor Value [k]  
The module also supports the SMBALERT response  
protocol whereby the module can alert the bus  
master if it wants to talk. For more information on the  
SMBus alert response protocol, see the System  
Management Bus (SMBus) specification.  
10  
1
15.4  
23.7  
36.5  
54.9  
84.5  
130  
200  
2
3
The module has non-volatile memory that is used to  
store configuration settings. Not all settings  
programmed into the device are automatically saved  
into this non-volatile memory, only those specifically  
identified as capable of being stored can be saved  
(see Table 6 for which command parameters can be  
saved to non-volatile storage).  
4
5
6
7
The user must know which I2C addresses are  
reserved in a system for special functions and set the  
address of the module to avoid interfering with other  
system operations. Both 100kHz and 400kHz bus  
speeds are supported by the module. Connection for  
the PMBus interface should follow the High Power  
DC specifications given in section 3.1.3 in the SMBus  
specification V2.0 for the 400kHz bus speed or the  
Low Power DC specifications in section 3.1.2. The  
complete SMBus specification is available from the  
SMBus web site, smbus.org.  
PMBus Data Format  
For commands that set thresholds, voltages or report  
such quantities, the module supports the “Linear”  
data format among the three data formats supported  
by PMBus. The Linear Data Format is a two byte  
value with an 11-bit, two’s complement mantissa and  
a 5-bit, two’s complement exponent. The format of  
the two data bytes is shown below:  
Data Byte High  
Data Byte Low  
ADDR1  
ADDR0  
7 6 5 4 3  
2 1 0 7 6 5 4 3 2 1 0  
Exponent  
MSB  
Mantissa  
MSB  
RADDR0  
RADDR1  
The value is of the number is then given by  
Value = Mantissa x 2Exponent  
SIG_GND  
Fig-12: Circuit showing connection of resistors  
used to set the PMBus address of the module.  
Page 13 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
PMBus Enabled On/Off  
PMBus Adjustable Soft Start Rise Time  
The module can also be turned on and off via the  
PMBus interface. The OPERATION command is  
used to actually turn the module on and off via the  
PMBus, while the ON_OFF_CONFIG command  
configures the combination of analog ON/OFF pin  
input and PMBus commands needed to turn the  
module on and off. Bit [7] in the OPERATION  
command data byte enables the module, with the  
following functions:  
The soft start rise time can be adjusted in the module  
via PMBus. When setting this parameter, make sure  
that the charging current for output capacitors can be  
delivered by the module in addition to any load  
current to avoid nuisance tripping of the overcurrent  
protection circuitry during startup. The TON_RISE  
command sets the rise time in ms, and allows  
choosing soft start times between 600us and 9ms,  
with possible values listed in Table 5. Note that the  
exponent is fixed at -4 (decimal) and the upper two  
bits of the mantissa are also fixed at 0.  
0
1
:
:
Output is disabled  
Output is enabled  
Table 5  
This module uses the lower five bits of the  
ON_OFF_CONFIG data byte to set various ON/OFF  
options as follows:  
Rise Time  
600us  
900us  
1.2ms  
1.8ms  
2.7ms  
4.2ms  
6.0ms  
9.0ms  
Exponent  
11100  
11100  
11100  
11100  
11100  
11100  
11100  
11100  
Mantissa  
00000001010  
00000001110  
00000010011  
00000011101  
00000101011  
00001000011  
00001100000  
00010010000  
Bit Position  
Access  
4
r/w  
3
r/w  
2
r/w  
1
r/w  
0
r
Function  
PU CMD CPR POL CPA  
Default Value  
1
0
1
1
1
PU: Sets the default to either operate any time input  
power is present or for the ON/OFF to be controlled  
by the analog ON/OFF input and the PMBus  
OPERATION command. This bit is used together  
with the CP, CMD and ON bits to determine startup.  
Output Voltage Adjustment Using the  
PMBus  
The VOUT_SCALE_LOOP parameter is important for  
a number of PMBus commands related to output  
voltage trimming, margining, over/under voltage  
protection and the PGOOD thresholds. The output  
voltage of the module is set as the combination of the  
voltage divider formed by RTrim and a 20kupper  
divider resistor inside the module, and the internal  
reference voltage of the module. The reference  
voltage VREF is nominally set at 600mV, and the  
output regulation voltage is then given by  
Bit Value  
Action  
Module powers up any time power is  
present regardless of state of the analog  
ON/OFF pin  
Module does not power up until  
commanded by the analog ON/OFF pin  
and the OPERATION command as  
programmed in bits [2:0] of the  
ON_OFF_CONFIG register.  
0
1
CMD: The CMD bit controls how the device responds  
to the OPERATION command.  
20000 RTrim  
VOUT  
VREF  
RTrim  
Bit Value  
Action  
Module ignores the ON bit in the  
OPERATION command  
Module responds to the ON bit in the  
OPERATION command  
0
Hence the module output voltage is dependent on the  
value of RTrim which is connected external to the  
module. The information on the output voltage divider  
ratio is conveyed to the module through the  
VOUT_SCALE_LOOP parameter which is calculated  
as follows:  
1
CPR: Sets the response of the analog ON/OFF pin.  
This bit is used together with the CMD, PU and ON  
bits to determine startup.  
RTrim  
VOUT _SCALE _LOOP   
Bit Value  
Action  
20000 RTrim  
Module ignores the analog ON/OFF pin,  
i.e. ON/OFF is only controlled through the  
PMBUS via the OPERATION command  
Module requires the analog ON/OFF pin  
to be asserted to start the unit  
0
The VOUT_SCALE_LOOP parameter is specified  
using the “Linear” format and two bytes. The upper  
five bits [7:3] of the high byte are used to set the  
exponent which is fixed at –9 (decimal). The  
remaining three bits of the high byte [2:0] and the  
eight bits of the lower byte are used for the mantissa.  
1
Page 14 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
The default value of the mantissa is 00100000000  
corresponding to 256 (decimal), corresponding to a  
divider ratio of 0.5. The maximum value of the  
mantissa is 512 corresponding to a divider ratio of 1.  
Note that the resolution of the VOUT_SCALE_LOOP  
command is 0.2%.  
cannot be outside the ±25% window around the  
nominal output voltage. The data associated with  
VOUT_MARGIN_HIGH and VOUT_MARGIN_LOW  
can be stored to non-volatile memory using the  
STORE_DEFAULT_ALL command.  
The module is commanded to go to the margined  
high or low voltages using the OPERATION  
command. Bits [5:2] are used to enable margining as  
follows:  
When PMBus commands are used to trim or margin  
the output voltage, the value of VREF is what is  
changed inside the module, which in turn changes  
the regulated output voltage of the module.  
00XX : Margin Off  
The nominal output voltage of the module can be  
adjusted with a minimum step size of 0.4% over a  
±25% range from nominal using the VOUT_TRIM  
command over the PMBus.  
0101 : Margin Low (Ignore Fault)  
0110 : Margin Low (Act on Fault)  
1001 : Margin High (Ignore Fault)  
1010 : Margin High (Act on Fault)  
The VOUT_TRIM command is used to apply a fixed  
offset voltage to the output voltage command value  
using the “Linear” mode with the exponent fixed at  
–10 (decimal). The value of the offset voltage is given  
by  
PMBus Adjustable Overcurrent Warning  
The module can provide an overcurrent warning via  
the PMBus. The threshold for the overcurrent  
warning can be set using the parameter  
IOUT_OC_WARN_LIMIT. This command uses the  
“Linear” data format with a two byte data word where  
the upper five bits [7:3] of the high byte represent the  
exponent and the remaining three bits of the high  
byte [2:0] and the eight bits in the low byte represent  
the mantissa. The exponent is fixed at –1 (decimal).  
The upper five bits of the mantissa are fixed at 0  
while the lower six bits are programmable. For  
production codes after April 2013, the value for  
IOUT_OC_WARN_LIMIT will be fixed at 14.5A. For  
earlier production codes the actual value for  
IOUT_OC_WARN_LIMIT will vary from module to  
module due to calibration during production testing.  
The resolution of this warning limit is 500mA. The  
value of the IOUT_OC_WARN_LIMIT can be stored  
VOUT(offset) VOUT _TRIM210  
This offset voltage is added to the voltage set through  
the divider ratio and nominal VREF to produce the  
trimmed output voltage. The valid range in two’s  
complement for this command is –4000h to 3999h.  
