HD6433661XXXH [ETC]

Microcontroller ; 微控制器\n
HD6433661XXXH
型号: HD6433661XXXH
厂家: ETC    ETC
描述:

Microcontroller
微控制器\n

微控制器 外围集成电路 时钟
文件: 总427页 (文件大小:2260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Hitachi Single-Chip Microcomputer  
H8/3664 Series  
H8/3664N  
HD64N3664  
H8/3664F  
HD64F3664  
H8/3664  
HD6433664  
H8/3663  
HD6433663  
H8/3662  
HD6433662  
H8/3661  
HD6433661  
H8/3660  
HD6433660  
Hardware Manual  
ADE-602-202C  
Rev. 4.0  
03/20/02  
Hitachi, Ltd.  
Cautions  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s  
patent, copyright, trademark, or other intellectual property rights for information contained in  
this document. Hitachi bears no responsibility for problems that may arise with third party’s  
rights, including intellectual property rights, in connection with use of the information  
contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you  
have received the latest product standards or specifications before final design, purchase or  
use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.  
However, contact Hitachi’s sales office before using the product in an application that  
demands especially high quality and reliability or where its failure or malfunction may directly  
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear  
power, combustion control, transportation, traffic, safety equipment or medical equipment for  
life support.  
4. Design your application so that the product is used within the ranges guaranteed by Hitachi  
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,  
installation conditions and other characteristics. Hitachi bears no responsibility for failure or  
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,  
consider normally foreseeable failure rates or failure modes in semiconductor devices and  
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi  
product does not cause bodily injury, fire or other consequential damage due to operation of  
the Hitachi product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document  
without written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi  
semiconductor products.  
Rev. 4.0, 03/02, page ii of xxvi  
General Precautions on Handling of Product  
1. Treatment of NC Pins  
Note: Do not connect anything to the NC pins.  
The NC (not connected) pins are either not connected to any of the internal circuitry or are  
used as test pins or to reduce noise. If something is connected to the NC pins, the  
operation of the LSI is not guaranteed.  
2. Treatment of Unused Input Pins  
Note: Fix all unused input pins to high or low level.  
Generally, the input pins of CMOS products are high-impedance input pins. If unused pins  
are in their open states, intermediate levels are induced by noise in the vicinity, a pass-  
through current flows internally, and a malfunction may occur.  
3. Processing before Initialization  
Note: When power is first supplied, the product’s state is undefined.  
The states of internal circuits are undefined until full power is supplied throughout the  
chip and a low level is input on the reset pin. During the period where the states are  
undefined, the register settings and the output state of each pin are also undefined. Design  
your system so that it does not malfunction because of processing while it is in this  
undefined state. For those products which have a reset function, reset the LSI immediately  
after the power supply has been turned on.  
4. Prohibition of Access to Undefined or Reserved Addresses  
Note: Access to undefined or reserved addresses is prohibited.  
The undefined or reserved addresses may be used to expand functions, or test registers  
may have been be allocated to these addresses. Do not access these registers; the system’s  
operation is not guaranteed if they are accessed.  
Rev. 4.0, 03/02, Page iii of xxvi  
Configuration of This Manual  
This manual comprises the following items:  
1. General Precautions on Handling of Product  
2. Configuration of This Manual  
3. Preface  
4. Contents  
5. Overview  
6. Description of Functional Modules  
CPU and System-Control Modules  
On-Chip Peripheral Modules  
The configuration of the functional description of each module differs according to the  
module. However, the generic style includes the following items:  
i) Feature  
ii) Input/Output Pin  
iii) Register Description  
iv) Operation  
v) Usage Note  
When designing an application system that includes this LSI, take notes into account. Each section  
includes notes in relation to the descriptions given, and usage notes are given, as required, as the  
final part of each section.  
7. List of Registers  
8. Electrical Characteristics  
9. Appendix  
10. Main Revisions and Additions in this Edition (only for revised versions)  
The list of revisions is a summary of points that have been revised or added to earlier versions.  
This does not include all of the revised contents. For details, see the actual locations in this  
manual.  
11. Index  
Rev. 4.0, 03/02, page iv of xxvi  
Preface  
The H8/3664 Series are single-chip microcomputers made up of the high-speed H8/300H CPU  
employing Hitachi’s original architecture as their cores, and the peripheral functions required to  
configure a system. The H8/300H CPU has an instruction set that is compatible with the H8/300  
CPU.  
Target Users: This manual was written for users who will be using the H8/3664 Series in the  
design of application systems. Target users are expected to understand the  
fundamentals of electrical circuits, logical circuits, and microcomputers.  
Objective:  
This manual was written to explain the hardware functions and electrical  
characteristics of the H8/3664 Series to the target users.  
Refer to the H8/300H Series Programming Manual for a detailed description of the  
instruction set.  
Notes on reading this manual:  
In order to understand the overall functions of the chip  
Read the manual according to the contents. This manual can be roughly categorized into parts  
on the CPU, system control functions, peripheral functions and electrical characteristics.  
In order to understand the details of the CPU's functions  
Read the H8/300H Series Programming Manual.  
In order to understand the details of a register when its name is known  
Read the index that is the final part of the manual to find the page number of the entry on the  
register. The addresses, bits, and initial values of the registers are summarized in section 19,  
List of Registers.  
Example:  
Bit order:  
The MSB is on the left and the LSB is on the right.  
Notes:  
When using an on-chip emulator (E10T) for H8/3664 program development and debugging, the  
following restrictions must be noted.  
1. The NMI pin is reserved for the E10T, and cannot be used.  
2. Pins P85, P86, and P87 cannot be used. In order to use these pins, additional hardware must be  
provided on the user board.  
3. Area H’7000 to H’7FFF is used by the E10T, and is not available to the user.  
4. Area H’F780 to H’FB7F must on no account be accessed.  
5. When the E10T is used, address breaks can be set as either available to the user or for use by  
the E10T. If address breaks are set as being used by the E10T, the address break control  
registers must not be accessed.  
Rev. 4.0, 03/02, Page v of xxvi  
6. When the E10T is used, NMI is an input/output pin (open-drain in output mode), P85 and P87  
are input pins, and P86 is an output pin.  
Related Manuals: The latest versions of all related manuals are available from our web site.  
Please ensure you have the latest versions of all documents you require.  
http://www.hitachisemiconductor.com/  
H8/3664 Series manuals:  
Manual Title  
ADE No.  
H8/3664 Series Hardware Manual  
H8/300H Series Programming Manual  
This manual  
ADE-602-053  
User's manuals for development tools:  
Manual Title  
ADE No.  
H8S, H8/300 Series C/C++ Compiler, Assembler, Optimizing Linkage Editor  
User's Manual  
ADE-702-247  
H8S, H8/300 Series Simulator/Debugger User's Manual  
ADE-702-282  
ADE-702-231  
H8S, H8/300 Series Hitachi Embedded Workshop, Hitachi Debugging  
Interface Tutorial  
Hitachi Embedded Workshop User's Manual  
ADE-702-201  
Application notes:  
Manual Title  
ADE No.  
Single Power Supply F-ZTATTM On-Board Programming  
ADE-502-055  
Rev. 4.0, 03/02, page vi of xxvi  
Contents  
Section 1 Overview........................................................................................... 1  
1.1 Features.............................................................................................................................1  
1.2 Internal Block Diagram.....................................................................................................2  
1.3 Pin Arrangement ...............................................................................................................4  
1.4 Pin Functions ....................................................................................................................8  
Section 2 CPU................................................................................................... 11  
2.1 Address Space and Memory Map .....................................................................................12  
2.2 Register Configuration......................................................................................................15  
2.2.1 General Registers.................................................................................................16  
2.2.2 Program Counter (PC) .........................................................................................17  
2.2.3 Condition-Code Register (CCR)..........................................................................17  
2.3 Data Formats.....................................................................................................................19  
2.3.1 General Register Data Formats............................................................................19  
2.3.2 Memory Data Formats .........................................................................................21  
2.4 Instruction Set ...................................................................................................................22  
2.4.1 Table of Instructions Classified by Function .......................................................22  
2.4.2 Basic Instruction Formats ....................................................................................31  
2.5 Addressing Modes and Effective Address Calculation.....................................................33  
2.5.1 Addressing Modes ...............................................................................................33  
2.5.2 Effective Address Calculation .............................................................................36  
2.6 Basic Bus Cycle ................................................................................................................38  
2.6.1 Access to On-Chip Memory (RAM, ROM).........................................................38  
2.6.2 On-Chip Peripheral Modules ...............................................................................39  
2.7 CPU States ........................................................................................................................40  
2.8 Usage Notes ......................................................................................................................41  
2.8.1 Notes on Data Access to Empty Areas ................................................................41  
2.8.2 EEPMOV Instruction...........................................................................................41  
2.8.3 Bit Manipulation Instruction................................................................................41  
Section 3 Exception Handling .......................................................................... 47  
3.1 Exception Sources and Vector Address ............................................................................47  
3.2 Register Descriptions ........................................................................................................49  
3.2.1 Interrupt Edge Select Register 1 (IEGR1) ...........................................................49  
3.2.2 Interrupt Edge Select Register 2 (IEGR2) ...........................................................50  
3.2.3 Interrupt Enable Register 1 (IENR1) ...................................................................51  
3.2.4 Interrupt Flag Register 1 (IRR1)..........................................................................52  
3.2.5 Wakeup Interrupt Flag Register (IWPR) .............................................................53  
3.3 Reset Exception Handling.................................................................................................54  
Rev. 4.0, 03/02, Page vii of xxvi  
3.4 Interrupt Exception Handling............................................................................................54  
3.4.1 External Interrupts ...............................................................................................54  
3.4.2 Internal Interrupts ................................................................................................55  
3.4.3 Interrupt Handling Sequence ...............................................................................56  
3.4.4 Interrupt Response Time......................................................................................57  
3.5 Usage Notes ......................................................................................................................59  
3.5.1 Interrupts after Reset............................................................................................59  
3.5.2 Notes on Stack Area Use .....................................................................................59  
3.5.3 Notes on Rewriting Port Mode Registers.............................................................59  
Section 4 Address Break....................................................................................61  
4.1 Register Descriptions........................................................................................................61  
4.1.1 Address Break Control Register (ABRKCR).......................................................62  
4.1.2 Address Break Status Register (ABRKSR) .........................................................63  
4.1.3 Break Address Registers (BARH, BARL)...........................................................63  
4.1.4 Break Data Registers (BDRH, BDRL) ................................................................63  
4.2 Operation ..........................................................................................................................64  
4.3 Usage Notes ......................................................................................................................65  
Section 5 Clock Pulse Generators .....................................................................67  
5.1 System Clock Generator ...................................................................................................68  
5.1.1 Connecting Crystal Resonator .............................................................................68  
5.1.2 Connecting Ceramic Resonator ...........................................................................69  
5.1.3 External Clock Input Method...............................................................................69  
5.2 Subclock Generator...........................................................................................................70  
5.2.1 Connecting 32.768-kHz Crystal Resonator..........................................................70  
5.2.2 Pin Connection when Not Using Subclock..........................................................71  
5.3 Prescalers ..........................................................................................................................71  
5.3.1 Prescaler S............................................................................................................71  
5.3.2 Prescaler W..........................................................................................................71  
5.4 Usage Notes ......................................................................................................................71  
5.4.1 Note on Resonators..............................................................................................71  
5.4.2 Notes on Board Design........................................................................................73  
Section 6 Power-Down Modes..........................................................................75  
6.1 Register Descriptions........................................................................................................76  
6.1.1 System Control Register 1 (SYSCR1).................................................................76  
6.1.2 System Control Register 2 (SYSCR2).................................................................79  
6.1.3 Module Standby Control Register 1 (MSTCR1) .................................................80  
6.2 Mode Transitions and States of LSI..................................................................................81  
6.2.1 Sleep Mode ..........................................................................................................83  
6.2.2 Standby Mode......................................................................................................84  
6.2.3 Subsleep Mode.....................................................................................................84  
Rev. 4.0, 03/02, page viii of xxvi  
6.2.4 Subactive Mode ...................................................................................................85  
6.3 Operating Frequency in Active Mode...............................................................................85  
6.4 Direct Transition ...............................................................................................................85  
6.4.1 Direct Transition from Active Mode to Subactive Mode.....................................85  
6.4.2 Direct Transition from Subactive Mode to Active Mode.....................................86  
6.5 Module Standby Function.................................................................................................86  
6.6 Usage Note........................................................................................................................86  
Section 7 ROM ................................................................................................. 87  
7.1 Block Configuration..........................................................................................................87  
7.2 Register Descriptions ........................................................................................................88  
7.2.1 Flash Memory Control Register 1 (FLMCR1).....................................................89  
7.2.2 Flash Memory Control Register 2 (FLMCR2).....................................................90  
7.2.3 Erase Block Register 1 (EBR1)............................................................................90  
7.2.4 Flash Memory Power Control Register (FLPWCR) ............................................91  
7.2.5 Flash Memory Enable Register (FENR)..............................................................91  
7.3 On-Board Programming Modes........................................................................................91  
7.3.1 Boot Mode ...........................................................................................................92  
7.3.2 Programming/Erasing in User Program Mode.....................................................95  
7.4 Flash Memory Programming/Erasing ...............................................................................96  
7.4.1 Program/Program-Verify .....................................................................................96  
7.4.2 Erase/Erase-Verify...............................................................................................98  
7.4.3 Interrupt Handling when Programming/Erasing Flash Memory..........................99  
7.5 Program/Erase Protection .................................................................................................101  
7.5.1 Hardware Protection ............................................................................................101  
7.5.2 Software Protection..............................................................................................101  
7.5.3 Error Protection....................................................................................................101  
7.6 Programmer Mode ............................................................................................................102  
7.7 Power-Down States for Flash Memory.............................................................................102  
Section 8 RAM ................................................................................................. 103  
Section 9 I/O Ports............................................................................................ 105  
9.1 Port 1.................................................................................................................................105  
9.1.1 Port Mode Register 1 (PMR1) .............................................................................106  
9.1.2 Port Control Register 1 (PCR1) ...........................................................................107  
9.1.3 Port Data Register 1 (PDR1)................................................................................107  
9.1.4 Port Pull-Up Control Register 1 (PUCR1)...........................................................108  
9.1.5 Pin Functions .......................................................................................................108  
9.2 Port 2.................................................................................................................................110  
9.2.1 Port Control Register 2 (PCR2) ...........................................................................111  
9.2.2 Port Data Register 2 (PDR2)................................................................................111  
9.2.3 Pin Functions .......................................................................................................112  
Rev. 4.0, 03/02, Page ix of xxvi  
9.3 Port 5.................................................................................................................................113  
9.3.1 Port Mode Register 5 (PMR5) .............................................................................114  
9.3.2 Port Control Register 5 (PCR5) ...........................................................................115  
9.3.3 Port Data Register 5 (PDR5)................................................................................115  
9.3.4 Port Pull-Up Control Register 5 (PUCR5)...........................................................116  
9.3.5 Pin Functions .......................................................................................................116  
9.4 Port 7.................................................................................................................................118  
9.4.1 Port Control Register 7 (PCR7) ...........................................................................119  
9.4.2 Port Data Register 7 (PDR7)................................................................................119  
9.4.3 Pin Functions .......................................................................................................120  
9.5 Port 8.................................................................................................................................121  
9.5.1 Port Control Register 8 (PCR8) ...........................................................................121  
9.5.2 Port Data Register 8 (PDR8)................................................................................122  
9.5.3 Pin Functions .......................................................................................................122  
9.6 Port B................................................................................................................................124  
9.6.1 Port Data Register B (PDRB) ..............................................................................125  
Section 10 Timer A............................................................................................127  
10.1 Features.............................................................................................................................127  
10.2 Input/Output Pins..............................................................................................................128  
10.3 Register Descriptions........................................................................................................128  
10.3.1 Timer Mode Register A (TMA)...........................................................................129  
10.3.2 Timer Counter A (TCA) ......................................................................................130  
10.4 Operation ..........................................................................................................................130  
10.4.1 Interval Timer Operation .....................................................................................130  
10.4.2 Clock Time Base Operation.................................................................................131  
10.4.3 Clock Output........................................................................................................131  
10.5 Usage Note........................................................................................................................131  
Section 11 Timer V............................................................................................133  
11.1 Features.............................................................................................................................133  
11.2 Input/Output Pins..............................................................................................................134  
11.3 Register Descriptions........................................................................................................135  
11.3.1 Timer Counter V (TCNTV).................................................................................135  
11.3.2 Time Constant Registers A and B (TCORA, TCORB)........................................135  
11.3.3 Timer Control Register V0 (TCRV0) ..................................................................136  
11.3.4 Timer Control/Status Register V (TCSRV) .........................................................138  
11.3.5 Timer Control Register V1 (TCRV1) ..................................................................139  
11.4 Operation ..........................................................................................................................140  
11.4.1 Timer V Operation...............................................................................................140  
11.5 Timer V Application Examples ........................................................................................143  
11.5.1 Pulse Output with Arbitrary Duty Cycle..............................................................143  
11.5.2 Pulse Output with Arbitrary Pulse Width and Delay from TRGV Input .............144  
Rev. 4.0, 03/02, page x of xxvi  
11.6 Usage Notes ......................................................................................................................145  
Section 12 Timer W.......................................................................................... 147  
12.1 Features.............................................................................................................................147  
12.2 Input/Output Pins..............................................................................................................149  
12.3 Register Descriptions ........................................................................................................150  
12.3.1 Timer Mode Register W (TMRW) ......................................................................151  
12.3.2 Timer Control Register W (TCRW) ....................................................................151  
12.3.3 Timer Interrupt Enable Register W (TIERW)......................................................153  
12.3.4 Timer Status Register W (TSRW) .......................................................................153  
12.3.5 Timer I/O Control Register 0 (TIOR0) ................................................................155  
12.3.6 Timer I/O Control Register 1 (TIOR1) ................................................................156  
12.3.7 Timer Counter (TCNT)........................................................................................157  
12.3.8 General Registers A to D (GRA to GRD)............................................................157  
12.4 Operation...........................................................................................................................158  
12.4.1 Normal Operation ................................................................................................158  
12.4.2 PWM Operation...................................................................................................162  
12.5 Operation Timing..............................................................................................................166  
12.5.1 TCNT Count Timing............................................................................................166  
12.5.2 Output Compare Output Timing..........................................................................166  
12.5.3 Input Capture Timing...........................................................................................167  
12.5.4 Timing of Counter Clearing by Compare Match .................................................168  
12.5.5 Buffer Operation Timing .....................................................................................168  
12.5.6 Timing of IMFA to IMFD Flag Setting at Compare Match.................................169  
12.5.7 Timing of IMFA to IMFD Setting at Input Capture ............................................170  
12.5.8 Timing of Status Flag Clearing............................................................................170  
12.6 Usage Notes ......................................................................................................................171  
Section 13 Watchdog Timer ............................................................................. 173  
13.1 Features.............................................................................................................................173  
13.2 Register Descriptions ........................................................................................................173  
13.2.1 Timer Control/Status Register WD (TCSRWD)..................................................174  
13.2.2 Timer Counter WD (TCWD)...............................................................................175  
13.2.3 Timer Mode Register WD (TMWD) ...................................................................175  
13.3 Operation...........................................................................................................................176  
Section 14 Serial Communication Interface3 (SCI3) ....................................... 177  
14.1 Features.............................................................................................................................177  
14.2 Input/Output Pins..............................................................................................................179  
14.3 Register Descriptions ........................................................................................................179  
14.3.1 Receive Shift Register (RSR)...............................................................................180  
14.3.2 Receive Data Register (RDR)..............................................................................180  
14.3.3 Transmit Shift Register (TSR) .............................................................................180  
Rev. 4.0, 03/02, Page xi of xxvi  
14.3.4 Transmit Data Register (TDR).............................................................................180  
14.3.5 Serial Mode Register (SMR)................................................................................181  
14.3.6 Serial Control Register 3 (SCR3).........................................................................182  
14.3.7 Serial Status Register (SSR) ................................................................................184  
14.3.8 Bit Rate Register (BRR) ......................................................................................186  
14.4 Operation in Asynchronous Mode ....................................................................................191  
14.4.1 Clock....................................................................................................................191  
14.4.2 SCI3 Initialization................................................................................................192  
14.4.3 Data Transmission ...............................................................................................193  
14.4.4 Serial Data Reception ..........................................................................................195  
14.5 Operation in Clocked Synchronous Mode ........................................................................199  
14.5.1 Clock....................................................................................................................199  
14.5.2 SCI3 Initialization................................................................................................199  
14.5.3 Serial Data Transmission .....................................................................................200  
14.5.4 Serial Data Reception (Clocked Synchronous Mode)..........................................202  
14.5.5 Simultaneous Serial Data Transmission and Reception.......................................204  
14.6 Multiprocessor Communication Function.........................................................................206  
14.6.1 Multiprocessor Serial Data Transmission............................................................208  
14.6.2 Multiprocessor Serial Data Reception .................................................................209  
14.7 Interrupts...........................................................................................................................213  
14.8 Usage Notes ......................................................................................................................214  
14.8.1 Break Detection and Processing ..........................................................................214  
14.8.2 Mark State and Break Sending ............................................................................214  
14.8.3 Receive Error Flags and Transmit Operations  
(Clocked Synchronous Mode Only)......................................................................214  
14.8.4 Receive Data Sampling Timing and Reception Margin in  
Asynchronous Mode ............................................................................................215  
Section 15 I2C Bus Interface (IIC).....................................................................217  
15.1 Features.............................................................................................................................217  
15.2 Input/Output Pins..............................................................................................................219  
15.3 Register Descriptions........................................................................................................219  
15.3.1 I2C bus data register(ICDR) .................................................................................220  
15.3.2 Slave address register(SAR) ................................................................................222  
15.3.3 Second slave address register(SARX) .................................................................222  
15.3.4 I2C Bus Mode Register(ICMR)............................................................................223  
15.3.5 I2C Bus Control Register(ICCR)..........................................................................225  
15.3.6 I2C Bus Status Register(ICSR).............................................................................228  
15.3.7 Timer Serial Control Register(TSCR) .................................................................230  
15.4 Operation ..........................................................................................................................231  
15.4.1 I2C Bus Data Format ............................................................................................231  
15.4.2 Master Transmit Operation..................................................................................233  
15.4.3 Master Receive Operation....................................................................................234  
Rev. 4.0, 03/02, page xii of xxvi  
15.4.4 Slave Receive Operation......................................................................................237  
15.4.5 Slave Transmit Operation ....................................................................................239  
15.4.6 Clock Synchronous Serial Format .......................................................................241  
15.4.7 IRIC Setting Timing and SCL Control ................................................................241  
15.4.8 Noise Canceler.....................................................................................................243  
15.4.9 Sample Flowcharts...............................................................................................243  
15.5 Usage Notes ......................................................................................................................248  
Section 16 A/D Converter................................................................................. 253  
16.1 Features.............................................................................................................................253  
16.2 Input/Output Pins..............................................................................................................255  
16.3 Register Description..........................................................................................................256  
16.3.1 A/D Data Registers A to D (ADDRA to ADDRD)..............................................256  
16.3.2 A/D Control/Status Register (ADCSR)................................................................257  
16.3.3 A/D Control Register (ADCR).............................................................................258  
16.4 Operation...........................................................................................................................259  
16.4.1 Single Mode.........................................................................................................259  
16.4.2 Scan Mode ...........................................................................................................259  
16.4.3 Input Sampling and A/D Conversion Time .........................................................260  
16.4.4 External Trigger Input Timing.............................................................................261  
16.5 A/D Conversion Accuracy Definitions .............................................................................262  
16.6 Usage Notes ......................................................................................................................263  
16.6.1 Permissible Signal Source Impedance .................................................................263  
16.6.2 Influences on Absolute Accuracy ........................................................................263  
Section 17 EEPROM ........................................................................................ 265  
17.1 Features.............................................................................................................................265  
17.2 Input/Output Pins..............................................................................................................267  
17.3 Register Description..........................................................................................................267  
17.3.1 EEPROM Key Register (EKR)............................................................................267  
17.4 Operation...........................................................................................................................268  
17.4.1 EEPROM Interface ..............................................................................................268  
17.4.2 Bus Format and Timing .......................................................................................268  
17.4.3 Start Condition.....................................................................................................268  
17.4.4 Stop Condition .....................................................................................................268  
17.4.5 Acknowledge .......................................................................................................269  
17.4.6 Slave Addressing .................................................................................................269  
17.4.7 Write Operations..................................................................................................270  
17.4.8 Acknowledge Polling...........................................................................................271  
17.4.9 Read Operation ....................................................................................................272  
17.5 Usage Notes ......................................................................................................................274  
17.5.1 Data Protection at VCC On/Off..............................................................................274  
17.5.2 Write/Erase Endurance ........................................................................................274  
Rev. 4.0, 03/02, Page xiii of xxvi  
17.5.3 Noise Suppression Time ......................................................................................274  
Section 18 Power Supply Circuit ......................................................................275  
18.1 When Using Internal Power Supply Step-Down Circuit...................................................275  
18.2 When Not Using Internal Power Supply Step-Down Circuit............................................276  
Section 19 List of Registers...............................................................................277  
19.1 Register Addresses (Address Order).................................................................................278  
19.2 Register Bits......................................................................................................................281  
19.3 Register States in Each Operating Mode ..........................................................................284  
Section 20 Electrical Characteristics.................................................................287  
20.1 Absolute Maximum Ratings .............................................................................................287  
20.2 Electrical Characteristics (F-ZTAT™ Version, F-ZTAT™ Version with EEPROM)......287  
20.2.1 Power Supply Voltage and Operating Ranges.....................................................287  
20.2.2 DC Characteristics ...............................................................................................289  
20.2.3 AC Characteristics ...............................................................................................295  
20.2.4 A/D Converter Characteristics.............................................................................299  
20.2.5 Watchdog Timer Characteristics..........................................................................300  
20.2.6 Flash Memory Characteristics .............................................................................301  
20.2.7 EEPROM Characteristics (Preliminary) ..............................................................303  
20.3 Electrical Characteristics (Mask ROM Version)...............................................................304  
20.3.1 Power Supply Voltage and Operating Ranges.....................................................304  
20.3.2 DC Characteristics ...............................................................................................305  
20.3.3 AC Characteristics ...............................................................................................311  
20.3.4 A/D Converter Characteristics.............................................................................315  
20.3.5 Watchdog Timer Characteristics..........................................................................316  
20.4 Operation Timing..............................................................................................................316  
20.5 Output Load Condition .....................................................................................................319  
Appendix A Instruction Set...............................................................................321  
A.1 Instruction List..................................................................................................................321  
A.2 Operation Code Map.........................................................................................................336  
A.3 Number of Execution States .............................................................................................339  
A.4 Combinations of Instructions and Addressing Modes ......................................................350  
Appendix B I/O Port Block Diagrams...............................................................351  
B.1 I/O Port Block...................................................................................................................351  
B.2 Port States in Each Operating State ..................................................................................367  
Appendix C Product Code Lineup.....................................................................368  
Appendix D Package Dimensions.....................................................................370  
Rev. 4.0, 03/02, page xiv of xxvi  
Appendix E Laminated-Structure Cross Section .............................................. 375  
Main Revisions and Additions in this Edition.................................................... 377  
Index  
......................................................................................................... 397  
Rev. 4.0, 03/02, Page xv of xxvi  
Rev. 4.0, 03/02, page xvi of xxvi  
Figures  
Section 1 Overview  
Figure 1.1 Internal Block Diagram of H8/3664 of F-ZTATTM and Mask-ROM Versions .............2  
Figure 1.2 Internal Block Diagram of H8/3664N of F-ZTATTM Version with EEPROM..............3  
Figure 1.3 Pin Arrangement of H8/3664 of F-ZTATTM and Mask-ROM Versions  
(FP-64E, FP-64A)..........................................................................................................4  
Figure 1.4 Pin Arrangement of H8/3664 of F-ZTATTM and Mask-ROM Versions  
(FP-48F, FP-48B) ..........................................................................................................5  
Figure 1.5 Pin Arrangement of H8/3664 of F-ZTATTM and Mask-ROM Versions (DS-42S) .......6  
Figure 1.6 Pin Arrangement of H8/3664N of F-ZTATTM Version with EEPROM (FP-64E) ........7  
Section 2 CPU  
Figure 2.1 Memory Map (1) .........................................................................................................12  
Figure 2.1 Memory Map (2) .........................................................................................................13  
Figure 2.1 Memory Map (3) .........................................................................................................14  
Figure 2.2 CPU Registers .............................................................................................................15  
Figure 2.3 Usage of General Registers .........................................................................................16  
Figure 2.4 Relationship between Stack Pointer and Stack Area...................................................17  
Figure 2.5 General Register Data Formats (1)..............................................................................19  
Figure 2.5 General Register Data Formats (2)..............................................................................20  
Figure 2.6 Memory Data Formats.................................................................................................21  
Figure 2.7 Instruction Formats......................................................................................................32  
Figure 2.8 Branch Address Specification in Memory Indirect Mode ...........................................35  
Figure 2.9 On-Chip Memory Access Cycle..................................................................................38  
Figure 2.10 On-Chip Peripheral Module Access Cycle (3-State Access).....................................39  
Figure 2.11 CPU Operation States................................................................................................40  
Figure 2.12 State Transitions ........................................................................................................41  
Figure 2.13 Example of Timer Configuration with Two Registers Allocated to  
Same Address.............................................................................................................42  
Section 3 Exception Handling  
Figure 3.1 Reset Sequence............................................................................................................55  
Figure 3.2 Stack Status after Exception Handling ........................................................................57  
Figure 3.3 Interrupt Sequence.......................................................................................................58  
Figure 3.4 Port Mode Register Setting and Interrupt Request Flag Clearing Procedure ..............59  
Section 4 Address Break  
Figure 4.1 Block Diagram of Address Break................................................................................61  
Figure 4.2 Address Break Interrupt Operation Example (1).........................................................64  
Figure 4.2 Address Break Interrupt Operation Example (2).........................................................65  
Figure 4.3 Operation when Condition is not Satisfied in Branch Instruction ...............................65  
Figure 4.4 Operation when Another Interrupt is Accepted at  
Address Break Setting Instruction ...............................................................................66  
Rev. 4.0, 03/02, Page xvii of xxvi  
Section 5 Clock Pulse Generators  
Figure 5.1 Block Diagram of Clock Pulse Generators..................................................................67  
Figure 5.2 Block Diagram of System Clock Generator................................................................68  
Figure 5.3 Typical Connection to Crystal Resonator....................................................................68  
Figure 5.4 Equivalent Circuit of Crystal Resonator......................................................................68  
Figure 5.5 Typical Connection to Ceramic Resonator..................................................................69  
Figure 5.6 Example of External Clock Input ................................................................................69  
Figure 5.7 Block Diagram of Subclock Generator .......................................................................70  
Figure 5.8 Typical Connection to 32.768-kHz Crystal Resonator................................................70  
Figure 5.9 Equivalent Circuit of 32.768-kHz Crystal Resonator..................................................70  
Figure 5.10 Pin Connection when not Using Subclock ................................................................71  
Figure 5.11 Example of Incorrect Board Design ...........................................................................73  
Section 6 Power-Down Modes  
Figure 6.1 Mode Transition Diagram ...........................................................................................81  
Section 7 ROM  
Figure 7.1 Flash Memory Block Configuration............................................................................88  
Figure 7.2 Programming/Erasing Flowchart Example in User Program Mode............................95  
Figure 7.3 Program/Program-Verify Flowchart............................................................................97  
Figure 7.4 Erase/Erase-Verify Flowchart ...................................................................................100  
Section 9 I/O Ports  
Figure 9.1 Port 1 Pin Configuration............................................................................................105  
Figure 9.2 Port 2 Pin Configuration............................................................................................110  
Figure 9.3 Port 5 Pin Configuration............................................................................................113  
Figure 9.4 Port 7 Pin Configuration............................................................................................118  
Figure 9.5 Port 8 Pin Configuration............................................................................................121  
Figure 9.6 Port B Pin Configuration...........................................................................................124  
Section 10 Timer A  
Figure 10.1 Block Diagram of Timer A......................................................................................128  
Section 11 Timer V  
Figure 11.1 Block Diagram of Timer V......................................................................................134  
Figure 11.2 Increment Timing with Internal Clock ....................................................................140  
Figure 11.3 Increment Timing with External Clock...................................................................141  
Figure 11.4 OVF Set Timing......................................................................................................141  
Figure 11.5 CMFA and CMFB Set Timing................................................................................141  
Figure 11.6 TMOV Output Timing ............................................................................................142  
Figure 11.7 Clear Timing by Compare Match............................................................................142  
Figure 11.8 Clear Timing by TMRIV Input ...............................................................................142  
Figure 11.9 Pulse Output Example.............................................................................................143  
Figure 11.10 Example of Pulse Output Synchronized to TRGV Input.......................................144  
Figure 11.11 Contention between TCNTV Write and Clear ......................................................145  
Figure 11.12 Contention between TCORA Write and Compare Match.....................................146  
Rev. 4.0, 03/02, page xviii of xxvi  
Figure 11.13 Internal Clock Switching and TCNTV Operation.................................................146  
Section 12 Timer W  
Figure 12.1 Timer W Block Diagram.........................................................................................149  
Figure 12.2 Free-Running Counter Operation ............................................................................158  
Figure 12.3 Periodic Counter Operation.....................................................................................159  
Figure 12.4 0 and 1 Output Example (TOA = 0, TOB = 1)........................................................159  
Figure 12.5 Toggle Output Example (TOA = 0, TOB = 1) ........................................................160  
Figure 12.6 Toggle Output Example (TOA = 0, TOB = 1) ........................................................160  
Figure 12.7 Input Capture Operating Example...........................................................................161  
Figure 12.8 Buffer Operation Example (Input Capture).............................................................161  
Figure 12.9 PWM Mode Example (1) ........................................................................................162  
Figure 12.10 PWM Mode Example (2) ......................................................................................163  
Figure 12.11 Buffer Operation Example (Output Compare) ......................................................163  
Figure 12.12 PWM Mode Example  
(TOB, TOC, and TOD = 0: initial output values are set to 0)................................164  
Figure 12.13 PWM Mode Example  
(TOB, TOC, and TOD = 1: initial output values are set to 1)................................165  
Figure 12.14 Count Timing for Internal Clock Source...............................................................166  
Figure 12.15 Count Timing for External Clock Source..............................................................166  
Figure 12.16 Output Compare Output Timing............................................................................167  
Figure 12.17 Input Capture Input Signal Timing........................................................................167  
Figure 12.18 Timing of Counter Clearing by Compare Match...................................................168  
Figure 12.19 Buffer Operation Timing (Compare Match)..........................................................168  
Figure 12.20 Buffer Operation Timing (Input Capture) .............................................................169  
Figure 12.21 Timing of IMFA to IMFD Flag Setting at Compare Match ..................................169  
Figure 12.22 Timing of IMFA to IMFD Flag Setting at Input Capture......................................170  
Figure 12.23 Timing of Status Flag Clearing by CPU................................................................170  
Figure 12.24 Contention between TCNT Write and Clear .........................................................171  
Figure 12.25 Internal Clock Switching and TCNT Operation....................................................172  
Section 13 Watchdog Timer  
Figure 13.1 Block Diagram of Watchdog Timer ........................................................................173  
Figure 13.2 Watchdog Timer Operation Example......................................................................176  
Section 14 Serial Communication Interface3 (SCI3)  
Figure 14.1 Block Diagram of SCI3...........................................................................................178  
Figure 14.2 Data Format in Asynchronous Communication ......................................................191  
Figure 14.3 Relationship between Output Clock and Transfer Data Phase  
(Asynchronous Mode)(Example with 8-Bit Data, Parity, Two Stop Bits)...............191  
Figure 14.4 Sample SCI3 Initialization Flowchart......................................................................192  
Figure 14.5 Example SCI3 Operation in Transmission in Asynchronous Mode  
(8-Bit Data, Parity, One Stop Bit)............................................................................193  
Figure 14.6 Sample Serial Transmission Flowchart (Asynchronous Mode) ..............................194  
Rev. 4.0, 03/02, Page xix of xxvi  
Figure 14.7 Example SCI3 Operation in Reception in Asynchronous Mode  
(8-Bit Data, Parity, One Stop Bit)............................................................................195  
Figure 14.8 Sample Serial Data Reception Flowchart (Asynchronous mode)(1).......................197  
Figure 14.8 Sample Serial Reception Data Flowchart (2) ..........................................................198  
Figure 14.9 Data Format in Clocked Synchronous Communication ..........................................199  
Figure 14.10 Example of SCI3 Operation in Transmission in Clocked Synchronous Mode......200  
Figure 14.11 Sample Serial Transmission Flowchart (Clocked Synchronous Mode) ................201  
Figure 14.12 Example of SCI3 Reception Operation in Clocked Synchronous Mode...............202  
Figure 14.13 Sample Serial Reception Flowchart (Clocked Synchronous Mode)......................203  
Figure 14.14 Sample Flowchart of Simultaneous Serial Transmit and Receive Operations  
(Clocked Synchronous Mode) ...............................................................................205  
Figure 14.15 Example of Communication Using Multiprocessor Format  
(Transmission of Data H'AA to Receiving Station A)...........................................207  
Figure 14.16 Sample Multiprocessor Serial Transmission Flowchart ........................................208  
Figure 14.17 Sample Multiprocessor Serial Reception Flowchart (1)........................................210  
Figure 14.17 Sample Multiprocessor Serial Reception Flowchart (2)........................................211  
Figure 14.18 Example of SCI3 Operation in Reception Using Multiprocessor Format  
(Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit) ..............................212  
Figure 14.19 Receive Data Sampling Timing in Asynchronous Mode ......................................215  
Section 15 I2C Bus Interface (IIC)  
Figure 15.1 Block Diagram of I2C Bus Interface........................................................................218  
Figure 15.2 I2C Bus Interface Connections (Example: This LSI as Master) ..............................219  
Figure 15.3 I2C Bus Data Formats (I2C Bus Formats)................................................................232  
Figure 15.4 I2C Bus Timing........................................................................................................232  
Figure 15.5 Master Transmit Mode Operation Timing Example (MLS = WAIT = 0)...............234  
Figure 15.6 Master Receive Mode Operation Timing Example (1)  
(MLS = ACKB = 0, WAIT = 1) ..............................................................................236  
Figure 15.6 Master Receive Mode Operation Timing Example (2)  
(MLS = ACKB = 0, WAIT = 1) ...............................................................................236  
Figure 15.7 Example of Slave Receive Mode Operation Timing (1) (MLS = ACKB = 0)........238  
Figure 15.8 Example of Slave Receive Mode Operation Timing (2) (MLS = ACKB = 0)........239  
Figure 15.9 Example of Slave Transmit Mode Operation Timing (MLS = 0) ...........................240  
Figure 15.10 I2C Bus Data Format (Serial Format)....................................................................241  
Figure 15.11 IRIC Setting Timing and SCL Control..................................................................242  
Figure 15.12 Block Diagram of Noise Canceler.........................................................................243  
Figure 15.13 Sample Flowchart for Master Transmit Mode.......................................................244  
Figure 15.14 Sample Flowchart for Master Receive Mode ........................................................245  
Figure 15.15 Sample Flowchart for Slave Receive Mode ..........................................................246  
Figure 15.16 Sample Flowchart for Slave Transmit Mode.........................................................247  
Figure 15.17 Flowchart and Timing of Start Condition Instruction Issuance  
for Retransmission .................................................................................................252  
Rev. 4.0, 03/02, page xx of xxvi  
Section 16 A/D Converter  
Figure 16.1 Block Diagram of A/D Converter............................................................................254  
Figure 16.2 A/D Conversion Timing..........................................................................................260  
Figure 16.3 External Trigger Input Timing.................................................................................261  
Figure 16.4 A/D Conversion Accuracy Definitions (1)..............................................................262  
Figure 16.5 A/D Conversion Accuracy Definitions (2)..............................................................263  
Figure 16.6 Analog Input Circuit Example.................................................................................264  
Section 17 EEPROM  
Figure 17.1 Block Diagram of EEPROM ...................................................................................266  
Figure 17.2 EEPROM Bus Format and Bus Timing...................................................................268  
Figure 17.3 Byte Write Operation...............................................................................................270  
Figure 17.4 Page Write Operation ..............................................................................................271  
Figure 17.5 Current Address Read Operation.............................................................................272  
Figure 17.6 Random Address Read Operation ...........................................................................273  
Figure 17.7 Sequential Read Operation (when current address read is used).............................274  
Section 18 Power Supply Circuit  
Figure 18.1 Power Supply Connection when Internal Step-Down Circuit is Used ....................275  
Figure 18.2 Power Supply Connection when Internal Step-Down Circuit is Not Used .............276  
Section 20 Electrical Characteristics  
Figure 20.1 System Clock Input Timing.....................................................................................316  
Figure 20.2 RES Low Width Timing..........................................................................................317  
Figure 20.3 Input Timing............................................................................................................317  
Figure 20.4 I2C Bus Interface Input/Output Timing ...................................................................317  
Figure 20.5 SCK3 Input Clock Timing.......................................................................................318  
Figure 20.6 SCI3 Input/Output Timing in Clocked Synchronous Mode ....................................318  
Figure 20.7 EEPROM Bus Timing.............................................................................................319  
Figure 20.8 Output Load Circuit.................................................................................................319  
Appendix B I/O Port Block Diagrams  
Figure B.1 Port 1 Block Diagram (P17) .....................................................................................351  
Figure B.2 Port 1 Block Diagram (P16 to P14) ..........................................................................352  
Figure B.3 Port 1 Block Diagram (P12, P11) .............................................................................353  
Figure B.4 Port 1 Block Diagram (P10) .....................................................................................354  
Figure B.5 Port 2 Block Diagram (P22) .....................................................................................355  
Figure B.6 Port 2 Block Diagram (P21) .....................................................................................356  
Figure B.7 Port 2 Block Diagram (P20) .....................................................................................357  
Figure B.8 Port 5 Block Diagram (P57, P56)* ...........................................................................358  
Figure B.9 Port 5 Block Diagram (P55) .....................................................................................359  
Figure B.10 Port 5 Block Diagram (P54 to P50) ........................................................................360  
Figure B.11 Port 7 Block Diagram (P76) ...................................................................................361  
Figure B.12 Port 7 Block Diagram (P75) ...................................................................................362  
Figure B.13 Port 7 Block Diagram (P74) ...................................................................................363  
Rev. 4.0, 03/02, Page xxi of xxvi  
Figure B.14 Port 8 Block Diagram (P87 to P85)........................................................................364  
Figure B.15 Port 8 Block Diagram (P84 to P81)........................................................................365  
Figure B.16 Port 8 Block Diagram (P80) ...................................................................................366  
Figure B.17 Port B Block Diagram (PB7 to PB0)......................................................................367  
Appendix D Package Dimensions  
Figure D.1 FP-64E Package Dimensions....................................................................................370  
Figure D.2 FP-64A Package Dimensions ...................................................................................371  
Figure D.3 FP-48F Package Dimensions....................................................................................372  
Figure D.4 FP-48B Package Dimensions ...................................................................................373  
Figure D.5 DP-42S Package Dimensions ...................................................................................374  
Appendix E Laminated-Structure Cross Section  
Figure E.1 Laminated-Structure Cross Section of H8/3664N ....................................................375  
Rev. 4.0, 03/02, page xxii of xxvi  
Tables  
Section 1 Overview  
Table 1.1 Pin Functions ................................................................................................................8  
Section 2 CPU  
Table 2.1 Operation Notation......................................................................................................22  
Table 2.2 Data Transfer Instructions...........................................................................................23  
Table 2.3 Arithmetic Operations Instructions (1) .......................................................................24  
Table 2.3 Arithmetic Operations Instructions (2) .......................................................................25  
Table 2.4 Logic Operations Instructions.....................................................................................26  
Table 2.5 Shift Instructions.........................................................................................................26  
Table 2.6 Bit Manipulation Instructions (1)................................................................................27  
Table 2.6 Bit Manipulation Instructions (2)................................................................................28  
Table 2.7 Branch Instructions .....................................................................................................29  
Table 2.8 System Control Instructions........................................................................................30  
Table 2.9 Block Data Transfer Instructions ................................................................................31  
Table 2.10  
Table 2.11  
Table 2.12  
Table 2.12  
Addressing Modes ..................................................................................................33  
Absolute Address Access Ranges ...........................................................................34  
Effective Address Calculation (1)...........................................................................36  
Effective Address Calculation (2)............................................................................37  
Section 3 Exception Handling  
Table 3.1 Exception Sources and Vector Address ......................................................................48  
Table 3.2 Interrupt Wait States ...................................................................................................57  
Section 4 Address Break  
Table 4.1 Access and Data Bus Used..........................................................................................63  
Section 5 Clock Pulse Generators  
Table 5.1 Crystal Resonator Parameters .....................................................................................69  
Section 6 Power-Down Modes  
Table 6.1 Operating Frequency and Waiting Time.....................................................................78  
Table 6.2 Transition Mode after SLEEP Instruction Execution and Interrupt Handling ............82  
Table 6.3 Internal State in Each Operating Mode.......................................................................83  
Section 7 ROM  
Table 7.1 Setting Programming Modes ......................................................................................92  
Table 7.2 Boot Mode Operation .................................................................................................94  
Table 7.3 System Clock Frequencies for which Automatic Adjustment of LSI Bit Rate  
is Possible ...................................................................................................................95  
Table 7.4 Reprogram Data Computation Table ..........................................................................98  
Table 7.5 Additional-Program Data Computation Table............................................................98  
Table 7.6 Programming Time .....................................................................................................98  
Rev. 4.0, 03/02, Page xxiii of xxvi  
Table 7.7 Flash Memory Operating States................................................................................102  
Section 10 Timer A  
Table 10.1  
Pin Configuration..................................................................................................128  
Section 11 Timer V  
Table 11.1 Pin Configuration......................................................................................................134  
Table 11.2 Clock Signals to Input to TCNTV and Counting Conditions ...................................137  
Section 12 Timer W  
Table 12.1  
Table 12.2  
Timer W Functions ...............................................................................................148  
Pin Configuration..................................................................................................149  
Section 14 Serial Communication Interface3 (SCI3)  
Table 14.1  
Table 14.2  
Table 14.2  
Table 14.2  
Table 14.3  
Table 14.4  
Table 14.5  
Table 14.6  
Pin Configuration..................................................................................................179  
Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (1) ......187  
Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (2) ......188  
Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (3) ......189  
Maximum Bit Rate for Each Frequency (Asynchronous Mode) ..........................189  
BRR Settings for Various Bit Rates (Clocked Synchronous Mode).....................190  
SSR Status Flags and Receive Data Handling ......................................................196  
SCI3 Interrupt Requests........................................................................................213  
Section 15 I2C Bus Interface (IIC)  
Table 15.1  
Table 15.2  
Table 15.3  
Table 15.4  
Table 15.5  
Table 15.6  
Table 15.7  
I2C Bus Interface Pins...........................................................................................219  
Communication Format ........................................................................................223  
I2C Transfer Rate ..................................................................................................225  
Flags and Transfer States......................................................................................231  
I2C Bus Timing (SCL and SDA Output)...............................................................248  
Permissible SCL Rise Time (tsr) Values ...............................................................249  
I2C Bus Timing (with Maximum Influence of tSr/tSf)............................................250  
Section 16 A/D Converter  
Table 16.1  
Table 16.2  
Table 16.3  
Pin Configuration..................................................................................................255  
Analog Input Channels and Corresponding ADDR Registers ..............................256  
A/D Conversion Time (Single Mode)...................................................................261  
Section 17 EEPROM  
Table 17.1  
Table 17.2  
Pin Configuration..................................................................................................267  
Slave Addresses ....................................................................................................270  
Section 20 Electrical Characteristics  
Table 20.1  
Table 20.2  
Table 20.2  
Table 20.2  
Table 20.3  
Absolute Maximum Ratings .................................................................................287  
DC Characteristics (1)...........................................................................................289  
DC Characteristics (2)...........................................................................................293  
DC Characteristics (3)...........................................................................................294  
AC Characteristics ................................................................................................295  
Rev. 4.0, 03/02, page xxiv of xxvi  
Table 20.4  
Table 20.5  
Table 20.6  
Table 20.7  
Table 20.8  
Table 20.9  
I2C Bus Interface Timing ......................................................................................297  
Serial Interface (SCI3) Timing..............................................................................298  
A/D Converter Characteristics..............................................................................299  
Watchdog Timer Characteristics...........................................................................300  
Flash Memory Characteristics...............................................................................301  
EEPROM Characteristics.......................................................................................303  
Table 20.10 DC Characteristics (1)...........................................................................................305  
Table 20.10 DC Characteristics (2)...........................................................................................310  
Table 20.11 AC Characteristics ................................................................................................311  
Table 20.12 I2C Bus Interface Timing......................................................................................313  
Table 20.13 Serial Interface (SCI3) Timing..............................................................................314  
Table 20.14 A/D Converter Characteristics..............................................................................315  
Table 20.15 Watchdog Timer Characteristics...........................................................................316  
Appendix A Instruction Set  
Table A.1  
Table A.2  
Table A.2  
Table A.2  
Table A.3  
Table A.4  
Table A.5  
Instruction Set .......................................................................................................323  
Operation Code Map (1) .......................................................................................336  
Operation Code Map (2) .......................................................................................337  
Operation Code Map (3) .......................................................................................338  
Number of Cycles in Each Instruction..................................................................340  
Number of Cycles in Each Instruction..................................................................341  
Combinations of Instructions and Addressing Modes ..........................................350  
Rev. 4.0, 03/02, Page xxv of xxvi  
Rev. 4.0, 03/02, page xxvi of xxvi  
Section 1 Overview  
1.1  
Features  
High-speed H8/300H central processing unit with an internal 16-bit architecture  
Upward-compatible with H8/300 CPU on an object level  
Sixteen 16-bit general registers  
62 basic instructions  
Various peripheral functions  
Timer A (can be used as a time base for a clock)  
Timer V (8-bit timer)  
Timer W (16-bit timer)  
Watchdog timer  
SCI3 (Asynchronous or clocked synchronous serial communication interface)  
I2C Bus Interface (conforms to the I2C bus interface format that is advocated by Philips  
Electronics)  
10-bit A/D converter  
On-chip memory  
Product Classification  
Flash memory version  
(F-ZTATTM version)  
Model  
EEPROM  
ROM  
RAM  
H8/3664N  
H8/3664F  
H8/3664  
H8/3663  
H8/3662  
H8/3661  
H8/3660  
HD64N3664  
HD64F3664  
HD6433664  
HD6433663  
HD6433662  
HD6433661  
HD6433660  
512 bytes  
32 kbytes 2,048 bytes  
32 kbytes 2,048 bytes  
32 kbytes 1,024 bytes  
24 kbytes 1,024 bytes  
16 kbytes 512 bytes  
12 kbytes 512 bytes  
Mask ROM version  
8 kbytes  
512 bytes  
General I/O ports  
I/O pins: 29 I/O pins (H8/3664N has 27 I/O pins), including 8 large current ports (IOL = 20  
mA, @VOL = 1.5 V)  
Input-only pins: 8 input pins (also used for analog input)  
EEPROM interface (only for H8/3664N)  
I2C Bus Interface (conforms to the I2C bus interface format that is advocated by Philips  
Electronics)  
Supports various power-down modes  
Note: F-ZTATTM is a trademark of Hitachi, Ltd.  
Rev. 4.0, 03/02, page 1 of 400  
Compact package  
Package  
LQFP-64  
QFP-64  
Code  
Body Size  
Pin Pitch  
0.5 mm  
FP-64E  
FP-64A  
FP-48F  
FP-48B  
DP-42S  
10.0 × 10.0 mm  
14.0 × 14.0 mm  
10.0 × 10.0 mm  
7.0 × 7.0 mm  
14.0 × 37.3 mm  
0.8 mm  
LQFP-48  
LQFP-48  
SDIP-42  
0.65 mm  
0.5 mm  
1.78 mm  
Only LQFP-64 (FP-64E) for H8/3664N package  
1.2  
Internal Block Diagram  
P80/FTCI  
P81/FTIOA  
P82/FTIOB  
P83/FTIOC  
P84/FTIOD  
P85  
System  
Subclock  
CPU  
H8/300H  
clock  
generator  
generator  
P86  
Data bus (lower)  
P10/TMOW  
P87  
P11  
P12  
P14/  
P15/  
P16/  
P74/TMRIV  
P75/TMCIV  
P76/TMOV  
RAM  
SCI3  
ROM  
P17/  
/TRGV  
Timer W  
Timer A  
Timer V  
P50/  
P51/  
P52/  
P53/  
P54/  
P20/SCK3  
P21/RXD  
P22/TXD  
Watchdog  
timer  
P55/  
/
P56/SDA  
P57/SCL  
A/D  
converter  
PB0/AN0  
PB1/AN1  
PB2/AN2  
PB3/AN3  
PB4/AN4  
PB5/AN5  
PB6/AN6  
PB7/AN7  
I2C bus  
interface  
Data bus (upper)  
Address bus  
AVCC  
Figure 1.1 Internal Block Diagram of H8/3664 of F-ZTATTM and Mask-ROM Versions  
Rev. 4.0, 03/02, page 2 of 400  
P80/FTCI  
P81/FTIOA  
P82/FTIOB  
P83/FTIOC  
P84/FTIOD  
P85  
System  
clock  
generator  
CPU  
H8/300H  
Subclock  
generator  
P86  
Data bus (lower)  
P10/TMOW  
P11  
P87  
P12  
P14/  
P15/  
P74/TMRIV  
P75/TMCIV  
P76/TMOV  
RAM  
ROM  
P16/  
P17/  
/TRGV  
Timer W  
SCI3  
P50/  
P51/  
P52/  
P53/  
P54/  
P20/SCK3  
P21/RXD  
P22/TXD  
Watchdog  
timer  
Timer A  
Timer V  
P55/  
/
A/D  
converter  
PB0/AN0  
PB1/AN1  
PB2/AN2  
PB3/AN3  
PB4/AN4  
PB5/AN5  
PB6/AN6  
PB7/AN7  
SDA  
SCL  
I2C bus  
interface  
Data bus (upper)  
Address bus  
AVCC  
EEPROM  
Note : The H8/3664N is a laminated-structure product in which an EEPROM chip is mounted on the  
H8/3664F-ZTATTM version.  
Figure 1.2 Internal Block Diagram of H8/3664N of F-ZTATTM Version with EEPROM  
Rev. 4.0, 03/02, page 3 of 400  
1.3  
Pin Arrangement  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
NC  
NC  
NC  
NC  
P76/TMOV  
P75/TMCIV  
P74/TMRIV  
P57/SCL  
P56/SDA  
P12  
P14/  
P15/  
P16/  
P17/  
/TRGV  
PB4/AN4  
PB5/AN5  
PB6/AN6  
PB7/AN7  
PB3/AN3  
PB2/AN2  
PB1/AN1  
PB0/AN0  
NC  
H8/3664  
Top view  
P11  
P10/TMOW  
P55/  
P54/  
P53/  
P52/  
NC  
/
NC  
NC  
1
2
3
4
5
6
7
8 9 10 11 12 13 14 15 16  
Note: Do not connect NC pins (* these pins are not connected to the internal circuitry).  
Figure 1.3 Pin Arrangement of H8/3664 of F-ZTATTM and Mask-ROM Versions  
(FP-64E, FP-64A)  
Rev. 4.0, 03/02, page 4 of 400  
36 35 34 33 32 31 30 29 28 27 26 25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
P14/  
P15/  
P16/  
P76/TMOV  
P75/TMCIV  
P74/TMRIV  
P57/SCL  
P56/SDA  
P12  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
P17/  
/TRGV  
PB4/AN4  
PB5/AN5  
PB6/AN6  
PB7/AN7  
PB3/AN3  
PB2/AN2  
PB1/AN1  
PB0/AN0  
H8/3664  
P11  
Top View  
P10/TMOW  
P55/  
P54/  
P53/  
P52/  
/
1
2
3
4
5
6
7
8
9 10 11 12  
Figure 1.4 Pin Arrangement of H8/3664 of F-ZTATTM and Mask-ROM Versions  
(FP-48F, FP-48B)  
Rev. 4.0, 03/02, page 5 of 400  
PB3/AN3  
PB2/AN2  
PB1/AN1  
PB0/AN0  
AVCC  
P17/  
/TRGV  
1
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
P16/  
2
P15/  
3
P14/  
4
P22/TXD  
P21/RXD  
5
X2  
6
X1  
P20/SCK3  
P87  
7
VCL  
8
P86  
9
H8/3664  
Top view  
TEST  
VSS  
P85  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
P84/FTIOD  
P83/FTIOC  
P82/FTIOB  
P81/FTIOA  
P80/FTCI  
OSC2  
OSC1  
VCC  
P50/  
P51/  
P52/  
P76/TMOV  
P75/TMCIV  
P74/TMRIV  
P57/SCL  
P53/  
P54/  
P55/  
/
P10/TMOW  
P56/SDA  
Note: DP-42S has no P11, P12, PB4/AN4, PB5/AN5, PB6/AN6, and PB7/AN7 pins.  
Figure 1.5 Pin Arrangement of H8/3664 of F-ZTATTM and Mask-ROM Versions  
(DS-42S)  
Rev. 4.0, 03/02, page 6 of 400  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
NC  
NC  
NC  
NC  
P76/TMOV  
P75/TMCIV  
P74/TMRIV  
SCL*  
P14/  
P15/  
P16/  
P17/  
/TRGV  
PB4/AN4  
PB5/AN5  
PB6/AN6  
PB7/AN7  
PB3/AN3  
PB2/AN2  
PB1/AN1  
PB0/AN0  
NC  
SDA*  
P12  
H8/3664N  
Top View  
P11  
P10/TMOW  
P55/  
P54/  
P53/  
P52/  
NC  
/
NC  
NC  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16  
Note: Do not connect NC pins.  
* These pins are only available for the I2C bus interface in the F-ZATTM version with EEPROM.  
Figure 1.6 Pin Arrangement of H8/3664N of F-ZTATTM Version with EEPROM  
(FP-64E)  
Rev. 4.0, 03/02, page 7 of 400  
1.4  
Pin Functions  
Table 1.1 Pin Functions  
Pin No.  
H8/3664  
H8/3664N  
Type  
Symbol FP-64E, FP-48F, DP-42S FP-64E  
FP-64A FP-48B  
I/O  
Functions  
Power source VCC  
pins  
12  
10  
14  
11  
5
12  
Input  
Input  
Input  
Power supply pin. Connect this pin to the  
system power supply.  
VSS  
9
7
9
Ground pin. Connect all these pins to the  
system power supply (0V).  
AVCC  
3
1
3
Analog power supply pin for the A/D  
converter. When the A/D converter is not  
used, connect this pin to the system  
power supply.  
VCL  
6
4
8
6
Input  
Internal step-down power supply pin.  
Connect a  
capacitor of around 0.1 µF between this  
pin and  
the Vss pin for stabilization.  
Clock pins  
OSC1  
OSC2  
11  
10  
9
8
13  
12  
11  
10  
Input  
These pins connect to a crystal or ceramic  
resonator for system clocks, or can be  
used to input an external clock.  
Output  
These pins can be used to input an  
external clock.  
See section 5, Clock Pulse Generators,  
for a typical connection.  
X1  
X2  
5
3
7
5
Input  
For connection to a 32.768 kHz crystal  
resonator for subclocks.  
See section 5, Clock Pulse Generators,  
for a typical connection.  
4
7
2
5
6
9
4
7
Output  
Input  
System control RES  
Reset pin. When this driven low, the chip  
is reset.  
TEST  
8
6
10  
27  
8
Input  
Input  
Test pin. Connect this pin to Vss.  
Interrupt pins NMI  
35  
25  
35  
Non-maskable interrupt request input pin.  
IRQ0 to  
IRQ3  
51 to 54 37 to 40 39 to 42 51 to 54 Input  
External interrupt request input pins. Can  
select the rising or falling edge.  
WKP0 to 13, 14,  
WKP5 19 to 22  
11 to 16 15 to 20 13, 14,  
19 to 22  
Input  
External interrupt request input pins. Can  
select the rising or falling edge.  
Rev. 4.0, 03/02, page 8 of 400  
Pin No.  
H8/3664  
H8/3664N  
Type  
Symbol  
FP-64E, FP-48F, DP-42S FP-64E  
FP-64A FP-48B  
I/O  
Functions  
Timer A  
Timer V  
TMOW  
TMOV  
23  
30  
17  
24  
21  
26  
23  
30  
Output  
Output  
This is an output pin for divided clocks.  
This is an output pin for waveforms  
generated by the output compare function.  
TMCIV  
TMRIV  
TRGV  
FTCI  
29  
28  
54  
36  
23  
22  
40  
26  
25  
24  
42  
28  
29  
28  
54  
36  
Input  
Input  
Input  
Input  
External event input pin.  
Counter reset input pin.  
Counter start trigger input pin.  
External event input pin.  
Timer W  
FTIOA to 37 to 40 27 to 30 29 to 32 37 to 40 I/O  
FTIOD  
Output compare output/ input capture  
input/ PWM output pin  
I2C bus  
SDA  
SCL  
26*2  
27*2  
46  
20  
21  
36  
22  
23  
38  
26*1  
27*1  
46  
I/O  
IIC data I/O pin. Can directly drive a bus  
by NMOS open-drain output. When using  
this pin, external pull-up resistance is  
required.  
inerface  
I/O  
IIC clock I/O pin. Can directly drive a bus  
(EEPROM: by NMOS open-drain output. When using  
input)  
this pin, external pull-up resistance is  
required.  
Serial commu- TXD  
nication  
Output  
Transmit data output pin  
interface (SCI)  
RXD  
45  
44  
35  
34  
37  
36  
45  
44  
Input  
I/O  
Receive data input pin  
Clock I/O pin  
SCK3  
A/D converter AN7 to  
AN0  
55 to 62 41 to 48 1 to 4*2  
55 to 62 Input  
Analog input pin  
ADTRG  
22  
16  
20  
22  
Input  
A/D converter trigger input pin.  
8-bit input port.  
I/O ports  
PB7 to  
PB0  
55 to 62 41 to 48 1 to 4*2  
55 to 62 Input  
P17 to  
P14,  
51 to 54 37 to 40 39 to 42, 51 to 54, I/O  
21*2  
23 to 25  
7-bit I/O port.  
23 to 25 17 to 19  
P12 to  
P10  
P22 to  
P20  
44 to 46 34 to 36 36 to 38 44 to 46 I/O  
3-bit I/O port.  
P57 to  
13,14,  
21, 20,  
15 to 20, 13, 14,  
19 to 22  
I/O  
8-bit I/O port  
P50 (P55  
to P50 for  
H8/3664N)  
16 to 11 22, 23  
19 to 22  
26, 27  
(6-bit I/O port for H8/3664N)  
Rev. 4.0, 03/02, page 9 of 400  
Pin No.  
H8/3664  
H8/3664N  
Type  
Symbol FP-64E, FP-48F, DP-42S FP-64E  
FP-64A FP-48B  
I/O  
Functions  
I/O ports  
P76 to  
P74  
28 to 30 22 to 24 24 to 26 28 to 30 I/O  
3-bit I/O port  
8-bit I/O port.  
P87 to  
P80  
36 to 43 26 to 33 28 to 35 36 to 43 I/O  
Note : 1. These pins are only available for the I2C bus interface in the F-ZATTM version with EEPROM. Since  
the I2C bus is disabled after canceling a reset, the ICE bit in ICCR must be set to 1 by using the  
program.  
2. The DP-42S does not have the P11, P12, PB4/AN4, PB5/AN5, PB6/AN6, and PB7/AN7 pins.  
Rev. 4.0, 03/02, page 10 of 400  
Section 2 CPU  
This LSI has an H8/300H CPU with an internal 32-bit architecture that is upward-compatible with  
the H8/300CPU, and supports only normal mode, which has a 64-kbyte address space.  
Upward-compatible with H8/300 CPUs  
Can execute H8/300 CPUs object programs  
Additional eight 16-bit extended registers  
32-bit transfer and arithmetic and logic instructions are added  
Signed multiply and divide instructions are added.  
General-register architecture  
Sixteen 16-bit general registers also usable as sixteen 8-bit registers or eight 32-bit registers  
Sixty-two basic instructions  
8/16/32-bit data transfer and arithmetic and logic instructions  
Multiply and divide instructions  
Powerful bit-manipulation instructions  
Eight addressing modes  
Register direct [Rn]  
Register indirect [@ERn]  
Register indirect with displacement [@(d:16,ERn) or @(d:24,ERn)]  
Register indirect with post-increment or pre-decrement [@ERn+ or @–ERn]  
Absolute address [@aa:8, @aa:16, @aa:24]  
Immediate [#xx:8, #xx:16, or #xx:32]  
Program-counter relative [@(d:8,PC) or @(d:16,PC)]  
Memory indirect [@@aa:8]  
64-kbyte address space  
High-speed operation  
All frequently-used instructions execute in one or two states  
8/16/32-bit register-register add/subtract  
8 × 8-bit register-register multiply : 14 states  
16 ÷ 8-bit register-register divide : 14 states  
: 2 state  
16 × 16-bit register-register multiply : 22 states  
32 ÷ 16-bit register-register divide : 22 states  
Power-down state  
Transition to power-down state by SLEEP instruction  
Rev. 4.0, 03/02, page 11 of 400  
CPU30H2A_000020020300  
2.1  
Address Space and Memory Map  
The address space of this LSI is 64 kbytes, which includes the program area and the data area.  
Figures 2.1 show the memory map.  
HD6433660  
HD64F3664  
HD6433661  
(Mask ROM version)  
(Flash memory version)  
(Mask ROM version)  
H'0000  
H'0033  
H'0034  
H'0000  
H'0033  
H'0034  
H'0000  
H'0033  
H'0034  
Interrupt vector  
Interrupt vector  
Interrupt vector  
On-chip ROM  
(8 kbytes)  
On-chip ROM  
(12 kbytes)  
H'1FFF  
H'2FFF  
On-chip ROM  
(32 kbytes)  
H'7FFF  
Not used  
Not used  
Not used  
H'F780  
(1-kbyte work area  
for flash memory  
programming)  
H'FB7F  
H'FB80  
On-chip RAM  
(2 kbytes)  
(1-kbyte user area)  
Internal I/O register  
H'FD80  
H'FD80  
On-chip RAM  
(512 bytes)  
On-chip RAM  
(512 bytes)  
H'FF7F  
H'FF80  
H'FF7F  
H'FF80  
H'FF7F  
H'FF80  
Internal I/O register  
Internal I/O register  
H'FFFF  
H'FFFF  
H'FFFF  
Figure 2.1 Memory Map (1)  
Rev. 4.0, 03/02, page 12 of 400  
HD6433662  
HD6433663  
HD6433664  
(Mask ROM version)  
(Mask ROM version)  
(Mask ROM version)  
H'0000  
H'0033  
H'0034  
H'0000  
H'0033  
H'0034  
H'0000  
H'0033  
H'0034  
Interrupt vector  
Interrupt vector  
Interrupt vector  
On-chip ROM  
(16 kbytes)  
On-chip ROM  
(24 kbytes)  
H'3FFF  
On-chip ROM  
(32 kbytes)  
H'5FFF  
H'7FFF  
Not used  
Not used  
Not used  
H'FB80  
H'FB80  
On-chip RAM  
(1 kbyte)  
On-chip RAM  
(1 kbyte)  
H'FD80  
On-chip RAM  
(512 bytes)  
H'FF7F  
H'FF80  
H'FF7F  
H'FF80  
H'FF7F  
H'FF80  
Internal I/O register  
Internal I/O register  
Internal I/O register  
H'FFFF  
H'FFFF  
H'FFFF  
Figure 2.1 Memory Map (2)  
Rev. 4.0, 03/02, page 13 of 400  
HD64N3664  
(On-chip EEPROM module)  
H'0000  
H'01FF  
User area  
(512 bytes)  
Not used  
H'FF09  
Slave address  
register  
Not used  
Figure 2.1 Memory Map (3)  
Rev. 4.0, 03/02, page 14 of 400  
2.2  
Register Configuration  
The H8/300H CPU has the internal registers shown in figure 2.2. There are two types of registers;  
general registers and control registers. The control registers are a 24-bit program counter (PC), and  
an 8-bit condition code register (CCR).  
General Registers  
15  
0 7  
0 7  
0
ER0  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
R0H  
R1H  
R2H  
R3H  
R4H  
R5H  
R6H  
R7H  
R0L  
R1L  
R2L  
R3L  
R4L  
R5L  
R6L  
R7L  
ER1  
ER2  
ER3  
ER4  
ER5  
ER6  
ER7 (SP)  
Control Registers (CR)  
23  
0
0
PC  
7
6 5 4 3 2 1  
CCR  
I UI H U N Z V C  
Legend  
SP  
PC  
:Stack pointer  
:Program counter  
H
:Half-carry flag  
:User bit  
:Negative flag  
:Zero flag  
:Overflow flag  
:Carry flag  
U
N
Z
V
C
CCR :Condition-code register  
I
UI  
:Interrupt mask bit  
:User bit  
Figure 2.2 CPU Registers  
Rev. 4.0, 03/02, page 15 of 400  
2.2.1  
General Registers  
The H8/300H CPU has eight 32-bit general registers. These general registers are all functionally  
identical and can be used as both address registers and data registers. When a general register is  
used as a data register, it can be accessed as a 32-bit, 16-bit, or 8-bit register. Figure 2.3 illustrates  
the usage of the general registers. When the general registers are used as 32-bit registers or address  
registers, they are designated by the letters ER (ER0 to ER7).  
The ER registers divide into 16-bit general registers designated by the letters E (E0 to E7) and R  
(R0 to R7). These registers are functionally equivalent, providing a maximum of sixteen 16-bit  
registers. The E registers (E0 to E7) are also referred to as extended registers.  
The R registers divide into 8-bit registers designated by the letters RH (R0H to R7H) and RL (R0L  
to R7L). These registers are functionally equivalent, providing a maximum of sixteen 8-bit  
registers.  
The usage of each register can be selected independently.  
General register ER7 has the function of stack pointer (SP) in addition to its general-register  
function, and is used implicitly in exception handling and subroutine calls. Figure 2.4 shows the  
stack.  
• Address registers  
• 32-bit registers  
• 16-bit registers  
• 8-bit registers  
E registers (extended registers)  
(E0 to E7)  
ER registers  
(ER0 to ER7)  
RH registers  
(R0H to R7H)  
R registers  
(R0 to R7)  
RL registers  
(R0L to R7L)  
Figure 2.3 Usage of General Registers  
Rev. 4.0, 03/02, page 16 of 400  
Free area  
SP (ER7)  
Stack area  
Figure 2.4 Relationship between Stack Pointer and Stack Area  
Program Counter (PC)  
2.2.2  
This 24-bit counter indicates the address of the next instruction the CPU will execute. The length  
of all CPU instructions is 2 bytes (one word), so the least significant PC bit is ignored. (When an  
instruction is fetched, the least significant PC bit is regarded as 0). The PC is initialized when the  
start address is loaded by the vector address generated during reset exception-handling sequence.  
2.2.3  
Condition-Code Register (CCR)  
This 8-bit register contains internal CPU status information, including an interrupt mask bit (I) and  
half-carry (H), negative (N), zero (Z), overflow (V), and carry (C) flags. The I bit is initialized to 1  
by reset exception-handling sequence, but other bits are not initialized.  
Some instructions leave flag bits unchanged. Operations can be performed on the CCR bits by the  
LDC, STC, ANDC, ORC, and XORC instructions. The N, Z, V, and C flags are used as branching  
conditions for conditional branch (Bcc) instructions.  
For the action of each instruction on the flag bits, see appendix A.1 Instruction List.  
Rev. 4.0, 03/02, page 17 of 400  
Bit  
Bit Name  
Initial Value  
R/W  
Description  
7
I
1
R/W  
Interrupt Mask Bit  
Masks interrupts other than NMI when set to 1.  
NMI is accepted regardless of the I bit setting.  
The I bit is set to 1 at the start of an exception-  
handling sequence.  
6
5
UI  
H
undefined  
undefined  
R/W  
R/W  
User Bit  
Can be written and read by software using the  
LDC, STC, ANDC, ORC, and XORC instructions.  
Half-Carry Flag  
When the ADD.B, ADDX.B, SUB.B, SUBX.B,  
CMP.B, or NEG.B instruction is executed, this  
flag is set to 1 if there is a carry or borrow at bit 3,  
and cleared to 0 otherwise. When the ADD.W,  
SUB.W, CMP.W, or NEG.W instruction is  
executed, the H flag is set to 1 if there is a carry  
or borrow at bit 11, and cleared to 0 otherwise.  
When the ADD.L, SUB.L, CMP.L, or NEG.L  
instruction is executed, the H flag is set to 1 if  
there is a carry or borrow at bit 27, and cleared to  
0 otherwise.  
4
3
2
1
0
U
N
Z
undefined  
undefined  
undefined  
undefined  
undefined  
R/W  
R/W  
R/W  
R/W  
R/W  
User Bit  
Can be written and read by software using the  
LDC, STC, ANDC, ORC, and XORC instructions.  
Negative Flag  
Stores the value of the most significant bit of data  
as a sign bit.  
Zero Flag  
Set to 1 to indicate zero data, and cleared to 0 to  
indicate non-zero data.  
V
C
Overflow Flag  
Set to 1 when an arithmetic overflow occurs, and  
cleared to 0 at other times.  
Carry Flag  
Set to 1 when a carry occurs, and cleared to 0  
otherwise. Used by:  
Add instructions, to indicate a carry  
Subtract instructions, to indicate a borrow  
Shift and rotate instructions, to indicate a  
carry  
The carry flag is also used as a bit accumulator  
by bit manipulation instructions.  
Rev. 4.0, 03/02, page 18 of 400  
2.3  
Data Formats  
The H8/300H CPU can process 1-bit, 4-bit (BCD), 8-bit (byte), 16-bit (word), and 32-bit  
(longword) data. Bit-manipulation instructions operate on 1-bit data by accessing bit n (n = 0, 1, 2,  
…, 7) of byte operand data. The DAA and DAS decimal-adjust instructions treat byte data as two  
digits of 4-bit BCD data.  
2.3.1  
General Register Data Formats  
Figure 2.5 shows the data formats in general registers.  
Data Type  
1-bit data  
General Register  
RnH  
Data Format  
7
0
0
Don't care  
7
6
5
4
3
2
1
7
0
0
Don't care  
RnL  
RnH  
RnL  
RnH  
RnL  
7
6
5
4
3
2
1
1-bit data  
7
4
3
0
4-bit BCD data  
Upper  
Lower  
Don't care  
7
4
3
0
4-bit BCD data  
Byte data  
Don't care  
Upper  
Lower  
7
0
Don't care  
MSB  
LSB  
7
0
Byte data  
Don't care  
MSB  
LSB  
Figure 2.5 General Register Data Formats (1)  
Rev. 4.0, 03/02, page 19 of 400  
Data Type  
Word data  
General  
Register  
Data Format  
Rn  
15  
0
MSB  
LSB  
Word data  
En  
15  
0
MSB  
31  
LSB  
Longword  
data  
ERn  
16 15  
0
MSB  
LSB  
Legend  
ERn : General register ER  
En  
Rn  
: General register E  
: General register R  
RnH : General register RH  
RnL : General register RL  
MSB : Most significant bit  
LSB : Least significant bit  
Figure 2.5 General Register Data Formats (2)  
Rev. 4.0, 03/02, page 20 of 400  
2.3.2  
Memory Data Formats  
Figure 2.6 shows the data formats in memory. The H8/300H CPU can access word data and  
longword data in memory, however word or longword data must begin at an even address. If an  
attempt is made to access word or longword data at an odd address, an address error does not  
occur, however the least significant bit of the address is regarded as 0, so access begins the  
preceding address. This also applies to instruction fetches.  
When ER7 (SP) is used as an address register to access the stack, the operand size should be word  
or longword.  
Data Type  
Address  
Data Format  
7
7
0
0
1-bit data  
Byte data  
Word data  
Address L  
Address L  
6
5
4
3
2
1
MSB  
MSB  
LSB  
LSB  
Address 2M  
Address 2M+1  
Longword data  
Address 2N  
MSB  
Address 2N+1  
Address 2N+2  
Address 2N+3  
LSB  
Figure 2.6 Memory Data Formats  
Rev. 4.0, 03/02, page 21 of 400  
2.4  
Instruction Set  
2.4.1  
Table of Instructions Classified by Function  
The H8/300H CPU has 62 instructions. Tables 2.2 to 2.9 summarize the instructions in each  
functional category. The notation used in tables 2.2 to 2.9 is defined below.  
Table 2.1 Operation Notation  
Symbol  
Description  
Rd  
General register (destination)*  
General register (source)*  
General register*  
General register (32-bit register or address register)  
Destination operand  
Source operand  
Rs  
Rn  
ERn  
(EAd)  
(EAs)  
CCR  
Condition-code register  
N (negative) flag in CCR  
Z (zero) flag in CCR  
V (overflow) flag in CCR  
C (carry) flag in CCR  
Program counter  
Stack pointer  
N
Z
V
C
PC  
SP  
#IMM  
Immediate data  
disp  
Displacement  
+
Addition  
Subtraction  
×
Multiplication  
÷
Division  
Logical AND  
Logical OR  
Logical XOR  
Move  
¬
NOT (logical complement)  
3-, 8-, 16-, or 24-bit length  
:3/:8/:16/:24  
Note: * General registers include 8-bit registers (R0H to R7H, R0L to R7L), 16-bit registers (R0 to  
R7, E0 to E7), and 32-bit registers/address register (ER0 to ER7).  
Rev. 4.0, 03/02, page 22 of 400  
Table 2.2 Data Transfer Instructions  
Instruction  
Size*  
Function  
MOV  
B/W/L  
(EAs) Rd, Rs (EAd)  
Moves data between two general registers or between a general register  
and memory, or moves immediate data to a general register.  
MOVFPE  
MOVTPE  
POP  
B
(EAs) Rd, Cannot be used in this LSI.  
Rs (EAs) Cannot be used in this LSI.  
B
W/L  
@SP+ Rn  
Pops a general register from the stack. POP.W Rn is identical to MOV.W  
@SP+, Rn. POP.L ERn is identical to MOV.L @SP+, ERn.  
PUSH  
W/L  
Rn @–SP  
Pushes a general register onto the stack. PUSH.W Rn is identical to  
MOV.W Rn, @–SP. PUSH.L ERn is identical to MOV.L ERn, @–SP.  
Note: * Refers to the operand size.  
B: Byte  
W: Word  
L: Longword  
Rev. 4.0, 03/02, page 23 of 400  
Table 2.3 Arithmetic Operations Instructions (1)  
Instruction  
Size*  
Function  
ADD  
SUB  
B/W/L  
Rd Rs Rd, Rd #IMM Rd  
Performs addition or subtraction on data in two general registers, or on  
immediate data and data in a general register (immediate byte data  
cannot be subtracted from byte data in a general register. Use the SUBX  
or ADD instruction.)  
ADDX  
SUBX  
B
Rd Rs C Rd, Rd #IMM C Rd  
Performs addition or subtraction with carry on byte data in two general  
registers, or on immediate data and data in a general register.  
INC  
DEC  
B/W/L  
Rd 1 Rd, Rd 2 Rd  
Increments or decrements a general register by 1 or 2. (Byte operands  
can be incremented or decremented by 1 only.)  
ADDS  
SUBS  
L
Rd 1 Rd, Rd 2 Rd, Rd 4 Rd  
Adds or subtracts the value 1, 2, or 4 to or from data in a 32-bit register.  
DAA  
DAS  
B
Rd decimal adjust Rd  
Decimal-adjusts an addition or subtraction result in a general register by  
referring to the CCR to produce 4-bit BCD data.  
MULXU  
MULXS  
DIVXU  
B/W  
B/W  
B/W  
Rd × Rs Rd  
Performs unsigned multiplication on data in two general registers: either  
8 bits × 8 bits 16 bits or 16 bits × 16 bits 32 bits.  
Rd × Rs Rd  
Performs signed multiplication on data in two general registers: either 8  
bits × 8 bits 16 bits or 16 bits × 16 bits 32 bits.  
Rd ÷ Rs Rd  
Performs unsigned division on data in two general registers: either 16  
bits ÷ 8 bits 8-bit quotient and 8-bit remainder or 32 bits ÷ 16 bits →  
16-bit quotient and 16-bit remainder.  
Note: * Refers to the operand size.  
B: Byte  
W: Word  
L: Longword  
Rev. 4.0, 03/02, page 24 of 400  
Table 2.3 Arithmetic Operations Instructions (2)  
Instruction  
Size*  
Function  
DIVXS  
B/W  
Rd ÷ Rs Rd  
Performs signed division on data in two general registers: either 16 bits ÷  
8 bits 8-bit quotient and 8-bit remainder or 32 bits ÷ 16 bits 16-bit  
quotient and 16-bit remainder.  
CMP  
NEG  
EXTU  
B/W/L  
B/W/L  
W/L  
Rd – Rs, Rd – #IMM  
Compares data in a general register with data in another general register  
or with immediate data, and sets CCR bits according to the result.  
0 – Rd Rd  
Takes the two's complement (arithmetic complement) of data in a  
general register.  
Rd (zero extension) Rd  
Extends the lower 8 bits of a 16-bit register to word size, or the lower 16  
bits of a 32-bit register to longword size, by padding with zeros on the  
left.  
EXTS  
W/L  
Rd (sign extension) Rd  
Extends the lower 8 bits of a 16-bit register to word size, or the lower 16  
bits of a 32-bit register to longword size, by extending the sign bit.  
Note: * Refers to the operand size.  
B: Byte  
W: Word  
L: Longword  
Rev. 4.0, 03/02, page 25 of 400  
Table 2.4 Logic Operations Instructions  
Instruction  
Size*  
Function  
AND  
B/W/L  
Rd Rs Rd, Rd #IMM Rd  
Performs a logical AND operation on a general register and another  
general register or immediate data.  
OR  
B/W/L  
B/W/L  
B/W/L  
Rd Rs Rd, Rd #IMM Rd  
Performs a logical OR operation on a general register and another  
general register or immediate data.  
XOR  
NOT  
Rd Rs Rd, Rd #IMM Rd  
Performs a logical exclusive OR operation on a general register and  
another general register or immediate data.  
¬ (Rd) (Rd)  
Takes the one's complement of general register contents.  
Note: * Refers to the operand size.  
B: Byte  
W: Word  
L: Longword  
Table 2.5 Shift Instructions  
Instruction  
Size*  
Function  
SHAL  
SHAR  
B/W/L  
Rd (shift) Rd  
Performs an arithmetic shift on general register contents.  
SHLL  
SHLR  
B/W/L  
B/W/L  
B/W/L  
Rd (shift) Rd  
Performs a logical shift on general register contents.  
ROTL  
ROTR  
Rd (rotate) Rd  
Rotates general register contents.  
ROTXL  
ROTXR  
Rd (rotate) Rd  
Rotates general register contents through the carry flag.  
Note: * Refers to the operand size.  
B: Byte  
W: Word  
L: Longword  
Rev. 4.0, 03/02, page 26 of 400  
Table 2.6 Bit Manipulation Instructions (1)  
Instruction  
Size*  
Function  
BSET  
B
1 (<bit-No.> of <EAd>)  
Sets a specified bit in a general register or memory operand to 1. The bit  