The high order two bits of the high byte must both be  
either 0 or 1. If a value outside of the +/-25%  
adjustment range is given with this command, the  
module will set it’s output voltage to the nominal  
value (as if VOUT_TRIM had been set to 0), assert  
SMBALRT#, set the CML bit in STATUS_BYTE and  
the invalid data bit in STATUS_CML.  
Output Voltage Margining Using the PMBus  
to  
non-volatile  
memory  
using  
the  
STORE_DEFAULT_ALL command.  
The module can also have its output voltage  
margined via PMBus commands. The command  
VOUT_MARGIN_HIGH sets the margin high voltage,  
while the command VOUT_MARGIN_LOW sets the  
margin low voltage. Both the VOUT_MARGIN_HIGH  
and VOUT_MARGIN_LOW commands use the  
“Linear” mode with the exponent fixed at –10  
(decimal). Two bytes are used for the mantissa with  
the upper bit [7] of the high byte fixed at 0. The actual  
margined output voltage is a combination of the  
VOUT_MARGIN_HIGH or VOUT_MARGIN_LOW  
and the VOUT_TRIM values as shown below.  
Temperature Status via PMBus  
The module can provide information related to  
temperature of the module through the  
STATUS_TEMPERATURE command. The command  
returns information about whether the pre-set over  
temperature fault threshold and/or the warning  
threshold have been exceeded.  
PMBus Adjustable Output Over and Under  
Voltage Protection  
VOUT(MH)  
(VOUT_MARGIN_HIGHVOUT_TRIM)210  
The module has output over and under voltage  
protection capability. The PMBus command  
VOUT_OV_FAULT_LIMIT is used to set the output  
over voltage threshold from four possible values:  
108%, 110%, 112% or 115% of the commanded  
V
OUT(ML)   
(VOUT_MARGIN_LOW VOUT_TRIM)210  
Note that the sum of the margin and trim voltages  
output  
voltage.  
The  
command  
Page 15 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
VOUT_UV_FAULT_LIMIT sets the threshold that  
causes an output under voltage fault and can also be  
selected from four possible values: 92%, 90%, 88%  
or 85%. The default values are 112% and 88% of  
commanded output voltage. Both commands use two  
data bytes formatted as two’s complement binary  
integers. The “Linear” mode is used with the  
exponent fixed to –10 (decimal) and the effective  
over or under voltage trip points given by:  
are entered for either command, they will be mapped  
to the closest of the allowed values.  
VIN_ON must be set higher than VIN_OFF.  
Attempting to write either VIN_ON lower than  
VIN_OFF or VIN_OFF higher than VIN_ON results in  
the new value being rejected, SMBALERT being  
asserted along with the CML bit in STATUS_BYTE  
and the invalid data bit in STATUS_CML.  
VOUT(OV _REQ) (VOUT _OV _FAULT _LIMIT)210  
VOUT(UV _REQ) (VOUT _UV _FAULT _LIMIT)210  
Both the VIN_ON and VIN_OFF commands use the  
“Linear” format with two data bytes. The upper five  
bits represent the exponent (fixed at -2) and the  
remaining 11 bits represent the mantissa. For the  
mantissa, the four most significant bits are fixed at 0.  
Values within the supported range for over and  
undervoltage detection thresholds will be set to the  
nearest fixed percentage. Note that the correct value  
for VOUT_SCALE_LOOP must be set in the module  
for the correct over or under voltage trip points to be  
calculated.  
Power Good  
The module provides a Power Good (PGOOD) signal  
that is implemented with an open-drain output to  
indicate that the output voltage is within the  
regulation limits of the power module. The PGOOD  
signal will be de-asserted to a low state if any  
condition such as overtemperature, overcurrent or  
loss of regulation occurs that would result in the  
output voltage going outside the specified thresholds.  
The PGOOD thresholds are user selectable via the  
PMBus (the default values are as shown in the  
Feature Specifications Section). Each threshold is  
set up symmetrically above and below the nominal  
value. The POWER_GOOD_ON command sets the  
output voltage level above which PGOOD is asserted  
(lower threshold). For example, with a 1.2V nominal  
output voltage, the POWER_GOOD_ON threshold  
can set the lower threshold to 1.14 or 1.1V. Doing  
this will automatically set the upper thresholds to 1.26  
or 1.3V.  
In addition to adjustable output voltage protection, the  
12A Digital Tomodachi module can also be  
programmed for the response to the fault. The  
VOUT_OV_FAULT_RESPONSE  
and  
VOUT_UV_FAULT_RESPONSE commands specify  
the response to the fault. Both these commands use  
a single data byte with the possible options as shown  
below.  
1. Continue operation without interruption  
(Bits [7:6] = 00, Bits [5:3] = xxx)  
2. Continue for four switching cycles and then shut  
down if the fault is still present, followed by no  
restart or continuous restart  
(Bits [7:6] = 01, Bits [5:3] = 000 means no restart,  
Bits [5:3] = 111 means continuous restart)  
3. Immediate shut down followed by no restart or  
continuous restart  
(Bits [7:6] = 10, Bits [5:3] = 000 means no restart,  
Bits [5:3] = 111 means continuous restart).  
4. Module output is disabled when the fault is  
present and the output is enabled when the fault  
no longer exists  
The POWER_GOOD_OFF command sets the level  
below which the PGOOD command is de-asserted.  
This  
command  
also  
sets  
two  
thresholds  
symmetrically placed around the nominal output  
voltage.  
threshold  
Normally,  
is  
the  
POWER_GOOD_ON  
higher than the  
(Bits [7:6] = 11, Bits [5:3] = xxx).  
set  
Note that separate response choices are possible for  
output over voltage or under voltage faults.  
POWER_GOOD_OFF threshold.  
Both POWER_GOOD_ON and  
POWER_GOOD_OFF commands use the “Linear”  
format with the exponent fixed at –10 (decimal).  
The two thresholds are given by  
PMBus Adjustable Input Undervoltage  
Lockout  
VOUT(PGOOD_ON) (POWER_GOOD_ON)210  
VOUT(PGOOD_OFF) (POWER_GOOD_OFF)210  
The module allows adjustment of the input under  
voltage lockout and hysteresis. The command  
VIN_ON allows setting the input voltage turn on  
threshold, while the VIN_OFF command sets the  
input voltage turn off threshold. For the VIN_ON  
command, possible values are 2.75V, and 3V to 14V  
in 0.5V steps. For the VIN_OFF command, possible  
values are 2.5V to 14V in 0.5V steps. If other values  
Both commands use two data bytes with bit [7] of the  
high byte fixed at 0, while the remaining bits are r/w  
and used to set the mantissa using two’s complement  
representation. Both commands also use the  
VOUT_SCALE_LOOP parameter so it must be set  
correctly. The default value of POWER_GOOD_ON  
Page 16 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
is set at 1.1035V and that of  
POWER_GOOD_OFF is set at 1.08V. The values  
associated with these commands can be stored in  
the  
data byte in two-s complement format and is fixed at  
–4 (decimal). The remaining 11 bits in two’s  
complement binary format represent the mantissa  
with the 11th bit fixed at 0 since only positive numbers  
are considered valid.  
non-volatile  
memory  
using  
the  
STORE_DEFAULT_ALL command.  
The PGOOD terminal can be connected through a  
pullup resistor (suggested value 100K) to a source  
of 5VDC or lower.  
Note that the current reading provided by the module  
is not corrected for temperature. The temperature  
corrected current reading for module temperature  
TModule can be estimated using the following equation.  
Measurement of Output Current, Output  
Voltage and Input Voltage  
IREAD _OUT  
I
OUT,CORR  
1[(TIND 30)0.00393]  
The module is capable of measuring key module  
parameters such as output current and voltage and  
input voltage and providing this information through  
the PMBus interface. Roughly every 200us, the  
module makes 16 measurements each of output  
current, voltage and input voltage. Average values of  
of these 16 measurements are then calculated and  
placed in the appropriate registers. The values in the  
registers can then be read using the PMBus  
interface.  
where IOUT_CORR is the temperature corrected value of  
the current measurement, IREAD_OUT is the module  
current measurement value, TIND is the temperature  
of the inductor winding on the module. Since it may  
be difficult to measure TIND, it may be approximated  
by an estimate of the module temperature.  
Measuring Output Voltage Using the PMBus  
The module can provide output voltage information  
using the READ_VOUT command. The command  
returns two bytes of data all representing the  
mantissa while the exponent is fixed at -10 (decimal).  