number is specified by 3-bit immediate data or the lower three bits of a  
general register.  
BCLR  
BNOT  
BTST  
B
B
B
0 (<bit-No.> of <EAd>)  
Clears a specified bit in a general register or memory operand to 0. The  
bit number is specified by 3-bit immediate data or the lower three bits of a  
general register.  
¬ (<bit-No.> of <EAd>) (<bit-No.> of <EAd>)  
Inverts a specified bit in a general register or memory operand. The bit  
number is specified by 3-bit immediate data or the lower three bits of a  
general register.  
¬ (<bit-No.> of <EAd>) Z  
Tests a specified bit in a general register or memory operand and sets or  
clears the Z flag accordingly. The bit number is specified by 3-bit  
immediate data or the lower three bits of a general register.  
BAND  
B
B
C (<bit-No.> of <EAd>) C  
ANDs the carry flag with a specified bit in a general register or memory  
operand and stores the result in the carry flag.  
BIAND  
C ¬ (<bit-No.> of <EAd>) C  
ANDs the carry flag with the inverse of a specified bit in a general  
register or memory operand and stores the result in the carry flag.  
The bit number is specified by 3-bit immediate data.  
BOR  
B
B
C (<bit-No.> of <EAd>) C  
ORs the carry flag with a specified bit in a general register or memory  
operand and stores the result in the carry flag.  
BIOR  
C ¬ (<bit-No.> of <EAd>) C  
ORs the carry flag with the inverse of a specified bit in a general register  
or memory operand and stores the result in the carry flag.  
The bit number is specified by 3-bit immediate data.  
Note: * Refers to the operand size.  
B: Byte  
Rev. 4.0, 03/02, page 27 of 400  
Table 2.6 Bit Manipulation Instructions (2)  
Instruction  
Size*  
Function  
BXOR  
B
C (<bit-No.> of <EAd>) C  
XORs the carry flag with a specified bit in a general register or memory  
operand and stores the result in the carry flag.  
BIXOR  
B
C ¬ (<bit-No.> of <EAd>) C  
XORs the carry flag with the inverse of a specified bit in a general  
register or memory operand and stores the result in the carry flag.  
The bit number is specified by 3-bit immediate data.  
BLD  
B
B
(<bit-No.> of <EAd>) C  
Transfers a specified bit in a general register or memory operand to the  
carry flag.  
BILD  
¬ (<bit-No.> of <EAd>) C  
Transfers the inverse of a specified bit in a general register or memory  
operand to the carry flag.  
The bit number is specified by 3-bit immediate data.  
BST  
B
B
C (<bit-No.> of <EAd>)  
Transfers the carry flag value to a specified bit in a general register or  
memory operand.  
BIST  
¬ C (<bit-No.> of <EAd>)  
Transfers the inverse of the carry flag value to a specified bit in a general  
register or memory operand.  
The bit number is specified by 3-bit immediate data.  
Note: * Refers to the operand size.  
B: Byte  
Rev. 4.0, 03/02, page 28 of 400  
Table 2.7 Branch Instructions  
Instruction  
Size  
Function  
Bcc*  
Branches to a specified address if a specified condition is true. The  
branching conditions are listed below.  
Mnemonic  
BRA (BT)  
BRN (BF)  
BHI  
Description  
Always (true)  
Never (false)  
High  
Condition  
Always  
Never  
C Z = 0  
C Z = 1  
C = 0  
BLS  
Low or same  
BCC (BHS)  
Carry clear  
(high or same)  
BCS (BLO)  
BNE  
BEQ  
BVC  
BVS  
Carry set (low)  
Not equal  
C = 1  
Z = 0  
Equal  
Z = 1  
Overflow clear  
Overflow set  
Plus  
V = 0  
V = 1  
BPL  
N = 0  
BMI  
Minus  
N = 1  
BGE  
BLT  
Greater or equal  
Less than  
N V = 0  
N V = 1  
Z(N V) = 0  
Z(N V) = 1  
BGT  
BLE  
Greater than  
Less or equal  
JMP  
BSR  
JSR  
RTS  
Branches unconditionally to a specified address.  
Branches to a subroutine at a specified address.  
Branches to a subroutine at a specified address.  
Returns from a subroutine  
Note: * Bcc is the general name for conditional branch instructions.  
Rev. 4.0, 03/02, page 29 of 400  
Table 2.8 System Control Instructions  
Instruction  
TRAPA  
RTE  
Size*  
Function  
Starts trap-instruction exception handling.  
Returns from an exception-handling routine.  
Causes a transition to a power-down state.  
SLEEP  
LDC  
B/W  
(EAs) CCR  
Moves the source operand contents to the CCR. The CCR size is one  
byte, but in transfer from memory, data is read by word access.  
STC  
B/W  
CCR (EAd), EXR (EAd)  
Transfers the CCR contents to a destination location. The condition code  
register size is one byte, but in transfer to memory, data is written by  
word access.  
ANDC  
ORC  
B
CCR #IMM CCR, EXR #IMM EXR  
Logically ANDs the CCR with immediate data.  
B
CCR #IMM CCR, EXR #IMM EXR  
Logically ORs the CCR with immediate data.  
XORC  
NOP  
B
CCR #IMM CCR, EXR #IMM EXR  
Logically XORs the CCR with immediate data.  
PC + 2 PC  
Only increments the program counter.  
Note: * Refers to the operand size.  
B: Byte  
W: Word  
Rev. 4.0, 03/02, page 30 of 400  
Table 2.9 Block Data Transfer Instructions  
Instruction  
Size  
Function  
EEPMOV.B  
if R4L 0 then  
Repeat @ER5+ @ER6+,  
R4L–1 R4L  
Until R4L = 0  
else next;  
EEPMOV.W  
if R4 0 then  
Repeat @ER5+ @ER6+,  
R4–1 R4  
Until R4 = 0  
else next;  
Transfers a data block. Starting from the address set in ER5, transfers  
data for the number of bytes set in R4L or R4 to the address location set  
in ER6.  
Execution of the next instruction begins as soon as the transfer is  
completed.  
2.4.2  
Basic Instruction Formats  
H8/300H CPU instructions consist of 2-byte (1-word) units. An instruction consists of an  
operation field (op field), a register field (r field), an effective address extension (EA field), and a  
condition field (cc).  
Figure 2.7 shows examples of instruction formats.  
Rev. 4.0, 03/02, page 31 of 400  
Operation Field  
Indicates the function of the instruction, the addressing mode, and the operation to be carried  
out on the operand. The operation field always includes the first four bits of the instruction.  
Some instructions have two operation fields.  
Register Field  
Specifies a general register. Address registers are specified by 3 bits, and data registers by 3  
bits or 4 bits. Some instructions have two register fields. Some have no register field.  
Effective Address Extension  
8, 16, or 32 bits specifying immediate data, an absolute address, or a displacement. A24-bit  
address or displacement is treated as a 32-bit data in which the first 8 bits are 0 (H'00).  
Condition Field  
Specifies the branching condition of Bcc instructions.  
(1) Operation field only  
op  
NOP, RTS, etc.  
(2) Operation field and register fields  
op  
rm  
rn  
ADD.B Rn, Rm, etc.  
(3) Operation field, register fields, and effective address extension  
op  
rn  
rm  
MOV.B @(d:16, Rn), Rm  
EA(disp)  
(4) Operation field, effective address extension, and condition field  
op cc EA(disp) BRA d:8  
Figure 2.7 Instruction Formats  
Rev. 4.0, 03/02, page 32 of 400  
2.5  
Addressing Modes and Effective Address Calculation  
2.5.1  
Addressing Modes  
The following describes the H8/300H CPU. In this LSI, the upper eight bits are ignored in the  
generated 24-bit address, so the effective address is 16 bits.  
The H8/300H CPU supports the eight addressing modes listed in table 2.10. Each instruction uses  
a subset of these addressing modes. Addressing modes that can be used differ depending on the  
instruction. For details, refer to appendix A.4, Combinations of Instructions and Addressing  
Modes.  
Arithmetic and logic instructions can use the register direct and immediate modes. Data transfer  
instructions can use all addressing modes except program-counter relative and memory indirect.  
Bit manipulation instructions use register direct, register indirect, or the absolute addressing mode  
to specify an operand, and register direct (BSET, BCLR, BNOT, and BTST instructions) or  
immediate (3-bit) addressing mode to specify a bit number in the operand.  
Table 2.10 Addressing Modes  
No.  
1
Addressing Mode  
Symbol  
Register direct  
Rn  
2
Register indirect  
@ERn  
3
Register indirect with displacement  
@(d:16,ERn)/@(d:24,ERn)  
4
Register indirect with post-increment  
Register indirect with pre-decrement  
@ERn+  
@–ERn  
5
6
7
8
Absolute address  
Immediate  
@aa:8/@aa:16/@aa:24  
#xx:8/#xx:16/#xx:32  
@(d:8,PC)/@(d:16,PC)  
@@aa:8  
Program-counter relative  
Memory indirect  
Register Direct—Rn  
The register field of the instruction specifies an 8-, 16-, or 32-bit general register containing the  
operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers. R0 to R7 and E0 to E7  
can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bit registers.  
Register Indirect—@ERn  
The register field of the instruction code specifies an address register (ERn), the lower 24 bits of  
which contain the address of the operand on memory.  
Rev. 4.0, 03/02, page 33 of 400  
Register Indirect with Displacement—@(d:16, ERn) or @(d:24, ERn)  
A 16-bit or 24-bit displacement contained in the instruction is added to an address register (ERn)  
specified by the register field of the instruction, and the lower 24 bits of the sum the address of a  
memory operand. A 16-bit displacement is sign-extended when added.  
Register Indirect with Post-Increment or Pre-Decrement—@ERn+ or @-ERn  
Register indirect with post-increment—@ERn+  
The register field of the instruction code specifies an address register (ERn) the lower 24 bits  
of which contains the address of a memory operand. After the operand is accessed, 1, 2, or 4 is  
added to the address register contents (32 bits) and the sum is stored in the address register.  
The value added is 1 for byte access, 2 for word access, or 4 for longword access. For the word  
or longword access, the register value should be even.  
Register indirect with pre-decrement—@-ERn  
The value 1, 2, or 4 is subtracted from an address register (ERn) specified by the register field  
in the instruction code, and the lower 24 bits of the result is the address of a memory operand.  
The result is also stored in the address register. The value subtracted is 1 for byte access, 2 for  
word access, or 4 for longword access. For the word or longword access, the register value  
should be even.  
Absolute Address—@aa:8, @aa:16, @aa:24  
The instruction code contains the absolute address of a memory operand. The absolute address  
may be 8 bits long (@aa:8), 16 bits long (@aa:16), 24 bits long (@aa:24)  
For an 8-bit absolute address, the upper 16 bits are all assumed to be 1 (H'FFFF). For a 16-bit  
absolute address the upper 8 bits are a sign extension. A 24-bit absolute address can access the  
entire address space.  
The access ranges of absolute addresses for the series of this LSI are those shown in table 2.11,  
because the upper 8 bits are ignored.  
Table 2.11 Absolute Address Access Ranges  
Absolute Address  
8 bits (@aa:8)  
Access Range  
H'FF00 to H'FFFF  
H'0000 to H'FFFF  
H'0000 to H'FFFF  
16 bits (@aa:16)  
24 bits (@aa:24)  
Rev. 4.0, 03/02, page 34 of 400  
Immediate—#xx:8, #xx:16, or #xx:32  
The instruction contains 8-bit (#xx:8), 16-bit (#xx:16), or 32-bit (#xx:32) immediate data as an  
operand.  
The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some bit  
manipulation instructions contain 3-bit immediate data in the instruction code, specifying a bit  
number. The TRAPA instruction contains 2-bit immediate data in its instruction code, specifying a  
vector address.  
Program-Counter Relative—@(d:8, PC) or @(d:16, PC)  
This mode is used in the BSR instruction. An 8-bit or 16-bit displacement contained in the  
instruction is sign-extended and added to the 24-bit PC contents to generate a branch address. The  
PC value to which the displacement is added is the address of the first byte of the next instruction,  
so the possible branching range is –126 to +128 bytes (–63 to +64 words) or –32766 to +32768  
bytes (–16383 to +16384 words) from the branch instruction. The resulting value should be an  
even number.  
Memory Indirect—@@aa:8  
This mode can be used by the JMP and JSR instructions. The instruction code contains an 8-bit  
absolute address specifying a memory operand. This memory operand contains a branch address.  
The memory operand is accessed by longword access. The first byte of the memory operand is  
ignored, generating a 24-bit branch address. Figure 2.8 shows how to specify branch address for in  
memory indirect mode. The upper bits of the absolute address are all assumed to be 0, so the  
address range is 0 to 255 (H'0000 to H'00FF).  
Note that the first part of the address range is also the exception vector area.  
Specified  
by @aa:8  
Dummy  
Branch address  
Figure 2.8 Branch Address Specification in Memory Indirect Mode  
Rev. 4.0, 03/02, page 35 of 400  
2.5.2  
Effective Address Calculation  
Table 2.12 indicates how effective addresses are calculated in each addressing mode. In this LSI  
the upper 8 bits of the effective address are ignored in order to generate a 16-bit effective address.  
Table 2.12 Effective Address Calculation (1)  
No  
1
Addressing Mode and Instruction Format  
Register direct(Rn)  
Effective Address Calculation  
Effective Address (EA)  
Operand is general register contents.  
op  
rm rn  
2
3
Register indirect(@ERn)  
31  
0
23  
0
General register contents  
General register contents  
op  
r
Register indirect with displacement  
@(d:16,ERn) or @(d:24,ERn)  
31  
31  
0
0
23  
0
op  
r
disp  
disp  
Sign extension  
Register indirect with post-increment or  
pre-decrement  
Register indirect with post-increment @ERn+  
4
31  
31  
0
0
23  
0
General register contents  
op  
r
1, 2, or 4  
Register indirect with pre-decrement @-ERn  
General register contents  
23  
0
op  
r
1, 2, or 4  
The value to be added or subtracted is 1 when the  
operand is byte size, 2 for word size, and 4 for  
longword size.  
Rev. 4.0, 03/02, page 36 of 400  
Table 2.12 Effective Address Calculation (2)  
No  
5
Addressing Mode and Instruction Format  
Effective Address Calculation  
Effective Address (EA)  
Absolute address  
@aa:8  
23  
8 7  
0
0
op  
abs  
H'FFFF  
@aa:16  
23  
16 15  
op  
op  
abs  
Sign extension  
@aa:24  
23  
0
abs  
6
7
Immediate  
#xx:8/#xx:16/#xx:32  
op  
Operand is immediate data.  
IMM  
disp  
23  
0
0
Program-counter relative  
@(d:8,PC) @(d:16,PC)  
PC contents  
op  
23  
Sign  
disp  
extension  
23  
0
8
Memory indirect @@aa:8  
23  
8
7
0
0
op  
abs  
abs  
H'0000  
15  
23  
16 15  
H'00  
0
Memory contents  
Legend  
r, rm,rn : Register field  
op :  
Operation field  
Displacement  
Immediate data  
Absolute address  
disp :  
IMM :  
abs :  
Rev. 4.0, 03/02, page 37 of 400  
2.6  
Basic Bus Cycle  
CPU operation is synchronized by a system clock (ø) or a subclock (øSUB). The period from a rising  
edge of ø or øSUB to the next rising edge is called one state. A bus cycle consists of two states or  
three states. The cycle differs depending on whether access is to on-chip memory or to on-chip  
peripheral modules.  
2.6.1  
Access to On-Chip Memory (RAM, ROM)  
Access to on-chip memory takes place in two states. The data bus width is 16 bits, allowing access  
in byte or word size. Figure 2.9 shows the on-chip memory access cycle.  
Bus cycle  
T1 state  
T2 state  
ø or øSUB  
Internal address bus  
Address  
Internal read signal  
Internal data bus  
(read access)  
Read data  
Internal write signal  
Internal data bus  
(write access)  
Write data  
Figure 2.9 On-Chip Memory Access Cycle  
Rev. 4.0, 03/02, page 38 of 400  
2.6.2  
On-Chip Peripheral Modules  
On-chip peripheral modules are accessed in two states or three states. The data bus width is 8 bits  
or 16 bits depending on the register. For description on the data bus width and number of  
accessing states of each register, refer to section 19.1, Register Addresses. Registers with 16-bit  
data bus width can be accessed by word size only. Registers with 8-bit data bus width can be  
accessed by byte or word size. When a register with 8-bit data bus width is accessed by word size,  
access is completed in two cycles. In two-state access, the operation timing is the same as that for  
on-chip memory.  
Figure 2.10 shows the operation timing in the case of three-state access to an on-chip peripheral  
module.  
Bus cycle  
T1 state  
T2 state  
T3 state  
ø or øSUB  
Internal  
address bus  
Address  
Internal  
read signal  
Internal  
data bus  
Read data  
(read access)  
Internal  
write signal  
Internal  
data bus  
Write data  
(write access)  
Figure 2.10 On-Chip Peripheral Module Access Cycle (3-State Access)  
Rev. 4.0, 03/02, page 39 of 400  
2.7  
CPU States  
There are four CPU states: the reset state, program execution state, program halt state, and  
exception-handling state. The program execution state includes active mode and subactive mode.  
In the program halt state there are a sleep mode, standby mode, and sub-sleep mode. These states  
are shown in figure 2.11. Figure 2.12 shows the state transitions. For details on program execution  
state and program halt state, refer to section 6, Power-Down Modes. For details on exception  
processing, refer to section 3, Exception Handling.  
CPU state  
Reset state  
The CPU is initialized  
Program  
execution state  
Active  
(high speed) mode  
The CPU executes successive program  
instructions at high speed,  
synchronized by the system clock  
Subactive mode  
The CPU executes  
successive program  
instructions at reduced  
speed, synchronized  
by the subclock  
Power-down  
modes  
Sleep mode  
Standby mode  
Subsleep mode  
Program halt state  
A state in which some  
or all of the chip  
functions are stopped  
to conserve power  
Exception-  
handling state  
A transient state in which the CPU changes  
the processing flow due to a reset or an interrupt  
Figure 2.11 CPU Operation States  
Rev. 4.0, 03/02, page 40 of 400  
Reset cleared  
Reset occurs  
Reset state  
Exception-handling state  
Reset  
occurs  
Interrupt  
source  
Reset  
occurs  
Interrupt  
source  
Exception-  
handling  
complete  
Program halt state  
Program execution state  
SLEEP instruction executed  
Figure 2.12 State Transitions  
2.8  
Usage Notes  
2.8.1  
Notes on Data Access to Empty Areas  
The address space of this LSI includes empty areas in addition to the ROM, RAM, and on-chip  
I/O registers areas available to the user. When data is transferred from CPU to empty areas, the  
transferred data will be lost. This action may also cause the CPU to malfunction. When data is  
transferred from an empty area to CPU, the contents of the data cannot be guaranteed.  
2.8.2  
EEPMOV Instruction  
EEPMOV is a block-transfer instruction and transfers the byte size of data indicated by R4L,  
which starts from the address indicated by R5, to the address indicated by R6. Set R4L and R6 so  
that the end address of the destination address (value of R6 + R4L) does not exceed H'FFFF (the  
value of R6 must not change from H'FFFF to H'0000 during execution).  
2.8.3  
Bit Manipulation Instruction  
The BSET, BCLR, BNOT, BST, and BIST instructions read data from the specified address in  
byte units, manipulate the data of the target bit, and write data to the same address again in byte  
units. Special care is required when using these instructions in cases where two registers are  
assigned to the same address or when a bit is directly manipulated for a port, because this may  
rewrite data of a bit other than the bit to be manipulated.  
Bit manipulation for two registers assigned to the same address  
Example: Bit manipulation for the timer load register and timer counter  
(Applicable for timer B and timer C, not for the series of this LSI.)  
Rev. 4.0, 03/02, page 41 of 400  
Figure 2.13 shows an example of a timer in which two timer registers are assigned to the same  
address. When a bit manipulation instruction accesses the timer load register and timer counter of  
a reloadable timer, since these two registers share the same address, the following operations takes  
place.  
1. Data is read in byte units.  
2. The CPU sets or resets the bit to be manipulated with the bit manipulation instruction.  
3. The written data is written again in byte units to the timer load register.  
The timer is counting, so the value read is not necessarily the same as the value in the timer load  
register. As a result, bits other than the intended bit in the timer counter may be modified and the  
modified value may be written to the timer load register.  
Read  
Count clock  
Timer counter  
Reload  
Write  
Timer load register  
Internal bus  
Figure 2.13 Example of Timer Configuration with Two Registers Allocated to Same  
Address  
Example 2: The BSET instruction is executed for port 5.  
P57 and P56 are input pins, with a low-level signal input at P57 and a high-level signal input at  
P56. P55 to P50 are output pins and output low-level signals. An example to output a high-level  
signal at P50 with a BSET instruction is shown below.  
Rev. 4.0, 03/02, page 42 of 400  
Prior to executing BSET  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
PCR5  
PDR5  
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
BSET instruction executed  
BSET #0, @PDR5  
The BSET instruction is executed for port 5.  
After executing BSET  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
High  
level  
PCR5  
PDR5  
0
0
0
1
1
0
1
0
1
0
1
0
1
0
1
1
Description on operation  
When the BSET instruction is executed, first the CPU reads port 5.  
Since P57 and P56 are input pins, the CPU reads the pin states (low-level and high-level input).  
P55 to P50 are output pins, so the CPU reads the value in PDR5. In this example PDR5 has a  
value of H'80, but the value read by the CPU is H'40.  
Next, the CPU sets bit 0 of the read data to 1, changing the PDR5 data to H'41.  
Finally, the CPU writes H'41 to PDR5, completing execution of BSET.  
As a result of the BSET instruction, bit 0 in PDR5 becomes 1, and P50 outputs a high-level signal.  
However, bits 7 and 6 of PDR5 end up with different values. To prevent this problem, store a copy  
of the PDR5 data in a work area in memory. Perform the bit manipulation on the data in the work  
area, then write this data to PDR5.  
Rev. 4.0, 03/02, page 43 of 400  
Prior to executing BSET  
MOV.B  
MOV.B  
MOV.B  
#80, R0L  
R0L, @RAM0  
R0L, @PDR5  
The PDR5 value (H'80) is written to a work area in  
memory (RAM0) as well as to PDR5.  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
PCR5  
PDR5  
RAM0  
0
1
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
BSET instruction executed  
BSET  
#0,  
@RAM0  
The BSET instruction is executed designating the PDR5  
work area (RAM0).  
After executing BSET  
MOV.B  
MOV.B  
@RAM0, R0L  
R0L, @PDR5  
The work area (RAM0) value is written to PDR5.  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
High  
level  
PCR5  
PDR5  
RAM0  
0
1
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
Bit Manipulation in a Register Containing a Write-Only Bit  
Example 3: BCLR instruction executed designating port 5 control register PCR5  
P57 and P56 are input pins, with a low-level signal input at P57 and a high-level signal input at  
P56. P55 to P50 are output pins that output low-level signals. An example of setting the P50 pin as  
an input pin by the BCLR instruction is shown below. It is assumed that a high-level signal will be  
input to this input pin.  
Rev. 4.0, 03/02, page 44 of 400  
Prior to executing BCLR  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
PCR5  
PDR5  
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
BCLR instruction executed  
BCLR #0, @PCR5  
The BCLR instruction is executed for PCR5.  
After executing BCLR  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
High  
level  
PCR5  
PDR5  
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
Description on operation  
When the BCLR instruction is executed, first the CPU reads PCR5. Since PCR5 is a write-only  
register, the CPU reads a value of H'FF, even though the PCR5 value is actually H'3F.  
Next, the CPU clears bit 0 in the read data to 0, changing the data to H'FE.  
Finally, H'FE is written to PCR5 and BCLR instruction execution ends.  
As a result of this operation, bit 0 in PCR5 becomes 0, making P50 an input port. However, bits 7  
and 6 in PCR5 change to 1, so that P57 and P56 change from input pins to output pins. To prevent  
this problem, store a copy of the PDR5 data in a work area in memory and manipulate data of the  
bit in the work area, then write this data to PDR5.  
Rev. 4.0, 03/02, page 45 of 400  
Prior to executing BCLR  
MOV.B  
MOV.B  
MOV.B  
#3F, R0L  
R0L, @RAM0  
R0L, @PCR5  
The PCR5 value (H'3F) is written to a work area in  
memory (RAM0) as well as to PCR5.  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
PCR5  
PDR5  
RAM0  
0
1
0
0
0
0
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
BCLR instruction executed  
BCLR #0, @RAM0  
The BCLR instructions executed for the PCR5 work area  
(RAM0).  
After executing BCLR  
MOV.B  
MOV.B  
@RAM0, R0L  
R0L, @PCR5  
The work area (RAM0) value is written to PCR5.  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
High  
level  
PCR5  
PDR5  
RAM0  
0
1
0
0
0
0
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
0
0
Rev. 4.0, 03/02, page 46 of 400  
Section 3 Exception Handling  
Exception handling may be caused by a reset, a trap instruction (TRAPA), or interrupts.  
Reset  
A reset has the highest exception priority. Exception handling starts as soon as the reset is cleared  
by the RES pin. The chip is also reset when the watchdog timer overflows, and exception handling  
starts. Exception handling is the same as exception handling by the RES pin.  
Trap Instruction  
Exception handling starts when a trap instruction (TRAPA) is executed. The TRAPA instruction  
generates a vector address corresponding to a vector number from 0 to 3, as specified in the  
instruction code. Exception handling can be executed at all times in the program execution state.  
Interrupts  
External interrupts other than NMI and internal interrupts other than address break are masked by  
the I bit in CCR, and kept masked while the I bit is set to 1. Exception handling starts when the  
current instruction or exception handling ends, if an interrupt request has been issued.  
3.1  
Exception Sources and Vector Address  
Table 3.1 shows the vector addresses and priority of each exception handling. When more than  
one interrupt is requested, handling is performed from the interrupt with the highest priority.  
Rev. 4.0, 03/02, page 47 of 400  
Table 3.1 Exception Sources and Vector Address  
Vector  
Number Vector Address  
Relative Module Exception Sources  
Priority  
RES pin  
Watchdog timer  
Reset  
0
H'0000 to H'0001  
High  
Reserved for system use  
1 to 6  
7
H'0002 to H'000D  
H'000E to H'000F  
External interrupt NMI  
pin  
CPU  
Trap instruction (#0)  
8
H'0010 to H'0011  
H'0012 to H'0013  
H'0014 to H'0015  
H'0016 to H'0017  
H'0018 to H'0019  
H'001A to H'001B  
(#1)  
9
(#2)  
(#3)  
10  
11  
12  
Address break  
CPU  
Break conditions satisfied  
Direct transition by executing the 13  
SLEEP instruction  
External interrupt IRQ0  
14  
15  
16  
17  
18  
19  
20  
H'001C to H'001D  
H'001E to H'001F  
H'0020 to H'0021  
H'0022 to H'0023  
H'0024 to H'0025  
H'0026 to H'0027  
H'0028 to H'0029  
H'002A to H'002B  
pin  
IRQ1  
IRQ2  
IRQ3  
WKP  
Timer A  
Overflow  
Reserved for system use  
Timer W  
Input capture A/compare match A 21  
Input capture B/compare match B  
Input capture C/compare match C  
Input capture D/compare match D  
Timer W overflow  
Timer V  
SCI3  
Timer V compare match A  
Timer V compare match B  
Timer V overflow  
22  
H'002C to H'002D  
H'002E to H'002F  
SCI3 receive data full  
SCI3 transmit data empty  
SCI3 transmit end  
23  
SCI3 receive error  
IIC  
Data transfer end  
24  
25  
H'0030 to H'0031  
H'0032 to H'0033  
Address inequality  
Stop conditions detected  
A/D conversion end  
A/D converter  
Low  
Rev. 4.0, 03/02, page 48 of 400  
3.2  
Register Descriptions  
Interrupts are controlled by the following registers.  
Interrupt edge select register 1 (IEGR1)  
Interrupt edge select register 2 (IEGR2)  
Interrupt enable register 1 (IENR1)  
Interrupt flag register 1 (IRR1)  
Wakeup interrupt flag register (IWPR)  
3.2.1  
Interrupt Edge Select Register 1 (IEGR1)  
IEGR1 selects the direction of an edge that generates interrupt requests of pins NMI and IRQ3 to  
IRQ0.  
Bit Bit Name Initial Value R/W  
Description  
7
NMIEG  
0
R/W  
NMI Edge Select  
0: Falling edge of NMI pin input is detected  
1: Rising edge of NMI pin input is detected  
Reserved  
6
5
4
3
1
1
1
0
These bits are always read as 1.  
IEG3  
R/W  
IRQ3 Edge Select  
0: Falling edge of IRQ3 pin input is detected  
1: Rising edge of IRQ3 pin input is detected  
IRQ2 Edge Select  
2
1
0
IEG2  
IEG1  
IEG0  
0
0
0
R/W  
R/W  
R/W  
0: Falling edge of IRQ2 pin input is detected  
1: Rising edge of IRQ2 pin input is detected  
IRQ1 Edge Select  
0: Falling edge of IRQ1 pin input is detected  
1: Rising edge of IRQ1 pin input is detected  
IRQ0 Edge Select  
0: Falling edge of IRQ0 pin input is detected  
1: Rising edge of IRQ0 pin input is detected  
Rev. 4.0, 03/02, page 49 of 400  
3.2.2  
Interrupt Edge Select Register 2 (IEGR2)  
IEGR2 selects the direction of an edge that generates interrupt requests of the pins ADTRG and  
WKP5 to WKP0.  
Bit Bit Name Initial Value  
R/W  
Description  
7
6
5
1
1
0
Reserved  
These bits are always read as 1.  
WKP5 Edge Select  
WPEG5  
R/W  
0: Falling edge of WKP5 (ADTRG) pin input is detected  
1: Rising edge of WKP5 (ADTRG) pin input is detected  
WKP4 Edge Select  
4
3
2
1
0
WPEG4  
WPEG3  
WPEG2  
WPEG1  
WPEG0  
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
0: Falling edge of WKP4 pin input is detected  
1: Rising edge of WKP4 pin input is detected  
WKP3 Edge Select  
0: Falling edge of WKP3 pin input is detected  
1: Rising edge of WKP3 pin input is detected  
WKP2 Edge Select  
0: Falling edge of WKP2 pin input is detected  
1: Rising edge of WKP2 pin input is detected  
WKP1Edge Select  
0: Falling edge of WKP1 pin input is detected  
1: Rising edge of WKP1 pin input is detected  
WKP0 Edge Select  
0: Falling edge of WKP0 pin input is detected  
1: Rising edge of WKP0 pin input is detected  
Rev. 4.0, 03/02, page 50 of 400  
3.2.3  
Interrupt Enable Register 1 (IENR1)  
IENR1 enables direct transition interrupts, timer A overflow interrupts, and external pin interrupts.  
Bit Bit Name Initial Value  
R/W  
Description  
7
6
5
IENDT  
IENTA  
IENWP  
0
0
0
R/W  
Direct Transfer Interrupt Enable  
When this bit is set to 1, direct transition interrupt requests  
are enabled.  
R/W  
R/W  
Timer A Interrupt Enable  
When this bit is set to 1, timer A overflow interrupt  
requests are enabled.  
Wakeup Interrupt Enable  
This bit is an enable bit, which is common to the pins  
WKP5 to WKP0. When the bit is set to 1, interrupt  
requests are enabled.  
4
3
1
0
Reserved  
This bit is always read as 1.  
IRQ3 Interrupt Enable  
IEN3  
R/W  
When this bit is set to 1, interrupt requests of the IRQ3 pin  
are enabled.  
2
1
0
IEN2  
IEN1  
IEN0  
0
0
0
R/W  
R/W  
R/W  
IRQ2 Interrupt Enable  
When this bit is set to 1, interrupt requests of the IRQ2 pin  
are enabled.  
IRQ1 Interrupt Enable  
When this bit is set to 1, interrupt requests of the IRQ1 pin  
are enabled.  
IRQ0 Interrupt Enable  
When this bit is set to 1, interrupt requests of the IRQ0 pin  
are enabled.  
When disabling interrupts by clearing bits in an interrupt enable register, or when clearing bits in  
an interrupt flag register, always do so while interrupts are masked (I = 1). If the above clear  
operations are performed while I = 0, and as a result a conflict arises between the clear instruction  
and an interrupt request, exception handling for the interrupt will be executed after the clear  
instruction has been executed.  
Rev. 4.0, 03/02, page 51 of 400  
3.2.4  
Interrupt Flag Register 1 (IRR1)  
IRR1 is a status flag register for direct transition interrupts, timer A overflow interrupts, and IRQ3  
to IRQ0 interrupt requests.  
Bit Bit Name Initial Value  
R/W  
Description  
7
IRRDT  
0
R/W  
Direct Transfer Interrupt Request Flag  
[Setting condition]  
When a direct transfer is made by executing a SLEEP  
instruction while DTON in SYSCR2 is set to 1.  
[Clearing condition]  
When IRRDT is cleared by writing 0  
Timer A Interrupt Request Flag  
[Setting condition]  
6
IRRTA  
0
R/W  
When the timer A counter value overflows  
[Clearing condition]  
When IRRTA is cleared by writing 0  
Reserved  
5
4
3
IRRI3  
1
1
0
R/W  
These bits are always read as 1.  
IRQ3 Interrupt Request Flag  
[Setting condition]  
When IRQ3 pin is designated for interrupt input and the  
designated signal edge is detected.  
[Clearing condition]  
When IRRI3 is cleared by writing 0  
IRQ2 Interrupt Request Flag  
[Setting condition]  
2
1
0
IRRI2  
IRRI1  
IRRl0  
0
0
0
R/W  
R/W  
R/W  
When IRQ2 pin is designated for interrupt input and the  
designated signal edge is detected.  
[Clearing condition]  
When IRRI2 is cleared by writing 0  
IRQ1 Interrupt Request Flag  
[Setting condition]  
When IRQ1 pin is designated for interrupt input and the  
designated signal edge is detected.  
[Clearing condition]  
When IRRI1 is cleared by writing 0  
IRQ0 Interrupt Request Flag  
[Setting condition]  
When IRQ0 pin is designated for interrupt input and the  
designated signal edge is detected.  
[Clearing condition]  
When IRRI0 is cleared by writing 0  
Rev. 4.0, 03/02, page 52 of 400  
3.2.5  
Wakeup Interrupt Flag Register (IWPR)  
IWPR is a status flag register for WKP5 to WKP0 interrupt requests.  
Bit Bit Name Initial Value  
R/W  
Description  
7
6
5
1
1
0
Reserved  
These bits are always read as 1.  
WKP5 Interrupt Request Flag  
[Setting condition]  
IWPF5  
IWPF4  
IWPF3  
IWPF2  
IWPF1  
IWPF0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
When WKP5 pin is designated for interrupt input and the  
designated signal edge is detected.  
[Clearing condition]  
When IWPF5 is cleared by writing 0.  
WKP4 Interrupt Request Flag  
[Setting condition]  
4
3
2
1
0
0
0
0
0
0
When WKP4 pin is designated for interrupt input and the  
designated signal edge is detected.  
[Clearing condition]  
When IWPF4 is cleared by writing 0.  
WKP3 Interrupt Request Flag  
[Setting condition]  
When WKP3 pin is designated for interrupt input and the  
designated signal edge is detected.  
[Clearing condition]  
When IWPF3 is cleared by writing 0.  
WKP2 Interrupt Request Flag  
[Setting condition]  
When WKP2 pin is designated for interrupt input and the  
designated signal edge is detected.  
[Clearing condition]  
When IWPF2 is cleared by writing 0.  
WKP1 Interrupt Request Flag  
[Setting condition]  
When WKP1 pin is designated for interrupt input and the  
designated signal edge is detected.  
[Clearing condition]  
When IWPF1 is cleared by writing 0.  
WKP0 Interrupt Request Flag  
[Setting condition]  
When WKP0 pin is designated for interrupt input and the  
designated signal edge is detected.  
[Clearing condition]  
When IWPF0 is cleared by writing 0.  
Rev. 4.0, 03/02, page 53 of 400  
3.3  
Reset Exception Handling  
When the RES pin goes low, all processing halts and this LSI enters the reset. The internal state of  
the CPU and the registers of the on-chip peripheral modules are initialized by the reset. To ensure  
that this LSI is reset at power-up, hold the RES pin low until the clock pulse generator output  
stabilizes. To reset the chip during operation, hold the RES pin low for at least 10 system clock  
cycles. When the RES pin goes high after being held low for the necessary time, this LSI starts  
reset exception handling. The reset exception handling sequence is shown in figure 3.1.  
The reset exception handling sequence is as follows:  
1. Set the I bit in the condition code register (CCR) to 1.  
2. The CPU generates a reset exception handling vector address (from H'0000 to H'0001), the  
data in that address is sent to the program counter (PC) as the start address, and program  
execution starts from that address.  
3.4  
Interrupt Exception Handling  
3.4.1  
External Interrupts  
There are external interrupts, NMI, IRQ3 to IRQ0, and WKP5 to WKP0.  
NMI Interrupt  
NMI interrupt is requested by input signal edge to pin NMI. This interrupt is detected by either  
rising edge sensing or falling edge sensing, depending on the setting of bit NMIEG in IEGR1.  
NMI is the highest-priority interrupt, and can always be accepted without depending on the I  
bit value in CCR.  
IRQ3 to IRQ0 Interrupts  
IRQ3 to IRQ0 interrupts are requested by input signals to pins IRQ3 to IRQ0. These four  
interrupts are given different vector addresses, and are detected individually by either rising  
edge sensing or falling edge sensing, depending on the settings of bits IEG3 to IEG0 in  
IEGR1.  
When pins IRQ3 to IRQ0 are designated for interrupt input in PMR1 and the designated signal  
edge is input, the corresponding bit in IRR1 is set to 1, requesting the CPU of an interrupt.  
When IRQ3 to IRQ0 interrupt is accepted, the I bit is set to 1 in CCR. These interrupts can be  
masked by setting bits IEN3 to IEN0 in IENR1.  
Rev. 4.0, 03/02, page 54 of 400  
WKP5 to WKP0 Interrupts  
WKP5 to WKP0 interrupts are requested by input signals to pins WKP5 to WKP0. These six  
interrupts have the same vector addresses, and are detected individually by either rising edge  
sensing or falling edge sensing, depending on the settings of bits WPEG5 to WPEG0 in  
IEGR2.  
When pins WKP5 to WKP0 are designated for interrupt input in PMR5 and the designated  
signal edge is input, the corresponding bit in IWPR is set to 1, requesting the CPU of an  
interrupt. These interrupts can be masked by setting bit IENWP in IENR1.  
Reset cleared  
Initial program  
instruction prefetch  
Vector fetch Internal  
processing  
ø
Internal  
address bus  
(1)  
(2)  
Internal read  
signal  
Internal write  
signal  
Internal data  
bus (16 bits)  
(2)  
(3)  
(1) Reset exception handling vector address (H'0000)  
(2) Program start address  
(3) Initial program instruction  
Figure 3.1 Reset Sequence  
3.4.2  
Internal Interrupts  
Each on-chip peripheral module has a flag to show the interrupt request status and the enable bit to  
enable or disable the interrupt. For timer A interrupt requests and direct transfer interrupt requests  
generated by execution of a SLEEP instruction, this function is included in IRR1 and IENR1.  
When an on-chip peripheral module requests an interrupt, the corresponding interrupt request  
status flag is set to 1, requesting the CPU of an interrupt. When this interrupt is accepted, the I bit  
is set to 1 in CCR. These interrupts can be masked by writing 0 to clear the corresponding enable  
bit.  
Rev. 4.0, 03/02, page 55 of 400  
3.4.3  
Interrupt Handling Sequence  
Interrupts are controlled by an interrupt controller.  
Interrupt operation is described as follows.  
1. If an interrupt occurs while the NMI or interrupt enable bit is set to 1, an interrupt request  
signal is sent to the interrupt controller.  
2. When multiple interrupt requests are generated, the interrupt controller requests to the CPU for  
the interrupt handling with the highest priority at that time according to table 3.1. Other  
interrupt requests are held pending.  
3. The CPU accepts the NMI and address break without depending on the I bit value. Other  
interrupt requests are accepted, if the I bit is cleared to 0 in CCR; if the I bit is set to 1, the  
interrupt request is held pending.  
4. If the CPU accepts the interrupt after processing of the current instruction is completed,  
interrupt exception handling will begin. First, both PC and CCR are pushed onto the stack. The  
state of the stack at this time is shown in figure 3.2. The PC value pushed onto the stack is the  
address of the first instruction to be executed upon return from interrupt handling.  
5. Then, the I bit of CCR is set to 1, masking further interrupts excluding the NMI and address  
break. Upon return from interrupt handling, the values of I bit and other bits in CCR will be  
restored and returned to the values prior to the start of interrupt exception handling.  
6. Next, the CPU generates the vector address corresponding to the accepted interrupt, and  
transfers the address to PC as a start address of the interrupt handling-routine. Then a program  
starts executing from the address indicated in PC.  
Figure 3.3 shows a typical interrupt sequence where the program area is in the on-chip ROM and  
the stack area is in the on-chip RAM.  
Rev. 4.0, 03/02, page 56 of 400  
SP 4  
SP 3  
SP 2  
SP 1  
SP (R7)  
SP (R7)  
SP + 1  
SP + 2  
SP + 3  
SP + 4  
CCR  
CCR*3  
PCH  
PCL  
Even address  
Stack area  
Prior to start of interrupt  
exception handling  
After completion of interrupt  
exception handling  
PC and CCR  
saved to stack  
Legend:  
PC  
PC  
H
L
: Upper 8 bits of program counter (PC)  
Lower 8 bits of program counter (PC)  
:
CCR: Condition code register  
SP: Stack pointer  
1. PC shows the address of the first instruction to be executed upon return from the interrupt  
handling routine.  
Notes:  
2. Register contents must always be saved and restored by word length, starting from  
an even-numbered address.  
3. Ignored when returning from the interrupt handling routine.  
Figure 3.2 Stack Status after Exception Handling  
3.4.4  
Interrupt Response Time  
Table 3.2 shows the number of wait states after an interrupt request flag is set until the first  
instruction of the interrupt handling-routine is executed.  
Table 3.2 Interrupt Wait States  
Item  
States  
Total  
Waiting time for completion of executing instruction*  
Saving of PC and CCR to stack  
Vector fetch  
1 to 13  
15 to 27  
4
2
4
4
Instruction fetch  
Internal processing  
Note: * Not including EEPMOV instruction.  
Rev. 4.0, 03/02, page 57 of 400  
Figure 3.3 Interrupt Sequence  
Rev. 4.0, 03/02, page 58 of 400  
3.5  
Usage Notes  
3.5.1  
Interrupts after Reset  
If an interrupt is accepted after a reset and before the stack pointer (SP) is initialized, the PC and  
CCR will not be saved correctly, leading to a program crash. To prevent this, all interrupt requests,  
including NMI, are disabled immediately after a reset. Since the first instruction of a program is  
always executed immediately after the reset state ends, make sure that this instruction initializes  
the stack pointer (example: MOV.W #xx: 16, SP).  
3.5.2  
Notes on Stack Area Use  
When word data is accessed the least significant bit of the address is regarded as 0. Access to the  
stack always takes place in word size, so the stack pointer (SP: R7) should never indicate an odd  
address. Use PUSH Rn (MOV.W Rn, @–SP) or POP Rn (MOV.W @SP+, Rn) to save or restore  
register values.  
3.5.3  
Notes on Rewriting Port Mode Registers  
When a port mode register is rewritten to switch the functions of external interrupt pins, IRQ3 to  
IRQ0, and WKP5 to WKP0, the interrupt request flag may be set to 1.  
Figure 3.4 shows a port mode register setting and interrupt request flag clearing procedure.  
When switching a pin function, mask the interrupt before setting the bit in the port mode register.  
After accessing the port mode register, execute at least one instruction (e.g., NOP), then clear the  
interrupt request flag from 1 to 0.  
Interrupts masked. (Another possibility  
is to disable the relevant interrupt in  
interrupt enable register 1.)  
CCR I bit  
1
Set port mode register bit  
After setting the port mode register bit,  
first execute at least one instruction  
(e.g., NOP), then clear the interrupt  
request flag to 0  
Execute NOP instruction  
Clear interrupt request flag to 0  
Interrupt mask cleared  
CCR I bit  
0
Figure 3.4 Port Mode Register Setting and Interrupt Request Flag Clearing Procedure  
Rev. 4.0, 03/02, page 59 of 400  
Rev. 4.0, 03/02, page 60 of 400  
Section 4 Address Break  
The address break simplifies on-board program debugging. It requests an address break interrupt  
when the set break condition is satisfied. The interrupt request is not affected by the I bit of CCR.  
Break conditions that can be set include instruction execution at a specific address and a  
combination of access and data at a specific address. With the address break function, the  
execution start point of a program containing a bug is detected and execution is branched to the  
correcting program. Figure 4.1 shows a block diagram of the address break.  
Internal address bus  
Comparator  
BARH  
BARL  
ABRKCR  
ABRKSR  
Interrupt  
generation  
control circuit  
BDRH  
BDRL  
Comparator  
Interrupt  
Legend:  
BARH, BARL: Break address register  
BDRH, BDRL: Break data register  
ABRKCR:  
ABRKSR:  
Address break control register  
Address break status register  
Figure 4.1 Block Diagram of Address Break  
4.1  
Register Descriptions  
Address break has the following registers.  
Address break control register (ABRKCR)  
Address break status register (ABRKSR)  
Break address register (BARH, BARL)  
Break data register (BDRH, BDRL)  
Rev. 4.0, 03/02, page 61 of 400  
ABK0000A_000020020300  
4.1.1  
ABRKCR sets address break conditions.  
Bit Bit Name Initial Value  
Address Break Control Register (ABRKCR)  
R/W Description  
R/W RTE Interrupt Enable  
When this bit is 0, the interrupt immediately after  
7
RTINTE  
1
executing RTE is masked and then one instruction must  
be executed. When this bit is 1, the interrupt is not  
masked.  
6
5
CSEL1  
CSEL0  
0
0
R/W Condition Select 1 and 0  
R/W These bits set address break conditions.  
00: Instruction execution cycle  
01: CPU data read cycle  
10: CPU data write cycle  
11: CPU data read/write cycle  
4
3
2
ACMP2  
ACMP1  
ACMP0  
0
0
0
R/W Address Compare Condition Select 2 to 0  
R/W These bits comparison condition between the address set  
in BAR and the internal address bus.  
R/W  
000: Compares 16-bit addresses  
001: Compares upper 12-bit addresses  
010: Compares upper 8-bit addresses  
011: Compares upper 4-bit addresses  
1XX: Reserved (setting prohibited)  
1
0
DCMP1  
DCMP0  
0
0
R/W Data Compare Condition Select 1 and 0  
R/W These bits set the comparison condition between the data  
set in BDR and the internal data bus.  
00: No data comparison  
01: Compares lower 8-bit data between BDRL and data  
bus  
10: Compares upper 8-bit data between BDRH and data  
bus  
11: Compares 16-bit data between BDR and data bus  
Legend: X: Don't care.  
When an address break is set in the data read cycle or data write cycle, the data bus used will  
depend on the combination of the byte/word access and address. Table 4.1 shows the access and  
data bus used. When an I/O register space with an 8-bit data bus width is accessed in word size, a  
byte access is generated twice. For details on data widths of each register, see section 19.1,  
Register Addresses.  
Rev. 4.0, 03/02, page 62 of 400  
Table 4.1 Access and Data Bus Used  
Word Access  
Even Address Odd Address Even Address Odd Address  
Byte Access  
ROM space  
RAM space  
Upper 8 bits  
Upper 8 bits  
Lower 8 bits  
Lower 8 bits  
Upper 8 bits  
Upper 8 bits  
Upper 8 bits  
Upper 8 bits  
Upper 8 bits  
Upper 8 bits  
Upper 8 bits  
I/O register with 8-bit data bus Upper 8 bits  
width  
I/O register with 16-bit data  
bus width  
Upper 8 bits  
Lower 8 bits  
4.1.2  
Address Break Status Register (ABRKSR)  
ABRKSR consists of the address break interrupt flag and the address break interrupt enable bit.  
Bit  
Bit Name Initial Value R/W Description  
7
ABIF  
0
R/W Address Break Interrupt Flag  
[Setting condition]  
When the condition set in ABRKCR is satisfied  
[Clearing condition]  
When 0 is written after ABIF=1 is read  
R/W Address Break Interrupt Enable  
6
ABIE  
0
When this bit is 1, an address break interrupt request is  
enabled.  
5 to 0 —  
All 1  
Reserved  
These bits are always read as 1.  
4.1.3  
Break Address Registers (BARH, BARL)  
BARH and BARL are 16-bit read/write registers that set the address for generating an address  
break interrupt. When setting the address break condition to the instruction execution cycle, set  
the first byte address of the instruction. The initial value of this register is H'FFFF.  
4.1.4  
Break Data Registers (BDRH, BDRL)  
BDRH and BDRL are 16-bit read/write registers that set the data for generating an address break  
interrupt. BDRH is compared with the upper 8-bit data bus. BDRL is compared with the lower 8-  
bit data bus. When memory or registers are accessed by byte, the upper 8-bit data bus is used for  
even and odd addresses in the data transmission. Therefore, comparison data must be set in  
BDRH for byte access. For word access, the data bus used depends on the address. See section  
Rev. 4.0, 03/02, page 63 of 400  
4.1.1, Address Break Control Register (ABRKCR), for details. The initial value of this register is  
undefined.  
4.2  
Operation  
When the ABIF and ABIE bits in ABRKSR are set to 1, the address break function generates an  
interrupt request to the CPU. The ABIF bit in ABRKSR is set to 1 by the combination of the  
address set in BAR, the data set in BDR, and the conditions set in ABRKCR. When the interrupt  
request is accepted, interrupt exception handling starts after the instruction being executed ends.  
The address break interrupt is not masked because of the I bit in CCR of the CPU.  
Figures 4.2 show the operation examples of the address break interrupt setting.  
When the address break is specified in instruction execution cycle  
Register setting  
• ABRKCR = H'80  
• BAR = H'025A  
Program  
0258 NOP  
* 025A NOP  
025C MOV.W @H'025A,R0  
0260 NOP  
Underline indicates the address  
to be stacked.  
0262 NOP  
:
:
NOP  
NOP  
MOV  
MOV  
instruc- instruc- instruc- instruc-  
tion  
tion  
tion 1  
tion 2  
Internal  
prefetch prefetch prefetch prefetch processing  
Stack save  
φ
Address  
bus  
0258  
025A  
025C  
025E  
SP-2  
SP-4  
Interrupt  
request  
Interrupt acceptance  
Figure 4.2 Address Break Interrupt Operation Example (1)  
Rev. 4.0, 03/02, page 64 of 400  
When the address break is specified in the data read cycle  
Register setting  
ABRKCR = H'A0  
BAR = H'025A  
Program  
0258 NOP  
025A NOP  
* 025C MOV.W @H'025A,R0  
0260 NOP  
0262 NOP  
Underline indicates the address  
to be stacked.  
:
:
MOV  
MOV  
NOP  
MOV  
NOP  
Next  
instruc- instruc- instruc- instruc- instruc- instru-  
tion 1  
tion 2  
tion  
tion  
tion  
ction  
Internal Stack  
prefetch prefetch prefetch execution prefetch prefetch processing save  
φ
Address  
bus  
025C  
025E  
0260  
025A  
0262  
0264  
SP-2  
Interrupt  
request  
Interrupt acceptance  
Figure 4.2 Address Break Interrupt Operation Example (2)  
4.3  
Usage Notes  
When an address break is set to an instruction after a conditional branch instruction, and the  
instruction set when the condition of the branch instruction is not satisfied is executed (see figure  
4.3), note that an address break interrupt request is not generated. Therefore an address break must  
not be set to the instruction after a conditional branch instruction.  
[Register setting]  
[Program]  
ABRKCR=H'80  
BAR=H'0136  
012A MOV.B . . .  
:
:
0134 BNE  
*0136 NOP  
0138 NOP  
:
:
BNE  
NOP  
MOV  
NOP  
instruction instruction instruction instruction  
prefetch prefetch prefetch prefetch  
0134  
0136  
102A  
0138  
Adress bus  
Adress break  
interrupt request  
Figure 4.3 Operation when Condition is not Satisfied in Branch Instruction  
Rev. 4.0, 03/02, page 65 of 400  
When another interrupt request is accepted before an instruction to which an address break is set is  
executed, exception handling of an address break interrupt is not executed. However, the ABIF bit  
is set to 1 (see figure 4.4). Therefore the ABIF bit must be read during exception handling of an  
address break interrupt.  
[Register setting]  
[Program]  
ABRKCR=H'80  
BAR=H'0144  
001C 0900  
:
:
0142 MOV.B #H'23,R1H  
0144 MOV.B #H'45,R1H  
0146 MOV.B #H'67,R1H  
External interrupt  
Underlined indicates the addoress to be stacked.  
*
MOV  
MOV  
MOV  
instruction instruction instruction  
prefetch prefetch prefetch  
Internal  
processing  
Internal  
processing  
External interrupt  
acceptance  
Vector  
fetch  
Stack save  
0900  
001C  
0142  
0144  
0146  
SP-2  
SP-4  
Adress bus  
Adress break  
interrupt request  
ABIF  
External interrupt acceptance  
Figure 4.4 Operation when Another Interrupt is Accepted at Address Break Setting  
Instruction  
Rev. 4.0, 03/02, page 66 of 400  
Section 5 Clock Pulse Generators  
Clock oscillator circuitry (CPG: clock pulse generator) is provided on-chip, including both a  
system clock pulse generator and a subclock pulse generator. The system clock pulse generator  
consists of a system clock oscillator, a duty correction circuit, and system clock dividers. The  
subclock pulse generator consists of a subclock oscillator circuit and a subclock divider.  
Figure 5.1 shows a block diagram of the clock pulse generators.  
øOSC  
øOSC/8  
ø
System  
clock  
divider  
System  
clock  
oscillator  
Duty  
correction  
circuit  
OSC1  
OSC2  
øOSC  
(fOSC  
øOSC  
(fOSC  
øOSC/16  
øOSC/32  
øOSC/64  
)
)
ø/2  
Prescaler S  
(13 bits)  
to  
ø/8192  
System clock pulse generator  
ø
W/2  
W/4  
Subclock  
oscillator  
X1  
X2  
øW  
ø
Subclock  
divider  
øSUB  
(fW  
)
øW/8  
ø
W/8  
Prescaler W  
(5 bits)  
to  
øW/128  
Subclock pulse generator  
Figure 5.1 Block Diagram of Clock Pulse Generators  
The basic clock signals that drive the CPU and on-chip peripheral modules are ø and øSUB. The  
system clock is divided by prescaler S to become a clock signal from ø/8192 to ø/2, and the  
subclock is divided by prescaler W to become a clock signal from øw/128 to øw/8. Both the  
system clock and subclock signals are provided to the on-chip peripheral modules.  
Rev. 4.0, 03/02, page 67 of 400  
CPG0200A_000020020300  
5.1  
System Clock Generator  
Clock pulses can be supplied to the system clock divider either by connecting a crystal or ceramic  
resonator, or by providing external clock input. Figure 5.2 shows a block diagram of the system  
clock generator.  
OSC2  
LPM  
OSC1  
LPM: Low-power mode (standby mode, subactive mode, subsleep mode)  
Figure 5.2 Block Diagram of System Clock Generator  
5.1.1  
Connecting Crystal Resonator  
Figure 5.3 shows a typical method of connecting a crystal resonator. An AT-cut parallel-resonance  
crystal resonator should be used. Figure 5.4 shows the equivalent circuit of a crystal resonator. A  
resonator having the characteristics given in table 5.1 should be used.  
C1  
OSC1  
C2  
OSC2  
C1 = C2 = 12 pF 2ꢀ0  
Figure 5.3 Typical Connection to Crystal Resonator  
LS  
RS  
CS  
OSC1  
OSC2  
Cꢀ  
Figure 5.4 Equivalent Circuit of Crystal Resonator  
Rev. 4.0, 03/02, page 68 of 400  
Table 5.1 Crystal Resonator Parameters  
Frequency (MHz)  
RS (max)  
2
4
8
10  
16  
500  
7 pF  
120 Ω  
7 pF  
80 Ω  
7 pF  
60 Ω  
7 pF  
50 Ω  
7 pF  
C0 (max)  
5.1.2  
Connecting Ceramic Resonator  
Figure 5.5 shows a typical method of connecting a ceramic resonator.  
C1  
OSC1  
C2  
OSC2  
C1 = 3ꢀ pF 1ꢀ0  
C2 = 3ꢀ pF 1ꢀ0  
Figure 5.5 Typical Connection to Ceramic Resonator  
External Clock Input Method  
5.1.3  
Connect an external clock signal to pin OSC1, and leave pin OSC2 open. Figure 5.6 shows a typical  
connection. The duty cycle of the external clock signal must be 45 to 55%.  
OSC1  
OSC 2  
External clock input  
Open  
Figure 5.6 Example of External Clock Input  
Rev. 4.0, 03/02, page 69 of 400  
5.2  
Subclock Generator  
Figure 5.7 shows a block diagram of the subclock generator.  
x
2
8M  
x
1
Note : Capacitance is a reference value.  
Figure 5.7 Block Diagram of Subclock Generator  
5.2.1  
Connecting 32.768-kHz Crystal Resonator  
Clock pulses can be supplied to the subclock divider by connecting a 32.768-kHz crystal  
resonator, as shown in figure 5.8. Figure 5.9 shows the equivalent circuit of the 32.768-kHz  
crystal resonator.  
C1  
X1  
C2  
X2  
C1 = C2 = 15 pF (typ.)  
Figure 5.8 Typical Connection to 32.768-kHz Crystal Resonator  
LS  
CS  
RS  
X1  
X2  
CO  
CO = 1.5 pF (typ.)  
R
S = 14 k(typ.)  
f
W = 32.768 kHz  
Note: Constants are reference values.  
Figure 5.9 Equivalent Circuit of 32.768-kHz Crystal Resonator  
Rev. 4.0, 03/02, page 70 of 400  
5.2.2  
Pin Connection when Not Using Subclock  
When the subclock is not used, connect pin X1 to VCL or VSS and leave pin X2 open, as shown in  
figure 5.10.  
VCL or VSS  
X1  
X2  
Open  
Figure 5.10 Pin Connection when not Using Subclock  
5.3  
Prescalers  
5.3.1  
Prescaler S  
Prescaler S is a 13-bit counter using the system clock (ø) as its input clock. It is incremented once  
per clock period. Prescaler S is initialized to H'0000 by a reset, and starts counting on exit from  
the reset state. In standby mode, subactive mode, and subsleep mode, the system clock pulse  
generator stops. Prescaler S also stops and is initialized to H'0000. The CPU cannot read or write  
prescaler S. The output from prescaler S is shared by the on-chip peripheral modules. The divider  
ratio can be set separately for each on-chip peripheral function. In active mode and sleep mode,  
the clock input to prescaler S is determined by the division factor designated by MA2 to MA0 in  
SYSCR2.  
5.3.2  
Prescaler W  
Prescaler W is a 5-bit counter using a 32.768 kHz signal divided by 4 (øW/4) as its input clock. The  
divided output is used for clock time base operation of timer A. Prescaler W is initialized to H'00  
by a reset, and starts counting on exit from the reset state. Even in standby mode, subactive mode,  
or subsleep mode, prescaler W continues functioning so long as clock signals are supplied to pins  
X1 and X2. Prescaler W can be reset by setting 1s in bits TMA3 and TMA2 of timer mode register  
A (TMA).  
5.4  
Usage Notes  
5.4.1  
Note on Resonators  
Resonator characteristics are closely related to board design and should be carefully evaluated by  
the user, referring to the examples shown in this section. Resonator circuit constants will differ  
Rev. 4.0, 03/02, page 71 of 400  
depending on the resonator element, stray capacitance in its interconnecting circuit, and other  
factors. Suitable constants should be determined in consultation with the resonator element  
manufacturer. Design the circuit so that the resonator element never receives voltages exceeding  
its maximum rating.  
Rev. 4.0, 03/02, page 72 of 400  
5.4.2  
Notes on Board Design  
When using a crystal resonator (ceramic resonator), place the resonator and its load capacitors as  
close as possible to the OSC1 and OSC2 pins. Other signal lines should be routed away from the  
resonator circuit to prevent induction from interfering with correct oscillation (see figure 5.11).  
Avoid  
Signal A Signal B  
C1  
C2  
OSC1  
OSC2  
Figure 5.11 Example of Incorrect Board Design  
Rev. 4.0, 03/02, page 73 of 400  
Rev. 4.0, 03/02, page 74 of 400  
Section 6 Power-Down Modes  
This LSI has six modes of operation after a reset. These include a normal active mode and four  
power-down modes, in which power consumption is significantly reduced. Module standby mode  
reduces power consumption by selectively halting on-chip module functions.  
Active mode  
The CPU and all on-chip peripheral modules are operable on the system clock. The system  
clock frequency can be selected from øosc, øosc/8, øosc/16, øosc/32, and øosc/64.  
Subactive mode  
The CPU and all on-chip peripheral modules are operable on the subclock. The subclock  
frequency can be selected from øw/2, øw/4, and øw/8.  
Sleep mode  
The CPU halts. On-chip peripheral modules are operable on the system clock.  
Subsleep mode  
The CPU halts. On-chip peripheral modules are operable on the subclock.  
Standby mode  
The CPU and all on-chip peripheral modules halt. When the clock time-base function is  
selected, timer A is operable.  
Module standby mode  
Independent of the above modes, power consumption can be reduced by halting on-chip  
peripheral modules that are not used in module units.  
Rev. 4.0, 03/02, page 75 of 400  
LPW3000A_000020020300  
6.1  
Register Descriptions  
The registers related to power-down modes are listed below.  
System control register 1 (SYSCR1)  
System control register 2 (SYSCR2)  
Module standby control register 1 (MSTCR1)  
6.1.1  
System Control Register 1 (SYSCR1)  
SYSCR1 controls the power-down modes, as well as SYSCR2.  
Rev. 4.0, 03/02, page 76 of 400  
Bit Bit Name Initial Value  
R/W Description  
7
SSBY  
0
R/W Software Standby  
This bit selects the mode to transit after the execution of  
the SLEEP instruction.  
0: a transition is made to sleep mode or subsleep mode.  
1: a transition is made to standby mode.  
For details, see table 6.2.  
6
5
4
STS2  
STS1  
STS0  
0
0
0
R/W Standby Timer Select 2 to 0  
R/W These bits designate the time the CPU and peripheral  
modules wait for stable clock operation after exiting from  
R/W  
standby mode, subactive mode, or subsleep mode to  
active mode or sleep mode due to an interrupt. The  
designation should be made according to the clock  
frequency so that the waiting time is at least 6.5 ms. The  
relationship between the specified value and the number  
of wait states is shown in table 6.1. When an external  
clock is to be used, the minimum value (STS2 = STS1 =  
STS0 = 1) is recommended.  
3
NESEL  
0
R/W Noise Elimination Sampling Frequency Select  
The subclock pulse generator generates the watch clock  
signal (φW) and the system clock pulse generator  
generates the oscillator clock (φOSC). This bit selects the  
sampling frequency of the oscillator clock when the watch  
clock signal (φW) is sampled. When φOSC = 2 to 10 MHz,  
clear NESEL to 0.  
0: Sampling rate is φOSC/16  
1: Sampling rate is φOSC/4  
2
1
0
0
0
0
Reserved  
These bits are always read as 0.  
Rev. 4.0, 03/02, page 77 of 400  
Table 6.1 Operating Frequency and Waiting Time  
STS2 STS1 STS0 Waiting Time  
16 MHz 10 MHz 8 MHz  
4 MHz  
2.0  
2 MHz  
4.1  
1 MHz 0.5 MHz  
0
0
1
0
1
0
1
0
1
0
1
0
1
8,192 states  
16,384 states  
32,768 states  
65,536 states  
131,072 states  
1,024 states  
128 states  
0.5  
0.8  
1.0  
8.1  
16.4  
32.8  
65.5  
131.1  
262.1  
2.05  
0.26  
0.03  
1.0  
1.6  
2.0  
4.1  
8.2  
16.4  
32.8  
65.5  
131.1  
1.02  
0.13  
0.02  
2.0  
3.3  
4.1  
8.2  
16.4  
32.8  
65.5  
0.51  
0.06  
0.01  
4.1  
6.6  
8.2  
16.4  
32.8  
0.26  
0.03  
0.00  
1
8.2  
13.1  
0.10  
0.01  
0.00  
16.4  
0.13  
0.02  
0.00  
0.06  
0.00  
0.00  
16 states  
Note: Time unit is ms.  
Rev. 4.0, 03/02, page 78 of 400  
6.1.2  
System Control Register 2 (SYSCR2)  
SYSCR2 controls the power-down modes, as well as SYSCR1.  
Bit Bit Name Initial Value  
R/W Description  
7
6
5
SMSEL  
LSON  
DTON  
0
0
0
R/W Sleep Mode Selection  
R/W Low Speed on Flag  
R/W Direct Transfer on Flag  
These bits select the mode to transit after the execution of  
a SLEEP instruction, as well as bit SSBY of SYSCR1.  
For details, see table 6.2.  
4
3
2
MA2  
MA1  
MA0  
0
0
0
R/W Active Mode Clock Select 2 to 0  
R/W These bits select the operating clock frequency in active  
and sleep modes. The operating clock frequency changes  
to the set frequency after the SLEEP instruction is  
executed.  
R/W  
0XX: φOSC  
100: φOSC/8  
101: φOSC/16  
110: φOSC/32  
111: φOSC/64  
1
0
SA1  
SA0  
0
0
R/W Subactive Mode Clock Select 1 and 0  
R/W These bits select the operating clock frequency in  
subactive and subsleep modes. The operating clock  
frequency changes to the set frequency after the SLEEP  
instruction is executed.  
00: φW/8  
01: φW/4  
1X: φW/2  
Legend X: Don't care.  
Rev. 4.0, 03/02, page 79 of 400  
6.1.3  
MSTCR1 allows the on-chip peripheral modules to enter a standby state in module units.  
Bit Bit Name Initial Value R/W Description  
Module Standby Control Register 1 (MSTCR1)  
7
6
5
4
0
0
0
0
Reserved  
This bit is always read as 0.  
MSTIIC  
MSTS3  
MSTAD  
R/W IIC Module Standby  
IIC enters standby mode when this bit is set to 1  
R/W SCI3 Module Standby  
SCI3 enters standby mode when this bit is set to 1  
R/W A/D Converter Module Standby  
A/D converter enters standby mode when this bit is set to  
1
3
MSTWD  
0
R/W Watchdog Timer Module Standby  
Watchdog timer enters standby mode when this bit is set  
to 1.When the internal oscillator is selected for the  
watchdog timer clock, the watchdog timer operates  
regardless of the setting of this bit  
2
1
0
MSTTW  
MSTTV  
MSTTA  
0
0
0
R/W Timer W Module Standby  
Timer W enters standby mode when this bit is set to 1  
R/W Timer V Module Standby  
Timer V enters standby mode when this bit is set to 1  
R/W Timer A Module Standby  
Timer A enters standby mode when this bit is set to 1  
Rev. 4.0, 03/02, page 80 of 400  
6.2  
Mode Transitions and States of LSI  
Figure 6.1 shows the possible transitions among these operating modes. A transition is made from  
the program execution state to the program halt state of the program by executing a SLEEP  
instruction. Interrupts allow for returning from the program halt state to the program execution  
state of the program. A direct transition between active mode and subactive mode, which are both  
program execution states, can be made without halting the program. The operating frequency can  
also be changed in the same modes by making a transition directly from active mode to active  
mode, and from subactive mode to subactive mode. RES input enables transitions from a mode to  
the reset state. Table 6.2 shows the transition conditions of each mode after the SLEEP instruction  
is executed and a mode to return by an interrupt. Table 6.3 shows the internal states of the LSI in  
each mode.  
Reset state  
Program halt state  
Standby mode  
Program execution state  
Active mode  
Program halt state  
Sleep mode  
Direct transition  
interrupt  
SLEEP  
instruction  
SLEEP  
instruction  
Interrupt  
Interrupt  
SLEEP  
instruction  
Direct  
transition  
interrupt  
Direct  
transition  
interrupt  
Interrupt  
SLEEP  
instruction  
SLEEP  
instruction  
Interrupt  
SLEEP  
instruction  
Subactive  
mode  
Subsleep mode  
Interrupt  
Direct transition  
interrupt  
Notes: 1. To make a transition to another mode by an interrupt, make sure interrupt handling is after the interrupt  
is accepted.  
2. Details on the mode transition conditions are given in table 6.2.  
Figure 6.1 Mode Transition Diagram  
Rev. 4.0, 03/02, page 81 of 400  
Table 6.2 Transition Mode after SLEEP Instruction Execution and Interrupt Handling  
Transition Mode after  
SLEEP Instruction  
Execution  
Transition Mode due to  
Interrupt  
DTON  
SSBY  
SMSEL  
LSON  
0
0
0
0
1
0
1
X
0
Sleep mode  
Active mode  
Subactive mode  
Active mode  
Subactive mode  
Active mode  
1
Subsleep mode  
Standby mode  
1
X
1
X
0*  
Active mode (direct  
transition)  
X
X
1
Subactive mode (direct  
transition)  
Legend: X : Don’t care.  
*
When a state transition is performed while SMSEL is 1, timer V, SCI3, and the A/D  
converter are reset, and all registers are set to their initial values. To use these  
functions after entering active mode, reset the registers.  
Rev. 4.0, 03/02, page 82 of 400  
Table 6.3 Internal State in Each Operating Mode  
Subactive  
Mode  
Subsleep  
Mode  
Function  
Active Mode  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Sleep Mode  
Functioning  
Functioning  
Halted  
Standby Mode  
Halted  
System clock oscillator  
Subclock oscillator  
Halted  
Halted  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Halted  
Functioning  
Halted  
CPU  
operations  
Instructions  
Registers  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
RAM  
IO ports  
Register  
contents are  
retained, but  
output is the  
high-impedance  
state.  
External  
interrupts  
IRQ3 to IRQ0 Functioning  
WKP5 to WKP0 Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Peripheral Timer A  
functions  
Functioning  
Functioning if the timekeeping time-base  
function is selected, and retained if not selected  
Timer V  
Timer W  
Functioning  
Functioning  
Functioning  
Functioning  
Reset  
Reset  
Reset  
Retained (if internal clock φ is Retained  
selected as a count clock, the  
counter is incremented by a  
subclock*)  
Watchdog timer Functioning  
Functioning  
Retained (functioning if the internal oscillator is  
selected as a count clock*)  
SCI3  
IIC  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Reset  
Reset  
Reset  
Retained*  
Reset  
Retained  
Reset  
Retained  
Reset  
A/D converter Functioning  
Note: * Registers can be read or written in subactive mode.  
6.2.1  
Sleep Mode  
In sleep mode, CPU operation is halted but the on-chip peripheral modules function at the clock  
frequency set by the MA2, MA1, and MA0 bits in SYSCR2. CPU register contents are retained.  
When an interrupt is requested, sleep mode is cleared and interrupt exception handling starts.  
Sleep mode is not cleared if the I bit of the condition code register (CCR) is set to 1 or the  
requested interrupt is disabled in the interrupt enable register. After sleep mode is cleared, a  
transition is made to active mode when the LSON bit in SYSCR2 is 0, and a transition is made to  
subactive mode when the bit is 1.  
When the RES pin goes low, the CPU goes into the reset state and sleep mode is cleared.  
Rev. 4.0, 03/02, page 83 of 400  
6.2.2  
Standby Mode  
In standby mode, the clock pulse generator stops, so the CPU and on-chip peripheral modules stop  
functioning. However, as long as the rated voltage is supplied, the contents of CPU registers, on-  
chip RAM, and some on-chip peripheral module registers are retained. On-chip RAM contents  
will be retained as long as the voltage set by the RAM data retention voltage is provided. The I/O  
ports go to the high-impedance state.  
Standby mode is cleared by an interrupt. When an interrupt is requested, the system clock pulse  
generator starts. After the time set in bits STS2–STS0 in SYSCR1 has elapsed, and interrupt  
exception handling starts. Standby mode is not cleared if the I bit of CCR is set to 1 or the  
requested interrupt is disabled in the interrupt enable register.  
When the RES pin goes low, the system clock pulse generator starts. Since system clock signals  
are supplied to the entire chip as soon as the system clock pulse generator starts functioning, the  
RES pin must be kept low until the pulse generator output stabilizes. After the pulse generator  
output has stabilized, the CPU starts reset exception handling if the RES pin is driven high.  
6.2.3  
Subsleep Mode  
In subsleep mode, operation of the CPU and on-chip peripheral modules other than timer A is  
halted. As long as a required voltage is applied, the contents of CPU registers, the on-chip RAM,  
and some registers of the on-chip peripheral modules are retained. I/O ports keep the same states  
as before the transition.  
Subsleep mode is cleared by an interrupt. When an interrupt is requested, subsleep mode is cleared  
and interrupt exception handling starts. Subsleep mode is not cleared if the I bit of CCR is set to 1  
or the requested interrupt is disabled in the interrupt enable register. After subsleep mode is  
cleared, a transition is made to active mode when the LSON bit in SYSCR2 is 0, and a transition is  
made to subactive mode when the bit is 1.  
When the RES pin goes low, the system clock pulse generator starts. Since system clock signals  
are supplied to the entire chip as soon as the system clock pulse generator starts functioning, the  
RES pin must be kept low until the pulse generator output stabilizes. After the pulse generator  
output has stabilized, the CPU starts reset exception handling if the RES pin is driven high.  
Rev. 4.0, 03/02, page 84 of 400  
6.2.4  
Subactive Mode  
The operating frequency of subactive mode is selected from øW/2, øW/4, and øW/8 by the SA1 and  
SA0 bits in SYSCR2. After the SLEEP instruction is executed, the operating frequency changes to  
the frequency which is set before the execution. When the SLEEP instruction is executed in  
subactive mode, a transition to sleep mode, subsleep mode, standby mode, active mode, or  
subactive mode is made, depending on the combination of SYSCR1 and SYSCR2. When the RES  
pin goes low, the system clock pulse generator starts. Since system clock signals are supplied to  
the entire chip as soon as the system clock pulse generator starts functioning, the RES pin must be  
kept low until the pulse generator output stabilizes. After the pulse generator output has stabilized,  
the CPU starts reset exception handling if the RES pin is driven high.  
6.3  
Operating Frequency in Active Mode  
Operation in active mode is clocked at the frequency designated by the MA2, MA1, and MA0 bits  
in SYSCR2. The operating frequency changes to the set frequency after SLEEP instruction  
execution.  
6.4  
Direct Transition  
The CPU can execute programs in two modes: active and subactive mode. A direct transition is a  
transition between these two modes without stopping program execution. A direct transition can  
be made by executing a SLEEP instruction while the DTON bit in SYSCR2 is set to 1. The direct  
transition also enables operating frequency modification in active or subactive mode. After the  
mode transition, direct transition interrupt exception handling starts.  
If the direct transition interrupt is disabled in interrupt enable register 1, a transition is made  
instead to sleep or subsleep mode. Note that if a direct transition is attempted while the I bit in  
CCR is set to 1, sleep or subsleep mode will be entered, and the resulting mode cannot be cleared  
by means of an interrupt.  
6.4.1  
Direct Transition from Active Mode to Subactive Mode  
The time from the start of SLEEP instruction execution to the end of interrupt exception handling  
(the direct transition time) is calculated by equation (1).  
Direct transition time = {(number of SLEEP instruction execution states) + (number of internal  
processing states)}× (tcyc before transition) + (number of interrupt exception handling states) ×  
(tsubcyc after transition) (1)  
Rev. 4.0, 03/02, page 85 of 400  
Example  
Direct transition time = (2 + 1) × tosc + 14 × 8tw = 3tosc + 112tw  
(when the CPU operating clock of øosc øw/8 is selected)  
Legend  
tosc: OSC clock cycle time  
tw: watch clock cycle time  
tcyc: system clock (ø) cycle time  
tsubcyc: subclock (øSUB) cycle time  
6.4.2  
Direct Transition from Subactive Mode to Active Mode  
The time from the start of SLEEP instruction execution to the end of interrupt exception handling  
(the direct transition time) is calculated by equation (2).  
Direct transition time = {(number of SLEEP instruction execution states) + (number of internal  
processing states)} × (tsubcyc before transition) + {(waiting time set in bits STS2 to STS0) +  
(number of interrupt exception handling states)} × (tcyc after transition)  
(2)  
Example  
Direct transition time = (2 + 1) × 8 tw + (8192 + 14) × tosc = 24tw + 8206 tosc  
(when the CPU operating clock of øw/8 øosc and a waiting time of 8192 states are selected)  
Legend  
tosc: OSC clock cycle time  
tw: watch clock cycle time  
tcyc: system clock (ø) cycle time  
tsubcyc: subclock (øSUB) cycle time  
6.5  
Module Standby Function  
The module-standby function can be set to any peripheral module. In module standby mode, the  
clock supply to modules stops to enter the power-down mode. Module standby mode enables each  
on-chip peripheral module to enter the standby state by setting a bit that corresponds to each  
module to 1 and cancels the mode by clearing the bit to 0.  
6.6  
Usage Note  
When subsleep mode is entered by setting the SMSEL bit to 1 while the subclock is not used (the  
X1 pin is fixed), note that active mode cannot be re-entered by using an interrupt. To use a power-  
down mode while a port is retained, connect the subclock to the X1 and X2 pins.  
Rev. 4.0, 03/02, page 86 of 400  
Section 7 ROM  
The features of the 32-kbyte flash memory built into the flash memory version are summarized  
below.  
Programming/erase methods  
The flash memory is programmed 128 bytes at a time. Erase is performed in single-block  
units. The flash memory is configured as follows: 1 kbyte × 4 blocks and 28 kbytes × 1  
block. To erase the entire flash memory, each block must be erased in turn.  
Reprogramming capability  
The flash memory can be reprogrammed up to 1,000 times.  
On-board programming  
On-board programming/erasing can be done in boot mode, in which the boot program built  
into the chip is started to erase or program of the entire flash memory. In normal user  
program mode, individual blocks can be erased or programmed.  
Programmer mode  
Flash memory can be programmed/erased in programmer mode using a PROM  
programmer, as well as in on-board programming mode.  
Automatic bit rate adjustment  
For data transfer in boot mode, this LSI's bit rate can be automatically adjusted to match  
the transfer bit rate of the host.  
Programming/erasing protection  
Sets software protection against flash memory programming/erasing.  
Power-down mode  
Operation of the power supply circuit can be partly halted in subactive mode. As a result,  
flash memory can be read with low power consumption.  
7.1  
Block Configuration  
Figure 7.1 shows the block configuration of 32-kbyte flash memory. The thick lines indicate  
erasing units, the narrow lines indicate programming units, and the values are addresses. The  
flash memory is divided into 1 kbyte × 4 blocks and 28 kbytes × 1 block. Erasing is performed in  
these units. Programming is performed in 128-byte units starting from an address with lower eight  
bits H'00 or H'80.  
Rev. 4.0, 03/02, page 87 of 400  
ROM3320A_000020020300  
H'0000  
H'0080  
H'0001  
H'0081  
H'0002  
H'0082  
Programming unit: 128 bytes  
Programming unit: 128 bytes  
Programming unit: 128 bytes  
Programming unit: 128 bytes  
Programming unit: 128 bytes  
H'007F  
H'00FF  
Erase unit  
1kbyte  
H'0380  
H'0400  
H'0480  
H'0381  
H'0401  
H'0481  
H'0382  
H'0402  
H'0481  
H'03FF  
H'047F  
H'04FF  
Erase unit  
1kbyte  
H'0780  
H'0800  
H'0880  
H'0781  
H'0801  
H'0881  
H'0782  
H'0802  
H'0882  
H'07FF  
H'087F  
H'08FF  
Erase unit  
1kbyte  
H'0B80  
H'0C00  
H'0C80  
H'0B81  
H'0C01  
H'0C81  
H'0B82  
H'0C02  
H'0C82  
H'0BFF  
H'0C7F  
H'0CFF  
Erase unit  
1kbyte  
H'0F80  
H'1000  
H'1080  
H'0F81  
H'1001  
H'1081  
H'0F82  
H'1002  
H'1082  
H'0FFF  
H'107F  
H'10FF  
Erase unit  
28 kbytes  
H'7F80  
H'7F81  
H'7F82  
H'7FFF  
Figure 7.1 Flash Memory Block Configuration  
7.2  
Register Descriptions  
The flash memory has the following registers.  
Flash memory control register 1 (FLMCR1)  
Flash memory control register 2 (FLMCR2)  
Erase block register 1 (EBR1)  
Flash memory power control register (FLPWCR)  
Flash memory enable register (FENR)  
Rev. 4.0, 03/02, page 88 of 400  
7.2.1  
Flash Memory Control Register 1 (FLMCR1)  
FLMCR1 is a register that makes the flash memory change to program mode, program-verify  
mode, erase mode, or erase-verify mode. For details on register setting, refer to section 7.4, Flash  
Memory Programming/Erasing.  
Bit  
Bit Name  
Initial Value R/W  
Description  
7
0
Reserved  
This bit is always read as 0.  
Software Write Enable  
6
5
4
SWE  
ESU  
PSU  
0
R/W  
When this bit is set to 1, flash memory  
programming/erasing is enabled. When this bit is  
cleared to 0, other FLMCR1 register bits and all  
EBR1 bits cannot be set.  
0
0
R/W  
R/W  
Erase Setup  
When this bit is set to 1, the flash memory changes to  
the erase setup state. When it is cleared to 0, the  
erase setup state is cancelled. Set this bit to 1 before  
setting the E bit to 1 in FLMCR1.  
Program Setup  
When this bit is set to 1, the flash memory changes to  
the program setup state. When it is cleared to 0, the  
program setup state is cancelled. Set this bit to 1  
before setting the P bit in FLMCR1.  
3
2
1
EV  
PV  
E
0
0
0
R/W  
R/W  
R/W  
Erase-Verify  
When this bit is set to 1, the flash memory changes to  
erase-verify mode. When it is cleared to 0, erase-  
verify mode is cancelled.  
Program-Verify  
When this bit is set to 1, the flash memory changes to  
program-verify mode. When it is cleared to 0,  
program-verify mode is cancelled.  
Erase  
When this bit is set to 1, and while the SWE=1 and  
ESU=1 bits are 1, the flash memory changes to erase  
mode. When it is cleared to 0, erase mode is  
cancelled.  
0
P
0
R/W  
Program  
When this bit is set to 1, and while the SWE=1 and  
PSU=1 bits are 1, the flash memory changes to  
program mode. When it is cleared to 0, program  
mode is cancelled.  
Rev. 4.0, 03/02, page 89 of 400  
7.2.2  
Flash Memory Control Register 2 (FLMCR2)  
FLMCR2 is a register that displays the state of flash memory programming/erasing. FLMCR2 is a  
read-only register, and should not be written to.  
Bit  
Bit Name  
Initial Value R/W  
Description  
7
FLER  
0
R
Flash Memory Error  
Indicates that an error has occurred during an  
operation on flash memory (programming or erasing).  
When FLER is set to 1, flash memory goes to the  
error-protection state.  
See 7.5.3, Error Protection, for details.  
Reserved  
6 to 0 —  
All 0  
These bits are always read as 0.  
7.2.3  
Erase Block Register 1 (EBR1)  
EBR1 specifies the flash memory erase area block. EBR1 is initialized to H'00 when the SWE bit  
in FLMCR1 is 0. Do not set more than one bit at a time, as this will cause all the bits in EBR1 to  
be automatically cleared to 0.  
Bit  
Bit Name  
Initial Value R/W  
Description  
7 to 5 —  
All 0  
Reserved  
These bits are always read as 0.  
4
3
2
1
0
EB4  
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
When this bit is set to 1, 28 kbytes of H'1000 to  
H'7FFF will be erased.  
EB3  
EB2  
EB1  
EB0  
When this bit is set to 1, 1 kbyte of H'0C00 to H'0FFF  
will be erased.  
When this bit is set to 1, 1 kbyte of H'0800 to H'0BFF  
will be erased.  
When this bit is set to 1, 1 kbyte of H'0400 to H'07FF  
will be erased.  
When this bit is set to 1, 1 kbyte of H'0000 to H'03FF  
will be erased.  
Rev. 4.0, 03/02, page 90 of 400  
7.2.4  
Flash Memory Power Control Register (FLPWCR)  
FLPWCR enables or disables a transition to the flash memory power-down mode when the LSI  
switches to subactive mode. There are two modes: mode in which operation of the power supply  
circuit of flash memory is partly halted in power-down mode and flash memory can be read, and  
mode in which even if a transition is made to subactive mode, operation of the power supply  
circuit of flash memory is retained and flash memory can be read.  
Bit  
Bit Name Initial Value R/W  
Description  
7
PDWND  
0
R/W  
Power-Down Disable  
When this bit is 0 and a transition is made to subactive  
mode, the flash memory enters the power-down mode.  
When this bit is 1, the flash memory remains in the  
normal mode even after a transition is made to subactive  
mode.  
6 to 0 —  
All 0  
Reserved  
These bits are always read as 0.  
7.2.5  
Flash Memory Enable Register (FENR)  
Bit 7 (FLSHE) in FENR enables or disables the CPU access to the flash memory control registers,  
FLMCR1, FLMCR2, EBR1, and FLPWCR.  
Bit  
Bit Name Initial Value R/W  
Description  
7
FLSHE  
0
R/W  
Flash Memory Control Register Enable  
Flash memory control registers can be accessed when  
this bit is set to 1. Flash memory control registers cannot  
be accessed when this bit is set to 0.  
6 to 0 —  
All 0  
Reserved  
These bits are always read as 0.  
7.3  
On-Board Programming Modes  
There are two modes for programming/erasing of the flash memory; boot mode, which enables on-  
board programming/erasing, and programmer mode, in which programming/erasing is performed  
with a PROM programmer. On-board programming/erasing can also be performed in user  
program mode. At reset-start in reset mode, the series of HD64F3664 changes to a mode  
depending on the TEST pin settings, NMI pin settings, and input level of each port, as shown in  
table 7.1. The input level of each pin must be defined four states before the reset ends.  
Rev. 4.0, 03/02, page 91 of 400  
When changing to boot mode, the boot program built into this LSI is initiated. The boot program  
transfers the programming control program from the externally-connected host to on-chip RAM  
via SCI3. After erasing the entire flash memory, the programming control program is executed.  
This can be used for programming initial values in the on-board state or for a forcible return when  
programming/erasing can no longer be done in user program mode. In user program mode,  
individual blocks can be erased and programmed by branching to the user program/erase control  
program prepared by the user.  
Table 7.1 Setting Programming Modes  
TEST  
NMI  
1
P85  
X
PB0  
X
PB1  
X
PB2  
X
LSI State after Reset End  
User Mode  
0
0
1
0
1
X
X
X
Boot Mode  
X
X
0
0
0
Programmer Mode  
Legend: X: Don’t care.  
7.3.1  
Boot Mode  
Table 7.2 shows the boot mode operations between reset end and branching to the programming  
control program.  
1. When boot mode is used, the flash memory programming control program must be prepared in  
the host beforehand. Prepare a programming control program in accordance with the  
description in section 7.4, Flash Memory Programming/Erasing.  
2. SCI3 should be set to asynchronous mode, and the transfer format as follows: 8-bit data, 1 stop  
bit, and no parity.  
3. When the boot program is initiated, the chip measures the low-level period of asynchronous  
SCI communication data (H'00) transmitted continuously from the host. The chip then  
calculates the bit rate of transmission from the host, and adjusts the SCI3 bit rate to match that  
of the host. The reset should end with the RxD pin high. The RxD and TxD pins should be  
pulled up on the board if necessary. After the reset is complete, it takes approximately 100  
states before the chip is ready to measure the low-level period.  
4. After matching the bit rates, the chip transmits one H'00 byte to the host to indicate the  
completion of bit rate adjustment. The host should confirm that this adjustment end indication  
(H'00) has been received normally, and transmit one H'55 byte to the chip. If reception could  
not be performed normally, initiate boot mode again by a reset. Depending on the host's  
transfer bit rate and system clock frequency of this LSI, there will be a discrepancy between  
the bit rates of the host and the chip. To operate the SCI properly, set the host's transfer bit  
rate and system clock frequency of this LSI within the ranges listed in table 7.3.  
5. In boot mode, a part of the on-chip RAM area is used by the boot program. The area H'F780 to  
H'FEEF is the area to which the programming control program is transferred from the host.  
Rev. 4.0, 03/02, page 92 of 400  
The boot program area cannot be used until the execution state in boot mode switches to the  
programming control program.  
6. Before branching to the programming control program, the chip terminates transfer operations  
by SCI3 (by clearing the RE and TE bits in SCR to 0), however the adjusted bit rate value  
remains set in BRR. Therefore, the programming control program can still use it for transfer  
of write data or verify data with the host. The TxD pin is high (PCR22 = 1, P22 = 1). The  
contents of the CPU general registers are undefined immediately after branching to the  
programming control program. These registers must be initialized at the beginning of the  
programming control program, as the stack pointer (SP), in particular, is used implicitly in  
subroutine calls, etc.  
7. Boot mode can be cleared by a reset. End the reset after driving the reset pin low, waiting at  
least 20 states, and then setting the TEST pin and NMI pin. Boot mode is also cleared when a  
WDT overflow occurs.  
8. Do not change the TEST pin and NMI pin input levels in boot mode.  
Rev. 4.0, 03/02, page 93 of 400  
Table 7.2 Boot Mode Operation  
Host Operation  
Communication Contents  
LSI Operation  
Processing Contents  
Processing Contents  
Branches to boot program at reset-start.  
Boot program initiation  
. . .  
H'00, H'00  
H'00  
Continuously transmits data H'00  
at specified bit rate.  
• Measures low-level period of receive data  
H'00.  
• Calculates bit rate and sets BRR in SCI3.  
• Transmits data H'00 to host as adjustment  
end indication.  
H'00  
Transmits data H'55 when data H'00  
is received error-free.  
H'55  
H'FF  
H'AA  
Boot program  
erase error  
Checks flash memory data, erases all flash  
memory blocks in case of written data  
existing, and transmits data H'AA to host.  
(If erase could not be done, transmits data  
H'FF to host and aborts operation.)  
H'AA reception  
Upper bytes, lower bytes  
Echoback  
Transmits number of bytes (N) of  
programming control program to be  
transferred as 2-byte data  
(low-order byte following high-order  
byte)  
Echobacks the 2-byte data  
received to host.  
Echobacks received data to host and also  
transfers it to RAM.  
(repeated for N times)  
H'XX  
Transmits 1-byte of programming  
control program (repeated for N times)  
Echoback  
H'AA  
Transmits data H'AA to host when data H'55  
is received.  
H'AA reception  
Branches to programming control program  
transferred to on-chip RAM and starts  
execution.  
Rev. 4.0, 03/02, page 94 of 400  
Table 7.3 System Clock Frequencies for which Automatic Adjustment of LSI Bit Rate is  
Possible  
Host Bit Rate  
19,200 bps  
9,600 bps  
System Clock Frequency Range of LSI  
16 MHz  
8 to 16 MHz  
4 to 16 MHz  
2 to 16 MHz  
4,800 bps  
2,400 bps  
7.3.2  
Programming/Erasing in User Program Mode  
On-board programming/erasing of an individual flash memory block can also be performed in user  
program mode by branching to a user program/erase control program. The user must set branching  
conditions and provide on-board means of supplying programming data. The flash memory must  
contain the user program/erase control program or a program that provides the user program/erase  
control program from external memory. As the flash memory itself cannot be read during  
programming/erasing, transfer the user program/erase control program to on-chip RAM, as in boot  
mode. Figure 7.2 shows a sample procedure for programming/erasing in user program mode.  
Prepare a user program/erase control program in accordance with the description in section 7.4,  
Flash Memory Programming/Erasing.  
Reset-start  
No  
Program/erase?  
Yes  
Transfer user program/erase control  
program to RAM  
Branch to flash memory application  
program  
Branch to user program/erase control  
program in RAM  
Execute user program/erase control  
program (flash memory rewrite)  
Branch to flash memory application  
program  
Figure 7.2 Programming/Erasing Flowchart Example in User Program Mode  
Rev. 4.0, 03/02, page 95 of 400  
7.4  
Flash Memory Programming/Erasing  
A software method using the CPU is employed to program and erase flash memory in the on-  
board programming modes. Depending on the FLMCR1 setting, the flash memory operates in one  
of the following four modes: Program mode, program-verify mode, erase mode, and erase-verify  
mode. The programming control program in boot mode and the user program/erase control  
program in user program mode use these operating modes in combination to perform  
programming/erasing. Flash memory programming and erasing should be performed in  
accordance with the descriptions in section 7.4.1, Program/Program-Verify and section 7.4.2,  
Erase/Erase-Verify, respectively.  
7.4.1  
Program/Program-Verify  
When writing data or programs to the flash memory, the program/program-verify flowchart shown  
in figure 7.3 should be followed. Performing programming operations according to this flowchart  
will enable data or programs to be written to the flash memory without subjecting the chip to  
voltage stress or sacrificing program data reliability.  
1. Programming must be done to an empty address. Do not reprogram an address to which  
programming has already been performed.  
2. Programming should be carried out 128 bytes at a time. A 128-byte data transfer must be  
performed even if writing fewer than 128 bytes. In this case, H'FF data must be written to the  
extra addresses.  
3. Prepare the following data storage areas in RAM: A 128-byte programming data area, a 128-  
byte reprogramming data area, and a 128-byte additional-programming data area. Perform  
reprogramming data computation according to table 7.4, and additional programming data  
computation according to table 7.5.  
4. Consecutively transfer 128 bytes of data in byte units from the reprogramming data area or  
additional-programming data area to the flash memory. The program address and 128-byte  
data are latched in the flash memory. The lower 8 bits of the start address in the flash memory  
destination area must be H'00 or H'80.  
5. The time during which the P bit is set to 1 is the programming time. Table 7.6 shows the  
allowable programming times.  
6. The watchdog timer (WDT) is set to prevent overprogramming due to program runaway, etc.  
An overflow cycle of approximately 6.6 ms is allowed.  
7. For a dummy write to a verify address, write 1-byte data H'FF to an address whose lower 2 bits  
are B'00. Verify data can be read in words or in longwords from the address to which a  
dummy write was performed.  
8. The maximum number of repetitions of the program/program-verify sequence of the same bit  
is 1,000.  
Rev. 4.0, 03/02, page 96 of 400  
Write pulse application subroutine  
Apply Write Pulse  
START  
Set SWE bit in FLMCR1  
Wait 1 µs  
WDT enable  
Set PSU bit in FLMCR1  
Wait 50 µs  
Store 128-byte program data in program  
data area and reprogram data area  
*
n= 1  
Set P bit in FLMCR1  
m= 0  
Wait (Wait time=programming time)  
Write 128-byte data in RAM reprogram  
data area consecutively to flash memory  
Clear P bit in FLMCR1  
Wait 5 µs  
Apply Write pulse  
Set PV bit in FLMCR1  
Clear PSU bit in FLMCR1  
Wait 4 µs  
Wait 5 µs  
Set block start address as  
verify address  
Disable WDT  
End Sub  
n n + 1  
H'FF dummy write to verify address  
Wait 2 µs  
*
Read verify data  
Increment address  
Verify data =  
write data?  
No  
m = 1  
Yes  
No  
n 6 ?  
Yes  
Additional-programming data computation  
Reprogram data computation  
128-byte  
data verification completed?  
No  
Yes  
Clear PV bit in FLMCR1  
Wait 2 µs  
No  
n 6?  
Yes  
Successively write 128-byte data from additional-  
programming data area in RAM to flash memory  
Sub-Routine-Call  
Apply Write Pulse  
No  
Yes  
m= 0 ?  
n 1000 ?  
Yes  
No  
Clear SWE bit in FLMCR1  
Clear SWE bit in FLMCR1  
Wait 100 µs  
Wait 100 µs  
End of programming  
Programming failure  
Note: *The RTS instruction must not be used during the following 1. and 2. periods.  
1. A period between 128-byte data programming to flash memory and the P bit clearing  
2. A period between dummy writing of H'FF to a verify address and verify data reading  
Figure 7.3 Program/Program-Verify Flowchart  
Rev. 4.0, 03/02, page 97 of 400  
Table 7.4 Reprogram Data Computation Table  
Program Data  
Verify Data  
Reprogram Data  
Comments  
0
0
1
1
0
1
0
1
1
0
1
1
Programming completed  
Reprogram bit  
Remains in erased state  
Table 7.5 Additional-Program Data Computation Table  
Additional-Program  
Reprogram Data  
Verify Data  
Data  
Comments  
0
0
1
1
0
1
0
1
0
1
1
1
Additional-program bit  
No additional programming  
No additional programming  
No additional programming  
Table 7.6 Programming Time  
Programming  
n
In Additional  
Programming  
(Number of Writes) Time  
Comments  
1 to 6  
30  
10  
7 to 1,000  
200  
Note: Time shown in µs.  
7.4.2  
Erase/Erase-Verify  
When erasing flash memory, the erase/erase-verify flowchart shown in figure 7.4 should be  
followed.  
1. Prewriting (setting erase block data to all 0s) is not necessary.  
2. Erasing is performed in block units. Make only a single-bit specification in the erase block  
register (EBR1). To erase multiple blocks, each block must be erased in turn.  
3. The time during which the E bit is set to 1 is the flash memory erase time.  
4. The watchdog timer (WDT) is set to prevent overerasing due to program runaway, etc. An  
overflow cycle of approximately 19.8 ms is allowed.  
5. For a dummy write to a verify address, write 1-byte data H'FF to an address whose lower two  
bits are B'00. Verify data can be read in longwords from the address to which a dummy write  
was performed.  
Rev. 4.0, 03/02, page 98 of 400  
6. If the read data is not erased successfully, set erase mode again, and repeat the erase/erase-  
verify sequence as before. The maximum number of repetitions of the erase/erase-verify  
sequence is 100.  
7.4.3  
Interrupt Handling when Programming/Erasing Flash Memory  
All interrupts, including the NMI interrupt, are disabled while flash memory is being programmed  
or erased, or while the boot program is executing, for the following three reasons:  
1. Interrupt during programming/erasing may cause a violation of the programming or erasing  
algorithm, with the result that normal operation cannot be assured.  
2. If interrupt exception handling starts before the vector address is written or during  
programming/erasing, a correct vector cannot be fetched and the CPU malfunctions.  
3. If an interrupt occurs during boot program execution, normal boot mode sequence cannot be  
carried out.  
Rev. 4.0, 03/02, page 99 of 400  
Erase start  
SWE bit 1  
Wait 1 µs  
n 1  
Set EBR1  
Enable WDT  
ESU bit 1  
Wait 100 µs  
E bit 1  
Wait 10 µs  
E bit 0  
Wait 10 µs  
ESU bit 10  
10 µs  
Disable WDT  
EV bit 1  
Wait 20 µs  
Set block start address as verify address  
H'FF dummy write to verify address  
Wait 2 µs  
*
n n + 1  
Read verify data  
No  
Verify data + all 1s ?  
Yes  
Increment address  
No  
Last address of block ?  
Yes  
EV bit 0  
Wait 4 µs  
EV bit 0  
Wait 4µs  
No  
Yes  
n 100 ?  
All erase block erased ?  
Yes  
No  
Yes  
SWE bit 0  
SWE bit 0  
Wait 100 µs  
Wait 100 µs  
End of erasing  
Erase failure  
Note: *The RTS instruction must not be used during a period between dummy writing of H'FF to a verify address and verify data reading.  
Figure 7.4 Erase/Erase-Verify Flowchart  
Rev. 4.0, 03/02, page 100 of 400  
7.5  
Program/Erase Protection  
There are three kinds of flash memory program/erase protection; hardware protection, software  
protection, and error protection.  
7.5.1  
Hardware Protection  
Hardware protection refers to a state in which programming/erasing of flash memory is forcibly  
disabled or aborted because of a transition to reset, subactive mode, subsleep mode, or standby  
mode. Flash memory control register 1 (FLMCR1), flash memory control register 2 (FLMCR2),  
and erase block register 1 (EBR1) are initialized. In a reset via the RES pin, the reset state is not  
entered unless the RES pin is held low until oscillation stabilizes after powering on. In the case of  
a reset during operation, hold the RES pin low for the RES pulse width specified in the AC  
Characteristics section.  
7.5.2  
Software Protection  
Software protection can be implemented against programming/erasing of all flash memory blocks  
by clearing the SWE bit in FLMCR1. When software protection is in effect, setting the P or E bit  
in FLMCR1 does not cause a transition to program mode or erase mode. By setting the erase  
block register 1 (EBR1), erase protection can be set for individual blocks. When EBR1 is set to  
H'00, erase protection is set for all blocks.  
7.5.3  
Error Protection  
In error protection, an error is detected when CPU runaway occurs during flash memory  
programming/erasing, or operation is not performed in accordance with the program/erase  
algorithm, and the program/erase operation is aborted. Aborting the program/erase operation  
prevents damage to the flash memory due to overprogramming or overerasing.  
When the following errors are detected during programming/erasing of flash memory, the FLER  
bit in FLMCR2 is set to 1, and the error protection state is entered.  
When the flash memory of the relevant address area is read during programming/erasing  
(including vector read and instruction fetch)  
Immediately after exception handling excluding a reset during programming/erasing  
When a SLEEP instruction is executed during programming/erasing  
The FLMCR1, FLMCR2, and EBR1 settings are retained, however program mode or erase mode  
is aborted at the point at which the error occurred. Program mode or erase mode cannot be re-  
entered by re-setting the P or E bit. However, PV and EV bit setting is enabled, and a transition  
can be made to verify mode. Error protection can be cleared only by a power-on reset.  
Rev. 4.0, 03/02, page 101 of 400  
7.6  
Programmer Mode  
In programmer mode, a PROM programmer can be used to perform programming/erasing via a  
socket adapter, just as a discrete flash memory. Use a PROM programmer that supports the MCU  
device type with the on-chip Hitachi 64-kbyte flash memory (FZTAT64V5).  
7.7  
Power-Down States for Flash Memory  
In user mode, the flash memory will operate in either of the following states:  
Normal operating mode  
The flash memory can be read and written to at high speed.  
Power-down operating mode  
The power supply circuit of flash memory can be partly halted. As a result, flash memory can  
be read with low power consumption.  
Standby mode  
All flash memory circuits are halted.  
Table 7.7 shows the correspondence between the operating modes of this LSI and the flash  
memory. In subactive mode, the flash memory can be set to operate in power-down mode with the  
PDWND bit in FLPWCR. When the flash memory returns to its normal operating state from  
power-down mode or standby mode, a period to stabilize operation of the power supply circuits  
that were stopped is needed. When the flash memory returns to its normal operating state, bits  
STS2 to STS0 in SYSCR1 must be set to provide a wait time of at least 20 µs, even when the  
external clock is being used.  
Table 7.7 Flash Memory Operating States  
Flash Memory Operating State  
LSI Operating State  
PDWND = 0 (Initial value)  
Normal operating mode  
Power-down mode  
Normal operating mode  
Standby mode  
PDWND = 1  
Active mode  
Normal operating mode  
Normal operating mode  
Normal operating mode  
Standby mode  
Subactive mode  
Sleep mode  
Subsleep mode  
Standby mode  
Standby mode  
Standby mode  
Rev. 4.0, 03/02, page 102 of 400  
Section 8 RAM  
This LSI has an on-chip high-speed static RAM. The RAM is connected to the CPU by a 16-bit  
data bus, enabling two-state access by the CPU to both byte data and word data.  
Product Classification  
Flash memory version  
(F-ZTATTM version)  
RAM Size  
2 kbytes  
2 kbytes  
1 kbyte  
RAM Address  
H8/3664N  
H8/3664F  
H8/3664  
H8/3663  
H8/3662  
H8/3661  
H8/3660  
H'F780 to H'FF7F*  
H'F780 to H'FF7F*  
H'FB80 to H'FF7F  
H'FB80 to H'FF7F  
H'FD80 to H'FF7F  
H'FD80 to H'FF7F  
H'FD80 to H'FF7F  
Mask ROM version  
1 kbyte  
512 bytes  
512 bytes  
512 bytes  
Note: * Area H'F780 to H'FB7F must not be accessed.  
Rev. 4.0, 03/02, page 103 of 400  
RAM0300A_000020020300  
Rev. 4.0, 03/02, page 104 of 400  
Section 9 I/O Ports  
The series of this LSI has twenty-nine general I/O ports (twenty-seven ports for H8/3664N) and  
eight general input-only ports. Port 8 is a large current port, which can drive 20 mA (@VOL = 1.5  
V) when a low level signal is output. Any of these ports can become an input port immediately  
after a reset. They can also be used as I/O pins of the on-chip peripheral modules or external  
interrupt input pins, and these functions can be switched depending on the register settings. The  
registers for selecting these functions can be divided into two types: those included in I/O ports  
and those included in each on-chip peripheral module. General I/O ports are comprised of the port  
control register for controlling inputs/outputs and the port data register for storing output data and  
can select inputs/outputs in bit units. For functions in each port, see appendix B.1, I/O Port Block  
Diagrams. For the execution of bit manipulation instructions to the port control register and port  
data register, see section 2.8.3, Bit Manipulation Instruction.  
9.1  
Port 1  
Port 1 is a general I/O port also functioning as IRQ interrupt input pins, a timer A output pin, and  
a timer V input pin. Figure 9.1 shows its pin configuration.  
P17/  
P16/  
P15/  
P14/  
P12  
/TRGV  
Port 1  
P11  
P10/TMOW  
Figure 9.1 Port 1 Pin Configuration  
Port 1 has the following registers.  
Port mode register 1 (PMR1)  
Port control register 1 (PCR1)  
Port data register 1 (PDR1)  
Port pull-up control register 1 (PUCR1)  
Rev. 4.0, 03/02, page 105 of 400  
9.1.1  
Port Mode Register 1 (PMR1)  
PMR1 switches the functions of pins in port 1 and port 2.  
Bit Bit Name Initial Value R/W  
Description  
7
6
5
4
IRQ3  
IRQ2  
IRQ1  
IRQ0  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
P17/IRQ3/TRGV Pin Function Switch  
This bit selects whether pin P17/IRQ3/TRGV is used as  
P17 or as IRQ3/TRGV.  
0: General I/O port  
1: IRQ3/TRGV input pin  
P16/IRQ2 Pin Function Switch  
This bit selects whether pin P16/IRQ2 is used as P16 or as  
IRQ2.  
0: General I/O port  
1: IRQ2 input pin  
P15/IRQ1 Pin Function Switch  
This bit selects whether pin P15/IRQ1 is used as P15 or as  
IRQ1.  
0: General I/O port  
1: IRQ1 input pin  
P14/IRQ0 Pin Function Switch  
This bit selects whether pin P14/IRQ0 is used as P14 or as  
IRQ0.  
0: General I/O port  
1: IRQ0 input pin  
3
2
1
1
1
0
Reserved  
These bits are always read as 1.  
P22/TXD Pin Function Switch  
TXD  
R/W  
This bit selects whether pin P22/TXD is used as P22 or as  
TXD.  
0: General I/O port  
1: TXD output pin  
0
TMOW  
0
R/W  
P10/TMOW Pin Function Switch  
This bit selects whether pin P10/TMOW is used as P10 or  
as TMOW.  
0: General I/O port  
1: TMOW output pin  
Rev. 4.0, 03/02, page 106 of 400  
9.1.2  
Port Control Register 1 (PCR1)  
PCR1 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 1.  
Bit Bit Name Initial Value R/W  
Description  
7
6
5
4
3
2
1
0
PCR17  
PCR16  
PCR15  
PCR14  
0
0
0
0
0
0
0
W
W
W
W
W
W
W
When the corresponding pin is designated in PMR1 as a  
general I/O pin, setting a PCR1 bit to 1 makes the  
corresponding pin an output port, while clearing the bit to 0  
makes the pin an input port.  
Bit 3 is a reserved bit.  
PCR12  
PCR11  
PCR10  
9.1.3  
Port Data Register 1 (PDR1)  
PDR1 is a general I/O port data register of port 1.  
Bit Bit Name Initial Value R/W  
Description  
7
6
5
4
3
2
1
0
P17  
P16  
P15  
P14  
0
0
0
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
PDR1 stores output data for port 1 pins.  
If PDR1 is read while PCR1 bits are set to 1, the value  
stored in PDR1 are read. If PDR1 is read while PCR1 bits  
are cleared to 0, the pin states are read regardless of the  
value stored in PDR1.  
Bit 3 is a reserved bit. This bit is always read as 1.  
P12  
P11  
P10  
R/W  
R/W  
R/W  
Rev. 4.0, 03/02, page 107 of 400  
9.1.4  
Port Pull-Up Control Register 1 (PUCR1)  
PUCR1 controls the pull-up MOS in bit units of the pins set as the input ports.  
Bit Bit Name Initial Value  
R/W Description  
7
6
5
4
3
2
1
0
PUCR17  
PUCR16  
PUCR15  
PUCR14  
0
0
0
0
1
0
0
0
R/W Only bits for which PCR1 is cleared are valid. The pull-up  
MOS of P17 to P14 and P12 to P10 pins enter the on-  
state when these bits are set to 1, while they enter the off-  
state when these bits are cleared to 0.  
R/W  
R/W  
R/W  
Bit 3 is a reserved bit. This bit is always read as 1.  
PUCR12  
PUCR11  
PUCR10  
R/W  
R/W  
R/W  
9.1.5  
Pin Functions  
The correspondence between the register specification and the port functions is shown below.  
P17/IRQ3/TRGV pin  
Register  
Bit Name  
PMR1  
IRQ3  
PCR1  
PCR17  
Pin Function  
Setting value 0  
0
1
X
P17 input pin  
P17 output pin  
1
IRQ3 input/TRGV input pin  
Legend X: Don't care.  
P16/IRQ2 pin  
Register  
Bit Name  
PMR1  
IRQ2  
PCR1  
PCR16  
Pin Function  
P16 input pin  
P16 output pin  
IRQ2 input pin  
Setting value 0  
0
1
X
1
Legend X: Don't care.  
Rev. 4.0, 03/02, page 108 of 400  
P15/I  
        