Measuring Output Current Using the PMBus  
The module measures current by using the inductor  
winding resistance as a current sense element. The  
inductor winding resistance is then the current gain  
factor used to scale the measured voltage into a  
current reading. This gain factor is the argument of  
the IOUT_CAL_GAIN command, and consists of two  
bytes in the linear data format. The exponent uses  
the upper five bits [7:3] of the high data byte in two-s  
complement format and is fixed at –15 (decimal). The  
remaining 11 bits in two’s complement binary format  
represent the mantissa.  
During manufacture of the module, offset and gain  
correction values are written into the non-volatile  
memory  
of  
the  
module.  
The  
command  
VOUT_CAL_OFFSET can be used to read and/or  
write the offset (two bytes consisting of a 16-bit  
mantissa in two’s complement format) while the  
exponent is always fixed at -10 (decimal). The  
allowed range for this offset correction is -125 to  
124mV. The command VOUT_CAL_GAIN can be  
used to read and/or write the gain correction - two  
bytes consisting of a five-bit exponent (fixed at -8)  
and a 11-bit mantissa. The range of this correction  
factor is -0.125V to +0.121V, with a resolution of  
0.004V. The corrected output voltage reading is then  
given by:  
The current measurement accuracy is also improved  
by each module being calibrated during manufacture  
with the offset in the current reading. The  
IOUT_CAL_OFFSET command is used to store and  
read the current offset. The argument for this  
command consists of two bytes composed of a 5-bit  
exponent (fixed at -4d) and a 11-bit mantissa. This  
command has a resolution of 62.5mA and a range of  
-4000mA to +3937.5mA. During manufacture, each  
module is calibrated by measuring and storing the  
current gain factor and offset into non-volatile  
storage.  
VOUT (Final)  
[VOUT (Initial)(1VOUT_CAL_GAIN)]  
VOUT _CAL_OFFSET  
Measuring Input Voltage Using the PMBus  
The READ_IOUT command provides module  
average output current information. This command  
only supports positive or current sourced from the  
module. If the converter is sinking current a reading  
of 0 is provided. The READ_IOUT command returns  
two bytes of data in the linear data format. The  
exponent uses the upper five bits [7:3] of the high  
The module can provide output voltage information  
using the READ_VIN command. The command  
returns two bytes of data in the linear format. The  
upper five bits [7:3] of the high data form the two’s  
complement representation of the mantissa which is  
fixed at –5 (decimal). The remaining 11 bits are used  
for two’s complement representation of the mantissa,  
Page 17 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
with the 11th bit fixed at zero since only positive  
numbers are valid.  
High Byte  
Bit  
Position  
Default  
Value  
Flag  
During module manufacture, offset and gain  
correction values are written into the non-volatile  
7
6
5
4
3
2
1
0
VOUT fault or warning  
IOUT fault or warning  
0
0
0
0
0
0
0
0
memory  
of  
the  
module.  
The  
command  
VIN_CAL_OFFSET can be used to read and/or write  
the offset - two bytes consisting of a five-bit exponent  
(fixed at -5) and a 11-bit mantissa in two’s  
complement format. The allowed range for this offset  
correction is -2 to 1.968V, and the resolution is  
32mV. The command VIN_CAL_GAIN can be used  
to read and/or write the gain correction - two bytes  
consisting of a five-bit exponent (fixed at -8) and a  
11-bit mantissa. The range of this correction factor is  
-0.125V to +0.121V, with a resolution of 0.004V. The  
corrected output voltage reading is then given by:  
X
X
POWER_GOOD# (is negated)  
X
X
X
STATUS_VOUT: Returns one byte of information  
relating to the status of the module’s output voltage  
related faults.  
VIN (Final)  
Bit  
Position  
Default  
Value  
Flag  
[VIN (Initial)(1VIN _CAL _GAIN)]  
VIN _CAL _OFFSET  
7
6
5
4
3
2
1
0
VOUT OV Fault  
0
0
0
0
0
0
0
0
X
X
VOUT UV Fault  
Reading the Status of the Module using the  
PMBus  
X
X
X
X
The module supports a number of status information  
commands implemented in PMBus. However, not all  
features are supported in these commands. A 1 in  
the bit position indicates the fault that is flagged.  
STATUS_IOUT: Returns one byte of information  
relating to the status of the module’s output voltage  
related faults.  
STATUS_BYTE: Returns one byte of information  
with a summary of the most critical device faults.  
Bit  
Position  
Default  
Value  
Bit  
Position  
Default  
Value  
Flag  
Flag  
7
6
5
4
3
2
1
0
IOUT OC Fault  
0
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
X
OFF  
0
0
0
0
0
0
0
0
X
IOUT OC Warning  
VOUT Overvoltage  
IOUT Overcurrent  
VIN Undervoltage  
Temperature  
X
X
X
X
X
CML (Comm. Memory Fault)  
None of the above  
STATUS_TEMPERATURE: Returns one byte of  
information relating to the status of the module’s  
temperature related faults.  
STATUS_WORD: Returns two bytes of information  
with a summary of the module’s fault/warning  
conditions.  
Low Byte  
Bit  
Position  
Default  
Value  
Bit  
Position  
Default  
Value  
Flag  
Flag  
7
6
5
4
3
2
1
0
OT Fault  
OT Warning  
0
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
X
OFF  
0
0
0
0
0
0
0
0
X
X
X
X
X
X
VOUT Overvoltage  
IOUT Overcurrent  
VIN Undervoltage  
Temperature  
CML (Comm. Memory Fault)  
None of the above  
Page 18 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
STATUS_CML: Returns one byte of information  
relating to the status of the module’s communication  
related faults.  
Bit  
Position  
Default  
Value  
Flag  
Invalid/Unsupported  
Command  
Invalid/Unsupported  
7
6
0
0
Command  
5
4
3
2
1
0
Packet Error Check Failed  
0
0
0
0
0
0
X
X
X
Other Communication Fault  
X
MFR_VIN_MIN: Returns minimum input voltage as  
two data bytes of information in Linear format (upper  
five bits are exponent – fixed at -2, and lower 11 bits  
are mantissa in two’s complement format – fixed at  
12)  
MFR_VOUT_MIN: Returns minimum output voltage  
as two data bytes of information in Linear format  
(upper five bits are exponent – fixed at -10, and lower  
11 bits are mantissa in two’s complement format –  
fixed at 614)  
MFR_SPECIFIC_00: Returns information related to  
the type of module and revision number. Bits [7:2] in  
the Low Byte indicate the module type (000000  
corresponds to the FGSD12SR6012 module) Bits 1:0  
in the High Byte are used to indicate the  
manufacturer ID, with 01 reserved for FDK.  
Low Byte  
Bit  
Position  
7:2  
Default  
Value  
000000  
10  
Flag  
Module Name  
Reserved  
1:0  
High Byte  
Flag  
Bit  
Position  
7:0  
Default  
Value  
None  
01  
Module Revision Number  
Manufacturer ID  
1:0  
Page 19 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Summary of Supported PMBus Commands  
Please refer to the PMBus 1.1 specification for more details of these commands.  
Table 6  
Non-Volatile  
Memory  
Storage  
Hex  
Code  
Command  
Brief Description  
Turn Module on or off. Also used to margin the output voltage  
Format  
Bit Position  
Access  
Function  
Default Value  
Unsigned Binary  
7
6
r
X
0
5
r/w  
4
3
2
r/w  
1
r
X
X
0
r
X
X
01  
OPERATION  
r/w  
On  
0
r/w  
r/w  
Margin  
0
0
0
0
Configures the ON/OFF functionality as a combination of analog ON/OFF  
pin and PMBus commands  
Format  
Bit Position  
Access  
Function  
Default Value  
Unsigned Binary  
7
r
X
0
6
r
X
0
5
r
X
0
4
r/w  
pu  
1
3
r/w  
cmd  
0
2
r/w  
cpr  
1
1
0
r
cpa  
1
02  
03  
ON_OFF_CONFIG  
CLEAR_FAULTS  
YES  
r/w  
pol  
1
Clear any fault bits that may have been set, also releases the SMBALERT#  
signal if the device has been asserting it.  