RQ  
         
          
1
           
pin  
Register  
Bit Name  
PMR1  
IRQ1  
PCR1  
PCR15  
Pin Function  
P15 input pin  
P15 output pin  
IRQ1 input pin  
Setting value 0  
0
1
X
1
Legend X: Don't care.  
P14/IRQ0 pin  
Register  
Bit Name  
PMR1  
IRQ0  
PCR1  
PCR14  
Pin Function  
P14 input pin  
P14 output pin  
IRQ0 input pin  
Setting value 0  
0
1
X
1
Legend X: Don't care.  
P12 pin  
Register  
PCR1  
Bit Name  
PCR12  
Pin Function  
Setting value  
0
1
P12 input pin  
P12 output pin  
P11 pin  
Register  
PCR1  
Bit Name  
PCR11  
Pin Function  
P11 input pin  
P11 output pin  
Setting value  
0
1
Rev. 4.0, 03/02, page 109 of 400  
P10/TMOW pin  
Register  
Bit Name  
PMR1  
TMOW  
PCR1  
PCR10  
Pin Function  
P10 input pin  
Setting value 0  
0
1
X
P10 output pin  
TMOW output pin  
1
Legend X: Don't care.  
9.2  
Port 2  
Port 2 is a general I/O port also functioning as a SCI3 I/O pin. Each pin of the port 2 is shown in  
figure 9.2. The register settings of PMR1 and SCI3 have priority for functions of the pins for both  
uses.  
P22/TXD  
P21/RXD  
Port 2  
P20/SCK3  
Figure 9.2 Port 2 Pin Configuration  
Port 2 has the following registers.  
Port control register 2 (PCR2)  
Port data register 2 (PDR2)  
Rev. 4.0, 03/02, page 110 of 400  
9.2.1  
Port Control Register 2 (PCR2)  
PCR2 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 2.  
Bit Bit Name Initial Value R/W  
Description  
7
6
5
4
3
2
1
0
0
W
W
W
Reserved  
PCR22  
PCR21  
PCR20  
When each of the port 2 pins P22 to P20 functions as an  
general I/O port, setting a PCR2 bit to 1 makes the  
corresponding pin an output port, while clearing the bit to 0  
makes the pin an input port.  
0
0
9.2.2  
Port Data Register 2 (PDR2)  
PDR2 is a general I/O port data register of port 2.  
Bit Bit Name Initial Value R/W  
Description  
7
6
5
4
3
2
1
0
1
1
1
1
1
0
0
0
Reserved  
These bits are always read as 1.  
P22  
P21  
P20  
R/W  
R/W  
R/W  
PDR2 stores output data for port 2 pins.  
PDR2 is read while PCR2 bits are set to 1, the value stored  
in PDR2 is read. If PDR2 is read while PCR2 bits are  
cleared to 0, the pin states are read regardless of the value  
stored in PDR2.  
Rev. 4.0, 03/02, page 111 of 400  
9.2.3  
Pin Functions  
The correspondence between the register specification and the port functions is shown below.  
P22/TXD pin  
Register  
Bit Name  
PMR1  
TXD  
PCR2  
PCR22  
Pin Function  
P22 input pin  
P22 output pin  
TXD output pin  
Setting Value 0  
0
1
X
1
Legend X: Don't care.  
P21/RXD pin  
Register  
Bit Name  
SCR3  
RE  
PCR2  
PCR21  
Pin Function  
P21 input pin  
P21 output pin  
RXD input pin  
Setting Value 0  
0
1
X
1
Legend X: Don't care.  
P20/SCK3 pin  
Register  
SCR3  
CKE1  
0
SMR  
COM  
0
PCR2  
Bit Name  
Setting Value  
CKE0  
PCR20  
Pin Function  
P20 input pin  
0
0
1
P20 output pin  
SCK3 output pin  
SCK3 output pin  
SCK3 input pin  
0
0
1
0
1
X
1
X
X
X
X
X
Legend X: Don't care.  
Rev. 4.0, 03/02, page 112 of 400  
9.3  
Port 5  
Port 5 is a general I/O port also functioning as an I2C bus interface I/O pin, an A/D trigger input  
pin, wakeup interrupt input pin. Each pin of the port 5 is shown in figure 9.3. The register setting  
of the I2C bus interface register has priority for functions of the pins P57/SCL and P56/SDA. Since  
the output buffer for pins P56 and P57 has the NMOS push-pull structure, it differs from an output  
buffer with the CMOS structure in the high-level output characteristics (see section 20, Electrical  
Characteristics). The H8/3664N does not have P57 and P56.  
H8/3664  
H8/3664N  
P57/SCL  
P56/SDA  
P55/  
SCL  
SDA  
P55/  
P54/  
P53/  
P52/  
P51/  
P50/  
/
/
P54/  
Port 5  
Port 5  
P53/  
P52/  
P51/  
P50/  
Figure 9.3 Port 5 Pin Configuration  
Port 5 has the following registers.  
Port mode register 5 (PMR5)  
Port control register 5 (PCR5)  
Port data register 5 (PDR5)  
Port pull-up control register 5 (PUCR5)  
Rev. 4.0, 03/02, page 113 of 400  
9.3.1  
Port Mode Register 5 (PMR5)  
PMR5 switches the functions of pins in port 5.  
Bit Bit Name Initial Value R/W Description  
7
6
5
0
0
0
Reserved  
These bits are always read as 0.  
WKP5  
R/W P55/WKP5/ADTRG Pin Function Switch  
Selects whether pin P55/WKP5/ADTRG is used as P55 or as  
WKP5/ADTRG input.  
0: General I/O port  
1: WKP5/ADTRG input pin  
4
3
2
1
0
WKP4  
WKP3  
WKP2  
WKP1  
WKP0  
0
0
0
0
0
R/W P54/WKP4 Pin Function Switch  
Selects whether pin P54/WKP4 is used as P54 or as WKP4.  
0: General I/O port  
1: WKP4 input pin  
R/W P53/WKP3 Pin Function Switch  
Selects whether pin P53/WKP3 is used as P53 or as WKP3.  
0: General I/O port  
1: WKP3 input pin  
R/W P52/WKP2 Pin Function Switch  
Selects whether pin P52/WKP2 is used as P52 or as WKP2.  
0: General I/O port  
1: WKP2 input pin  
R/W P51/WKP1 Pin Function Switch  
Selects whether pin P51/WKP1 is used as P51 or as WKP1.  
0: General I/O port  
1: WKP1 input pin  
R/W P50/WKP0 Pin Function Switch  
Selects whether pin P50/WKP0 is used as P50 or as WKP0.  
0: General I/O port  
1: WKP0 input pin  
Rev. 4.0, 03/02, page 114 of 400  
9.3.2  
Port Control Register 5 (PCR5)  
PCR5 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 5.  
Bit Bit Name Initial Value R/W  
Description  
7
6
5
4
3
2
1
0
PCR57  
PCR56  
PCR55  
PCR54  
PCR53  
PCR52  
PCR51  
PCR50  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
When each of the port 5 pins P57 to P50 functions as an  
general I/O port, setting a PCR5 bit to 1 makes the  
corresponding pin an output port, while clearing the bit to 0  
makes the pin an input port.  
Note: Do not set PCR57 and PCR56 to 1 for H8/3664N.  
9.3.3  
Port Data Register 5 (PDR5)  
PDR5 is a general I/O port data register of port 5.  
Bit Bit Name Initial Value R/W  
Description  
7
6
5
4
3
2
1
0
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Stores output data for port 5 pins.  
If PDR5 is read while PCR5 bits are set to 1, the value  
stored in PDR5 are read. If PDR5 is read while PCR5 bits  
are cleared to 0, the pin states are read regardless of the  
value stored in PDR5.  
Note: Do not set P57 and P56 to 1 for H8/3664N.  
Rev. 4.0, 03/02, page 115 of 400  
9.3.4  
Port Pull-Up Control Register 5 (PUCR5)  
PUCR5 controls the pull-up MOS in bit units of the pins set as the input ports.  
Bit Bit Name Initial Value R/W  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
Reserved  
These bits are always read as 0.  
P55  
P54  
P53  
P52  
P51  
P50  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Only bits for which PCR5 is cleared are valid. The pull-up  
MOS of the corresponding pins enter the on-state when  
these bits are set to 1, while they enter the off-state when  
these bits are cleared to 0.  
9.3.5  
Pin Functions  
The correspondence between the register specification and the port functions is shown below.  
P57/SCL pin  
Register  
Bit Name  
ICCR  
ICE  
PCR5  
PCR57  
Pin Function  
P57 input pin  
P57 output pin  
SCL I/O pin  
Setting Value 0  
0
1
X
1
Legend X: Don't care.  
SCL performs the NMOS open-drain output, that enables a direct bus drive.  
P56/SDA pin  
Register  
Bit Name  
ICCR  
ICE  
PCR5  
PCR56  
Pin Function  
P56 input pin  
P56 output pin  
SDA I/O pin  
Setting Value 0  
0
1
X
1
Legend X: Don't care.  
SDA performs the NMOS open-drain output, that enables a direct bus drive.  
Rev. 4.0, 03/02, page 116 of 400  
P55/WKP5  
        
          
           
            
/A  
             
D
               
T
                
RG  
                 
                  
pin  
Register  
Bit Name  
PMR5  
WKP5  
PCR5  
PCR55  
Pin Function  
Setting Value 0  
0
1
X
P55 input pin  
P55 output pin  
1
WKP5/ADTRG input pin  
Legend X: Don't care.  
P54/WKP4 pin  
Register  
Bit Name  
PMR5  
WKP4  
PCR5  
PCR54  
Pin Function  
P54 input pin  
P54 output pin  
WKP4 input pin  
Setting Value 0  
0
1
X
1
Legend X: Don't care.  
P53/WKP3 pin  
Register  
Bit Name  
PMR5  
WKP3  
PCR5  
PCR53  
Pin Function  
P53 input pin  
P53 output pin  
WKP3 input pin  
Setting Value 0  
0
1
X
1
Legend X: Don't care.  
P52/WKP2 pin  
Register  
Bit Name  
PMR5  
WKP2  
PCR5  
PCR52  
Pin Function  
P52 input pin  
P52 output pin  
WKP2 input pin  
Setting Value 0  
0
1
X
1
Legend X: Don't care.  
Rev. 4.0, 03/02, page 117 of 400  
P51/WK  
       
         
P1  
          
           
pin  
Register  
Bit Name  
PMR5  
WKP1  
PCR5  
PCR51  
Pin Function  
P51 input pin  
P51 output pin  
WKP1 input pin  
Setting Value 0  
0
1
X
1
Legend X: Don't care.  
P50/WKP0 pin  
Register  
Bit Name  
PMR5  
WKP0  
PCR5  
PCR50  
Pin Function  
P50 input pin  
P50 output pin  
WKP0 input pin  
Setting Value 0  
0
1
X
1
Legend X: Don't care.  
9.4  
Port 7  
Port 7 is a general I/O port also functioning as a timer V I/O pin. Each pin of the port 7 is shown  
in figure 9.4. The register setting of TCSRV in timer V has priority for functions of pin  
P76/TMOV. The pins, P75/TMCIV and P74/TMRIV, are also functioning as timer V input ports  
that are connected to the timer V regardless of the register setting of port 7.  
P76/TMOV  
Port 7  
P75/TMCIV  
P74/TMRIV  
Figure 9.4 Port 7 Pin Configuration  
Port 7 has the following registers.  
Port control register 7 (PCR7)  
Port data register 7 (PDR7)  
Rev. 4.0, 03/02, page 118 of 400  
9.4.1  
Port Control Register 7 (PCR7)  
PCR7 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 7.  
Bit Bit Name Initial Value R/W  
Description  
7
6
5
4
0
W
W
W
Reserved  
PCR76  
PCR75  
PCR74  
Setting a PCR7 bit to 1 makes the corresponding pin an  
output port, while clearing the bit to 0 makes the pin an  
input port. Note that the TCSRV setting of the timer V has  
priority for deciding input/output direction of the P76/TMOV  
pin.  
0
0
3
2
1
0
Reserved  
9.4.2  
Port Data Register 7 (PDR7)  
PDR7 is a general I/O port data register of port 7.  
Bit Bit Name Initial Value R/W  
Description  
7
1
Reserved  
This bit is always read as 1.  
PDR7 stores output data for port 7 pins.  
6
5
4
P76  
P75  
P74  
0
0
0
R/W  
R/W  
R/W  
PDR7 is read while PCR7 bits are set to 1, the value stored  
in PDR7 is read. If PDR7 is read while PCR7 bits are  
cleared to 0, the pin states are read regardless of the value  
stored in PDR7.  
3
2
1
0
1
1
1
1
Reserved  
These bits are always read as 1.  
Rev. 4.0, 03/02, page 119 of 400  
9.4.3  
Pin Functions  
The correspondence between the register specification and the port functions is shown below.  
P76/TMOV pin  
Register  
Bit Name  
TCSRV  
PCR7  
OS3 to OS0 PCR76  
Pin Function  
P76 input pin  
Setting Value 0000  
0
1
X
P76 output pin  
TMOV output pin  
Other than  
the above  
values  
Legend X: Don't care.  
P75/TMCIV pin  
Register  
Bit Name  
PCR7  
PCR75  
Pin Function  
Setting Value 0  
1
P75 input/TMCIV input pin  
P75 output/TMCIV input pin  
P74/TMRIV pin  
Register  
Bit Name  
PCR7  
PCR74  
Pin Function  
Setting Value 0  
1
P74 input/TMRIV input pin  
P74 output/TMRIV input pin  
Rev. 4.0, 03/02, page 120 of 400  
9.5  
Port 8  
Port 8 is a general I/O port also functioning as a timer W I/O pin. Each pin of the port 8 is shown  
in figure 9.5. The register setting of the timer W has priority for functions of the pins P84/FTIOD,  
P83/FTIOC, P82/FTIOB, and P81/FTIOA. P80/FTCI also functions as a timer W input port that is  
connected to the timer W regardless of the register setting of port 8.  
P87  
P86  
P85  
P84/FTIOD  
Port 8  
P83/FTIOC  
P82/FTIOB  
P81/FTIOA  
P80/FTCI  
Figure 9.5 Port 8 Pin Configuration  
Port 8 has the following registers.  
Port control register 8 (PCR8)  
Port data register 8 (PDR8)  
9.5.1  
Port Control Register 8 (PCR8)  
PCR8 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 8.  
Bit Bit Name Initial Value R/W  
Description  
7
6
5
4
3
2
1
0
PCR87  
PCR86  
PCR85  
PCR84  
PCR83  
PCR82  
PCR81  
PCR80  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
When each of the port 8 pins P87 to P80 functions as an  
general I/O port, setting a PCR8 bit to 1 makes the  
corresponding pin an output port, while clearing the bit to 0  
makes the pin an input port.  
Rev. 4.0, 03/02, page 121 of 400  
9.5.2  
Port Data Register 8 (PDR8)  
PDR8 is a general I/O port data register of port 8.  
Bit Bit Name Initial Value R/W  
Description  
7
6
5
4
3
2
1
0
P87  
P86  
P85  
P84  
P83  
P82  
P81  
P80  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PDR8 stores output data for port 8 pins.  
PDR8 is read while PCR8 bits are set to 1, the value stored  
in PDR8 is read. If PDR8 is read while PCR8 bits are  
cleared to 0, the pin states are read regardless of the value  
stored in PDR8.  
9.5.3  
Pin Functions  
The correspondence between the register specification and the port functions is shown below.  
P87 pin  
Register  
Bit Name  
PCR8  
PCR87  
Pin Function  
P87 input pin  
P87 output pin  
Setting Value 0  
1
P86 pin  
Register  
Bit Name  
PCR8  
PCR86  
Pin Function  
P86 input pin  
P86 output pin  
Setting Value 0  
1
P85 pin  
Register  
Bit Name  
PCR8  
PCR85  
Pin Function  
P85 input pin  
P85 output pin  
Setting Value 0  
1
Rev. 4.0, 03/02, page 122 of 400  
P84/FTIOD pin  
Register  
Bit Name  
TIOR1  
IOD2  
PCR8  
IOD1  
IOD0  
PCR84  
Pin Function  
Setting Value 0  
0
0
0
1
X
X
0
1
P84 input/FTIOD input pin  
P84 output/FTIOD input pin  
FTIOD output pin  
0
0
1
0
1
X
1
X
X
FTIOD output pin  
P84 input/FTIOD input pin  
P84 output/FTIOD input pin  
Legend X: Don't care.  
P83/FTIOC pin  
Register  
Bit Name  
TIOR1  
IOC2  
PCR8  
IOC1  
IOC0  
PCR83  
Pin Function  
Setting Value 0  
0
0
0
1
X
X
0
1
P83 input/FTIOC input pin  
P83 output/FTIOC input pin  
FTIOC output pin  
0
0
1
0
1
X
1
X
X
FTIOC output pin  
P83 input/FTIOC input pin  
P83 output/FTIOC input pin  
Legend X: Don't care.  
P82/FTIOB pin  
Register  
Bit Name  
TIOR0  
IOB2  
PCR8  
IOB1  
IOB0  
PCR82  
Pin Function  
Setting Value 0  
0
0
0
1
X
X
0
1
P82 input/FTIOB input pin  
P82 output/FTIOB input pin  
FTIOB output pin  
0
0
1
0
1
X
1
X
X
FTIOB output pin  
P82 input/FTIOB input pin  
P82 output/FTIOB input pin  
Legend X: Don't care.  
Rev. 4.0, 03/02, page 123 of 400  
P81/FTIOA pin  
Register  
Bit Name  
TIOR0  
IOA2  
PCR8  
IOA1  
IOA0  
PCR81  
Pin Function  
Setting Value 0  
0
0
0
1
X
X
0
1
X
X
0
1
P81 input/FTIOA input pin  
P81 output/FTIOA input pin  
FTIOA output pin  
0
0
1
0
1
X
FTIOA output pin  
P81 input/FTIOA input pin  
P81 output/FTIOA input pin  
Legend X: Don't care.  
P80/FTCI pin  
Register  
Bit Name  
PCR8  
PCR80  
Pin Function  
Setting Value 0  
1
P80 input/FTCI input pin  
P80 output/FTCI input pin  
9.6  
Port B  
Port B is an input port also functioning as an A/D converter analog input pin. Each pin of the port  
B is shown in figure 9.6.  
PB7/AN7  
PB6/AN6  
PB5/AN5  
PB4/AN4  
Port B  
PB3/AN3  
PB2/AN2  
PB1/AN1  
PB0/AN0  
Figure 9.6 Port B Pin Configuration  
Port B has the following register.  
Port data register B (PDRB)  
Rev. 4.0, 03/02, page 124 of 400  
9.6.1  
Port Data Register B (PDRB)  
PDRB is a general input-only port data register of port B.  
Bit Bit Name Initial Value R/W  
Description  
7
6
5
4
3
2
1
0
PB7  
PB6  
PB5  
PB4  
PB3  
PB2  
PB1  
PB0  
R
R
R
R
R
R
R
R
The input value of each pin is read by reading this register.  
However, if a port B pin is designated as an analog input  
channel by ADCSR in A/D converter, 0 is read.  
Rev. 4.0, 03/02, page 125 of 400  
Rev. 4.0, 03/02, page 126 of 400  
Section 10 Timer A  
Timer A is an 8-bit timer with interval timing and real-time clock time-base functions. The clock  
time-base function is available when a 32.768kHz crystal oscillator is connected. Figure 10.1  
shows a block diagram of timer A.  
10.1  
Features  
Timer A can be used as an interval timer or a clock time base.  
An interrupt is requested when the counter overflows.  
Any of eight clock signals can be output from pin TMOW: 32.768 kHz divided by 32, 16, 8, or  
4 (1 kHz, 2 kHz, 4 kHz, 8 kHz), or the system clock divided by 32, 16, 8, or 4.  
Interval Timer  
Choice of eight internal clock sources (φ/8192, φ/4096, φ/2048, φ/512, φ/256, φ/128, φ/32, φ8)  
Clock Time Base  
Choice of four overflow periods (1 s, 0.5 s, 0.25 s, 31.25 ms) when timer A is used as a clock  
time base (using a 32.768 kHz crystal oscillator).  
Rev. 4.0, 03/02, page 127 of 400  
TIM08A0A_000020020300  
1/4  
PSW  
TMA  
øW  
ø
W/4  
ø
ø
ø
ø
W/32  
W/16  
W/8  
øW/128  
W/4  
TCA  
TMOW  
øW/32  
ø/8192, ø/4096,  
ø
ø
ø
W/16  
W/8  
W/4  
ø/2048, ø/512,  
ø/256, ø/128,  
ø/32, ø/8  
ø
PSS  
IRRTA  
Legend  
TMA: Timer mode register A  
TCA: Timer counter A  
IRRTA: Timer A overflow interrupt request flag  
PSW: Prescaler W  
PSS:  
Prescaler S  
Note: * Can be selected only when the prescaler W output (ø /128) is used as the TCA input clock.  
W
Figure 10.1 Block Diagram of Timer A  
10.2  
Input/Output Pins  
Table 10.1 shows the timer A input/output pin.  
Table 10.1 Pin Configuration  
Name  
Abbreviation I/O  
TMOW Output  
Function  
Clock output  
Output of waveform generated by timer A output  
circuit  
10.3  
Register Descriptions  
Timer A has the following registers.  
Timer mode register A (TMA)  
Timer counter A (TCA)  
Rev. 4.0, 03/02, page 128 of 400  
10.3.1 Timer Mode Register A (TMA)  
TMA selects the operating mode, the divided clock output, and the input clock.  
Bit Bit Name Initial Value R/W  
Description  
7
6
5
TMA7  
TMA6  
TMA5  
0
0
0
R/W  
R/W  
R/W  
Clock Output Select 7 to 5  
These bits select the clock output at the TMOW pin.  
000: φ/32  
001: φ/16  
010: φ/8  
011: φ/4  
100: φw/32  
101: φw/16  
110: φw/8  
111: φw/4  
For details on clock outputs, see section 10.4.3, Clock  
Output.  
4
3
1
0
Reserved  
This bit is always read as 1.  
Internal Clock Select 3  
TMA3  
R/W  
This bit selects the operating mode of the timer A.  
0: Functions as an interval timer to count the outputs of  
prescaler S.  
1: Functions as a clock-time base to count the outputs of  
prescaler W.  
Rev. 4.0, 03/02, page 129 of 400  
Bit Bit Name Initial Value R/W  
Description  
2
1
0
TMA2  
TMA1  
TMA0  
0
0
0
R/W  
R/W  
R/W  
Internal Clock Select 2 to 0  
These bits select the clock input to TCA when TMA3 = 0.  
000: φ/8192  
001: φ/4096  
010: φ/2048  
011: φ/512  
100: φ/256  
101: φ/128  
110: φ/32  
111: φ/8  
These bits select the overflow period when TMA3 = 1  
(when a 32.768 kHz crystal oscillator with is used as φW).  
000: 1s  
001: 0.5 s  
010: 0.25 s  
011: 0.03125 s  
1XX: Both PSW and TCA are reset  
Legend X: Don't care.  
10.3.2 Timer Counter A (TCA)  
TCA is an 8-bit readable up-counter, which is incremented by internal clock input. The clock  
source for input to this counter is selected by bits TMA3 to TMA0 in TMA. TCA values can be  
read by the CPU in active mode, but cannot be read in subactive mode. When TCA overflows, the  
IRRTA bit in interrupt request register 1 (IRR1) is set to 1. TCA is cleared by setting bits TMA3  
and TMA2 in TMA to B’11. TCA is initialized to H'00.  
10.4 Operation  
10.4.1 Interval Timer Operation  
When bit TMA3 in TMA is cleared to 0, timer A functions as an 8-bit interval timer.  
Upon reset, TCA is cleared to H'00 and bit TMA3 is cleared to 0, so up-counting of timer A  
resume immediately as an interval timer. The clock input to timer A is selected by bits TMA2 to  
TMA0 in TMA; any of eight internal clock signals output by prescaler S can be selected.  
After the count value in TCA reaches H'FF, the next clock signal input causes timer A to  
overflow, setting bit IRRTA to 1 in interrupt Flag Register 1 (IRR1). If IENTA = 1 in interrupt  
Rev. 4.0, 03/02, page 130 of 400  
enable register 1 (IENR1), a CPU interrupt is requested. At overflow, TCA returns to H'00 and  
starts counting up again. In this mode timer A functions as an interval timer that generates an  
overflow output at intervals of 256 input clock pulses.  
10.4.2 Clock Time Base Operation  
When bit TMA3 in TMA is set to 1, timer A functions as a clock-timer base by counting clock  
signals output by prescaler W. When a clock signal is input after the TCA counter value has  
become H'FF, timer A overflows and IRRTA in IRR1 is set to 1. At that time, an interrupt request  
is generated to the CPU if IENTA in the interrupt enable register 1 (IENR1) is 1. The overflow  
period of timer A is set by bits TMA1 and TMA0 in TMA. A choice of four periods is available.  
In clock time base operation (TMA3 = 1), setting bit TMA2 to 1 clears both TCA and prescaler W  
to H'00.  
10.4.3 Clock Output  
Setting bit TMOW in port mode register 1 (PMR1) to 1 causes a clock signal to be output at pin  
TMOW. Eight different clock output signals can be selected by means of bits TMA7 to TMA5 in  
TMA. The system clock divided by 32, 16, 8, or 4 can be output in active mode and sleep mode. A  
32.768 kHz signal divided by 32, 16, 8, or 4 can be output in active mode, sleep mode, and  
subactive mode.  
10.5  
Usage Note  
When the clock time base function is selected as the internal clock of TCA in active mode or sleep  
mode, the internal clock is not synchronous with the system clock, so it is synchronized by a  
synchronizing circuit. This may result in a maximum error of 1/ø (s) in the count cycle.  
Rev. 4.0, 03/02, page 131 of 400  
Rev. 4.0, 03/02, page 132 of 400  
Section 11 Timer V  
Timer V is an 8-bit timer based on an 8-bit counter. Timer V counts external events. Compare-  
match signals with two registers can also be used to reset the counter, request an interrupt, or  
output a pulse signal with an arbitrary duty cycle. Counting can be initiated by a trigger input at  
the TRGV pin, enabling pulse output control to be synchronized to the trigger, with an arbitrary  
delay from the trigger input. Figure 11.1 shows a block diagram of timer V.  
11.1  
Features  
Choice of seven clock signals is available.  
Choice of six internal clock sources (ø/128, ø/64, ø/32, ø/16, ø/8, ø/4) or an external clock.  
Counter can be cleared by compare match A or B, or by an external reset signal. If the count  
stop function is selected, the counter can be halted when cleared.  
Timer output is controlled by two independent compare match signals, enabling pulse output  
with an arbitrary duty cycle, PWM output, and other applications.  
Three interrupt sources: compare match A, compare match B, timer overflow  
Counting can be initiated by trigger input at the TRGV pin. The rising edge, falling edge, or  
both edges of the TRGV input can be selected.  
Rev. 4.0, 03/02, page 133 of 400  
TIM08V0A_000020020300  
TCRV1  
TCORB  
Trigger  
control  
TRGV  
TMCIV  
ø
Comparator  
Clock select  
TCNTV  
Comparator  
TCORA  
PSS  
Clear  
control  
TCRV0  
TMRIV  
Interrupt  
request  
control  
Output  
control  
TCSRV  
TMOV  
CMIA  
CMIB  
OVI  
Legend:  
TCORA:  
TCORB:  
TCNTV:  
TCSRV:  
TCRV0:  
TCRV1:  
PSS:  
Time constant register A  
Time constant register B  
Timer counter V  
Timer control/status register V  
Timer control register V0  
Timer control register V1  
Prescaler S  
CMIA:  
CMIB:  
OVI:  
Compare-match interrupt A  
Compare-match interrupt B  
Overflow interupt  
Figure 11.1 Block Diagram of Timer V  
11.2  
Input/Output Pins  
Table 11.1 shows the timer V pin configuration.  
Table 11.1 Pin Configuration  
Name  
Abbreviation I/O  
Function  
Timer V output  
Timer V clock input  
Timer V reset input  
Trigger input  
TMOV  
TMCIV  
TMRIV  
TRGV  
Output  
Input  
Input  
Input  
Timer V waveform output  
Clock input to TCNTV  
External input to reset TCNTV  
Trigger input to initiate counting  
Rev. 4.0, 03/02, page 134 of 400  
11.3  
Register Descriptions  
Time V has the following registers.  
Timer counter V (TCNTV)  
Timer constant register A (TCORA)  
Timer constant register B (TCORB)  
Timer control register V0 (TCRV0)  
Timer control/status register V (TCSRV)  
Timer control register V1 (TCRV1)  
11.3.1 Timer Counter V (TCNTV)  
TCNTV is an 8-bit up-counter. The clock source is selected by bits CKS2 to CKS0 in timer  
control register V0 (TCRV0). The TCNTV value can be read and written by the CPU at any time.  
TCNTV can be cleared by an external reset input signal, or by compare match A or B. The  
clearing signal is selected by bits CCLR1 and CCLR0 in TCRV0.  
When TCNTV overflows, OVF is set to 1 in timer control/status register V (TCSRV).  
TCNTV is initialized to H'00.  
11.3.2 Time Constant Registers A and B (TCORA, TCORB)  
TCORA and TCORB have the same function.  
TCORA and TCORB are 8-bit read/write registers.  
TCORA and TCNTV are compared at all times. When the TCORA and TCNTV contents match,  
CMFA is set to 1 in TCSRV. If CMIEA is also set to 1 in TCRV0, a CPU interrupt is requested.  
Note that they must not be compared during the T3 state of a TCORA write cycle.  
Timer output from the TMOV pin can be controlled by the identifying signal (compare match A)  
and the settings of bits OS3 to OS0 in TCSRV.  
TCORA and TCORB are initialized to H'FF.  
Rev. 4.0, 03/02, page 135 of 400  
11.3.3 Timer Control Register V0 (TCRV0)  
TCRV0 selects the input clock signals of TCNTV, specifies the clearing conditions of TCNTV,  
and controls each interrupt request.  
Bit Bit Name Initial Value R/W  
Description  
7
6
5
CMIEB  
CMIEA  
OVIE  
0
0
0
R/W  
R/W  
R/W  
Compare Match Interrupt Enable B  
When this bit is set to 1, interrupt request from the CMFB  
bit in TCSRV is enabled.  
Compare Match Interrupt Enable A  
When this bit is set to 1, interrupt request from the CMFA  
bit in TCSRV is enabled.  
Timer Overflow Interrupt Enable  
When this bit is set to 1, interrupt request from the OVF bit  
in TCSRV is enabled.  
4
3
CCLR1  
CCLR0  
0
0
R/W  
R/W  
Counter Clear 1 and 0  
These bits specify the clearing conditions of TCNTV.  
00: Clearing is disabled  
01: Cleared by compare match A  
10: Cleared by compare match B  
11: Cleared on the rising edge of the TMRIV pin. The  
operation of TCNTV after clearing depends on TRGE in  
TCRV1.  
2
1
0
CKS2  
CKS1  
CKS0  
0
0
0
R/W  
R/W  
R/W  
Clock Select 2 to 0  
These bits select clock signals to input to TCNTV and the  
counting condition in combination with ICKS0 in TCRV1.  
Refer to table 11.2.  
Rev. 4.0, 03/02, page 136 of 400  
Table 11.2 Clock Signals to Input to TCNTV and Counting Conditions  
TCRV0  
Bit 2  
CKS2  
0
TCRV1  
Bit 1  
CKS1  
0
Bit 0  
CKS0  
0
Bit 0  
ICKS0  
Description  
0
Clock input prohibited  
1
Internal clock: counts on φ/4, falling edge  
Internal clock: counts on φ/8, falling edge  
Internal clock: counts on φ/16, falling edge  
Internal clock: counts on φ/32, falling edge  
Internal clock: counts on φ/64, falling edge  
Internal clock: counts on φ/128, falling edge  
Clock input prohibited  
1
1
0
1
0
1
0
1
1
0
1
0
1
0
1
External clock: counts on rising edge  
External clock: counts on falling edge  
External clock: counts on rising and falling edge  
Rev. 4.0, 03/02, page 137 of 400  
11.3.4 Timer Control/Status Register V (TCSRV)  
TCSRV indicates the status flag and controls outputs by using a compare match.  
Bit Bit Name Initial Value R/W  
Description  
7
6
5
4
CMFB  
CMFA  
OVF  
0
0
0
1
R/W  
R/W  
R/W  
Compare Match Flag B  
Setting condition:  
When the TCNTV value matches the TCORB value  
Clearing condition:  
After reading CMFB = 1, cleared by writing 0 to CMFB  
Compare Match Flag A  
Setting condition:  
When the TCNTV value matches the TCORA value  
Clearing condition:  
After reading CMFA = 1, cleared by writing 0 to CMFA  
Timer Overflow Flag  
Setting condition:  
When TCNTV overflows from H'FF to H'00  
Clearing condition:  
After reading OVF = 1, cleared by writing 0 to OVF  
Reserved  
This bit is always read as 1.  
Output Select 3 and 2  
3
2
OS3  
OS2  
0
0
R/W  
R/W  
These bits select an output method for the TOMV pin by  
the compare match of TCORB and TCNTV.  
00: No change  
01: 0 output  
10: 1 output  
11: Output toggles  
Output Select 1 and 0  
1
0
OS1  
OS0  
0
0
R/W  
R/W  
These bits select an output method for the TOMV pin by  
the compare match of TCORA and TCNTV.  
00: No change  
01: 0 output  
10: 1 output  
11: Output toggles  
Rev. 4.0, 03/02, page 138 of 400  
OS3 and OS2 select the output level for compare match B. OS1 and OS0 select the output level  
for compare match A. The two output levels can be controlled independently. After a reset, the  
timer output is 0 until the first compare match.  
11.3.5 Timer Control Register V1 (TCRV1)  
TCRV1 selects the edge at the TRGV pin, enables TRGV input, and selects the clock input to  
TCNTV.  
Bit  
Bit Name Initial Value R/W  
Description  
7 to 5   
All 1  
Reserved  
These bits are always read as 1.  
TRGV Input Edge Select  
4
3
TVEG1  
0
0
R/W  
R/W  
TVEG0  
These bits select the TRGV input edge.  
00: TRGV trigger input is prohibited  
01: Rising edge is selected  
10: Falling edge is selected  
11: Rising and falling edges are both selected  
2
TRGE  
0
R/W  
TCNTV starts counting up by the input of the edge which  
is selected by TVEG1 and TVEG0.  
0: Disables starting counting-up TCNTV by the input of  
the TRGV pin and halting counting-up TCNTV when  
TCNTV is cleared by a compare match.  
1: Enables starting counting-up TCNTV by the input of  
the TRGV pin and halting counting-up TCNTV when  
TCNTV is cleared by a compare match.  
1
0
1
0
Reserved  
This bit is always read as 1.  
Internal Clock Select 0  
ICKS0  
R/W  
This bit selects clock signals to input to TCNTV in  
combination with CKS2 to CKS0 in TCRV0.  
Refer to table 11.2.  
Rev. 4.0, 03/02, page 139 of 400  
11.4  
Operation  
11.4.1 Timer V Operation  
1. According to table 11.2, six internal/external clock signals output by prescaler S can be  
selected as the timer V operating clock signals. When the operating clock signal is selected,  
TCNTV starts counting-up. Figure 11.2 shows the count timing with an internal clock signal  
selected, and figure 11.3 shows the count timing with both edges of an external clock signal  
selected.  
2. When TCNTV overflows (changes from H'FF to H'00), the overflow flag (OVF) in TCRV0  
will be set. The timing at this time is shown in figure 11.4. An interrupt request is sent to the  
CPU when OVIE in TCRV0 is 1.  
3. TCNTV is constantly compared with TCORA and TCORB. Compare match flag A or B  
(CMFA or CMFB) is set to 1 when TCNTV matches TCORA or TCORB, respectively. The  
compare-match signal is generated in the last state in which the values match. Figure 11.5  
shows the timing. An interrupt request is generated for the CPU when CMIEA or CMIEB in  
TCRV0 is 1.  
4. When a compare match A or B is generated, the TMOV responds with the output value  
selected by bits OS3 to OS0 in TCSRV. Figure 11.6 shows the timing when the output is  
toggled by compare match A.  
5. When CCLR1 or CCLR0 in TCRV0 is 01 or 10, TCNTV can be cleared by the corresponding  
compare match. Figure 11.7 shows the timing.  
6. When CCLR1 or CCLR0 in TCRV0 is 11, TCNTV can be cleared by the rising edge of the  
input of TMRIV pin. A TMRIV input pulse-width of at least 1.5 system clocks is necessary.  
Figure 11.8 shows the timing.  
7. When a counter-clearing source is generated with TRGE in TCRV1 set to 1, the counting-up is  
halted as soon as TCNTV is cleared. TCNTV resumes counting-up when the edge selected by  
TVEG1 or TVEG0 in TCRV1 is input from the TGRV pin.  
ø
Internal clock  
TCNTV input  
clock  
N 1  
N
N + 1  
TCNTV  
Figure 11.2 Increment Timing with Internal Clock  
Rev. 4.0, 03/02, page 140 of 400  
ø
TMCIV  
(External clock  
input pin)  
TCNTV input  
clock  
N 1  
N
N + 1  
TCNTV  
Figure 11.3 Increment Timing with External Clock  
ø
TCNTV  
H'FF  
H'00  
Overflow signal  
OVF  
Figure 11.4 OVF Set Timing  
ø
TCNTV  
N
N
N+1  
TCORA or  
TCORB  
Compare match  
signal  
CMFA or  
CMFB  
Figure 11.5 CMFA and CMFB Set Timing  
Rev. 4.0, 03/02, page 141 of 400  
ø
Compare match  
A signal  
Timer V output  
pin  
Figure 11.6 TMOV Output Timing  
ø
Compare match  
A signal  
N
H'00  
TCNTV  
Figure 11.7 Clear Timing by Compare Match  
ø
Compare match  
A signal  
Timer V output  
pin  
N 1  
N
H'00  
TCNTV  
Figure 11.8 Clear Timing by TMRIV Input  
Rev. 4.0, 03/02, page 142 of 400  
11.5  
Timer V Application Examples  
11.5.1 Pulse Output with Arbitrary Duty Cycle  
Figure 11.9 shows an example of output of pulses with an arbitrary duty cycle.  
1. Set bits CCLR1 and CCLR0 in TCRV0 so that TCNTV will be cleared by compare match with  
TCORA.  
2. Set bits OS3 to OS0 in TCSRV so that the output will go to 1 at compare match with TCORA  
and to 0 at compare match with TCORB.  
3. Set bits CKS2 to CKS0 in TCRV0 and bit ICKS0 in TCRV1 to select the desired clock source.  
4. With these settings, a waveform is output without further software intervention, with a period  
determined by TCORA and a pulse width determined by TCORB.  
TCNTV value  
H'FF  
Counter cleared  
TCORA  
TCORB  
H'00  
Time  
TMOV  
Figure 11.9 Pulse Output Example  
Rev. 4.0, 03/02, page 143 of 400  
11.5.2 Pulse Output with Arbitrary Pulse Width and Delay from TRGV Input  
The trigger function can be used to output a pulse with an arbitrary pulse width at an arbitrary  
delay from the TRGV input, as shown in figure 11.10. To set up this output:  
1. Set bits CCLR1 and CCLR0 in TCRV0 so that TCNTV will be cleared by compare match with  
TCORB.  
2. Set bits OS3 to OS0 in TCSRV so that the output will go to 1 at compare match with TCORA  
and to 0 at compare match with TCORB.  
3. Set bits TVEG1 and TVEG0 in TCRV1 and set TRGE to select the falling edge of the TRGV  
input.  
4. Set bits CKS2 to CKS0 in TCRV0 and bit ICKS0 in TCRV1 to select the desired clock source.  
5. After these settings, a pulse waveform will be output without further software intervention,  
with a delay determined by TCORA from the TRGV input, and a pulse width determined by  
(TCORB – TCORA).  
TCNTV value  
H'FF  
Counter cleared  
TCORB  
TCORA  
H'00  
Time  
TRGV  
TMOV  
Compare match A  
Compare match B  
Compare match A  
Compare match B  
clears TCNTV and  
halts count-up  
clears TCNTV and  
halts count-up  
Figure 11.10 Example of Pulse Output Synchronized to TRGV Input  
Rev. 4.0, 03/02, page 144 of 400  
11.6  
Usage Notes  
The following types of contention or operation can occur in timer V operation.  
1. Writing to registers is performed in the T3 state of a TCNTV write cycle. If a TCNTV clear  
signal is generated in the T3 state of a TCNTV write cycle, as shown in figure 11.11, clearing  
takes precedence and the write to the counter is not carried out. If counting-up is generated in  
the T3 state of a TCNTV write cycle, writing takes precedence.  
2. If a compare match is generated in the T3 state of a TCORA or TCORB write cycle, the write  
to TCORA or TCORB takes precedence and the compare match signal is inhibited. Figure  
11.12 shows the timing.  
3. If compare matches A and B occur simultaneously, any conflict between the output selections  
for compare match A and compare match B is resolved by the following priority: toggle  
output > output 1 > output 0.  
4. Depending on the timing, TCNTV may be incremented by a switch between different internal  
clock sources. When TCNTV is internally clocked, an increment pulse is generated from the  
falling edge of an internal clock signal, that is divided system clock (φ). Therefore, as shown  
in figure 11.3 the switch is from a high clock signal to a low clock signal, the switchover is  
seen as a falling edge, causing TCNTV to increment. TCNTV can also be incremented by a  
switch between internal and external clocks.  
TCNTV write cycle by CPU  
T1  
T2  
T3  
ø
Address  
TCNTV address  
Internal write signal  
Counter clear signal  
TCNTV  
N
H'00  
Figure 11.11 Contention between TCNTV Write and Clear  
Rev. 4.0, 03/02, page 145 of 400  
TCORA write cycle by CPU  
T1 T2 T3  
ø
Address  
TCORA address  
Internal write signal  
TCNTV  
TCORA  
N
N
N+1  
M
TCORA write data  
Compare match signal  
Inhibited  
Figure 11.12 Contention between TCORA Write and Compare Match  
Clock before  
switching  
Clock after  
switching  
Count clock  
TCNTV  
N
N+1  
N+2  
Write to CKS1 and CKS0  
Figure 11.13 Internal Clock Switching and TCNTV Operation  
Rev. 4.0, 03/02, page 146 of 400  
Section 12 Timer W  
The timer W has a 16-bit timer having output compare and input capture functions. The timer W  
can count external events and output pulses with an arbitrary duty cycle by compare match  
between the timer counter and four general registers. Thus, it can be applied to various systems.  
12.1  
Features  
Selection of five counter clock sources: four internal clocks (φ, φ/2, φ/4, and φ/8) and an  
external clock (external events can be counted)  
Capability to process up to four pulse outputs or four pulse inputs  
Four general registers:  
Independently assignable output compare or input capture functions  
Usable as two pairs of registers; one register of each pair operates as a buffer for the output  
compare or input capture register  
Four selectable operating modes :  
Waveform output by compare match  
Selection of 0 output, 1 output, or toggle output  
Input capture function  
Rising edge, falling edge, or both edges  
Counter clearing function  
Counters can be cleared by compare match  
PWM mode  
Up to three-phase PWM output can be provided with desired duty ratio.  
Any initial timer output value can be set  
Five interrupt sources  
Four compare match/input capture interrupts and an overflow interrupt.  
Table 12.1 summarizes the timer W functions, and figure 12.1 shows a block diagram of the timer  
W.  
Rev. 4.0, 03/02, page 147 of 400  
TIM08W0A_000020020300  
Table 12.1 Timer W Functions  
Input/Output Pins  
Item  
Counter  
FTIOA  
FTIOB  
FTIOC  
FTIOD  
Count clock  
Internal clocks: φ, φ/2, φ/4, φ/8  
External clock: FTCI  
General registers  
(output compare/input  
capture registers)  
Period  
specified in  
GRA  
GRA  
GRB  
GRC (buffer GRD (buffer  
register for register for  
GRA in buffer GRB in buffer  
mode)  
mode)  
Counter clearing function GRA  
compare  
GRA  
compare  
match  
match  
Initial output value  
setting function  
Yes  
Yes  
Yes  
Yes  
Buffer function  
Yes  
Yes  
Compare  
match output  
0
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1
Yes  
Yes  
Yes  
Toggle  
Yes  
Yes  
Yes  
Input capture function  
PWM mode  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Interrupt sources  
Overflow  
Compare  
Compare  
Compare  
Compare  
match/input match/input match/input match/input  
capture capture capture capture  
Rev. 4.0, 03/02, page 148 of 400  
Internal clock: ø  
ø/2  
FTIOA  
Clock  
selector  
FTIOB  
FTIOC  
FTIOD  
IRRTW  
ø/4  
ø/8  
Control logic  
External clock: FTCI  
Comparator  
Internal  
data bus  
Legend:  
TMRW: Timer mode register W (8 bits)  
TCRW: Timer control register W (8 bits)  
TIERW: Timer interrupt enable register W (8 bits)  
TSRW: Timer status register W (8 bits)  
TIOR:  
Timer I/O control register (8 bits)  
TCNT: Timer counter (16 bits)  
GRA:  
GRB:  
GRC:  
GRD:  
General register A (input capture/output compare register: 16 bits)  
General register B (input capture/output compare register: 16 bits)  
General register C (input capture/output compare register: 16 bits)  
General register D (input capture/output compare register: 16 bits)  
IRRTW: Timer W interrupt request  
Figure 12.1 Timer W Block Diagram  
12.2  
Input/Output Pins  
Table 12.2 summarizes the timer W pins.  
Table 12.2 Pin Configuration  
Name  
Abbreviation Input/Output  
Function  
External clock input  
FTCI  
Input  
External clock input pin  
Input capture/output  
compare A  
FTIOA  
Input/output  
Output pin for GRA output compare or  
input pin for GRA input capture  
Input capture/output  
compare B  
FTIOB  
FTIOC  
FTIOD  
Input/output  
Input/output  
Input/output  
Output pin for GRB output compare,  
input pin for GRB input capture, or  
PWM output pin in PWM mode  
Input capture/output  
compare C  
Output pin for GRC output compare,  
input pin for GRC input capture, or  
PWM output pin in PWM mode  
Input capture/output  
compare D  
Output pin for GRD output compare,  
input pin for GRD input capture, or  
PWM output pin in PWM mode  
Rev. 4.0, 03/02, page 149 of 400  
12.3  
Register Descriptions  
The timer W has the following registers.  
Timer mode register W (TMRW)  
Timer control register W (TCRW)  
Timer interrupt enable register W (TIERW)  
Timer status register W (TSRW)  
Timer I/O control register 0 (TIOR0)  
Timer I/O control register 1 (TIOR1)  
Timer counter (TCNT)  
General register A (GRA)  
General register B (GRB)  
General register C (GRC)  
General register D (GRD)  
Rev. 4.0, 03/02, page 150 of 400  
12.3.1 Timer Mode Register W (TMRW)  
TMRW selects the general register functions and the timer output mode.  
Bit Bit Name Initial Value R/W  
Description  
7
CTS  
0
R/W  
Counter Start  
The counter operation is halted when this bit is 0, while it  
can be performed when this bit is 1.  
6
5
1
0
Reserved  
This bit is always read as 1.  
Buffer Operation B  
Selects the GRD function.  
BUFEB  
R/W  
0: GRD operates as an input capture/output compare  
register  
1: GRD operates as the buffer register for GRB  
Buffer Operation A  
4
BUFEA  
0
R/W  
Selects the GRC function.  
0: GRC operates as an input capture/output compare  
register  
1: GRC operates as the buffer register for GRA  
Reserved  
3
2
1
0
This bit is always read as 1.  
PWM Mode D  
PWMD  
R/W  
Selects the output mode of the FTIOD pin.  
0: FTIOD operates normally (output compare output)  
1: PWM output  
1
0
PWMC  
PWMB  
0
0
R/W  
R/W  
PWM Mode C  
Selects the output mode of the FTIOC pin.  
0: FTIOC operates normally (output compare output)  
1: PWM output  
PWM Mode B  
Selects the output mode of the FTIOB pin.  
0: FTIOB operates normally (output compare output)  
1: PWM output  
12.3.2 Timer Control Register W (TCRW)  
TCRW selects the timer counter clock source, selects a clearing condition, and specifies the timer  
output levels.  
Rev. 4.0, 03/02, page 151 of 400  
Bit Bit Name Initial Value  
R/W  
Description  
7
CCLR  
0
R/W  
Counter Clear  
The TCNT value is cleared by compare match A when this  
bit is 1. When it is 0, TCNT operates as a free-running  
counter.  
6
5
4
CKS2  
CKS1  
CKS0  
0
0
0
R/W  
R/W  
R/W  
Clock Select 2 to 0  
Select the TCNT clock source.  
000: Internal clock: counts on φ  
001: Internal clock: counts on φ/2  
010: Internal clock: counts on φ/4  
011: Internal clock: counts on φ/8  
1XX: Counts on rising edges of the external event (FTCI)  
When the internal clock source (φ) is selected, subclock  
sources are counted in subactive and subsleep modes.  
3
2
1
0
TOD  
TOC  
TOB  
TOA  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
Timer Output Level Setting D  
Sets the output value of the FTIOD pin until the first  
compare match D is generated.  
0: Output value is 0*  
1: Output value is 1*  
Timer Output Level Setting C  
Sets the output value of the FTIOC pin until the first  
compare match C is generated.  
0: Output value is 0*  
1: Output value is 1*  
Timer Output Level Setting B  
Sets the output value of the FTIOB pin until the first  
compare match B is generated.  
0: Output value is 0*  
1: Output value is 1*  
Timer Output Level Setting A  
Sets the output value of the FTIOA pin until the first  
compare match A is generated.  
0: Output value is 0*  
1: Output value is 1*  
Legend X: Don't care.  
Note: * The change of the setting is immediately reflected in the output value.  
Rev. 4.0, 03/02, page 152 of 400  
12.3.3 Timer Interrupt Enable Register W (TIERW)  
TIERW controls the timer W interrupt request.  
Bit Bit Name Initial Value R/W  
Description  
7
OVIE  
0
R/W  
Timer Overflow Interrupt Enable  
When this bit is set to 1, FOVI interrupt requested by OVF  
flag in TSRW is enabled.  
6
5
4
3
1
1
1
0
Reserved  
These bits are always read as 1.  
IMIED  
R/W  
Input Capture/Compare Match Interrupt Enable D  
When this bit is set to 1, IMID interrupt requested by IMFD  
flag in TSRW is enabled.  
2
1
0
IMIEC  
IMIEB  
IMIEA  
0
0
0
R/W  
R/W  
R/W  
Input Capture/Compare Match Interrupt Enable C  
When this bit is set to 1, IMIC interrupt requested by IMFC  
flag in TSRW is enabled.  
Input Capture/Compare Match Interrupt Enable B  
When this bit is set to 1, IMIB interrupt requested by IMFB  
flag in TSRW is enabled.  
Input Capture/Compare Match Interrupt Enable A  
When this bit is set to 1, IMIA interrupt requested by IMFA  
flag in TSRW is enabled.  
12.3.4 Timer Status Register W (TSRW)  
TSRW shows the status of interrupt requests.  
Bit Bit Name Initial Value  
R/W  
Description  
7
OVF  
0
R/W  
Timer Overflow Flag  
[Setting condition]  
When TCNT overflows from H'FFFF to H'0000  
[Clearing condition]  
Read OVF when OVF = 1, then write 0 in OVF  
Reserved  
6
5
4
1
1
1
These bits are always read as 1.  
Rev. 4.0, 03/02, page 153 of 400  
Bit Bit Name Initial Value  
R/W  
Description  
3
2
1
0
IMFD  
IMFC  
IMFB  
IMFA  
0
0
0
0
R/W  
Input Capture/Compare Match Flag D  
[Setting conditions]  
TCNT = GRD when GRD functions as an output  
compare register  
The TCNT value is transferred to GRD by an input  
capture signal when GRD functions as an input capture  
register  
[Clearing condition]  
Read IMFD when IMFD = 1, then write 0 in IMFD  
Input Capture/Compare Match Flag C  
[Setting conditions]  
R/W  
R/W  
R/W  
TCNT = GRC when GRC functions as an output  
compare register  
The TCNT value is transferred to GRC by an input  
capture signal when GRC functions as an input capture  
register  
[Clearing condition]  
Read IMFC when IMFC = 1, then write 0 in IMFC  
Input Capture/Compare Match Flag B  
[Setting conditions]  
TCNT = GRB when GRB functions as an output  
compare register  
The TCNT value is transferred to GRB by an input  
capture signal when GRB functions as an input capture  
register  
[Clearing condition]  
Read IMFB when IMFB = 1, then write 0 in IMFB  
Input Capture/Compare Match Flag A  
[Setting conditions]  
TCNT = GRA when GRA functions as an output  
compare register  
The TCNT value is transferred to GRA by an input  
capture signal when GRA functions as an input capture  
register  
[Clearing condition]  
Read IMFA when IMFA = 1, then write 0 in IMFA  
Rev. 4.0, 03/02, page 154 of 400  
12.3.5 Timer I/O Control Register 0 (TIOR0)  
TIOR0 selects the functions of GRA and GRB, and specifies the functions of the FTIOA and  
FTIOB pins.  
Bit Bit Name Initial Value R/W  
Description  
7
1
Reserved  
This bit is always read as 1.  
I/O Control B2  
6
IOB2  
0
R/W  
Selects the GRB function.  
0: GRB functions as an output compare register  
1: GRB functions as an input capture register  
I/O Control B1 and B0  
5
4
IOB1  
IOB0  
0
0
R/W  
R/W  
When IOB2 = 0,  
00: No output at compare match  
01: 0 output to the FTIOB pin at GRB compare match  
10: 1 output to the FTIOB pin at GRB compare match  
11: Output toggles to the FTIOB pin at GRB compare  
match  
When IOB2 = 1,  
00: Input capture at rising edge at the FTIOB pin  
01: Input capture at falling edge at the FTIOB pin  
1X: Input capture at rising and falling edges of the FTIOB  
pin  
3
2
1
0
Reserved  
This bit is always read as 1.  
IOA2  
R/W  
I/O Control A2  
Selects the GRA function.  
0: GRA functions as an output compare register  
1: GRA functions as an input capture register  
I/O Control A1 and A0  
1
0
IOA1  
IOA0  
0
0
R/W  
R/W  
When IOA2 = 0,  
00: No output at compare match  
01: 0 output to the FTIOA pin at GRA compare match  
10: 1 output to the FTIOA pin at GRA compare match  
11: Output toggles to the FTIOA pin at GRA compare  
match  
When IOA2 = 1,  
00: Input capture at rising edge of the FTIOA pin  
01: Input capture at falling edge of the FTIOA pin  
1X: Input capture at rising and falling edges of the FTIOA  
pin  
Legend X: Don't care.  
Rev. 4.0, 03/02, page 155 of 400  
12.3.6 Timer I/O Control Register 1 (TIOR1)  
TIOR1 selects the functions of GRC and GRD, and specifies the functions of the FTIOC and  
FTIOD pins.  
Bit Bit Name Initial Value  
R/W  
Description  
7
1
Reserved  
This bit is always read as 1.  
I/O Control D2  
6
IOD2  
0
R/W  
Selects the GRD function.  
0: GRD functions as an output compare register  
1: GRD functions as an input capture register  
I/O Control D1 and D0  
5
4
IOD1  
IOD0  
0
0
R/W  
R/W  
When IOD2 = 0,  
00: No output at compare match  
01: 0 output to the FTIOD pin at GRD compare match  
10: 1 output to the FTIOD pin at GRD compare match  
11: Output toggles to the FTIOD pin at GRD compare  
match  
When IOD2 = 1,  
00: Input capture at rising edge at the FTIOD pin  
01: Input capture at falling edge at the FTIOD pin  
1X: Input capture at rising and falling edges at the FTIOD  
pin  
3
2
1
0
Reserved  
This bit is always read as 1.  
IOC2  
R/W  
I/O Control C2  
Selects the GRC function.  
0: GRC functions as an output compare register  
1: GRC functions as an input capture register  
I/O Control C1 and C0  
1
0
IOC1  
IOC0  
0
0
R/W  
R/W  
When IOC2 = 0,  
00: No output at compare match  
01: 0 output to the FTIOC pin at GRC compare match  
10: 1 output to the FTIOC pin at GRC compare match  
11: Output toggles to the FTIOC pin at GRC compare  
match  
When IOC2 = 1,  
00: Input capture to GRC at rising edge of the FTIOC pin  
01: Input capture to GRC at falling edge of the FTIOC pin  
1X: Input capture to GRC at rising and falling edges of the  
FTIOC pin  
Legend X: Don't care.  
Rev. 4.0, 03/02, page 156 of 400  
12.3.7 Timer Counter (TCNT)  
TCNT is a 16-bit readable/writable up-counter. The clock source is selected by bits CKS2 to  
CKS0 in TCRW. TCNT can be cleared to H'0000 through a compare match with GRA by setting  
the CCLR in TCRW to 1. When TCNT overflows (changes from H'FFFF to H'0000), the OVF  
flag in TSRW is set to 1. If OVIE in TIERW is set to 1 at this time, an interrupt request is  
generated. TCNT must always be read or written in 16-bit units; 8-bit access is not allowed.  
TCNT is initialized to H'0000 by a reset.  
12.3.8 General Registers A to D (GRA to GRD)  
Each general register is a 16-bit readable/writable register that can function as either an output-  
compare register or an input-capture register. The function is selected by settings in TIOR0 and  
TIOR1.  
When a general register is used as an input-compare register, its value is constantly compared with  
the TCNT value. When the two values match (a compare match), the corresponding flag (IMFA,  
IMFB, IMFC, or IMFD) in TSRW is set to 1. An interrupt request is generated at this time, when  
IMIEA, IMIEB, IMIEC, or IMIED is set to 1. Compare match output can be selected in TIOR.  
When a general register is used as an input-capture register, an external input-capture signal is  
detected and the current TCNT value is stored in the general register. The corresponding flag  
(IMFA, IMFB, IMFC, or IMFD) in TSRW is set to 1. If the corresponding interrupt-enable bit  
(IMIEA, IMIEB, IMIEC, or IMIED) in TSRW is set to 1 at this time, an interrupt request is  
generated. The edge of the input-capture signal is selected in TIOR.  
GRC and GRD can be used as buffer registers of GRA and GRB, respectively, by setting BUFEA  
and BUFEB in TMRW.  
For example, when GRA is set as an output-compare register and GRC is set as the buffer register  
for GRA, the value in the buffer register GRC is sent to GRA whenever compare match A is  
generated.  
When GRA is set as an input-capture register and GRC is set as the buffer register for GRA, the  
value in TCNT is transferred to GRA and the value in the buffer register GRC is transferred to  
GRA whenever an input capture is generated.  
GRA to GRD must be written or read in 16-bit units; 8-bit access is not allowed. GRA to GRD are  
initialized to H'FFFF by a reset.  
Rev. 4.0, 03/02, page 157 of 400  
12.4  
Operation  
The timer W has the following operating modes.  
Normal Operation  
PWM Operation  
12.4.1 Normal Operation  
TCNT performs free-running or periodic counting operations. After a reset, TCNT is set as a free-  
running counter. When the CST bit in TMRW is set to 1, TCNT starts incrementing the count.  
When the count overflows from H'FFFF to H'0000, the OVF flag in TSRW is set to 1. If the OVIE  
in TIERW is set to 1, an interrupt request is generated. Figure 12.2 shows free-running counting.  
TCNT value  
H'FFFF  
H'0000  
CST bit  
Time  
Flag cleared  
by software  
OVF  
Figure 12.2 Free-Running Counter Operation  
Periodic counting operation can be performed when GRA is set as an output compare register and  
bit CCLR in TCRW is set to 1. When the count matches GRA, TCNT is cleared to H'0000, the  
IMFA flag in TSRW is set to 1. If the corresponding IMIEA bit in TIERW is set to 1, an interrupt  
request is generated. TCNT continues counting from H'0000. Figure 12.3 shows periodic  
counting.  
Rev. 4.0, 03/02, page 158 of 400  
TCNT value  
GRA  
H'0000  
CST bit  
Time  
Flag cleared  
by software  
IMFA  
Figure 12.3 Periodic Counter Operation  
By setting a general register as an output compare register, compare match A, B, C, or D can  
cause the output at the FTIOA, FTIOB, FTIOC, or FTIOD pin to output 0, output 1, or toggle.  
Figure 12.4 shows an example of 0 and 1 output when TCNT operates as a free-running counter, 1  
output is selected for compare match A, and 0 output is selected for compare match B. When  
signal is already at the selected output level, the signal level does not change at compare match.  
TCNT value  
H'FFFF  
GRA  
GRB  
Time  
No change  
No change  
H'0000  
FTIOA  
FTIOB  
No change  
No change  
Figure 12.4 0 and 1 Output Example (TOA = 0, TOB = 1)  
Figure 12.5 shows an example of toggle output when TCNT operates as a free-running counter,  
and toggle output is selected for both compare match A and B.  
Rev. 4.0, 03/02, page 159 of 400  
TCNT value  
H'FFFF  
GRA  
GRB  
Time  
H'0000  
Toggle output  
Toggle output  
FTIOA  
FTIOB  
Figure 12.5 Toggle Output Example (TOA = 0, TOB = 1)  
Figure 12.6 shows another example of toggle output when TCNT operates as a periodic counter,  
cleared by compare match A. Toggle output is selected for both compare match A and B.  
TCNT value  
Counter cleared by compare match with GRA  
H'FFFF  
GRA  
GRB  
Time  
H'0000  
FTIOA  
Toggle  
output  
Toggle  
output  
FTIOB  
Figure 12.6 Toggle Output Example (TOA = 0, TOB = 1)  
The TCNT value can be captured into a general register (GRA, GRB, GRC, or GRD) when a  
signal level changes at an input-capture pin (FTIOA, FTIOB, FTIOC, or FTIOD). Capture can  
take place on the rising edge, falling edge, or both edges. By using the input-capture function, the  
pulse width and periods can be measured. Figure 12.7 shows an example of input capture when  
both edges of FTIOA and the falling edge of FTIOB are selected as capture edges. TCNT operates  
as a free-running counter.  
Rev. 4.0, 03/02, page 160 of 400  
TCNT value  
H'FFFF  
H'F000  
H'AA55  
H'55AA  
H'1000  
H'0000  
Time  
FTIOA  
GRA  
H'1000  
H'F000  
H'55AA  
FTIOB  
GRB  
H'AA55  
Figure 12.7 Input Capture Operating Example  
Figure 12.8 shows an example of buffer operation when the GRA is set as an input-capture  
register and GRC is set as the buffer register for GRA. TCNT operates as a free-running counter,  
and FTIOA captures both rising and falling edge of the input signal. Due to the buffer operation,  
the GRA value is transferred to GRC by input-capture A and the TCNT value is stored in GRA.  
TCNT value  
H'FFFF  
H'DA91  
H'5480  
H'0245  
H'0000  
Time  
FTIOA  
H'0245  
H'5480  
H'0245  
H'DA91  
H'5480  
GRA  
GRC  
Figure 12.8 Buffer Operation Example (Input Capture)  
Rev. 4.0, 03/02, page 161 of 400  
12.4.2 PWM Operation  
In PWM mode, PWM waveforms are generated by using GRA as the period register and GRB,  
GRC, and GRD as duty registers. PWM waveforms are output from the FTIOB, FTIOC, and  
FTIOD pins. Up to three-phase PWM waveforms can be output. In PWM mode, a general register  
functions as an output compare register automatically. The output level of each pin depends on the  
corresponding timer output level set bit (TOB, TOC, and TOD) in TCRW. When TOB is 1, the  
FTIOB output goes to 1 at compare match A and to 0 at compare match B. When TOB is 0, the  
FTIOB output goes to 0 at compare match A and to 1 at compare match B. Thus the compare  
match output level settings in TIOR0 and TIOR1 are ignored for the output pin set to PWM mode.  
If the same value is set in the cycle register and the duty register, the output does not change when  
a compare match occurs.  
Figure 12.9 shows an example of operation in PWM mode. The output signals go to 1 and TCNT  
is cleared at compare match A, and the output signals go to 0 at compare match B, C, and D  
(TOB, TOC, and TOD = 1: initial output values are set to 1).  
TCNT value  
Counter cleared by compare match A  
GRA  
GRB  
GRC  
GRD  
H'0000  
Time  
FTIOB  
FTIOC  
FTIOD  
Figure 12.9 PWM Mode Example (1)  
Figure 12.10 shows another example of operation in PWM mode. The output signals go to 0 and  
TCNT is cleared at compare match A, and the output signals go to 1 at compare match B, C, and  
D (TOB, TOC, and TOD = 0: initial output values are set to 1).  
Rev. 4.0, 03/02, page 162 of 400  
TCNT value  
Counter cleared by compare match A  
GRA  
GRB  
GRC  
GRD  
H'0000  
Time  
FTIOB  
FTIOC  
FTIOD  
Figure 12.10 PWM Mode Example (2)  
Figure 12.11 shows an example of buffer operation when the FTIOB pin is set to PWM mode and  
GRD is set as the buffer register for GRB. TCNT is cleared by compare match A, and FTIOB  
outputs 1 at compare match B and 0 at compare match A.  
Due to the buffer operation, the FTIOB output level changes and the value of buffer register GRD  
is transferred to GRB whenever compare match B occurs. This procedure is repeated every time  
compare match B occurs.  
TCNT value  
GRA  
H'0520  
H'0450  
H'0200  
GRB  
Time  
H'0000  
GRD  
H'0200  
H'0450  
H'0520  
H'0200  
H'0450  
H'0520  
GRB  
FTIOB  
Figure 12.11 Buffer Operation Example (Output Compare)  
Figures 12.12 and 12.13 show examples of the output of PWM waveforms with duty cycles of 0%  
and 100%.  
Rev. 4.0, 03/02, page 163 of 400  
TCNT value  
Write to GRB  
GRA  
GRB  
Write to GRB  
H'0000  
Time  
Duty 0%  
FTIOB  
Output does not change when cycle register  
and duty register compare matches occur  
simultaneously.  
TCNT value  
Write to GRB  
GRA  
Write to GRB  
Write to GRB  
Duty 100%  
GRB  
H'0000  
Time  
FTIOB  
Output does not change when cycle register  
and duty register compare matches occur  
simultaneously.  
TCNT value  
Write to GRB  
GRA  
Write to GRB  
Write to GRB  
Time  
GRB  
H'0000  
Duty 100%  
Duty 0%  
FTIOB  
Figure 12.12 PWM Mode Example  
(TOB, TOC, and TOD = 0: initial output values are set to 0)  
Rev. 4.0, 03/02, page 164 of 400  
TCNT value  
Write to GRB  
GRA  
GRB  
Write to GRB  
H'0000  
Time  
Duty 100%  
FTIOB  
Output does not change when cycle register  
and duty register compare matches occur  
simultaneously.  
TCNT value  
Write to GRB  
GRA  
Write to GRB  
Write to GRB  
Duty 0%  
GRB  
H'0000  
Time  
FTIOB  
Output does not change when cycle register  
and duty register compare matches occur  
simultaneously.  
TCNT value  
Write to GRB  
GRA  
Write to GRB  
Write to GRB  
Time  
GRB  
H'0000  
Duty 0%  
Duty 100%  
FTIOB  
Figure 12.13 PWM Mode Example  
(TOB, TOC, and TOD = 1: initial output values are set to 1)  
Rev. 4.0, 03/02, page 165 of 400  
12.5  
Operation Timing  
12.5.1 TCNT Count Timing  
Figure 12.14 shows the TCNT count timing when the internal clock source is selected. Figure  
12.15 shows the timing when the external clock source is selected. The pulse width of the external  
clock signal must be at least two system clock (φ) cycles; shorter pulses will not be counted  
correctly.  
φ
Internal  
clock  
Rising edge  
TCNT input  
clock  
TCNT  
N
N+1  
N+2  
Figure 12.14 Count Timing for Internal Clock Source  
φ
External  
clock  
Rising edge  
Rising edge  
TCNT input  
clock  
TCNT  
N
N+1  
N+2  
Figure 12.15 Count Timing for External Clock Source  
12.5.2 Output Compare Output Timing  
The compare match signal is generated in the last state in which TCNT and GR match (when  
TCNT changes from the matching value to the next value). When the compare match signal is  
generated, the output value selected in TIOR is output at the compare match output pin (FTIOA,  
FTIOB, FTIOC, or FTIOD).  
When TCNT matches GR, the compare match signal is generated only after the next counter clock  
pulse is input.  
Rev. 4.0, 03/02, page 166 of 400  
Figure 12.16 shows the output compare timing.  
φ
TCNT input  
clock  
N
N
N+1  
TCNT  
GRA to GRD  
Compare  
match signal  
FTIOA to FTIOD  
Figure 12.16 Output Compare Output Timing  
12.5.3 Input Capture Timing  
Input capture on the rising edge, falling edge, or both edges can be selected through settings in  
TIOR0 and TIOR1. Figure 12.17 shows the timing when the falling edge is selected. The pulse  
width of the input capture signal must be at least two system clock (φ) cycles; shorter pulses will  
not be detected correctly.  
ø
Input capture  
input  
Input capture  
signal  
N1  
N
N+1  
N
N+2  
TCNT  
GRA to GRD  
Figure 12.17 Input Capture Input Signal Timing  
Rev. 4.0, 03/02, page 167 of 400  
12.5.4 Timing of Counter Clearing by Compare Match  
Figure 12.18 shows the timing when the counter is cleared by compare match A. When the GRA  
value is N, the counter counts from 0 to N, and its cycle is N + 1.  
φ
Compare  
match signal  
N
N
H'0000  
TCNT  
GRA  
Figure 12.18 Timing of Counter Clearing by Compare Match  
12.5.5 Buffer Operation Timing  
Figures 12.19 and 12.20 show the buffer operation timing.  
φ
Compare  
match signal  
N
N+1  
TCNT  
M
GRC, GRD  
GRA, GRB  
M
Figure 12.19 Buffer Operation Timing (Compare Match)  
Rev. 4.0, 03/02, page 168 of 400  
φ
Input capture  
signal  
N
N+1  
TCNT  
GRA, GRB  
M
N
N+1  
N
GRC, GRD  
M
Figure 12.20 Buffer Operation Timing (Input Capture)  
12.5.6 Timing of IMFA to IMFD Flag Setting at Compare Match  
If a general register (GRA, GRB, GRC, or GRD) is used as an output compare register, the  
corresponding IMFA, IMFB, IMFC, or IMFD flag is set to 1 when TCNT matches the general  
register.  
The compare match signal is generated in the last state in which the values match (when TCNT is  
updated from the matching count to the next count). Therefore, when TCNT matches a general  
register, the compare match signal is generated only after the next TCNT clock pulse is input.  
Figure 12.21 shows the timing of the IMFA to IMFD flag setting at compare match.  
φ
TCNT input  
clock  
TCNT  
N
N
N+1  
GRA to GRD  
Compare  
match signal  
IMFA to IMFD  
IRRTW  
Figure 12.21 Timing of IMFA to IMFD Flag Setting at Compare Match  
Rev. 4.0, 03/02, page 169 of 400  
12.5.7 Timing of IMFA to IMFD Setting at Input Capture  
If a general register (GRA, GRB, GRC, or GRD) is used as an input capture register, the  
corresponding IMFA, IMFB, IMFC, or IMFD flag is set to 1 when an input capture occurs. Figure  
12.22 shows the timing of the IMFA to IMFD flag setting at input capture.  
φ
Input capture  
signal  
TCNT  
N
GRA to GRD  
IMFA to IMFD  
IRRTW  
N
Figure 12.22 Timing of IMFA to IMFD Flag Setting at Input Capture  
12.5.8 Timing of Status Flag Clearing  
When the CPU reads a status flag while it is set to 1, then writes 0 in the status flag, the status flag  
is cleared. Figure 12.23 shows the status flag clearing timing.  
TSRW write cycle  
T1  
T2  
φ
TSRW address  
Address  
Write signal  
IMFA to IMFD  
IRRTW  
Figure 12.23 Timing of Status Flag Clearing by CPU  
Rev. 4.0, 03/02, page 170 of 400  
12.6 Usage Notes  
The following types of contention or operation can occur in timer W operation.  
1. The pulse width of the input clock signal and the input capture signal must be at least two  
system clock (φ) cycles; shorter pulses will not be detected correctly.  
2. Writing to registers is performed in the T2 state of a TCNT write cycle.  
If counter clear signal occurs in the T2 state of a TCNT write cycle, clearing of the counter  
takes priority and the write is not performed, as shown in figure 12.24. If counting-up is  
generated in the TCNT write cycle to contend with the TCNT counting-up, writing takes  
precedence.  
3. Depending on the timing, TCNT may be incremented by a switch between different internal  
clock sources. When TCNT is internally clocked, an increment pulse is generated from the  
rising edge of an internal clock signal, that is divided system clock (φ). Therefore, as shown in  
figure 12.25 the switch is from a low clock signal to a high clock signal, the switchover is seen  
as a rising edge, causing TCNT to increment.  
4. If timer W enters module standby mode while an interrupt request is generated, the interrupt  
request cannot be cleared. Before entering module standby mode, disable interrupt requests.  
TCNT write cycle  
T1  
T2  
φ
TCNT address  
Address  
Write signal  
Counter clear  
signal  
N
H'0000  
TCNT  
Figure 12.24 Contention between TCNT Write and Clear  
Rev. 4.0, 03/02, page 171 of 400  
Previous clock  
New clock  
Count clock  
TCNT  
N
N+1  
N+2  
N+3  
The change in signal level at clock switching is  
assumed to be a rising edge, and TCNT  
increments the count.  
Figure 12.25 Internal Clock Switching and TCNT Operation  
Rev. 4.0, 03/02, page 172 of 400  
Section 13 Watchdog Timer  
The watchdog timer is an 8-bit timer that can generate an internal reset signal for this LSI if a  
system crash prevents the CPU from writing to the timer counter, thus allowing it to overflow.  
The block diagram of the watchdog timer is shown in figure 13.1.  
CLK  
PSS  
Internal  
oscillator  
TCSRWD  
TCWD  
ø
TMWD  
Legend:  
Internal reset  
signal  
TCSRWD: Timer control/status register WD  
TCWD:  
PSS:  
Timer counter WD  
Prescaler S  
TMWD:  
Timer mode register WD  
Figure 13.1 Block Diagram of Watchdog Timer  
13.1  
Features  
Selectable from nine counter input clocks.  
Eight clock sources (φ/64, φ/128, φ/256, φ/512, φ/1024, φ/2048, φ/4096, and φ/8192) or the  
internal oscillator can be selected as the timer-counter clock. When the internal oscillator is  
selected, it can operate as the watchdog timer in any operating mode.  
Reset signal generated on counter overflow  
An overflow period of 1 to 256 times the selected clock can be set.  
13.2  
Register Descriptions  
The watchdog timer has the following registers.  
Timer control/status register WD (TCSRWD)  
Timer counter WD (TCWD)  
Timer mode register WD (TMWD)  
Rev. 4.0, 03/02, page 173 of 400  
WDT0110A_000020020300  
13.2.1 Timer Control/Status Register WD (TCSRWD)  
TCSRWD performs the TCSRWD and TCWD write control. TCSRWD also controls the  
watchdog timer operation and indicates the operating state. TCSRWD must be rewritten by using  
the MOV instruction. The bit manipulation instruction cannot be used to change the setting value.  
Bit Bit Name Initial Value R/W  
Description  
7
B6WI  
1
R/W  
Bit 6 Write Inhibit  
The TCWE bit can be written only when the write value of  
the B6WI bit is 0.  
This bit is always read as 1.  
6
TCWE  
0
R/W  
Timer Counter WD Write Enable  
TCWD can be written when the TCWE bit is set to 1.  
When writing data to this bit, the value for bit 7 must be 0.  
Bit 4 Write Inhibit  
5
4
B4WI  
1
0
R/W  
R/W  
The TCSRWE bit can be written only when the write value  
of the B4WI bit is 0. This bit is always read as 1.  
TCSRWE  
Timer Control/Status Register W Write Enable  
The WDON and WRST bits can be written when the  
TCSRWE bit is set to 1.  
When writing data to this bit, the value for bit 5 must be 0.  
Bit 2 Write Inhibit  
3
2
B2WI  
1
0
R/W  
R/W  
This bit can be written to the WDON bit only when the write  
value of the B2WI bit is 0.  
This bit is always read as 1.  
Watchdog Timer On  
WDON  
TCWD starts counting up when WDON is set to 1 and halts  
when WDON is cleared to 0.  
[Setting condition]  
When 1 is written to the WDON bit while writing 0 to the  
B2WI bit when the TCSRWE bit=1  
[Clearing condition]  
Reset by RES pin  
When 0 is written to the WDON bit while writing 0 to the  
B2WI when the TCSRWE bit=1  
1
B0WI  
1
R/W  
Bit 0 Write Inhibit  
This bit can be written to the WRST bit only when the write  
value of the B0WI bit is 0. This bit is always read as 1.  
Rev. 4.0, 03/02, page 174 of 400  
Bit Bit Name Initial Value R/W  
WRST R/W  
Description  
0
0
Watchdog Timer Reset  
[Setting condition]  
When TCWD overflows and an internal reset signal is  
generated  
[Clearing condition]  
Reset by RES pin  
When 0 is written to the WRST bit while writing 0 to the  
B0WI bit when the TCSRWE bit=1  
13.2.2 Timer Counter WD (TCWD)  
TCWD is an 8-bit readable/writable up-counter. When TCWD overflows from H'FF to H'00, the  
internal reset signal is generated and the WRST bit in TCSRWD is set to 1. TCWD is initialized to  
H'00.  
13.2.3 Timer Mode Register WD (TMWD)  
TMWD selects the input clock.  
Bit  
Bit Name Initial Value R/W  
Description  
7 to 4   
All 1  
Reserved  
These bits are always read as 1.  
Clock Select 3 to 0  
3
2
1
0
CKS3  
1
1
1
1
R/W  
R/W  
R/W  
R/W  
CKS2  
CKS1  
CKS0  
Select the clock to be input to TCWD.  
1000: Internal clock: counts on φ/64  
1001: Internal clock: counts on φ/128  
1010: Internal clock: counts on φ/256  
1011: Internal clock: counts on φ/512  
1100: Internal clock: counts on φ/1024  
1101: Internal clock: counts on φ/2048  
1110: Internal clock: counts on φ/4096  
1111: Internal clock: counts on φ8192  
0XXX: Internal oscillator  
For the internal oscillator overflow periods, see section  
20, Electrical Characteristics.  
Legend X: Don't care.  
Rev. 4.0, 03/02, page 175 of 400  
13.3  
Operation  
The watchdog timer is provided with an 8-bit counter. If 1 is written to WDON while writing 0 to  
B2WI when the TCSRWE bit in TCSRWD is set to 1, TCWD begins counting up. (To operate  
the watchdog timer, two write accesses to TCSRWD are required.) When a clock pulse is input  
after the TCWD count value has reached H'FF, the watchdog timer overflows and an internal reset  
signal is generated. The internal reset signal is output for a period of 512 φosc clock cycles. TCWD  
is a writable counter, and when a value is set in TCWD, the count-up starts from that value. An  
overflow period in the range of 1 to 256 input clock cycles can therefore be set, according to the  
TCWD set value.  
Figure 13.2 shows an example of watchdog timer operation.  
Example: With 30ms overflow period when φ = 4 MHz  
4 × 106  
8192  
× 30 × 103 = 14.6  
Therefore, 256 15 = 241 (H'F1) is set in TCW.  
TCWD overflow  
H'FF  
H'F1  
TCWD  
count value  
H'00  
Start  
H'F1 written  
to TCWD  
H'F1 written to TCWD  
Reset generated  
Internal reset  
signal  
512 φosc clock cycles  
Figure 13.2 Watchdog Timer Operation Example  
Rev. 4.0, 03/02, page 176 of 400  
Section 14 Serial Communication Interface3 (SCI3)  
Serial Communication Interface 3 (SCI3) can handle both asynchronous and clocked synchronous  
serial communication. In the asynchronous method, serial data communication can be carried out  
using standard asynchronous communication chips such as a Universal Asynchronous  
Receiver/Transmitter (UART) or an Asynchronous Communication Interface Adapter (ACIA). A  
function is also provided for serial communication between processors (multiprocessor  
communication function).  
Figure 14.1 shows a block diagram of the SCI3.  
14.1  
Features  
Choice of asynchronous or clocked synchronous serial communication mode  
Full-duplex communication capability  
The transmitter and receiver are mutually independent, enabling transmission and reception to  
be executed simultaneously.  
Double-buffering is used in both the transmitter and the receiver, enabling continuous  
transmission and continuous reception of serial data.  
On-chip baud rate generator allows any bit rate to be selected  
External clock or on-chip baud rate generator can be selected as a transfer clock source.  
Six interrupt sources  