Used to control writing to the module via PMBus. Copies the current register  
setting in the module whose command code matches the value in the data  
byte into non-volatile memory (EEPROM) on the module  
Format  
Bit Position  
Access  
Function  
Default Value  
Unsigned Binary  
7
r/w  
bit7  
0
6
r/w  
bit6  
0
5
r/w  
bit5  
0
4
x
3
x
2
x
X
X
1
x
X
X
0
x
X
X
X
X
X
X
10  
WRITE_PROTECT  
YES  
Bit5: 0 – Enables all writes as permitted in bit6 or bit7  
1 – Disables all writes except the WRITE_PROTECT, OPERATION  
and ON_OFF_CONFIG (bit 6 and bit7 must be 0)  
Bit 6: 0 – Enables all writes as permitted in bit5 or bit7  
1 – Disables all writes except for the WRITE_PROTECT and  
OPERATION commands (bit5 and bit7 must be 0)  
Bit7: 0 – Enables all writes as permitted in bit5 or bit6  
1 – Disables all writes except for the WRITE_PROTECT command  
(bit5 and bit6 must be 0)  
Copies all current register settings in the module into non-volatile memory  
(EEPROM) on the module. Takes about 50ms for the command to execute.  
11  
12  
STORE_DEFAULT_ALL  
Restores all current register settings in the module from values in the  
module non-volatile memory (EEPROM)  
RESTORE_DEFAULT_ALL  
Copies the current register setting in the module whose command code  
matches the value in the data byte into non-volatile memory (EEPROM) on  
the module  
13  
14  
STORE_DEFAULT_CODE  
Bit Position  
Access  
7
w
6
w
5
w
4
w
3
w
2
w
1
w
0
w
Function  
Command code  
Restores the current register setting in the module whose command code  
matches the value in the data byte from the value in the module non-volatile  
memory (EEPROM)  
RESTORE_DEFAULT_CODE  
Bit Position  
Access  
7
w
6
w
5
w
4
w
3
w
2
w
1
w
0
w
Function  
Command code  
The module has MODE set to Linear and Exponent set to -10. These values  
cannot be changed  
Bit Position  
Access  
Function  
7
r
6
5
r
4
r
3
r
2
1
r
0
r
20  
VOUT_MODE  
r
Mode  
0
r
Exponent  
1
Default Value  
0
0
1
0
1
0
Table 6 (continued)  
Http://www.fdk.com  
Page 20 of 41  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Non-Volatile  
Memory  
Storage  
Hex  
Command  
Code  
Brief Description  
Apply a fixed offset voltage to the output voltage command value. Exponent  
is fixed at -10.  
Format  
Linear, two’s complement binary  
Bit Position  
Access  
7
r/w  
6
r/w  
5
r/w  
4
r/w  
3
r/w  
2
r/w  
1
r/w  
0
r/w  
Function  
High Byte  
22  
25  
26  
29  
35  
VOUT_TRIM  
VOUT_MARGIN_HIGH  
VOUT_MARGIN_LOW  
VOUT_SCALE_LOOP  
VIN_ON  
YES  
YES  
YES  
YES  
YES  
Default Value  
Bit Position  
Access  
Function  
Default Value  
0
7
r/w  
0
6
r/w  
0
5
r/w  
0
4
0
3
0
2
r/w  
0
1
r/w  
0
0
r/w  
r/w  
r/w  
Low Byte  
0
0
0
0
0
0
0
0
Sets the target voltage for margining the output high. Exponent is fixed at  
-10.  
Format  
Bit Position  
Access  
Linear, two’s complement binary  
7
r
6
r/w  
5
r/w  
4
3
2
r/w  
1
r/w  
0
r/w  
r/w  
r/w  
Function  
High Byte  
Default Value  
Bit Position  
Access  
Function  
Default Value  
0
7
r/w  
0
6
r/w  
0
5
r/w  
0
4
0
3
1
2
r/w  
0
1
r/w  
1
0
r/w  
r/w  
r/w  
Low Byte  
0
1
0
0
0
1
1
1
Sets the target voltage for margining the output low. Exponent is fixed at  
-10  
Format  
Bit Position  
Access  
Linear, two’s complement binary  
7
r
6
r/w  
5
r/w  
4
3
2
r/w  
1
r/w  
0
r/w  
r/w  
r/w  
Function  
High Byte  
Default Value  
Bit Position  
Access  
Function  
Default Value  
0
7
r/w  
0
6
r/w  
0
5
r/w  
0
4
0
3
1
2
r/w  
0
1
r/w  
0
0
r/w  
r/w  
r/w  
Low Byte  
0
1
0
1
0
0
0
1
Sets the scaling of the output voltage – equal to the feedback resistor  
divider ratio  
Format  
Bit Position  
Access  
Linear, two’s complement binary  
7
r
6
r
5
r
4
r
3
r
2
r
1
r/w  
Mantissa  
0
r/w  
Function  
Exponent  
Default Value  
Bit Position  
Access  
Function  
Default Value  
1
7
r/w  
0
6
r/w  
1
5
r/w  
1
4
1
3
0
2
r/w  
0
1
r/w  
1
0
r/w  
r/w  
r/w  
Mantissa  
0
0
0
0
0
0
0
0
Sets the value of input voltage at which the module turns on  
Format  
Bit Position  
Access  
Linear, two’s complement binary  
7
r
6
r
5
r
4
r
3
r
2
r
1
r
0
r
Function  
Exponent  
Mantissa  
Default Value  
Bit Position  
Access  
1
7
r
1
6
r/w  
1
5
r/w  
1
4
0
3
0
2
r/w  
0
1
r/w  
0
0
r/w  
r/w  
r/w  
Function  
Mantissa  
Default Value  
0
0
0
0
1
0
1
1
Page 21 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Table 6 (continued)  
Non-Volatile  
Memory  
Storage  
Hex  
Command  
Code  
Brief Description  
Sets the value of input voltage at which the module turns off  
Format Linear, two’s complement binary  
Bit Position  
Access  
7
r
6
r
5
r
4
r
3
r
2
r
1
r
0
r
Function  
Exponent  
Mantissa  
36  
VIN_OFF  
YES  
Default Value  
Bit Position  
Access  
1
7
r
1
6
r/w  
1
5
r/w  
1
4
r/w  
0
3
r/w  
0
2
r/w  
0
1
r/w  
0
0
r/w  
Function  
Mantissa  
Default Value  
0
0
0
0
1
0
1
0
Returns the value of the gain correction term used to correct the measured  
output current  
Format  
Bit Position  
Access  
Linear, two’s complement binary  
7
r
6
r
5
4
r
3
r
2
r
1
r
0
r/w  
r
Function  
Exponent  
Mantissa  
38  
IOUT_CAL_GAIN  
YES  
Default Value  
Bit Position  
Access  
1
7
r/w  
0
6
r/w  
0
5
r/w  
0
4
r/w  
1
3
r/w  
0
2
r/w  
0
1
r/w  
V
0
r/w  
Function  
Default Value  
Mantissa  
V: Variable based on factory calibration  
Returns the value of the offset correction term used to correct the measured  
output current  
Format  
Bit Position  
Access  
Linear, two’s complement binary  
7
r
6
r
5
4
r
3
r
2
1
r
0
r
r
r/w  
Function  
Exponent  
Mantissa  
39  
IOUT_CAL_OFFSET  
YES  
Default Value  
Bit Position  
Access  
1
7
r
1
6
r
1
5
r/w  
0
4
r/w  
0
3
r/w  
V
2
r/w  
0
1
r/w  
0
0
r/w  
Function  
Default Value  
Mantissa  
V: Variable based on factory calibration  
0
0
Sets the voltage level for an output overvoltage fault. Exponent is fixed at  
-10.  
Format  
Bit Position  
Access  
Linear, two’s complement binary  
7
r
6
r/w  
5
4
3
2
1
r/w  
0
r/w  
r/w  
r/w  
r/w  
r/w  
Function  
High Byte  
40  
VOUT_OV_FAULT_LIMIT  
YES  
Default Value  
Bit Position  
Access  
0
7
r/w  
0
6
r/w  
0
5
r/w  
0
4
r/w  
0
3
r/w  
1
2
r/w  
0
1
r/w  
1
0
r/w  
Function  
Low Byte  
Default Value  
0
0
0
0
1
0
1
0
Instructs the module on what action to take in response to a output  
overvoltage fault  
Format  
Bit Position  
Access  
Unsigned Binary  
7
r/w  
6
r/w  
5
r/w  
4
3
2
r
1
r
0
r
41  
VOUT_OV_FAULT_RESPONSE  
YES  
r/w  
r/w  
RSP RSP  
Function  
RS[2] RS[1] RS[0]  
X
1
X
0
X
0
[1]  
[0]  
Default Value  
1
1
1
1
1
Page 22 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Table 6 (continued)  
Non-Volatile  
Memory  
Storage  
Hex  
Command  
Code  
Brief Description  
Sets the voltage level for an output undervoltage fault. Exponent is fixed at  
-10.  
Format  
Linear, two’s complement binary  
Bit Position  
Access  
7
r
6
r/w  
5
r/w  
4
r/w  
3
r/w  
2
r/w  
1
r/w  
0
r/w  
Function  
High Byte  
44  
VOUT_UV_FAULT_LIMIT  
YES  
Default Value  
Bit Position  
Access  
0
7
r/w  
0
6
r/w  
0
5
r/w  
0
4
r/w  
0
3
r/w  
1
2
r/w  
0
1
r/w  
0
0
r/w  
Function  
Low Byte  
Default Value  
1
0
0
0
1
1
1
1
Instructs the module on what action to take in response to a output  
undervoltage fault  
Format  
Bit Position  
Access  
Unsigned Binary  
7
r/w  
6
r/w  
5
r/w  
4
3
2
r
1
r
0
r
45  
VOUT_UV_FAULT_RESPONSE  
YES  
r/w  
r/w  
RSP RSP  
Function  
RS[2] RS[1] RS[0]  
X
1
X
0
X
0
[1]  
[0]  
Default Value  
0
0
0
0
0
Sets the output overcurrent fault level in A (cannot be changed)  
Format  
Bit Position  
Access  
Linear, two’s complement binary  
7
r
6
r
5
4
r
3
r
2
r
1
r
0
r
r
Function  
Exponent  
Mantissa  
46  
IOUT_OC_FAULT_LIMIT  
Default Value  
Bit Position  
Access  
1
7
r
1
6
r
1
5
r
1
4
r
1
3
r
0
2
r
0
1
r
0
0
r
YES  
Function  
Mantissa  
Default Value  
0
0
0
1
1
1
1
1
Sets the output overcurrent warning level in A  
Format  
Bit Position  
Access  
Linear, two’s complement binary  
7
r
6
r
5
4
r
3
r
2
r
1
r
0
r
r
Function  
Exponent  
Mantissa  
4A  
IOUT_OC_WARN_LIMIT  
Default Value  
Bit Position  
Access  
1
7
r
1
6
r
1
5
r/w  
1
4
r/w  
1
3
r/w  
0
2
r/w  
0
1
r/w  
0
0
r/w  
YES  
Function  
Mantissa  
Default Value  
0
0
0
1
1
1
0
1
Sets the output voltage level at which the PGOOD pin is asserted high.  
Exponent is fixed at -10.  
Format  
Bit Position  
Access  
Linear, two’s complement binary  
7
r
6
r/w  
5
4
3
2
1
r/w  
0
r/w  
r/w  
r/w  
r/w  
r/w  
Function  
High Byte  
5E  
POWER_GOOD_ON  
YES  
Default Value  
Bit Position  
Access  
0
7
r/w  
0
6
r/w  
0
5
r/w  
0
4
r/w  
0
3
r/w  
1
2
r/w  
0
1
r/w  
0
0
r/w  
Function  
Low Byte  
Default Value  
0
1
1
0
1
0
1
0
Page 23 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Table 6 (continued)  
Non-Volatile  
Memory  
Storage  
Hex  
Command  
Code  
Brief Description  
Sets the output voltage level at which the PGOOD pin is de-asserted low.  
Exponent is fixed at -10.  
Format  
Linear, two’s complement binary  
Bit Position  
Access  
7
r
6
r/w  
5
r/w  
4
r/w  
3
r/w  
2
r/w  
1
r/w  
0
r/w  
Function  
High Byte  
5F  
POWER_GOOD_OFF  
YES  
Default Value  
Bit Position  
Access  
0
7
r/w  
0
6
r/w  
0
5
r/w  
0
4
r/w  
0
3
r/w  
1
2
r/w  
0
1
r/w  
0
0
r/w  
Function  
Low Byte  
Default Value  
0
1
0
1
0
0
1
0
Sets the rise time of the output voltage during startup  
Format  
Bit Position  
Access  
Linear, two’s complement binary  
7
r
6
r
5
4
r
3
r
2
r
1
r
0
r/w  
r
Function  
Exponent  
Mantissa  
61  
TON_RISE  
YES  
Default Value  
Bit Position  
Access  
1
7
r/w  
1
6
r/w  
1
5
r/w  
0
4
r/w  
0
3
r/w  
0
2
r/w  
0
1
r/w  
0
0
r/w  
Function  
Mantissa  
Default Value  
0
0
1
0
1
0
1
0
Returns one byte of information with a summary of the most critical module  
faults  
Format  
Bit Position  
Access  
Unsigned Binary  
7
r
6
r
5
r
4
r
3
r
2
r
1
r
0
78  
STATUS_BYTE  
r
OTHE  
R
VOUT IOUT VIN_  
_OV _OC UV  
Flag  
X
0
OFF  
0
TEMP CML  
Default Value  
0
0
0
0
0
0
Returns two bytes of information with  
fault/warning conditions  
a summary of the module’s  
Format  
Bit Position  
Access  
Linear, two’s complement binary  
7
r
6
r
5
r
4
r
3
2
r
1
r
0
r
r
PGO  
OD  
0
3
r
IOUT  
_OC  
Flag  
VOUT  
X
X
X
X
X
79  
STATUS_WORD  
Default Value  
Bit Position  
Access  
0
7
r
0
6
r
0
5
r
0
4
r
0
2
r
0
1
r
0
0
r
OTHE  
R
VOUT IOUT VIN_  
_OV _OC UV  
Flag  
X
0
OFF  
0
TEMP CML  
Default Value  
0
0
0
0
0
0
Returns one byte of information with the status of the module’s output  
voltage related faults  
Format  
Bit Position  
Access  
Unsigned Binary  
7
r
6
r
5
r
4
r
3
r
2
r
1
r
0
r
7A  
STATUS_VOUT  
Flag  
Default Value  
VOUT_OV  
0
X
0
X
0
VOUT_UV  
0
X
0
X
0
X
0
X
0
Returns one byte of information with the status of the module’s output  
current related faults  
Format  
Bit Position  
Access  
Unsigned Binary  
7
r
6
r
5
4
r
3
r
2
r
1
r
0
r
7B  
STATUS_IOUT  
r
IOUT_OC_WA  
Flag  
IOUT_OC  
0
X
0
X
0
X
0
X
0
X
0
X
0
RN  
0
Default Value  
Page 24 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Table 6 (continued)  
Non-Volatile  
Memory  
Storage  
Hex  
Command  
Code  
Brief Description  
Returns one byte of information with the status of the module’s temperature  
related faults  
Format  
Unsigned Binary  
Bit Position  
Access  
7
r
6
r
5
r
4
r
3
r
2
r
1
r
0
r
7D  
STATUS_TEMPERATURE  
Flag  
Default Value  
OT_FAULT OT_WARN  
X
0
X
0
X
0
X
0
X
0
X
0
0
0
Returns one byte of information with the status of the module’s  
communication related faults  
Format  
Bit Position  
Access  
Unsigned Binary  
7
r
6
r
5
r
4
r
3
r
2
r
1
r
0
r
7E  
STATUS_CML  
Other  
Comm  
Fault  
0
Invalid  
Command Data Fail  
Invalid PEC  
Flag  
X
0
X
0
X
0
X
0
Default Value  
0
0
0
Returns the value of the input voltage applied to the module  
Format  
Bit Position  
Access  
Linear, two’s complement binary  
7
r
6
r
5
4
r
3
r
2
r
1
r
0
r
r
Function  
Exponent  
Mantissa  
88  
READ_VIN  
Default Value  
Bit Position  
Access  
1
7
r
1
6
r
0
5
r
1
4
r
1
3
r
0
2
r
0
1
r
0
0
r
Function  
Mantissa  
Default Value  
0
0
0
0
0
0
0
0
Returns the value of the output voltage of the module. Exponent is fixed at  
-10.  