Transmit-end, transmit-data-empty, receive-data-full, overrun error, framing error, and parity  
error.  
Asynchronous mode  
Data length: 7 or 8 bits  
Stop bit length: 1 or 2 bits  
Parity: Even, odd, or none  
Receive error detection: Parity, overrun, and framing errors  
Break detection: Break can be detected by reading the RxD pin level directly in the case of a  
framing error  
Clocked synchronous mode  
Data length: 8 bits  
Receive error detection: Overrun errors detected  
Rev. 4.0, 03/02, page 177 of 400  
SCI0010A_000020020300  
External  
clock  
Internal clock (ø/64, ø/16, ø/4, ø)  
BRR  
SCK  
3
Baud rate generator  
BRC  
Clock  
SMR  
SCR3  
SSR  
Transmit/receive  
control circuit  
TXD  
RXD  
TSR  
RSR  
TDR  
RDR  
Interrupt request  
(TEI, TXI, RXI, ERI)  
Legend:  
RSR:  
Receive shift register  
RDR:  
TSR:  
TDR:  
Receive data register  
Transmit shift register  
Transmit data register  
Serial mode register  
SMR:  
SCR3: Serial control register 3  
SSR:  
BRR:  
BRC:  
Serial status register  
Bit rate register  
Bit rate counter  
Figure 14.1 Block Diagram of SCI3  
Rev. 4.0, 03/02, page 178 of 400  
14.2  
Input/Output Pins  
Table 14.1 shows the SCI3 pin configuration.  
Table 14.1 Pin Configuration  
Pin Name  
Abbreviation  
SCK3  
I/O  
Function  
SCI3 clock  
I/O  
SCI3 clock input/output  
SCI3 receive data input  
SCI3 transmit data output  
SCI3 receive data input  
SCI3 transmit data output  
RXD  
Input  
Output  
TXD  
14.3 Register Descriptions  
The SCI3 has the following registers.  
Receive shift register (RSR)  
Receive data register (RDR)  
Transmit shift register (TSR)  
Transmit data register (TDR)  
Serial mode register (SMR)  
Serial control register 3 (SCR3)  
Serial status register (SSR)  
Bit rate register (BRR)  
Rev. 4.0, 03/02, page 179 of 400  
14.3.1  
Receive Shift Register (RSR)  
RSR is a shift register that is used to receive serial data input from the RxD pin and convert it into  
parallel data. When one byte of data has been received, it is transferred to RDR automatically.  
RSR cannot be directly accessed by the CPU.  
14.3.2 Receive Data Register (RDR)  
RDR is an 8-bit register that stores received data. When the SCI3 has received one byte of serial  
data, it transfers the received serial data from RSR to RDR, where it is stored. After this, RSR is  
receive-enabled. As RSR and RDR function as a double buffer in this way, continuous receive  
operations are possible. After confirming that the RDRF bit in SSR is set to 1, read RDR only  
once. RDR cannot be written to by the CPU. RDR is initialized to H'00.  
14.3.3 Transmit Shift Register (TSR)  
TSR is a shift register that transmits serial data. To perform serial data transmission, the SCI3 first  
transfers transmit data from TDR to TSR automatically, then sends the data that starts from the  
LSB to the TXD pin. TSR cannot be directly accessed by the CPU.  
14.3.4 Transmit Data Register (TDR)  
TDR is an 8-bit register that stores data for transmission. When the SCI3 detects that TSR is  
empty, it transfers the transmit data written in TDR to TSR and starts transmission. The double-  
buffered structure of TDR and TSR enables continuous serial transmission. If the next transmit  
data has already been written to TDR during transmission of one-frame data, the SCI3 transfers  
the written data to TSR to continue transmission. To achieve reliable serial transmission, write  
transmit data to TDR only once after confirming that the TDRE bit in SSR is set to 1. TDR is  
initialized to H'FF.  
Rev. 4.0, 03/02, page 180 of 400  
14.3.5  
Serial Mode Register (SMR)  
SMR is used to set the SCI3’s serial transfer format and select the on-chip baud rate generator  
clock source.  
Bit  
Bit Name  
Initial Value R/W  
Description  
7
COM  
0
R/W  
Communication Mode  
0: Asynchronous mode  
1: Clocked synchronous mode  
6
5
CHR  
PE  
0
R/W  
Character Length (enabled only in asynchronous  
mode)  
0: Selects 8 bits as the data length.  
1: Selects 7 bits as the data length.  
0
R/W  
Parity Enable (enabled only in asynchronous  
mode)  
When this bit is set to 1, the parity bit is added to  
transmit data before transmission, and the parity  
bit is checked in reception.  
4
3
PM  
0
0
R/W  
R/W  
Parity Mode (enabled only when the PE bit is 1 in  
asynchronous mode)  
0: Selects even parity.  
1: Selects odd parity.  
STOP  
Stop Bit Length (enabled only in asynchronous  
mode)  
Selects the stop bit length in transmission.  
0: 1 stop bit  
1: 2 stop bits  
For reception, only the first stop bit is checked,  
regardless of the value in the bit. If the second  
stop bit is 0, it is treated as the start bit of the next  
transmit character.  
2
MP  
0
R/W  
Multiprocessor Mode  
When this bit is set to 1, the multiprocessor  
communication function is enabled. The PE bit  
and PM bit settings are invalid. In clocked  
synchronous mode, this bit should be cleared to 0.  
Rev. 4.0, 03/02, page 181 of 400  
Bit  
1
Bit Name  
CKS1  
Initial Value R/W  
Description  
0
0
R/W  
R/W  
Clock Select 0 and 1  
0
CKS0  
These bits select the clock source for the on-chip  
baud rate generator.  
00: ø clock (n = 0)  
01: ø/4 clock (n = 1)  
10: ø/16 clock (n = 2)  
11: ø/64 clock (n = 3)  
For the relationship between the bit rate register  
setting and the baud rate, see section 14.3.8, Bit  
Rate Register (BRR). n is the decimal  
representation of the value of n in BRR (see  
section 14.3.8, Bit Rate Register (BRR)).  
14.3.6  
Serial Control Register 3 (SCR3)  
SCR3 is a register that enables or disables SCI3 transfer operations and interrupt requests, and is  
also used to select the transfer clock source. For details on interrupt requests, refer to section 14.7,  
Interrupts.  
Bit  
Bit Name  
Initial Value R/W  
Description  
7
TIE  
0
0
R/W  
R/W  
Transmit Interrupt Enable  
When this bit is set to 1, the TXI interrupt request  
is enabled.  
6
RIE  
Receive Interrupt Enable  
When this bit is set to 1, RXI and ERI interrupt  
requests are enabled.  
5
4
TE  
RE  
0
0
R/W  
R/W  
Transmit Enable  
When this bit is set to 1, transmission is enabled.  
Receive Enable  
When this bit is set to 1, reception is enabled.  
Rev. 4.0, 03/02, page 182 of 400  
Bit  
Bit Name  
Initial Value R/W  
0 R/W  
Description  
3
MPIE  
Multiprocessor Interrupt Enable (enabled only  
when the MP bit in SMR is 1 in asynchronous  
mode)  
When this bit is set to 1, receive data in which the  
multiprocessor bit is 0 is skipped, and setting of  
the RDRF, FER, and OER status flags in SSR is  
prohibited. On receiving data in which the  
multiprocessor bit is 1, this bit is automatically  
cleared and normal reception is resumed. For  
details, refer to section 14.6, Multiprocessor  
Communication Function.  
2
TEIE  
0
R/W  
Transmit End Interrupt Enable  
When this bit is set to 1, the TEI interrupt request  
is enabled.  
1
0
CKE1  
CKE0  
0
0
R/W  
R/W  
Clock Enable 0 and 1  
Selects the clock source.  
Asynchronous mode:  
00: Internal baud rate generator  
01: Internal baud rate generator  
Outputs a clock of the same frequency as the bit  
rate from the SCK3 pin.  
10: External clock  
Inputs a clock with a frequency 16 times the bit  
rate from the SCK3 pin.  
11:Reserved  
Clocked synchronous mode:  
00: Internal clock (SCK3 pin functions as clock  
output)  
01:Reserved  
10: External clock (SCK3 pin functions as clock  
input)  
11:Reserved  
Rev. 4.0, 03/02, page 183 of 400  
14.3.7  
Serial Status Register (SSR)  
SSR is a register containing status flags of the SCI3 and multiprocessor bits for transfer. 1 cannot  
be written to flags TDRE, RDRF, OER, PER, and FER; they can only be cleared.  
Bit  
Bit Name  
Initial Value R/W  
Description  
7
TDRE  
1
R/W  
Transmit Data Register Empty  
Displays whether TDR contains transmit data.  
[Setting conditions]  
When the TE bit in SCR3 is 0  
When data is transferred from TDR to TSR  
[Clearing conditions]  
When 0 is written to TDRE after reading TDRE  
= 1  
When the transmit data is written to TDR  
6
RDRF  
0
R/W  
Receive Data Register Full  
Indicates that the received data is stored in RDR.  
[Setting condition]  
When serial reception ends normally and  
receive data is transferred from RSR to RDR  
[Clearing conditions]  
When 0 is written to RDRF after reading RDRF  
= 1  
When data is read from RDR  
5
OER  
0
R/W  
Overrun Error  
[Setting condition]  
When an overrun error occurs in reception  
[Clearing condition]  
When 0 is written to OER after reading OER =  
1
Rev. 4.0, 03/02, page 184 of 400  
Bit  
Bit Name  
Initial Value R/W  
0 R/W  
Description  
4
FER  
Framing Error  
[Setting condition]  
When a framing error occurs in reception  
[Clearing condition]  
When 0 is written to FER after reading FER =  
1
3
PER  
0
R/W  
Parity Error  
[Setting condition]  
When a parity error is generated during  
reception  
[Clearing condition]  
When 0 is written to PER after reading PER =  
1
2
TEND  
1
R
Transmit End  
[Setting conditions]  
When the TE bit in SCR3 is 0  
When TDRE = 1 at transmission of the last bit  
of a 1-byte serial transmit character  
[Clearing conditions]  
When 0 is written to TEND after reading TEND  
= 1  
When the transmit data is written to TDR  
1
0
MPBR  
MPBT  
0
0
R
Multiprocessor Bit Receive  
MPBR stores the multiprocessor bit in the receive  
character data. When the RE bit in SCR3 is  
cleared to 0, its previous state is retained.  
R/W  
Multiprocessor Bit Transfer  
MPBT stores the multiprocessor bit to be added to  
the transmit character data.  
Rev. 4.0, 03/02, page 185 of 400  
14.3.8  
Bit Rate Register (BRR)  
BRR is an 8-bit register that adjusts the bit rate. The initial value of BRR is H'FF. Table 14.2  
shows the relationship between the N setting in BRR and the n setting in bits CKS1 and CKS0 of  
SMR in asynchronous mode. Table 14.3 shows the maximum bit rate for each frequency in  
asynchronous mode. The values shown in both tables 14.2 and 14.3 are values in active (high-  
speed) mode. Table 14.4 shows the relationship between the N setting in BRR and the n setting in  
bits CKS1 and CKS0 in SMR in clocked synchronous mode. The values shown in table 14.4 are  
values in active (high-speed) mode. The N setting in BRR and error for other operating  
frequencies and bit rates can be obtained by the following formulas:  
[Asynchronous Mode]  
φ
× 106 1  
N =  
64 × 22n1 × B  
φ × 106  
(N + 1) × B × 64 × 22n1  
Error (%) =  
1 × 100  
[Clocked Synchronous Mode]  
φ
× 106 1  
N =  
8 × 22n1 × B  
Note: B: Bit rate (bit/s)  
N: BRR setting for baud rate generator (0 N 255)  
φ: Operating frequency (MHz)  
n: CKS1 and CKS0 setting for SMR (0 N 3)  
Rev. 4.0, 03/02, page 186 of 400  
Table 14.2 Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (1)  
Operating Frequency ø (MHz)  
2
2.097152  
Error  
(%)  
2.4576  
Error  
(%)  
3
Bit Rate  
(bits/s)  
Error  
(%)  
Error  
(%)  
n
1
1
0
0
0
0
0
0
0
0
0
N
n
1
1
0
0
0
0
0
0
0
0
0
N
n
1
1
0
0
0
0
0
0
0
0
0
N
n
1
1
1
0
0
0
0
0
0
0
N
110  
141 0.03  
103 0.16  
207 0.16  
103 0.16  
148 –0.04  
108 0.21  
217 0.21  
108 0.21  
174 –0.26  
127 0.00  
255 0.00  
127 0.00  
212 0.03  
155 0.16  
150  
300  
77  
0.16  
600  
155 0.16  
1200  
2400  
4800  
9600  
19200  
31250  
38400  
Legend  
51  
25  
12  
6
0.16  
54  
26  
13  
6
–0.70  
1.14  
63  
31  
15  
7
0.00  
0.00  
0.00  
0.00  
0.00  
22.88  
0.00  
77  
38  
19  
9
0.16  
0.16  
–2.34  
–2.34  
–2.34  
0.00  
0.16  
0.16  
–2.48  
–2.48  
13.78  
4.86  
–6.99  
8.51  
2
2
3
4
1
0.00  
1
1
2
1
–18.62  
1
–14.67  
1
: A setting is available but error occurs  
Operating Frequency ø (MHz)  
4.9152  
Error  
3.6864  
4
5
Bit Rate  
(bits/s)  
Error  
(%)  
Error  
(%)  
Error  
(%)  
n
2
1
1
0
0
0
0
0
0
0
N
n
2
1
1
0
0
0
0
0
0
0
0
N
n
2
1
1
0
0
0
0
0
0
0
0
N
(%)  
n
2
2
1
1
0
0
0
0
0
0
0
N
110  
64  
0.70  
70  
0.03  
86  
0.31  
88  
64  
–0.25  
0.16  
150  
191 0.00  
95 0.00  
191 0.00  
207 0.16  
103 0.16  
207 0.16  
103 0.16  
255 0.00  
127 0.00  
255 0.00  
127 0.00  
300  
129 0.16  
64 0.16  
129 0.16  
600  
1200  
2400  
4800  
9600  
19200  
31250  
38400  
95  
47  
23  
11  
5
0.00  
0.00  
0.00  
0.00  
0.00  
51  
25  
12  
6
0.16  
0.16  
0.16  
–6.99  
0.00  
8.51  
63  
31  
15  
7
0.00  
0.00  
0.00  
0.00  
–1.70  
0.00  
64  
32  
15  
7
0.16  
–1.36  
1.73  
1.73  
0.00  
1.73  
2
3
4
4
0.00  
2
3
3
Rev. 4.0, 03/02, page 187 of 400  
Table 14.2 Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (2)  
Operating Frequency ø (MHz)  
6
6.144  
7.3728  
8
Bit Rate  
(bit/s)  
Error  
(%)  
Error  
(%)  
Error  
(%)  
Error  
(%)  
n
2
2
1
1
0
0
0
0
0
0
0
N
n
2
2
1
1
0
0
0
0
0
0
0
N
n
2
2
1
1
0
0
0
0
0
0
0
N
n
2
2
1
1
0
0
0
0
0
0
0
N
110  
106 –0.44  
77 0.16  
155 0.16  
77 0.16  
155 0.16  
108 0.08  
79 0.00  
159 0.00  
79 0.00  
159 0.00  
130 –0.07  
95 0.00  
191 0.00  
95 0.00  
191 0.00  
141 0.03  
103 0.16  
207 0.16  
103 0.16  
207 0.16  
103 0.16  
150  
300  
600  
1200  
2400  
4800  
9600  
19200  
31250  
38400  
77  
38  
19  
9
0.16  
79  
39  
19  
9
0.00  
0.00  
0.00  
0.00  
2.40  
0.00  
95  
47  
23  
11  
6
0.00  
0.00  
0.00  
0.00  
5.33  
0.00  
0.16  
51  
25  
12  
7
0.16  
0.16  
0.16  
0.00  
-6.99  
–2.34  
–2.34  
0.00  
5
5
4
–2.34  
4
5
6
Operating Frequency ø (MHz)  
10 12  
9.8304  
N
12.888  
N
Bit Rate  
(bit/s)  
Error  
(%)  
Error  
(%)  
Error  
(%)  
Error  
(%)  
n
2
2
1
1
0
0
0
0
0
0
0
n
2
2
2
1
1
0
0
0
0
0
0
N
n
2
2
2
1
1
0
0
0
0
0
0
N
n
2
2
2
1
1
0
0
0
0
0
0
110  
174 –0.26  
127 0.00  
255 0.00  
127 0.00  
255 0.00  
127 0.00  
177 –0.25  
129 0.16  
212 0.03  
155 0.16  
217 0.08  
159 0.00  
150  
300  
64  
129 0.16  
64 0.16  
129 0.16  
0.16  
77  
155 0.16  
77 0.16  
155 0.16  
0.16  
79  
159 0.00  
79 0.00  
159 0.00  
0.00  
600  
1200  
2400  
4800  
9600  
19200  
31250  
38400  
63  
31  
15  
9
0.00  
0.00  
0.00  
–1.70  
0.00  
64  
32  
15  
9
0.16  
–1.36  
1.73  
0.00  
1.73  
77  
38  
19  
11  
9
0.16  
79  
39  
19  
11  
9
0.00  
0.00  
0.00  
2.40  
0.00  
0.16  
–2.34  
0.00  
7
7
–2.34  
Rev. 4.0, 03/02, page 188 of 400  
Table 14.2 Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (3)  
Operating Frequency ø (MHz)  
14  
14.7456  
16  
Bit Rate  
(bit/s)  
Error  
(%)  
Error  
(%)  
Error  
(%)  
n
2
2
2
1
1
0
0
0
0
0
N
n
3
2
2
1
1
0
0
0
0
0
0
N
n
3
2
2
1
1
0
0
0
0
0
0
N
110  
248 –0.17  
181 0.16  
64  
0.70  
70  
0.03  
150  
191 0.00  
95 0.00  
191 0.00  
95 0.00  
191 0.00  
207 0.16  
103 0.16  
207 0.16  
103 0.16  
207 0.16  
103 0.16  
300  
90  
181 0.16  
90 0.16  
181 0.16  
0.16  
600  
1200  
2400  
4800  
9600  
19200  
31250  
38400  
Legend  
90  
45  
22  
13  
0.16  
–0.93  
–0.93  
0.00  
95  
47  
23  
14  
11  
0.00  
0.00  
0.00  
–1.70  
0.00  
51  
25  
15  
12  
0.16  
0.16  
0.00  
0.16  
—: A setting is available but error occurs.  
Table 14.3 Maximum Bit Rate for Each Frequency (Asynchronous Mode)  
Maximum Bit  
Rate (bit/s)  
Maximum Bit  
Rate (bit/s)  
ø (MHz)  
n
0
0
0
0
0
0
0
0
0
0
N
0
0
0
0
0
0
0
0
0
0
ø (MHz)  
7.3728  
8
n
0
0
0
0
0
0
0
0
0
N
0
0
0
0
0
0
0
0
0
2
62500  
230400  
250000  
307200  
312500  
375000  
384000  
437500  
460800  
500000  
2.097152 65536  
2.4576  
76800  
9.8304  
10  
3
93750  
3.6864  
115200  
125000  
153600  
156250  
187500  
192000  
12  
4
12.288  
14  
4.9152  
5
14.7456  
16  
6
6.144  
Rev. 4.0, 03/02, page 189 of 400  
Table 14.4 BRR Settings for Various Bit Rates (Clocked Synchronous Mode)  
Operating Frequency ø (MHz)  
2
4
8
10  
16  
Bit Rate  
(bit/s)  
n
3
2
1
1
0
0
0
0
0
0
0
0
N
n
2
2
1
1
0
0
0
0
0
0
0
0
N
n
3
2
2
1
1
0
0
0
0
0
0
0
0
N
n
N
n
N
110  
250  
500  
1k  
70  
124  
249  
124  
199  
99  
49  
19  
9
1
249  
124  
249  
99  
199  
99  
39  
19  
9
124  
249  
124  
199  
99  
199  
79  
39  
19  
7
3
3
2
2
1
1
0
0
0
0
0
0
0
0
249  
124  
249  
99  
199  
99  
159  
79  
39  
15  
7
2.5k  
5k  
249  
124  
249  
99  
49  
24  
9
1
10k  
25k  
50k  
100k  
250k  
500k  
1M  
0
0
0
4
0
1
3
0
0*  
1
3
0
4
0*  
1
0
3
2M  
0*  
1
2.5M  
4M  
0*  
0*  
Legend  
Blank : No setting is available.  
: A setting is available but error occurs.  
: Continuous transfer is not possible.  
*
Rev. 4.0, 03/02, page 190 of 400  
14.4  
Operation in Asynchronous Mode  
Figure 14.2 shows the general format for asynchronous serial communication. One frame consists  
of a start bit (low level), followed by data (in LSB-first order), a parity bit (high or low level), and  
finally stop bits (high level). Inside the SCI3, the transmitter and receiver are independent units,  
enabling full duplex. Both the transmitter and the receiver also have a double-buffered structure,  
so data can be read or written during transmission or reception, enabling continuous data transfer.  
LSB  
MSB  
1
Serial  
data  
Parity  
bit  
Start  
bit  
Mark state  
Transmit/receive data  
7 or 8 bits  
Stop bit  
1 bit  
1 bit,  
1 or  
or none  
2 bits  
One unit of transfer data (character or frame)  
Figure 14.2 Data Format in Asynchronous Communication  
14.4.1  
Clock  
Either an internal clock generated by the on-chip baud rate generator or an external clock input at  
the SCK3 pin can be selected as the SCI3’s serial clock source, according to the setting of the  
COM bit in SMR and the CKE0 and CKE1 bits in SCR3. When an external clock is input at the  
SCK3 pin, the clock frequency should be 16 times the bit rate used.  
When the SCI3 is operated on an internal clock, the clock can be output from the SCK3 pin. The  
frequency of the clock output in this case is equal to the bit rate, and the phase is such that the  
rising edge of the clock is in the middle of the transmit data, as shown in figure 14.3.  
Clock  
1
1
0
D0 D1 D2 D3 D4 D5 D6 D7 0/1  
1 character (frame)  
Serial data  
Figure 14.3 Relationship between Output Clock and Transfer Data Phase  
(Asynchronous Mode)(Example with 8-Bit Data, Parity, Two Stop Bits)  
Rev. 4.0, 03/02, page 191 of 400  
14.4.2  
SCI3 Initialization  
Follow the flowchart as shown in figure 14.4 to initialize the SCI3. When the TE bit is cleared to  
0, the TDRE flag is set to 1. Note that clearing the RE bit to 0 does not initialize the contents of  
the RDRF, PER, FER, and OER flags, or the contents of RDR. When the external clock is used in  
asynchronous mode, the clock must be supplied even during initialization.  
[1] Set the clock selection in SCR3.  
Be sure to clear bits RIE, TIE, TEIE, and  
MPIE, and bits TE and RE, to 0.  
Start initialization  
When the clock output is selected in  
asynchronous mode, clock is output  
immediately after CKE1 and CKE0  
settings are made. When the clock  
output is selected at reception in clocked  
synchronous mode, clock is output  
immediately after CKE1, CKE0, and RE  
are set to 1.  
Clear TE and RE bits in SCR3 to 0  
Set CKE1 and CKE0 bits in SCR3  
Set data transfer format in SMR  
[1]  
[2]  
[3]  
[2] Set the data transfer format in SMR.  
Set value in BRR  
Wait  
[3] Write a value corresponding to the bit  
rate to BRR. Not necessary if an  
external clock is used.  
No  
1-bit interval elapsed?  
Yes  
[4] Wait at least one bit interval, then set the  
TE bit or RE bit in SCR3 to 1. RE  
settings enable the RXD pin to be used.  
For transmission, set the TXD bit in  
PMR1 to 1 to enable the TXD output pin  
to be used. Also set the RIE, TIE, TEIE,  
and MPIE bits, depending on whether  
interrupts are required. In asynchronous  
mode, the bits are marked at  
Set TE and RE bits in  
SCR3 to 1, and set RIE, TIE, TEIE,  
and MPIE bits. For transmit (TE=1),  
also set the TxD bit in PMR1.  
[4]  
transmission and idled at reception to  
wait for the start bit.  
<Initialization completion>  
Figure 14.4 Sample SCI3 Initialization Flowchart  
Rev. 4.0, 03/02, page 192 of 400  
14.4.3  
Data Transmission  
Figure 14.5 shows an example of operation for transmission in asynchronous mode. In  
transmission, the SCI3 operates as described below.  
1. The SCI3 monitors the TDRE flag in SSR. If the flag is cleared to 0, the SCI3 recognizes that  
data has been written to TDR, and transfers the data from TDR to TSR.  
2. After transferring data from TDR to TSR, the SCI3 sets the TDRE flag to 1 and starts  
transmission. If the TIE bit is set to 1 at this time, a TXI interrupt request is generated.  
Continuous transmission is possible because the TXI interrupt routine writes next transmit data  
to TDR before transmission of the current transmit data has been completed.  
3. The SCI3 checks the TDRE flag at the timing for sending the stop bit.  
4. If the TDRE flag is 0, the data is transferred from TDR to TSR, the stop bit is sent, and then  
serial transmission of the next frame is started.  
5. If the TDRE flag is 1, the TEND flag in SSR is set to 1, the stop bit is sent, and then the “mark  
state” is entered, in which 1 is output. If the TEIE bit in SCR3 is set to 1 at this time, a TEI  
interrupt request is generated.  
6. Figure 14.6 shows a sample flowchart for transmission in asynchronous mode.  
Start  
bit  
Transmit  
data  
Parity Stop Start  
Transmit  
data  
Parity Stop  
Mark  
state  
bit  
bit bit  
bit  
bit  
Serial  
data  
1
0
D0 D1  
D7 0/1  
1
0
D0 D1  
1 frame  
D7 0/1  
1
1
1 frame  
TDRE  
TEND  
LSI  
TXI interrupt  
TDRE flag  
cleared to 0  
TXI interrupt request generated  
TEI interrupt request  
generated  
operation request  
generated  
User  
processing  
Data written  
to TDR  
Figure 14.5 Example SCI3 Operation in Transmission in Asynchronous Mode  
(8-Bit Data, Parity, One Stop Bit)  
Rev. 4.0, 03/02, page 193 of 400  
Start transmission  
[1] Read SSR and check that the  
TDRE flag is set to 1, then write  
transmit data to TDR. When data is  
written to TDR, the TDRE flag is  
automaticaly cleared to 0.  
[1]  
Read TDRE flag in SSR  
[2] To continue serial transmission,  
read 1 from the TDRE flag to  
confirm that writing is possible,  
then write data to TDR. When data  
is written to TDR, the TDRE flag is  
automaticaly cleared to 0.  
No  
TDRE = 1  
Yes  
Write transmit data to TDR  
[3] To output a break in serial  
transmission, after setting PCR to 1  
and PDR to 0, clear TxD in PMR1  
to 0, then clear the TE bit in SCR3  
to 0.  
Yes  
[2]  
All data transmitted?  
No  
Read TEND flag in SSR  
No  
No  
TEND = 1  
Yes  
[3]  
Break output?  
Yes  
Clear PDR to 0 and  
set PCR to 1  
Clear TE bit in SCR3 to 0  
<End>  
Figure 14.6 Sample Serial Transmission Flowchart (Asynchronous Mode)  
Rev. 4.0, 03/02, page 194 of 400  
14.4.4  
Serial Data Reception  
Figure 14.7 shows an example of operation for reception in asynchronous mode. In serial  
reception, the SCI operates as described below.  
1. The SCI3 monitors the communication line. If a start bit is detected, the SCI3 performs  
internal synchronization, receives data in RSR, and checks the parity bit and stop bit.  
2. If an overrun error occurs (when reception of the next data is completed while the RDRF flag  
is still set to 1), the OER bit in SSR is set to 1. If the RIE bit in SCR3 is set to 1 at this time, an  
ERI interrupt request is generated. Receive data is not transferred to RDR.  
3. If a parity error is detected, the PER bit in SSR is set to 1 and receive data is transferred to  
RDR. If the RIE bit in SCR3 is set to 1 at this time, an ERI interrupt request is generated.  
4. If a framing error is detected (when the stop bit is 0), the FER bit in SSR is set to 1 and receive  
data is transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an ERI interrupt  
request is generated.  
5. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive data is  
transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an RXI interrupt request is  
generated. Continuous reception is possible because the RXI interrupt routine reads the receive  
data transferred to RDR before reception of the next receive data has been completed.  
Start  
bit  
Receive  
data  
Parity Stop Start  
Receive  
data  
Parity Stop Mark state  
bit  
bit bit  
bit  
bit  
(idle state)  
Serial  
data  
1
0
D0 D1  
D7 0/1  
1
0
D0 D1  
1 frame  
D7 0/1  
0
1
1 frame  
RDRF  
FER  
LSI  
operation  
RXI request RDRF  
cleared to 0  
0 stop bit  
detected  
ERI request in  
response to  
framing error  
User  
processing  
RDR data read  
Framing error  
processing  
Figure 14.7 Example SCI3 Operation in Reception in Asynchronous Mode  
(8-Bit Data, Parity, One Stop Bit)  
Rev. 4.0, 03/02, page 195 of 400  
Table 14.5 shows the states of the SSR status flags and receive data handling when a receive error  
is detected. If a receive error is detected, the RDRF flag retains its state before receiving data.  
Reception cannot be resumed while a receive error flag is set to 1. Accordingly, clear the OER,  
FER, PER, and RDRF bits to 0 before resuming reception. Figure 14.8 shows a sample flowchart  
for serial data reception.  
Table 14.5 SSR Status Flags and Receive Data Handling  
SSR Status Flag  
RDRF*  
OER  
FER  
PER  
Receive Data  
Lost  
Receive Error Type  
Overrun error  
1
0
0
1
1
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
0
0
1
0
1
1
1
Transferred to RDR  
Transferred to RDR  
Lost  
Framing error  
Parity error  
Overrun error + framing error  
Overrun error + parity error  
Framing error + parity error  
Lost  
Transferred to RDR  
Lost  
Overrun error + framing error +  
parity error  
Note: * The RDRF flag retains the state it had before data reception.  
Rev. 4.0, 03/02, page 196 of 400  
[1] Read the OER, PER, and FER flags in  
SSR to identify the error. If a receive  
error occurs, performs the appropriate  
error processing.  
[2] Read SSR and check that RDRF = 1,  
then read the receive data in RDR.  
The RDRF flag is cleared automatically.  
[3] To continue serial reception, before the  
stop bit for the current frame is  
Start reception  
Read OER, PER, and  
FER flags in SSR  
[1]  
Yes  
OER+PER+FER = 1  
No  
[4]  
received, read the RDRF flag and read  
RDR.  
Error processing  
The RDRF flag is cleared automatically.  
[4] If a receive error occurs, read the OER,  
PER, and FER flags in SSR to identify  
the error. After performing the  
(Continued on next page)  
[2]  
Read RDRF flag in SSR  
appropriate error processing, ensure  
that the OER, PER, and FER flags are  
all cleared to 0. Reception cannot be  
resumed if any of these flags are set to  
1. In the case of a framing error, a  
break can be detected by reading the  
value of the input port corresponding to  
the RxD pin.  
No  
RDRF = 1  
Yes  
Read receive data in RDR  
Yes  
All data received?  
No  
[3]  
(A)  
Clear RE bit in SCR3 to 0  
<End>  
Figure 14.8 Sample Serial Data Reception Flowchart (Asynchronous mode)(1)  
Rev. 4.0, 03/02, page 197 of 400  
[4]  
Error processing  
No  
OER = 1  
Yes  
Overrun error processing  
No  
FER = 1  
Yes  
Yes  
Break?  
No  
Framing error processing  
No  
PER = 1  
Yes  
Parity error processing  
(A)  
Clear OER, PER, and  
FER flags in SSR to 0  
<End>  
Figure 14.8 Sample Serial Reception Data Flowchart (2)  
Rev. 4.0, 03/02, page 198 of 400  
14.5  
Operation in Clocked Synchronous Mode  
Figure 14.9 shows the general format for clocked synchronous communication. In clocked  
synchronous mode, data is transmitted or received synchronous with clock pulses. A single  
character in the transmit data consists of the 8-bit data starting from the LSB. In clocked  
synchronous serial communication, data on the transmission line is output from one falling edge of  
the serial clock to the next. In clocked synchronous mode, the SCI3 receives data in synchronous  
with the rising edge of the serial clock. After 8-bit data is output, the transmission line holds the  
MSB state. In clocked synchronous mode, no parity or multiprocessor bit is added. Inside the  
SCI3, the transmitter and receiver are independent units, enabling full-duplex communication  
through the use of a common clock. Both the transmitter and the receiver also have a double-  
buffered structure, so data can be read or written during transmission or reception, enabling  
continuous data transfer.  
8-bit  
One unit of transfer data (character or frame)  
*
*
Synchronization  
clock  
LSB  
Bit 0  
MSB  
Bit 7  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Serial data  
Dont care  
Note: * High except in continuous transfer  
Dont care  
Figure 14.9 Data Format in Clocked Synchronous Communication  
14.5.1 Clock  
Either an internal clock generated by the on-chip baud rate generator or an external  
synchronization clock input at the SCK3 pin can be selected, according to the setting of the COM  
bit in SMR and CKE0 and CKE1 bits in SCR3. When the SCI3 is operated on an internal clock,  
the serial clock is output from the SCK3 pin. Eight serial clock pulses are output in the transfer of  
one character, and when no transfer is performed the clock is fixed high.  
14.5.2  
SCI3 Initialization  
Before transmitting and receiving data, the SCI3 should be initialized as described in a sample  
flowchart in figure 14.4.  
Rev. 4.0, 03/02, page 199 of 400  
14.5.3  
Serial Data Transmission  
Figure 14.10 shows an example of SCI3 operation for transmission in clocked synchronous mode.  
In serial transmission, the SCI3 operates as described below.  
1. The SCI3 monitors the TDRE flag in SSR, and if the flag is 0, the SCI recognizes that data has  
been written to TDR, and transfers the data from TDR to TSR.  
2. The SCI3 sets the TDRE flag to 1 and starts transmission. If the TIE bit in SCR3 is set to 1 at  
this time, a transmit data empty interrupt (TXI) is generated.  
3. 8-bit data is sent from the TxD pin synchronized with the output clock when output clock  
mode has been specified, and synchronized with the input clock when use of an external clock  
has been specified. Serial data is transmitted sequentially from the LSB (bit 0), from the TXD  
pin.  
4. The SCI checks the TDRE flag at the timing for sending the MSB (bit 7).  
5. If the TDRE flag is cleared to 0, data is transferred from TDR to TSR, and serial transmission  
of the next frame is started.  
6. If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, and the TDRE flag maintains  
the output state of the last bit. If the TEIE bit in SCR3 is set to 1 at this time, a TEI interrupt  
request is generated.  
7. The SCK3 pin is fixed high.  
Figure 14.11 shows a sample flowchart for serial data transmission. Even if the TDRE flag is  
cleared to 0, transmission will not start while a receive error flag (OER, FER, or PER) is set to 1.  
Make sure that the receive error flags are cleared to 0 before starting transmission.  
Serial  
clock  
Serial  
data  
Bit 0  
Bit 1  
Bit 7  
Bit 0  
Bit 1  
Bit 6  
Bit 7  
1 frame  
1 frame  
TDRE  
TEND  
LSI  
TXI interrupt  
TDRE flag  
cleared  
to 0  
TXI interrupt request generated  
TEI interrupt request  
generated  
operation request  
generated  
User  
processing  
Data written  
to TDR  
Figure 14.10 Example of SCI3 Operation in Transmission in Clocked Synchronous Mode  
Rev. 4.0, 03/02, page 200 of 400  
Start transmission  
[1] Read SSR and check that the TDRE flag is  
set to 1, then write transmit data to TDR.  
When data is written to TDR, the TDRE flag  
is automatically cleared to 0 and clocks are  
output to start the data transmission.  
[1]  
Read TDRE flag in SSR  
[2] To continue serial transmission, be sure to  
read 1 from the TDRE flag to confirm that  
writing is possible, then write data to TDR.  
When data is written to TDR, the TDRE flag  
is automatically cleared to 0.  
No  
TDRE = 1  
Yes  
Write transmit data to TDR  
Yes  
All data transmitted?  
No  
[2]  
Read TEND flag in SSR  
No  
TEND = 1  
Yes  
Clear TE bit in SCR3 to 0  
<End>  
Figure 14.11 Sample Serial Transmission Flowchart (Clocked Synchronous Mode)  
Rev. 4.0, 03/02, page 201 of 400  
14.5.4  
Serial Data Reception (Clocked Synchronous Mode)  
Figure 14.12 shows an example of SCI3 operation for reception in clocked synchronous mode. In  
serial reception, the SCI3 operates as described below.  
1. The SCI3 performs internal initialization synchronous with a synchronous clock input or  
output, starts receiving data.  
2. The SCI3 stores the received data in RSR.  
3. If an overrun error occurs (when reception of the next data is completed while the RDRF flag  
in SSR is still set to 1), the OER bit in SSR is set to 1. If the RIE bit in SCR3 is set to 1 at this  
time, an ERI interrupt request is generated, receive data is not transferred to RDR, and the  
RDRF flag remains to be set to 1.  
4. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive data is  
transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an RXI interrupt request is  
generated.  
Serial  
clock  
Serial  
data  
Bit 7  
Bit 0  
Bit 7  
Bit 0  
Bit 1  
Bit 6  
Bit 7  
1 frame  
1 frame  
RDRF  
OER  
LSI  
RXI interrupt RDRF flag  
RXI interrupt request generated  
ERI interrupt request  
operation  
request  
generated  
cleared  
to 0  
generated by  
overrun error  
User  
processing  
RDR data read  
RDR data has  
not been read  
(RDRF = 1)  
Overrun error  
processing  
Figure 14.12 Example of SCI3 Reception Operation in Clocked Synchronous Mode  
Reception cannot be resumed while a receive error flag is set to 1. Accordingly, clear the OER,  
FER, PER, and RDRF bits to 0 before resuming reception. Figure 14.13 shows a sample flowchart  
for serial data reception.  
Rev. 4.0, 03/02, page 202 of 400  
Start reception  
[1] Read the OER flag in SSR to determine if  
there is an error. If an overrun error has  
occurred, execute overrun error processing.  
[2] Read SSR and check that the RDRF flag is  
set to 1, then read the receive data in RDR.  
When data is read from RDR, the RDRF  
flag is automatically cleared to 0.  
[1]  
Read OER flag in SSR  
Yes  
OER = 1  
No  
[4]  
[3] To continue serial reception, before the  
MSB (bit 7) of the current frame is received,  
reading the RDRF flag and reading RDR  
should be finished. When data is read from  
RDR, the RDRF flag is automatically  
cleared to 0.  
Error processing  
(Continued below)  
Read RDRF flag in SSR  
[2]  
[4] If an overrun error occurs, read the OER  
flag in SSR, and after performing the  
appropriate error processing, clear the OER  
flag to 0. Reception cannot be resumed if  
the OER flag is set to 1.  
No  
RDRF = 1  
Yes  
Read receive data in RDR  
Yes  
All data received?  
No  
[3]  
Clear RE bit in SCR3 to 0  
<End>  
[4]  
Error processing  
Overrun error processing  
Clear OER flag in SSR to 0  
<End>  
Figure 14.13 Sample Serial Reception Flowchart (Clocked Synchronous Mode)  
Rev. 4.0, 03/02, page 203 of 400  
14.5.5  
Simultaneous Serial Data Transmission and Reception  
Figure 14.14 shows a sample flowchart for simultaneous serial transmit and receive operations.  
The following procedure should be used for simultaneous serial data transmit and receive  
operations. To switch from transmit mode to simultaneous transmit and receive mode, after  
checking that the SCI3 has finished transmission and the TDRE and TEND flags are set to 1, clear  
TE to 0. Then simultaneously set TE and RE to 1 with a single instruction. To switch from receive  
mode to simultaneous transmit and receive mode, after checking that the SCI3 has finished  
reception, clear RE to 0. Then after checking that the RDRF and receive error flags (OER, FER,  
and PER) are cleared to 0, simultaneously set TE and RE to 1 with a single instruction.  
Rev. 4.0, 03/02, page 204 of 400  
Start transmission/reception  
Read TDRE flag in SSR  
[1] Read SSR and check that the TDRE  
flag is set to 1, then write transmit  
data to TDR.  
When data is written to TDR, the  
TDRE flag is automatically cleared to  
0.  
[1]  
No  
[2] Read SSR and check that the RDRF  
flag is set to 1, then read the receive  
data in RDR.  
TDRE = 1  
Yes  
When data is read from RDR, the  
RDRF flag is automatically cleared to  
0.  
Write transmit data to TDR  
Read OER flag in SSR  
[3] To continue serial transmission/  
reception, before the MSB (bit 7) of  
the current frame is received, finish  
reading the RDRF flag, reading RDR.  
Also, before the MSB (bit 7) of the  
current frame is transmitted, read 1  
from the TDRE flag to confirm that  
writing is possible. Then write data to  
TDR.  
Yes  
OER = 1  
No  
[4]  
Error processing  
[2]  
When data is written to TDR, the  
TDRE flag is automatically cleared to  
0. When data is read from RDR, the  
RDRF flag is automatically cleared to  
0.  
Read RDRF flag in SSR  
[4] If an overrun error occurs, read the  
OER flag in SSR, and after  
performing the appropriate error  
processing, clear the OER flag to 0.  
Transmission/reception cannot be  
resumed if the OER flag is set to 1.  
For overrun error processing, see  
figure 14.13.  
No  
RDRF = 1  
Yes  
Read receive data in RDR  
Yes  
All data received?  
No  
[3]  
Clear TE and RE bits in SCR to 0  
<End>  
Figure 14.14 Sample Flowchart of Simultaneous Serial Transmit and Receive Operations  
(Clocked Synchronous Mode)  
Rev. 4.0, 03/02, page 205 of 400  
14.6  
Multiprocessor Communication Function  
Use of the multiprocessor communication function enables data transfer between a number of  
processors sharing communication lines by asynchronous serial communication using the  
multiprocessor format, in which a multiprocessor bit is added to the transfer data. When  
multiprocessor communication is performed, each receiving station is addressed by a unique ID  
code. The serial communication cycle consists of two component cycles; an ID transmission cycle  
that specifies the receiving station, and a data transmission cycle. The multiprocessor bit is used to  
differentiate between the ID transmission cycle and the data transmission cycle. If the  
multiprocessor bit is 1, the cycle is an ID transmission cycle; if the multiprocessor bit is 0, the  
cycle is a data transmission cycle. Figure 14.15 shows an example of inter-processor  
communication using the multiprocessor format. The transmitting station first sends the ID code  
of the receiving station with which it wants to perform serial communication as data with a 1  
multiprocessor bit added. It then sends transmit data as data with a 0 multiprocessor bit added.  
When data with a 1 multiprocessor bit is received, the receiving station compares that data with its  
own ID. The station whose ID matches then receives the data sent next. Stations whose IDs do not  
match continue to skip data until data with a 1 multiprocessor bit is again received.  
The SCI3 uses the MPIE bit in SCR3 to implement this function. When the MPIE bit is set to 1,  
transfer of receive data from RSR to RDR, error flag detection, and setting the SSR status flags,  
RDRF, FER, and OER to 1, are inhibited until data with a 1 multiprocessor bit is received. On  
reception of a receive character with a 1 multiprocessor bit, the MPBR bit in SSR is set to 1 and  
the MPIE bit is automatically cleared, thus normal reception is resumed. If the RIE bit in SCR3 is  
set to 1 at this time, an RXI interrupt is generated.  
When the multiprocessor format is selected, the parity bit setting is rendered invalid. All other bit  
settings are the same as those in normal asynchronous mode. The clock used for multiprocessor  
communication is the same as that in normal asynchronous mode.  
Rev. 4.0, 03/02, page 206 of 400  
Transmitting  
station  
Serial transmission line  
Receiving  
station A  
Receiving  
station B  
Receiving  
station C  
Receiving  
station D  
(ID = 01)  
(ID = 02)  
(ID = 03)  
(ID = 04)  
Serial  
data  
H'01  
H'AA  
(MPB = 1)  
(MPB = 0)  
ID transmission cycle = Data transmission cycle =  
receiving station  
specification  
Data transmission to  
receiving station specified by ID  
Legend  
MPB: Multiprocessor bit  
Figure 14.15 Example of Communication Using Multiprocessor Format  
(Transmission of Data H'AA to Receiving Station A)  
Rev. 4.0, 03/02, page 207 of 400  
14.6.1  
Multiprocessor Serial Data Transmission  
Figure 14.16 shows a sample flowchart for multiprocessor serial data transmission. For an ID  
transmission cycle, set the MPBT bit in SSR to 1 before transmission. For a data transmission  
cycle, clear the MPBT bit in SSR to 0 before transmission. All other SCI3 operations are the same  
as those in asynchronous mode.  
Start transmission  
[1] Read SSR and check that the TDRE  
flag is set to 1, set the MPBT bit in  
[1]  
Read TDRE flag in SSR  
SSR to 0 or 1, then write transmit  
data to TDR. When data is written to  
TDR, the TDRE flag is automatically  
cleared to 0.  
No  
TDRE = 1  
Yes  
[2] To continue serial transmission, be  
sure to read 1 from the TDRE flag to  
confirm that writing is possible, then  
write data to TDR. When data is  
written to TDR, the TDRE flag is  
automatically cleared to 0.  
Set MPBT bit in SSR  
[3] To output a break in serial  
transmission, set the port PCR to 1,  
clear PDR to 0, then clear the TE bit  
in SCR3 to 0.  
Write transmit data to TDR  
Yes  
[2]  
All data transmitted?  
No  
Read TEND flag in SSR  
No  
No  
TEND = 1  
Yes  
Break output?  
Yes  
[3]  
Clear PDR to 0 and set PCR to 1  
Clear TE bit in SCR3 to 0  
<End>  
Figure 14.16 Sample Multiprocessor Serial Transmission Flowchart  
Rev. 4.0, 03/02, page 208 of 400  
14.6.2 Multiprocessor Serial Data Reception  
Figure 14.17 shows a sample flowchart for multiprocessor serial data reception. If the MPIE bit in  
SCR3 is set to 1, data is skipped until data with a 1 multiprocessor bit is received. On receiving  
data with a 1 multiprocessor bit, the receive data is transferred to RDR. An RXI interrupt request  
is generated at this time. All other SCI3 operations are the same as in asynchronous mode. Figure  
14.18 shows an example of SCI3 operation for multiprocessor format reception.  
Rev. 4.0, 03/02, page 209 of 400  
[1] Set the MPIE bit in SCR3 to 1.  
[2] Read OER and FER in SSR to check for  
errors. Receive error processing is performed  
in cases where a receive error occurs.  
[3] Read SSR and check that the RDRF flag is  
set to 1, then read the receive data in RDR  
and compare it with this stations ID.  
If the data is not this stations ID, set the MPIE  
bit to 1 again.  
Start reception  
Set MPIE bit in SCR3 to 1  
[1]  
[2]  
Read OER and FER flags in SSR  
Yes  
FER+OER = 1  
When data is read from RDR, the RDRF flag  
is automatically cleared to 0.  
No  
Read RDRF flag in SSR  
[3]  
[4] Read SSR and check that the RDRF flag is  
set to 1, then read the data in RDR.  
[5] If a receive error occurs, read the OER and  
FER flags in SSR to identify the error. After  
performing the appropriate error processing,  
ensure that the OER and FER flags are all  
cleared to 0.  
No  
No  
RDRF = 1  
Yes  
Read receive data in RDR  
Reception cannot be resumed if either of  
these flags is set to 1.  
This stations ID?  
Yes  
In the case of a framing error, a break can be  
detected by reading the RxD pin value.  
Read OER and FER flags in SSR  
Yes  
FER+OER = 1  
No  
Read RDRF flag in SSR  
[4]  
No  
[5]  
RDRF = 1  
Error processing  
Yes  
(Continued on  
next page)  
Read receive data in RDR  
Yes  
All data received?  
No  
[A]  
Clear RE bit in SCR3 to 0  
<End>  
Figure 14.17 Sample Multiprocessor Serial Reception Flowchart (1)  
Rev. 4.0, 03/02, page 210 of 400  
[5]  
Error processing  
OER = 1  
No  
Yes  
Overrun error processing  
No  
FER = 1  
Yes  
Yes  
Break?  
No  
[A]  
Framing error processing  
Clear OER, and  
FER flags in SSR to 0  
<End>  
Figure 14.17 Sample Multiprocessor Serial Reception Flowchart (2)  
Rev. 4.0, 03/02, page 211 of 400  
Start  
bit  
Receive  
data (ID1)  
Stop Start  
bit bit  
Receive data  
(Data1)  
Stop Mark state  
bit  
(idle state)  
MPB  
1
MPB  
0
Serial  
data  
1
0
D0 D1  
D7  
1
0
D0 D1  
1 frame  
D7  
1
1
1 frame  
MPIE  
RDRF  
RDR  
value  
ID1  
LSI  
operation  
RXI interrupt  
request  
MPIE cleared  
to 0  
RDRF flag  
cleared  
to 0  
RXI interrupt request  
is not generated, and  
RDR retains its state  
User  
processing  
RDR data read  
When data is not  
this station's ID,  
MPIE is set to 1  
again  
(a) When data does not match this receiver's ID  
Start  
bit  
Receive  
data (ID2)  
Stop Start  
bit bit  
Receive data  
(Data2)  
Stop Mark state  
bit  
(idle state)  
MPB  
1
MPB  
0
Serial  
data  
1
0
D0 D1  
D7  
1
0
D0 D1  
1 frame  
D7  
1
1
1 frame  
MPIE  
RDRF  
RDR  
value  
ID1  
ID2  
Data2  
LSI  
operation  
RXI interrupt  
request  
MPIE cleared  
to 0  
RDRF flag  
cleared  
to 0  
RXI interrupt RDRF flag  
request  
cleared  
to 0  
User  
processing  
RDR data read  
When data is  
this station's  
ID, reception  
is continued  
RDR data read  
MPIE set to 1  
again  
(b) When data matches this receiver's ID  
Figure 14.18 Example of SCI3 Operation in Reception Using Multiprocessor Format  
(Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)  
Rev. 4.0, 03/02, page 212 of 400  
14.7  
Interrupts  
The SCI3 creates the following six interrupt requests: transmission end, transmit data empty,  
receive data full, and receive errors (overrun error, framing error, and parity error). Table 14.6  
shows the interrupt sources.  
Table 14.6 SCI3 Interrupt Requests  
Interrupt Requests  
Receive Data Full  
Transmit Data Empty  
Transmission End  
Receive Error  
Abbreviation  
Interrupt Sources  
RXI  
TXI  
TEI  
ERI  
Setting RDRF in SSR  
Setting TDRE in SSR  
Setting TEND in SSR  
Setting OER, FER, and PER in SSR  
The initial value of the TDRE flag in SSR is 1. Thus, when the TIE bit in SCR3 is set to 1 before  
transferring the transmit data to TDR, a TXI interrupt request is generated even if the transmit data  
is not ready. The initial value of the TEND flag in SSR is 1. Thus, when the TEIE bit in SCR3 is  
set to 1 before transferring the transmit data to TDR, a TEI interrupt request is generated even if  
the transmit data has not been sent. It is possible to make use of the most of these interrupt  
requests efficiently by transferring the transmit data to TDR in the interrupt routine. To prevent  
the generation of these interrupt requests (TXI and TEI), set the enable bits (TIE and TEIE) that  
correspond to these interrupt requests to 1, after transferring the transmit data to TDR.  
Rev. 4.0, 03/02, page 213 of 400  
14.8  
Usage Notes  
14.8.1 Break Detection and Processing  
When framing error detection is performed, a break can be detected by reading the RxD pin value  
directly. In a break, the input from the RxD pin becomes all 0, setting the FER flag, and possibly  
the PER flag. Note that as the SCI3 continues the receive operation after receiving a break, even if  
the FER flag is cleared to 0, it will be set to 1 again.  
14.8.2 Mark State and Break Sending  
When TE is 0, the TxD pin is used as an I/O port whose direction (input or output) and level are  
determined by PCR and PDR. This can be used to set the TxD pin to mark state (high level) or  
send a break during serial data transmission. To maintain the communication line at mark state  
until TE is set to 1, set both PCR and PDR to 1. As TE is cleared to 0 at this point, the TxD pin  
becomes an I/O port, and 1 is output from the TxD pin. To send a break during serial transmission,  
first set PCR to 1 and PDR to 0, and then clear TE to 0. When TE is cleared to 0, the transmitter is  
initialized regardless of the current transmission state, the TxD pin becomes an I/O port, and 0 is  
output from the TxD pin.  
14.8.3 Receive Error Flags and Transmit Operations (Clocked Synchronous Mode Only)  
Transmission cannot be started when a receive error flag (OER, PER, or FER) is set to 1, even if  
the TDRE flag is cleared to 0. Be sure to clear the receive error flags to 0 before starting  
transmission. Note also that receive error flags cannot be cleared to 0 even if the RE bit is cleared  
to 0.  
Rev. 4.0, 03/02, page 214 of 400  
14.8.4  
Receive Data Sampling Timing and Reception Margin in Asynchronous Mode  
In asynchronous mode, the SCI3 operates on a basic clock with a frequency of 16 times the  
transfer rate. In reception, the SCI3 samples the falling edge of the start bit using the basic clock,  
and performs internal synchronization. Receive data is latched internally at the rising edge of the  
8th pulse of the basic clock as shown in figure 14.19.  
Thus, the reception margin in asynchronous mode is given by formula (1) below.  
1
D 0.5  
M = (0.5 –  
) –  
(L 0.5) F × 100(%)  
2N  
N
... Formula (1)  
Where N : Ratio of bit rate to clock (N = 16)  
D : Clock duty (D = 0.5 to 1.0)  
L : Frame length (L = 9 to 12)  
F : Absolute value of clock rate deviation  
Assuming values of F (absolute value of clock rate deviation) = 0 and D (clock duty) = 0.5 in  
formula (1), the reception margin can be given by the formula.  
M = {0.5 – 1/(2 × 16)} × 100 [%] = 46.875%  
However, this is only the computed value, and a margin of 20% to 30% should be allowed for in  
system design.  
16 clocks  
8 clocks  
0
7
15  
0
7
15 0  
Internal basic  
clock  
Receive data  
(RxD)  
Start bit  
D0  
D1  
Synchronization  
sampling timing  
Data sampling  
timing  
Figure 14.19 Receive Data Sampling Timing in Asynchronous Mode  
Rev. 4.0, 03/02, page 215 of 400  
Rev. 4.0, 03/02, page 216 of 400  
Section 15 I2C Bus Interface (IIC)  
The I2C bus interface conforms to and provides a subset of the Philips I2C bus (inter-IC bus)  
interface functions. The register configuration that controls the I2C bus differs partly from the  
Philips configuration, however.  
15.1  
Features  
Selection of I2C format or clocked synchronous serial format  
I2C bus format: addressing format with acknowledge bit, for master/slave operation  
Clocked synchronous serial format: non-addressing format without acknowledge bit, for  
master operation only  
I2C bus format  
Two ways of setting slave address  
Start and stop conditions generated automatically in master mode  
Selection of acknowledge output levels when receiving  
Automatic loading of acknowledge bit when transmitting  
Wait function in master mode  
A wait can be inserted by driving the SCL pin low after data transfer, excluding  
acknowledgement. The wait can be cleared by clearing the interrupt flag.  
Wait function in slave mode  
A wait request can be generated by driving the SCL pin low after data transfer, excluding  
acknowledgement. The wait request is cleared when the next transfer becomes possible.  
Three interrupt sources  
Data transfer end (including transmission mode transition with I2C bus format and address  
reception after loss of master arbitration)  
Address match: when any slave address matches or the general call address is received in  
slave receive mode  
Stop condition detection  
Selection of 16 internal clocks (in master mode)  
Direct bus drive  
Two pins, SCL and SDA pins function as NMOS open-drain outputs when the bus drive  
function is selected.  
Figure 15.1 shows a block diagram of the I2C bus interface.  
Figure 15.2 shows an example of I/O pin connections to external circuits. The I/O pins are NMOS  
open drains. Set the upper limit of voltage applied to the power supply (VCC) voltage range +  
0.3 V, i.e. 5.8 V.  
Rev. 4.0, 03/02, page 217 of 400  
IFIIC00A_000020020300  
ø
PS  
ICCR  
ICMR  
SCL  
Clock  
control  
Noise  
canceler  
Bus state  
decision  
circuit  
ICSR  
ICDRT  
ICDRS  
ICDRR  
Arbitration  
decision  
circuit  
Output data  
control  
circuit  
SDA  
Noise  
canceler  
Address  
comparator  
SAR, SARX  
Interrupt  
request  
Interrupt  
generator  
Legend:  
ICCR: I C bus control register  
ICMR: I C bus mode register  
ICSR: I C bus status register  
2
2
2
2
ICDR: I C bus data register  
SAR: Slave address register  
SARX: Slave address register X  
PS:  
Prescaler  
Figure 15.1 Block Diagram of I2C Bus Interface  
Rev. 4.0, 03/02, page 218 of 400  
VDD  
VCC  
SCL  
SDA  
SCL  
SDA  
SCL in  
out  
SDA in  
out  
(Master)  
This LSI  
SCL in  
SCL in  
out  
out  
SDA in  
SDA in  
out  
out  
(Slave 1)  
(Slave 2)  
Figure 15.2 I2C Bus Interface Connections (Example: This LSI as Master)  
15.2  
Input/Output Pins  
Table 15.1 summarizes the input/output pins used by the I2C bus interface.  
Table 15.1 I2C Bus Interface Pins  
Name  
Abbreviation  
SCL  
I/O  
I/O  
I/O  
Function  
Serial clock  
Serial data  
IIC serial clock input/output  
IIC serial data input/output  
SDA  
15.3 Register Descriptions  
The I2C bus interface has the following registers. ICDR, SARX, ICMR, and SAR are allocated to  
one address, and registers that can be accessed depend on the ICE bit in ICCR. When ICE = 0.  
SAR and SARX can be accessed. When ICE = 1, ICMR and ICDR can be accessed.  
I2C bus control register(ICCR)  
I2C bus status register(ICSR)  
I2C bus data register(ICDR)  
I2C bus mode register(ICMR)  
Slave address register(SAR)  
Second slave address register(SARX)  
Rev. 4.0, 03/02, page 219 of 400  
Timer serial control register(TSCR)  
15.3.1 I2C bus data register(ICDR)  
ICDR is an 8-bit readable/writable register that is used as a transmit data register when  
transmitting and a receive data register when receiving. ICDR is divided internally into a shift  
register (ICDRS), receive buffer (ICDRR), and transmit buffer (ICDRT). Data transfers among the  
three registers are performed automatically in coordination with changes in the bus state, and  
affect the status of internal flags such as TDRE and RDRF. When TDRE is 1 and the transmit  
buffer is empty, TDRE shows that the next transmit data can be written from the CPU. When  
RDRF is 1, it shows that the valid receive data is stored in the receive buffer.  
If I2C is in transmit mode and the next data is in ICDRT (the TDRE flag is 0) following  
transmission/reception of one frame of data using ICDRS, data is transferred automatically from  
ICDRT to ICDRS. If I2C is in receive mode and no previous data remains in ICDRR (the RDRF  
flag is 0) following transmission/reception of one frame of data using ICDRS, data is transferred  
automatically from ICDRS to ICDRR.  
If the number of bits in a frame, excluding the acknowledge bit, is less than 8, transmit data and  
receive data are stored differently. Transmit data should be written justified toward the MSB side  
when MLS = 0, and toward the LSB side when MLS = 1. Receive data bits read from the LSB  
side should be treated as valid when MLS = 0, and bits read from the MSB side when MLS = 1.  
ICDR can be written and read only when the ICE bit is set to 1 in ICCR.  
The value of ICDR is undefined after a reset.  
The TDRE and RDRF flags are set and cleared under the conditions shown below. Setting the  
TDRE and RDRF flags affects the status of the interrupt flags.  
Rev. 4.0, 03/02, page 220 of 400  
Bit Bit Name Initial Value R/W  
TDRE − −  
Description  
Transmit Data Register Empty  
[Setting conditions]  
In transmit mode, when a start condition is detected in  
the bus line state after a start condition is issued in  
master mode with the I2C bus format or serial format  
selected  
When transmit mode (TRS = 1) is set without a format  
When data is transferred from ICDRT to ICDRS  
When a switch is made from receive mode to transmit  
mode after detection of a start condition  
[Clearing conditions]  
When transmit data is written in ICDR in transmit mode  
When a stop condition is detected in the bus line state  
after a stop condition is issued with the I2C bus format  
or serial format selected  
When a stop condition is detected with the I2C bus  
format selected  
In receive mode  
RDRF  
Receive Data Register Full  
[Setting condition]  
When data is transferred from ICDRS to ICDRR  
[Clearing condition]  
When ICDR(ICDRR) receive data is read in receive mode  
Rev. 4.0, 03/02, page 221 of 400  
15.3.2 Slave address register(SAR)  
SAR selects the slave address and selects the communication format. SAR can be written and read  
only when the ICE bit is cleared to 0 in ICCR.  
Bit Bit Name Initial Value R/W  
Description  
7
6
5
4
3
2
1
0
SVA6  
SVA5  
SVA4  
SVA3  
SVA2  
SVA1  
SVA0  
FS  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Slave Address 6 to 0  
Sets a slave address  
Selects the communication format together with the FSX bit  
in SARX. Refer to table 15.2.  
15.3.3 Second slave address register(SARX)  
SARX stores the second slave address and selects the communication format. SARX can be  
written and read only when the ICE bit is cleared to 0 in ICCR.  
Bit Bit Name Initial Value R/W  
Description  
7
6
5
4
3
2
1
0
SVAX6  
SVAX5  
SVAX4  
SVAX3  
SVAX2  
SVAX1  
SVAX0  
FSX  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Slave Address 6 to 0  
Sets the second slave address  
Selects the communication format together with the FS bit  
in SAR. Refer to table 15.2.  
Rev. 4.0, 03/02, page 222 of 400  
Table 15.2 Communication Format  
SAR  
FS  
0
SARX  
FSX  
0
I2C Transfer Format  
SAR and SARX are used as the slave addresses with  
the I2C bus format.  
0
1
1
1
0
1
Only SAR is used as the slave address with the I2C bus  
format.  
Only SARX is used as the slave address with the I2C  
bus format.  
Clock synchronous serial format (SAR and SARX are  
invalid)  
15.3.4 I2C Bus Mode Register(ICMR)  
The I2C bus mode register (ICMR) sets the transfer format and transfer rate. It can only be  
accessed when the ICE bit in ICCR is 1.  
Rev. 4.0, 03/02, page 223 of 400  
Bit Bit Name Initial Value R/W  
Description  
7
MLS  
0
R/W  
MSB-First/LSB-First Select  
0: MSB-first  
1: LSB-first  
Set this bit to 0 when the I2C bus format is used.  
6
WAIT  
0
R/W  
Wait Insertion Bit  
This bit is valid only in master mode with the I2C bus  
format.  
When WAIT is set to 1, after the fall of the clock for the final  
data bit, the IRIC flag is set to 1 in ICCR, and a wait state  
begins(with SCL at the low level). When the IRIC flag is  
cleared to 0 in ICCR, the wait ends and the acknowledge  
bit is transferred. If WAIT is cleared to 0, data and  
acknowledge bits are transferred consecutively with no wait  
inserted. The IRIC flag in ICCR is set to 1 on completion of  
the acknowledge bit transfer, regardless of the WAIT  
setting.  
5
4
3
CKS2  
CKS1  
CKS0  
0
0
0
R/W  
R/W  
R/W  
Serial Clock Select 2 to 0  
This bit is valid only in master mode.  
These bits select the required transfer rate, together with  
the IICX bit in TSCR. Refer table 15.3.  
2
1
0
BC2  
BC1  
BC0  
0
0
0
R/W  
R/W  
R/W  
Bit Counter 2 to 0  
These bits specify the number of bits to be transferred next.  
With the I2C bus format, the data is transferred with one  
addition acknowledge bit. Bit BC2 to BC0 settings should  
be made during an interval between transfer frames. If bits  
BC2 to BC0 are set to a value other than 000, the setting  
should be made while the SCL line is low. The value  
returns to 000 at the end of a data transfer, including the  
acknowledge bit.  
I2C Bus Format  
Clocked Synchronous Mode  
000: 9  
000: 8  
001: 1  
010: 2  
011: 3  
100: 4  
101: 5  
110: 6  
111: 7  
001: 2  
010: 3  
011: 4  
100: 5  
101: 6  
110: 7  
111: 8  
Rev. 4.0, 03/02, page 224 of 400  
Table 15.3 I2C Transfer Rate  
TSCR  
ICMR  
Bit 0  
Bit 5  
Bit 4  
Bit 3  
Transfer Rate  
IICX  
0
CKS2  
CKS1  
CKS0  
Clock  
φ/28  
φ=5 MHz φ=8 MHz φ=10 MHz φ=16 MHz  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
179MHz 286kHz  
357kHz  
250kHz  
208kHz  
156kHz  
125kHz  
571kHz  
400kHz  
333kHz  
250kHz  
200kHz  
160kHz  
0
φ/40  
125kHz  
104kHz  
200kHz  
167kHz  
0
φ/48  
0
φ/64  
78.1kHz 125kHz  
62.5kHz 100kHz  
0
φ/80  
0
φ/100  
φ/112  
φ/128  
φ/56  
50.0kHz 80.0kHz 100kHz  
0
44.6kHz 71.4kHz 89.3kHz 143kHz  
39.1kHz 62.5kHz 78.1kHz 125kHz  
0
1
89.3kHz 143kHz  
62.5kHz 100kHz  
179kHz  
125kHz  
286kHz  
200kHz  
167kHz  
1
φ/80  
1
φ/96  
52.1kHz 83.3kHz 104kHz  
1
φ/128  
φ/160  
φ/200  
φ/224  
φ/256  
39.1kHz 62.5kHz 78.1kHz 125kHz  
31.3kHz 50.0kHz 62.5kHz 100kHz  
25.0kHz 40.0kHz 50.0kHz 80.0kHz  
22.3kHz 35.7kHz 44.6kHz 71.4kHz  
19.5kHz 31.3kHz 39.1kHz 62.5kHz  
1
1
1
1
15.3.5 I2C Bus Control Register(ICCR)  
I2C bus control register (ICCR) consists of the control bits and interrupt request flags of I2C bus  
interface.  
Bit Bit Name Initial Value R/W  
ICE R/W  
Description  
I2C Bus Interface Enable  
7
0
When this bit is set to 1, the I2C bus interface module is  
enabled to send/receive data and drive the bus since it is  
connected to the SCL and SDA pins. ICMR and ICDR can  
be accessed.  
When this bit is cleared, the module is halted and  
separated from the SCL and SDA pins. SAR and SARX  
can be accessed.  
Rev. 4.0, 03/02, page 225 of 400  
Bit Bit Name Initial Value R/W  
Description  
6
IEIC  
0
R/W  
I2C Bus Interface Interrupt Enable  
When this bit is 1, Interrupts are enabled by IRIC.  
Master/Slave Select  
5
4
MST  
TRS  
0
0
R/W  
R/W  
Transmit/Receive Select  
00: Slave receive mode  
01: Slave transmit mode  
10: Master receive mode  
11: Master transmit mode  
Both these bits will be cleared by hardware when they lose  
in a bus contention in master mode of the I2C bus format. In  
slave receive mode, the R/W bit in the first frame  
immediately after the start automatically sets these bits in  
receive mode or transmit mode by using hardware. The  
settings can be made again for the bits that were  
set/cleared by hardware, by reading these bits. When the  
TRS bit is intended to change during a transfer, the bit will  
not be switched until the frame transfer is completed,  
including acknowledgement.  
3
2
ACKE  
BBSY  
0
0
R/W  
R/W  
Acknowledge Bit Judgement Selection  
0: The value of the acknowledge bit is ignored, and  
continuous transfer is performed. The value of the received  
acknowledge bit is not indicated by the ACKB bit, which is  
always 0.  
1: If the acknowledge bit is 1, continuous transfer is  
interrupted.  
Bus Busy  
In slave mode, reading the BBSY flag enables to confirm  
whether the I2C bus is occupied or released. The BBSY flag  
is set to 0 when the SDA level changes from high to low  
under the condition of SCl = high, assuming that the start  
condition has been issued. The BBSY flag is cleared to 0  
when the SDA level changes from low to high under the  
condition of SCl = high, assuming that the start condition  
has been issued. Writing to the BBSY flag in slave mode is  
disabled.  
In master mode, the BBSY flag is used to issue start and  
stop conditions. Write 1 to BBSY and 0 to SCP to issue a  
start condition. Follow this procedure when also re-  
transmitting a start condition. To issue a start/stop  
condition, use the MOV instruction. The I2C bus interface  
must be set in master transmit mode before the issue of a  
start condition.  
Rev. 4.0, 03/02, page 226 of 400  
Bit Bit Name Initial Value R/W  
IRIC R/W  
Description  
I2C Bus Interface Interrupt Request Flag  
1
0
Also see table 15.4.  
[Setting conditions]  
In master mode with I2C bus format  
When a start condition is detected in the bus line state  
after a start condition is issued  
When a wait is inserted between the data and  
acknowledge bit when WAIT=1  
At the rising edge of the ninth transfer/receive clock,  
and at the falling edge of the eighth transfer/receive  
clock when a wait is inseted  
When a slave address is received after bus arbitration  
is lost(when the AL flag is set to1)  
When 1 is received as the acknowledge bit when the  
ACKE bit is 1(when the ACKB bit is set to 1)  
I2C bus format slave mode  
When the slave address(SVA, SVAX) matches(when  
the AAS and AASX flags are set to 1) and at the end of  
data transfer up to the subsequent retransmission start  
condition or stop condition detection(FS=0 and when  
the TDRE or RDRF flag is set to 1)  
When the general call address is detected(when the  
ADZ flag is set to 1) and at the end of data transfer up  
to the subsequent retransmission start condition or stop  
condition detection(when the TDRE or RDRF flag is set  
to 1)  
When 1 is received as the acknowledge bit when the  
ACKE bit is 1(when the ACKB bit is set to 1)  
When a stop condition is detected(when the STOP or  
ESTP flag is set to 1)  
Clocked synchronous serial format  
At the end of data transfer(when the TDRE or RDRF  
flag is set to 1)  
When a start condition is detected with serial format  
selected  
[Clearing condition]  
When 0 is written in IRIC after reading IRIC=1  
Rev. 4.0, 03/02, page 227 of 400  
Bit Bit Name Initial Value R/W  
SCP  
Description  
0
1
W
Start Condition/Stop Condition Prohibit  
The SCP bit controls the issue of start/stop conditions in  
master mode.  
To issue a start condition, write 1 in BBSY and 0 in SCP. A  
retransmit start condition is issued in the same way. To  
issue a stop condition, write 0 in BBSY and 0 in SCP. This  
bit is always read as 1. If 1 is written, the data is not stored.  
15.3.6 I2C Bus Status Register(ICSR)  
The I2C bus status register (ICSR) consists of status flags. Also see table 15.4.  
Bit Bit Name Initial Value R/W  
Description  
7
6
5
ESTP  
STOP  
IRTR  
0
0
0
R/W  
R/W  
R/W  
Error Stop Condition Detection Flag  
This bit is valid in I2C bus format slave mode.  
[Setting condition]  
When a stop condition is detected during frame transfer.  
[Clearing condition]  
When 0 is written in ESTP after reading ESTP=1  
When the IRIC flag is cleared to 0  
Normal Stop Condition Detection Flag  
This bit is valid in I2C bus format slave mode.  
[Setting condition]  
When a stop condition is detected during frame transfer.  
[Clearing condition]  
When 0 is written in STOP after reading STOP=1  
When the IRIC flag is cleared to 0  
I2C Bus Interface Continuous Transmission/Reception  
Interrupt Request Flag  
[Setting conditions]  
In I2C bus interface slave mode  
When the TDRE or RDRF flag is set to 1 when AASX=1  
In I2C bus interface other modes  
When the TDRE or RDRF flag is set to 1  
[Clearing conditions]  
When 0 is written in IRTR after reading IRTR=1  
When the IRIC flag is cleared to 0  
Rev. 4.0, 03/02, page 228 of 400  
Bit Bit Name Initial Value R/W  
Description  
4
AASX  
0
R/W  
Second Slave Address Recognition Flag  
[Setting condition]  
When the second slave address is detected in slave  
receive mode and FSX=0  
[Clearing conditions]  
When 0 is written in AASX after reading AASX=1  
When a start condition is detected  
In master mode  
3
AL  
0
R/W  
Arbitration Lost  
[Setting condition]  
When bus arbitration was lost in master mode.  
[Clearing conditions]  
When 0 is written in AL after reading AL=1  
When ICDR data is written(transmit mode) or  
read(receive mode)  
2
AAS  
0
R/W  
Slave Address Recognition Flag  
[Setting condition]  
When the slave address or general call address is detected  
in slave receive mode and FS=0.  
[Clearing conditions]  
When ICDR data is written(transmit mode) or  
read(receive mode)  
When 0 is written in AAS after reading AAS=1  
In master mode  
1
ADZ  
0
R/W  
General Call Address Recognition Flag  
This bit is valid in I2C bus format slave receive mode.  
[Setting condition]  
When the general call address is detected in slave receive  
mode and FSX=0 or FS=0.  
[Clearing conditions]  
When ICDR data is written(transmit mode) or  
read(receive mode)  
When 0 is written in ADZ after reading ADZ=1  
In master mode  
Rev. 4.0, 03/02, page 229 of 400  
Bit Bit Name Initial Value R/W  
ACKB R/W  
Description  
0
0
Acknowledge Bit  
In transmit mode, the acknowledge data that are returned  
by the receive device is loaded. In receive mode, the  
acknowledge data originally specified to this bit is sent to  
the transmit device, after receiving data. When this bit is  
read, the loaded value (return value from the receive  
device) is read at transmission and the specified value is  
read at reception.  
15.3.7 Timer Serial Control Register(TSCR)  
The timer serial control register (TSCR) is an 8-bit readable/writable register that controls the  
operating modes.  
Bit Bit Name Initial Value R/W  
Description  
7 to −  
2
All 1  
Reserved  
This bit is always read as 1 and cannot be modified.  
I2C Control Unit Reset  
1
IICRST  
0
R/W  
Resets the control unit except for the I2C registers. When a  
hang up occurs due to illegal communication during I2C  
operation, setting IICRST to 1 can set a port or reset the  
I2C control unit without initializing registers.  
0
IICX  
0
R/W  
I2C Transfer Rate Select  
Selects the transfer rate in master mode, together with bits  
CKS2 to CKS0 in ICMR. Refer to table 15.3.  
When, with the I2C bus format selected, IRIC is set to 1 and an interrupt is generated, other flags  
must be checked in order to identify the source that set IRIC to 1. Although each source has a  
corresponding flag, caution is needed at the end of a transfer. When the TDRE or RDRF internal  
flag is set, the readable IRTR flag may or may not be set. Even when the IRIC flag and IRTR flag  
are set, the TDRE or RDRF internal flag may not be set. Table 15.4 shows the relationship  
between the flags and the transfer states.  
Rev. 4.0, 03/02, page 230 of 400  
Table 15.4 Flags and Transfer States  
MST TRS BBSY ESTP STOP IRTR AASX AL  
AAS ADZ ACKB State  
1/0 1/0  
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Idle state(flag clearing required)  
Start condition issuance  
Start condition established  
Master mode wait  
1
1
1
1
0
0
0
0
0
1
0
0
1
0
0
1/0  
1/0  
0
0
0/1  
0/1  
0
0
Master mode transmit/receive end  
Arbitration lost  
1/0  
0
1/0 1/0  
0
1
1
0
0
0
1
0
0
0
SAR match by first frame in slave mode  
General call address match  
SARX match  
0
0
0
0
1
0
1/0  
0
0/1  
Slave mode transmit/receive end(except after  
SARX match)  
0
0
0
1/0  
1
1
1
0
0
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
Slave mode transmit/receive end(after SARX  
match)  
0
0
1
1/0  
1/0  
1/0  
0/1  
Stop condition detected  
15.4  
Operation  
The I2C bus interface has serial and I2C bus formats.  
15.4.1 I2C Bus Data Format  
The I2C bus formats are addressing formats and an acknowledge bit is inserted. These are shown  
in figures 15.3. Figure 15.5 shows the I2C bus timing.The first frame following a start condition  
always consists of 8 bits.  
Rev. 4.0, 03/02, page 231 of 400  
(a) I2C bus format (FS = 0 or FSX = 0)  
S
1
SLA  
7
R/  
A
1
DATA  
n
A
1
A/  
1
P
1
1
n: transfer bit count  
(n = 1 to 8)  
m: transfer frame count  
(m 1)  
1
m
(b) I2C bus format (start condition retransmission, FS = 0 or FSX = 0)  
S
1
SLA  
7
R/  
A
1
DATA  
n1  
A/  
S
1
SLA  
7
R/  
A
1
DATA  
n2  
A/  
1
P
1
1
1
1
1
m1  
1
m2  
n1 and n2: transfer bit count (n1 and n2 = 1 to 8)  
m1 and m2: transfer frame count (m1 and m2 1)  
Figure 15.3 I2C Bus Data Formats (I2C Bus Formats)  
SDA  
1-7  
8
9
1-7  
8
9
1-7  
8
9
SCL  
S
SLA  
R/  
A
DATA  
A
DATA  
A/  
P
Figure 15.4 I2C Bus Timing  
Legend  
S:  
Start condition. The master device drives SDA from high to low while SCL is high  
SLA: Slave address  
R/W: Indicates the direction of data transfer: from the slave device to the master device when  
R/W is 1, or from the master device to the slave device when R/W is 0  
A:  
Acknowledge. The receiving device drives SDA  
DATA: Transferred data  
P:  
Stop condition. The master device drives SDA from low to high while SCL is high  
Rev. 4.0, 03/02, page 232 of 400  
15.4.2 Master Transmit Operation  
When data is set to ICDR during the period between the execution of an instruction to issue a start  
condition and the creation of the start condition, the data may not be output normally, because  
there will be a contention between a generation of a start condition and an output of data.  
Although data H'FF is to be sent to the ICDR register by a dummy write operation before an issue  
of a stop condition, the H'FF data may be output by the dummy write operation if the execution of  
the instruction to issue a stop condition is delayed. To prevent these problems, follow the  
flowchart shown below during the master transmit operation.  
In I2C bus format master transmit mode, the master device outputs the transmit clock and transmit  
data, and the slave device returns an acknowledge signal. The transmission procedure and  
operations synchronize with the ICDR writing are described below.  
1. Set the ICE bit in ICCR to 1. Set bits MLS, WAIT, and CKS2 to CKS0 in ICMR, and bit IICX  
in TSCR, according to the operating mode.  
2. Read the BBSY flag in ICCR to confirm that the bus is free.  
3. Set bits MST and TRS to 1 in ICCR to select master transmit mode.  
4. Write 1 to BBSY and 0 to SCP. This changes SDA from high to low when SCL is high, and  
generates the start condition.  
5. Then IRIC and IRTR flags are set to 1. If the IEIC bit in ICCR has been set to 1, an interrupt  
request is sent to the CPU.  
6. Write the data (slave address + R/W) to ICDR. With the I2C bus format (when the FS bit in  
SAR or the FSX bit in SARX is 0), the first frame data following the start condition indicates  
the 7-bit slave address and transmit/receive direction. As indicating the end of the transfer, and  
so the IRIC flag is cleared to 0. After writing ICDR, clear IRIC continuously not to execute  
other interrupt handling routine. If one frame of data has been transmitted before the IRIC  
clearing, it can not be determine the end of transmission. The master device sequentially sends  
the transmission clock and the data written to ICDR using the timing shown in figure 15.5. The  
selected slave device (i.e. the slave device with the matching slave address) drives SDA low at  
the 9th transmit clock pulse and returns an acknowledge signal.  
7. When one frame of data has been transmitted, the IRIC flag is set to 1 at the rise of the 9th  
transmit clock pulse. After one frame has been transmitted SCL is automatically fixed low in  
synchronization with the internal clock until the next transmit data is written.  
8. Read the ACKB bit in ICSR to confirm that ACKB is cleared to 0. When the slave device has  
not acknowledged (ACKB bit is 1), operate the step [12] to end transmission, and retry the  
transmit operation.  
9. Write the transmit data to ICDR. As indicating the end of the transfer, and so the IRIC flag is  
cleared to 0. Perform the ICDR write and the IRIC flag clearing sequentially, just as in the  
step[6]. Transmission of the next frame is performed in synchronization with the internal  
clock.  
Rev. 4.0, 03/02, page 233 of 400  
10. When one frame of data has been transmitted, the IRIC flag is set to 1 at the rise of the 9th  
transmit clock pulse. After one frame has been transmitted SCL is automatically fixed low in  
synchronization with the internal clock until the next transmit data is written.  
11. Read the ACKB bit in ICSR. Confirm that the slave device has been acknowledged (ACKB bit  
is 0). When there is data to be transmitted, go to the step [9] to continue next transmission.  
When the slave device has not acknowledged (ACKB bit is set to 1), operate the step [12] to  
end transmission.  
12. Clear the IRIC flag to 0. And write 0 to BBSY and SCP in ICCR. This changes SDA from low  
to high when SCL is high, and generates the stop condition.  
Start condition generation  
SCL  
(master output)  
1
2
3
4
5
6
7
8
9
1
2
Slave address  
Bit 4 Bit 3  
SDA  
(master output)  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
R/  
Bit 7  
Bit 6  
[7]  
Slave address  
Data 1  
SDA  
(slave output)  
[5]  
A
IRIC  
IRTR  
ICDR  
Data 1  
Address + R/  
*
[9] IRIC clearance  
ICDR writing  
prohibited  
Normal  
operation  
[9] ICDR write  
[6] IRIC clearance  
[6] ICDR write  
User processing [4] Write BBSY = 1  
and SCP = 0  
(start condition  
issuance)  
Note: * Data write timing in ICDR  
Figure 15.5 Master Transmit Mode Operation Timing Example  
(MLS = WAIT = 0)  
15.4.3 Master Receive Operation  
The data buffer of the I2C module can receive data consecutively since it consists of ICDRR and  
ICDRS. However, if the completion of receiving the last data is delayed, there will be a contention  
between the instruction to issue a stop condition and the SCl clock output to receive the next data,  
and may generate unnecessary clocks or fix the output level of the SDA line as low. The switch  
timing of the ACKB bit in the ICSR register should be controlled because the acknowledge bit  
does not return acknowledgement after receiving the last data in master mode. These problems can  
be avoided by using the WAIT function. Follow the flowchart shown below.  
Rev. 4.0, 03/02, page 234 of 400  
In master receive mode, the master device outputs the receive clock, receives data, and returns an  
acknowledge signal. The slave device transmits data. The reception procedure and operations with  
the wait function synchronized with the ICDR read operation to receive data in sequence are  
shown below.  
1. Clear the TRS bit in ICCR to 0 to switch from transmit mode to receive mode, and set the  
WAIT bit in ICMR to 1. Also clear the bit in ICSR to ACKB 0 (acknowledge data setting).  
2. When ICDR is read (dummy data read), reception is started, and the receive clock is output,  
and data received, in synchronization with the internal clock. In order to detect wait operation,  
set the IRIC flag in ICCR must be cleared to 0. After reading ICDR, clear IRIC continuously  
not to execute other interrupt handling routine. If one frame of data has been received before  
the IRIC clearing, it can not be determine the end of reception.  
3. The IRIC flag is set to 1 at the fall of the 8th receive clock pulse. If the IEIC bit in ICCR has  
been set to 1, an interrupt request is sent to the CPU. SCL is automatically fixed low in  
synchronization with the internal clock until the IRIC flag clearing. If the first frame is the last  
receive data, execute the step [10] to halt reception.  
4. Clear the IRIC flag to release from the Wait State. The master device outputs the 9th clock and  
drives SDA at the 9th receive clock pulse to return an acknowledge signal.  
5. When one frame of data has been received, the IRIC flag in ICCR and the IRTR flag in ICSR  
are set to 1 at the rise of the 9th receive clock pulse. The master device outputs SCL clock to  
receive next data.  
6. Read ICDR.  
7. Clear the IRIC flag to detect next wait operation. Data reception process from the step [5] to  
[7] should be executed during one byte reception period after IRIC flag clearing in the step [4]  
or [9] to release wait status.  
8. The IRIC flags set to 1 at the fall of 8th receive clock pulse. SCL is automatically fixed low in  
synchronization with the internal clock until the IRIC flag clearing. If this frame is the last  
receive data, execute the step [10] to halt reception.  
9. Clear the IRIC flag in ICCR to cancel wait operation. The master device outputs the 9th clock  
and drives SDA at the 9th receive clock pulse to return an ackowledge signal. Data can be  
received continuously by repeating the step [5] to [9].  
10. Set the ACKB bit in ICSR to 1 so as to return “No acknowledge” data. Also set the TRS bit in  
ICCR to 1 to switch from receive mode to transmit mode.  
11. Clear IRIC flag to 0 to release from the Wait State.  
12. When one frame of data has been received, the IRIC flag is set to 1 at the rise of the 9th  
receive clock pulse.  
13. Clear the WAIT bit to 0 to switch from wait mode to no wait mode. Read ICDR and the IRIC  
flag to 0. Clearing of the IRIC flag should be after the WAIT = 0. If the WAIT bit is cleared to  
0 after clearing the IRIC flag and then an instruction to issue a stop condition is executed, the  
stop condition cannot be issued because the output level of the SDA line is fixed as low.  
Rev. 4.0, 03/02, page 235 of 400  
14. Clear the BBSY bit and SCP bit to 0. This changes SDA from low to high when SCL is high,  
and generates the stop condition.  
Master tansmit mode  
Master receive mode  
SCL  
(master output)  
9
1
2
3
4
5
6
7
8
9
1
2
3
4
5
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Data 1  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3  
Data 2  
SDA  
A
(slave output)  
[3]  
[5]  
SDA  
(master output)  
A
IRIC  
IRTR  
ICDR  
Data 1  
User processing  
[2] ICDR read  
(dummy read)  
[1] TRS cleared to 0  
WAIT set to 1  
ACKB cleared to 0  
[2] IRIC clearance  
[7] IRIC clearance  
[4] IRIC clearance [6] ICDR read  
(Data 1)  
Figure 15.6 Master Receive Mode Operation Timing Example (1)  
(MLS = ACKB = 0, WAIT = 1)  
SCL  
(master output)  
8
9
1
2
3
4
5
6
7
8
9
1
2
Bit 0  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bit 7  
Bit 6  
SDA  
(slave output)  
Data 2  
Data 3  
Data 4  
[8]  
[5]  
[8]  
[5]  
SDA  
(master output)  
A
A
IRIC  
IRTR  
ICDR  
Data 3  
Data 1  
Data 2  
[6] ICDR read  
(Data 3)  
[7] IRIC clearance  
User processing  
[6] ICDR read  
(Data 2)  
[9] IRIC clearance  
[9] IRIC clearance  
[7] IRIC clearance  
Figure 15.6 Master Receive Mode Operation Timing Example (2)  
(MLS = ACKB = 0, WAIT = 1)  
Rev. 4.0, 03/02, page 236 of 400  
15.4.4 Slave Receive Operation  
In slave receive mode, the master device outputs the transmit clock and transmit data, and the  
slave device returns an acknowledge signal. The reception procedure and operations in slave  
receive mode are described below.  
1. Set the ICE bit in ICCR to 1. Set the MLS bit in ICMR and the MST and TRS bits in ICCR  
according to the operating mode.  
2. When the start condition output by the master device is detected, the BBSY flag in ICCR is set  
to 1.  
3. When the slave address matches in the first frame following the start condition, the device  
operates as the slave device specified by the master device. If the 8th data bit (R/W) is 0, the  
TRS bit in ICCR remains cleared to 0, and slave receive operation is performed.  
4. At the 9th clock pulse of the receive frame, the slave device drives SDA low and returns an  
acknowledge signal. At the same time, the IRIC flag in ICCR is set to 1. If the IEIC bit in  
ICCR has been set to 1, an interrupt request is sent to the CPU. If the RDRF internal flag has  
been cleared to 0, it is set to 1, and the receive operation continues. If the RDRF internal flag  
has been set to 1 and ninth clock is received for the following data receival, the slave device  
drives SCL low from the falling edge of the receive clock until data is read into ICDR.  
5. Read ICDR and clear the IRIC flag in ICCR to 0. The RDRF flag is cleared to 0.  
Receive operations can be performed continuously by repeating steps [4] and [5]. When SDA is  
changed from low to high when SCL is high, and the stop condition is detected, the BBSY flag in  
ICCR is cleared to 0.  
Rev. 4.0, 03/02, page 237 of 400  
Start condition issuance  
SCL  
(master output)  
1
2
3
4
5
6
7
8
9
1
2
High  
SCL  
(slave output)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bit 7  
Bit 6  
SDA  
(master output)  
Slave address  
R/  
Data 1  
[4]  
SDA  
(slave output)  
A
RDRF  
IRIC  
Interrupt  
request  
generation  
ICDRS  
ICDRR  
Address + R/  
Address + R/  
User processing  
[5] ICDR read  
[5] IRIC clearance  
Figure 15.7 Example of Slave Receive Mode Operation Timing (1)  
(MLS = ACKB = 0)  
Rev. 4.0, 03/02, page 238 of 400  
SCL  
(master output)  
7
8
9
1
2
3
4
5
6
7
8
9
SCL  
(slave output)  
SDA  
(master output)  
Bit 1  
Bit 0  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
[4]  
[4]  
Data  
1
Data 2  
SDA  
(slave output)  
A
RDRF  
IRIC  
Interrupt  
request  
generation  
Interrupt  
request  
generation  
ICDRS  
ICDRR  
Data  
Data  
1
1
Data 2  
Data  
2
User processing  
[5] ICDR read [5] IRIC clearance  
Figure 15.8 Example of Slave Receive Mode Operation Timing (2)  
(MLS = ACKB = 0)  
15.4.5 Slave Transmit Operation  
In slave transmit mode, the slave device outputs the transmit data, while the master device outputs  
the receive clock and returns an acknowledge signal. The transmission procedure and operations  
in slave transmit mode are described below.  
1. Set the ICE bit in ICCR to 1. Set the MLS bit in ICMR and the MST and TRS bits in ICCR  
according to the operating mode.  
2. When the slave address matches in the first frame following detection of the start condition,  
the slave device drives SDA low at the 9th clock pulse and returns an acknowledge signal. At  
the same time, the IRIC flag in ICCR is set to 1. If the IEIC bit in ICCR has been set to 1, an  
interrupt request is sent to the CPU. If the 8th data bit (R/W) is 1, the TRS bit in ICCR is set to  
1, and the mode changes to slave transmit mode automatically. The TDRE internal flag is set  
to 1. The slave device drives SCL low from the fall of the transmit clock until ICDR data is  
written.  
3. After clearing the IRIC flag to 0, write data to ICDR. The TDRE internal flag is cleared to 0.  
The written data is transferred to ICDRS, and the TDRE internal flag and the IRIC and IRTR  
flags are set to 1 again. After clearing the IRIC flag to 0, write the next data to ICDR. The  
Rev. 4.0, 03/02, page 239 of 400  
slave device sequentially sends the data written into ICDR in accordance with the clock output  
by the master device at the timing shown in figure 15.9.  
4. When one frame of data has been transmitted, the IRIC flag in ICCR is set to 1 at the rise of  
the 9th transmit clock pulse. If the TDRE internal flag has been set to 1, this slave device  
drives SCL low from the fall of the transmit clock until data is written to ICDR. The master  
device drives SDA low at the 9th clock pulse, and returns an acknowledge signal. As this  
acknowledge signal is stored in the ACKB bit in ICSR, this bit can be used to determine  
whether the transfer operation was performed normally. When the TDRE internal flag is 0, the  
data written into ICDR is transferred to ICDRS, transmission is started, and the TDRE internal  
flag and the IRIC and IRTR flags are set to 1 again.  
5. To continue transmission, clear the IRIC flag to 0, then write the next data to be transmitted  
into ICDR. The TDRE flag is cleared to 0.  
Transmit operations can be performed continuously by repeating steps [4] and [5]. To end  
transmission, write H'FF to ICDR. When SDA is changed from low to high when SCL is high,  
and the stop condition is detected, the BBSY flag in ICCR is cleared to 0.  
Slave receive mode  
Slave transmit mode  
SCL  
(master output)  
8
9
1
2
3
4
5
6
7
8
9
1
2
SCL  
(slave output)  
SDA  
(slave output)  
Bit  
7
Bit  
6
Bit  
5
Bit  
4
Bit  
3
Bit  
2
Bit  
1
Bit  
0
Bit  
7
Bit  
6
A
Data 1  
Data 2  
[2]  
SDA  
(master output)  
A
R/  
TDRE  
IRIC  
[3]  
Interrupt  
request  
Interrupt  
request  
Interrupt  
request  
generation  
generation  
generation  
ICDRT  
ICDRS  
Data 1  
Data 2  
Data 1  
Data 2  
[3] IRIC  
clearance  
[3] ICDR  
write  
[3] ICDR  
write  
[5] IRIC  
clearance  
[5] ICDR  
write  
User processing  
Figure 15.9 Example of Slave Transmit Mode Operation Timing  
(MLS = 0)  
Rev. 4.0, 03/02, page 240 of 400  
FS = 1 and FSX = 1  
S
1
DATA  
8
DATA  
n
P
1
n: transfer bit count  
(n = 1 to 8)  
1
m
m: transfer frame count  
(m 1)  
Figure 15.10 I2C Bus Data Format (Serial Format)  
15.4.6 Clock Synchronous Serial Format  
Serial format is a non-addressing format that has no acknowledge bit. Figure 15.10 shows this  
format.  
15.4.7 IRIC Setting Timing and SCL Control  
The interrupt request flag (IRIC) is set at different times depending on the WAIT bit in ICMR, the  
FS bit in SAR, and the FSX bit in SARX. If the TDRE or RDRF internal flag is set to 1, SCL is  
automatically held low after one frame has been transferred; this timing is synchronized with the  
internal clock. Figure 15.11 shows the IRIC set timing and SCL control.  
Rev. 4.0, 03/02, page 241 of 400  
(a) When WAIT = 0, and FS = 0 or FSX = 0 (I2C bus format, no wait)  
SCL  
7
8
9
1
1
7
8
A
SDA  
IRIC  
User processing  
Clear IRIC  
Write to ICDR (transmit)  
or read ICDR (receive)  
(b) When WAIT = 1, and FS = 0 or FSX = 0 (I2C bus format, wait inserted)  
SCL  
8
9
1
1
SDA  
IRIC  
8
A
User processing  
Clear  
IRIC  
Clear Write to ICDR (transmit)  
IRIC or read ICDR (receive)  
(c) When FS = 1 and FSX = 1 (synchronous serial format)  
SCL  
7
8
1
1
SDA  
IRIC  
7
8
User processing  
Clear IRIC  
Write to ICDR (transmit)  
or read ICDR (receive)  
Figure 15.11 IRIC Setting Timing and SCL Control  
Rev. 4.0, 03/02, page 242 of 400  
15.4.8 Noise Canceler  
The logic levels at the SCL and SDA pins are routed through noise cancelers before being latched  
internally. Figure 15.12 shows a block diagram of the noise canceler circuit.  
The noise canceler consists of two cascaded latches and a match detector. The SCL (or SDA)  
input signal is sampled on the system clock, but is not passed forward to the next circuit unless the  
outputs of both latches agree. If they do not agree, the previous value is held.  
Sampling clock  
C
C
SCL or  
SDA input  
signal  
Internal  
SCL or  
SDA  
D
Q
D
Q
Match  
detector  
Latch  
Latch  
signal  
System clock  
period  
Sampling  
clock  
Figure 15.12 Block Diagram of Noise Canceler  
15.4.9 Sample Flowcharts  
Figures 15.13 to 15.16 show sample flowcharts for using the I2C bus interface in each mode.  
Rev. 4.0, 03/02, page 243 of 400  
Start  
Initialize  
[1] Initialization  
Read BBSY in ICCR  
[2] Test the status of the SCL and SDA lines.  
No  
BBSY = 0?  
Yes  
Set MST = 1 and  
TRS = 1 in ICCR  
[3] Select master transmit mode.  
[4] Start condition issuance  
Write BBSY =1 and  
SCP = 0 in ICCR  
Read IRIC in ICCR  
[5] Wait for a start condition  
No  
IRIC = 1?  
Yes  
Write transmit data in ICDR  
[6] Set transmit data for the first byte  
(slave address + R/ ).  
(After writing ICDR, clear IRIC  
continuously)  
Clear IRIC in ICCR  
Read IRIC in ICCR  
[7] Wait for 1 byte to be transmitted.  
No  
IRIC = 1?  
Yes  
Read ACKB in ICSR  
[8] Test the acknowledge bit,  
transferred from slave device.  
No  
No  
ACKB = 0?  
Yes  
Transmit mode?  
Yes  
Master receive mode  
[9] Set transmit data for the second and  
subsequent bytes.  
Write transmit data in ICDR  
Clear IRIC in ICCR  
Read IRIC in ICCR  
(After writing ICDR, clear IRIC  
immediately)  
[10] Wait for 1 byte to be transmitted.  
[11] Test for end of tranfer  
No  
No  
IRIC = 1?  
Yes  
Read ACKB in ICSR  
End of transmission?  
or ACKB = 1?  
Yes  
Clear IRIC in ICCR  
[12] Stop condition issuance  
Write BBSY = 0 and  
SCP = 0 in ICCR  
End  
Figure 15.13 Sample Flowchart for Master Transmit Mode  
Rev. 4.0, 03/02, page 244 of 400  
Master receive operation  
Set TRS = 0 in ICCR  
Set WAIT = 1 in ICMR  
[1] Select receive mode.  
Set ACKB = 0 in ICSR  
Read ICDR  
[2] Start receiving. The first read  
is a dummy read. After reading  
ICDR, please clear IRIC immediately.  
Clear IRIC in ICCR  
Read IRIC in ICCR  
[3] Wait for 1 byte to be received.  
No  
IRIC = 1?  
Yes  
Yes  
Last receive?  
No  
[4] Clear IRIC.  
Clear IRIC in ICCR  
(to end the wait insertion)  
Read IRIC in ICCR  
[5] Wait for 1 byte to be received.  
No  
IRIC = 1?  
Yes  
[6] Read the receive data.  
[7] Clear IRIC.  
Read ICDR  
Clear IRIC in ICCR  
Read IRIC in ICCR  
[8] Wait for the next data to be  
received.  
No  
IRIC = 1?  
Yes  
Yes  
Last receive?  
No  
[9] Clear IRIC.  
(to end the wait insertion)  
Clear IRIC in ICCR  
Set ACKB = 1 in ICSR  
Set TRS = 1 in ICCR  
Clear IRIC in ICCR  
[10] Set acknowledge data for  
the last reception.  
[11] Clear IRIC.  
(to end the wait insertion)  
Read IRIC in ICCR  
[12] Wait for 1 byte to be received.  
No  
IRIC = 1?  
Yes  
Set Wait = 0 in ICMR  
Read ICDR  
[13] Clear wait mode.  
Read receive data.  
Clear IRIC.  
(Note: After setting WAIT = 0,  
IRIC should be cleared to 0.)  
Clear IRIC in ICCR  
Write BBSY = 0 and  
SCP = 0 in ICCR  
[14] Stop condition issuance.  
End  
Figure 15.14 Sample Flowchart for Master Receive Mode  
Rev. 4.0, 03/02, page 245 of 400  
Start  
Initialize  
Set MST = 0  
[1]  
[2]  
and TRS = 0 in ICCR  
Set ACKB = 0 in ICSR  
Read IRIC in ICCR  
No  
IRIC = 1?  
Yes  
Read AAS and ADZ in ICSR  
No  
AAS = 1  
and ADZ = 0?  
General call address processing  
* Description omitted  
Yes  
Read TRS in ICCR  
No  
TRS = 0?  
Yes  
Slave transmit mode  
Yes  
Last receive?  
No  
Read ICDR  
[3]  
[1] Select slave receive mode.  
Clear IRIC in ICCR  
Read IRIC in ICCR  
[2] Wait for the first byte to be received (slave  
address).  
[3] Start receiving. The first read is a dummy read.  
[4] Wait for the transfer to end.  
[4]  
No  
IRIC = 1?  
Yes  
[5] Set acknowledge data for the last reception.  
[6] Start the last reception.  
[7] Wait for the transfer to end.  
[8] Read the last receive data.  
[5]  
[6]  
Set ACKB = 1 in ICSR  
Read ICDR  
Clear IRIC in ICCR  
Read IRIC in ICCR  
[7]  
[8]  
No  
IRIC = 1?  
Yes  
Read ICDR  
Clear IRIC in ICCR  
End  
Figure 15.15 Sample Flowchart for Slave Receive Mode  
Rev. 4.0, 03/02, page 246 of 400  
Slave transmit mode  
Clear IRIC in ICCR  
[1] Set transmit data for the second and  
subsequent bytes.  
[2] Wait for 1 byte to be transmitted.  
[3] Test for end of transfer.  
Write transmit data in ICDR  
Clear IRIC in ICCR  
[1]  
[4] Set slave receive mode.  
[5] Dummy read (to release the SCL line).  
Read IRIC in ICCR  
IRIC = 1?  
[2]  
[3]  
No  
Yes  
Read ACKB in ICSR  
End  
of transmission  
(ACKB = 1)?  
No  
Yes  
[4]  
[5]  
Set TRS = 0 in ICCR  
Read ICDR  
Clear IRIC in ICCR  
End  
Figure 15.16 Sample Flowchart for Slave Transmit Mode  
Rev. 4.0, 03/02, page 247 of 400  
15.5  
Usage Notes  
1. In master mode, if an instruction to generate a start condition is immediately followed by an  
instruction to generate a stop condition, neither condition will be output correctly. To output  
consecutive start and stop conditions, after issuing the instruction that generates the start  
condition, read the relevant ports, check that SCL and SDA are both low, then issue the  
instruction that generates the stop condition. Note that SCL may not yet have gone low when  
BBSY is cleared to 0.  
2. Either of the following two conditions will start the next transfer. Pay attention to these  
conditions when reading or writing to ICDR.  
Write access to ICDR when ICE = 1 and TRS = 1 (including automatic transfer from  
ICDRT to ICDRS)  
Read access to ICDR when ICE = 1 and TRS = 0 (including automatic transfer from  
ICDRS to ICDRR)  
3. Table 15.5 shows the timing of SCL and SDA output in synchronization with the internal  
clock. Timings on the bus are determined by the rise and fall times of signals affected by the  
bus load capacitance, series resistance, and parallel resistance.  
Table 15.5 I2C Bus Timing (SCL and SDA Output)  
Item  
Symbol  
tSCLO  
Output Timing  
28tcyc to 256tcyc  
0.5tSCLO  
Unit  
ns  
Notes  
SCL output cycle time  
SCL output high pulse width  
SCL output low pulse width  
SDA output bus free time  
Start condition output hold time  
tSCLHO  
tSCLLO  
ns  
0.5tSCLO  
ns  
tBUFO  
0.5tSCLO – 1tcyc  
0.5tSCLO – 1tcyc  
1tSCLO  
ns  
tSTAHO  
tSTASO  
ns  
Retransmission start condition output  
setup time  
ns  
Stop condition output setup time  
Data output setup time (master)  
Data output setup time (slave)  
Data output hold time  
tSTOSO  
tSDASO  
0.5tSCLO + 2tcyc  
1tSCLLO – 3tcyc  
1tSCLL – 3tcyc  
3tcyc  
ns  
ns  
ns  
ns  
tSDAHO  
4. SCL and SDA inputs are sampled in synchronization with the internal clock. The AC timing  
therefore depends on the system clock cycle tcyc, as shown in table 20-4 in section 20, Electrical  
Characteristics. Note that the I2C bus interface AC timing specifications will not be met with a  
system clock frequency of less than 5 MHz.  
5. The I2C bus interface specification for the SCL rise time tsr is under 1000 ns (300 ns for high-  
speed mode). In master mode, the I2C bus interface monitors the SCL line and synchronizes  
one bit at a time during communication. If tsr (the time for SCL to go from low to VIH) exceeds  
Rev. 4.0, 03/02, page 248 of 400  
the time determined by the input clock of the I2C bus interface, the high period of SCL is  
extended. The SCL rise time is determined by the pull-up resistance and load capacitance of  
the SCL line. To insure proper operation at the set transfer rate, adjust the pull-up resistance  
and load capacitance so that the SCL rise time does not exceed the values given in the table in  
table 15.6.  
Table 15.6 Permissible SCL Rise Time (tsr) Values  
Time Indication  
I2C Bus  
tcyc  
Specification ø =  
ø =  
ø =  
ø =  
IICX Indication  
(Max.)  
5 MHz  
8 MHz  
10 MHz 16 MHz  
0
7.5tcyc  
Normal mode  
1000 ns  
1000 ns 937 ns  
750 ns  
300 ns  
468 ns  
300 ns  
High-speed mode 300 ns  
Normal mode 1000 ns  
High-speed mode 300 ns  
300 ns  
1000 ns 1000 ns  
300 ns 300 ns  
300 ns  
1
17.5tcyc  
1000 ns 1000 ns  
300 ns 300 ns  
6. The I2C bus interface specifications for the SCL and SDA rise and fall times are under 1000 ns  
and 300 ns. The I2C bus interface SCL and SDA output timing is prescribed by tScyc and tcyc, as  
shown in table 15.5. However, because of the rise and fall times, the I2C bus interface  
specifications may not be satisfied at the maximum transfer rate. Table 15.7 shows output  
timing calculations for different operating frequencies, including the worst-case influence of  
rise and fall times. The values in the above table will vary depending on the settings of the  
IICX bit and bits CKS0 to CKS2. Depending on the frequency it may not be possible to  
achieve the maximum transfer rate; therefore, whether or not the I2C bus interface  
specifications are met must be determined in accordance with the actual setting conditions.  
t
BUFO fails to meet the I2C bus interface specifications at any frequency. The solution is either (a)  
to provide coding to secure the necessary interval (approximately 1 µs) between issuance of a  
stop condition and issuance of a start condition, or (b) to select devices whose input timing  
permits this output timing for use as slave devices connected to the I2C bus.  
tSCLLO in high-speed mode and tSTASO in standard mode fail to satisfy the I2C bus interface  
specifications for worst-case calculations of tSr/tSf. Possible solutions that should be  
investigated include (a) adjusting the rise and fall times by means of a pull-up resistor and  
capacitive load, (b) reducing the transfer rate to meet the specifications, or (c) selecting devices  
whose input timing permits this output timing for use as slave devices connected to the I2C  
bus.  
Rev. 4.0, 03/02, page 249 of 400  
Table 15.7 I2C Bus Timing (with Maximum Influence of tSr/tSf)  
Time Indication (at Maximum Transfer Rate) [ns]  
I2C Bus  
Specifi-  
tSr/tSf  
Influence cation ø =  
ø =  
ø =  
ø =  
Item  
tcyc Indication  
(Max.)  
(Min.) 5 MHz 8 MHz 10 MHz 16 MHz  
tSCLHO  
0.5tSCLO (–tSr) Standard mode  
–1000  
4000  
600  
4700  
1300  
4700  
1300  
4000  
600  
4700  
600  
4000  
600  
250  
100  
250  
100  
0
4000  
950  
4000  
950  
4000  
950  
4000  
950  
High-speed mode –300  
tSCLLO  
0.5tSCLO (–tSf ) Standard mode  
–250  
4750  
4750  
4750  
4750  
High-speed mode –250  
1000*1 1000*1 1000*1 1000*1  
3800*1 3875*1 3900*1 3938*1  
750*1 825*1 850*1 888*1  
tBUFO  
0.5tSCLO –1tcyc Standard mode  
–1000  
( –tSr )  
High-speed mode –300  
tSTAHO  
tSTASO  
tSTOSO  
0.5tSCLO –1tcyc Standard mode  
(–tSf )  
–250  
4550  
800  
4625  
875  
4650  
900  
4688  
938  
High-speed mode –250  
1tSCLO (–tSr )  
Standard mode  
–1000  
9000  
2200  
4400  
1350  
3100  
400  
9000  
2200  
4250  
1200  
3325  
625  
9000  
2200  
4200  
1150  
3400  
700  
9000  
2200  
4125  
1075  
3513  
813  
High-speed mode –300  
0.5tSCLO + 2tcyc Standard mode  
(–tSr )  
–1000  
High-speed mode –300  
tSDASO  
(master) (–tSr )  
1tSCLLO*2 –3tcyc Standard mode  
–1000  
High-speed mode –300  
–1000  
tSDASO  
(slave) (–tSr )  
1tSCLL*2 –3tcyc Standard mode  
3100  
400  
3325  
625  
3400  
700  
3513  
813  
High-speed mode –300  
tSDAHO  
3tcyc  
Standard mode  
0
0
600  
375  
300  
188  
High-speed mode  
0
600  
375  
300  
188  
Notes: 1. Does not meet the I2C bus interface specification  
2. Calculated using the I2C bus specification values (standard mode: 4700 ns min.; high-  
speed mode: 1300 ns min.).  
Rev. 4.0, 03/02, page 250 of 400  
7. Note on ICDR Read at end of Master Reception  
To halt reception after completion of a receive operation in master receive mode, set the TRS  
bit to 1 and write 0 to BBSY and SCP in ICCR. This changes the SDA pin from low to high  
when the SCL pin is high, and generates the stop condition. After this, receive data can be read  
by means of an ICDR read, but if data remains in the buffer the ICDRS receive data will not be  
transferred to ICDR, and so it will not be possible to read the second byte of data. If it is  
necessary to read the second byte of data, issue the stop condition in master receive mode (i.e.  
with the TRS bit cleared to 0). When reading the receive data, first confirm that the BBSY bit  
in ICCR is cleared to 0, the stop condition has been generated, and the bus has been released,  
then read ICDR with TRS cleared to 0. Note that if the receive data (ICDR data) is read in the  
interval between execution of the instruction for issuance of the stop condition (writing of 0 to  
BBSY and SCP in ICCR) and the actual generation of the stop condition, the clock may not be  
output correctly in subsequent master transmission.  
8. Notes on Start Condition Issuance for Retransmission  
Depending on the timing combination with the start condition issuance and the subsequently  
writing data to ICDR, it may not be possible to issue the retransmission and the data  
transmission after retransmission condition issuance.  
After start condition issuance is done and determined the start condition, write the transmit  
data to ICDR, as shown below. Figure 15.17 shows the timing of start condition issuance for  
retransmission, and the timing for subsequently writing data to ICDR, together with the  
corresponding flowchart.  
Rev. 4.0, 03/02, page 251 of 400  
[1] Wait for end of 1-byte transfer  
No  
No  
[1]  
IRIC = 1?  
[2] Determine whether SCL is low  
Yes  
Clear IRIC in ICSR  
[3] Issue restart condition instruction for transmission  
[4] Determine whether start condition is generated or not  
Start condition  
issuance?  
Other processing  
Yes  
[5] Set transmit data (slave address + R/  
)
Read SCL pin  
No  
No  
[2]  
SCL = Low?  
Yes  
Write BBSY = 1,  
SCP = 0 (ICSR)  
[3]  
[4]  
Note: Program so that processing from [3] to [5]  
is executed continuously.  
IRIC = 1?  
Yes  
[5]  
Write transmit data to ICDR  
Start condition  
(retransmission)  
SCL  
SDA  
9
Bit 7  
Data output  
ACK  
IRIC  
[5] ICDR write (next transmit data)  
[4] IRIC determination  
[3] (Restart) Start condition instruction issuance  
[2] Detemination of SCL = Low  
[1] IRIC determination  
Figure 15.17 Flowchart and Timing of Start Condition Instruction Issuance for  
Retransmission  
Rev. 4.0, 03/02, page 252 of 400  
Section 16 A/D Converter  
This LSI includes a successive approximation type 10-bit A/D converter that allows up to eight  
analog input channels to be selected. The block diagram of the A/D converter is shown in figure  
16.1.  
16.1  
Features  
10-bit resolution  
Eight input channels (four channels for the 42-pin version)  
Conversion time: at least 4.4 µs per channel (at 16 MHz operation)  
Two operating modes  
Single mode: Single-channel A/D conversion  
Scan mode: Continuous A/D conversion on 1 to 4 channels  
Four data registers  
Conversion results are held in a 16-bit data register for each channel  
Sample and hold function  
Two conversion start methods  
Software  
External trigger signal  
Interrupt request  
An A/D conversion end interrupt request (ADI) can be generated  
Rev. 4.0, 03/02, page 253 of 400  
ADCMS30A_000020020300  
Module data bus  
Internal data bus  
AVCC  
A
D
D
R
A
A
D
D
R
B
A
D
D
R
C
A
D
D
R
D
A
D
C
S
R
A
D
C
R
10-bit D/A  
*
AN0  
+
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
ø/4  
ø/8  
Control circuit  
Comparator  
Sample-and-  
hold circuit  
ADI  
interrupt  
Legend  
ADCR : A/D control register  
ADCSR : A/D control/status register  
ADDRA : A/D data register A  
ADDRB : A/D data register B  
ADDRC : A/D data register C  
ADDRD : A/D data register D  
Note: AN4, AN5, AN6, and AN7 do not exist in the 42-pin version.  
Figure 16.1 Block Diagram of A/D Converter  
Rev. 4.0, 03/02, page 254 of 400  
16.2  
Input/Output Pins  
Table 16.1 summarizes the input pins used by the A/D converter. The eight analog input pins are  
divided into two groups; analog input pins 0 to 3 (AN0 to AN3) comprising group 0, analog input  
pins 4 to 7 (AN4 to AN7) comprising group 1. The AVcc pin is the power supply pin for the  
analog block in the A/D converter.  
Table 16.1 Pin Configuration  
Pin Name  
Symbol  
AVCC  
AN0  
I/O  
Function  
Analog power supply pin  
Analog input pin 0  
Analog input pin 1  
Analog input pin 2  
Analog input pin 3  
Analog input pin 4  
Analog input pin 5  
Analog input pin 6  
Analog input pin 7  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Analog block power supply pin  
Group 0 analog input pins  
AN1  
AN2  
AN3  
AN4  
Group 1 analog input pins  
AN5  
AN6  
AN7  
A/D external trigger input  
pin  
ADTRG  
External trigger input pin for starting A/D  
conversion  
Rev. 4.0, 03/02, page 255 of 400  
16.3  
Register Description  
The A/D converter has the following registers.  
A/D data register A (ADDRA)  
A/D data register B (ADDRB)  
A/D data register C (ADDRC)  
A/D data register D (ADDRD)  
A/D control/status register (ADCSR)  
A/D control register (ADCR)  
16.3.1 A/D Data Registers A to D (ADDRA to ADDRD)  
There are four 16-bit read-only ADDR registers; ADDRA to ADDRD, used to store the results of  
A/D conversion. The ADDR registers, which store a conversion result for each channel, are  
shown in table 16.2.  
The converted 10-bit data is stored in bits 6 to 15. The lower 6 bits are always read as 0.  
The data bus between the CPU and the A/D converter is 8 bits wide. The upper byte can be read  
directly from the CPU, however the lower byte should be read via a temporary register. The  
temporary register contents are transferred from the ADDR when the upper byte data is read.  
When reading ADDR, read the upper bytes only or read in word units. ADDR is initialized to  
H'0000.  
Table 16.2 Analog Input Channels and Corresponding ADDR Registers  
Analog Input Channel  
Group 0  
AN0  
Group 1  
AN4  
A/D Data Register to be Stored Results of A/D Conversion  
ADDRA  
ADDRB  
ADDRC  
ADDRD  
AN1  
AN5  
AN2  
AN6  
AN3  
AN7  
Rev. 4.0, 03/02, page 256 of 400  
16.3.2 A/D Control/Status Register (ADCSR)  
ADCSR consists of the control bits and conversion end status bits of the A/D converter.  
Bit  
Bit Name  
Initial Value R/W  
Description  
7
ADF  
0
R/W  
A/D End Flag  
[Setting conditions]  
When A/D conversion ends in single mode  
When A/D conversion ends on all the channels  
selected in scan mode  
[Clearing conditions]  
When 0 is written after reading ADF = 1  
6
5
ADIE  
0
0
R/W  
R/W  
A/D Interrupt Enable  
A/D conversion end interrupt (ADI) request enabled  
by ADF when 1 is set  
ADST  
A/D Start  
Setting this bit to 1 starts A/D conversion. In single  
mode, this bit is cleared to 0 automatically when  
conversion on the specified channel is complete. In  
scan mode, conversion continues sequentially on  
the specified channels until this bit is cleared to 0  
by software, a reset, or a transition to standby  
mode.  
4
3
SCAN  
CKS  
0
0
R/W  
R/W  
Scan Mode  
Selects single mode or scan mode as the A/D  
conversion operating mode.  
0: Single mode  
1: Scan mode  
Clock Select  
Selects the A/D conversions time  
0: Conversion time = 134 states (max.)  
1: Conversion time = 70 states (max.)  
Clear the ADST bit to 0 before switching the  
conversion time.  
Rev. 4.0, 03/02, page 257 of 400  
Bit  
2
Bit Name  
CH2  
Initial Value R/W  
Description  
0
0
0
R/W  
R/W  
R/W  
Channel Select 0 to 2  
Select analog input channels.  
1
CH1  
0
CH0  
When SCAN = 0  
000: AN0  
001: AN1  
010: AN2  
011: AN3  
100: AN4  
101: AN5  
110: AN6  
111: AN7  
When SCAN = 1  
000: AN0  
001: AN0 to AN1  
010: AN0 to AN2  
011: AN0 to AN3  
100: AN4  
101: AN4 to AN5  
110: AN4 to AN6  
111: AN4 to AN7  
AN4, AN5, AN6, and AN7 do not exist in the 42-pin  
version.  
16.3.3  
A/D Control Register (ADCR)  
ADCR enables A/D conversion started by an external trigger signal.  
Bit  
Bit Name  
Initial Value R/W  
Description  
7
TRGE  
0
R/W  
Trigger Enable  
A/D conversion is started at the falling edge and  
the rising edge of the external trigger signal  
(ADTRG) when this bit is set to 1.  
The selection between the falling edge and rising  
edge of the external trigger pin (ADTRG)  
conforms to the WPEG5 bit in the interrupt edge  
select register 2 (IEGR2).  
6 to 1  
0
All 1  
0
Reserved  
These bits are always read as 1.  
Reserved  
R/W  
Do not set this bit to 1, though the bit is  
readable/writable.  
Rev. 4.0, 03/02, page 258 of 400  
16.4  
Operation  
The A/D converter operates by successive approximation with 10-bit resolution. It has two  
operating modes; single mode and scan mode. When changing the operating mode or analog input  
channel, in order to prevent incorrect operation, first clear the bit ADST to 0 in ADCSR. The  
ADST bit can be set at the same time as the operating mode or analog input channel is changed.  
16.4.1 Single Mode  
In single mode, A/D conversion is performed once for the analog input on the specified single  
channel as follows:  
1. A/D conversion is started when the ADST bit in ADCSR is set to 1, according to software or  
external trigger input.  
2. When A/D conversion is completed, the result is transferred to the corresponding A/D data  
register to the channel.  
3. On completion of conversion, the ADF bit in ADCSR is set to 1. If the ADIE bit is set to 1 at  
this time, an ADI interrupt request is generated.  
4. The ADST bit remains set to 1 during A/D conversion. When A/D conversion ends, the ADST  
bit is automatically cleared to 0 and the A/D converter enters the wait state.  
16.4.2 Scan Mode  
In scan mode, A/D conversion is performed sequentially for the analog input on the specified  
channels (four channels maximum) as follows:  
1. When the ADST bit is set to 1 by software, or external trigger input, A/D conversion starts on  
the first channel in the group (AN0 when CH2 = 0, AN4 when CH2 = 1).  
2. When A/D conversion for each channel is completed, the result is sequentially transferred to  
the A/D data register corresponding to each channel.  
3. When conversion of all the selected channels is completed, the ADF flag in ADCSR is set to 1.  
If the ADIE bit is set to 1 at this time, an ADI interrupt is requested. Conversion of the first  
channel in the group starts again.  
4. The ADST bit is not automatically cleared to 0. Steps [2] to [3] are repeated as long as the  
ADST bit remains set to 1. When the ADST bit is cleared to 0, A/D conversion stops.  
Rev. 4.0, 03/02, page 259 of 400  
16.4.3  
Input Sampling and A/D Conversion Time  
The A/D converter has a built-in sample-and-hold circuit. The A/D converter samples the analog  
input when the A/D conversion start delay time (tD) has passed after the ADST bit is set to 1, then  
starts conversion. Figure 16.2 shows the A/D conversion timing. Table 16.3 shows the A/D  
conversion time.  
As indicated in figure 16.2, the A/D conversion time includes tD and the input sampling time. The  
length of tD varies depending on the timing of the write access to ADCSR. The total conversion  
time therefore varies within the ranges indicated in table 16.3.  
In scan mode, the values given in table 16.3 apply to the first conversion time. In the second and  
subsequent conversions, the conversion time is 128 states (fixed) when CKS = 0 and 66 states  
(fixed) when CKS = 1.  
(1)  
ø
Address  
(2)  
Write signal  
Input sampling  
timing  
ADF  
tD  
tSPL  
tCONV  
Legend  
(1)  
(2)  
tD  
: ADCSR write cycle  
: ADCSR address  
: A/D conversion start delay  
tSPL : Input sampling time  
tCONV : A/D conversion time  
Figure 16.2 A/D Conversion Timing  
Rev. 4.0, 03/02, page 260 of 400  
Table 16.3 A/D Conversion Time (Single Mode)  
CKS = 0  
CKS = 1  
Typ  
Item  
Symbol  
Min  
6
Typ  
Max  
9
Min  
4
Max  
5
A/D conversion start delay tD  
Input sampling time  
A/D conversion time  
tSPL  
tCONV  
31  
69  
15  
131  
134  
70  
Note: All values represent the number of states.  
16.4.4  
External Trigger Input Timing  
The A/D conversion can also be started by an external trigger input. When the TRGE bit is set to 1  
in ADCR, external trigger input is enabled at the ADTRG pin. A falling edge at the ADTRG  
input pin sets the ADST bit to 1 in ADCSR, starting A/D conversion. Other operations, in both  
single and scan modes, are the same as when the bit ADST has been set to 1 by software. Figure  
16.3 shows the timing.  
ø
Internal trigger signal  
ADST  
A/D conversion  
Figure 16.3 External Trigger Input Timing  
Rev. 4.0, 03/02, page 261 of 400  
16.5  
A/D Conversion Accuracy Definitions  
This LSI's A/D conversion accuracy definitions are given below.  
Resolution  
The number of A/D converter digital output codes  
Quantization error  
The deviation inherent in the A/D converter, given by 1/2 LSB (see figure 16.4).  
Offset error  
The deviation of the analog input voltage value from the ideal A/D conversion characteristic  
when the digital output changes from the minimum voltage value 0000000000 to 0000000001  
(see figure 16.5).  
Full-scale error  
The deviation of the analog input voltage value from the ideal A/D conversion characteristic  
when the digital output changes from 1111111110 to 1111111111 (see figure 16.5).  
Nonlinearity error  
The error with respect to the ideal A/D conversion characteristics between zero voltage and  
full-scale voltage. Does not include offset error, full-scale error, or quantization error.  
Absolute accuracy  
The deviation between the digital value and the analog input value. Includes offset error, full-  
scale error, quantization error, and nonlinearity error.  
Digital output  
Ideal A/D conversion  
characteristic  
111  
110  
101  
100  
011  
010  
001  
000  
Quantization error  
1
8
2
8
3
8
4
8
5
8
6
8
7
8
FS  
Analog  
input voltage  
Figure 16.4 A/D Conversion Accuracy Definitions (1)  
Rev. 4.0, 03/02, page 262 of 400  
Full-scale error  
Digital output  
Ideal A/D conversion  
characteristic  
Nonlinearity  
error  
Actual A/D conversion  
characteristic  
FS  
Analog  
input voltage  
Offset error  
Figure 16.5 A/D Conversion Accuracy Definitions (2)  
16.6 Usage Notes  
16.6.1 Permissible Signal Source Impedance  
This LSI's analog input is designed such that conversion accuracy is guaranteed for an input signal  
for which the signal source impedance is 5 kor less. This specification is provided to enable the  
A/D converter's sample-and-hold circuit input capacitance to be charged within the sampling time;  
if the sensor output impedance exceeds 5 k, charging may be insufficient and it may not be  
possible to guarantee A/D conversion accuracy. However, for A/D conversion in single mode with  
a large capacitance provided externally, the input load will essentially comprise only the internal  
input resistance of 10 k, and the signal source impedance is ignored. However, as a low-pass  
filter effect is obtained in this case, it may not be possible to follow an analog signal with a large  
differential coefficient (e.g., 5 mV/µs or greater) (see figure 16.6). When converting a high-speed  
analog signal or converting in scan mode, a low-impedance buffer should be inserted.  
16.6.2 Influences on Absolute Accuracy  
Adding capacitance results in coupling with GND, and therefore noise in GND may adversely  
affect absolute accuracy. Be sure to make the connection to an electrically stable GND.  
Care is also required to ensure that filter circuits do not interfere with digital signals or act as  
antennas on the mounting board.  
Rev. 4.0, 03/02, page 263 of 400  
This LSI  
A/D converter  
Sensor output  
impedance  
to 5 k  
equivalent circuit  
10 k  
Sensor input  
Cin  
15 pF  
=
Low-pass  
filter  
20 pF  
C to 0.1  
F
Figure 16.6 Analog Input Circuit Example  
Rev. 4.0, 03/02, page 264 of 400  
Section 17 EEPROM  
This LSI has an on-chip 512-byte EEPROM. The block diagram of the EEPROM is shown in  
figure 17.1.  
17.1  
Features  
Two writing methods:  
1-byte write  
Page write: Page size 8 bytes  
Three reading methods:  
Current address read  
Random address read  
Sequential read  
Acknowledge polling possible  
Write cycle time:  
10 ms (power supply voltage Vcc = 2.7 V or more)  
Write/Erase Endurance:  
104 cycles/byte (byte write mode), 105 cycles/page (page write mode)  
Data retention:  
10 years after the write cycle of 104 cycles (page write mode)  
Interface with the CPU  
I2C bus interface (complies with the standard of Philips Corporation)  
Device code 1010  
Sleep address code can be changed (initial value: 000))  
The I2C bus is open to the outside, so the EEPROM can be directly accessed from the outside.  
Rev. 4.0, 03/02, page 265 of 400  
EEPROM Data bus  
H'FF10  
EEPROM Key  
Y-select/  
register (EKR)  
Sense amp.  
Memory  
array  
Key control circuit  
H'0000  
H'01FF  
User area  
(512 bytes)  
SDA  
SCL  
2
I C bus interface  
control circuit  
Slave address  
register  
H'FF09  
ESAR  
Power-on reset  
Booster circuit  
EEPROM module  
Legend: ESAR: Register for referring the slave address  
(specifies the slave address of the memory array)  
Figure 17.1 Block Diagram of EEPROM  
Rev. 4.0, 03/02, page 266 of 400  
17.2  
Input/Output Pins  
Pins used in the EEPROM are listed in table 17.1.  
Table 17.1 Pin Configuration  
Pin name  
Symbol Input/Output  
Function  
Serial clock pin  
SCL  
Input  
The SCL pin is used to control serial input/output  
data timing. The data is input at the rising edge of  
the clock and output at the falling edge of the clock.  
The SCL pin needs to be pulled up by resistor as  
that pin is open-drain driven structure of the I2C pin.  
Use proper resistor value for your system by  
considering VOL, IOL, and the CIN pin capacitance in  
section 19.2.2, DC Characteristics and in section  
19.2.3, AC Characteristics. Maximum clock  
frequency is 400 kHz.  
Serial data pin  
SDA  
Input/Output  
The SDA pin is bidirectional for serial data transfer.  
The SDA pin needs to be pulled up by resistor as  
that pin is open-drain driven structure. Use proper  
resistor value for your system by considering VOL,  
IOL, and the CIN pin capacitance in section 19.2.2,  
DC Characteristics and in section 19.2.3, AC  
Characteristics. Except for a start condition and a  
stop condition which will be discussed later, the  
high-to-low and low-to-high change of SDA input  
should be done during SCL low periods.  
17.3  
Register Description  
The EEPROM has a following register.  
EEPROM key register (EKR)  
17.3.1 EEPROM Key Register (EKR)  
EKR is an 8-bit readable/writable register, which changes the slave address code written in the  
EEPROM. The slave address code is changed by writing H'5F in EKR and then writing either of  
H'00 to H'07 as an address code to the H'FF09 address in the EEPROM by the byte write method.  
EKR is initialized to H'FF.  
Rev. 4.0, 03/02, page 267 of 400  
17.4  
Operation  
17.4.1 EEPROM Interface  
This LSI has a multi-chip structure with two internal chips of F-ZTAT™ HD64F3664 and 512-  
byte EEPROM.  
The EEPROM interface is the I2C bus interface. This I2C bus is open to the outside, so the  
communication with the external devices connected to the I2C bus can be made.  
17.4.2 Bus Format and Timing  
The I2C bus format and the I2C bus timing follow section 15.4.1, I2C Bus Format. The bus formats  
specific for the EEPROM are the following two.  
1. The EEPROM address is configured of two bytes, the write data is transferred in the order of  
upper address and lower address from each MSB side.  
2. The write data is transmitted from the MSB side.  
The bus format and bus timing of the EEPROM are shown in figure 17.2.  
Stop  
Start  
conditon  
condition  
Upper memory  
address  
lower memory  
address  
Slave address  
Data  
Data  
R/ ACK  
ACK  
ACK  
ACK  
ACK  
SCL  
SDA  
1
2
3
4
5
6
7
8
9
1
8
9
1
8
9
1
8
9
1
8
9
A15  
A8  
A7  
A0  
D7  
D0  
D7  
D0  
Legend: R/ : R/ code (0 is for a write and 1 is for a read),  
ACK: acknowledge  
Figure 17.2 EEPROM Bus Format and Bus Timing  
17.4.3 Start Condition  
A high-to-low transition of the SDA input with the SCL input high is needed to generate the start  
condition for starting read, write operation.  
17.4.4 Stop Condition  
A low-to-high transition of the SDA input with the SCL input high is needed to generate the stop  
condition for stopping read, write operation.  
Rev. 4.0, 03/02, page 268 of 400  
The standby operation starts after a read sequence by a stop condition. In the case of write  
operation, a stop condition terminates the write data inputs and place the device in an internally-  
timed write cycle to the memories. After the internally-timed write cycle (tWC) which is specified  
as tWC, the device enters a standby mode.  
17.4.5 Acknowledge  
All address data and serial data such as read data and write data are transmitted to and from in 8-  
bit unit. The acknowledgement is the signal that indicates that this 8-bit data is normally  
transmitted to and from.  
In the write operation, EEPROM sends "0" to acknowledge in the ninth cycle after receiving the  
data. In the read operation, EEPROM sends a read data following the acknowledgement after  
receiving the data. After sending read data, the EEPROM enters the bus open state. If the  
EEPROM receives "0" as an acknowledgement, it sends read data of the next address. If the  
EEPROM does not receive acknowledgement "0" and receives a following stop condition, it stops  
the read operation and enters a standby mode. If the EEPROM receives neither acknowledgement  
"0" nor a stop condition, the EEPROM keeps bus open without sending read data.  
17.4.6 Slave Addressing  
The EEPROM device receives a 7-bit slave address and a 1-bit R/W code following the generation  
of the start conditions. The EEPROM enables the chip for a read or a write operation with this  
operation.  
The slave address consists of a former 4-bit device code and latter 3-bit slave address as shown in  
table 17.2. The device code is used to distinguish device type and this LSI uses "1010" fixed code  
in the same manner as in a general-purpose EEPROM. The slave address code selects one device  
out of all devices with device code 1010 (8 devices in maximum) which are connected to the I2C  
bus. This means that the device is selected if the inputted slave address code received in the order  
of A2, A1, A0 is equal to the corresponding slave address reference register (ESAR).  
The slave address code is stored in the address H'FF09 in the EEPROM. It is transferred to ESAR  
from the slave address register in the memory array during 10 ms after the reset is released. An  
access to the EEPROM is not allowed during transfer.  
The initial value of the slave address code written in the EEPROM is H'00. It can be written in the  
range of H'00 to H'07. Be sure to write the data by the byte write method.  
The next one bit of the slave address is the R/W code. 0 is for a write and 1 is for a read.  
The EEPROM turns to a standby state if the device code is not "1010" or slave address code  
doesn’t coincide.  
Rev. 4.0, 03/02, page 269 of 400  
Table 17.2 Slave Addresses  
Initial  
Value  
Setting  
Value  
Bit  
7
Bit name  
Remarks  
Device code D3  
0
1
6
Device code D2  
0
5
Device code D1  
1
4
Device code D0  
0
3
Slave address code A2  
Slave address code A1  
Slave address code A0  
A2  
A1  
A0  
The initial value can be changed  
The initial value can be changed  
The initial value can be changed  
2
0
1
0
17.4.7 Write Operations  
There are two types write operations; byte write operation and page write operation. To initiate  
the write operation, input 0 to R/W code following the slave address.  
1. Byte Write  
A write operation requires an 8-bit data of a 7-bit slave address with R/W code = "0". Then  
the EEPROM sends acknowledgement "0" at the ninth bit. This enters the write mode. Then,  
two bytes of the memory address are received from the MSB side in the order of upper and  
lower. Upon receipt of one-byte memory address, the EEPROM sends acknowledgement "0"  
and receives a following a one-byte write data. After receipt of write data, the EEPROM sends  
acknowledgement "0". If the EEPROM receives a stop condition, the EEPROM enters an  
internally controlled write cycle and terminates receipt of SCL and SDA inputs until  
completion of the write cycle. The EEPROM returns to a standby mode after completion of  
the write cycle.  
The byte write operation is shown in figure 17.3.  
SCL  
1
2
3
4
5
6
7
8
9
1
8
9
1
8
9
1
8
9
SDA  
A15  
A8  
A7  
A0  
D7  
D0  
Upper memory  
address  
lower memory  
address  
Slave address  
R/ ACK  
ACK  
ACK  
Write Data  
ACK  
Stop  
Start  
conditon  
condition  
Legend: R/ : R/ code (0 is for a write and 1 is for a read)  
ACK: acknowledge  
Figure 17.3 Byte Write Operation  
Rev. 4.0, 03/02, page 270 of 400  
2. Page Write  
This LSI is capable of the page write operation which allows any number of bytes up to 8 bytes  
to be written in a single write cycle. The write data is input in the same sequence as the byte  
write in the order of a start condition, slave address + R/W code, memory address (n), and  
write data (Dn) with every ninth bit acknowledgement "0" output. The EEPROM enters the  
page write operation if the EEPROM receives more write data (Dn+1) is input instead of  
receiving a stop condition after receiving the write data (Dn). LSB 3 bits (A2 to A0) in the  
EEPROM address are automatically incremented to be the (n+1) address upon receiving write  
data (Dn+1). Thus the write data can be received sequentially.  
Addresses in the page are incremented at each receipt of the write data and the write data can  
be input up to 8 bytes. If the LSB 3 bits (A2 to A0) in the EEPROM address reach the last  
address of the page, the address will roll over to the first address of the same page. When the  
address is rolled over, write data is received twice or more to the same address, however, the  
last received data is valid. At the receipt of the stop condition, write data reception is  
terminated and the write operation is entered.  
The page write operation is shown in figure 17.4.  
SCL  
1
2
3
4
5
6
7
8
9
1
8
9
1
8
9
1
8
9
SDA  
A15  
A8  
A7  
A0  
D7  
D0  
Upper memory  
address  
lower memory  
address  
R/ ACK  
ACK  
ACK Write Data ACK  
Write Data ACK  
Slave address  
Stop  
Start  
condition  
conditon  
Legend: R/ : R/ code (0 is for a write and 1 is for a read),  
ACK: acknowledge  
Figure 17.4 Page Write Operation  
17.4.8 Acknowledge Polling  
Acknowledge polling feature is used to show if the EEPROM is in an internally-timed write cycle  
or not. This feature is initiated by the input of the 8-bit slave address + R/W code following the  
start condition during an internally-timed write cycle. Acknowledge polling will operate R/W  
code = "0". The ninth acknowledgement judges if the EEPROM is an internally-timed write cycle  
or not. Acknowledgement "1" shows the EEPROM is in a internally-timed write cycle and  