Format  
Bit Position  
Access  
Linear, two’s complement binary  
7
r
6
r
5
r
4
r
3
r
2
r
1
r
0
r
Function  
Mantissa  
8B  
READ_VOUT  
Default Value  
Bit Position  
Access  
0
7
r
0
6
r
0
5
r
0
4
r
0
3
r
0
2
r
0
1
r
0
0
r
Function  
Mantissa  
Default Value  
0
0
0
0
0
0
0
0
Returns the value of the output current of the module  
Format  
Bit Position  
Access  
Linear, two’s complement binary  
7
r
6
r
5
4
r
3
r
2
r
1
r
0
r
r
Function  
Exponent  
Mantissa  
8C  
READ_IOUT  
Default Value  
Bit Position  
Access  
1
7
r
1
6
r
1
5
r
0
4
r
0
3
r
0
2
r
0
1
r
0
0
r
Function  
Mantissa  
Default Value  
0
0
0
0
0
0
0
0
Returns one byte indicating the module is compliant to PMBus Spec. 1.1  
(read only)  
Format  
Bit Position  
Access  
Unsigned Binary  
98  
PMBUS_REVISION  
YES  
7
r
6
r
5
r
4
r
3
r
2
r
1
r
0
r
Default Value  
0
0
0
1
0
0
0
1
Page 25 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Table 6 (continued)  
Non-Volatile  
Memory  
Storage  
Hex  
Command  
Code  
Brief Description  
Returns the minimum input voltage the module is specified to operate at (read  
only)  
Format  
Linear, two’s complement binary  
Bit Position  
Access  
7
r
6
r
5
r
4
r
3
r
2
r
1
r
0
r
Function  
Exponent  
Mantissa  
A0  
MFR_VIN_MIN  
YES  
Default Value  
Bit Position  
Access  
1
7
r
1
6
r
1
5
r
1
4
r
0
3
r
0
2
r
0
1
r
0
0
r
Function  
Mantissa  
Default Value  
0
0
0
0
1
1
0
0
Returns the minimum output voltage possible from the module (read only)  
Format  
Bit Position  
Access  
Linear, two’s complement binary  
7
r
6
r
5
r
4
r
3
r
2
r
1
r
0
r
Function  
Mantissa  
A4  
MFR_VOUT_MIN  
YES  
Default Value  
Bit Position  
Access  
0
7
r
0
6
r
0
5
r
0
4
r
0
3
r
0
2
r
1
1
r
0
0
r
Function  
Mantissa  
Default Value  
0
1
1
0
0
1
1
0
Returns module name information (read only)  
Format  
Bit Position  
Access  
Unsigned Binary  
7
r
6
r
5
r
4
r
3
r
2
r
1
r
0
r
Function  
Reserved  
D0  
MFR_SPECIFIC_00  
YES  
Default Value  
Bit Position  
Access  
1
7
r
1
6
r
1
5
r
0
4
r
1
3
r
0
2
r
0
1
r
0
0
r
Function  
Module Name  
Reserved  
Default Value  
0
0
0
0
0
0
1
0
Applies an offset to the READ_VOUT command results to calibrate out offset  
errors in module measurements of the output voltage (between -125mV and  
+124mV). Exponent is fixed at -10.  
Format  
Bit Position  
Access  
Linear, two’s complement binary  
7
r/w  
6
r
5
r
4
r
3
r
2
r
1
r
0
r
D4  
VOUT_CAL_OFFSET  
YES  
Function  
Mantissa  
Default Value  
Bit Position  
Access  
V
7
r/w  
0
6
r/w  
0
5
r/w  
0
4
r/w  
0
3
r/w  
0
2
r/w  
0
1
r/w  
0
0
r/w  
Function  
Mantissa  
Default Value  
V
V
V
V
V
V
V
V
Applies a gain correction to the READ_VOUT command results to calibrate out  
gain errors in module measurements of the output voltage (between -0.125 and  
0.121)  
Format  
Bit Position  
Access  
Linear, two’s complement binary  
7
r
6
r
5
r
4
r
3
r
2
r
1
r
0
r/w  
D5  
VOUT_CAL_GAIN  
YES  
Function  
Exponent  
Mantissa  
Default Value  
Bit Position  
Access  
1
7
r/w  
1
6
r/w  
0
5
r/w  
0
4
r/w  
0
3
r/w  
0
2
r/w  
0
1
r/w  
V
0
r/w  
Function  
Mantissa  
Default Value  
V
V
V
V
V
V
V
V
Page 26 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Table 6 (continued)  
Non-Volatile  
Memory  
Storage  
Hex  
Command  
Code  
Brief Description  
Applies an offset correction to the READ_VIN command results to calibrate out  
offset errors in module measurements of the input voltage (between -2V and  
+1.968V)  
Format  
Bit Position  
Access  
Linear, two’s complement binary  
7
r
6
r
5
r
4
r
3
r/w  
2
r
1
r
0
r/w  
D6  
VIN_CAL_OFFSET  
YES  
Function  
Exponent  
Mantissa  
Default Value  
Bit Position  
Access  
1
7
r
1
6
r
0
5
r/w  
1
4
r/w  
V
3
r/w  
0
2
r/w  
0
1
r/w  
V
0
r/w  
Function  
Mantissa  
Default Value  
0
0
V
V
V
V
V
V
Applies a gain correction to the READ_VIN command results to calibrate out  
gain errors in module measurements of the input voltage (between -0.125 and  
0.121)  
Format  
Bit Position  
Access  
Linear, two’s complement binary  
7
r
6
r
5
r
4
r
3
r/w  
2
r
1
r
0
r/w  
D7  
VIN_CAL_GAIN  
YES  
Function  
Exponent  
Mantissa  
Default Value  
Bit Position  
Access  
1
7
r
1
6
r
0
5
r
0
4
r/w  
V
3
r/w  
0
2
r/w  
0
1
r/w  
V
0
r/w  
Function  
Mantissa  
Default Value  
0
0
0
V
V
V
V
V
Page 27 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Characterization  
A maximum component temperature of 120°C should  
not be exceeded in order to operate within the  
derating curves. Thus, the temperature at the  
thermocouple location shown in Fig-14 should not  
exceed 120°C in normal operation.  
Overview  
The converter has been characterized for several  
operational features, including efficiency, thermal  
derating (maximum available load current as a  
function of ambient temperature and airflow), ripple  
and noise, transient response to load step changes,  
start-up and shutdown characteristics.  
Note that continuous operation beyond the derated  
current as specified by the derating curves may lead  
to degradation in performance and reliability of the  
converter and may result in permanent damage.  
Figures showing data plots and waveforms for  
different output voltages are presented in the  
following pages.  
Thermal Considerations  
Power modules operate in a variety of thermal  
environments; however, sufficient cooling should  
always be provided to help ensure reliable operation.  
Considerations include ambient temperature, airflow,  
module power dissipation, and the need for increased  
reliability. A reduction in the operating temperature of  
the module will result in an increase in reliability.  
The thermal data presented here is based on  
physical measurements taken in a wind tunnel. The  
test set-up is shown in Fig-13. The preferred airflow  
direction for the module is in Fig-14.  
Fig-14: Preferred airflow direction and location  
of hot-spot of the module (Tref).  
The main heat dissipation method of this converter is  
to transfer its heat to the system board. Thus, if the  
temperature of the system board goes high, even  
with the low ambient temperature, it may exceed the  
guaranteed temperature of components.  
25.4_  
(1.0)  
Wind Tunnel  
PWBs  
Power Module  
76.2_  
(3.0)  
x
Probe Location  
for measuring  
airflow and  
12.7_  
(0.50)  
ambient  
temperature  
Air  
flow  
Fig-13: Thermal test set-up  
The maximum available load current, for any given  
set of conditions, is defined as the lower of:  
(i) The output current at which the temperature of any  
component reaches 120°C, or  
(ii) The current rating of the converter (12A)  
Page 28 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Characteristic Curves  
The following figures provide typical characteristics for the 12A Digital Tomodachi at 5Vo and 25°C  
100  
12  
95  
10  
NC  
0.5m/s  
(100LFM)  
90  
85  
80  
75  
70  
8
6
4
2
0
Vin=7V  
Vin=14V  
1m/s  
(200LFM)  
Vin=12V  
1.5m/s  
(300LFM)  
Standard  
Part (85°C)  
Ruggedized (D)  
2m/s  
(400LFM)  
Part (105°C)  
45  
55  
65  
75  
85  
95  
105  
0
2
4
6
8
10  
12  
OUTPUT CURRENT, IO (A)  
Fig-15. Converter Efficiency versus Output Current.  
AMBIENT TEMPERATURE, TA OC  
Fig-16. Derating Output Current versus Ambient  
Temperature and Airflow.  