acknowledgement "0" shows the internally-timed write cycle has been completed. The  
acknowledge polling starts to function after a write data is input, i.e., when the stop condition is  
input.  
Rev. 4.0, 03/02, page 271 of 400  
17.4.9 Read Operation  
There are three read operations; current address read, random address read, and sequential read.  
Read operations are initiated in the same way as write operations with the exception of R/W = 1.  
1. Current Address Read  
The internal address counter maintains the (n+1) address that is made by the last address (n)  
accessed during the last read or write operation, with incremented by one. Current address  
read accesses the (n+1) address kept by the internal address counter.  
After receiving in the order of a start condition and the slave address + R/W code (R/W = 1),  
the EEPROM outputs the 1-byte data of the (n+1) address from the most significant bit  
following acknowledgement "0". If the EEPROM receives in the order of acknowledgement  
"1" (release of a bus without inputting the acknowledgement is possible) and a following stop  
condition, the EEPROM stops the read operation and is turned to a standby state.  
In case the EEPROM has accessed the last address H'01FF at previous read operation, the  
current address will roll over and returns to zero address. In case the EEPROM has accessed  
the last address of the page at previous write operation, the current address will roll over within  
page addressing and returns to the first address in the same page.  
The current address is valid while power is on. The current address after power on will be  
undefined. After power is turned on, define the address by the random address read operation  
described below is necessary.  
The current address read operation is shown in figure 17.5.  
SCL  
1
2
3
4
5
6
7
8
9
1
8
9
D7  
D0  
SDA  
Read Data  
R/ ACK  
ACK  
Slave address  
Stop  
Start  
conditon  
condition  
Legend: R/ : R/ code (0 is for a write and 1 is for a read)  
ACK: acknowledge  
Figure 17.5 Current Address Read Operation  
Rev. 4.0, 03/02, page 272 of 400  
2. Random Address Read  
This is a read operation with defined read address. A random address read requires a dummy  
write to set read address. The EEPROM receives a start condition, slave address + R/W code  
(R/W = 0), memory address (upper) and memory address (lower) sequentially. The EEPROM  
outputs acknowledgement "0" after receiving memory address (lower) then enters a current  
address read with receiving a start condition again. The EEPROM outputs the read data of the  
address which was defined in the dummy write operation. After receiving acknowledgement  
"1" (release of a bus is allowed without receiving acknowledgement) and a following stop  
condition, the EEPROM stops the random read operation and returns to a standby state.  
The random address read operation is shown in figure 17.6.  
SCL  
1
2
3
4
5
6
7
8
9
1
8
9
1
8
9
1
2
3
4
5
6
7
8
9
1
8
9
SDA  
A15  
A8  
A7  
A0  
D7  
D0  
Upper memory  
address  
lower memory  
address  
lower memory  
address  
R/ ACK  
ACK  
ACK  
R
ACK  
ACK  
Slave address  
Slave address  
Start  
condition  
Start  
Stop  
conditon  
condition  
Legend: R/ : R/ code (0 is for a write and 1 is for a read),  
ACK: acknowledge  
Figure 17.6 Random Address Read Operation  
3. Sequential Read  
This is a mode to read the data sequentially. Data is sequential read by either a current address  
read or a random address read. If the EEPROM receives acknowledgement "0" after 1-byte  
read data is output, the read address is incremented and the next 1-byte read data are coming  
out. Data is output sequentially by incrementing addresses as long as the EEPROM receives  
acknowledgement "0" after the data is output. The address will roll over and returns address  
zero if it reaches the last address H'01FF. The sequential read can be continued after roll over.  
The sequential read is terminated if the EEPROM receives acknowledgement "1" (release of a  
bus without acknowledgement is allowed) and a following stop condition as the same manner  
as in the random address read.  
The condition of a sequential read when the current address read is used is shown in figure  
17.7.  
Rev. 4.0, 03/02, page 273 of 400  
SCL  
SDA  
1
2
3
4
5
6
7
8
9
1
8
9
1
8
9
D7  
D0  
D7  
D0  
R/ ACK  
ACK  
ACK  
Slave address  
Read Data  
Read Data  
Start  
Stop  
conditon  
condition  
Legend:R/ : R/ code (0 is for a write and 1 is for a read)  
ACK: acknowledge  
Figure 17.7 Sequential Read Operation (when current address read is used)  
17.5  
Usage Notes  
17.5.1 Data Protection at VCC On/Off  
When VCC is turned on or off, the data might be destroyed by malfunction. Be careful of the  
notices described below to prevent the data to be destroyed.  
1. SCL and SDA should be fixed to VCC or VSS during VCC on/off.  
2. VCC should be turned off after the EEPROM is placed in a standby state.  
3. When VCC is turned on from the intermediate level, malfunction is caused, so VCC should be  
turned on from the ground level (VSS).  
4. VCC turn on speed should be longer than 10 us.  
17.5.2 Write/Erase Endurance  
The endurance is 105 cycles/page (1% cumulative failure rate) in case of page programming and  
104 cycles/byte in case of byte programming. The data retention time is more than 10 years when a  
device is page-programmed less than 104 cycles.  
17.5.3 Noise Suppression Time  
This EEPROM has a noise suppression function at SCL and SDA inputs, that cuts noise of width  
less than 50 ns. Be careful not to allow noise of width more than 50 ns because the noise of with  
more than 50 ms is recognized as an active pulse.  
Rev. 4.0, 03/02, page 274 of 400  
Section 18 Power Supply Circuit  
This LSI incorporates an internal power supply step-down circuit. Use of this circuit enables the  
internal power supply to be fixed at a constant level of approximately 3.0 V, independently of the  
voltage of the power supply connected to the external VCC pin. As a result, the current consumed  
when an external power supply is used at 3.0 V or above can be held down to virtually the same  
low level as when used at approximately 3.0 V. If the external power supply is 3.0 V or below, the  
internal voltage will be practically the same as the external voltage. It is, of course, also possible  
to use the same level of external power supply voltage and internal power supply voltage without  
using the internal power supply step-down circuit.  
18.1  
When Using Internal Power Supply Step-Down Circuit  
Connect the external power supply to the VCC pin, and connect a capacitance of approximately 0.1  
µF between VCL and VSS, as shown in figure 18.1. The internal step-down circuit is made effective  
simply by adding this external circuit. In the external circuit interface, the external power supply  
voltage connected to VCC and the GND potential connected to VSS are the reference levels. For  
example, for port input/output levels, the VCC level is the reference for the high level, and the VSS  
level is that for the low level. The A/D converter analog power supply is not affected by the  
internal step-down circuit.  
VCC  
VCC = 3.0 to 5.5 V  
Step-down circuit  
VCL  
Stabilization  
capacitance  
(approx. 0.1 µF)  
Internal  
power  
supply  
Internal  
logic  
VSS  
Figure 18.1 Power Supply Connection when Internal Step-Down Circuit is Used  
Rev. 4.0, 03/02, page 275 of 400  
PSCKT00A_000020020300  
18.2  
When Not Using Internal Power Supply Step-Down Circuit  
When the internal power supply step-down circuit is not used, connect the external power supply  
to the VCL pin and VCC pin, as shown in figure 18.2. The external power supply is then input directly  
to the internal power supply. The permissible range for the power supply voltage is 3.0 V to 3.6 V.  
Operation cannot be guaranteed if a voltage outside this range (less than 3.0 V or more than 3.6 V)  
is input.  
VCC  
VCC = 3.0 to 3.6 V  
Step-down circuit  
Internal  
VCL  
Internal  
logic  
power  
supply  
VSS  
Figure 18.2 Power Supply Connection when Internal Step-Down Circuit is Not Used  
Rev. 4.0, 03/02, page 276 of 400  
Section 19 List of Registers  
The register list gives information on the on-chip I/O register addresses, how the register bits are  
configured, and the register states in each operating mode. The information is given as shown  
below.  
1. Register addresses (address order)  
Registers are listed from the lower allocation addresses.  
Registers are classified by functional modules.  
The data bus width is indicated.  
The number of access states is indicated.  
2. Register bits  
Bit configurations of the registers are described in the same order as the register addresses.  
Reserved bits are indicated by in the bit name column.  
When registers consist of 16 bits, bits are described from the MSB side.  
3. Register states in each operating mode  
Register states are described in the same order as the register addresses.  
The register states described here are for the basic operating modes. If there is a specific reset  
for an on-chip peripheral module, refer to the section on that on-chip peripheral module.  
Rev. 4.0, 03/02, page 277 of 400  
19.1  
Register Addresses (Address Order)  
The data bus width indicates the numbers of bits by which the register is accessed.  
The number of access states indicates the number of states based on the specified reference clock.  
Data  
Abbre-  
viation  
Module  
Bit No Address Name  
Bus  
Width State  
Access  
Register Name  
Timer mode register W  
Timer control register W  
Timer interrupt enable register W  
Timer status register W  
Timer I/O control register 0  
Timer I/O control register 1  
Timer counter  
TMRW  
TCRW  
TIERW  
TSRW  
TIOR0  
TIOR1  
TCNT  
GRA  
8
H'FF80  
H'FF81  
H'FF82  
H'FF83  
H'FF84  
H'FF85  
H'FF86  
H'FF88  
H'FF8A  
H'FF8C  
H'FF8E  
H'FF90  
H'FF91  
H'FF92  
H'FF93  
H'FF9B  
H'FFA0  
H'FFA1  
H'FFA2  
H'FFA3  
H'FFA4  
H'FFA5  
H'FFA6  
H'FFA7  
H'FFA8  
H'FFA9  
H'FFAA  
Timer W  
Timer W  
Timer W  
Timer W  
Timer W  
Timer W  
Timer W  
Timer W  
Timer W  
Timer W  
Timer W  
ROM  
8
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
2
2
3
3
3
8
8
8
8
8
8
8
8
8
8
16*1  
16*1  
16*1  
16*1  
16*1  
8
16  
16  
16  
16  
16  
8
General register A  
General register B  
GRB  
General register C  
GRC  
General register D  
GRD  
Flash memory control register 1  
Flash memory control register 2  
FLMCR1  
FLMCR2  
8
ROM  
8
Flash memory power control register FLPWCR 8  
ROM  
8
Erase block register 1  
Flash memory enable register  
Timer control register V0  
Timer control/status register V  
Timer constant register A  
Timer constant register B  
Timer counter V  
EBR1  
FENR  
TCRV0  
TCSRV  
TCORA  
TCORB  
TCNTV  
TCRV1  
TMA  
8
8
8
8
8
8
8
8
8
8
8
8
8
ROM  
8
ROM  
8
Timer V  
Timer V  
Timer V  
Timer V  
Timer V  
Timer V  
Timer A  
Timer A  
SCI3  
8
8
8
8
8
Timer control register V1  
Timer mode register A  
Timer counter A  
8
8
TCA  
8
Serial mode register  
SMR  
8
Bit rate register  
BRR  
SCI3  
8
Serial control register 3  
SCR3  
SCI3  
8
Rev. 4.0, 03/02, page 278 of 400  
Data  
Bus  
Width State  
Abbre-  
viation  
Module  
Bit No Address Name  
Access  
Register Name  
Transmit data register  
Serial status register  
Receive data register  
A/D data register A  
TDR  
SSR  
RDR  
8
8
8
H'FFAB  
H'FFAC  
H'FFAD  
H'FFB0  
H'FFB2  
H'FFB4  
H'FFB6  
H'FFB8  
H'FFB9  
H'FFC0  
H'FFC1  
H'FFC2  
H'FFC4  
H'FFC5  
H'FFC6  
H'FFC6  
H'FFC7  
H'FFC7  
H'FFC8  
H'FFC9  
H'FFCA  
H'FFCB  
SCI3  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
SCI3  
SCI3  
ADDRA 16  
ADDRB 16  
ADDRC 16  
ADDRD 16  
A/D converter  
A/D converter  
A/D converter  
A/D converter  
A/D converter  
A/D converter  
WDT*2  
WDT*2  
WDT*2  
IIC  
A/D data register B  
A/D data register C  
A/D data register D  
A/D control/status register  
A/D control register  
ADCSR  
ADCR  
8
8
Timer control/status register WD  
Timer counter WD  
TCSRWD 8  
TCWD  
TMWD  
ICCR  
ICSR  
ICDR  
SARX  
ICMR  
SAR  
8
8
8
8
8
8
8
8
Timer mode register WD  
I2C bus control register  
I2C bus status register  
I2C bus data register  
IIC  
IIC  
Second slave address register  
I2C bus mode register  
Slave address register  
Address break control register  
Address break status register  
Break address register H  
Break address register L  
Break data register H  
Break data register L  
Port pull-up control register 1  
Port pull-up control register 5  
Port data register 1  
IIC  
IIC  
IIC  
ABRKCR 8  
ABRKSR 8  
Address break 8  
Address break 8  
Address break 8  
Address break 8  
BARH  
BARL  
BDRH  
BDRL  
PUCR1  
PUCR5  
PDR1  
PDR2  
PDR5  
PDR7  
PDR8  
8
8
8
8
8
8
8
8
8
8
8
H'FFCC Address break 8  
H'FFCD Address break 8  
H'FFD0  
H'FFD1  
H'FFD4  
H'FFD5  
H'FFD8  
H'FFDA  
H'FFDB  
I/O port  
I/O port  
I/O port  
I/O port  
I/O port  
I/O port  
I/O port  
8
8
8
8
8
8
8
Port data register 2  
Port data register 5  
Port data register 7  
Port data register 8  
Rev. 4.0, 03/02, page 279 of 400  
Data  
Bus  
Width State  
Abbre-  
viation  
Module  
Bit No Address Name  
Access  
Register Name  
Port data register B  
PDRB  
PMR1  
PMR5  
PCR1  
PCR2  
PCR5  
PCR7  
PCR8  
SYSCR1  
SYSCR2  
IEGR1  
IEGR2  
IENR1  
IRR1  
8
8
8
8
8
8*3  
8
8
8
8
8
8
8
8
8
H'FFDD I/O port  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Port mode register 1  
H'FFE0  
H'FFE1  
H'FFE4  
H'FFE5  
H'FFE8  
H'FFEA  
H'FFEB  
H'FFF0  
H'FFF1  
H'FFF2  
H'FFF3  
H'FFF4  
H'FFF6  
H'FFF8  
H'FFF9  
H'FFFC  
I/O port  
Port mode register 5  
I/O port  
Port control register 1  
I/O port  
Port control register 2  
I/O port  
Port control register 5  
I/O port  
Port control register 7  
I/O port  
Port control register 8  
I/O port  
System control register 1  
System control register 2  
Interrupt edge select register 1  
Interrupt edge select register 2  
Interrupt enable register 1  
Interrupt flag register 1  
Wake-up interrupt flag register  
Module standby control register 1  
Timer serial control register  
Power-down  
Power-down  
Interrupts  
Interrupts  
Interrupts  
Interrupts  
Interrupts  
Power-down  
IIC  
IWPR  
MSTCR1 8  
TSCR  
8
Notes: 1. Only word access can be used.  
2. WDT: Watchdog timer.  
3. The number of bits is six for H8/3664N.  
EEPROM  
Data  
Bus  
Width State  
Abbre-  
viation  
Module  
Bit No Address Name  
Access  
Register Name  
EEPROM key register  
EKR  
8
H'FF10 IEEPROM  
8
2
Rev. 4.0, 03/02, page 280 of 400  
19.2  
Register Bits  
Register bit names of the on-chip peripheral modules are described below.  
Each line covers eight bits, and 16-bit registers are shown as 2 lines.  
Register  
Name  
TMRW  
TCRW  
TIERW  
TSRW  
TIOR0  
TIOR1  
TCNT  
Bit 7  
CTS  
CCLR  
OVIE  
OVF  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PWMB  
TOA  
Module Name  
BUFEB BUFEA  
PWMD  
TOC  
PWMC  
TOB  
Timer W  
CKS2  
CKS1  
CKS0  
TOD  
IMIED  
IMFD  
IMIEC  
IMFC  
IOA2  
IOC2  
IMIEB  
IMFB  
IOA1  
IOC1  
IMIEA  
IMFA  
IOA0  
IOC0  
TCNT8  
TCNT0  
GRA8  
GRA0  
GRB8  
GRB0  
GRC8  
GRC0  
GRD8  
GRD0  
P
IOB2  
IOD2  
IOB1  
IOD1  
IOB0  
IOD0  
TCNT15 TCNT14 TCNT13 TCNT12 TCNT11 TCNT10 TCNT9  
TCNT7 TCNT6 TCNT5 TCNT4 TCNT3 TCNT2 TCNT1  
GRA15 GRA14 GRA13 GRA12 GRA11 GRA10 GRA9  
GRA7 GRA6 GRA5 GRA4 GRA3 GRA2 GRA1  
GRB15 GRB14 GRB13 GRB12 GRB11 GRB10 GRB9  
GRB7 GRB6 GRB5 GRB4 GRB3 GRB2 GRB1  
GRC15 GRC14 GRC13 GRC12 GRC11 GRC10 GRC9  
GRC7 GRC6 GRC5 GRC4 GRC3 GRC2 GRC1  
GRD15 GRD14 GRD13 GRD12 GRD11 GRD10 GRD9  
GRA  
GRB  
GRC  
GRD  
GRD7  
GRD6  
SWE  
GRD5  
ESU  
GRD4  
PSU  
GRD3  
EV  
GRD2  
PV  
GRD1  
E
FLMCR1  
ROM  
FLMCR2 FLER  
FLPWCR PDWND  
EBR1  
EB4  
EB3  
EB2  
EB1  
EB0  
FENR  
TCRV0  
TCSRV  
TCORA  
TCORB  
TCNTV  
TCRV1  
TMA  
FLSHE  
CMIEB  
CMFB  
CMIEA  
CFMA  
OVIE  
OVF  
CCLR1 CCLR0 CKS2  
OS3 OS2  
CKS1  
OS1  
CKS0  
OS0  
Timer V  
TCORA7 TCORA6 TCORA5 TCORA4 TCORA3 TCORA2 TCORA1 TCORA0  
TCORB7 TCORB6 TCORB5 TCORB4 TCORB3 TCORB2 TCORB1 TCORB0  
TCNTV7 TCNTV6 TCNTV5 TCNTV4 TCNTV3 TCNTV2 TCNTV1 TCNTV0  
TVEG1 TVEG0 TRGE  
ICKS0  
TMA0  
TCA0  
TMA7  
TCA7  
TMA6  
TCA6  
TMA5  
TCA5  
TMA3  
TCA3  
TMA2  
TCA2  
TMA1  
TCA1  
Timer A  
TCA  
TCA4  
Rev. 4.0, 03/02, page 281 of 400  
Register  
Name  
Bit 7  
COM  
BRR7  
TIE  
Bit 6  
CHR  
BRR6  
RIE  
Bit 5  
PE  
Bit 4  
PM  
Bit 3  
STOP  
BRR3  
MPIE  
TDR3  
PER  
RDR3  
AD5  
Bit 2  
MP  
Bit 1  
CKS1  
BRR1  
CKE1  
TDR1  
MPBR  
RDR1  
AD3  
Bit 0  
CKS0  
BRR0  
CKE0  
TDR0  
MPBT  
RDR0  
AD2  
Module Name  
SMR  
BRR  
SCI3  
BRR5  
TE  
BRR4  
RE  
BRR2  
TEIE  
TDR2  
TEND  
RDR2  
AD4  
SCR3  
TDR  
TDR7  
TDRE  
RDR7  
AD9  
TDR6  
RDRF  
RDR6  
AD8  
TDR5  
OER  
RDR5  
AD7  
TDR4  
FER  
RDR4  
AD6  
SSR  
RDR  
ADDRA  
A/D converter  
AD1  
AD0  
ADDRB  
ADDRC  
ADDRD  
AD9  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
AD9  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
AD9  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
ADCSR  
ADCR  
ADF  
TRGE  
ADIE  
ADST  
SCAN  
CKS  
CH2  
CH1  
CH0  
TCSRWD B6WI  
TCWE  
B4WI  
TCSRWE B2WI  
WDON  
B0WI  
WRST  
WDT*1  
TCWD  
TMWD  
ICCR  
ICSR  
ICDR  
SARX  
ICMR  
SAR  
TCWD7 TCWD6 TCWD5 TCWD4 TCWD3 TCWD2 TCWD1 TCWD0  
CKS3  
ACKE  
AL  
CKS2  
BBSY  
AAS  
CKS1  
IRIC  
CKS0  
SCP  
ACKB  
ICDR0  
FSX  
ICE  
IEIC  
MST  
IRTR  
ICDR5  
TRS  
IIC  
ESTP  
ICDR7  
SVAX6  
MLS  
STOP  
ICDR6  
AASX  
ICDR4  
SVAX3  
CKS1  
SVA3  
ADZ  
ICDR3  
ICDR2  
ICDR1  
SVAX0  
BC1  
SVAX5 SVAX4  
SVAX2 SVAX1  
WAIT  
SVA5  
CKS2  
SVA4  
CSEL0  
CKS0  
SVA2  
BC2  
BC0  
SVA6  
SVA1  
SVA0  
FS  
ABRKCR RTINTE CSEL1  
ABRKSR ABIF ABIE  
ACMP2 ACMP1 ACMP0 DCMP1 DCMP0 Address break  
BARH  
BARL  
BDRH  
BDRL  
PUCR1  
PUCR5  
PDR1  
PDR2  
PDR5  
BARH7 BARH6 BARH5 BARH4 BARH3 BARH2 BARH1 BARH0  
BARL7 BARL6 BARL5 BARL4 BARL3 BARL2 BARL1 BARL0  
BDRH7 BDRH6 BDRH5 BDRH4 BDRH3 BDRH2 BDRH1 BDRH0  
BDRL7  
BDRL6  
BDRL5  
BDRL4  
BDRL3  
BDRL2  
BDRL1  
BDRL0  
PUCR17 PUCR16 PUCR15 PUCR14  
PUCR12 PUCR11 PUCR10 I/O port  
PUCR55 PUCR54 PUCR53 PUCR52 PUCR51 PUCR50  
P17  
P16  
P15  
P14  
P12  
P22  
P52  
P11  
P21  
P51  
P10  
P20  
P50  
P57*2  
P56*2  
P55  
P54  
P53  
Rev. 4.0, 03/02, page 282 of 400  
Register  
Name  
Bit 7  
Bit 6  
P76  
P86  
PB6  
IRQ2  
Bit 5  
P75  
Bit 4  
P74  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Module Name  
PDR7  
PDR8  
PDRB  
PMR1  
PMR5  
PCR1  
PCR2  
PCR5  
PCR7  
PCR8  
I/O port  
P87  
PB7  
IRQ3  
P85  
P84  
P83  
P82  
P81  
P80  
PB5  
PB4  
PB3  
PB2  
PB1  
PB0  
IRQ1  
WKP5  
PCR15  
IRQ0  
WKP4  
PCR14  
TXD  
WKP1  
PCR11  
PCR21  
PCR51  
TMOW  
WKP0  
PCR10  
PCR20  
PCR50  
WKP3  
WKP2  
PCR12  
PCR22  
PCR52  
PCR17  
PCR16  
PCR57*2 PCR56*2 PCR55  
PCR54  
PCR74  
PCR84  
STS0  
MA2  
PCR53  
PCR76  
PCR86  
STS2  
PCR75  
PCR85  
STS1  
DTON  
PCR87  
PCR83  
NESEL  
MA1  
IEG3  
PCR82  
PCR81  
PCR80  
SYSCR1 SSBY  
Power-down  
Interrupts  
SYSCR2 SMSEL LSON  
MA0  
IEG2  
SA1  
SA0  
IEGR1  
IEGR2  
IENR1  
IRR1  
NMIEG  
IEG1  
IEG0  
WPEG5 WPEG4 WPEG3 WPEG2 WPEG1 WPEG0  
IENDT  
IRRDT  
IENTA  
IRRTA  
IENWP  
IEN3  
IEN2  
IEN1  
IEN0  
IRRI3  
IWPF3  
IRRI2  
IWPF2  
IRRI1  
IWPF1  
IRRI0  
IWPF0  
IWPR  
IWPF5  
IWPF4  
MSTCR1  
TSCR  
MSTIIC MSTS3 MSTAD MSTWD MSTTW MSTTV MSTTA Power-down  
IICRST IICX  
IIC  
Notes: 1. WDT: Watchdog timer  
2. This bit is not included in H8/3664N.  
EEPROM  
Register  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Module Name  
EKR  
EKR7  
EKR6  
EKR5  
EKR4  
EKR3  
EKR2  
EKR1  
EKR0  
EEPROM  
Rev. 4.0, 03/02, page 283 of 400  
19.3  
Register States in Each Operating Mode  
Register  
Name  
Reset  
Active  
Sleep  
Subactive Subsleep Standby  
Module  
TMRW  
TCRW  
TIERW  
TSRW  
TIOR0  
TIOR1  
TCNT  
GRA  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Timer W  
GRB  
GRC  
GRD  
FLMCR1 Initialized  
FLMCR2 Initialized  
FLPWCR Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
ROM  
EBR1  
FENR  
TCRV0  
TCSRV  
TCORA  
TCORB  
TCNTV  
TCRV1  
TMA  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Timer V  
Timer A  
SCI3  
TCA  
SMR  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
BRR  
SCR3  
TDR  
SSR  
RDR  
Rev. 4.0, 03/02, page 284 of 400  
Register  
Name  
Reset  
Active  
Sleep  
Subactive Subsleep Standby  
Module  
ADDRA  
ADDRB  
ADDRC  
ADDRD  
ADCSR  
ADCR  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
A/D converter  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
TCSRWD Initialized  
WDT*  
TCWD  
TMWD  
ICCR  
ICSR  
ICDR  
SARX  
ICMR  
SAR  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
IIC  
ABRKCR Initialized  
ABRKSR Initialized  
Address Break  
BARH  
BARL  
BDRH  
BDRL  
PUCR1  
PUCR5  
PDR1  
PDR2  
PDR5  
PDR7  
PDR8  
PDRB  
PMR1  
PMR5  
PCR1  
PCR2  
PCR5  
PCR7  
PCR8  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
I/O port  
Rev. 4.0, 03/02, page 285 of 400  
Register  
Name  
Reset  
Active  
Sleep  
Subactive Subsleep Standby  
Module  
SYSCR1 Initialized  
SYSCR2 Initialized  
Power-down  
Power-down  
Interrupts  
Interrupts  
Interrupts  
Interrupts  
Interrupts  
Power-down  
IIC  
IEGR1  
IEGR2  
IENR1  
IRR1  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
IWPR  
MSTCR1 Initialized  
TSCR Initialized  
Note : is not initialized  
*
WDT: Watchdog timer  
EEPROM  
Register  
Name  
Reset  
Active  
Sleep  
Subactive Subsleep Standby  
Module  
EKR  
Initialized  
EEPROM  
Rev. 4.0, 03/02, page 286 of 400  
Section 20 Electrical Characteristics  
20.1  
Absolute Maximum Ratings  
Table 20.1 Absolute Maximum Ratings  
Item  
Symbol  
VCC  
Value  
Unit  
V
Note  
Power supply voltage  
Analog power supply voltage  
–0.3 to +7.0  
–0.3 to +7.0  
–0.3 to VCC +0.3  
*
AVCC  
V
Input voltage  
Ports other than Port B and VIN  
V
X1  
Port B  
X1  
–0.3 to AVCC +0.3  
–0.3 to 4.3  
V
V
Operating temperature  
Storage temperature  
Topr  
Tstg  
–20 to +75  
°C  
°C  
–55 to +125  
Note: * Permanent damage may result if maximum ratings are exceeded. Normal operation should  
be under the conditions specified in Electrical Characteristics. Exceeding these values can  
result in incorrect operation and reduced reliability.  
20.2  
Electrical Characteristics (F-ZTAT™ Version, F-ZTAT™ Version  
with EEPROM)  
20.2.1 Power Supply Voltage and Operating Ranges  
Power Supply Voltage and Oscillation Frequency Range  
øOSC (MHz)  
16.0  
øW (kHz)  
32.768  
10.0  
2.0  
3.0  
4.0  
5.5 VCC (V)  
3.0  
4.0  
5.5 VCC (V)  
• AVCC = 3.3 V to 5.5 V  
• Active mode  
• AVCC = 3.3 V to 5.5 V  
• All operating modes  
• Sleep mode  
Rev. 4.0, 03/02, page 287 of 400  
Power Supply Voltage and Operating Frequency Range  
ø (MHz)  
øSUB (kHz)  
16.0  
16.384  
10.0  
1.0  
8.192  
4.096  
3.0  
4.0  
5.5 VCC (V)  
3.0  
4.0  
5.5 VCC (V)  
AVCC = 3.3 V to 5.5 V  
Active mode  
Sleep mode  
AVCC = 3.3 V to 5.5 V  
Subactive mode  
Subsleep mode  
(When MA2 = 0 in SYSCR2)  
ø (kHz)  
2000  
1250  
78.125  
3.0  
4.0  
5.5  
VCC (V)  
AVCC = 3.3 V to 5.5 V  
Active mode  
Sleep mode  
(When MA2 = 1 in SYSCR2)  
Analog Power Supply Voltage and A/D Converter Accuracy Guarantee Range  
ø (MHz)  
16.0  
10.0  
2.0  
3.3  
4.0  
5.5 AVCC (V)  
VCC = 3.0 V to 5.5 V  
Active mode  
Sleep mode  
Rev. 4.0, 03/02, page 288 of 400  
20.2.2 DC Characteristics  
Table 20.2 DC Characteristics (1)  
VCC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C unless otherwise indicated.  
Values  
Item  
Symbol Applicable Pins Test Condition  
Min  
Typ  
Max  
Unit  
Notes  
Input high VIH  
voltage  
RES, NMI,  
VCC = 4.0 V to 5.5 V VCC × 0.8  
VCC + 0.3 V  
WKP0 to WKP5,  
IRQ0 to IRQ3,  
ADTRG,TMRIV,  
TMCIV, FTCI,  
FTIOA to FTIOD,  
SCK3, TRGV  
VCC × 0.9  
VCC + 0.3  
RXD, SCL, SDA, VCC = 4.0 V to 5.5 V VCC × 0.7  
VCC + 0.3 V  
P10 to P12,  
P14 to P17,  
P20 to P22,  
P50 to P57*,  
P74 to P76,  
P80 to P87  
VCC × 0.8  
VCC + 0.3  
PB0 to PB7  
OSC1  
VCC = 4.0 V to 5.5 V VCC × 0.7  
VCC × 0.8  
AVCC  
0.3  
+
+
V
AVCC  
0.3  
VCC = 4.0 V to 5.5 V VCC – 0.5  
VCC – 0.3  
VCC + 0.3 V  
VCC + 0.3  
Input low VIL  
voltage  
RES, NMI,  
VCC = 4.0 V to 5.5 V –0.3  
VCC × 0.2 V  
WKP0 to WKP5,  
IRQ0 to IRQ3,  
ADTRG,TMRIV,  
TMCIV, FTCI,  
FTIOA to FTIOD,  
SCK3, TRGV  
–0.3  
VCC × 0.1  
RXD, SCL, SDA,  
P10 to P12,  
P14 to P17,  
P20 to P22,  
P50 to P57*,  
P74 to P76,  
P80 to P87,  
PB0 to PB7  
V
CC = 4.0 V to 5.5 V –0.3  
VCC × 0.3 V  
–0.3  
VCC × 0.2  
OSC1  
VCC = 4.0 V to 5.5 V –0.3  
–0.3  
0.5  
0.3  
V
Note: * P50 to P55 for H8/3664N  
Rev. 4.0, 03/02, page 289 of 400  
Values  
Typ  
Item  
Symbol Applicable Pins Test Condition  
Min  
Max  
Unit  
Notes  
Output  
high  
voltage  
VOH  
P10 to P12,  
P14 to P17,  
P20 to P22,  
P50 to P55,  
P74 to P76,  
P80 to P87,  
VCC = 4.0 V to 5.5 V  
–IOH = 1.5 mA  
V
CC – 1.0  
V
–IOH = 0.1 mA  
VCC – 0.5  
P56, P57*  
VCC = 4.0 V to 5.5 V  
–IOH = 0.1 mA  
V
CC – 2.5  
V
VCC = 3.0 V to 4.0 V VCC – 2.0  
–IOH = 0.1 mA  
Output  
low  
VOL  
P10 to P12,  
P14 to P17,  
P20 to P22,  
P50 to P57*,  
P74 to P76,  
VCC = 4.0 V to 5.5 V  
IOL = 1.6 mA  
0.6  
V
V
voltage  
I
OL = 0.4 mA  
0.4  
1.5  
P80 to P87  
VCC = 4.0 V to 5.5 V  
OL = 20.0 mA  
I
VCC = 4.0 V to 5.5 V  
IOL = 10.0 mA  
1.0  
0.4  
VCC = 4.0 V to 5.5 V  
I
OL = 1.6 mA  
IOL = 0.4 mA  
0.4  
0.6  
SCL, SDA  
VCC = 4.0 V to 5.5 V  
IOL = 6.0 mA  
V
IOL = 3.0 mA  
0.4  
Note: * P50 to P55 for H8/3664N  
Rev. 4.0, 03/02, page 290 of 400  
Values  
Typ  
Item  
Symbol Applicable Pins Test Condition  
Min  
Max  
Unit Notes  
Input/  
| IIL  
|
OSC1, RES, NMI, VIN = 0.5 V or higher —  
1.0  
µA  
output  
leakage  
current  
WKP0 to WKP5, (VCC – 0.5 V)  
IRQ0 to IRQ3,  
ADTRG, TRGV,  
TMRIV, TMCIV,  
FTCI, FTIOA to  
FTIOD, RXD,  
SCK3, SCL, SDA  
P10 to P12,  
P14 to P17,  
P20 to P22,  
P50 to P57*1,  
P74 to P76,  
P80 to P87,  
V
IN = 0.5 V or higher —  
1.0  
µA  
(VCC – 0.5 V)  
PB0 to PB7  
VIN = 0.5 V or higher —  
(AVCC – 0.5 V)  
1.0  
µA  
µA  
Pull-up  
MOS  
current  
–Ip  
Cin  
P10 to P12,  
P14 to P17,  
P50 to P55  
VCC = 5.0 V,  
IN = 0.0 V  
50.0  
300.0  
V
VCC = 3.0 V,  
VIN = 0.0 V  
60.0  
Reference  
value  
Input  
All input pins  
except power  
supply pins  
f = 1 MHz,  
15.0  
pF  
H8/3664N  
capaci-  
tance  
VIN = 0.0 V,  
Ta = 25°C  
SCL, SDA  
VCC  
25.0  
22.5  
2
Active  
mode  
IOPE1  
Active mode 1  
VCC = 5.0 V,  
15.0  
mA  
*
current  
consump-  
tion  
f
OSC = 16 MHz  
Active mode 1  
CC = 3.0 V,  
OSC = 10 MHz  
Active mode 2  
CC = 5.0 V,  
OSC = 16 MHz  
Active mode 2  
CC = 3.0 V,  
OSC = 10 MHz  
2
8.0  
1.8  
1.2  
*
V
f
Reference  
value  
2
IOPE2  
VCC  
2.7  
mA  
*
V
f
2
*
V
f
Reference  
value  
Notes: 1. P50 to P55 for H8/3664N  
2. Pin states during current consumption measurement are given below (excluding current  
in the pull-up MOS transistors and output buffers).  
Rev. 4.0, 03/02, page 291 of 400  
Values  
Item  
Symbol Applicable Pins Test Condition  
Min  
Typ Max  
11.5 17.0  
Unit Notes  
Sleep  
mode  
current  
consump-  
tion  
ISLEEP1  
VCC  
VCC  
VCC  
Sleep mode 1  
CC = 5.0 V,  
OSC = 16 MHz  
mA  
mA  
µA  
*
V
f
Sleep mode 1  
CC = 3.0 V,  
OSC = 10 MHz  
6.5  
1.7  
1.1  
*
V
Reference  
value  
f
ISLEEP2  
Sleep mode 2  
CC = 5.0 V,  
OSC = 16 MHz  
2.5  
*
V
f
Sleep mode 2  
VCC = 3.0 V,  
*
Reference  
value  
f
OSC = 10 MHz  
Subactive ISUB  
mode  
current  
VCC = 3.0 V  
32-kHz crystal  
resonator  
35.0 70.0  
*
consump-  
tion  
SUB = øW/2)  
V
CC = 3.0 V  
25.0  
*
32-kHz crystal  
resonator  
SUB = øW/8)  
Reference  
value  
Subsleep ISUBSP  
mode  
current  
consump-  
tion  
VCC  
VCC  
VCC  
VCC = 3.0 V  
32-kHz crystal  
resonator  
25.0 50.0  
µA  
µA  
V
*
*
SUB = øW/2)  
Standby  
mode  
current  
consump-  
tion  
ISTBY  
32-kHz crystal  
resonator not  
used  
5.0  
RAM data VRAM  
retaining  
2.0  
voltage  
Note: * Pin states during current consumption measurement are given below (excluding current in  
the pull-up MOS transistors and output buffers).  
Rev. 4.0, 03/02, page 292 of 400  
Mode  
RES Pin  
Internal State  
Other Pins  
Oscillator Pins  
Active mode 1  
Active mode 2  
VCC  
Operates  
VCC  
Main clock:  
ceramic or crystal  
resonator  
Operates  
(ø/64)  
Subclock:  
Pin X1 = VSS  
Sleep mode 1  
Sleep mode 2  
VCC  
Only timers operate  
VCC  
Only timers operate  
(ø/64)  
Subactive mode  
Subsleep mode  
VCC  
VCC  
Operates  
VCC  
VCC  
Main clock:  
ceramic or crystal  
resonator  
Only timers operate  
Subclock:  
crystal resonator  
Standby mode  
VCC  
CPU and timers  
both stop  
VCC  
Main clock:  
ceramic or crystal  
resonator  
Subclock:  
Pin X1 = VSS  
Table 20.2 DC Characteristics (2)  
VCC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise indicated.  
Values  
Item  
Symbol Applicable Pins Test Condition  
Min Typ Max  
Unit Notes  
EEPROM IEEW  
current  
VCC  
VCC  
VCC  
VCC = 5.0 V, tSCL = 2.5  
µs (when writing)  
2.0  
0.3  
3.0  
mA  
mA  
µA  
*
consump-  
tion  
IEER  
VCC = 5.0 V, tSCL = 2.5  
µs (when reading)  
IEESTBY  
VCC = 5.0 V, tSCL = 2.5  
µs (at standby)  
Note: * The current consumption of the EEPROM chip is shown.  
For the current consumption of H8/3664N, add the above current values to the current  
consumption of H8/3664F.  
Rev. 4.0, 03/02, page 293 of 400  
Table 20.2 DC Characteristics (3)  
VCC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise indicated.  
Values  
Applicable  
Item  
Symbol  
Pins  
Min  
Typ  
Max  
Unit  
Test Condition  
Allowable output low IOL  
current (per pin)  
Output pins  
except port 8,  
SCL, and SDA  
VCC = 4.0 V to  
5.5 V  
2.0  
mA  
Port 8  
20.0  
10.0  
6.0  
mA  
mA  
mA  
mA  
Port 8  
SCL and SDA  
Output pins  
0.5  
except port 8,  
SCL, and SDA  
Allowable output low IOL  
current (total)  
Output pins  
except port 8,  
SCL, and SDA  
VCC = 4.0 V to  
5.5 V  
40.0  
mA  
Port 8,  
SCL, and SDA  
80.0  
20.0  
mA  
mA  
Output pins  
except port 8,  
SCL, and SDA  
Port 8,  
SCL, and SDA  
40.0  
2.0  
mA  
mA  
Allowable output high I –IOH  
current (per pin)  
I
All output pins  
VCC = 4.0 V to  
5.5 V  
0.2  
mA  
mA  
Allowable output high I –IOH  
current (total)  
I
All output pins  
VCC = 4.0 V to  
5.5 V  
30.0  
8.0  
mA  
Rev. 4.0, 03/02, page 294 of 400  
20.2.3 AC Characteristics  
Table 20.3 AC Characteristics  
VCC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Values  
Applicable  
Symbol Pins  
Reference  
Unit Figure  
Item  
Test Condition  
Min  
Typ  
Max  
1
System clock  
oscillation  
fOSC OSC1,  
VCC = 4.0 V to 5.5 V 2.0  
16.0  
MHz  
*
OSC2  
frequency  
2.0  
1
10.0  
64  
MHz  
tOSC  
µs  
2
System clock (ø)  
cycle time  
tcyc  
*
12.8  
Subclock oscillation fW  
frequency  
X1, X2  
X1, X2  
32.768 —  
kHz  
Watch clock (øW)  
cycle time  
tW  
2
30.5  
µs  
tW  
2
Subclock (øSUB  
)
tsubcyc  
8
*
cycle time  
Instruction cycle  
time  
2
tcyc  
tsubcyc  
Oscillation  
stabilization time  
(crystal resonator)  
trc  
OSC1,  
OSC2  
10.0  
ms  
Oscillation  
stabilization time  
(ceramic resonator)  
trc  
OSC1,  
OSC2  
5.0  
2.0  
ms  
Oscillation  
stabilization time  
trcx  
X1, X2  
OSC1  
s
External clock  
high width  
tCPH  
VCC = 4.0 V to 5.5 V 25.0  
ns  
Figure 20.1  
40.0  
External clock  
low width  
tCPL  
tCPr  
tCPf  
OSC1  
OSC1  
OSC1  
VCC = 4.0 V to 5.5 V 25.0  
ns  
ns  
ns  
40.0  
External clock  
rise time  
VCC = 4.0 V to 5.5 V —  
10.0  
15.0  
10.0  
15.0  
VCC = 4.0 V to 5.5 V —  
External clock  
fall time  
Rev. 4.0, 03/02, page 295 of 400  
Values  
Typ  
Applicable  
Symbol Pins  
Reference  
Unit Figure  
Item  
Test Condition  
Min  
Max  
RES pin low  
tREL  
RES  
At power-on and in trc  
modes other than  
those below  
ms  
Figure 20.2  
width  
In active mode and 10  
sleep mode  
operation  
tcyc  
Input pin high  
width  
tIH  
NMI,  
2
tcyc  
Figure 20.3  
IRQ0 to  
IRQ3,  
tsubcyc  
WKP0 to  
WKP5,  
TMCIV,  
TMRIV,  
TRGV,  
ADTRG,  
FTCI,  
FTIOA to  
FTIOD  
Input pin low  
width  
tIL  
NMI,  
2
tcyc  
tsubcyc  
IRQ0 to  
IRQ3,  
WKP0 to  
WKP5,  
TMCIV,  
TMRIV,  
TRGV,  
ADTRG,  
FTCI,  
FTIOA to  
FTIOD  
Notes: 1. When an external clock is input, the minimum system clock oscillator frequency is  
1.0 MHz.  
2. Determined by MA2, MA1, MA0, SA1, and SA0 of system control register 2 (SYSCR2).  
Rev. 4.0, 03/02, page 296 of 400  
Table 20.4 I2C Bus Interface Timing  
VCC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20 to +75°C, unless otherwise specified.  
Values  
Test  
Reference  
Unit Figure  
Item  
Symbol Condition Min  
Typ  
Max  
SCL input cycle time tSCL  
SCL input high width tSCLH  
12tcyc + 600 —  
ns  
ns  
ns  
ns  
Figure 20.4  
3tcyc + 300  
5tcyc + 300  
SCL input low width  
tSCLL  
tSf  
Input fall time of  
SCL and SDA  
300  
SCL and SDA input  
spike pulse removal  
time  
tSP  
1tcyc  
ns  
SDA input bus-free  
time  
tBUF  
5tcyc  
3tcyc  
3tcyc  
ns  
ns  
ns  
Start condition input  
hold time  
tSTAH  
Retransmission start tSTAS  
condition input setup  
time  
Setup time for stop  
condition input  
tSTOS  
3tcyc  
ns  
Data-input setup time tSDAS  
1tcyc+20  
ns  
ns  
pF  
Data-input hold time  
tSDAH  
cb  
0
0
Capacitive load of  
SCL and SDA  
400  
SCL and SDA output tSf  
fall time  
VCC = 4.0 V —  
to 5.5 V  
250  
300  
ns  
Rev. 4.0, 03/02, page 297 of 400  
Table 20.5 Serial Interface (SCI3) Timing  
VCC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Values  
Applicable  
Reference  
Figure  
Item  
Symbol Pins  
Test Condition  
Min Typ Max Unit  
Input  
clock  
cycle  
Asynchro- tScyc  
nous  
SCK3  
4
tcyc  
Figure 20.5  
Clocked  
synchro-  
nous  
6
tcyc  
Input clock pulse  
width  
tSCKW  
tTXD  
SCK3  
TXD  
0.4  
0.6 tScyc  
Transmit data delay  
time (clocked  
synchronous)  
VCC = 4.0 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
VCC = 4.0 V to 5.5 V  
1
1
tcyc  
tcyc  
Figure 20.6  
Receive data setup  
time (clocked  
synchronous)  
tRXS  
RXD  
RXD  
62.5  
ns  
ns  
100.0 —  
Receive data hold  
time (clocked  
synchronous)  
tRXH  
62.5  
ns  
ns  
100.0 —  
Rev. 4.0, 03/02, page 298 of 400  
20.2.4 A/D Converter Characteristics  
Table 20.6 A/D Converter Characteristics  
VCC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Values  
Applicable Test  
Reference  
Unit Figure  
Item  
Symbol Pins  
Condition  
Min  
Typ Max  
1
Analog power supply AVCC  
voltage  
AVCC  
3.3  
VCC 5.5  
V
*
Analog input voltage AVIN  
AN0 to  
AN7  
VSS – 0.3  
AVCC + 0.3 V  
Analog power supply AIOPE  
current  
AVCC  
AVCC = 5.0 V —  
fOSC  
16 MHz  
2.0  
mA  
=
2
AISTOP1  
AVCC  
AVCC  
50  
µA  
*
Reference  
value  
3
AISTOP2  
5.0  
µA  
pF  
*
Analog input  
capacitance  
CAIN  
AN0 to  
AN7  
30.0  
Allowable signal  
source impedance  
RAIN  
AN0 to  
AN7  
10  
5.0  
10  
kΩ  
bit  
tcyc  
Resolution (data  
length)  
10  
Conversion time  
(single mode)  
AVCC = 3.3 V 134  
to 5.5 V  
Nonlinearity error  
Offset error  
7.5  
7.5  
7.5  
0.5  
8.0  
LSB  
LSB  
LSB  
LSB  
LSB  
tcyc  
Full-scale error  
Quantization error  
Absolute accuracy  
Conversion time  
(single mode)  
AVCC = 4.0 V 70  
to 5.5 V  
Nonlinearity error  
Offset error  
7.5  
7.5  
7.5  
0.5  
8.0  
LSB  
LSB  
LSB  
LSB  
LSB  
Full-scale error  
Quantization error  
Absolute accuracy  
Rev. 4.0, 03/02, page 299 of 400  
Values  
Applicable Test  
Symbol Pins Condition  
Reference  
Unit Figure  
Item  
Min  
Typ Max  
Conversion time  
(single mode)  
AVCC = 4.0 V 134  
to 5.5 V  
tcyc  
Nonlinearity error  
Offset error  
3.5  
LSB  
LSB  
LSB  
LSB  
LSB  
3.5  
3.5  
0.5  
4.0  
Full-scale error  
Quantization error  
Absolute accuracy  
Notes: 1. Set AVCC = VCC when the A/D converter is not used.  
2. AISTOP1 is the current in active and sleep modes while the A/D converter is idle.  
3. AISTOP2 is the current at reset and in standby, subactive, and subsleep modes while the  
A/D converter is idle.  
20.2.5 Watchdog Timer Characteristics  
Table 20.7 Watchdog Timer Characteristics  
V
CC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Values  
Applicable Test  
Reference  
Unit Figure  
Item  
Symbol  
Pins  
Condition  
Min  
Typ  
Max  
On-chip  
oscillator  
overflow  
time  
tOVF  
0.2  
0.4  
s
*
Note: * Shows the time to count from 0 to 255, at which point an internal reset is generated, when  
the internal oscillator is selected.  
Rev. 4.0, 03/02, page 300 of 400  
20.2.6 Flash Memory Characteristics  
Table 20.8 Flash Memory Characteristics  
VCC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Values  
Test  
Item  
Symbol Condition  
Min  
1
Typ  
Max  
Unit  
ms  
Programming time (per 128 bytes)*1*2*4  
Erase time (per block) *1*3*6  
Reprogramming count  
tP  
7
tE  
100  
ms  
NWEC  
x
1000  
Times  
µs  
Programming Wait time after SWE  
bit setting*1  
Wait time after PSU  
y
50  
µs  
bit setting*1  
Wait time after P bit setting z1  
1 n 6  
28  
198  
8
30  
32  
µs  
µs  
µs  
*1*4  
z2  
z3  
7 n 1000  
200  
10  
202  
12  
Additional-  
programming  
Wait time after P bit clear*1  
Wait time after PSU bit clear*1 β  
α
5
5
4
µs  
µs  
µs  
Wait time after PV  
γ
bit setting*1  
Wait time after dummy write*1 ε  
2
µs  
µs  
µs  
Wait time after PV bit clear*1  
η
2
Wait time after SWE  
θ
100  
bit clear*1  
Maximum  
N
1000  
Times  
programming count*1*4*5  
Rev. 4.0, 03/02, page 301 of 400  
Values  
Typ  
Test  
Item  
Symbol Condition  
Min  
Max  
Unit  
Erase  
Wait time after SWE  
x
y
z
α
1
µs  
bit setting*1  
Wait time after ESU  
100  
10  
µs  
bit setting*1  
Wait time after E bit  
100  
ms  
setting*1*6  
Wait time after E bit clear*1  
Wait time after ESU bit clear*1 β  
10  
10  
20  
µs  
µs  
µs  
Wait time after EV  
γ
bit setting*1  
Wait time after dummy write*1 ε  
2
µs  
µs  
µs  
Wait time after EV bit clear*1  
η
4
Wait time after SWE  
θ
100  
bit clear*1  
Maximum erase count*1*6*7  
N
120  
Times  
Notes: 1. Make the time settings in accordance with the program/erase algorithms.  
2. The programming time for 128 bytes. (Indicates the total time for which the P bit in flash  
memory control register 1 (FLMCR1) is set. The program-verify time is not included.)  
3. The time required to erase one block. (Indicates the time for which the E bit in flash  
memory control register 1 (FLMCR1) is set. The erase-verify time is not included.)  
4. Programming time maximum value (tP(MAX)) = wait time after P bit setting (z) ×  
maximum programming count (N)  
5. Set the maximum programming count (N) according to the actual set values of z1, z2,  
and z3, so that it does not exceed the programming time maximum value (tP(MAX)).  
The wait time after P bit setting (z1, z2) should be changed as follows according to the  
value of the programming count (n).  
Programming count (n)  
1 n 6  
z1 = 30 µs  
7 n 1000 z2 = 200 µs  
6. Erase time maximum value (tE(max)) = wait time after E bit setting (z) × maximum erase  
count (N)  
7. Set the maximum maximum erase count (N) according to the actual set value of (z), so  
that it does not exceed the erase time maximum value (tE(max)).  
Rev. 4.0, 03/02, page 302 of 400  
20.2.7 EEPROM Characteristics (Preliminary)  
Table 20.9 EEPROM Characteristics  
VCC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Values  
Test  
Reference  
Item  
Symbol  
tSCL  
Condition Min  
Typ Max Unit Figure  
SCL input cycle time  
SCL input high pulse width  
SCL input low pulse width  
2500  
600  
1200  
ns  
µs  
ns  
ns  
Figure 20.7  
tSCLH  
50  
tSCLL  
SCL, SDA input spike pulse  
removal time  
tSP  
SDA input bus-free time  
tBUF  
1200  
600  
ns  
ns  
ns  
Start condition input hold time  
tSTAH  
Retransmit start condition input tSTAS  
setup time  
600  
Stop condition input setup time tSTOS  
600  
160  
0
ns  
ns  
ns  
ns  
ns  
ns  
pF  
ns  
ms  
ms  
Data input setup time  
Data input hold time  
SCL, SDA input fall time  
SDA input rise time  
Data output hold time  
SCL, SDA capacitive load  
Access time  
tSDAS  
tSDAH  
tSf  
300  
300  
tSr  
tDH  
50  
0
Cb  
400  
900  
10  
tAA  
100  
Cycle time at writing*  
Reset release time  
tWC  
tRES  
13  
Note: * Cycle time at writing is a time from the stop condition to write completion (internal control).  
Rev. 4.0, 03/02, page 303 of 400  
20.3  
Electrical Characteristics (Mask ROM Version)  
20.3.1 Power Supply Voltage and Operating Ranges  
Power Supply Voltage and Oscillation Frequency Range  
øOSC (MHz)  
øW (kHz)  
16.0  
32.768  
10.0  
2.0  
2.7  
4.0  
5.5 VCC (V)  
2.7  
4.0  
5.5 VCC (V)  
AVCC = 3.0 V to 5.5 V  
Active mode  
AVCC = 3.0 V to 5.5 V  
All operating modes  
Sleep mode  
Power Supply Voltage and Operating Frequency Range  
ø (MHz)  
øSUB (kHz)  
16.0  
16.384  
10.0  
1.0  
8.192  
4.096  
2.7  
4.0  
5.5 VCC (V)  
2.7  
4.0  
5.5 VCC (V)  
AVCC = 3.0 V to 5.5 V  
Active mode  
Sleep mode  
AVCC = 3.0 V to 5.5 V  
Subactive mode  
Subsleep mode  
(When MA2 = 0 in SYSCR2)  
ø (kHz)  
2000  
1250  
78.125  
2.7  
4.0  
5.5  
VCC (V)  
AVCC = 3.0 V to 5.5 V  
Active mode  
Sleep mode  
(When MA2 = 1 in SYSCR2)  
Rev. 4.0, 03/02, page 304 of 400  
Analog Power Supply Voltage and A/D Converter Accuracy Guarantee Range  
ø (MHz)  
16.0  
10.0  
2.0  
3.0  
4.0  
5.5 AVCC (V)  
VCC = 2.7 V to 5.5 V  
Active mode  
Sleep mode  
20.3.2 DC Characteristics  
Table 20.10 DC Characteristics (1)  
V
CC = 2.7 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C unless otherwise indicated.  
Values  
Item  
Symbol Applicable Pins Test Condition  
Min  
Typ  
Max  
Unit Notes  
Input high VIH  
voltage  
RES, NMI,  
VCC = 4.0 V to 5.5 V VCC × 0.8 —  
VCC + 0.3  
V
WKP0 to WKP5,  
IRQ0 to IRQ3,  
ADTRG,TMRIV,  
TMCIV, FTCI,  
FTIOA to FTIOD,  
SCK3, TRGV  
VCC × 0.9 —  
VCC + 0.3  
VCC + 0.3  
V
V
RXD, SCL, SDA, VCC = 4.0 V to 5.5 V VCC × 0.7 —  
P10 to P12,  
P14 to P17,  
P20 to P22,  
P50 to P57,  
P74 to P76,  
P80 to P87  
VCC × 0.8 —  
VCC + 0.3  
V
PB0 to PB7  
VCC = 4.0 V to 5.5 V VCC × 0.7 —  
VCC × 0.8 —  
AVCC + 0.3  
AVCC + 0.3  
VCC + 0.3  
VCC + 0.3  
V
V
V
V
OSC1  
VCC = 4.0 V to 5.5 V VCC – 0.5 —  
VCC – 0.3 —  
Rev. 4.0, 03/02, page 305 of 400  
Values  
Item  
Symbol Applicable Pins Test Condition  
Min  
Typ Max  
Unit  
Notes  
Input low VIL  
voltage  
RES, NMI,  
VCC = 4.0 V to 5.5 V –0.3  
VCC × 0.2  
V
WKP0 to WKP5,  
IRQ0 to IRQ3,  
ADTRG,TMRIV,  
TMCIV, FTCI,  
FTIOA to FTIOD,  
SCK3, TRGV  
–0.3  
VCC × 0.1  
VCC × 0.3  
V
V
RXD, SCL, SDA, VCC = 4.0 V to 5.5 V –0.3  
P10 to P12,  
P14 to P17,  
P20 to P22,  
P50 to P57,  
P74 to P76,  
P80 to P87,  
PB0 to PB7  
–0.3  
VCC × 0.2  
V
OSC1  
VCC = 4.0 V to 5.5 V –0.3  
–0.3  
0.5  
0.3  
V
V
V
Output  
high  
VOH  
P10 to P12,  
P14 to P17,  
P20 to P22,  
P50 to P55,  
P74 to P76,  
P80 to P87  
VCC = 4.0 V to 5.5 V VCC –  
1.0  
–IOH = 1.5 mA  
voltage  
–IOH = 0.1 mA  
VCC  
0.5  
V
P56, P57  
VCC = 4.0 V to 5.5 V VCC  
V
V
2.5  
–IOH = 0.1 mA  
VCC =2.7 V to 4.0 V VCC  
2.0  
–IOH = 0.1 mA  
Rev. 4.0, 03/02, page 306 of 400  
Values  
Typ  
Item  
Symbol Applicable Pins Test Condition  
Min  
Max  
Unit Notes  
Output  
low  
voltage  
VOL  
P10 to P12,  
P14 to P17,  
P20 to P22,  
P50 to P57,  
P74 to P76  
VCC = 4.0 V to 5.5 V  
IOL = 1.6 mA  
0.6  
V
I
OL = 0.4 mA  
0.4  
1.5  
V
V
P80 to P87  
VCC = 4.0 V to 5.5 V  
OL = 20.0 mA  
I
VCC = 4.0 V to 5.5 V  
IOL = 10.0 mA  
1.0  
0.4  
V
V
VCC = 4.0 V to 5.5 V  
I
OL = 1.6 mA  
IOL = 0.4 mA  
0.4  
0.6  
V
V
SCL, SDA  
VCC = 4.0 V to 5.5 V  
IOL = 6.0 mA  
IOL = 3.0 mA  
0.4  
1.0  
V
Input/  
| IIL  
|
OSC1, RES, NMI, VIN = 0.5 V or higher —  
WKP0 to WKP5, (VCC – 0.5 V)  
IRQ0 to IRQ3,  
µA  
output  
leakage  
current  
ADTRG, TRGV,  
TMRIV, TMCIV,  
FTCI, FTIOA to  
FTIOD, RXD,  
SCK3, SCL, SDA  
P10 to P12,  
P14 to P17,  
P20 to P22,  
P50 to P57,  
P74 to P76,  
P80 to P87  
V
IN = 0.5 V or higher —  
1.0  
1.0  
µA  
(VCC – 0.5 V)  
PB0 to PB7  
VIN = 0.5 V or higher —  
(AVCC – 0.5 V)  
µA  
µA  
Pull-up  
MOS  
–Ip  
P10 to P12,  
P14 to P17,  
P50 to P55  
VCC = 5.0 V,  
50.0  
300.0  
V
IN = 0.0 V  
current  
V
V
CC = 3.0 V,  
IN = 0.0 V  
60.0  
µA  
Reference  
value  
Rev. 4.0, 03/02, page 307 of 400  
Values  
Item  
Symbol Applicable Pins Test Condition  
Min  
Typ Max  
Unit Notes  
Input  
capaci-  
tance  
Cin  
All input pins  
except power  
supply pins  
f = 1 MHz,  
VIN = 0.0 V,  
Ta = 25°C  
15.0  
pF  
Active  
mode  
current  
consump-  
tion  
IOPE1  
VCC  
VCC  
VCC  
VCC  
VCC  
Active mode 1  
15.0 22.5  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
*
V
CC = 5.0 V,  
fOSC = 16 MHz  
Active mode 1  
CC = 3.0 V,  
OSC = 10 MHz  
8.0  
1.8  
1.2  
7.1  
4.0  
1.1  
0.5  
*
V
Reference  
value  
f
IOPE2  
Active mode 2  
CC = 5.0 V,  
OSC = 16 MHz  
2.7  
*
V
f
Active mode 2  
CC = 3.0 V,  
*
V
Reference  
value  
f
OSC = 10 MHz  
Sleep  
mode  
current  
consump-  
tion  
ISLEEP1  
Sleep mode 1  
13.0  
*
V
CC = 5.0 V,  
fOSC = 16 MHz  
Sleep mode 1  
CC = 3.0 V,  
OSC = 10 MHz  
*
V
Reference  
value  
f
ISLEEP2  
Sleep mode 2  
CC = 5.0 V,  
OSC = 16 MHz  
2.0  
*
V
f
Sleep mode 2  
CC = 3.0 V,  
OSC = 10 MHz  
*
V
Reference  
value  
f
Subactive ISUB  
mode  
current  
VCC = 3.0 V  
32-kHz crystal  
resonator  
35.0 70.0  
*
consump-  
tion  
SUB = øW/2)  
V
CC = 3.0 V  
25.0  
µA  
µA  
*
32-kHz crystal  
resonator  
SUB = øW/8)  
Reference  
value  
Subsleep ISUBSP  
mode  
current  
consump-  
tion  
VCC  
VCC = 3.0 V  
32-kHz crystal  
resonator  
25.0 50.0  
*
*
SUB = øW/2)  
Standby  
mode  
ISTBY  
VCC  
32-kHz crystal  
resonator not used  
5.0  
µA  
current  
consump-  
tion  
Rev. 4.0, 03/02, page 308 of 400  
Values  
Typ  
Item  
Symbol Applicable Pins Test Condition  
Min  
Max  
Unit Notes  
RAM data VRAM  
retaining  
VCC  
2.0  
V
voltage  
Note: * Pin states during current consumption measurement are given below (excluding current in  
the pull-up MOS transistors and output buffers).  
Mode  
RES Pin  
Internal State  
Other Pins  
Oscillator Pins  
Active mode 1  
Active mode 2  
VCC  
Operates  
VCC  
Main clock:  
ceramic or crystal  
resonator  
Operates  
(ø/64)  
Subclock:  
Pin X1 = VSS  
Sleep mode 1  
Sleep mode 2  
VCC  
Only timers operate  
VCC  
Only timers operate  
(ø/64)  
Subactive mode  
VCC  
Operates  
VCC  
Main clock:  
ceramic or crystal  
resonator  
Subsleep mode  
Standby mode  
VCC  
VCC  
Only timers operate  
VCC  
VCC  
Subclock:  
crystal resonator  
CPU and timers  
both stop  
Main clock:  
ceramic or crystal  
resonator  
Subclock:  
Pin X1 = VSS  
Rev. 4.0, 03/02, page 309 of 400  
Table 20.10 DC Characteristics (2)  
VCC = 2.7 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise indicated.  
Values  
Applicable  
Item  
Symbol Pins  
Min  
Typ  
Max  
Unit  
Test Condition  
Allowable output low IOL  
current (per pin)  
Output pins  
except port 8,  
SCL, and SDA  
VCC = 4.0 V to 5.5 V  
2.0  
mA  
Port 8  
20.0  
10.0  
6.0  
mA  
mA  
mA  
mA  
Port 8  
SCL and SDA  
Output pins  
0.5  
except port 8,  
SCL,, and SDA  
Allowable output low IOL  
current (total)  
Output pins  
except port 8,  
SCL and SDA  
VCC = 4.0 V to 5.5 V  
40.0  
mA  
Port 8,  
SCL, and SDA  
80.0  
20.0  
mA  
mA  
Output pins  
except port 8,  
SCL, and SDA  
Port 8,  
40.0  
mA  
SCL, and SDA  
Allowable output high I –IOH  
current (per pin)  
I
All output pins VCC = 4.0 V to 5.5 V  
All output pins VCC = 4.0 V to 5.5 V  
2.0  
0.2  
30.0  
8.0  
mA  
mA  
mA  
mA  
Allowable output high I –IOH  
current (total)  
I
Rev. 4.0, 03/02, page 310 of 400  
20.3.3 AC Characteristics  
Table 20.11 AC Characteristics  
VCC = 2.7 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Values  
Applicable  
Symbol Pins  
Reference  
Unit Figure  
Item  
Test Condition  
Min Typ  
Max  
1
System clock  
oscillation  
fOSC OSC1,  
VCC = 4.0 V to 5.5 V 2.0  
16.0  
MHz  
*
OSC2  
frequency  
2.0  
1
10.0  
64  
2
System clock (ø)  
cycle time  
tcyc  
tOSC  
µs  
*
12.8  
Subclock oscillation fW  
frequency  
X1, X2  
X1, X2  
32.768 —  
kHz  
Watch clock (øW)  
cycle time  
tW  
2
30.5  
µs  
tW  
2
Subclock (øSUB  
)
tsubcyc  
8
*
cycle time  
Instruction cycle  
time  
2
tcyc  
tsubcyc  
Oscillation  
stabilization time  
(crystal resonator)  
trc  
OSC1,  
OSC2  
10.0  
ms  
ms  
s
Oscillation  
stabilization time  
(ceramic resonator)  
trc  
OSC1,  
OSC2  
5.0  
2.0  
Oscillation  
stabilization time  
trcx  
X1, X2  
OSC1  
External clock  
high width  
tCPH  
VCC = 4.0 V to 5.5 V 25.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 20.1  
40.0  
VCC = 4.0 V to 5.5 V 25.0  
40.0  
External clock  
low width  
tCPL  
tCPr  
tCPf  
OSC1  
OSC1  
OSC1  
External clock  
rise time  
VCC = 4.0 V to 5.5 V  
10.0  
15.0  
10.0  
15.0  
External clock  
fall time  
VCC = 4.0 V to 5.5 V  
Rev. 4.0, 03/02, page 311 of 400  
Values  
Typ  
Applicable  
Symbol Pins  
Reference  
Unit Figure  
Item  
Test Condition  
Min  
Max  
RES pin low  
tREL  
RES  
At power-on and in trc  
modes other than  
those below  
ms  
Figure 20.2  
width  
In active mode and 10  
sleep mode  
operation  
tcyc  
Input pin high  
width  
tIH  
NMI,  
2
tcyc  
Figure 20.3  
IRQ0 to  
IRQ3,  
tsubcyc  
WKP0 to  
WKP5,  
TMCIV,  
TMRIV,  
TRGV,  
ADTRG,  
FTCI,  
FTIOA to  
FTIOD  
Input pin low  
width  
tIL  
NMI,  
2
tcyc  
tsubcyc  
IRQ0 to  
IRQ3,  
WKP0 to  
WKP5,  
TMCIV,  
TMRIV,  
TRGV,  
ADTRG,  
FTCI,  
FTIOA to  
FTIOD  
Notes: 1. When an external clock is input, the minimum system clock oscillator frequency is  
1.0 MHz.  
2. Determined by MA2, MA1, MA0, SA1, and SA0 of system control register 2 (SYSCR2).  
Rev. 4.0, 03/02, page 312 of 400  
Table 20.12 I2C Bus Interface Timing  
Values  
Typ  
Test  
Reference  
Item  
Symbol Min  
Max  
Unit Condition Figure  
SCL input cycle time tSCL  
SCL input high width tSCLH  
12tcyc + 600 —  
ns  
ns  
ns  
ns  
Figure 20.4  
3tcyc + 300  
5tcyc + 300  
SCL input low width  
tSCLL  
tSf  
Input fall time of  
SCL and SDA  
300  
SCL and SDA input  
spike pulse removal  
time  
tSP  
1tcyc  
ns  
SDA input bus-free  
time  
tBUF  
5tcyc  
3tcyc  
3tcyc  
ns  
ns  
ns  
Start condition input  
hold time  
tSTAH  
Retransmission start tSTAS  
condition input setup  
time  
Setup time for stop  
condition input  
tSTOS  
3tcyc  
ns  
Data-input setup time tSDAS  
1tcyc+20  
ns  
ns  
pF  
Data-input hold time  
tSDAH  
cb  
0
0
Capacitive load of  
SCL and SDA  
400  
SCL and SDA output tSf  
fall time  
250  
300  
ns  
ns  
VCC = 4.0 V  
to 5.5 V  
Rev. 4.0, 03/02, page 313 of 400  
Table 20.13 Serial Interface (SCI3) Timing  
VCC = 2.7 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Values  
Applicable  
Reference  
Item  
Symbol Pins  
Test Condition  
Min  
Typ Max Unit Figure  
Input  
clock  
cycle  
Asynchro-  
nous  
tScyc  
SCK3  
4
tcyc  
Figure 20.5  
Clocked  
synchronous  
6
tcyc  
Input clock pulse  
width  
tSCKW  
tTXD  
SCK3  
TXD  
0.4  
0.6 tScyc  
Transmit data delay  
time (clocked  
synchronous)  
VCC = 4.0 V to 5.5 V  
1
1
tcyc  
tcyc  
Figure 20.6  
Receive data setup  
time (clocked  
synchronous)  
tRXS  
RXD  
RXD  
VCC = 4.0 V to 5.5 V 62.5  
100.0  
ns  
ns  
Receive data hold  
time (clocked  
synchronous)  
tRXH  
VCC = 4.0 V to 5.5 V 62.5  
100.0  
ns  
ns  
Rev. 4.0, 03/02, page 314 of 400  
20.3.4 A/D Converter Characteristics  
Table 20.14 A/D Converter Characteristics  
VCC = 2.7 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Values  
Applicable Test  
Reference  
Figure  
Item  
Symbol Pins  
Condition  
Min  
Typ  
Max  
Unit  
1
Analog power supply AVCC  
voltage  
AVCC  
3.3  
VCC  
5.5  
V
*
Analog input voltage AVIN  
AN0 to  
AN7  
VSS – 0.3 —  
AVCC + 0.3 V  
Analog power supply AIOPE  
current  
AVCC  
AVCC = 5.0 V  
2.0  
mA  
fOSC  
=
16 MHz  
2
AISTOP1  
AVCC  
AVCC  
50  
µA  
*
Reference  
value  
3
AISTOP2  
5.0  
µA  
pF  
*
Analog input  
capacitance  
CAIN  
AN0 to  
AN7  
30.0  
Allowable signal  
source impedance  
RAIN  
AN0 to  
AN7  
10  
5.0  
10  
kΩ  
bit  
tcyc  
Resolution (data  
length)  
10  
Conversion time  
(single mode)  
AVCC = 3.0 V 134  
to 5.5 V  
Nonlinearity error  
Offset error  
7.5  
7.5  
7.5  
0.5  
8.0  
LSB  
LSB  
LSB  
LSB  
LSB  
tcyc  
Full-scale error  
Quantization error  
Absolute accuracy  
Conversion time  
(single mode)  
AVCC = 4.0 V 70  
to 5.5 V  
Nonlinearity error  
Offset error  
7.5  
7.5  
7.5  
0.5  
8.0  
LSB  
LSB  
LSB  
LSB  
LSB  
Full-scale error  
Quantization error  
Absolute accuracy  
Rev. 4.0, 03/02, page 315 of 400  
Values  
Typ  
Applicable Test  
Symbol Pins Condition  
Reference  
Figure  
Item  
Min  
Max  
Unit  
Conversion time  
(single mode)  
AVCC = 4.0 V to 134  
5.5 V  
tcyc  
Nonlinearity error  
Offset error  
3.5  
3.5  
3.5  
0.5  
4.0  
LSB  
LSB  
LSB  
LSB  
LSB  
Full-scale error  
Quantization error  
Absolute accuracy  
Notes: 1. Set AVCC = VCC when the A/D converter is not used.  
2. AISTOP1 is the current in active and sleep modes while the A/D converter is idle.  
3. AISTOP2 is the current at reset and in standby, subactive, and subsleep modes while the  
A/D converter is idle.  
20.3.5 Watchdog Timer Characteristics  
Table 20.15 Watchdog Timer Characteristics  
V
CC = 2.7 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Applicable Test  
Pins Condition  
Values  
Typ  
Reference  
Unit Figure  
Item  
Symbol  
Min  
Max  
On-chip  
oscillator  
overflow  
time  
tOVF  
0.2  
0.4  
s
*
Note: * Shows the time to count from 0 to 255, at which point an internal reset is generated, when  
the internal oscillator is selected.  
20.4  
Operation Timing  
tOSC  
V
IH  
OSC1  
V
IL  
tCPH  
tCPL  
tCPf  
tCPr  
Figure 20.1 System Clock Input Timing  
Rev. 4.0, 03/02, page 316 of 400  
VCC × 0.7  
VCC  
OSC1  
tREL  
VIL  
VIL  
tREL  
Figure 20.2 RES Low Width Timing  
V
IH  
to  
to  
V
IL  
TMCI  
FTIOA to FTIOD  
TMCIV, TMRIV  
TRGV  
tIL  
tIH  
Figure 20.3 Input Timing  
VIH  
VIL  
SDA  
SCL  
tBUF  
tSTAH  
tSP  
tSTOS  
tSCLH  
tSTAS  
P*  
S*  
Sr*  
P*  
tSCLL  
tSDAS  
tSf  
tSr  
tSCL  
tSDAH  
Note: * S, P, and Sr represent the following:  
S: Start condition  
P: Stop condition  
Sr: Retransmission start condition  
Figure 20.4 I2C Bus Interface Input/Output Timing  
Rev. 4.0, 03/02, page 317 of 400  
tSCKW  
SCK3  
tScyc  
Figure 20.5 SCK3 Input Clock Timing  
tScyc  
*
*
VIH or VOH  
VIL or VOL  
SCK3  
tTXD  
*
VOH  
TXD  
(transmit data)  
*
VOL  
tRXS  
tRXH  
RXD  
(receive data)  
Note: * Output timing reference levels  
Output high:  
Output low:  
V
V
= 2.0 V  
OH  
= 0.8 V  
OL  
Load conditions are shown in figure 19.8.  
Figure 20.6 SCI3 Input/Output Timing in Clocked Synchronous Mode  
Rev. 4.0, 03/02, page 318 of 400  
1/fSCL  
t
sf  
tsp  
t
SCLH  
tSCLL  
SCL  
t
STAS  
t
SDAH  
t
STOS  
t
STAH  
t
SDAS  
t
sr  
SDA  
(in)  
t
BUF  
t
AA  
t
DH  
SDA  
(out)  
Figure 20.7 EEPROM Bus Timing  
20.5  
Output Load Condition  
VCC  
2.4 k  
LSI output pin  
30 pF  
12 kΩ  
Figure 20.8 Output Load Circuit  
Rev. 4.0, 03/02, page 319 of 400  
Rev. 4.0, 03/02, page 320 of 400  
Appendix A Instruction Set  
A.1  
Instruction List  
Operand Notation  
Symbol  
Rd  
Description  
General (destination*) register  
Rs  
General (source*) register  
General register*  
Rn  
ERd  
ERs  
ERn  
(EAd)  
(EAs)  
PC  
General destination register (address register or 32-bit register)  
General source register (address register or 32-bit register)  
General register (32-bit register)  
Destination operand  
Source operand  
Program counter  
SP  
Stack pointer  
CCR  
N
Condition-code register  
N (negative) flag in CCR  
Z (zero) flag in CCR  
Z
V
V (overflow) flag in CCR  
C (carry) flag in CCR  
C
disp  
Displacement  
Transfer from the operand on the left to the operand on the right, or transition from  
the state on the left to the state on the right  
+
Addition of the operands on both sides  
Subtraction of the operand on the right from the operand on the left  
Multiplication of the operands on both sides  
Division of the operand on the left by the operand on the right  
Logical AND of the operands on both sides  
Logical OR of the operands on both sides  
Logical exclusive OR of the operands on both sides  
NOT (logical complement)  
×
÷
¬
( ), < >  
Contents of operand  
Note: General registers include 8-bit registers (R0H to R7H and R0L to R7L) and 16-bit registers  
(R0 to R7 and E0 to E7).  
Rev. 4.0, 03/02, page 321 of 400  
Condition Code Notation  
Symbol  
Description  
Changed according to execution result  
Undetermined (no guaranteed value)  
Cleared to 0  
*
0
1
Set to 1  
Not affected by execution of the instruction  
Varies depending on conditions, described in notes  
Rev. 4.0, 03/02, page 322 of 400  
Table A.1 Instruction Set  
1. Data transfer instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
MOV.B #xx:8, Rd  
B
B
B
B
B
B
2
#xx:8 Rd8  
0
0
0
0
0
0
2
2
MOV  
MOV.B Rs, Rd  
2
2
4
8
2
Rs8 Rd8  
MOV.B @ERs, Rd  
MOV.B @(d:16, ERs), Rd  
MOV.B @(d:24, ERs), Rd  
MOV.B @ERs+, Rd  
@ERs Rd8  
4
@(d:16, ERs) Rd8  
@(d:24, ERs) Rd8  
6
10  
6
@ERs Rd8  
ERs32+1 ERs32  
MOV.B @aa:8, Rd  
B
B
B
B
B
B
B
2
@aa:8 Rd8  
0
0
0
0
0
0
0
4
6
MOV.B @aa:16, Rd  
MOV.B @aa:24, Rd  
MOV.B Rs, @ERd  
4
@aa:16 Rd8  
@aa:24 Rd8  
Rs8 @ERd  
6
8
2
4
8
2
4
MOV.B Rs, @(d:16, ERd)  
MOV.B Rs, @(d:24, ERd)  
MOV.B Rs, @–ERd  
Rs8 @(d:16, ERd)  
Rs8 @(d:24, ERd)  
6
10  
6
ERd32–1 ERd32  
Rs8 @ERd  
MOV.B Rs, @aa:8  
B
B
2
4
6
Rs8 @aa:8  
0
0
0
0
0
0
0
0
0
4
6
MOV.B Rs, @aa:16  
MOV.B Rs, @aa:24  
MOV.W #xx:16, Rd  
MOV.W Rs, Rd  
Rs8 @aa:16  
Rs8 @aa:24  
#xx:16 Rd16  
Rs16 Rd16  
B
8
W
W
W
W
W
W
4
4
2
2
4
8
2
2
MOV.W @ERs, Rd  
MOV.W @(d:16, ERs), Rd  
MOV.W @(d:24, ERs), Rd  
MOV.W @ERs+, Rd  
@ERs Rd16  
@(d:16, ERs) Rd16  
@(d:24, ERs) Rd16  
4
6
10  
6
@ERs Rd16  
ERs32+2 @ERd32  
MOV.W @aa:16, Rd  
MOV.W @aa:24, Rd  
MOV.W Rs, @ERd  
W
W
W
W
W
4
@aa:16 Rd16  
0
0
0
0
0
6
8
6
@aa:24 Rd16  
2
4
8
Rs16 @ERd  
4
MOV.W Rs, @(d:16, ERd)  
MOV.W Rs, @(d:24, ERd)  
Rs16 @(d:16, ERd)  
Rs16 @(d:24, ERd)  
6
10  
Rev. 4.0, 03/02, page 323 of 400  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
MOV.W Rs, @ERd  
W
2
ERd322 ERd32  
Rs16 @ERd  
0
6
MOV  
MOV.W Rs, @aa:16  
MOV.W Rs, @aa:24  
MOV.L #xx:32, Rd  
W
W
L
4
6
Rs16 @aa:16  
0
0
0
0
0
0
0
0
6
8
Rs16 @aa:24  
6
#xx:32 Rd32  
6
MOV.L ERs, ERd  
L
2
ERs32 ERd32  
@ERs ERd32  
2
MOV.L @ERs, ERd  
MOV.L @(d:16, ERs), ERd  
MOV.L @(d:24, ERs), ERd  
MOV.L @ERs+, ERd  
L
4
8
L
6
@(d:16, ERs) ERd32  
@(d:24, ERs) ERd32  
10  
14  
10  
L
10  
4
L
@ERs ERd32  
ERs32+4 ERs32  
MOV.L @aa:16, ERd  
MOV.L @aa:24, ERd  
MOV.L ERs, @ERd  
L
L
L
L
L
L
6
@aa:16 ERd32  
0
0
0
0
0
0
10  
12  
8
8
@aa:24 ERd32  
4
ERs32 @ERd  
MOV.L ERs, @(d:16, ERd)  
MOV.L ERs, @(d:24, ERd)  
MOV.L ERs, @ERd  
6
ERs32 @(d:16, ERd)  
ERs32 @(d:24, ERd)  
10  
14  
10  
10  
4
ERd324 ERd32  
ERs32 @ERd  
MOV.L ERs, @aa:16  
MOV.L ERs, @aa:24  
POP.W Rn  
L
L
6
8
ERs32 @aa:16  
ERs32 @aa:24  
0
0
0
10  
12  
6
W
2
4
2
4
@SP Rn16  
SP+2 SP  
POP  
POP.L ERn  
PUSH.W Rn  
PUSH.L ERn  
L
W
L
@SP ERn32  
SP+4 SP  
0
0
0
10  
6
SP2 SP  
Rn16 @SP  
PUSH  
SP4 SP  
10  
ERn32 @SP  
Cannot be used in  
this LSI  
MOVFPE MOVFPE @aa:16, Rd  
MOVTPE MOVTPE Rs, @aa:16  
B
B
Cannot be used in  
this LSI  
4
4
Cannot be used in  
this LSI  
Cannot be used in  
this LSI  
Rev. 4.0, 03/02, page 324 of 400  
2. Arithmetic instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
ADD.B #xx:8, Rd  
ADD.B Rs, Rd  
B
B
2
4
6
Rd8+#xx:8 Rd8  
Rd8+Rs8 Rd8  
2
2
4
2
6
ADD  
2
2
ADD.W #xx:16, Rd  
ADD.W Rs, Rd  
W
W
L
Rd16+#xx:16 Rd16  
Rd16+Rs16 Rd16  
(1)  
(1)  
(2)  
ADD.L #xx:32, ERd  
ERd32+#xx:32 →  
ERd32  
ADD.L ERs, ERd  
L
2
ERd32+ERs32 →  
(2)  
2
ERd32  
ADDX.B #xx:8, Rd  
ADDX.B Rs, Rd  
ADDS.L #1, ERd  
ADDS.L #2, ERd  
ADDS.L #4, ERd  
INC.B Rd  
B
B
L
2
Rd8+#xx:8 +C Rd8  
Rd8+Rs8 +C Rd8  
ERd32+1 ERd32  
ERd32+2 ERd32  
ERd32+4 ERd32  
Rd8+1 Rd8  
(3)  
(3)  
2
2
2
2
2
2
2
2
2
2
2
ADDX  
ADDS  
2
2
2
2
2
2
2
2
2
2
*
L
L
B
W
W
L
INC  
INC.W #1, Rd  
INC.W #2, Rd  
INC.L #1, ERd  
INC.L #2, ERd  
DAA Rd  
Rd16+1 Rd16  
Rd16+2 Rd16  
ERd32+1 ERd32  
ERd32+2 ERd32  
L
B
Rd8 decimal adjust  
*
DAA  
SUB  
Rd8  
SUB.B Rs, Rd  
B
W
W
L
2
2
2
Rd8Rs8 Rd8  
2
4
2
6
2
2
2
2
2
2
2
2
2
SUB.W #xx:16, Rd  
SUB.W Rs, Rd  
SUB.L #xx:32, ERd  
SUB.L ERs, ERd  
SUBX.B #xx:8, Rd  
SUBX.B Rs, Rd  
SUBS.L #1, ERd  
SUBS.L #2, ERd  
SUBS.L #4, ERd  
DEC.B Rd  
4
6
2
Rd16#xx:16 Rd16  
Rd16Rs16 Rd16  
(1)  
(1)  
ERd32#xx:32 ERd32 (2)  
ERd32ERs32 ERd32 (2)  
L
SUBX  
SUBS  
B
B
L
Rd8#xx:8C Rd8  
Rd8Rs8C Rd8  
ERd321 ERd32  
ERd322 ERd32  
ERd324 ERd32  
Rd81 Rd8  
(3)  
(3)  
2
2
2
2
2
2
2
L
L
DEC  
B
W
W
DEC.W #1, Rd  
DEC.W #2, Rd  
Rd161 Rd16  
Rd162 Rd16  
Rev. 4.0, 03/02, page 325 of 400  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
DEC.L #1, ERd  
DEC.L #2, ERd  
L
L
B
2
2
2
ERd321 ERd32  
ERd322 ERd32  
*
2
2
2
DEC  
DAS DAS.Rd  
Rd8 decimal adjust  
*
Rd8  
MULXU MULXU. B Rs, Rd  
MULXU. W Rs, ERd  
MULXS MULXS. B Rs, Rd  
MULXS. W Rs, ERd  
B
W
B
2
2
4
4
2
Rd8 × Rs8 Rd16  
(unsigned multiplication)  
14  
22  
16  
24  
14  
Rd16 × Rs16 ERd32  
(unsigned multiplication)  
Rd8 × Rs8 Rd16  
(signed multiplication)  
W
B
Rd16 × Rs16 ERd32  
(signed multiplication)  
DIVXU DIVXU. B Rs, Rd  
Rd16 ÷ Rs8 Rd16  
(RdH: remainder,  
RdL: quotient)  
(6) (7) —  
(6) (7) —  
(8) (7) —  
(8) (7) —  
(unsigned division)  
DIVXU. W Rs, ERd  
DIVXS DIVXS. B Rs, Rd  
DIVXS. W Rs, ERd  
W
B
2
4
4
ERd32 ÷ Rs16 ERd32  
(Ed: remainder,  
22  
16  
24  
Rd: quotient)  
(unsigned division)  
Rd16 ÷ Rs8 Rd16  
(RdH: remainder,  
RdL: quotient)  
(signed division)  
W
ERd32 ÷ Rs16 ERd32  
(Ed: remainder,  
Rd: quotient)  
(signed division)  
CMP CMP.B #xx:8, Rd  
CMP.B Rs, Rd  
B
B
2
4
6
Rd8#xx:8  
2
2
4
2
4
2
2
2
2
Rd8Rs8  
CMP.W #xx:16, Rd  
CMP.W Rs, Rd  
W
W
L
Rd16#xx:16  
Rd16Rs16  
ERd32#xx:32  
ERd32ERs32  
(1)  
(1)  
(2)  
(2)  
CMP.L #xx:32, ERd  
CMP.L ERs, ERd  
L
Rev. 4.0, 03/02, page 326 of 400  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
NEG.B Rd  
B
0Rd8 Rd8  
W 0Rd16 Rd16  
0ERd32 ERd32  
2
2
2
2
2
2
2
2
NEG  
NEG.W Rd  
NEG.L ERd  
L
EXTU EXTU.W Rd  
W 0 (<bits 15 to 8>  
0
0
0
0
0
0
of Rd16)  
EXTU.L ERd  
L
0 (<bits 31 to 16>  
of ERd32)  
2
2
2
2
2
2
EXTS EXTS.W Rd  
EXTS.L ERd  
W (<bit 7> of Rd16) →  
(<bits 15 to 8> of Rd16)  
L
(<bit 15> of ERd32) →  
(<bits 31 to 16> of  
ERd32)  
Rev. 4.0, 03/02, page 327 of 400  
3. Logic instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
AND.B #xx:8, Rd  
AND.B Rs, Rd  
B
B
W
W
L
2
4
6
2
4
6
2
4
6
Rd8#xx:8 Rd8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
4
2
6
4
2
2
4
2
6
4
2
2
4
2
6
4
2
2
2
AND  
2
2
4
2
2
4
2
2
Rd8Rs8 Rd8  
AND.W #xx:16, Rd  
AND.W Rs, Rd  
AND.L #xx:32, ERd  
AND.L ERs, ERd  
OR.B #xx:8, Rd  
OR.B Rs, Rd  
Rd16#xx:16 Rd16  
Rd16Rs16 Rd16  
ERd32#xx:32 ERd32  
ERd32ERs32 ERd32  
Rd8#xx:8 Rd8  
L
B
B
W
W
L
OR  
Rd8Rs8 Rd8  
OR.W #xx:16, Rd  
OR.W Rs, Rd  
Rd16#xx:16 Rd16  
Rd16Rs16 Rd16  
ERd32#xx:32 ERd32  
ERd32ERs32 ERd32  
Rd8#xx:8 Rd8  
Rd8Rs8 Rd8  
OR.L #xx:32, ERd  
OR.L ERs, ERd  
L
XOR XOR.B #xx:8, Rd  
XOR.B Rs, Rd  
B
B
W
W
L
XOR.W #xx:16, Rd  
XOR.W Rs, Rd  
Rd16#xx:16 Rd16  
Rd16Rs16 Rd16  
ERd32#xx:32 ERd32  
ERd32ERs32 ERd32  
¬ Rd8 Rd8  
XOR.L #xx:32, ERd  
XOR.L ERs, ERd  
NOT NOT.B Rd  
NOT.W Rd  
L
4
2
2
2
B
W
L
¬ Rd16 Rd16  
NOT.L ERd  
¬ Rd32 Rd32  
Rev. 4.0, 03/02, page 328 of 400  
4. Shift instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
SHAL.B Rd  
B
W
L
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
SHAL  
SHAR  
SHLL  
C
0
SHAL.W Rd  
SHAL.L ERd  
SHAR.B Rd  
SHAR.W Rd  
SHAR.L ERd  
SHLL.B Rd  
MSB  
LSB  
B
W
L
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C
MSB  
LSB  
B
W
L
C
0
SHLL.W Rd  
SHLL.L ERd  
SHLR.B Rd  
SHLR.W Rd  
SHLR.L ERd  
ROTXL.B Rd  
ROTXL.W Rd  
ROTXL.L ERd  
ROTXR.B Rd  
ROTXR.W Rd  
ROTXR.L ERd  
MSB  
MSB  
LSB  
LSB  
B
W
L
SHLR  
ROTXL  
0
C
B
W
L
C
MSB  
LSB  
B
W
L
ROTXR  
C
MSB  
LSB  
ROTL ROTL.B Rd  
ROTL.W Rd  
B
W
L
C
MSB  
LSB  
ROTL.L ERd  
ROTR.B Rd  
ROTR.W Rd  
ROTR.L ERd  
B
W
L
ROTR  
C
MSB  
LSB  
Rev. 4.0, 03/02, page 329 of 400  
5. Bit manipulation instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
BSET #xx:3, Rd  
BSET #xx:3, @ERd  
BSET #xx:3, @aa:8  
BSET Rn, Rd  
B
B
B
B
B
B
B
B
B
B
B
B
B
2
4
4
2
4
4
2
4
4
2
4
4
2
(#xx:3 of Rd8) 1  
(#xx:3 of @ERd) 1  
(#xx:3 of @aa:8) 1  
(Rn8 of Rd8) 1  
2
8
8
2
8
8
2
8
8
2
8
8
2
BSET  
BCLR  
BNOT  
BSET Rn, @ERd  
BSET Rn, @aa:8  
BCLR #xx:3, Rd  
BCLR #xx:3, @ERd  
BCLR #xx:3, @aa:8  
BCLR Rn, Rd  
(Rn8 of @ERd) 1  
(Rn8 of @aa:8) 1  
(#xx:3 of Rd8) 0  
(#xx:3 of @ERd) 0  
(#xx:3 of @aa:8) 0  
(Rn8 of Rd8) 0  
BCLR Rn, @ERd  
BCLR Rn, @aa:8  
BNOT #xx:3, Rd  
(Rn8 of @ERd) 0  
(Rn8 of @aa:8) 0  
(#xx:3 of Rd8) ←  
¬ (#xx:3 of Rd8)  
BNOT #xx:3, @ERd  
BNOT #xx:3, @aa:8  
BNOT Rn, Rd  
B
B
B
B
B
4
(#xx:3 of @ERd) ←  
¬ (#xx:3 of @ERd)  
8
8
2
8
8
4
(#xx:3 of @aa:8) ←  
¬ (#xx:3 of @aa:8)  
2
4
4
(Rn8 of Rd8) ←  
¬ (Rn8 of Rd8)  
BNOT Rn, @ERd  
BNOT Rn, @aa:8  
(Rn8 of @ERd) ←  
¬ (Rn8 of @ERd)  
(Rn8 of @aa:8) ←  
¬ (Rn8 of @aa:8)  
BTST #xx:3, Rd  
BTST #xx:3, @ERd  
BTST #xx:3, @aa:8  
BTST Rn, Rd  
B
B
B
B
B
B
B
2
4
4
2
4
4
2
¬ (#xx:3 of Rd8) Z  
¬ (#xx:3 of @ERd) Z  
¬ (#xx:3 of @aa:8) Z  
¬ (Rn8 of @Rd8) Z  
¬ (Rn8 of @ERd) Z  
¬ (Rn8 of @aa:8) Z  
(#xx:3 of Rd8) C  
2
6
6
2
6
6
2
BTST  
BTST Rn, @ERd  
BTST Rn, @aa:8  
BLD #xx:3, Rd  
BLD  
Rev. 4.0, 03/02, page 330 of 400  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
BLD #xx:3, @ERd  
BLD #xx:3, @aa:8  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
4
(#xx:3 of @ERd) C  
(#xx:3 of @aa:8) C  
¬ (#xx:3 of Rd8) C  
6
6
2
6
6
2
8
8
2
8
8
2
6
6
2
6
6
2
6
6
2
6
6
2
6
6
2
6
6
BLD  
4
BILD BILD #xx:3, Rd  
BILD #xx:3, @ERd  
BILD #xx:3, @aa:8  
2
4
¬ (#xx:3 of @ERd) C  
¬ (#xx:3 of @aa:8) C  
C (#xx:3 of Rd8)  
4
BST #xx:3, Rd  
2
BST  
BST #xx:3, @ERd  
BST #xx:3, @aa:8  
BIST #xx:3, Rd  
4
C (#xx:3 of @ERd24)  
C (#xx:3 of @aa:8)  
¬ C (#xx:3 of Rd8)  
4
2
BIST  
BIST #xx:3, @ERd  
BIST #xx:3, @aa:8  
BAND #xx:3, Rd  
4
¬ C (#xx:3 of @ERd24)  
¬ C (#xx:3 of @aa:8)  
C(#xx:3 of Rd8) C  
C(#xx:3 of @ERd24) C  
C(#xx:3 of @aa:8) C  
C¬ (#xx:3 of Rd8) C  
C¬ (#xx:3 of @ERd24) C  
C¬ (#xx:3 of @aa:8) C  
C (#xx:3 of Rd8) C  
C (#xx:3 of @ERd24) C  
C (#xx:3 of @aa:8) C  
4
2
BAND  
BIAND  
BOR  
BAND #xx:3, @ERd  
BAND #xx:3, @aa:8  
BIAND #xx:3, Rd  
BIAND #xx:3, @ERd  
BIAND #xx:3, @aa:8  
BOR #xx:3, Rd  
4
4
2
4
4
2
BOR #xx:3, @ERd  
BOR #xx:3, @aa:8  
BIOR #xx:3, Rd  
4
4
2
C
C
C
¬ (#xx:3 of Rd8) C  
BIOR  
BXOR  
BIXOR  
BIOR #xx:3, @ERd  
BIOR #xx:3, @aa:8  
BXOR #xx:3, Rd  
4
¬ (#xx:3 of @ERd24) C  
¬ (#xx:3 of @aa:8) C  
4
2
C(#xx:3 of Rd8) C  
BXOR #xx:3, @ERd  
BXOR #xx:3, @aa:8  
BIXOR #xx:3, Rd  
BIXOR #xx:3, @ERd  
BIXOR #xx:3, @aa:8  
4
C(#xx:3 of @ERd24) C  
C(#xx:3 of @aa:8) C  
C¬ (#xx:3 of Rd8) C  
C¬ (#xx:3 of @ERd24) C  
C¬ (#xx:3 of @aa:8) C  
4
2
4
4
Rev. 4.0, 03/02, page 331 of 400  
6. Branching instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
Branch  
I
H
N
Z
V
C
Condition  
BRA d:8 (BT d:8)  
BRA d:16 (BT d:16)  
BRN d:8 (BF d:8)  
BRN d:16 (BF d:16)  
BHI d:8  
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
Always  
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
If condition  
is true then  
PC PC+d  
else next;  
Bcc  
Never  
C
C
Z = 0  
Z = 1  
BHI d:16  
BLS d:8  
BLS d:16  
BCC d:8 (BHS d:8)  
BCC d:16 (BHS d:16)  
BCS d:8 (BLO d:8)  
BCS d:16 (BLO d:16)  
BNE d:8  
C = 0  
C = 1  
Z = 0  
BNE d:16  
BEQ d:8  
Z = 1  
BEQ d:16  
BVC d:8  
V = 0  
BVC d:16  
BVS d:8  
V = 1  
BVS d:16  
BPL d:8  
N = 0  
BPL d:16  
BMI d:8  
N = 1  
BMI d:16  
BGE d:8  
NV = 0  
NV = 1  
BGE d:16  
BLT d:8  
BLT d:16  
BGT d:8  
Z
Z
(NV) = 0  
BGT d:16  
BLE d:8  
(NV) = 1  
BLE d:16  
Rev. 4.0, 03/02, page 332 of 400  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
JMP @ERn  
JMP @aa:24  
JMP @@aa:8  
BSR d:8  
2
4
2
2
PC ERn  
4
6
JMP  
BSR  
PC aa:24  
PC @aa:8  
8
6
10  
8
PC @SP  
PC PC+d:8  
BSR d:16  
4
PC @SP  
PC PC+d:16  
8
6
8
8
8
10  
8
JSR  
JSR @ERn  
JSR @aa:24  
JSR @@aa:8  
2
4
2
PC @SP  
PC ERn  
PC @SP  
PC aa:24  
10  
12  
10  
PC @SP  
PC @aa:8  
RTS RTS  
2
PC @SP+  
Rev. 4.0, 03/02, page 333 of 400  
7. System control instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
1
TRAPA #x:2  
2
PC @SP  
CCR @SP  
<vector> PC  
14 16  
TRAPA  
RTE  
RTE  
CCR @SP+  
PC @SP+  
10  
2
SLEEP SLEEP  
Transition to power-  
down state  
LDC #xx:8, CCR  
B
B
2
#xx:8 CCR  
2
2
LDC  
LDC Rs, CCR  
2
Rs8 CCR  
LDC @ERs, CCR  
W
W
W
W
4
@ERs CCR  
6
LDC @(d:16, ERs), CCR  
LDC @(d:24, ERs), CCR  
LDC @ERs+, CCR  
6
@(d:16, ERs) CCR  
@(d:24, ERs) CCR  
8
10  
4
12  
8
@ERs CCR  
ERs32+2 ERs32  
LDC @aa:16, CCR  
LDC @aa:24, CCR  
STC CCR, Rd  
W
W
B
6
@aa:16 CCR  
@aa:24 CCR  
CCR Rd8  
8
10  
2
8
2
STC  
STC CCR, @ERd  
W
W
W
W
4
CCR @ERd  
6
STC CCR, @(d:16, ERd)  
STC CCR, @(d:24, ERd)  
STC CCR, @ERd  
6
CCR @(d:16, ERd)  
CCR @(d:24, ERd)  
8
10  
4
12  
8
ERd322 ERd32  
CCR @ERd  
STC CCR, @aa:16  
STC CCR, @aa:24  
ANDC #xx:8, CCR  
ORC #xx:8, CCR  
XORC #xx:8, CCR  
W
W
B
6
8
CCR @aa:16  
CCR @aa:24  
CCR#xx:8 CCR  
CCR #xx:8 CCR  
CCR#xx:8 CCR  
PC PC+2  
8
10  
2
2
2
2
ANDC  
ORC  
B
2
XORC  
B
2
NOP NOP  
2
2
Rev. 4.0, 03/02, page 334 of 400  
8. Block transfer instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
EEPMOV  
EEPMOV. B  
4
4
if R4L 0 then  
repeat @R5 @R6  
R5+1 R5  
8+  
4n*2  
R6+1 R6  
R4L1 R4L  
until  
else next  
R4L=0  
EEPMOV. W  
if R4 0 then  
repeat @R5 @R6  
R5+1 R5  
8+  
4n*2  
R6+1 R6  
R41 R4  
until  
R4=0  
else next  
Notes: 1. The number of states in cases where the instruction code and its operands are located  
in on-chip memory is shown here. For other cases see section A.3, Number of  
Execution States.  
2. n is the value set in register R4L or R4.  
(1) Set to 1 when a carry or borrow occurs at bit 11; otherwise cleared to 0.  
(2) Set to 1 when a carry or borrow occurs at bit 27; otherwise cleared to 0.  
(3) Retains its previous value when the result is zero; otherwise cleared to 0.  
(4) Set to 1 when the adjustment produces a carry; otherwise retains its previous value.  
(5) The number of states required for execution of an instruction that transfers data in  
synchronization with the E clock is variable.  
(6) Set to 1 when the divisor is negative; otherwise cleared to 0.  
(7) Set to 1 when the divisor is zero; otherwise cleared to 0.  
(8) Set to 1 when the quotient is negative; otherwise cleared to 0.  
Rev. 4.0, 03/02, page 335 of 400  
A.2  
Operation Code Map  
Table A.2 Operation Code Map (1)  
Rev. 4.0, 03/02, page 336 of 400  
Table A.2 Operation Code Map (2)  
Rev. 4.0, 03/02, page 337 of 400  
Table A.2 Operation Code Map (3)  
Rev. 4.0, 03/02, page 338 of 400  
A.3  
Number of Execution States  
The status of execution for each instruction of the H8/300H CPU and the method of calculating  
the number of states required for instruction execution are shown below. Table A.4 shows the  
number of cycles of each type occurring in each instruction, such as instruction fetch and data  
read/write. Table A.3 shows the number of states required for each cycle. The total number of  
states required for execution of an instruction can be calculated by the following expression:  
Execution states = I × SI + J × SJ + K × SK + L × SL + M × SM + N × SN  
Examples: When instruction is fetched from on-chip ROM, and an on-chip RAM is accessed.  
BSET #0, @FF00  
From table A.4:  
I = L = 2, J = K = M = N= 0  
From table A.3:  
SI = 2, SL = 2  
Number of states required for execution = 2 × 2 + 2 × 2 = 8  
When instruction is fetched from on-chip ROM, branch address is read from on-chip ROM, and  
on-chip RAM is used for stack area.  
JSR @@ 30  
From table A.4:  
I = 2, J = K = 1, L = M = N = 0  
From table A.3:  
SI = SJ = SK = 2  
Number of states required for execution = 2 × 2 + 1 × 2+ 1 × 2 = 8  
Rev. 4.0, 03/02, page 339 of 400  
Table A.3 Number of Cycles in Each Instruction  
Access Location  
On-Chip Peripheral Module  
Execution Status  
(Instruction Cycle)  
On-Chip Memory  
Instruction fetch  
SI  
2
Branch address read  
Stack operation  
SJ  
SK  
SL  
SM  
SN  
Byte data access  
Word data access  
Internal operation  
2 or 3*  
1
Note: * Depends on which on-chip peripheral module is accessed. See section 19.1, Register  
Addresses.  
Rev. 4.0, 03/02, page 340 of 400  
Table A.4 Number of Cycles in Each Instruction  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
ADD  
ADD.B #xx:8, Rd  
1
1
2
1
3
1
1
1
1
1
1
2
1
3
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
ADD.B Rs, Rd  
ADD.W #xx:16, Rd  
ADD.W Rs, Rd  
ADD.L #xx:32, ERd  
ADD.L ERs, ERd  
ADDS #1/2/4, ERd  
ADDX #xx:8, Rd  
ADDX Rs, Rd  
AND.B #xx:8, Rd  
AND.B Rs, Rd  
AND.W #xx:16, Rd  
AND.W Rs, Rd  
AND.L #xx:32, ERd  
AND.L ERs, ERd  
ANDC #xx:8, CCR  
BAND #xx:3, Rd  
BAND #xx:3, @ERd  
BAND #xx:3, @aa:8  
BRA d:8 (BT d:8)  
BRN d:8 (BF d:8)  
BHI d:8  
ADDS  
ADDX  
AND  
ANDC  
BAND  
1
1
Bcc  
BLS d:8  
BCC d:8 (BHS d:8)  
BCS d:8 (BLO d:8)  
BNE d:8  
BEQ d:8  
BVC d:8  
BVS d:8  
BPL d:8  
BMI d:8  
BGE d:8  
Rev. 4.0, 03/02, page 341 of 400  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
Bcc  
BLT d:8  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
1
2
2
1
2
2
1
2
2
BGT d:8  
BLE d:8  
BRA d:16(BT d:16)  
BRN d:16(BF d:16)  
BHI d:16  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
BLS d:16  
BCC d:16(BHS d:16)  
BCS d:16(BLO d:16)  
BNE d:16  
BEQ d:16  
BVC d:16  
BVS d:16  
BPL d:16  
BMI d:16  
BGE d:16  
BLT d:16  
BGT d:16  
BLE d:16  
BCLR  
BCLR #xx:3, Rd  
BCLR #xx:3, @ERd  
BCLR #xx:3, @aa:8  
BCLR Rn, Rd  
BCLR Rn, @ERd  
BCLR Rn, @aa:8  
BIAND #xx:3, Rd  
BIAND #xx:3, @ERd  
BIAND #xx:3, @aa:8  
BILD #xx:3, Rd  
BILD #xx:3, @ERd  
BILD #xx:3, @aa:8  
2
2
2
2
BIAND  
BILD  
1
1
1
1
Rev. 4.0, 03/02, page 342 of 400  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
BIOR  
BIOR #xx:8, Rd  
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
2
2
1
2
2
BIOR #xx:8, @ERd  
BIOR #xx:8, @aa:8  
BIST #xx:3, Rd  
1
1
BIST  
BIST #xx:3, @ERd  
BIST #xx:3, @aa:8  
BIXOR #xx:3, Rd  
BIXOR #xx:3, @ERd  
BIXOR #xx:3, @aa:8  
BLD #xx:3, Rd  
2
2
BIXOR  
BLD  
1
1
BLD #xx:3, @ERd  
BLD #xx:3, @aa:8  
BNOT #xx:3, Rd  
BNOT #xx:3, @ERd  
BNOT #xx:3, @aa:8  
BNOT Rn, Rd  
1
1
BNOT  
2
2
BNOT Rn, @ERd  
BNOT Rn, @aa:8  
BOR #xx:3, Rd  
2
2
BOR  
BOR #xx:3, @ERd  
BOR #xx:3, @aa:8  
BSET #xx:3, Rd  
BSET #xx:3, @ERd  
BSET #xx:3, @aa:8  
BSET Rn, Rd  
1
1
BSET  
2
2
BSET Rn, @ERd  
BSET Rn, @aa:8  
BSR d:8  
2
2
BSR  
BST  
1
1
BSR d:16  
2
BST #xx:3, Rd  
BST #xx:3, @ERd  
BST #xx:3, @aa:8  
2
2
Rev. 4.0, 03/02, page 343 of 400  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
BTST  
BTST #xx:3, Rd  
1
2
2
1
2
2
1
2
2
1
1
2
1
3
1
1
1
1
1
1
2
2
1
1
2
2
1
1
1
1
BTST #xx:3, @ERd  
BTST #xx:3, @aa:8  
BTST Rn, Rd  
1
1
BTST Rn, @ERd  
BTST Rn, @aa:8  
BXOR #xx:3, Rd  
BXOR #xx:3, @ERd  
BXOR #xx:3, @aa:8  
CMP.B #xx:8, Rd  
CMP.B Rs, Rd  
CMP.W #xx:16, Rd  
CMP.W Rs, Rd  
CMP.L #xx:32, ERd  
CMP.L ERs, ERd  
DAA Rd  
1
1
BXOR  
CMP  
1
1
DAA  
DAS  
DEC  
DAS Rd  
DEC.B Rd  
DEC.W #1/2, Rd  
DEC.L #1/2, ERd  
DIVXS.B Rs, Rd  
DIVXS.W Rs, ERd  
DIVXU.B Rs, Rd  
DIVXU.W Rs, ERd  
EEPMOV.B  
DUVXS  
DIVXU  
EEPMOV  
EXTS  
12  
20  
12  
20  
2n+2*1  
2n+2*1  
EEPMOV.W  
EXTS.W Rd  
EXTS.L ERd  
EXTU  
EXTU.W Rd  
EXTU.L ERd  
Rev. 4.0, 03/02, page 344 of 400  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
INC  
INC.B Rd  
1
1
1
2
2
2
2
2
2
1
1
2
3
5
2
3
4
1
1
1
2
4
1
1
2
3
1
2
4
1
1
INC.W #1/2, Rd  
INC.L #1/2, ERd  
JMP @ERn  
JMP  
JSR  
LDC  
JMP @aa:24  
2
2
JMP @@aa:8  
1
1
JSR @ERn  
1
1
1
JSR @aa:24  
2
JSR @@aa:8  
LDC #xx:8, CCR  
LDC Rs, CCR  
LDC@ERs, CCR  
LDC@(d:16, ERs), CCR  
LDC@(d:24,ERs), CCR  
LDC@ERs+, CCR  
LDC@aa:16, CCR  
LDC@aa:24, CCR  
MOV.B #xx:8, Rd  
MOV.B Rs, Rd  
1
1
1
1
1
1
2
MOV  
MOV.B @ERs, Rd  
MOV.B @(d:16, ERs), Rd  
MOV.B @(d:24, ERs), Rd  
MOV.B @ERs+, Rd  
MOV.B @aa:8, Rd  
MOV.B @aa:16, Rd  
MOV.B @aa:24, Rd  
MOV.B Rs, @Erd  
MOV.B Rs, @(d:16, ERd)  
MOV.B Rs, @(d:24, ERd)  
MOV.B Rs, @-ERd  
MOV.B Rs, @aa:8  
1
1
1
1
1
1
1
1
1
1
1
1
2
2
Rev. 4.0, 03/02, page 345 of 400  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
MOV MOV.B Rs, @aa:16  
J
K
L
1
1
2
3
2
1
1
2
4
1
2
3
1
2
4
1
2
3
3
1
2
3
5
2
3
4
2
3
5
2
3
4
2
2
MOV.B Rs, @aa:24  
MOV.W #xx:16, Rd  
MOV.W Rs, Rd  
MOV.W @ERs, Rd  
1
1
1
1
1
1
1
1
1
1
1
1
MOV.W @(d:16,ERs), Rd  
MOV.W @(d:24,ERs), Rd  
MOV.W @ERs+, Rd  
MOV.W @aa:16, Rd  
MOV.W @aa:24, Rd  
MOV.W Rs, @ERd  
2
MOV.W Rs, @(d:16,ERd)  
MOV.W Rs, @(d:24,ERd)  
MOV.W Rs, @-ERd  
MOV.W Rs, @aa:16  
MOV.W Rs, @aa:24  
MOV.L #xx:32, ERd  
MOV.L ERs, ERd  
MOV  
2
MOV.L @ERs, ERd  
MOV.L @(d:16,ERs), ERd  
MOV.L @(d:24,ERs), ERd  
MOV.L @ERs+, ERd  
MOV.L @aa:16, ERd  
MOV.L @aa:24, ERd  
MOV.L ERs,@ERd  
2
2
2
2
2
2
2
2
2
2
2
2
2
MOV.L ERs, @(d:16,ERd)  
MOV.L ERs, @(d:24,ERd)  
MOV.L ERs, @-ERd  
MOV.L ERs, @aa:16  
MOV.L ERs, @aa:24  
MOVFPE @aa:16, Rd*2  
MOVTPE Rs,@aa:16*2  
2
MOVFPE  
MOVTPE  
1
1
Rev. 4.0, 03/02, page 346 of 400  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
MULXS  
MULXU  
NEG  
MULXS.B Rs, Rd  
2
2
1
1
1
1
1
1
1
1
1
1
1
2
1
3
2
1
1
2
1
2
1
1
1
1
1
1
1
1
1
12  
20  
12  
20  
MULXS.W Rs, ERd  
MULXU.B Rs, Rd  
MULXU.W Rs, ERd  
NEG.B Rd  
NEG.W Rd  
NEG.L ERd  
NOP  
NOT  
NOP  
NOT.B Rd  
NOT.W Rd  
NOT.L ERd  
OR  
OR.B #xx:8, Rd  
OR.B Rs, Rd  
OR.W #xx:16, Rd  
OR.W Rs, Rd  
OR.L #xx:32, ERd  
OR.L ERs, ERd  
ORC #xx:8, CCR  
POP.W Rn  
ORC  
POP  
1
2
1
2
2
2
2
2
POP.L ERn  
PUSH  
ROTL  
PUSH.W Rn  
PUSH.L ERn  
ROTL.B Rd  
ROTL.W Rd  
ROTL.L ERd  
ROTR.B Rd  
ROTR  
ROTR.W Rd  
ROTR.L ERd  
ROTXL.B Rd  
ROTXL.W Rd  
ROTXL.L ERd  
ROTXL  
Rev. 4.0, 03/02, page 347 of 400  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
ROTXR  
ROTXR.B Rd  
ROTXR.W Rd  
ROTXR.L ERd  
RTE  
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
3
5
2
3
4
1
2
1
3
1
1
RTE  
2
1
2
2
RTS  
RTS  
SHAL  
SHAL.B Rd  
SHAL.W Rd  
SHAL.L ERd  
SHAR  
SHLL  
SHLR  
SHAR.B Rd  
SHAR.W Rd  
SHAR.L ERd  
SHLL.B Rd  
SHLL.W Rd  
SHLL.L ERd  
SHLR.B Rd  
SHLR.W Rd  
SHLR.L ERd  
SLEEP  
STC  
SLEEP  
STC CCR, Rd  
STC CCR, @ERd  
STC CCR, @(d:16,ERd)  
STC CCR, @(d:24,ERd)  
STC CCR,@-ERd  
STC CCR, @aa:16  
STC CCR, @aa:24  
SUB.B Rs, Rd  
SUB.W #xx:16, Rd  
SUB.W Rs, Rd  
SUB.L #xx:32, ERd  
SUB.L ERs, ERd  
SUBS #1/2/4, ERd  
1
1
1
1
1
1
2
SUB  
SUBS  
Rev. 4.0, 03/02, page 348 of 400  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
SUBX  
SUBX #xx:8, Rd  
1
1
2
1
1
2
1
3
2
1
SUBX. Rs, Rd  
TRAPA  
XOR  
TRAPA #xx:2  
1
2
4
XOR.B #xx:8, Rd  
XOR.B Rs, Rd  
XOR.W #xx:16, Rd  
XOR.W Rs, Rd  
XOR.L #xx:32, ERd  
XOR.L ERs, ERd  
XORC #xx:8, CCR  
XORC  
Note: 1. n:specified value in R4L and R4. The source and destination operands are accessed  
n+1 times respectively.  
2. Cannot be used in this LSI.  
Rev. 4.0, 03/02, page 349 of 400  
A.4  
Combinations of Instructions and Addressing Modes  
Table A.5 Combinations of Instructions and Addressing Modes  
Addressing Mode  
Functions  
Instructions  
Data  
transfer  
instructions  
MOV  
BWL BWL BWL BWL BWL BWL  
B
BWL BWL  
WL  
POP, PUSH  
MOVFPE,  
MOVTPE  
ADD, CMP  
SUB  
Arithmetic  
operations  
BWL BWL  
WL BWL  
ADDX, SUBX  
ADDS, SUBS  
INC, DEC  
DAA, DAS  
MULXU,  
B
B
L
BWL  
B
BW  
MULXS,  
DIVXU,  
DIVXS  
NEG  
B
BWL  
WL  
BWL  
BWL  
BWL  
B
B
W
W
W
W
W
W
B
W
W
EXTU, EXTS  
AND, OR, XOR  
NOT  
Logical  
operations  
Shift operations  
Bit manipulations  
Branching  
instructions  
BCC, BSR  
JMP, JSR  
RTS  
W
W
System  
control  
instructions  
TRAPA  
RTE  
W
W
SLEEP  
LDC  
B
STC  
B
B
ANDC, ORC,  
XORC  
NOP  
Block data transfer instructions  
BW  
Rev. 4.0, 03/02, page 350 of 400  
Appendix B I/O Port Block Diagrams  
B.1  
I/O Port Block  
RES goes low in a reset, and SBY goes low in a reset and in standby mode.  
Internal data bus  
PUCR  
PMR  
Pull-up MOS  
PDR  
PCR  
TRGV  
Legend  
PUCR: Port pull-up control register  
PMR: Port mode register  
PDR: Port data register  
PCR: Port control register  
Figure B.1 Port 1 Block Diagram (P17)  
Rev. 4.0, 03/02, page 351 of 400  
Internal data bus  
PUCR  
PMR  
Pull-up MOS  
PDR  
PCR  
Legend  
PUCR: Port pull-up control register  
PMR: Port mode register  
PDR: Port data register  
PCR: Port control register  
Figure B.2 Port 1 Block Diagram (P16 to P14)  
Rev. 4.0, 03/02, page 352 of 400  
Internal data bus  
PUCR  
Pull-up MOS  
PDR  
PCR  
Legend  
PUCR: Port pull-up control register  
PDR: Port data register  
PCR: Port control register  
Figure B.3 Port 1 Block Diagram (P12, P11)  
Rev. 4.0, 03/02, page 353 of 400  
Internal data bus  
PUCR  
PMR  
Pull-up MOS  
PDR  
PCR  
Timer A  
TMOW  
Legend  
PUCR: Port pull-up control register  
PMR: Port mode register  
PDR: Port data register  
PCR: Port control register  
Figure B.4 Port 1 Block Diagram (P10)  
Rev. 4.0, 03/02, page 354 of 400  
Internal data bus  
PMR  
PDR  
PCR  
SCI3  
TxD  
Legend  
PMR: Port mode register  
PDR: Port data register  
PCR: Port control register  
Figure B.5 Port 2 Block Diagram (P22)  
Rev. 4.0, 03/02, page 355 of 400  
Internal data bus  
PDR  
PCR  
SCI3  
RE  
RxD  
Legend  
PDR: Port data register  
PCR: Port control register  
Figure B.6 Port 2 Block Diagram (P21)  
Rev. 4.0, 03/02, page 356 of 400  
SCI3  
SCKIE  
SCKOE  
Internal data bus  
PDR  
PCR  
SCKO  
SCKI  
Legend  
PDR: Port data register  
PCR: Port control register  
Figure B.7 Port 2 Block Diagram (P20)  
Rev. 4.0, 03/02, page 357 of 400  
Internal data bus  
PDR  
PCR  
IIC  
ICE  
SDAO/SCLO  
SDAI/SCLI  
Legend  
PDR: Port data register  
PCR: Port control register  
Figure B.8 Port 5 Block Diagram (P57, P56)*  
Note: * Not included in H8/3664N.  
Rev. 4.0, 03/02, page 358 of 400  
Internal data bus  
PUCR  
PMR  
Pull-up MOS  
PDR  
PCR  
Legend  
PUCR: Port pull-up control register  
PMR: Port mode register  
PDR: Port data register  
PCR: Port control register  
Figure B.9 Port 5 Block Diagram (P55)  
Rev. 4.0, 03/02, page 359 of 400  
Internal data bus  
PUCR  
PMR  
Pull-up MOS  
PDR  
PCR  
Legend  
PUCR: Port pull-up control register  
PMR: Port mode register  
PDR: Port data register  
PCR: Port control register  
Figure B.10 Port 5 Block Diagram (P54 to P50)  
Rev. 4.0, 03/02, page 360 of 400  
Internal data bus  
Timer V  
OS3  
OS2  
OS1  
OS0  
PDR  
PCR  
TMOV  
Legend  
PDR: Port data register  
PCR: Port control register  
Figure B.11 Port 7 Block Diagram (P76)  
Rev. 4.0, 03/02, page 361 of 400  
Internal data bus  
PDR  
PCR  
Timer V  
TMCIV  
Legend  
PDR: Port data register  
PCR: Port control register  
Figure B.12 Port 7 Block Diagram (P75)  
Rev. 4.0, 03/02, page 362 of 400  
Internal data bus  
PDR  
PCR  
Timer V  
TMRIV  
Legend  
PDR: Port data register  
PCR: Port control register  
Figure B.13 Port 7 Block Diagram (P74)  
Rev. 4.0, 03/02, page 363 of 400  
Internal data bus  
PDR  
PCR  
Legend  
PDR: Port data register  
PCR: Port control register  
Figure B.14 Port 8 Block Diagram (P87 to P85)  
Rev. 4.0, 03/02, page 364 of 400  
Internal data bus  
Timer W  
Output  
control  
signals  
A to D  
PDR  
PCR  
FTIOA  
FTIOB  
FTIOC  
FTIOD  
Legend  
PDR: Port data register  
PCR: Port control register  
Figure B.15 Port 8 Block Diagram (P84 to P81)  
Rev. 4.0, 03/02, page 365 of 400  
Internal data bus  
PDR  
PCR  
Timer W  
FTCI  
Legend  
PDR: Port data register  
PCR: Port control register  
Figure B.16 Port 8 Block Diagram (P80)  
Rev. 4.0, 03/02, page 366 of 400  
Internal data bus  
A/D converter  
DEC  
CH3 to CH0  
VIN  
Figure B.17 Port B Block Diagram (PB7 to PB0)  
B.2  
Port States in Each Operating State  
Port  
Reset  
Sleep  
Subsleep  
Standby  
Subactive Active  
P17 to P14, High  
Retained  
Retained  
High  
Functioning Functioning  
P12 to P10  
impedance  
impedance*  
P22 to P20  
High  
impedance  
Retained  
Retained  
Retained  
Retained  
High  
impedance*  
Functioning Functioning  
Functioning Functioning  
P57 to P50  
High  
High  
(P55 to P50 impedance  
for H8/3664N)  
impedance  
P76 to P74  
High  
impedance  
Retained  
Retained  
High  
Retained  
Retained  
High  
High  
impedance  
Functioning Functioning  
Functioning Functioning  
P87 to P80  
High  
impedance  
High  
impedance  
PB7 to PB0 High  
High  
High  
High  
impedance impedance impedance impedance impedance impedance  
Note: * High level output when the pull-up MOS is in on state.  
Rev. 4.0, 03/02, page 367 of 400  
Appendix C Product Code Lineup  
Package  
(Hitachi Package  
Code)  
Product Type  
Product Code Model Marking  
H8/3664  
Flash memory Standard HD64N3664FP  
HD64N3664FP  
LQFP-64 (FP-64E)  
version with  
EEPROM  
product  
Flash memory Standard HD64F3664FP  
HD64F3664FP  
HD64F3664H  
HD64F3664FX  
HD64F3664FY  
HD64F3664BP  
LQFP-64 (FP-64E)  
QFP-64 (FP-64A)  
LQFP-48 (FP-48F)  
LQFP-48 (FP-48B)  
SDIP-42 (DP-42S)  
version  
product  
HD64F3664H  
HD64F3664FX  
HD64F3664FY  
HD64F3664BP  
Mask ROM  
version  
Standard HD6433664FP  
HD6433664 (***) FP LQFP-64 (FP-64E)  
HD6433664 (***) H QFP-64 (FP-64A)  
product  
HD6433664H  
HD6433664FX  
HD6433664FY  
HD6433664 (***) FX LQFP-48 (FP-48F)  
HD6433664 (***) FY LQFP-48 (FP-48B)  
HD6433664 (***) BP SDIP-42 (DP-42S)  
HD6433663 (***) FP LQFP-64 (FP-64E)  
HD6433664BP  
H8/3663  
H8/3662  
H8/3661  
Mask ROM  
version  
Standard HD6433663FP  
product  
HD6433663H  
HD6433663 (***) H  
QFP-64 (FP-64A)  
HD6433663FX  
HD6433663FY  
HD6433663 (***) FX LQFP-48 (FP-48F)  
HD6433663 (***) FY LQFP-48 (FP-48B)  
HD6433663 (***) BP SDIP-42 (DP-42S)  
HD6433662 (***) FP LQFP-64 (FP-64E)  
HD6433663BP  
Mask ROM  
version  
Standard HD6433662FP  
product  
HD6433662H  
HD6433662 (***) H  
QFP-64 (FP-64A)  
HD6433662FX  
HD6433662FY  
HD6433662 (***) FX LQFP-48 (FP-48F)  
HD6433662 (***) FY LQFP-48 (FP-48B)  
HD6433662 (***) BP SDIP-42 (DP-42S)  
HD6433661 (***) FP LQFP-64 (FP-64E)  
HD6433662BP  
Mask ROM  
version  
Standard HD6433661FP  
product  
HD6433661H  
HD6433661 (***) H  
QFP-64 (FP-64A)  
HD6433661FX  
HD6433661FY  
HD6433661BP  
HD6433661 (***) FX LQFP-48 (FP-48F)  
HD6433661 (***) FY LQFP-48 (FP-48B)  
HD6433661 (***) BP SDIP-42 (DP-42S)  
Rev. 4.0, 03/02, page 368 of 400  
Package  
(Hitachi Package  
Code)  
Product Type  
Product Code Model Marking  
H8/3660  
Mask ROM  
version  
Standard HD6433660FP  
HD6433660 (***) FP LQFP-64 (FP-64E)  
HD6433660 (***) H QFP-64 (FP-64A)  
product  
HD6433660H  
HD6433660FX  
HD6433660FY  
HD6433660BP  
HD6433660 (***) FX LQFP-48 (FP-48F)  
HD6433660 (***) FY LQFP-48 (FP-48B)  
HD6433660 (***) BP SDIP-42 (DP-42S)  
Legend  
(***): ROM code  
Rev. 4.0, 03/02, page 369 of 400  
Appendix D Package Dimensions  
The package dimensions that are shows in the Hitachi Semiconductor Packages Data Book have  
priority.  
Unit: mm  
12.0 0.2  
10  
48  
33  
49  
64  
32  
17  
1
16  
0.08 M  
*0.22 0.0ꢀ  
0.20 0.04  
1.2ꢀ  
1.0  
0
8
0.ꢀ 0.2  
0.10  
Hitachi Code  
FP-64E  
JEDEC  
EIAJ  
Conforms  
0.4 g  
*Dimension including the plating thickness  
Base material dimension  
Mass (reference value)  
Figure D.1 FP-64E Package Dimensions  
Rev. 4.0, 03/02, page 370 of 400  
Unit: mm  
17.2 0.3  
14  
33  
48  
32  
17  
49  
64  
1
16  
M
*0.37 0.08  
0.3ꢀ 0.06  
0.1ꢀ  
1.6  
1.0  
0
8
0.8 0.3  
0.10  
Hitachi Code  
JEDEC  
EIAJ  
FP-64A  
Conforms  
1.2 g  
*Dimension including the plating thickness  
Base material dimension  
Mass (reference value)  
Figure D.2 FP-64A Package Dimensions  
Rev. 4.0, 03/02, page 371 of 400  
Unit: mm  
12.0 0.2  
10  
36  
2ꢀ  
37  
48  
24  
13  
12  
1
1.42ꢀ  
*0.32 0.0ꢀ  
0.30 0.04  
M
0.13  
1.0  
0 – 8  
0.ꢀ0 0.1  
0.10  
Hitachi Code  
JEDEC  
FP-48F  
EIAJ  
*Dimension including the plating thickness  
Base material dimension  
Mass (reference value)  
0.4 g  
Figure D.3 FP-48F Package Dimensions  
Rev. 4.0, 03/02, page 372 of 400  
As of January, 2002  
Unit: mm  
9.0 0.2  
7
36  
2ꢀ  
37  
48  
24  
13  
1
12  
*0.22 0.0ꢀ  
0.20 0.04  
M
0.08  
0.7ꢀ  
1.0  
0˚ – 8˚  
0.ꢀ 0.1  
0.08  
Hitachi Code  
JEDEC  
FP-48B  
JEITA  
Mass (reference value)  
0.2 g  
*
Dimension including the plating thickness  
Base material dimension  
Figure D.4 FP-48B Package Dimensions  
Rev. 4.0, 03/02, page 373 of 400  
Unit: mm  
37.3  
38.6 Max  
42  
1
22  
21  
1.0  
1.38 Max  
15.24  
0.25-+ 0.10  
0.05  
1.78 0.25  
0.48 0.10  
0
15  
Hitachi Code  
JEDEC  
EIAJ  
DP-42S  
Conforms  
4.8 g  
Mass (reference value)  
Figure D.5 DP-42S Package Dimensions  
Rev. 4.0, 03/02, page 374 of 400  
Appendix E Laminated-Structure Cross Section  
Figure E.1 Laminated-Structure Cross Section of H8/3664N  
Rev. 4.0, 03/02, page 375 of 400  
Rev. 4.0, 03/02, page 376 of 400  
Main Revisions and Additions in this Edition  
Item  
Page Revisions (See Manual for Details)  
Rev.  
Added.  
General Precautions on  
Handling of Product  
iii  
iv  
v
4.0  
Configuration of This  
Manual  
Added.  
4.0  
4.0  
Preface  
Notes added.  
Restrictions 1 to 6 when using an on-chip emulator  
(E10T) for H8/3664 program development and  
debugging  
1.1 Features  
1
3.0  
Product  
Model EEPROM ROM RAM  
On-chip memory  
Classification  
Flash memory H8/3664N HD64N 512  
32  
2,048  
version  
(F-ZTATTM  
3664  
bytes  
kbytes bytes  
H8/3664F HD64F  
32 2,048  
kbytes bytes  
version)  
3664  
1.1 Features  
1
1
2
Description of general I/O ports added.  
3.0  
3.0  
4.0  
General I/O ports  
1.1 Features  
I/O pins: 29 I/O pins (H8/3664N has 27 I/O pins)  
Description of EEPROM interface added.  
EEPROM interface  
1.1 Features  
Package added.  
Compact package  
LQFP-48 (FP-48F) and LQFP-48 (FP-48B)  
TEST TEST  
1.2 Internal Block Diagram 2  
2.0  
2.0  
Figure 1.1 Internal Block  
Diagram of H8/3664 of F-  
ZTATTM and Mask-ROM  
Versions  
RAM  
2
I
C bus  
interface  
Rev. 4.0, 03/02, page 377 of 400  
Item  
Page Revisions (See Manual for Details)  
Rev.  
1.2 Internal Block Diagram 3  
Added.  
3.0  
Figure 1.2 Internal Block  
Diagram of H8/3664N of F-  
ZTATTM Version with  
EEPROM  
1.3 Pin Arrangement  
4
4.0  
4.0  
3.0  
4.0  
Figure 1.3 Pin  
Note: Do not connect NC pins (these pins are not connected to the internal circuitry).  
Arrangement of H8/3664  
of F-ZTATTM and Mask-  
ROM Versions  
(FP-64E, FP-64A)  
1.3 Pin Arrangement  
5
7
Added.  
Figure 1.4 Pin  
Arrangement of H8/3664  
of F-ZTATTM and Mask-  
ROM Versions  
(FP-48F, FP-48B)  
1.3 Pin Arrangement  
Added.  
Figure 1.6 Pin  
Arrangement of H8/3664N  
of F-ZTATTM Version with  
EEPROM  
(FP-64E)  
51  
52  
53  
54  
55  
P14/  
P15/  
P16/  
P75/TMCIV  
P74/TMRIV  
SCL*  
29  
28  
27  
26  
25  
P17/  
/TRGV  
SDA*  
PB4/AN4  
PB5/AN5  
P12  
* These pins are only available for the I2C bus interface in the F-ZATTM version with EEPROM.  
1.4 Pin Functions  
8
9
FP-48F and FP-48B added.  
4.0  
3.0  
3.0  
Table 1.1 Pin Functions  
Description of I2C bus interface added.  
SCL: I/O (EEPROM: input)  
Description of I/O ports added.  
P57 to P50 (P55 to P50 for H8/3664N)  
8-bit I/O port. (6-bit I/O port for H8/3664N)  
Rev. 4.0, 03/02, page 378 of 400  
Item  
Page Revisions (See Manual for Details)  
Rev.  
1.4 Pin Functions  
Table 1.1 Pin Functions  
10  
1.5 Comparison between H8/3664N and H8/3664  
(deleted)  
4.0  
The description is moved to note in table 1.1.  
1. These pins are only available for the I2C bus  
interface in the F-ZTATTM version with EEPROM.  
Since the I2C bus is disabled after canceling a  
reset, the ICE bit in ICCR must be set to 1 by using  
the program.  
2.1 Address Space and  
Memory Map  
14  
Memory map for on-chip EEPROM module added.  
3.0  
Figure 2.1 Memory Map  
(3)  
2.5.1 Addressing Modes  
34  
41  
Absolute address: 16 bits  
2.0  
2.0  
Table 2.11 Absolute  
Address Access Ranges  
H'FF00 to H'FFFF H'0000 to H'FFFF  
2.8 Usage Notes  
Description added.  
2.8.3 Bit Manipulation  
Instruction  
Bit manipulation for two registers assigned to the  
same address  
Bit Manipulation in a Register Containing a Write-Only  
Bit  
3.2.2 Interrupt Edge Select 50  
Register 2 (IEGR2)  
Description of bit 5 amended.  
2.0  
4.0  
0: Falling edge of WKP5 (ADTRG) pin input is  
detected  
1: Rising edge of WKP5 (ADTRG) pin input is  
detected  
4.1.1 Address Break  
Control Register  
(ABRKCR)  
62  
Bit Bit Name Description  
4
3
2
ACMP2  
ACMP1  
ACMP0  
Address Compare Condition Select 2 to 0  
These bits comparison condition between the  
address set in BAR and the internal address  
bus.  
000: Compares 16-bit addresses  
001: Compares upper 12-bit addresses  
010: Compares upper 8-bit addresses  
011: Compares upper 4-bit addresses  
1XX: Reserved (setting prohibited)  
Rev. 4.0, 03/02, page 379 of 400  
Item  
Page Revisions (See Manual for Details)  
Rev.  
4.2 Operation  
64  
Description amended.  
4.0  
When the ABIF and ABIE bits in ABRKSR are set to  
1, the address break function generates an interrupt  
request to the CPU. The ABIF bit in ABRKSR is set to  
1 by the combination of the address set in BAR, the  
data set in BDR, and the conditions set in ABRKCR.  
4.2 Operation  
65  
Deleted.  
4.0  
Figure 4.2 Address Break  
Interrupt Operation  
Example (3)  
4.3 Usage Notes  
65  
67  
Added.  
4.0  
3.0  
Section 5 Clock Pulse  
Generators  
Description of subclock pulse generator amended.  
System clock divider Subclock divider  
Figure 5.1 Block Diagram  
of Clock Pulse Generators  
5.1 System Clock  
Generator  
68  
4.0  
OSC  
OSC  
2
1
Figure 5.2 Block Diagram  
of System Clock Generator  
LPM  
(standby mode, subactive mode, subsleep mode)  
5.2 Subclock Generator  
70  
Added.  
3.0  
2.0  
Figure 5.7 Block Diagram  
of Subclock Generator  
5.2.2 Pin Connection when 71  
Not Using Subclock  
VCL or VSS  
X1  
Figure 5.10 Pin  
Connection when not  
Using Subclock  
X2  
Open  
Rev. 4.0, 03/02, page 380 of 400  
Item  
Page Revisions (See Manual for Details)  
Rev.  
5.3.1 Prescaler S  
71  
Description amended: watch mode deleted.  
4.0  
In standby mode, subactive mode, and subsleep  
mode, the system clock pulse generator stops.  
Prescaler S also stops and is initialized to H'0000.  
Description amended: active (medium-speed) mode  
active mode  
In active mode and sleep mode, the clock input to  
prescaler S is determined by the division factor  
designated by MA2 to MA0 in SYSCR2.  
5.3.2 Prescaler W  
71  
77  
Description amended: watch mode deleted.  
4.0  
4.0  
Prescaler W is initialized to H'00 by a reset, and starts  
counting on exit from the reset state. Even in standby  
mode, subactive mode, or subsleep mode, prescaler  
W continues functioning so long as clock signals are  
supplied to pins X1 and X2.  
6.1.1 System control  
register 1 (SYSCR1)  
Bit Bit Name Description  
6
5
4
0
0
0
Standby Timer Select 2 to 0  
These bits designate the time the CPU  
and peripheral modules wait for stable  
clock operation after exiting from standby  
mode, subactive mode, or subsleep  
mode to active mode or sleep mode due  
to an interrupt. The designation should  
be made according to the clock  
frequency so that the waiting time is at  
least 6.5 ms. The relationship between  
the specified value and the number of  
wait states is shown in table 6.1. When  
an external clock is to be used, the  
minimum value (STS2 = STS1 = STS0 =  
1) is recommended.  
3
0
Noise Elimination Sampling Frequency  
Select  
The subclock pulse generator generates  
the watch clock signal (φW) and the  
system clock pulse generator generates  
the oscillator clock (φOSC). This bit selects  
the sampling frequency of the oscillator  
clock when the watch clock signal (φW) is  
sampled. When φOSC = 2 to 10 MHz, clear  
NESEL to 0.  
Rev. 4.0, 03/02, page 381 of 400  
Item  
Page Revisions (See Manual for Details)  
Rev.  
6.1.1 System control  
register 1 (SYSCR1)  
78  
Operating frequency of 16 MHz added.  
2.0  
Table 6.1 Operating  
Frequency and Waiting  
Time  
6.2 Mode Transitions and 82  
States of LSI  
In active mode after sleep instruction execution:  
SMSEL = X 0*  
2.0  
4.0  
Table 6.2 Transition Mode  
after SLEEP Instruction  
Execution and Interrupt  
Handling  
*When a state transition is performed while SMSEL is  
1, timer V, SCI3, and the A/D converter are reset, and  
all registers are set to their initial values. To use these  
functions after entering active mode, reset the  
registers.  
6.2.4 Subactive Mode  
85  
Description amended.  
The operating frequency of subactive mode is  
selected from øW/2, øW/4, and øW/8 by the SA1 and  
SA0 bits in SYSCR2. After the SLEEP instruction is  
executed, the operating frequency changes to the  
frequency which is set before the execution.  
6.6 Usage Note  
Section 7 ROM  
86  
87  
Added.  
4.0  
4.0  
Description amended.  
Reprogramming capability  
The flash memory can be reprogrammed up to 1,000  
times.  
Power-down mode  
Operation of the power supply circuit can be partly  
halted in subactive mode. As a result, flash memory  
can be read with low power consumption.  
7.2.1 Flash Memory  
Control Register 1  
(FLMCR1)  
89  
Description of bit 5 added.  
2.0  
Set this bit to 1 before setting the E bit to 1 in  
FLMCR1.  
Rev. 4.0, 03/02, page 382 of 400  
Item  
Page Revisions (See Manual for Details)  
Rev.  
7.2.4 Flash Memory Power 91  
Control Register  
(FLPWCR)  
Description of bit 7 amended.  
2.0  
R R/W  
Description amended.  
4.0  
FLPWCR enables or disables a transition to the flash  
memory power-down mode when the LSI switches to  
subactive mode. There are two modes: mode in which  
operation of the power supply circuit of flash memory  
is partly halted in power-down mode and flash  
memory can be read, and mode in which even if a  
transition is made to subactive mode, operation of the  
power supply circuit of flash memory is retained and  
flash memory can be read.  
7.2.5 Flash Memory  
Enable Register (FENR)  
91  
94  
Description of bit 7 amended.  
R R/W  
2.0  
4.0  
Description amended.  
Bit 7 (FLSHE) in FENR enables or disables the CPU  
access to the flash memory control registers,  
FLMCR1, FLMCR2, EBR1, and FLPWCR.  
7.3.1 Boot Mode  
Changed.  
4.0  
Table 7.2 Boot Mode  
Operation  
Host Operation  
Communication Contents  
LSI Operation  
Processing Contents  
Processing Contents  
Branches to boot program at reset-start.  
Boot program initiation  
. . .  
H'00  
Continuously transmits data H'00  
at specified bit rate.  
H'00, H'00  
• Measures low-level period of receive data  
H'00.  
• Calculates bit rate and sets BRR in SCI3.  
• Transmits data H'00 to host as adjustment  
end indication.  
H'00  
Transmits data H'55 when data H'00  
is received error-free.  
H'55  
H'FF  
H'AA  
Boot program  
erase error  
Checks flash memory data, erases all flash  
memory blocks in case of written data  
existing, and transmits data H'AA to host.  
(If erase could not be done, transmits data  
H'FF to host and aborts operation.)  
H'AA reception  
Upper bytes, lower bytes  
Echoback  
Transmits number of bytes (N) of  
programming control program to be  
transferred as 2-byte data  
(low-order byte following high-order  
byte)  
Echobacks the 2-byte data  
received to host.  
Echobacks received data to host and also  
transfers it to RAM.  
(repeated for N times)  
H'XX  
Transmits 1-byte of programming  
control program (repeated for N times)  
Echoback  
H'AA  
Transmits data H'AA to host when data H'55  
is received.  
H'AA reception  
Branches to programming control program  
transferred to on-chip RAM and starts  
execution.  
Rev. 4.0, 03/02, page 383 of 400  
Item  
Page Revisions (See Manual for Details)  
Rev.  
7.4.1 Program/Program-  
Verify  
96  
Description amended.  
4.0  
7. For a dummy write to a verify address, write 1-  
byte data H'FF to an address whose lower 2 bits  
are B'00. Verify data can be read in words or in  
longwords from the address to which a dummy  
write was performed.  
Write pulse application subroutine  
7.4.1 Program/Program-  
Verify  
97  
4.0  
Apply Write Pulse  
WDT enable  
START  
Set SWE bit in FLMCR1  
Wait  
1 µs  
Set PSU bit in FLMCR1  
Wait 50 µs  
Store 128-byte program data in program  
data area and reprogram data area  
Figure 7.3  
Program/Program-Verify  
Flowchart  
*
n=  
1
0
Set  
Wait (Wait time=programming time)  
Clear bit in FLMCR1  
Wait µs  
Clear PSU bit in FLMCR1  
Wait µs  
P bit in FLMCR1  
m=  
Write 128-byte data in RAM reprogram  
data area consecutively to flash memory  
P
5
Apply Write pulse  
Set PV bit in FLMCR1  
Wait  
4 µs  
5
Set block start address as  
verify address  
Disable WDT  
End Sub  
n
n + 1  
H'FF dummy write to verify address  
Wait  
2 µs  
*
Read verify data  
Note: *The RTS instruction must not be used during the following 1. and 2. periods.  
1.  
2.  
A
A
period between 128-byte data programming to flash memory and the P bit clearing  
period between dummy writing of H'FF to  
a
verify address and verify data reading  
7.4.3  
100  
4.0  
Interrupt Handling when  
Programming/Erasing  
Flash Memory  
EV bit 1  
Wait 20 µs  
Set block start address as verify address  
H'FF dummy write to verify address  
Wait 2 µs  
Figure 7.4 Erase/Erase-  
Verify Flowchart  
*
n n + 1  
Read verify data  
Note: *The RTS instruction must not be used during a period between dummy writing of H'FF to a verify address and verify data reading.  
Following sections deleted. 4.0  
7.6 Programmer Mode  
102  
7.6.1 Socket Adapter  
7.6.2 Programmer Mode Commands  
7.6.3 Memory Read Mode  
7.6.4 Auto-Program Mode  
7.6.5 Auto-Erase Mode  
7.6.6 Status Read Mode  
7.6.7 Status Polling  
7.6.8 Programmer Mode Transition Time  
7.6.9 Notes on Memory Programming  
Rev. 4.0, 03/02, page 384 of 400  
Item  
Page Revisions (See Manual for Details)  
Rev.  
7.7 Power-Down States for 102  
Flash Memory  
Bit name amended.  
4.0  
In subactive mode, the flash memory can be set to  
operate in power-down mode with the PDWND bit in  
FLPWCR.  
Bit name amended.  
SYSCR SYSCR1  
Description amended.  
3.0  
4.0  
Power-down operating mode  
The power supply circuit of flash memory can be  
partly halted. As a result, flash memory can be read  
with low power consumption.  
7.7 Power-Down States for 102  
Flash Memory  
Description amended.  
4.0  
When the flash memory returns to its normal  
operating state from power-down mode or standby  
mode, a period to stabilize operation of the power  
supply circuits that were stopped is needed.  
Section 8 RAM  
103  
105  
RAM list added.  
4.0  
3.0  
Section 9 I/O Ports  
Description changed.  
9.3 Port 5  
113  
Description amended.  
4.0  
Port 5 is a general I/O port also functioning as an I2C  
bus interface I/O pin, an A/D trigger input pin, wakeup  
interrupt input pin. Each pin of the port 5 is shown in  
figure 9.3. The register setting of the I2C bus interface  
register has priority for functions of the pins P57/SCL  
and P56/SDA. Since the output buffer for pins P56  
and P57 has the NMOS push-pull structure, it differs  
from an output buffer with the CMOS structure in the  
high-level output characteristics (see section 20,  
Electrical Characteristics). The H8/3664N does not  
have P57 and P56.  
Description added.  
3.0  
The H8/3664N does not have P57 and P56.  
Rev. 4.0, 03/02, page 385 of 400  
Item  
Page Revisions (See Manual for Details)  
Rev.  
9.3 Port 5  
113  
3.0  
H8/3664  
H8/3664N  
Figure 9.3 Port 5 Pin  
Configuration  
P57/SCL  
SCL  
SDA  
P55/  
P54/  
P53/  
P52/  
P51/  
P50/  
P56/SDA  
P55/  
/
/
P54/  
Port 5  
Port 5  
P53/  
P52/  
P51/  
P50/  
9.3.1 Port Mode Register 5 114  
(PMR5)  
Description of bit 5 amended.  
3.0  
2.0  
Selects whether pin P55/WKP5/ADTRG is used as  
P55 or as WKP5/ADTRG input.  
Bit names amended.  
Bit 7: PCR55 PCR57  
Bit 6: PCR55 PCR56  
Note added.  
9.3.2 Port Control Register 115  
5 (PCR5)  
3.0  
3.0  
9.3.3 Port Data Register 5 115  
(PDR5)  
Note added.  
11.3.2 Time Constant  
Registers A and B  
(TCORA, TCORB)  
135  
4.0  
3.0  
Initial value added.  
TCORA and TCORB are initialized to H'FF.  
11.3.5 Timer Control  
Register V1 (TCRV1)  
139  
Description of bit 2 added.  
TCNTV starts counting up by the input of the edge  
which is selected by TVEG1 and TVEG0.  
Rev. 4.0, 03/02, page 386 of 400  
Item  
Page Revisions (See Manual for Details)  
Rev.  
12.3.2 Timer Control  
Register W (TCRW)  
152  
Amended.  
4.0  
TCRW selects the timer counter clock source, selects  
a clearing condition, and specifies the timer output  
levels.  
Bit Bit Name Initial Value R/W Description  
3
2
1
0
TOD  
TOC  
TOB  
TOA  
0
0
0
0
R/W Timer Output Level Setting D  
0: Output value is 0*  
1: Output value is 1*  
R/W Timer Output Level Setting C  
0: Output value is 0*  
1: Output value is 1*  
R/W Timer Output Level Setting B  
0: Output value is 0*  
1: Output value is 1*  
R/W Timer Output Level Setting A  
0: Output value is 0*  
1: Output value is 1*  
Note: * The change of the setting is immediately reflected in the  
output value.  
12.3.5 Timer I/O Control  
Register 0 (TIOR0)  
155  
156  
Description of bits 5 and 4 amended.  
When IOB2 = 1,  
2.0  
2.0  
01: Input capture at falling edge at the FTIOB pin  
Description of bits 1 and 0 amended.  
When IOA2 = 1,  
01: Input capture at falling edge at the FTIOA pin  
12.3.6 Timer I/O Control  
Register 1 (TIOR1)  
Description of bits 5 and 4 amended.  
When IOD2 = 1,  
01: Input capture at falling edge at the FTIOD pin  
Description of bits 1 and 0 amended.  
When IOC2 = 1,  
01: Input capture to GRC at falling edge of the FTIOC  
pin  
Rev. 4.0, 03/02, page 387 of 400  
Item  
Page Revisions (See Manual for Details)  
Rev.  
12.4.1 Normal Operation 160  
4.0  
TCNT value  
Figure 12.6 Toggle Output  
Example (TOA = 0, TOB =  
1)  
H'FFFF  
GRA  
GRB  
H'0000  
13.2.1 Timer  
174  
Description amended.  
4.0  
Control/Status Register  
WD (TCSRWD)  
TCSRWD performs the TCSRWD and TCWD write  
control. TCSRWD also controls the watchdog timer  
operation and indicates the operating state. TCSRWD  
must be rewritten by using the MOV instruction. The  
bit manipulation instruction cannot be used to change  
the setting value.  
Bit  
7
R/W  
R/W  
R/W  
R/W  
R/W  
5
3
1
14.3.4 Transmit Data  
Register (TDR)  
180  
183  
4.0  
2.0  
Initial value added.  
TDR is initialized to H'FF.  
14.3.6 Serial Control  
Register 3 (SCR3)  
Description of bit 2 amended.  
When this bit is set to 1, the TEI interrupt request is  
enabled.  
Initial value of bit 2 amended.  
14.3.7 Serial Status  
Register (SSR)  
185  
186  
4.0  
2.0  
0 1  
14.3.8 Bit Rate Register  
(BRR)  
Note amended.  
n: CKS1 and CKS0 setting for SMR (0 N 3)  
Register name amended.  
PMR7 PMR1  
14.4.2 SCI3 Initialization  
192  
3.0  
3.0  
Figure 14.4 Sample SCI3  
Initialization Flowchart  
14.4.3 Data Transmission 194  
Register name amended.  
Figure 14.6 Sample Serial  
Transmission Flowchart  
(Asynchronous Mode)  
PMR7 PMR1  
Rev. 4.0, 03/02, page 388 of 400  
Item  
Page Revisions (See Manual for Details)  
Rev.  
14.4.4 Serial Data  
Reception  
197  
Description amended.  
3.0  
In the case of a framing error, a break can be  
detected by reading the value of the input port  
corresponding to the RxD pin.  
Figure 14.8 Sample Serial  
Data Reception Flowchart  
(Asynchronous mode)(1)  
14.7 Interrupts  
213  
2.0  
Interrutpt Requests Abbreviation  
Table 14.6 SCI3 Interrupt  
Requests  
Receive Data Full  
RXI  
Transmit Data Empty TXI  
Transmission End  
Receive Error  
TEI  
ERI  
15.3.4 I2C Bus Mode  
Register (ICMR)  
Table 15.3 I2C Transfer  
225  
225  
Transfer rate amended.  
3.0  
2.0  
517 kHz 571 kHz  
Rate  
15.3.5 I2C Bus Control  
Register (ICCR)  
Description of bit 7 amended.  
When this bit is set to 1, the I2C bus interface module  
is enabled to send/receive data and drive the bus  
since it is connected to the SCL and SDA pins. ICMR  
and ICDR can be accessed.  
When this bit is cleared, the module is halted and  
separated from the SCL and SDA pins. SAR and  
SARX can be accessed.  
15.3.5 I2C Bus Control  
Register (ICCR)  
226  
Description of bit 6 amended.  
IRRC IRIC  
3.0  
3.0  
Description of bit 1 added.  
At the rising edge of the ninth transfer/receive  
clock, and at the falling edge of the eighth  
transfer/receive clock when a wait is inserted  
15.4.2 Master Transmit  
Operation  
233  
234  
237  
Description changed.  
2.0  
2.0  
3.0  
15.4.3 Master Receive  
Operation  
Description changed.  
15.4.4 Slave Receive  
Operation  
Description amended.  
R/W R/W  
15.4.5 Slave Transmit  
Operation  
239  
Description amended.  
3.0  
R/W R/W  
Rev. 4.0, 03/02, page 389 of 400  
Item  
Page Revisions (See Manual for Details)  
Rev.  
15.4.9 Sample Flowcharts 244,  
Changed.  
2.0  
245  
Figure 15.13 Sample  
Flowchart for Master  
Transmit Mode  
Figure 15.14 Sample  
Flowchart for Master  
Receive Mode  
15.5 Usage Notes  
251  
258  
2.0  
2.0  
Note added.  
8. Notes on Start Condition Issuance for  
Retransmission  
16.3.3 A/D Control  
Register (ADCR)  
Description of bit 7 added.  
The selection between the falling edge and rising  
edge of the external trigger pin (ADTRG) conforms to  
the WPEG5 bit in the interrupt edge select register 2  
(IEGR2).  
Section 17 EEPROM  
265  
Added.  
3.0  
4.0  
18.1 When Using Internal 275  
Power Supply Step-Down  
Circuit  
Description amended.  
Connect the external power supply to the VCC pin, and  
connect a capacitance of approximately 0.1 µF  
between VCL and VSS, as shown in figure 18.1.  
18.2 When Not Using  
Internal Power Supply  
Step-Down Circuit  
276  
Description amended.  
4.0  
When the internal power supply step-down circuit is  
not used, connect the external power supply to the VCL  
pin and VCC pin, as shown in figure 18.2.  
19.1 Register Addresses 280  
19.2 Register Bits 282  
EEPROM key register (EKR) added.  
3.0  
3.0  
Register  
Name  
Module  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Name  
SARX  
SVAX SVAX SVAX SVAX SVAX SVAX SVAX FSX  
IIC  
6
5
4
3
2
1
0
ICMR  
SAR  
MLS WAIT CKS2 CKS1 CKS0 BC2  
BC1  
BC0  
SVA6 SVA5 SVA4 SVA3 SVA2 SVA1 SVA0 FS  
2.0  
Register  
Name  
Module  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Name  
ABRKSR ABIF ABIE  
Address  
break  
Rev. 4.0, 03/02, page 390 of 400  
Item  
Page Revisions (See Manual for Details)  
Rev.  
20.2.1 Power Supply  
Voltage and Operating  
Ranges  
287  
288  
288  
Description in figure added.  
AVcc = 3.3 V to 5.5 V  
2.0  
Power Supply Voltage and  
Oscillation Frequency  
Range  
20.2.1 Power Supply  
Voltage and Operating  
Ranges  
Description in figure added.  
AVcc = 3.3 V to 5.5 V  
2.0  
Power Supply Voltage and  
Operating Frequency  
Range  
20.2.1 Power Supply  
Voltage and Operating  
Ranges  
Description in figure added.  
Vcc = 3.0 V to 5.5 V  
2.0  
3.0  
Analog Power Supply  
Voltage and A/D Converter  
Accuracy Guarantee  
Range  
20.2.2 DC Characteristics 291  
Value  
Table 20.2 DC  
Characteristics (1)  
Item  
Symbol Applicable  
Pins  
Test  
Min Typ Max Unit Notes  
Condition  
Input  
Cin  
All input pins  
except power  
supply pins  
f = 1 MHz,  
VIN = 0.0 V,  
Ta = 25°C  
15.0 pF  
25.0  
H8/  
capaci-  
tance  
3664N  
SCL, SDA  
20.2.2 DC Characteristics 293  
Added.  
3.0  
Table 20.2 DC  
Characteristics (2)  
Rev. 4.0, 03/02, page 391 of 400  
Item  
Page Revisions (See Manual for Details)  
Rev.  
20.2.2 DC Characteristics 294  
2.0  
Value  
Table 20.2 DC  
Characteristics (3)  
Item  
Symbol Applicable  
Pins  
Test Condition Min Typ Max Unit  
Allowable  
output low  
current (per  
pin)  
IOL  
Output pins  
VCC = 4.0 V to  
2.0 mA  
except port 8, 5.5 V  
SCL, and SDA  
Port 8  
20.0 mA  
10.0 mA  
6.0 mA  
0.5 mA  
Port 8  
SCL and SDA  
Output pins  
except port 8,  
SCL, and SDA  
Allowable  
output low  
current  
IOL  
Output pins  
V
CC = 4.0 V to  
40.0 mA  
except port 8, 5.5 V  
SCL, and SDA  
(total)  
Port 8,  
80.0 mA  
20.0 mA  
SCL, and SDA  
Output pins  
except port 8,  
SCL, and SDA  
Port 8,  
40.0 mA  
SCL, and SDA  
20.2.3 AC Characteristics 295  
2.0  
Value  
Table 20.3 AC  
Characteristics  
Item  
Symbol Applicable  
Pins  
Test Condition Min Typ Max Unit  
Oscillation  
stabilization  
time  
trc  
OSC1,  
OSC2  
5.0 ms  
(ceramic  
resonator)  
Rev. 4.0, 03/02, page 392 of 400  
Item  
Page Revisions (See Manual for Details)  
Rev.  
20.2.3 AC Characteristics 296  
4.0  
Item  
Symbol Applicable Pins  
Table 20.3 AC  
Characteristics  
Input pin high tIH  
width  
NMI,  
IRQ0 to IRQ3,  
WKP0 to WKP5,  
TMCIV, TMRIV,  
TRGV, ADTRG,  
FTCI,  
FTIOA to  
FTIOD  
Input pin low tIL  
width  
NMI,  
IRQ0 to IRQ3,  
WKP0 to WKP5,  
TMCIV, TMRIV,  
TRGV, ADTRG,  
FTCI,  
FTIOA to FTIOD  
20.2.3 AC Characteristics 297  
Table 20.4 I2C Bus  
Interface Timing  
3.0  
Values  
Item  
Symbol Test  
Condition  
Min  
Typ Max Unit  
Data-input  
setup time  
tSDAS  
1tcyc+20  
0
ns  
ns  
Data-input  
hold time  
tSDAH  
20.2.4 A/D Converter  
Characteristics  
299  
2.0  
Value  
Item  
Symbol Applicable Test  
Min Typ Max Unit Reference  
Table 20.6 A/D Converter  
Characteristics  
Pins  
Concition Figure  
1
Analog  
power  
supply  
voltage  
AVCC  
AVCC  
3.3 VCC 5.5  
V
*
20.2.5 Watchdog Timer  
Characteristics  
300  
Unit of on-chip oscillator overflow time amended.  
2.0  
ms s  
Table 20.7 Watchdog  
Timer Characteristics  
Rev. 4.0, 03/02, page 393 of 400  
Item  
Page Revisions (See Manual for Details)  
Rev.  
20.2.6 Flash Memory  
Characteristics  
301  
4.0  
Values  
Min Typ Max Unit  
Item  
Symbol Test  
Condition  
Table 20.8 Flash Memory  
Characteristics  
Reprogramming NWEC  
count  
1000 Times  
20.2.7 EEPROM  
Characteristics  
(Preliminary)  
303  
Added.  
3.0  
Table 20.9 EEPROM  
Characteristics  
20.3 Electrical  
Characteristics (Mask  
ROM Version)  
304  
304  
Added.  
2.0  
2.0  
20.3.1 Power Supply  
Voltage and Operating  
Ranges  
Description in figure added.  
AVcc = 3.0 V to 5.5 V  
Power Supply Voltage and  
Oscillation Frequency  
Range  
20.3.1 Power Supply  
Voltage and Operating  
Ranges  
304  
305  
Description in figure added.  
AVcc = 3.0 V to 5.5 V  
2.0  
2.0  
Power Supply Voltage and  
Operating Frequency  
Range  
20.3.1 Power Supply  
Voltage and Operating  
Ranges  
Description in figure added.  
Vcc = 2.7 V to 5.5 V  
Analog Power Supply  
Voltage and A/D Converter  
Accuracy Guarantee  
Range  
Rev. 4.0, 03/02, page 394 of 400  
Item  
Page Revisions (See Manual for Details)  
Rev.  
20.3.3 AC Characteristics 311  
4.0  
Item  
Symbol Applicable Pins  
Table 20.11 AC  
Characteristics  
Input pin high tIH  
width  
NMI,  
IRQ0 to IRQ3,  
WKP0 to WKP5,  
TMCIV, TMRIV,  
TRGV, ADTRG,  
FTCI,  
FTIOA to  
FTIOD  
Input pin low tIL  
width  
NMI,  
IRQ0 to IRQ3,  
WKP0 to WKP5,  
TMCIV, TMRIV,  
TRGV, ADTRG,  
FTCI,  
FTIOA to FTIOD  
20.3.3 AC Characteristics 313  
Table 20.12 I2C Bus  
Interface Timing  
3.0  
Values  
Item  
Symbol Test  
Condition  
Min  
Typ Max Unit  
Data-input  
setup time  
tSDAS  
1tcyc+20  
0
ns  
ns  
Data-input  
hold time  
tSDAH  
20.3.4 A/D Converter  
Characteristics  
315  
2.0  
Value  
Item  
Symbol Applicable Test  
Min Typ Max Unit Reference  
Table 20.14 A/D Converter  
Characteristics  
Pins  
Concition Figure  
1
Analog  
power  
supply  
voltage  
AVCC  
AVCC  
3.3 VCC 5.5  
V
*
20.4 Operation Timing  
317  
319  
Description of tof deleted.  
2.0  
3.0  
Figure 20.4 I2C Bus  
Interface Input/Output  
Timing  
20.4 Operation Timing  
Added.  
Figure 20.7 EEPROM Bus  
Timing  
Rev. 4.0, 03/02, page 395 of 400  
Item  
Page Revisions (See Manual for Details)  
Rev.  
A.1 Instruction List  
333  
2.0  
Table A.1 Instruction Set  
6. Branching instructions  
Mnemonic  
Operation  
JSR  
JSR @ERn  
PC @SP  
PC ERn  
JSR @aa:24  
JSR @@aa:8  
PC @SP  
PC aa:24  
PC @SP  
PC @aa:8  
RTS RTS  
PC @SP+  
A.3 Number of Execution 339  
States  
Added.  
2.0  
3.0  
B.1 I/O Port Block  
351  
Internal data bus  
Figure B.10 Port 5 Block  
Diagram (P54 to P50)  
PUCR  
PMR  
PDR  
PCR  
Appendix E Laminated-  
Structure Cross Section  
375  
Added.  
3.0  
Rev. 4.0, 03/02, page 396 of 400  
Index  
A/D Converter ........................................ 253  
sample-and-hold circuit ...................... 260  
Scan Mode .......................................... 259  
Single Mode........................................ 259  
Absolute Maximum Ratings ................... 287  
Address Break........................................... 61  
Addressing Modes .................................... 33  
Absolute Address.................................. 34  
Immediate ............................................. 35  
Memory Indirect ................................... 35  
Program-Counter Relative .................... 35  
Register Direct...................................... 33  
Register Indirect.................................... 33  
Register Indirect with Displacement..... 34  
Register Indirect with Post-Increment .. 34  
Register Indirect with Pre-Decrement... 34  
Electrical Characteristics (F-ZTAT™  
Version, F-ZTAT™ Version with  
EEPROM)...........................................287  
AC Characteristics ..............................295  
DC Characteristics ..............................289  
Electrical Characteristics (Mask ROM  
Version)...............................................304  
AC Characteristics ..............................311  
DC Characteristics ..............................305  
Exception Handling...................................47  
Reset Exception Handling.....................54  
Trap Instruction.....................................47  
flash memory.............................................87  
Boot Mode ............................................92  
boot program.........................................92  
Erase/Erase-Verify................................98  
Error Protection...................................101  
Hardware Protection............................101  
Power-Down State ..............................102  
Program/Program-Verify ......................96  
Programmer Mode ..............................102  
Software Protection.............................101  
Clock  
Clock Pulse Generators......................... 67  
Subclock Generator............................... 70  
System Clock Generator ....................... 68  
Condition-Code Register (CCR)............... 17  
CPU .......................................................... 11  
EEPROM................................................ 265  
Acknowledge ...................................... 269  
Acknowledge Polling.......................... 271  
Byte Write........................................... 270  
Current Address Read......................... 272  
EEPROM Interface............................. 268  
EEPROM Key Register (EKR)........... 267  
Page Write .......................................... 271  
Random Address Read........................ 273  
Sequential Read .................................. 273  
Slave Addressing ................................ 269  
Start Condition.................................... 268  
Stop Condition.................................... 268  
the corresponding slave address reference  
address (ESAR)............................... 269  
Effective Address...................................... 36  
General Registers ......................................16  
I/O Ports..................................................105  
I/O Port Block Diagrams.....................351  
I2C Bus Data Formats..............................232  
I2C Bus Interface (IIC)............................217  
acknowledge........................................232  
Clock Synchronous Serial Format.......241  
general call address .............................229  
I2C Transfer Rate.................................225  
Slave address.......................................232  
Start condition.....................................232  
Stop condition .....................................232  
Instruction Set ...........................................22  
Internal Power Supply Step-Down Circuit  
............................................................275  
Rev. 4.0, 03/02, page 397 of 400  
Interrupt  
Internal Interrupts ................................. 55  
BDRL............................ 63, 279, 282, 285  
BRR ............................ 186, 278, 282, 284  
EBR1............................. 90, 278, 281, 284  
EKR ............................ 267, 280, 283, 286  
FENR ............................ 91, 278, 281, 284  
FLMCR1....................... 89, 278, 281, 284  
FLMCR2....................... 90, 278, 281, 284  
FLPWCR....................... 91, 278, 281, 284  
GRA............................ 157, 278, 281, 284  
GRB ............................ 157, 278, 281, 284  
GRC ............................ 157, 278, 281, 284  
GRD............................ 157, 278, 281, 284  
ICCR ........................... 225, 279, 282, 285  
ICDR........................... 220, 279, 282, 285  
ICMR .......................... 223, 279, 282, 285  
ICSR............................ 228, 279, 282, 285  
IEGR1 ........................... 49, 280, 283, 286  
IEGR2 ........................... 50, 280, 283, 286  
IENR1 ........................... 51, 280, 283, 286  
IRR1.............................. 52, 280, 283, 286  
IWPR ............................ 53, 280, 283, 286  
MSTCR1....................... 80, 280, 283, 286  
PCR1........................... 107, 280, 283, 285  
PCR2........................... 111, 280, 283, 285  
PCR5........................... 115, 280, 283, 285  
PCR7........................... 119, 280, 283, 285  
PCR8........................... 121, 280, 283, 285  
PDR1........................... 107, 279, 282, 285  
PDR2........................... 111, 279, 282, 285  
PDR5........................... 115, 279, 282, 285  
PDR7........................... 119, 279, 283, 285  
PDR8........................... 122, 279, 283, 285  
PDRB.......................... 125, 280, 283, 285  
PMR1.......................... 106, 280, 283, 285  
PMR5.......................... 114, 280, 283, 285  
PUCR1........................ 108, 279, 282, 285  
PUCR5........................ 116, 279, 282, 285  
RDR ............................ 180, 279, 282, 284  
RSR.....................................................180  
SAR............................. 222, 279, 282, 285  
SARX.......................... 222, 279, 282, 285  
SCR3........................... 182, 278, 282, 284  
SMR............................ 181, 278, 282, 284  
Interrupt Response Time....................... 57  
IRQ3 to IRQ0 Interrupts....................... 54  
NMI Interrupt........................................ 54  
WKP5 to WKP0 Interrupts................... 55  
interrupt mask bit (I)................................. 17  
Laminated-Structure Cross Section of  
H8/3664N ........................................... 375  
large current ports....................................... 1  
Memory Map ............................................ 12  
Module Standby Function......................... 86  
On-Board Programming Modes................ 91  
Package....................................................... 2  
Package Dimensions............................... 370  
Pin Arrangement......................................... 4  
Power-down Modes.................................. 75  
Sleep Mode........................................... 83  
Standby Mode....................................... 84  
Subactive Mode .................................... 85  
Subsleep Mode...................................... 84  
Prescaler S ................................................ 71  
Prescaler W............................................... 71  
Product Code Lineup .............................. 368  
Program Counter (PC).............................. 17  
PWM Operation...................................... 162  
Register  
ABRKCR...................... 62, 279, 282, 285  
ABRKSR ...................... 63, 279, 282, 285  
ADCR......................... 258, 279, 282, 285  
ADCSR....................... 257, 279, 282, 285  
ADDRA...................... 256, 279, 282, 285  
ADDRB ...................... 256, 279, 282, 285  
ADDRC ...................... 256, 279, 282, 285  
ADDRD...................... 256, 279, 282, 285  
BARH........................... 63, 279, 282, 285  
BARL............................ 63, 279, 282, 285  
BDRH........................... 63, 279, 282, 285  
Rev. 4.0, 03/02, page 398 of 400  
SSR ............................. 184, 279, 282, 284  
SYSCR1........................ 76, 280, 283, 286  
SYSCR2........................ 79, 280, 283, 286  
TCA ............................ 130, 278, 281, 284  
TCNT.......................... 157, 278, 281, 284  
TCNTV....................... 135, 278, 281, 284  
TCORA....................... 135, 278, 281, 284  
TCORB....................... 135, 278, 281, 284  
TCRV0........................ 136, 278, 281, 284  
TCRV1........................ 139, 278, 281, 284  
TCRW......................... 151, 278, 281, 284  
TCSRV ....................... 138, 278, 281, 284  
TCSRWD.................... 174, 279, 282, 285  
TCWD ........................ 175, 279, 282, 285  
TDR ............................ 180, 279, 282, 284  
TIERW........................ 153, 278, 281, 284  
TIOR0......................... 155, 278, 281, 284  
TIOR1......................... 156, 278, 281, 284  
TMA ........................... 129, 278, 281, 284  
TMRW........................ 151, 278, 281, 284  
TMWD........................ 175, 279, 282, 285  
TSCR .......................... 230, 280, 283, 286  
TSR..................................................... 180  
TSRW .........................153, 278, 281, 284  
Serial Communication Interface 3(SCI3)177  
Asynchronous Mode ...........................191  
bit rate .................................................186  
Break Detection...................................214  
Clocked Synchronous Mode ...............199  
framing error .......................................195  
Mark State...........................................214  
Multiprocessor Communication Function  
........................................................206  
overrun error .......................................195  
parity error...........................................195  
Stack Pointer (SP).....................................17  
Timer A...................................................127  
Timer V...................................................133  
Timer W..................................................147  
Vector Address..........................................48  
Watchdog Timer .....................................173  
Rev. 4.0, 03/02, page 399 of 400  
Rev. 4.0, 03/02, page 400 of 400  
H8/3664 Series Hardware Manual  
Publication Date: 1st Edition, March 2000  
4th Edition, March 2002  
Published by:  
Business Planning Division  
Semiconductor & Integrated Circuits  
Hitachi, Ltd.  
Edited by:  
Technical Documentation Group  
Hitachi Kodaira Semiconductor Co., Ltd.  
Copyright © Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.  

相关型号:

HD6433662

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series
RENESAS

HD6433662BP

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series
RENESAS

HD6433662FP

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series
RENESAS

HD6433662FPV

暂无描述
RENESAS

HD6433662FX

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series
RENESAS

HD6433662FY

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series
RENESAS

HD6433662H

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series
RENESAS

HD6433662XXXBP

Microcontroller
ETC

HD6433662XXXFP

Microcontroller
ETC

HD6433662XXXFX

Microcontroller
ETC

HD6433662XXXFY

Microcontroller
ETC

HD6433662XXXH

Microcontroller
ETC