TIME, t (1us/div)  
TIME, t (20us /div)  
Fig-18. Transient Response to Dynamic Load Change  
from 50% to 100% at 12Vin, Cout= 5x47uF,  
CTune=1500pF & RTune=330ohms  
Fig-17. Typical output ripple and noise (CO=22uF ceramic,  
VIN = 12V, Io = Io,max, ).  
TIME, t (2ms/div)  
TIME, t (2ms/div)  
Fig-20. Typical Start-up Using Input Voltage (VIN = 12V,  
Io = Io,max).  
Fig-19. Typical Start-up Using On/Off Voltage (Io = Io,max).  
Page 29 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Characteristic Curves  
The following figures provide typical characteristics for the 12A Digital Tomodachi at 3.3Vo and 25°C  
100  
12  
95  
10  
NC  
90  
85  
80  
75  
70  
0.5m/s  
(100LFM)  
8
6
4
2
0
Vin=4.5V  
1m/s  
(200LFM)  
Vin=14V  
Vin=12V  
Standard  
1.5m/s  
(300LFM)  
Part (85°C)  
Ruggedized (D)  
Part (105°C)  
2m/s  
(400LFM)  
55  
65  
75  
85  
95  
105  
0
2
4
6
8
10  
12  
OUTPUT CURRENT, IO (A)  
Fig-21. Converter Efficiency versus Output Current.  
AMBIENT TEMPERATURE, TA OC  
Fig-22. Derating Output Current versus Ambient  
Temperature and Airflow.  
TIME, t (1us/div)  
TIME, t (20us /div)  
Fig-24. Transient Response to Dynamic Load Change  
from 50% to 100% at 12Vin, Cout= 1x47uF+1x330uF,  
CTune=2700pF & RTune=330ohms  
Fig-23. Typical output ripple and noise (CO=22uF ceramic,  
VIN = 12V, Io = Io,max, ).  
TIME, t (2ms/div)  
TIME, t (2ms/div)  
Fig-26. Typical Start-up Using Input Voltage (VIN = 12V,  
Io = Io,max).  
Fig-25. Typical Start-up Using On/Off Voltage (Io = Io,max).  
Page 30 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Characteristic Curves  
The following figures provide typical characteristics for the 12A Digital Tomodachi at 2.5Vo and 25°C  
100  
12  
95  
10  
NC  
90  
85  
80  
75  
70  
0.5m/s  
(100LFM)  
Vin=4.5V  
8
6
4
2
0
1m/s  
(200LFM)  
Vin=14V  
Vin=12V  
Standard  
1.5m/s  
(300LFM)  
Part (85°C)  
Ruggedized (D)  
Part (105°C)  
2m/s  
(400LFM  
55  
65  
75  
85  
95  
105  
0
2
4
6
8
10  
12  
OUTPUT CURRENT, IO (A)  
Fig-27. Converter Efficiency versus Output Current.  
AMBIENT TEMPERATURE, TA OC  
Fig-28. Derating Output Current versus Ambient  
Temperature and Airflow.  
TIME, t (1us/div)  
TIME, t (20us /div)  
Fig-30. Transient Response to Dynamic Load Change  
from 50% to 100% at 12Vin, Cout= 1x47uF+1x330uF,  
CTune=3300pF & RTune=270ohms  
Fig-29. Typical output ripple and noise (CO=22uF ceramic,  
VIN = 12V, Io = Io,max, ).  
TIME, t (2ms/div)  
TIME, t (2ms/div)  
Fig-32. Typical Start-up Using Input Voltage (VIN = 12V,  
Io = Io,max).  
Fig-31. Typical Start-up Using On/Off Voltage (Io = Io,max).  
Page 31 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Characteristic Curves  
The following figures provide typical characteristics for the 12A Digital Tomodachi at 1.8Vo and 25°C  
95  
12  
90  
10  
Vin=3.5V  
NC  
0.5m/s  
(100LFM)  
8
6
4
2
0
85  
80  
75  
70  
Vin=12V  
Vin=14V  
1.5m/s  
(300LFM)  
1m/s  
Standard Part  
(200LFM)  
(85°C)  
Ruggedized (D)  
Part (105°C)  
2m/s  
(400LFM)  
55  
65  
75  
85  
95  
105  
0
2
4
6
8
10  
12  
OUTPUT CURRENT, IO (A)  
Fig-33. Converter Efficiency versus Output Current.  
AMBIENT TEMPERATURE, TA OC  
Fig-34. Derating Output Current versus Ambient  
Temperature and Airflow.  
TIME, t (1us/div)  
TIME, t (20us /div)  
Fig-36. Transient Response to Dynamic Load Change  
from 50% to 100% at 12Vin, Cout= 1x47uF+2x330uF,  
CTune=5600pF & RTune=270ohms  
Fig-35. Typical output ripple and noise (CO=22uF ceramic,  
VIN = 12V, Io = Io,max, ).  
TIME, t (2ms/div)  
TIME, t (2ms/div)  
Fig-38. Typical Start-up Using Input Voltage (VIN = 12V,  
Io = Io,max).  
Fig-37. Typical Start-up Using On/Off Voltage (Io = Io,max).  
Page 32 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Characteristic Curves  
The following figures provide typical characteristics for the 12A Digital Tomodachi at 1.2Vo and 25°C  
95  
12  
90  
85  
10  
NC  
Vin=3V  
0.5m/s  
(100LFM)  
80  
75  
70  
65  
60  
55  
50  
8
6
4
2
0
Vin=14V  
Vin=12V  
Standard  
Part (85 C)  
1.5m/s  
(300LFM)  
1m/s  
(200LFM)  
Ruggedized (D)  
2m/s  
(400LFM)  
Part (105°C)  
0
2
4
6
8
10  
12  
55  
65  
75  
85  
95  
105  
OUTPUT CURRENT, IO (A)  
Fig-39. Converter Efficiency versus Output Current.  
AMBIENT TEMPERATURE, TA OC  
Fig-40. Derating Output Current versus Ambient  
Temperature and Airflow.  
TIME, t (1us/div)  
TIME, t (20us /div)  
Fig-42. Transient Response to Dynamic Load Change  
from 50% to 100% at 12Vin, Cout= 1x47uF+3x330uF,  
CTune=10nF & RTune=220ohms  
Fig-41. Typical output ripple and noise (CO=22uF ceramic,  
VIN = 12V, Io = Io,max, ).  
TIME, t (2ms/div)  
TIME, t (2ms/div)  
Fig-44. Typical Start-up Using Input Voltage (VIN = 12V,  
Io = Io,max).  
Fig-43. Typical Start-up Using On/Off Voltage (Io = Io,max).  
Page 33 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Characteristic Curves  
The following figures provide typical characteristics for the 12A Digital Tomodachi at 0.6Vo and 25°C  
85  
12  
80  
10  
Vin=3V  
NC  
75  
70  
65  
60  
55  
50  
0.5m/s  
(100LFM)  
8
6
4
2
0
Standard Part  
(85°C)  
Vin=14V  
1.5m/s  
(300LFM)  
Vin=12V  
Ruggedized (D)  
Part (105°C)  
1m/s  
(200LFM)  
2m/s  
(400LFM)  
0
2
4
6
8
10  
12  
55  
65  
75  
85  
95  
105  
OUTPUT CURRENT, IO (A)  
Fig-45. Converter Efficiency versus Output Current.  
AMBIENT TEMPERATURE, TA OC  
Fig-46. Derating Output Current versus Ambient  
Temperature and Airflow.  
TIME, t (1us/div)  
TIME, t (20us /div)  
Fig-48. Transient Response to Dynamic Load Change  
from 50% to 100% at 12Vin, Cout= 3x47uF+6x330uF,  
CTune=47nF, RTune=180ohms  
Fig-47. Typical output ripple and noise (CO=22uF ceramic,  
VIN = 12V, Io = Io,max, ).  
TIME, t (2ms/div)  
TIME, t (2ms/div)  
Fig-50. Typical Start-up Using Input Voltage (VIN = 12V,  
Io = Io,max).  
Fig-49. Typical Start-up Using On/Off Voltage (Io = Io,max).  
Page 34 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Example Application Circuit  
Requirements:  
Vin:  
12V  
Vout:  
1.8V  
Iout:  
Vout:  
Vin, ripple  
9A max., worst case load transient is from 6A to 9A  
1.5% of Vout (27mV) for worst case load transient  
1.5% of Vin (180mV, p-p)  
Vin+  
Vout+  
VIN  
VOUT  
VS+  
PGOOD  
RTUNE  
CTUNE  
MODULE  
SEQ  
CLK  
TRIM  
ADDR0  
ADDR1  
CI2  
CI3  
CI1  
CO3  
CO1  
CO2  
DATA  
SMBALRT#  
RTrim  
ON/OFF  
SYN  
RADDR1 RADDR0  
SIG_GND  
GND  
VS-  
GND  
CI1  
CI2  
CI3  
Decoupling cap - 1x0.047uF/16V ceramic capacitor (e.g. Murata LLL185R71C473MA01)  
2x22uF/16V ceramic capacitor (e.g. Murata GRM32ER61C226KE20)  
470uF/16V bulk electrolytic  
CO1  
CO2  
CO3  
CTune  
RTune  
RTrim  
Decoupling cap - 1x0.047uF/16V ceramic capacitor (e.g. Murata LLL185R71C473MA01)  
2 x 47uF/6.3V ceramic capacitor (e.g. Murata GRM31CR60J476ME19)  
1 x 330uF/6.3V Polymer (e.g. Sanyo Poscap)  
3300pF ceramic capacitor (can be 1206, 0805 or 0603 size)  
270 ohms SMT resistor (can be 1206, 0805 or 0603 size)  
10kSMT resistor (can be 1206, 0805 or 0603 size, recommended tolerance of 0.1%)  
Note: The DATA, CLK and SMBALRT pins do not have any pull-up resistors inside the module.  
Typically, the SMBus master controller will have the pull-up resistors as well as provide the driving  
source for these signals.  
Page 35 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Mechanical Drawing  
All dimensions are in millimeters (inches)  
Tolerances:  
x.x mm 0.5 mm (x.xx in. 0.02 in.) [unless otherwise indicated]  
x.xx mm 0.25 mm (x.xxx in 0.010 in.)  
Pin Connections  
Pin #  
Function  
ON/OFF  
Vin  
Pin #  
10  
Function  
PGOOD  
SYNC 1  
VS-  
1
2
3
4
5
6
7
8
9
11  
GND  
Vout  
12  
13  
SIG_GND  
SMBALERT  
DATA  
VS+  
14  
Trim  
15  
GND  
CLK  
16  
ADDR0  
ADDR1  
17  
SEQ  
1 If unused, connect to Ground.  
Page 36 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Recommended Pad Layout  
All dimensions are in millimeters (inches)  
Tolerances:  
x.x mm 0.5 mm (x.xx in. 0.02 in.) [unless otherwise indicated]  
x.xx mm 0.25 mm (x.xxx in 0.010 in.)  
Pin Connections  
Pin #  
Function  
ON/OFF  
Vin  
Pin #  
10  
Function  
PGOOD  
SYNC 2  
VS-  
1
2
3
4
5
6
7
8
9
2 If unused, connect to Ground.  
11  
GND  
Vout  
12  
13  
SIG_GND  
SMBALERT  
DATA  
VS+  
14  
Trim  
15  
GND  
CLK  
16  
ADDR0  
ADDR1  
17  
SEQ  
Page 37 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Packaging Details  
The 12A Digital Tomodachi modules are supplied in tape & reel as standard. Modules are shipped in quantities  
of 200 modules per reel.  
All Dimensions are in millimeters and (in inches).  
Reel Dimensions:  
Outside Dimensions: 330.2 mm (13.00)  
Inside Dimensions: 177.8 mm (7.00”)  
Tape Width:  
24.00 mm (0.945”)  
Page 38 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
to verify results and performance.  
Surface Mount Information  
It is recommended that the pad layout include a test  
pad where the output pin is in the ground plane. The  
thermocouple should be attached to this test pad  
since this will be the coolest solder joints. The  
temperature of this point should be:  
Pick and Place  
The 12A Digital Tomodachi modules use an open  
frame construction and are designed for a fully  
automated assembly process. The modules are fitted  
with a label designed to provide a large surface area  
for pick and place operations. The label meets all the  
requirements for surface mount processing, as well  
as safety standards, and is able to withstand reflow  
temperatures of up to 300°C. The label also carries  
product information such as product code, serial  
number and the location of manufacture.  
Maximum peak temperature is 260 C.  
Minimum temperature is 235 C.  
Dwell time above 217 C: 60 seconds minimum  
Dwell time above 235 C: 5 to 15 second  
MSL Rating  
The 12A Digital Tomodachi modules have a MSL  
rating of 2a.  
Nozzle Recommendations  
Storage and Handling  
The module weight has been kept to a minimum by  
using open frame construction. Variables such as  
nozzle size, tip style, vacuum pressure and  
placement speed should be considered to optimize  
this process. The minimum recommended inside  
nozzle diameter for reliable operation is 3mm. The  
maximum nozzle outer diameter, which will safely fit  
within the allowable component spacing, is 7mm.  
The recommended storage environment and  
handling procedures for moisture-sensitive surface  
mount packages is detailed in J-STD-033 Rev. A  
(Handling, Packing, Shipping and Use of  
Moisture/Reflow Sensitive Surface Mount Devices).  
Moisture barrier bags (MBB) with desiccant are  
required for MSL ratings of 2 or greater. These  
sealed packages should not be broken until time of  
use. Once the original package is broken, the floor  
life of the product at conditions of 30°C and 60%  
relative humidity varies according to the MSL rating  
(see J-STD-033A). The shelf life for dry packed SMT  
packages will be a minimum of 12 months from the  
bag seal date, when stored at the following  
conditions: < 40°C, < 90% relative humidity.  
Bottom Side / First Side Assembly  
This module is not recommended for assembly on  
the bottom side of a customer board. If such an  
assembly is attempted, components may fall off the  
module during the second reflow process.  
300  
Lead Free Soldering  
Per J-STD-020 Rev. C  
Peak Temp 260°C  
250  
The modules are lead-free (Pb-free) and RoHS  
compliant and fully compatible in a Pb-free soldering  
process. Failure to observe the instructions below  
may result in the failure of or cause damage to the  
modules and can adversely affect long-term  
reliability.  
Cooling  
Zone  
200  
* Min. Time Above 235°C  
15 Seconds  
150  
Heating Zone  
1°C/Second  
*Time Above 217°C  
60 Seconds  
100  
50  
0
Pb-free Reflow Profile  
Reflow Time (Seconds)  
Power Systems will comply with J-STD-020 Rev. C  
Fig-51: Recommended linear reflow profile  
using Sn/Ag/Cu solder.  
(Moisture/Reflow  
Sensitivity  
Classification  
for  
Nonhermetic Solid State Surface Mount Devices) for  
both Pb-free solder profiles and MSL classification  
procedures. This standard provides a recommended  
forced-air-convection reflow profile based on the  
volume and thickness of the package (table 4-2).  
The suggested Pb-free solder paste is Sn/Ag/Cu  
(SAC). The recommended linear reflow profile using  
Sn/Ag/Cu solder is shown in Fig-51. Soldering  
outside of the recommended profile requires testing  
Post Solder Cleaning and Drying  
Considerations  
Post solder cleaning is usually the final circuit-board  
assembly process prior to electrical board testing.  
The result of inadequate cleaning and drying can  
Page 39 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
affect both the reliability of a power module and the  
testability of the finished circuit-board assembly. For  
guidance on appropriate soldering, cleaning and  
drying procedures, refer to Board Mounted Power  
Modules: Soldering and Cleaning Application Note  
(AN04-001).  
Page 40 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  
Delivering Next Generation Technology  
Series  
Preliminary Data Sheet  
FGSD12SR6012*A  
3-14.4Vdc Input, 12A, 0.45-5.5Vdc Output  
Part Number System  
Product  
Series  
Input  
Voltage Scheme  
Mounting  
Output  
Voltage  
Rated  
Current  
ON/OFF  
Logic  
Pin  
Shape  
Shape  
S
Regulation  
D
FG  
12  
S
R60  
12  
*
A
0.6V  
(Programmable:  
See page 9)  
Series  
Name  
Surface  
Mount  
N: Negative  
P: Positive  
Small D: Digital Feature Typ=12V  
12A  
Standard  
Cautions  
NUCLEAR AND MEDICAL APPLICATIONS: FDK Corporation products are not authorized for use as critical  
components in life support systems, equipment used in hazardous environments, or nuclear control systems  
without the written consent of FDK Corporation.  
SPECIFICATION CHANGES AND REVISIONS: Specifications are version-controlled, but are subject to  
change without notice.  
Page 41 of 41  
Http://www.fdk.com  
Ver 1.7 May. 8, 2013  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY