HFC-SMINI [ETC]

;
HFC-SMINI
型号: HFC-SMINI
厂家: ETC    ETC
描述:

文件: 总94页 (文件大小:712K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Cologne  
Chip  
HFC - S mini  
ISDN HDLC FIFO controller  
with  
S/T interface and integrated FIFOs  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
Revision History  
Date  
Remarks  
July 2003  
The data sheet has completely been revised. Section “Processor interface modes”  
moved into section “Microprocessor interface”, “List of registers” moved to the  
document preamble, information has been added to FIFO initialization, transformer  
list, processor interface timings, PCM data rate restrictions, electrical character-  
istics, clock synchronization, cascade-connected HFC-S mini with only one quartz  
circuitry and the following registers: INC_RES_F, RAM_DATA, FIFO, F_USAGE,  
F_FILL, FIF_DATA_NOINC, F_THRES, INT_S1, INT_M1, INT_M2, CON_HDLC, STATUS,  
MST_MODE0, MST_MODE1, MST_MODE2, ST_RD_STA, ST_WR_STA, CLKDEL.  
September 2001 Information added to: MST_MODE0 and CON_HDLC register description.  
August 2001  
July 2001  
Chapters added: Timing diagrams for Motorala mode (mode2), sample circuitries.  
Information added to: Register description.  
January 2001  
Information added to: Microprocessor access, PCM / GCI / IOM2 timing.  
Cologne Chip AG  
Eintrachtstrasse 113  
D - 50668 Köln  
Germany  
Tel.: +49 (0) 221 / 91 24-0  
Fax: +49 (0) 221 / 91 24-100  
http://www.CologneChip.com  
http://www.CologneChip.de  
support@CologneChip.com  
Copyright 1994 - 2003 Cologne Chip AG  
All Rights Reserved  
The information presented can not be considered as assured characteristics. Data can change without notice.  
Parts of the information presented may be protected by patent or other rights.  
Cologne Chip products are not designed, intended, or authorized for use in any application  
intended to support or sustain life, or for any other application in which the failure of the  
Cologne Chip product could create a situation where personal injury or death may occur.  
2 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
Contents  
1
General description  
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
9
9
1.2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2
3
Pin description  
11  
14  
Functional description  
3.1 Microprocessor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.1.1 Processor interface modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.1.2 Register access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.2 FIFOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.2.1 FIFO channel operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.2.1.1 Send channels (B1, B2, D and PCM transmit) . . . . . . . . . . . 17  
3.2.1.2 Automatically D-channel frame repetition . . . . . . . . . . . . . 18  
3.2.1.3 FIFO full condition in send channel . . . . . . . . . . . . . . . . . 18  
3.2.1.4 Receive Channels (B1, B2, D and PCM or E receive) . . . . . . . 18  
3.2.1.5 FIFO full condition in receive channels . . . . . . . . . . . . . . . 20  
3.2.2 FIFO initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.2.3 FIFO reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.3 Transparent mode of HFC-S mini . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.4 Correspondency between FIFOs, CHANNELs and SLOTs . . . . . . . . . . . . . . 21  
3.5 Subchannel Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.6 PCM Interface Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.7 Configuring test loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4
Register description  
29  
4.1 FIFO, interrupt, status and control registers . . . . . . . . . . . . . . . . . . . . . . 29  
4.2 PCM/GCI/IOM2 bus section registers . . . . . . . . . . . . . . . . . . . . . . . . . 44  
4.2.1 Time slots for transmit direction . . . . . . . . . . . . . . . . . . . . . . . . 44  
4.2.2 Time slots for receive direction . . . . . . . . . . . . . . . . . . . . . . . . . 46  
4.2.3 PCM data registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
4.2.4 Configuration and status registers . . . . . . . . . . . . . . . . . . . . . . . 50  
4.3 S/T section registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
4.3.1 S/T data registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
5
Electrical characteristics  
62  
July 2003  
Data Sheet  
3 of 94  
Cologne  
Chip  
HFC-S mini  
6
Timing Characteristics  
66  
6.1 Microprocessor access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
6.1.1 Register read access in mode 2 (Motorola) and mode 3 (Intel) . . . . . . . . 66  
6.1.2 Register write access in mode 2 (Motorola) and mode 3 (Intel) . . . . . . . . 68  
6.1.3 Register read access in mode 4 (Intel, multiplexed) . . . . . . . . . . . . . . 70  
6.1.4 Register write access in mode 4 (Intel, multiplexed) . . . . . . . . . . . . . . 71  
6.2 PCM/GCI/IOM2 timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
6.2.1 Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
6.2.2 Slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
7
External circuitries  
75  
7.1 S/T interface circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
7.1.1 External receiver circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
7.1.2 External wake-up circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
7.1.3 External transmitter circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
7.1.4 S/T modules and transformers . . . . . . . . . . . . . . . . . . . . . . . . . 78  
7.2 Oscillator circuitry for system clock . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
8
9
State matrices for NT and TE  
80  
8.1 S/T interface activation / deactivation layer 1 state matrix for NT . . . . . . . . . . . 80  
8.2 S/T interface activation / deactivation layer 1 state matrix for TE . . . . . . . . . . . 81  
Binary organization of the frames  
82  
9.1 S/T frame structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
9.2 GCI frame structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
10 Clock synchronization  
84  
10.1 Clock synchronization in NT-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
10.2 Clock synchronization in TE-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
10.3 Multiple HFC-S mini synchronization scheme . . . . . . . . . . . . . . . . . . . . . 86  
11 HFC-S mini package dimensions  
12 Sample circuitries  
87  
88  
12.1 S/T interface circuitry (valid in all modes) . . . . . . . . . . . . . . . . . . . . . . . 88  
12.2 HFC-S mini in mode 2 (Motorola bus) . . . . . . . . . . . . . . . . . . . . . . . . . 91  
12.3 HFC-S mini in mode 3 (Intel bus with separate address bus/data bus) . . . . . . . . . 92  
12.4 HFC-S mini in mode 4 (Intel bus with multiplexed address bus/data bus) . . . . . . . 93  
4 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
List of Figures  
1
2
3
4
5
6
7
8
9
HFC-S mini block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
FIFO Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
FIFO Data Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
FIFOs, CHANNELs and SLOTs in transmit Direction . . . . . . . . . . . . . . . . . 24  
FIFOs, CHANNELs and SLOTs in receive direction . . . . . . . . . . . . . . . . . . 25  
Example for Subchannel Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
PCM Interface Function Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . 27  
Function of CON_HDLC register bits 7 . . 5 . . . . . . . . . . . . . . . . . . . . . . . 41  
10 Read access in mode 2 (Motorola) and mode 3 (Intel) . . . . . . . . . . . . . . . . . 66  
11 Write access in mode 2 (Motorola) and mode 3 (Intel) . . . . . . . . . . . . . . . . . 68  
12 Read access in mode 4 (Intel, multiplexed) . . . . . . . . . . . . . . . . . . . . . . . 70  
13 Write access in mode 4 (Intel, multiplexed) . . . . . . . . . . . . . . . . . . . . . . 71  
14 PCM / GCI / IOM2 timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
15 External receiver circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
16 External wake-up circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
17 External transmitter circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
18 Oscillator circuitry for S/T clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
19 Cascade-connected HFC-S mini with only one quartz circuitry . . . . . . . . . . . . 79  
20 Frame structure at reference point S and T . . . . . . . . . . . . . . . . . . . . . . . 82  
21 Single channel GCI format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
22 Clock synchronization in NT-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
23 Clock synchronization in TE-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
24 Multiple HFC-S mini synchronization scheme . . . . . . . . . . . . . . . . . . . . . 86  
25 HFC-S mini package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
26 HFC-S mini sample circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
27 HFC-S mini sample circuitry in processor mode 2 (Motorola) . . . . . . . . . . . . . 91  
28 HFC-S mini sample circuitry in processor mode 3 (Intel), 1st part . . . . . . . . . . . 92  
29 HFC-S mini sample circuitry in processor mode 4 (Intel, multiplexed), 1st part . . . . 93  
July 2003  
Data Sheet  
5 of 94  
Cologne  
Chip  
HFC-S mini  
List of Tables  
2
3
4
5
6
7
8
9
Function of the microprocessor interface control signals . . . . . . . . . . . . . . . . 15  
Possible connections of FIFO and CHANNELs in Simple Mode (SM) . . . . . . . . 22  
CHANNEL numbers on the S/T interface and PCM interface . . . . . . . . . . . . . 22  
FIFO to S/T channel assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
PCM interface control options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
I/O characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Driver Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Symbols of read accesses in Figure 10 . . . . . . . . . . . . . . . . . . . . . . . . . 67  
10 Symbols of write accesses in Figure 11 . . . . . . . . . . . . . . . . . . . . . . . . . 68  
11 Symbols of read accesses in Figure 12 . . . . . . . . . . . . . . . . . . . . . . . . . 70  
12 Symbols of write accesses in Figure 13 . . . . . . . . . . . . . . . . . . . . . . . . . 71  
13 PCM timing values in master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
14 PCM timing values in slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
15 Activation / deactivation layer 1 for finite state matrix for NT . . . . . . . . . . . . . 80  
16 Activation / deactivation layer 1 for finite state matrix for TE . . . . . . . . . . . . . 81  
6 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
List of Registers sorted by name  
G
Please note !  
Register addresses are assigned independently for write and read access; i.e. in  
some cases there are different registers for write and read access with the same  
address. Only registers with the same meaning and bitmap structure in both write  
and read directions are declared to be read / write.  
Write only registers:  
Read only registers:  
Address Name  
Page  
0x3C B1_REC  
0x3D B2_REC  
0x16 CHIP_ID  
0x3E D_REC  
0x3F E_REC  
0x1B F_FILL  
0x1A F_USAGE  
0x19 F0_CNT_H  
0x18 F0_CNT_L  
0x0C FIF_F1  
0x0D FIF_F2  
0x04 FIF_Z1  
0x06 FIF_Z2  
0x10 INT_S1  
0x11 INT_S2  
0x34 SQ_REC  
0x30 ST_RD_STA  
0x1C STATUS  
0x29 TRxR  
59  
60  
42  
60  
61  
35  
32  
53  
52  
32  
33  
33  
33  
36  
37  
58  
54  
43  
53  
Address Name  
Page  
0x26 AUX1_RSL  
0x22 AUX1_SSL  
0x27 AUX2_RSL  
0x23 AUX2_SSL  
0x24 B1_RSL  
47  
45  
47  
45  
46  
60  
44  
46  
60  
44  
41  
42  
29  
59  
40  
61  
29  
30  
34  
31  
39  
30  
38  
38  
50  
51  
52  
31  
30  
57  
57  
56  
58  
55  
43  
0x3C B1_SEND  
0x20 B1_SSL  
0x25 B2_RSL  
0x3D B2_SEND  
0x21 B2_SSL  
0xF4 CH_MASK  
0xFC CHANNEL  
0x00 CIRM  
0x37 CLKDEL  
0xFA CON_HDLC  
0x3E D_SEND  
0x0B F_CROSS  
0x0D F_MODE  
0x0C F_THRES  
0x0F FIFO  
0xFB HDLC_PAR  
0x0E INC_RES_F  
0x1A INT_M1  
Read / Write registers:  
0x1B INT_M2  
Address Name  
Page  
0x14 MST_MODE0  
0x15 MST_MODE1  
0x16 MST_MODE2  
0x09 RAM_ADR_H  
0x08 RAM_ADR_L  
0x32 SCTRL_E  
0x33 SCTRL_R  
0x31 SCTRL  
0x2E AUX1_D  
0x2F AUX2_D  
0x2C B1_D  
48  
49  
48  
48  
53  
32  
32  
54  
54  
31  
0x2D B2_D  
0x28 C/I  
0x84 FIF_DATA_NOINC  
0x80 FIF_DATA  
0x2A MON1_D  
0x2B MON2_D  
0xC0 RAM_DATA  
0x34 SQ_SEND  
0x30 ST_WR_STA  
0x1C TIME_SEL  
July 2003  
Data Sheet  
7 of 94  
Cologne  
Chip  
HFC-S mini  
List of Registers sorted by address  
G
Please note !  
Register addresses are assigned independently for write and read access; i.e. in  
some cases there are different registers for write and read access with the same  
address. Only registers with the same meaning and bitmap structure in both write  
and read directions are declared to be read / write.  
Write only registers:  
Read only registers:  
Address Name  
Page  
0x04 FIF_Z1  
0x06 FIF_Z2  
0x0C FIF_F1  
0x0D FIF_F2  
0x10 INT_S1  
0x11 INT_S2  
0x16 CHIP_ID  
0x18 F0_CNT_L  
0x19 F0_CNT_H  
0x1A F_USAGE  
0x1B F_FILL  
0x1C STATUS  
0x29 TRxR  
33  
33  
32  
33  
36  
37  
42  
52  
53  
32  
35  
43  
53  
54  
58  
59  
60  
60  
61  
Address Name  
Page  
0x00 CIRM  
29  
30  
31  
29  
34  
30  
30  
31  
50  
51  
52  
38  
38  
43  
44  
44  
45  
45  
46  
46  
47  
47  
55  
56  
57  
57  
58  
59  
60  
60  
61  
41  
40  
39  
42  
0x08 RAM_ADR_L  
0x09 RAM_ADR_H  
0x0B F_CROSS  
0x0C F_THRES  
0x0D F_MODE  
0x0E INC_RES_F  
0x0F FIFO  
0x14 MST_MODE0  
0x15 MST_MODE1  
0x16 MST_MODE2  
0x1A INT_M1  
0x30 ST_RD_STA  
0x34 SQ_REC  
0x3C B1_REC  
0x3D B2_REC  
0x3E D_REC  
0x3F E_REC  
0x1B INT_M2  
0x1C TIME_SEL  
0x20 B1_SSL  
0x21 B2_SSL  
0x22 AUX1_SSL  
0x23 AUX2_SSL  
0x24 B1_RSL  
0x25 B2_RSL  
0x26 AUX1_RSL  
0x27 AUX2_RSL  
0x30 ST_WR_STA  
0x31 SCTRL  
Read / Write registers:  
Address Name  
Page  
0x32 SCTRL_E  
0x33 SCTRL_R  
0x34 SQ_SEND  
0x37 CLKDEL  
0x28 C/I  
53  
54  
54  
48  
48  
48  
49  
32  
32  
31  
0x2A MON1_D  
0x2B MON2_D  
0x2C B1_D  
0x3C B1_SEND  
0x3D B2_SEND  
0x3E D_SEND  
0xF4 CH_MASK  
0xFA CON_HDLC  
0xFB HDLC_PAR  
0xFC CHANNEL  
0x2D B2_D  
0x2E AUX1_D  
0x2F AUX2_D  
0x80 FIF_DATA  
0x84 FIF_DATA_NOINC  
0xC0 RAM_DATA  
8 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
1 General description  
The HFC-S mini is a single-chip ISDN S/T HDLC basic rate controller for embedded applications.  
The S/T interface, HDLC controllers, FIFOs and a microprocessor interface are integrated in the  
HFC-S mini. A PCM128 / PCM64 / PCM30 interface is also implemented which can be connected to  
many telecom serial busses. CODECs are usually connected to this interface. All ISDN channels  
(2 B + 1 D) and the PCM interface are served fully duplex by the 8 integrated FIFOs. HDLC con-  
trollers are implemented in hardware so there is no need to implement HDLC on the host processor.  
1.1 Features  
single chip ISDN S/T controller with B- and D-channel HDLC support  
integrated S/T interface  
full I.430 ITU S/T ISDN support in TE and NT mode for 3.3 V and 5 V power supply  
independent read and write HDLC channels for two ISDN B-channels, one ISDN D-channel  
and one additional PCM time slot (or E-channel)  
B1- and B2-channel transparent mode independently selectable  
integrated FIFOs for B1-channel, B2-channel, D-channel and an additional PCM (or E-channel)  
channel  
FIFO size: 128 bytes per channel and direction; up to 7 HDLC frames per FIFO  
56 kbit/s restricted mode for U.S. ISDN lines selectable by software  
PCM128 / PCM64 / PCM30 interface configurable to interface MITEL STTM bus (MVIPTM),  
Siemens IOM2TM or GCITM for interface to U-chip or external CODECs  
H.100 data rate supported  
microprocessor interface compatible to Motorola bus and Intel bus  
Timer with interrupt capability  
CMOS technology, 3 V . . 5 V  
PQFP 48 package  
July 2003  
Data Sheet  
9 of 94  
Cologne  
Chip  
HFC-S mini  
1.2 Block diagram  
Figure 1: HFC-S mini block diagram  
1.3 Applications  
The HFC-S mini can be used for all kinds of ISDN equipment with ISDN basic rate S/T interface.  
ISDN terminal adapters (for internet access)  
ISDN terminal adapters (with POTS interfaces)  
ISDN PABX  
ISDN SoHo PABX (switching done by HFC-S mini)  
ISDN telephones  
ISDN video conferencing equipment  
ISDN dialers and LCR (Least Cost Routers)  
ISDN LAN routers  
ISDN protocol analyzers  
ISDN smart NTs  
10 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
2 Pin description  
35 34  
33 32  
27  
31 30 29 28 26 25  
36  
37  
GND  
SYNC_I  
GND  
24  
GND  
R1  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
LEV_R1  
VDD  
GND  
LEV_R2  
R2  
VDD  
NC  
GND  
SYNC_O  
/INT  
TX1_HI  
/TX2_LO  
/TX_EN  
/TX1_LO  
TX2_HI  
ALE  
/CS  
A0  
/RES  
2 3 4 5 6 7 8 9 10 11 12  
1
Figure 2: Pin Connection  
Pin Interface  
Name  
I/O  
Description  
1
1st function  
2nd function /DS  
/RD  
I
I
Read signal from external processor (low active)  
I/O data strobe  
2
1st function /WR  
2nd function R/W  
I
I
Write signal from external processor (low active)  
Read/Write select (WR = ’0’)  
3
4
VDD  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
VDD (3.3V or 5V)  
Data bus (bit 0)  
Data bus (bit 1)  
Data bus (bit 2)  
Data bus (bit 3)  
Data bus (bit 4)  
Data bus (bit 5)  
Data bus (bit 6)  
Data bus (bit 7)  
IOr  
IOr  
IOr  
IOr  
IOr  
IOr  
IOr  
IOr  
5
6
7
8
9
10  
11  
(continued on next page)  
July 2003  
Data Sheet  
11 of 94  
Cologne  
Chip  
HFC-S mini  
(continued from previous page)  
Pin Interface  
Name  
I/O  
Description  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
GND  
GND  
TX2  
/TX1  
/TX  
/TX2  
TX1  
_
HI  
LO  
EN  
LO  
HI  
O
O
O
O
O
Transmit output 2  
GND driver for transmitter 1  
Transmit enable  
GND driver for transmitter 2  
Transmit output 1  
GND  
_
_
_
_
GND  
VDD  
R2  
VDD (3.3V or 5V)  
Receive data 2  
Level detect for R2  
Level detect for R1  
Receive data 1  
GND  
I
I
I
I
LEV_  
R2  
R1  
LEV_  
R1  
GND  
ADJ_  
LEV  
O
I
Level generator  
CLKI  
24.576 MHz clock input or 24.576 MHz crystal  
24.576 MHz clock output or 24.576 MHz crystal  
Awake input pin for external awake circuitry  
GND  
CLKO  
AWAKE  
GND  
O
I
C4IO  
IOpu Double bit clock 4.096 MHz / 8.192 MHz / 16.384 MHz  
F0IO  
IOpu Frame synchronization, 8 kHz pulse for PCM/GCI/IOM2 bus  
frame synchronization  
32  
33  
34  
STIO1  
STIO2  
IOpu PCM/GCI/IOM2 bus data line 1  
IOpu PCM/GCI/IOM2 bus data line 2  
F1  
_
A
O
Enable signal for external CODEC A or C2IO clock (bit clock),  
programmable as positive (reset default) or negative pulse  
35  
F1  
_
B
O
Enable signal for external CODEC B, programmable as positive  
(reset default) or negative pulse  
36  
38  
39  
40  
41  
NC  
Must not be connected  
8 kHz synchronization input  
GND  
SYNC  
GND  
VDD  
_
I
I
VDD (3.3V or 5V)  
GND  
GND  
(continued on next page)  
12 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
(continued from previous page)  
Pin Interface  
Name  
NC  
I/O  
Description  
42  
43  
44  
45  
Must not be connected  
8 kHz synchronization output  
SYNC  
_
O
O
/INT  
Ood Interrupt request for external processor (low active)  
ALE  
Ipu  
Address latch enable ALE is also used for mode selection during  
reset  
46  
47  
48  
/CS  
A0  
Ipu  
I
Chip select (low active)  
Address bit 0 from external processor  
/RES  
Istpu Reset (low active)  
Legend:  
I
Input pin  
O
Output pin  
IO  
Ipu  
Bidirectional pin  
Input pin with internal pull-up resistor of app. 100 kto VDD  
IOpu Bidirectional pin with internal pull-up resistor of app. 100 kto VDD  
Istpu Input pin with Schmitt trigger characteristic and internal pull-up resistor of app.  
100 kto VDD  
IOr  
Ood Output pin with open drain  
Not connected  
Tristated during reset  
NC  
Unused input pins should be connected to ground.  
July 2003  
Data Sheet  
13 of 94  
Cologne  
Chip  
HFC-S mini  
3 Functional description  
3.1 Microprocessor interface  
The HFC-S mini has an integrated 8 bit microprocessor interface. It is compatible with Motorola bus  
and Intel bus. The different microprocessor interface modes are selected during reset by ALE.  
In mode 2 (Motorola bus mode) and mode 3 (de-multiplexed Intel bus mode) pin A0 is the address  
input. The data bus is D7 . . D0.  
In mode 4 (multiplexed Intel bus mode) D[7:0] is the multiplexed address/data bus. A0 must be ’0’  
in this mode.  
3.1.1 Processor interface modes  
Mode 2: Motorola bus with control signals /CS, R/W, /DS is selected by setting ALE to VDD.  
Mode 3: Intel bus with seperated address bus (A0) and data bus (D7 . . D0) and control signals /CS,  
/WR, /RD is selected by setting ALE to GND.  
Mode 4: Intel bus with multiplexed address bus and data bus with control signals /CS, /WR, /RD,  
ALE. The first rising edge on ALE switches into this mode. A0 must be ’0’. ALE latches the  
address. The multiplexed address / data bus is D7 . . D0.  
In mode 4 all internal registers can be directly accessed. In mode 2 and mode 3 first the address of  
the desired register must be written to the address with A0 = ’1’. Afterwards data can be read / written  
from / to that register by reading / writing the address with A0 = ’0’. In mode 4 A0 must always be ’0’.  
3.1.2 Register access  
In mode 2 and mode 3 the HFC-S mini has 2 addresses. The lower address (A0 = ’0’) is used for data  
read / write. The higher address (A0 = ’1’) is write only and is used for register selection. Registers  
are selected by first setting A0 to ’1’ and then writing the address of the desired register to the data bus  
D7 . . D0. All following accesses to the HFC-S mini with A0 = ’0’ are read / write operations concerning  
this register.  
In mode 4 all registers can be directly accessed by their address. The function of the control signals  
is shown in Table 2. Except in mode 4, ALE is assumed to be stable after reset.  
14 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
Table 2: Function of the microprocessor interface control signals (X = don’t care)  
/RD /WR /CS ALE  
/DS R/W  
Operation  
Mode  
X
1
0
0
0
1
0
1
X
1
1
0
1
0
1
0
1
X
0
0
0
0
0
0
X
X
1
no data access  
no data access  
read data  
all  
all  
2
1
write data  
read data  
2
0
3
0
write data  
read data  
3
0
0
4
write data  
4
( : 1-pulse latches register address)  
G
Please note !  
Every asynchronous register read access should be done multiple times until two  
consecutive read accesses result in the same value. Only this way it is ensured  
that the read bits are stable.  
This information applies to the following registers:  
F_USAGE (0x1A),  
RAM_DATA (0xC0), FIF_DATA (0x80),  
FIF_DATA_NOINC (0x84), FIF_F1 (0x0C),  
FIF_F2 (0x0D),  
B1_D (0x2C),  
FIF_Z1 (0x04),  
B2_D (0x2D),  
FIF_Z2 (0x06),  
AUX1_D (0x2E),  
AUX2_D (0x2F),  
F0_CNT_L (0x18),  
MON1_D (0x2A),  
F0_CNT_H (0x19), C/I (0x28),  
MON2_D (0x2B), SQ_REC (0x34).  
3.2 FIFOs  
There is a transmit and a receive FIFO with HDLC controller for each of the two B-channels, for the  
D-channel and for the PCM interface in the HFC-S mini. As an alternative the PCM receive controller  
can be used for the E-channel. Every FIFO has a length of 128 bytes in each direction. Up to 7 frames  
can be stored in every FIFO.  
The HDLC circuits are located on the S/T device side of the HFC-S mini. So always plain data is  
stored in the FIFOs. Zero insertion and CRC checksum processing for receive and transmit data is  
done by the HFC-S mini automatically.  
A FIFO can be selected for access by writing its number in the FIFO select register FIFO.  
The FIFOs are ring buffers. To control them there are some counters. Z1 is the FIFO input counter  
and Z2 is the FIFO output counter.  
July 2003  
Data Sheet  
15 of 94  
Cologne  
Chip  
HFC-S mini  
Each counter points to a byte position in the SRAM. On a FIFO input operation Z1 is incremented.  
On an output operation Z2 is incremented.  
After every pulse of the F0IO signal two HDLC bytes for the B1- and the B2-channel are written into  
the S/T interface (FIFOs with even numbers) and two HDLC-bytes are read from the S/T interface  
(FIFOs with odd numbers).  
D-channel data is handled in a similar way but only 2 bits are processed.  
G
Important !  
Instead of the S/T interface the PCM bus is also selectable for each B-channel  
(see CON_HDLC register).  
If Z1 = Z2 the FIFO is empty.  
Additionally there are two counters F1 and F2 for every FIFO channel (3 bits for each channel). They  
count the HDLC frames in the FIFOs and form a ring buffer as Z1 and Z2 do, too.  
F1 is incremented when a complete frame has been received and stored in the FIFO. F2 is incre-  
mented when a complete frame has been read from the FIFO.  
If F1 = F2 there is no complete frame in the FIFO.  
When the /RES line is active or software reset is active Z1, Z2, F1 and F2 are all initialized to all ’1’s  
(so Z-counters are initialized to 0x7F and F-counters are initialized to 0x07).  
The access to a FIFO is selected by writing the FIFO number into the FIFO select register FIFO.  
G
Important !  
FIFO change, FIFO reset and F1 / F2 incrementation:  
Changing the FIFO, reseting the FIFO or incrementing the frame counters causes  
a short BUSY period of the HFC-S mini. This means an access to FIFO control  
registers and data registers is not allowed until BUSY status is reset (bit 0 of  
STATUS register). This has a maximum duration of 25 clock cycles (2 µs).  
Status, interrupt and control registers can be read or written at any time.  
G
Important !  
The counter state 0x00 of the Z-counters follows counter state 0x7F in all FIFOs.  
The counter state 0x00 of the F-counters follows counter state 0x07 in all FIFOs.  
16 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
3.2.1 FIFO channel operation  
3.2.1.1 Send channels (B1, B2, D and PCM transmit)  
The send channels send data from the host bus interface to the FIFO and the HFC-S mini converts the  
data into HDLC code and tranfers it from the FIFO into the S/T or / and the PCM bus interface write  
registers.  
The HFC-S mini checks Z1 and Z2. If Z1 = Z2 (FIFO empty) the HFC-S mini generates a HDLC  
flag ’0111 1110’ or idle pattern ’1111 1111’ and sends it to the S/T device. In this case Z2 is not  
incremented. If also F1 = F2 only HDLC flags are sent to the S/T interface and all counters remain  
unchanged. If the frame counters are unequal F2 is incremented and the HFC-S mini tries to send the  
next frame to the output device. After the end of a frame (Z2 reaches Z1) it automatically generates  
the 16 bit CRC checksum and adds the ending flag. If there is another frame in the FIFO (F1 = F2)  
the F2 counter is incremented.  
With every byte being sent from the host bus side to the FIFO, Z1 is incremented automatically. If a  
complete frame has been sent, F1 must be incremented to send the next frame. If the frame counter  
F1 is incremented, also the Z-counters may change because Z1 and Z2 are functions of F1 and F2.  
So there are Z1(F1), Z2(F1), Z1(F2) and Z2(F2) (see Figure 3).  
FIFO  
00h  
02h  
Z100  
Z102  
Z200  
Z202  
Memory  
F2  
F1  
output  
frame 02  
frame 03  
end of frame  
end of frame  
Z106  
Z107  
frame 06  
07h  
input  
frame 07  
Figure 3: FIFO Organization  
Z1(F1) is used for the frame which is just written from the microprocessor bus side. Z2(F2) is used  
for the frame which is just beeing transmitted to the S/T device side of the HFC-S mini. Z1(F2) is the  
end of frame pointer of the current output frame.  
In the send channels F1 is only changed from the microprocessor interface side if the software driver  
wants to say “end of send frame”. If bit 0 in INC_RES_F register is set, the current value of Z1 is  
stored, F1 is incremented and Z1 is used as start address of the next frame automatically. Z1(F2) and  
Z2(F2) can not be accessed.  
July 2003  
Data Sheet  
17 of 94  
Cologne  
Chip  
HFC-S mini  
G
Important !  
The HFC-S mini begins to transmit the bytes from a FIFO at the moment the FIFO  
is changed or the F1 counter is incremented. Also changing to the FIFO that is  
already selected starts the transmission. So by selecting the same FIFO again  
transmission can be started. This is required if a HDLC frame is longer than 128  
bytes.  
3.2.1.2 Automatically D-channel frame repetition  
The D-channel send FIFO has a special feature. If the S/T interface signals a D-channel contention  
before the CRC is sent, the Z2 counter is set to the starting address of the current frame and the  
HFC-S mini tries to repeat the frame automatically.  
3.2.1.3 FIFO full condition in send channel  
There are two different FIFO full conditions. The first one is met when the FIFO contents comes up  
to 7 frames. There is no possibility for the HFC-S mini to manage more HDLC frames even if the  
frames are very small. The driver software must check that there are never more than 7 HDLC frames  
in a FIFO.  
The second limitation is the size of the FIFO (128 bytes each). FIFO full condition can be checked  
by reading the F_USAGE register. It shows the actually occupied FIFO space in bytes.  
Furthermore a threshold value can be set for all transmit and receive FIFOs in the F_THRES register.  
Then the F_FILL register shows an indication of the filling level for each FIFO. After data processing  
from or to a FIFO, the F_FILL register must be updated with a change FIFO or an increment FIFO  
counter operation. After this it takes up to 250 µs until the bit value in the F_FILL register of the  
processed FIFO represents the actual state of the FIFO filling level.  
3.2.1.4 Receive Channels (B1, B2, D and PCM or E receive)  
The receive channels receive data from the S/T or PCM bus interface read registers. The data is  
converted from HDLC into plain data and sent to the FIFO. Then the data can be read via the micro-  
processor bus interface.  
The HFC-S mini checks the HDLC data coming in. If it finds a flag or more than 5 consecutive  
’1’s it does not generate any output data. In this case Z1 is not incremented. Proper HDLC data  
being received is converted by the HFC-S mini into plain data. After the ending flag of a frame the  
HFC-S mini checks the HDLC CRC checksum. If it is correct one STAT byte (see Figure 4) with all  
’0’s is inserted behind the CRC data in the FIFO. This last byte of a frame in the FIFO is different  
from all ’0’s if there is no correct CRC field at the end of the frame.  
The ending flag of a HDLC-frame can also be the starting flag of the next frame.  
After a frame is received completely, F1 is incremented by the HFC-S mini automatically and the next  
frame can be received.  
18 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
HDLC  
flag  
HDLC-flag  
CRC2 01111110  
zero-inserted data  
frame  
CRC1  
CRC2  
7Eh  
HDLC-frame  
data  
data  
Data in  
send FIFO  
Z1 (F1)  
data  
STAT = 00h if CRC o.k.  
data  
CRC1  
CRC2  
STAT  
Data in  
receive FIFO  
Figure 4: FIFO Data Organization  
After reading a frame via the microprocessor bus interface, F2 must be incremented. If the frame  
counter F2 is incremented, also the Z-counters may change because Z1 and Z2 are functions of F1  
and F2. So there are Z1(F1), Z2(F1), Z1(F2) and Z2(F2) (see Figure 3).  
Z1(F1) is used for the frame which is just received from the S/T device side of the HFC-S mini.  
Z2(F2) is used for the frame which is just beeing transmitted to the microprocessor bus interface.  
Z1(F2) is the end of frame pointer of the current output frame.  
To calculate the length of the current receive frame the software has to evaluate Z1 Z2 + 1. When  
Z2 reaches Z1 the complete frame has been read.  
In the receive channels F2 must be incremented from the microprocessor bus interface side after the  
software detects an end of receive frame (Z1 = Z2) and F1 = F2. Then the current value of Z2 is  
stored, F2 is incremented and Z2 is copied as start address of the next frame. If Z1 = Z2 and F1 = F2  
the FIFO is totally empty. Z1(F1) can not be accessed.  
G
Important !  
Before reading a FIFO, a change FIFO operation (see also: FIFO register) must  
be done even if the desired FIFO is already selected. The change FIFO operation  
is required to update the internal buffer of the HFC-S mini. Otherwise the first  
byte of the FIFO will be taken from the internal buffer and may be invalid.  
July 2003  
Data Sheet  
19 of 94  
Cologne  
Chip  
HFC-S mini  
3.2.1.5 FIFO full condition in receive channels  
Because the ISDN B-channels and the ISDN D-channels have no hardware based flow control there  
is no possibility to stop input data if a receive FIFO is full.  
So there is no FIFO full condition implemented in the HFC-S mini. The HFC-S mini assumes that the  
FIFOs are so deep, that the host processors hardware and software is able to avoid any overflow of  
the receive FIFOs. Overflow conditions are again more than 7 input frames or a real overflow of the  
FIFO because of excessive data (more than 128 bytes).  
Because HDLC procedures only know a window size of 7 frames no more than 7 frames are sent  
without software intervention.  
The register F_FILL indicates if the fill level of some FIFOs exceeds the number of bytes defined in  
the F_THRES register. A byte overflow can be avoided by polling this register. After data processing  
from or to a FIFO, the F_FILL register must be updated with a change FIFO or an increment FIFO  
counter operation. After this it takes up to 250 µs until the bit value in the F_FILL register of the  
processed FIFO represents the actual state of the FIFO filling level.  
The register F_USAGE shows the actually occupied FIFO space in bytes. A byte overflow can be  
avoided by polling this register.  
However to avoid any undetected FIFO overflows the software driver should check the number of  
frames in the FIFO which is F1 F2. An overflow exists if the number F1 F2 is less than the  
number in the last reading even if there was no reading of a frame in between.  
After a detected FIFO overflow condition this FIFO must be reset by setting the FIFO reset bit in the  
INC_RES_F register.  
3.2.2 FIFO initialization  
All FIFOs are disabled after reset. To enable a FIFO, at least one of the bits[4:1] of the CON_HDLC  
register for the corresponding FIFO must be set to ’1’.  
For D-channel FIFOs the inter frame fill bit (bit 0 of CON_HDLC register) must be set to ’1’. The  
HDLC_PAR register must be set to 0x02 (’0000 0010’).  
Even for a data transmission between S/T interface and PCM interface where no FIFO data is in-  
volved, the data transmission capability is only activated if the corresponding FIFO is enabled.  
3.2.3 FIFO reset  
All counters Z1, Z2, F1 and F2 of all FIFOs are initialized to all ’1’s after a reset. Then the result is  
Z1 = Z2 = 0x7F and F1 = F2 = 0x07.  
The same initialisation is done if the bit 3 in the CIRM register is set (soft reset).  
Single FIFOs can be reset by setting bit 1 of INC_RES_F register.  
3.3 Transparent mode of HFC-S mini  
You can switch off HDLC operation for each B-channel independently. There is one bit for each  
B-channel in the CON_HDLC control register. If this bit is set, data in the FIFO is sent directly to the  
20 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
S/T or PCM bus interface and data from the S/T or PCM bus interface is sent directly to the FIFO.  
The FIFOs should be empty when switching into transparent mode (F1 = F2).  
If a send FIFO channel changes to FIFO empty condition no CRC is generated and the last data byte  
in the FIFO memory is repeated until there is new data. If the last data byte which was written to  
the selected FIFO should be repeated, the last byte must be written without increment of Z-counter  
(FIF_DATA_NOINC register, address 84).  
In receive channels there is no check on flags or correct CRCs and no status byte is added.  
The byte boundaries are not arbitrary like in HDLC mode where byte synchronisation is achieved  
with HDLC flags. The data is just the same as it comes from the S/T or PCM bus interface or is sent  
to this.  
Send and receive transparent data can be handled in two ways. The usual way is transporting B-  
channel data with the LSB first as it is usual in HDLC mode. The second way is sending the bytes in  
reverse bit order as it is usual for PWM data. So the first bit is the MSB. The bit order can be reversed  
by setting the corresponding bit in the F_CROSS register.  
3.4 Correspondency between FIFOs, CHANNELs and SLOTs  
For the data processing of the HFC-S mini you must distinguish between FIFOs, CHANNELs and  
SLOTs.  
The FIFOs are buffers between the microprocessor interface and the data interfaces PCM and/or S/T.  
The HDLC controllers are located on the non host bus side of the FIFOs.  
The CHANNELs are either mapped to the data channels on the S/T interface (then the CHANNEL  
selects the S/T channel as shown in Table 3) or they can be connected to arbitrary time slots on the  
PCM interface. SLOTs are 8 bit time slots on the PCM interface. The following values (registers)  
characterise FIFOs, CHANNELs and SLOTs:  
FIFO: FIFO  
CHANNEL: CHANNEL  
SLOT: B1_RSL, B1_SSL, B2_RSL, B2_SSL, AUX1_RSL, AUX1_SSL, AUX2_RSL and AUX2_SSL  
Even numbers (LSB = ’0’) always belong to a transmit FIFO, transmit CHANNEL (see Table 4).  
Odd numbers (LSB = ’1’) always belong to a receive FIFO, receive CHANNEL (see Table 4).  
In Simple Mode (F_MODE register bit 7 = ’0’, SM) the CHANNEL number equals the FIFO number.  
But it is possible to connect each FIFO to a PCM time slot instead of the S/T interface in this mode  
(see Table 3).  
In Channel Select Mode (F_MODE register bit 7 = ’1’, CSM) FIFOs can be associated with arbitrary  
CHANNELs.  
FIFOs are selected by writing their number in the FIFO register. All FIFOs are disabled after initial-  
ization (reset). By setting at least one of the CON_HDLC register bits 3 . . 1 to ’1’ the selected FIFO is  
enabled.  
The connection between a FIFO and a CHANNEL can be established by the CHANNEL register for  
each FIFO if Channel Select Mode is enabled (F_MODE register bit 7 = ’1’, CSM). Otherwise the  
CHANNEL number equals the FIFO number.  
July 2003  
Data Sheet  
21 of 94  
Cologne  
Chip  
HFC-S mini  
Table 3: Possible connections of FIFO and CHANNELs in Simple Mode (SM)  
FIFO no. CHANNEL after reset  
Possible connections in Simple Mode (SM)  
FIFO[2..0]  
CON_HDLC[7..5]  
’000’  
transmit B1-channel (S/T) transmit B1-channel (S/T)  
transmit PCM time slot selected by B1_SSL  
’001’  
’010’  
’011’  
’100’  
’101’  
’110’  
’111’  
receive B1-channel (S/T)  
receive B1-channel (S/T)  
receive PCM time slot selected by B1_RSL  
transmit B2-channel (S/T) transmit B2-channel (S/T)  
transmit PCM time slot selected by B2_SSL  
receive B2-channel (S/T)  
transmit D-channel (S/T)  
receive D-channel (S/T)  
invalid (E is receive only)  
receive E-channel (S/T)  
receive B2-channel (S/T)  
receive PCM time slot selected by B2_RSL  
transmit D-channel (S/T)  
transmit PCM time slot selected by AUX1_SSL  
receive D-channel (S/T)  
receive PCM time slot selected by AUX1_RSL  
transmit PCM time slot selected by AUX2_SSL  
receive E-channel (S/T)  
receive PCM time slot selected by AUX2_RSL  
The channels on the S/T interface (B1, B2, D and E) and PCM interface (B1, B2, AUX1 and AUX2)  
are numbered as shown in Table 4.  
Table 4: CHANNEL numbers on the S/T interface and PCM interface  
CHANNEL no. ISDN channel on the  
ISDN channel on the  
PCM interface  
CHANNEL[2..0] S/T interface  
’000’  
’001’  
B1 transmit  
B1 receive  
B1 transmit  
B1 receive  
’010’  
’011’  
B2 transmit  
B2 receive  
B2 transmit  
B2 receive  
’100’  
’101’  
D transmit  
D receive  
AUX1 transmit  
AUX1 receive  
’110’  
’111’  
invalid (E is receive only) AUX2 transmit  
E receive AUX2 receive  
22 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
The data flow between the HFC part (FIFOs), S/T interface and PCM interface can be selected by the  
CON_HDLC register (bits 7..5) for each FIFO.  
The PCM time slot for B1, B2, AUX1 and AUX2 can be set by the time slot assigner (registers  
B1_RSL, B1_SSL, B2_RSL, B2_SSL, AUX1_RSL, AUX1_SSL, AUX2_RSL and AUX2_SSL).  
Data of a CHANNEL can furthermore be looped over the PCM interface (and the time slot assigner).  
July 2003  
Data Sheet  
23 of 94  
Cologne  
Chip  
HFC-S mini  
[T4]  
Select PCM Slot No.  
for Transmit Channel  
[T3]  
[T2]  
CHANNEL  
[T1]  
Transmit Channel  
for FIFO  
Select Data  
Flow for  
Transmit Channel  
Bit Count / Start Bit /  
Mask Bits  
for Transmit Channel  
PCM  
SLOT  
HDLC  
Data  
FIFO  
Number  
Sub-  
Channel  
Processing  
CONNECT  
MEMORY  
see also: PCM Interface Function  
FIFOs  
Transparent  
Data  
CHANNEL  
Number  
S/T  
Figure 5: FIFOs, CHANNELs and SLOTs in transmit Direction  
[T1] In Simple Mode (SM) the CHANNEL number is the same as the FIFO number. If Channel  
Select Mode (CSM) is enabled the transmit CHANNEL for a FIFO can be selected by  
1. writing the FIFO number (0 . . 7) in the FIFO register  
2. writing the desired CHANNEL number (0 . . 7) to the CHANNEL register (bits 2 . . 0)  
Please note that transmit CHANNELs are even numbered (bit 0 of CHANNEL register = ’0’).  
[T2] The bit values for the not processed bits of the transmit CHANNEL are read from the CH_MASK  
register. The processed bits are taken from the FIFO (see also Section 3.5). Please note that  
more than one FIFO can transmit data to the same CHANNEL. This is useful to combine  
subchannels and transmit them in one ISDN channel.  
[T3] Data can either be transmitted to the S/T interface or the PCM interface.  
1. write the FIFO number (0 . . 7) in the FIFO register  
2. write the desired connection to the CON_HDLC register bits 7 . . 5  
The CON_HDLC register bits 7 . . 5 settings must be the same for corresponding receive and  
transmit FIFOs.  
[T4] A PCM SLOT can be connected to a CHANNEL (see Table 5 on Page 26).  
The PCM SLOT number for a CHANNEL can be selected by writing the desired SLOT number  
to its time slot selection register as shown in Table 5. Please note that the .._SSL registers are  
for transmit slots.  
24 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
[R4]  
Select PCM Slot No.  
for Receive Channel  
[R3]  
[R2]  
CHANNEL  
[R1]  
Receive Channel  
for FIFO  
Select Data  
Flow for  
Receive Channel  
Bit Count / Start Bit /  
Mask Bits  
for Receive Channel  
PCM  
SLOT  
HDLC  
Data  
FIFO  
Number  
Sub-  
Channel  
Processing  
CONNECT  
MEMORY  
see also: PCM Interface Function  
FIFOs  
Transparent  
Data  
CHANNEL  
Number  
S/T  
Figure 6: FIFOs, CHANNELs and SLOTs in receive direction  
[R1] In Simple Mode (SM) the CHANNEL number is the same as the FIFO number. If Channel  
Select Mode (CSM) is enabled the transmit CHANNEL for a FIFO can be selected by  
1. writing the FIFO number (0 . . 7) in the FIFO register  
2. writing the desired CHANNEL number (0 . . 7) to the CHANNEL register (bits 2 . . 0)  
Please note that receive CHANNELs are odd numbered (bit 0 of CHANNEL register = ’1’).  
[R2] The bit values of the not processed bits of the receive CHANNEL are ignored. The processed  
bits are taken from the CHANNEL (see also Section 3.5). Please note that more than one FIFO  
can receive data from the same CHANNEL (e.g. bits 1 . . 0 are processed by FIFO 1 and bits  
3 . . 2 by FIFO 3). This is useful to split subchannels that have been combined to be transmitted  
in one ISDN channel.  
[R3] Data can either be received from the S/T interface or the PCM interface.  
1. write the FIFO number (0 . . 7) in the FIFO register  
2. write the desired connection to the CON_HDLC register bits 7 . . 5  
The CON_HDLC register bits 7 . . 5 settings must be the same for corresponding receive and  
transmit FIFOs.  
[R4] A PCM SLOT can be connected to a CHANNEL (see Table 5).  
The PCM SLOT number for a CHANNEL can be selected by writing the desired SLOT number  
to its time slot selection selection register as shown in Table 5. Please note that only the .._RSL  
registers are for receive slots.  
July 2003  
Data Sheet  
25 of 94  
Cologne  
Chip  
HFC-S mini  
Table 5: FIFO to S/T channel assignment (In Simple Mode the FIFO number is used as CHANNEL number; in Channel  
Select Mode the CHANNEL number can be selected for each FIFO in the register CHANNEL.)  
CHANNEL no.  
Register for  
time slot  
(FIFO[2..0]  
or CHANNEL[2..0] selection  
’000’  
’001’  
B1_SSL  
B1_RSL  
’010’  
’011’  
B2_SSL  
B2_RSL  
’100’  
’101’  
AUX1_SSL  
AUX1_RSL  
’110’  
’111’  
AUX2_SSL  
AUX2_RSL  
3.5 Subchannel Processing  
The following example shows how subchannel processing can be configured by the HDLC_PAR reg-  
ister. Bits are shown on the PCM interface.  
CHANNEL 0  
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
CHANNEL 4  
CHANNEL 5  
(Transmit Channels)  
(Receive Channels)  
7
6
5
4
3
2
1
0
Start Bit = 2  
Bit Count = 3  
Processed Bits  
Not Processed Bits  
(For transmit CHANNELs these  
bits are taken from the  
CH_MASK register.)  
Figure 7: Example for Subchannel Processing  
The start bit can be selected by bits 5 . . 3 of the HDLC_PAR register. The number of bits to process  
can be selected by bits 2 . . 0 of the HDLC_PAR register. By default (HDLC_PAR = 0x00) all 8 bits are  
processed. In the given example the start bit is bit 2 and the number of bits to process is 3. The not  
processed bits are set to the value given in the CH_MASK register. Please note that the HDLC_PAR  
register settings can be different for each channel.  
26 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
3.6 PCM Interface Function  
[1]  
Data Channel  
Select for  
Transmit Slot  
[2]  
STIO1 Output  
Buffer Enable for  
Transmit Slot  
CHANNEL  
CHANNEL  
DATA  
STIO1  
SLOT  
CONNECT  
MEMORY  
[3]  
STIO2 Output  
Buffer Enable for  
Transmit Slot  
CHANNEL  
A
B
STIO2  
CHANNEL  
DATA  
A
B
SLOT  
[5]  
Loop MST  
Internally  
[4]  
Input Buffer  
Select for  
Receive Slot  
[6]  
Data Channel  
Select for  
Receive Slot  
Figure 8: PCM Interface Function Block Diagram  
Table 6: PCM interface control options  
Number Function  
B1_SSL, B2_SSL, AUX1_SSL  
and AUX2_SSL register bits  
[1]  
[2]  
[3]  
Data channel select for transmit slot  
Bits[4:0] are for time slot selection  
STIO1 Output buffer enable for transmit slot Bits[7:6] = ’10’ (STIO1 output buffer enable)  
STIO2 output buffer enable for transmit slot Bits[7:6] = ’11’ (STIO2 output buffer enable)  
Number Function  
B1_RSL, B2_RSL, AUX1_RSL  
and AUX2_RSL register bits  
[4]  
[5]  
Input buffer select for receive slot  
Bit 6 = ’0’ (data in from STIO2 [MUX input B])  
Bit 6 = ’1’ (data in from STIO1 [MUX input A])  
Bit 6 of MST_MODE1 register  
Loop MST internally  
’0’ MUX input B (normal operation)  
’1’ MUX input A (internal loop)  
[6]  
Data channel select for receive slot  
Bits[4:0] are for time slot selection  
July 2003  
Data Sheet  
27 of 94  
Cologne  
Chip  
HFC-S mini  
3.7 Configuring test loops  
For electrical tests of layer 1 it is useful to create a S/T test loop for the B1 / B2 channel. The test loop  
described here transmits the data that has been received on the B1- or B2-channel of the S/T interface  
to the same transmit channel back on the S/T interface. To configure the test loop the following  
settings have to implemented:  
write 0x0F to register CLKDEL (0x37)  
// Adjust the phase offset between receive and  
// transmit direction (the value depends on the external  
// circuitry).  
write 0x43 to register SCTRL (0x31)  
// 0x03 is to enable B1, B2 at the S/T interface for  
// transmission  
// Bit 6 could be set for /TX1_LO and /TX2_LO setup  
// (non-capacitive line mode), this depends on the  
// external S/T circuitry  
write 0x00 to register ST_RD_STA (0x30) // Release S/T state machine for activation over the  
// S/T interface by incoming INFO 2 or INFO 4.  
write 0x03 to register SCTRL_R (0x33)  
// Configure S/T B1- and B2-channel to normal  
// receive operation.  
write 0x00 to register FIFO (0x0F)  
// Select B1 transmit  
write 0xC4 to register CON_HDLC (0xFA) // Configure transmit B1-channel for test loop  
write 0x01 to register FIFO (0x0F) // Select B1 receive  
write 0xC4 to register CON_HDLC (0xFA) // Configure receive B1-channel for test loop  
write 0x02 to register FIFO (0x0F) // Select B2 transmit  
write 0xC4 to register CON_HDLC (0xFA) // Configure transmit B2-channel for test loop  
write 0x03 to register FIFO (0x0F) // Select B2 receive  
write 0xC4 to register CON_HDLC (0xFA) // Configure receive B2-channel for test loop  
write 0x80 to register B1_SSL (0x20)  
write 0xC0 to register B1_RSL (0x24)  
write 0x81 to register B2_SSL (0x21)  
write 0xC1 to register B2_RSL (0x25)  
// Enable transmit channel for PCM / GCI / IOM2 bus,  
// pin STIO1 is used as output, use time slot #0.  
// Enable receive channel for PCM / GCI / IOM2 bus,  
// pin STIO1 is used as input, use time slot #0.  
// Enable transmit channel for PCM / GCI / IOM2 bus,  
// pin STIO1 is used as output, use transmission slot #1.  
// Enable receive channel for PCM / GCI / IOM2 bus,  
// pin STIO1 is used as input, use time slot #1.  
write 0x01 to register MST_MODE0 (0x14) // Configure HFC-S mini as PCM / GCI / IOM2 bus master.  
28 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
4 Register description  
4.1 FIFO, interrupt, status and control registers  
CIRM  
(write only)  
0x00  
Soft reset  
Bits  
2..0  
3
Description  
unused, must be ’0’  
The reset is active until the bit is cleared.  
’0’ deactivate reset (reset default)  
’1’ activate reset  
7..4  
unused, must be ’0’  
F_CROSS  
(write only)  
0x0B  
Select bit order for FIFO data  
’0’ normal bit order (LSB first, reset default)  
’1’ reverse bit order (MSB first)  
Bits  
Description  
B1 transmit  
B1 receive  
B2 transmit  
B2 receive  
D transmit  
D receive  
0
1
2
3
4
5
6
7
PCM transmit  
PCM receive  
July 2003  
Data Sheet  
29 of 94  
Cologne  
Chip  
HFC-S mini  
F_MODE  
(write only)  
0x0D  
Channel Select Mode (CSM)  
Bits  
6..0  
Description  
must be ’0’  
7
enable CSM  
INC_RES_F [FIFO]  
(write only)  
0x0E  
F-counter increment and reset  
Bits  
Description  
0
1
Increment F-counter of selected FIFO  
’1’ = increment  
This bit is automatically cleared.  
Reset selected FIFO  
’1’ = reset FIFO  
This bit is automatically cleared.  
7..2  
unused, should be ’0’  
RAM_ADR_L [FIFO]  
(write only)  
0x08  
Low byte of RAM address  
Bits  
7..0  
Description  
Address bits 7..0 for direct RAM access  
30 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
RAM_ADR_H  
(write only)  
0x09  
High byte of RAM address  
Bits  
2..0  
Description  
Address bits 10..8 for direct RAM access  
5..3  
6
must be ’0’  
’1’ reset address  
This bit is automatically cleared.  
7
’1’ increment address after each read or write access to RAM_DATA  
RAM_DATA  
(read / write)  
0xC0  
Read/write RAM data  
Bits  
7..0  
Description  
FIFOs should be disabled before accessing the RAM directly.  
The registers RAM_ADR_H, RAM_ADR_L and RAM_DATA can be used or direct accesses to the inter-  
nal FIFO RAM. They are normally not used.  
The FIFOs are located in the address range from 0x000 to 0x3FF. Bits 2 . . 0 of the address select the  
FIFO number, bits 10 . . 4 are used to address the FIFO data.  
Before reading / writing data from / to a memory region all FIFOs using this region must be disabled.  
FIFO  
(write only)  
0x0F  
FIFO select  
Bits  
2..0  
Description  
’000’ B1 transmit  
’001’ B1 receive  
’010’ B2 transmit  
’011’ B2 receive  
’100’ D transmit  
’101’ D receive  
’110’ PCM transmit  
’111’ PCM receive or E receive  
7..3  
unused, should be ’0’  
July 2003  
Data Sheet  
31 of 94  
Cologne  
Chip  
HFC-S mini  
F_USAGE [FIFO]  
(read only)  
0x1A  
FIFO usage  
Bits  
7..0  
Description  
fill level of FIFO in bytes  
FIF_DATA [FIFO]  
(read / write)  
0x80  
FIFO data register  
Bits  
7..0  
Description  
Read/write data from/to the FIFO selected in the FIFO register and increment Z-counter  
FIF_DATA_NOINC [FIFO]  
(read / write)  
0x84  
FIFO data register  
Bits  
7..0  
Description  
Read/write data from/to the FIFO selected in the FIFO register without incrementing Z-counter  
FIF_F1 [FIFO]  
(read only)  
0x0C  
FIFO input HDLC frame counter F1  
Bits  
7..0  
Description  
Up to 7 HDLC frames can be stored in each FIFO.  
32 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
FIF_F2 [FIFO]  
(read only)  
0x0D  
FIFO output HDLC frame counter F2  
Bits  
7..0  
Description  
Up to 7 HDLC frames can be stored in each FIFO.  
FIF_Z1 [FIFO]  
(read only)  
0x04  
FIFO input counter Z1  
Bits  
7..0  
Description  
Up to 128 bytes can be stored in one FIFO so the maximum value of the Z1 counter is 0x7F.  
FIF_Z2 [FIFO]  
(read only)  
0x06  
FIFO output counter Z2  
Bits  
7..0  
Description  
Up to 128 bytes can be stored in one FIFO so the maximum value of the Z2 counter is 0x7F.  
July 2003  
Data Sheet  
33 of 94  
Cologne  
Chip  
HFC-S mini  
F_THRES  
(write only)  
0x0C  
FIFO threshold  
Bits  
3..0  
Description  
Threshold for B1 transmit, B2 transmit, D transmit and PCM transmit (see also F_FILL)  
’0000’ 0 bytes  
’0001’ 8 bytes (reset default)  
’0010’ 16 bytes (reset default)  
: :  
’1111’ 120 bytes  
The corresponding bit(s) in the F_FILL register are set if the number of bytes in a transmit FIFO  
is greater or equal than this value.  
7..4  
Threshold for B1 receive, B2 receive, D receive and PCM receive (see also F_FILL)  
’0000’ 0 bytes  
’0001’ 8 bytes (reset default)  
’0010’ 16 bytes (reset default)  
: :  
’1111’ 120 bytes  
The corresponding bit(s) in the F_FILL register are set if the number of bytes in a receive FIFO is  
greater or equal than this value.  
34 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
F_FILL  
(read only)  
0x1B  
’0’ Number of bytes in the following FIFOs is lower than the value defined in the F_THRES  
register.  
’1’ Number of bytes in the following FIFOs is greater or equal than the value defined in the  
F_THRES register.  
Bits  
Description  
B1 transmit  
B1 receive  
B2 transmit  
B2 receive  
D transmit  
D receive  
0
1
2
3
4
5
6
7
PCM transmit  
PCM receive  
G
Important !  
After data reading from or writing to a FIFO, the F_FILL register must be up-  
dated with a change FIFO or an increment FIFO counter operation. After this it  
takes up to 250 µs until the bit value in the register F_FILL of the processed FIFO  
represents the actual state of the FIFO filling level.  
July 2003  
Data Sheet  
35 of 94  
Cologne  
Chip  
HFC-S mini  
INT_S1  
(read only)  
0x10  
FIFO interrupt status  
Bits  
Description  
B1 FIFO interrupt status in transmit direction  
0
1
2
3
4
5
6
7
’1’ a complete frame has been transmitted, the frame counter F2 has been incremented  
B1 FIFO interrupt status in receive direction  
’1’ a complete frame has been transmitted, the frame counter F1 has been incremented  
B2 FIFO interrupt status in transmit direction  
’1’ a complete frame has been transmitted, the frame counter F2 has been incremented  
B2 FIFO interrupt status in receive direction  
’1’ a complete frame has been transmitted, the frame counter F1 has been incremented  
D FIFO interrupt status in transmit direction  
’1’ a complete frame was transmitted, the frame counter F2 has been incremented  
D FIFO interrupt status in receive direction  
’1’ a complete frame was transmitted, the frame counter F1 has been incremented  
PCM FIFO interrupt status in transmit direction  
’1’ a complete frame was transmitted, the frame counter F2 has been incremented  
PCM FIFO interrupt status in receive direction  
’1’ a complete frame was transmitted, the frame counter F1 has been incremented  
G
Please note !  
The interrupts indicated in the INT_S1 register are frame interrupts which occur  
in HDLC mode. In transparent mode an interrupt can be generated on a regular  
basis. Interrupt frequency can be selected in the CON_HDLC register.  
36 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
INT_S2  
(read only)  
0x11  
Interrupt status  
Bits  
Description  
0
1
2
3
4
TE/NT state machine interrupt status  
’1’ state of state machine changed  
Timer interrupt status  
’1’ timer is elapsed  
Processing/non processing transition interrupt status  
’1’ The HFC-S mini has changed from processing to non processing state.  
GCI I-change interrupt  
’1’ a different I-value on GCI was detected  
Receiver ready (RxR) of monitor channel  
’1’ 2 monitor bytes have been received  
7..5  
unused, ’0’  
G
Important !  
Reading the INT_S1 or INT_S2 register resets all active read interrupts in the  
INT_S1 or INT_S2 register respectively. New interrupts may occur during read.  
These interrupts are reported at the next read of INT_S1 or INT_S2.  
All interrupt bits are reported regardless of the mask registers settings (INT_M1  
and INT_M2). The mask registers settings only influence the interrupt output  
condition.  
The interrupt output goes inactive during the read of INT_S1 or INT_S2. If inter-  
rupts occur during this read the interrupt line goes active immediately after the  
read is finished. So processors with level or transition triggered interrupt inputs  
can be connected.  
July 2003  
Data Sheet  
37 of 94  
Cologne  
Chip  
HFC-S mini  
INT_M1  
(write only)  
0x1A  
Interrupt mask  
For mask bits of this register a ’1’ enables and a ’0’ disables the interrupt. Reset clears all bits to  
’0’.  
Bits  
Description  
0
1
2
3
4
5
6
7
interrupt mask for B1-channel in transmit direction  
interrupt mask for B1-channel in receive direction  
interrupt mask for B2-channel in transmit direction  
interrupt mask for B2-channel in receive direction  
interrupt mask for D-channel in transmit direction  
interrupt mask for D-channel in receive direction  
interrupt mask for PCM-channel in transmit direction  
interrupt mask for PCM-channel in receive direction  
INT_M2  
(write only)  
0x1B  
Interrupt mask  
For mask bits of this register a ’1’ enables and a ’0’ disables the interrupt. Reset clears all bits to  
’0’.  
Bits  
Description  
0
1
2
3
4
5
6
7
interrupt mask for TE/NT state machine state change  
interrupt mask for timer  
interrupt mask for processing/non processing transition  
interrupt mask for GCI I-change  
interrupt mask for receiver ready (RxR) of monitor channel  
unused, must be ’0’  
interrupt output is reversed  
enable interrupt output  
38 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
HDLC_PAR [FIFO]  
(write only)  
0xFB  
Bits  
2..0  
Description  
Bit count for HDLC and transparent mode  
(number of bits to process)  
’000’ process 8 bits (64 kbit/s) (reset default)  
’001’ process 1 bit  
: :  
’111’ process 7 bits (56 kbit/s)  
5..3  
Start bit for HDLC and transparent mode  
’000’ start processing with bit 0 (reset default)  
: :  
’111’ start processing with bit 7  
6
7
FIFO loop  
’0’ normal operation (reset default)  
’1’ repeat current frame  
Invert data enable/disable  
’0’ normal read/write data (reset default)  
’1’ invert data  
G
Important !  
For normal B-channel operation, the HDLC_PAR register must be set to 0x00.  
To use 56 kbit/s restricted mode the HDLC_PAR register must be set to 0x07 for  
B-channels.  
For D-channels the HDLC_PAR register must be set to 0x02.  
July 2003  
Data Sheet  
39 of 94  
Cologne  
Chip  
HFC-S mini  
CON_HDLC [FIFO]  
(write only)  
0xFA  
Bits  
Description  
0
1
Inter frame fill  
’0’ write HDLC flags 0x7E as inter frame fill (reset default)  
’1’ write all ’1’s as inter frame fill (must be set for D-channel)  
HDLC mode/transparent mode select  
’0’ HDLC mode (reset default)  
’1’ transparent mode select  
If bits 3..1 are ’000’ the FIFO is disabled (reset default).  
3..2  
Transparent mode interrupt frequency select  
’00’ every 8 bytes  
’01’ every 16 bytes  
’10’ every 32 bytes  
’11’ every 64 bytes  
In HDLC mode, set this bitmap = 0 to enable the FIFO.  
4
must be ’0’  
7..5  
Select data flow for selected FIFO  
B1-channel (FIFO0 and FIFO1):  
bit 5: ’0’  
’1’  
FIFO1  
FIFO1  
B1-S/T  
B1-S/T  
B1-S/T  
B1-PCM  
FIFO0  
bit 6: ’0’  
’1’  
B1-PCM  
FIFO0  
bit 7: ’0’ B1-PCM  
’1’ B1-PCM  
B1-S/T  
B2-channel (FIFO2 and FIFO3):  
bit 5: ’0’  
’1’  
FIFO3  
FIFO3  
B2-S/T  
B2-S/T  
B2-S/T  
B2-PCM  
FIFO2  
bit 6: ’0’  
’1’  
B2-PCM  
FIFO2  
bit 7: ’0’ B2-PCM  
’1’ B2-PCM  
B2-S/T  
D-channel and PCM (FIFO4 and FIFO5):  
bit 5: ’0’  
’1’  
FIFO5  
FIFO5  
D-S/T  
D-S/T  
AUX1  
AUX1  
D-S/T  
AUX1  
FIFO4  
AUX1  
FIFO4  
D-S/T  
bit 6: ’0’  
’1’  
bit 7: ’0’  
’1’  
E-channel and PCM (FIFO6 and FIFO7):  
bit 5: ’0’  
’1’  
FIFO7  
FIFO7  
E-S/T  
E-S/T  
AUX2  
AUX2  
E-S/T  
AUX2  
FIFO6  
AUX2  
FIFO6  
E-S/T  
bit 6: ’0’  
’1’  
bit 7: ’0’  
’1’  
: (not available if MST_MODE1[7] is set)  
CON_HDLC register bits[7:5] must be the same for corresponding receive and transmit  
FIFOs.  
40 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
G
Please note !  
In any case the FIFO must be enabled to activate the data transmission selected  
with bits 7 . . 5 of the CON_HDLC register.  
G
Important !  
FIFO5 for the D-channel does not work properly if GCI mode is selected (bit 7 of  
MST_MODE1 = ’1’). In this case, the AUX2 receive time slot can be configured  
to the receive time slot 3 which is related to FIFO 7 in this case for D-channel  
receive (HDLC_PAR = 0x02 and CON_HDLC = 0x25).  
0
S/T  
Bit 6  
1
HFC  
0
1
Transmit FIFO  
Receive FIFO  
Bit 5  
PCM  
1
0
Bit 7  
Figure 9: Function of CON_HDLC register bits 7 . . 5  
CH_MASK [FIFO]  
(write only)  
0xF4  
Bit value for not processed bits of a channel. All not processed bits of a channel are set to the  
value defined in this register.  
Bits  
7..0  
Description  
Mask value  
July 2003  
Data Sheet  
41 of 94  
Cologne  
Chip  
HFC-S mini  
CHANNEL [FIFO]  
(write only)  
0xFC  
Link selected FIFO to ISDN channel (only in Channel Select Mode, see F_MODE register)  
Bits  
2..0  
Description  
Link FIFO to S/T channel  
’000’ B1-transmit  
’001’ B1-receive  
’010’ B2-transmit  
’011’ B2-receive  
’100’ D-transmit  
’101’ D-receive  
’110’ invalid (E is receive only)  
’111’ E-receive  
7..3  
unused, must be ’0’  
CHIP_ID  
(read only)  
0x16  
Chip identification  
Bits  
3..0  
Description  
unused, ’0’  
7..4  
’0101’ HFC-S mini  
42 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
STATUS  
(read only)  
0x1C  
Bits  
Description  
BUSY/NOBUSY status  
0
1
’1’ the HFC-S mini is BUSY after initializing, reset FIFO, increment F or change FIFO  
’0’ the HFC-S mini is not busy, all accesses are allowed  
Note: Accesses to FIFO registers are not allowed during busy period.  
Processing/non processing status  
’1’ the HFC-S mini is in processing phase (every 125 µs)  
’0’ the HFC-S mini is not in processing phase  
2
3
4
5
6
7
unused, ’0’  
AWAKE input signal  
SYNC_I input signal  
unused, ’0’  
an interrupt (with enabled mask bit) indicated in the INT_S2 register has occured  
FRAME interrupt with enabled mask bit has occured (any FIFO interrupt)  
All masked B-, D- and PCM-channel interrupts are ‘ored’ (see register INT_S1)  
Reading the STATUS register clears no bit.  
TIME_SEL  
(write only)  
0x1C  
Select interrupt frequency of timer interrupt  
Bits  
3..0  
Description  
’0000’ every 250 µs  
’0001’ every 500 µs  
’0010’ every 1 ms  
’0011’ every 2 ms  
’0100’ every 4 ms  
’0101’ every 8 ms  
’0110’ every 16 ms  
’0111’ every 32 ms  
’1000’ every 64 ms  
’1001’ every 128 ms  
’1010’ every 256 ms  
’1011’ every 512 ms  
’1100’ every 1024 ms  
’1101’ every 2048 ms  
’1110’ every 4096 ms  
’1111’ every 8192 ms  
7..4  
unused, must be ’0’  
July 2003  
Data Sheet  
43 of 94  
Cologne  
Chip  
HFC-S mini  
4.2 PCM/GCI/IOM2 bus section registers  
4.2.1 Time slots for transmit direction  
B1_SSL  
(write only)  
0x20  
Bits  
Description  
4..0  
select PCM/GCI/IOM2 bus transmission slot (0..31, 32..63, 64..95, 96..127, see MST_MODE2  
register bits 5..4)  
5
6
unused  
select PCM/GCI/IOM2 bus data lines  
’0’ STIO1 output  
’1’ STIO2 output  
7
select PCM/GCI/IOM2 bus data lines  
’0’ STIO1 output  
’1’ STIO2 output  
B2_SSL  
(write only)  
0x21  
Bits  
Description  
4..0  
select PCM/GCI/IOM2 bus  
transmission slot (0..31, 32..63, 64..95, 96..127, see MST_MODE2 register bits 5..4)  
5
6
unused  
select PCM/GCI/IOM2 bus data lines  
’0’ STIO1 output  
’1’ STIO2 output  
7
transmit channel enable for PCM/GCI/IOM2 bus  
’0’ disable (reset default)  
’1’ enable  
44 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
AUX1_SSL  
(write only)  
0x22  
Bits  
4..0  
Description  
select PCM/GCI/IOM2 bus transmission slot (0..31, 32..63, 64..95, 96..127, see MST_MODE2  
register bits 5..4)  
5
6
unused  
select PCM/GCI/IOM2 bus data lines  
’0’ STIO1 output  
’1’ STIO2 output  
7
transmit channel enable for PCM/GCI/IOM2 bus  
’0’ disable (reset default)  
’1’ enable  
AUX2_SSL  
(write only)  
0x23  
Bits  
4..0  
Description  
select PCM/GCI/IOM2 bus transmission slot (0..31, 32..63, 64..95, 96..127, see MST_MODE2  
register bits 5..4)  
5
6
unused  
select PCM/GCI/IOM2 bus data lines  
’0’ STIO1 output  
’1’ STIO2 output  
7
transmit channel enable for PCM/GCI/IOM2 bus  
’0’ disable (reset default)  
’1’ enable  
G
Important !  
Enabling more than one channel on the same slot causes undefined output data.  
July 2003  
Data Sheet  
45 of 94  
Cologne  
Chip  
HFC-S mini  
4.2.2 Time slots for receive direction  
B1_RSL  
(write only)  
0x24  
Bits  
4..0  
Description  
select PCM/GCI/IOM2 bus receive slot (0..31, 32..63, 64..95,96..127, see MST_MODE2 register  
bits 5..4)  
5
6
unused  
select PCM/GCI/IOM2 bus data lines  
’0’ STIO2 is input  
’1’ STIO1 is input  
7
receive channel enable for PCM/GCI/IOM2 bus  
’0’ disable (reset default)  
’1’ enable  
B2_RSL  
(write only)  
0x25  
Bits  
Description  
4..0  
select PCM/GCI/IOM2 bus receive slot (0..31, 32..63, 64..95,96..127, see MST_MODE2 register  
bits 5..4)  
5
6
unused  
select PCM/GCI/IOM2 bus data lines  
’0’ STIO2 is input  
’1’ STIO1 is input  
7
receive channel enable for PCM/GCI/IOM2 bus  
’0’ disable (reset default)  
’1’ enable  
46 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
AUX1_RSL  
(write only)  
0x26  
Bits  
4..0  
Description  
select PCM/GCI/IOM2 bus receive slot (0..31, 32..63, 64..95,96..127, see MST_MODE2 register  
bits 5..4)  
5
6
unused  
select PCM/GCI/IOM2 bus data lines  
’0’ STIO2 is input  
’1’ STIO1 is input  
7
receive channel enable for PCM/GCI/IOM2 bus  
’0’ disable (reset default)  
’1’ enable  
AUX2_RSL  
(write only)  
0x27  
Bits  
4..0  
Description  
select PCM/GCI/IOM2 bus receive slot (0..31, 32..63, 64..95,96..127, see MST_MODE2 register  
bits 5..4)  
5
6
unused  
select PCM/GCI/IOM2 bus data lines  
’0’ STIO2 is input  
’1’ STIO1 is input  
7
receive channel enable for PCM/GCI/IOM2 bus  
’0’ disable (reset default)  
’1’ enable  
July 2003  
Data Sheet  
47 of 94  
Cologne  
Chip  
HFC-S mini  
4.2.3 PCM data registers  
B1_D  
(read / write)  
0x2C  
0x2D  
0x2E  
Bits  
7..0  
Description  
read/write data registers for selected time slot data  
B2_D  
(read / write)  
Bits  
Description  
7..0  
read/write data registers for selected time slot data  
AUX1_D  
(read / write)  
Bits  
Description  
7..0  
read/write data registers for selected time slot data  
48 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
AUX2_D  
(read / write)  
0x2F  
Bits  
7..0  
Description  
read/write data registers for selected time slot data  
All PCM data registers are read / written automatically by the HDLC FIFO controller (HFC) or PCM  
controller and need not be accessed by the user. To read / write data the FIFO registers should be used.  
G
Please note !  
Auxiliary channel handling  
To support an automatic CODEC to CODEC connection AUX1_D and AUX2_D  
can be set into mirror mode. In this case, if the data registers AUX1_D and  
AUX2_D are not overwritten, the transmisson slots AUX1_SSL and AUX2_SSL  
mirror the data received in AUX1_RSL and AUX2_RSL slots. This is useful for an  
internal connection between two CODECs. This mirroring is enabled by setting  
bits 1 . . 0 in MST_MODE1 register.  
July 2003  
Data Sheet  
49 of 94  
Cologne  
Chip  
HFC-S mini  
4.2.4 Configuration and status registers  
MST_MODE0  
(write only)  
0x14  
Bits  
Description  
0
1
2
3
PCM/GCI/IOM2 bus mode  
’0’ slave (reset default) (C4IO and F0IO are inputs)  
’1’ master (C4IO and F0IO are outputs)  
polarity of C4IO and C2O clock  
’0’ F0IO is sampled on negative clock transition  
’1’ F0IO is sampled on positive clock transition  
polarity of F0IO signal  
’0’ F0IO positive pulse  
’1’ F0IO negative pulse  
duration of F0IO signal  
’0’ F0IO active for one C4IO clock (244 ns at 2 Mbit/s) (reset default)  
’1’ F0IO active for two C4IO clocks (488 ns at 2 Mbit/s)  
5..4  
7..6  
time slot for CODEC-A signal F1_A  
’00’ B1 receive slot  
’01’ B2 receive slot  
’10’ AUX1 receive slot  
’11’ signal C2O. pin F1_A (C2O is 1/2 C4IO)  
time slot for CODEC-B signal F1_B  
’00’ B1 receive slot  
’01’ B2 receive slot  
’10’ AUX1 receive slot  
’11’ AUX2 receive slot  
The pulse shape and polarity of the CODEC signals F1_A and F1_B is the same as the pulse shape of  
the F0IO signal. The polarity of C2O can be changed by bit 1.  
/RES clears registers MST_MODE0, MST_MODE1 and MST_MODE2 to all ’0’s.  
G
Important !  
There is always a clock signal required at the pins C4IO and F0IO. If no external  
clock source is connected to these pins (PCM slave mode), bit 0 of MST_MODE0  
must be set for PCM master mode.  
50 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
MST_MODE1  
(write only)  
0x15  
Bits  
Description  
enable/disable AUX1 channel mirroring  
0
1
’0’ disable AUX1 channel data mirroring (reset default)  
’1’ mirror AUX1 receive to AUX1 transmit  
enable/disable AUX2 channel mirroring  
’0’ disable AUX2 channel data mirroring (reset default)  
’1’ mirror AUX2 receive to AUX2 transmit  
3..2  
DPLL adjust speed  
’00’ C4IO clock is adjusted in the last time slot of MST  
frame 4 times by one half clock cycle of CLKI  
’01’ C4IO clock is adjusted in the last time slot of MST  
frame 3 times by one half clock cycle of CLKI  
’10’ C4IO clock is adjusted in the last time slot of MST  
frame twice by one half clock cycle of CLKI  
’11’ C4IO clock is adjusted in the last time slot of MST  
frame once by one half clock cycle of CLKI  
5..4  
PCM data rate  
’00’ 2 MBit/s (PCM30)  
’01’ 4 MBit/s (PCM64), long F0IO signal required (> 170 ns, bit 3 of MST_MODE0 must be set)  
’10’ 8 MBit/s (PCM128), only in PCM slave mode and with long F0IO signal (> 170 ns, bit 3 of  
MST_MODE0 must be set)  
’11’ unused  
6
7
MST test loop  
When set MST output data is looped to the MST inputs.  
enable GCI/IOM2 write slots  
’0’ disable PCM/GCI/IOM2 write slots; slot #2 and slot #3 may be used for normal data  
’1’ enables slot #2 and slot #3 as master, D- and C/I-channel  
G
Important !  
As the F0IO pulse must be 170 ns at least in all cases where the S/T interface is  
used, the following restrictions must be fulfilled:  
In master mode bit 3 of MST_MODE0 must be ’1’ at 4 Mbit/s. A data rate  
of 8 Mbit/s is not available.  
In slave mode any data rate of MST_MODE1[4..5] is selectable if F0IO >  
170 ns (bit 3 of MST_MODE0 = ’1’).  
July 2003  
Data Sheet  
51 of 94  
Cologne  
Chip  
HFC-S mini  
MST_MODE2  
(write only)  
0x16  
Bits  
Description  
0
1
2
’1’ generate frame signal for OKITM CODECs on F1_A  
’1’ generate frame signal for OKITM CODECs on F1_B  
select PCM DPLL synchronization source  
’0’ S/T receive frame (only in TE mode and valid frame synchronization (F6 or F7) a  
synchronization signal is generated)  
’1’ SYNC_I input 8 kHz  
3
select SYNC_O output  
’0’ S/T receive frame 8 kHz (only in TE mode and valid frame synchronization (F6 or F7) a  
synchronization signal is generated)  
’1’ SYNC_I is connected to SYNC_O  
5..4  
PCM/GCI/IOM2 slot select for higher data rates  
’00’ slots 31..0 accessable  
’01’ slots 63..32 accessable  
’10’ slots 95..64 accessable  
’11’ slots 127..96 accessable  
6
7
This bit is only valid if bit 7 is set.  
’0’ PCM frame time is reduced as selected by bits 3..2 of the MST_MODE1 register  
’1’ PCM frame time is increased as selected by bits 3..2 of the MST_MODE1 register  
’0’ normal operation  
’1’ enable PCM PLL adjust according to bit 6 if no synchronization source is available. This is  
used to synchronize by software.  
F0_CNT_L  
(read only)  
0x18  
F0IO pulse count  
Bits  
7..0  
Description  
16 bit 125 µs time counter (low byte)  
52 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
F0_CNT_H  
(read only)  
0x19  
F0IO pulse count  
Bits  
7..0  
Description  
16 bit 125 µs time counter (high byte)  
C/I  
(read / write)  
0x28  
C/I channel data of GCI  
Bits  
3..0  
Description  
on read: indication  
on write: command  
7..4  
unused  
TRxR  
(read only)  
0x29  
Bits  
Description  
0
1
’1’ Monitor receiver ready (2 monitor bytes have been received)  
’1’ Monitor transmitter ready  
Writing on MON2_D starts transmisssion and resets this bit.  
5..2  
6
reserved  
value of STIO2 input pin  
value of STIO1 input pin  
7
July 2003  
Data Sheet  
53 of 94  
Cologne  
Chip  
HFC-S mini  
MON1_D  
(read / write)  
0x2A  
Bits  
7..0  
Description  
first monitor byte  
MON2_D  
(read / write)  
0x2B  
Bits  
Description  
7..0  
second monitor byte  
4.3 S/T section registers  
ST_RD_STA  
(read only)  
0x30  
S/T interface state register  
Bits  
3..0  
Description  
binary value of actual state (NT: Gx, TE: Fx)  
Frame synchronization (’1’ = synchronized)  
’1’ timer T2 expired (NT mode only)  
’1’ receiving INFO0  
4
5
6
7
’1’ in NT mode: transition from G2 to G3 is allowed.  
54 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
ST_WR_STA  
(write only)  
0x30  
S/T interface state register  
Bits  
3..0  
Description  
Set new state xxxx (bit 4 must also be set to load the state).  
4
’1’ loads the prepared state (bit 3..0) and stops the state machine.This bit needs to be set for a  
minimum period of 5.21 µs and must be cleared by software (reset default).  
’0’ enables the state machine.  
After writing an invalid state the state machine goes to deactivated state (G1, F2)  
6..5  
’00’ no operation  
’01’ no operation  
’10’ start deactivation  
’11’ start activation  
The bits are automatically cleared after activation/deactivation.  
7
’0’ no operation  
’1’ in NT mode: allows transition from G2 to G3.  
This bit is automatically cleared after the transition.  
G
Important !  
The S/T state machine is stuck to ’0’ after a reset.  
In this state the HFC-S mini sends no signal on the S/T line and it is not possible  
to activate it by incoming INFOx.  
Writing a ’0’ to bit 4 of the ST_WR_STA register restarts the state machine.  
NT mode: The NT state machine does not change automatically from G2 to G3  
if the TE side sends INFO3 frames. This transition must be activated each time  
by bit 7 of the ST_WR_STA register or by setting bit 0 of the SCTRL_E register.  
July 2003  
Data Sheet  
55 of 94  
Cologne  
Chip  
HFC-S mini  
SCTRL  
(write only)  
0x31  
Bits  
Description  
0
1
2
’0’ B1 send data disabled (permanent ’1’ sent in activated states, reset default)  
’1’ B1 data enabled  
’0’ B2 send data disabled (permanent ’1’ sent in activated states, reset default)  
’1’ B2 data enabled  
S/T interface mode  
’0’ TE mode (reset default)  
’1’ NT mode  
3
4
D-channel priority  
’0’ high priority 8/9 (reset default)  
’1’ low priority 10/11  
S/Q bit transmission  
’0’ S/Q bit disable (reset default)  
’1’ S/Q bit and multiframe enable  
5
6
’0’ normal operation (reset default)  
’1’ send 96 kHz transmit test signal (alternating zeros)  
/TX1_LO and /TX2_LO line setup  
This bit must be configured depending on the used S/T module and circuitry to match the 400 ms  
pulse mask test.  
’0’ capacitive line mode (reset default)  
’1’ non capacitive line mode  
7
Power down  
’0’ normal operation, oscillator active (reset default)  
’1’ power down, oscillator stopped  
Oscillator is restarted when AWAKE input becomes ’1’ or on any write access to the HFC-S mini.  
56 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
SCTRL_E  
(write only)  
0x32  
Bits  
Description  
force G2 to G3  
0
automatic transition from G2 to G3 without setting bit 7 of ST_WR_STA register  
1
2
must be ’0’  
D reset  
’0’ normal operation (reset default)  
’1’ D bits are forced to ’1’  
3
4
D_U enable  
’0’ normal operation (reset default)  
’1’ D-channel is always send enabled regardless of E receive bit  
force E = ’0’ (NT mode)  
’0’ normal operation (reset default)  
’1’ E-bit send is forced to ’0’  
6..5  
7
must be ’0’  
’1’ swap B1- and B2-channels in the S/T interface  
SCTRL_R  
(write only)  
0x33  
Bits  
Description  
0
1
B1-channel receive enable  
B2-channel receive enable  
’0’ B receive bits are forced to ’1’  
’1’ normal operation  
7..2  
unused  
July 2003  
Data Sheet  
57 of 94  
Cologne  
Chip  
HFC-S mini  
SQ_REC  
(read only)  
0x34  
Bits  
3..0  
Description  
TE mode: S bits (bit 3 = S1, bit 2 = S2, bit 1 = S3, bit 0 = S4)  
NT mode: Q bits (bit 3 = Q1, bit 2 = Q2, bit 1 = Q3, bit 0 = Q4)  
4
’1’ a complete S or Q multiframe has been received  
Reading SQ_REC clears this bit.  
6..5  
7
not defined  
’1’ ready to send a new S or Q multiframe  
Writing to SQ_SEND clears this bit.  
SQ_SEND  
(write only)  
0x34  
Bits  
3..0  
Description  
TE mode: Q bits (bit 3 = Q1, bit 2 = Q2, bit 1 = Q3, bit 0 = Q4  
NT mode: S bits (bit 3 = S1, bit 2 = S2, bit 1 = S3, bit 0 = S4)  
7..4  
not defined  
58 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
CLKDEL  
(write only)  
0x37  
Bits  
3..0  
Description  
TE: 4 bit delay value to adjust the 2 bit time delay between receive and transmit direction. The  
delay of the external S/T interface circuit can be compensated. The lower the value the smaller  
the delay between receive and transmit direction.  
NT: Data sample point. The lower the value the earlier the input data is sampled.  
The step size is 163 ns.  
6..4  
7
NT mode only  
early edge input data shaping  
Low pass characteristic of extended bus configurations can be compensated. The lower the value  
the earlier input data pulse is sampled. No compensation means a value of 6 (’110’).  
The step size is 163 ns.  
unused  
G
Please note !  
The register CLKDEL is not initialized with a ’0’ after reset. The register should  
be initialized as follows before activating the TE / NT state machine:  
TE mode: 0x0D . . 0x0F (0x0F for S/T interface circuitry shown on page 75)  
NT mode: 0x6C  
4.3.1 S/T data registers  
B1_REC  
(read only)  
0x3C  
Bits  
7..0  
Description  
B1-channel receive register  
July 2003  
Data Sheet  
59 of 94  
Cologne  
Chip  
HFC-S mini  
B1_SEND  
(write only)  
(read only)  
(write only)  
(read only)  
0x3C  
0x3D  
0x3D  
0x3E  
Bits  
7..0  
Description  
B1-channel transmit register  
B2_REC  
Bits  
Description  
7..0  
B2-channel receive register  
B2_SEND  
Bits  
7..0  
Description  
B2-channel transmit register  
D_REC  
Bits  
Description  
7..0  
D-channel receive register  
60 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
D_SEND  
(write only)  
0x3E  
Bits  
7..0  
Description  
D-channel transmit register  
E_REC  
(read only)  
0x3F  
Bits  
Description  
7..0  
E-channel receive register  
All S/T data registers are read / written automatically by the HDLC FIFO controller (HFC) or PCM  
controller and need not be accessed by the user. To read / write data the FIFO registers should be used.  
July 2003  
Data Sheet  
61 of 94  
Cologne  
Chip  
HFC-S mini  
5 Electrical characteristics  
Absolute maximum ratings  
Parameter  
Symbol  
Min.  
Max.  
Power supply  
Input voltage  
Output voltage  
VDD  
VI  
0.3V  
+7.0V  
0.3V VCC +0.3V  
VO  
0.3V VCC +0.3V  
Operating temperature  
Storage temperature  
Topr  
Tstg  
10C  
40C  
+85C  
+125C  
Recommended operating conditions  
Parameter  
Symbol  
Min.  
Typ.  
Max  
Conditions  
Power supply  
VDD  
3.0V  
3.3V  
3.6V  
VDD = 3.3V  
VDD = 5V  
4.75V  
5V  
5.25V  
Operating temperature  
Topr  
0C  
+70C  
Supply current  
Normal  
fCLK = 24.576MHz  
IDD  
12 mA  
24 mA  
VDD = 3.3V, running oscillator  
VDD = 5V, running oscillator  
VDD = 3.3V, oscillator stopped  
VDD = 5V, oscillator stopped  
Power down  
1 mA  
2 mA  
62 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
Electrical characteristics for 3.3 V power supply (TTL level)  
VDD = 3.0V to 3.6V,Topr = 0C to +70C  
Parameter  
Symbol  
Min. Typ. Max  
Low input voltage  
High input voltage  
VIL  
VIH  
0.5 V  
1.5 V  
Low output voltage  
High output voltage  
VOL  
VOH  
0.4 V  
2.4 V  
0.5 V  
VDD  
Schmitt trigger, positive-going threshold  
Schmitt trigger, negative-going threshold  
VT+  
VT-  
1.3 V  
Electrical characteristics for 3.3 V power supply (CMOS level)  
VDD = 3.0V to 3.6V,Topr = 0C to +70C  
Parameter  
Symbol  
Min. Typ. Max  
Low input voltage  
High input voltage  
VIL  
VIH  
1.0 V  
2.0 V  
Low output voltage  
High output voltage  
VOL  
VOH  
0.4 V  
2.4 V  
1.0 V  
VDD  
Schmitt trigger, positive-going threshold  
Schmitt trigger, negative-going threshold  
VT+  
VT-  
2.0 V  
July 2003  
Data Sheet  
63 of 94  
Cologne  
Chip  
HFC-S mini  
Electrical characteristics for 5 V power supply (TTL level)  
VDD = 4.75V to 5.25V,Topr = 0C to +70C  
Parameter  
Symbol  
Min. Typ. Max  
Low input voltage  
High input voltage  
VIL  
VIH  
0.8 V  
2.0 V  
Low output voltage  
High output voltage  
VOL  
VOH  
0.4 V  
2.4 V  
Schmitt trigger, positive-going threshold  
Schmitt trigger, negative-going threshold  
VT+  
VT-  
2.0 V  
0.8 V  
Electrical characteristics for 5 V power supply (CMOS level)  
VDD = 4.75V to 5.25V,Topr = 0C to +70C  
Parameter  
Symbol  
Min. Typ. Max  
Low input voltage  
High input voltage  
VIL  
VIH  
1.5 V  
3.5 V  
Low output voltage  
High output voltage  
VOL  
VOH  
0.4 V  
2.4 V  
Schmitt trigger, positive-going threshold  
Schmitt trigger, negative-going threshold  
VT+  
VT-  
4.0 V  
1.0 V  
64 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
Table 7: I/O characteristics  
Input  
Interface level  
/RD  
/WR  
CMOS  
CMOS  
/CS  
CMOS, internal pull-up resistor  
ALE  
CMOS, internal pull-up resistor  
A0  
CMOS  
D7 . . D0  
CLKI  
AWAKE  
C4IO  
F0IO  
CMOS  
CMOS  
CMOS  
TTL Schmitt Trigger, internal pull-up resistor  
CMOS, internal pull-up resistor  
STIO1, STIO2 CMOS, internal pull-up resistor  
/RES CMOS Schmitt Trigger, internal pull-up resistor  
Table 8: Driver Capability  
Low  
High  
Output  
0.4 V VDD 0.8V  
D7 . . D0  
C4IO  
4 mA  
8 mA  
8 mA  
2 mA  
4 mA  
4 mA  
4 mA  
2 mA  
F0IO  
STIO1, STIO2 8 mA  
F1_A, F1_B  
4 mA  
4 mA  
/INT  
July 2003  
Data Sheet  
65 of 94  
Cologne  
Chip  
HFC-S mini  
6 Timing Characteristics  
6.1 Microprocessor access  
6.1.1 Register read access in mode 2 (Motorola) and mode 3 (Intel)  
address write  
data read  
data read  
A0  
D[7:0]  
address  
tDWRS  
data  
data  
tDRDZ  
tDWRH  
tDRDZ  
tDRDH  
tDRDH  
tRDmin  
tRDmin  
tAS  
tAH  
tAS  
tAH  
tAS  
tAH  
tCYCLE  
in mode 2 only  
(Motorola):  
tWRA  
tRD  
tRD  
/DS+/CS  
R/W  
tRWS  
tRWH  
tRWS  
tRWH  
tRWS  
tRWH  
in mode 3 only  
(Intel):  
/WR+/CS  
/RD+/CS  
Figure 10: Read access in mode 2 (Motorola) and mode 3 (Intel)  
tCLKI is the CLKI clock period which is normally 40.69 ns (24.576 MHz system clock).  
G
Important !  
All read accesses with register address bit D[7] = ’1’ (registers FIF_DATA,  
FIF_DATA_NOINC and RAM_DATA) have a cycle time  
tCYCLE 6·tCLKI  
between two consecutive of tRD  
.
G
Hint !  
If the same register as in the last register read / write access is accessed the register  
address write is not required.  
66 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
Table 9: Symbols of read accesses in Figure 10  
Symbol min / ns max / ns Characteristic  
tAS  
10  
10  
20  
30  
10  
A0 valid to /DS+/CS (/WR+/CS) setup time  
Address hold time after /DS+/CS (/WR+/CS)  
Write time for address write  
tAH  
tWRA  
tDW RS  
tDW RH  
Write data setup time to /DS+/CS (/WR+/CS)  
Write data hold time from /DS+/CS (/WR+/CS)  
tRD  
Read time:  
2·tCLKI  
20  
D[7] = ’0’ (address range 0 . . . 0x7F: normal register access)  
D[7,6] = ’10’ (address range 0x80 . . . 0xBF: FIFO data access)  
D[7,6] = ’11’ (address range 0xC0 . . . 0xFF: direct internal RAM access) ∗  
6·tCLKI  
tCYCLE  
/DS+/CS (/RD+/CS) to next end of data access  
D[7] = ’0’ (address range 0 . . . 0x7F: normal register access)  
D[7,6] = ’10’ (address range 0x80 . . . 0xBF: FIFO data access)  
D[7,6] = ’11’ (address range 0xC0 . . . 0xFF: direct internal RAM access) ∗  
6·tCLKI  
6·tCLKI  
tDRDZ  
tDRDH  
tRW S  
3
2
2
2
/DS+/CS (/RD+/CS) to data buffer turn on time  
/DS+/CS (/RD+/CS) to data buffer turn off time  
R/W setup time to /DS+/CS  
15  
tRW H  
R/W hold time after /DS+/CS  
( : Normally this time needs not to be matched because a direct RAM access is not needed.)  
July 2003  
Data Sheet  
67 of 94  
Cologne  
Chip  
HFC-S mini  
6.1.2 Register write access in mode 2 (Motorola) and mode 3 (Intel)  
address write  
data write  
data write  
A[7:0]  
D[7:0]  
address  
tDWRS  
data  
data  
tDWRH  
tDWRS  
tDWRH  
tDWRS  
tDWRH  
tAS  
tAH  
tAS  
tAH  
tAS  
tAH  
in mode2 only  
(Motorola):  
tWRA  
tWR  
tIDLE  
tWR  
/DS+/CS  
R/W  
tRWS  
tRWH  
tRWS  
tRWH  
tRWS  
tRWH  
in mode 3 only  
(Intel):  
/WR+/CS  
/RD  
permanently high  
Figure 11: Write access in mode 2 (Motorola) and mode 3 (Intel)  
Table 10: Symbols of write accesses in Figure 11  
Symbol min / ns max / ns Characteristic  
tAS  
10  
A0 valid to /DS+/CS (/WR+/CS) setup time  
Address hold time after /DS+/CS (/WR+/CS)  
Write time for address write  
tAH  
10  
tWRA  
tDW RS  
tDW RH  
tWR  
20  
20  
Write data setup time to /DS+/CS (/WR+/CS)  
Write data hold time from /DS+/CS (/WR+/CS)  
Write time  
10  
20  
tIDLE  
tRW S  
tRW H  
5·tCLKI  
/DS+/CS (/WR+/CS) high time between two data accesses  
R/W setup time to /DS+/CS  
2
2
R/W hold time after /DS+/CS  
tCLKI is the CLKI clock period which is normally 40.69 ns (24.576 MHz system clock).  
68 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
G
Important !  
All write accesses with register address bit D[7] = ’1’ (registers FIF_DATA,  
FIF_DATA_NOINC, RAM_DATA, CH_MASK, CON_HDLC, HDLC_PAR and  
CHANNEL) have a idle time  
tIDLE 5·tCLKI  
between of tWR and the next of tWR  
.
G
Hint !  
If the same register as in the last register read / write access is accessed, the reg-  
ister address write is not required.  
July 2003  
Data Sheet  
69 of 94  
Cologne  
Chip  
HFC-S mini  
6.1.3 Register read access in mode 4 (Intel, multiplexed)  
address write  
data read  
data read  
data  
D[7:0]  
ALE  
address  
data  
tAS  
tAH  
tDRDZ  
tDRDH  
tDRDZ  
tDRDH  
tRDmin  
tRDmin  
tALE  
tALEL  
tCYCLE  
tRD  
tRD  
/RD+/CS  
/WR  
permanently high  
Figure 12: Read access in mode 4 (Intel, multiplexed)  
Table 11: Symbols of read accesses in Figure 12  
Symbol min / ns max / ns Characteristic  
tALE  
10  
0
Address latch time  
tALEL  
tAS  
ALE to /RD+/CS  
10  
10  
3
Address valid to ALE setup time  
Address hold time after ALE  
/RD+/CS to data buffer turn on time  
/RD+/CS to data buffer turn off time  
tAH  
tDRDZ  
tDRDH  
2
15  
tRD  
Read time:  
2·tCLKI  
20  
D[7] = ’0’ (address range 0 . . . 0x7F: normal register access)  
D[7,6] = ’10’ (address range 0x80 . . . 0xBF: FIFO data access)  
D[7,6] = ’11’ (address range 0xC0 . . . 0xFF: direct internal RAM access) ∗  
5·tCLKI  
tCYCLE  
Cycle time between two consecutive /RD+/CS  
D[7] = ’0’ (address range 0 . . . 0x7F: normal register access)  
D[7,6] = ’10’ (address range 0x80 . . . 0xBF: FIFO data access)  
D[7,6] = ’11’ (address range 0xC0 . . . 0xFF: direct internal RAM access) ∗  
6·tCLKI  
6·tCLKI  
( : Normally this time needs not to be matched because a direct RAM access is not needed.)  
tCLKI is the CLKI clock period which is normally 40.69 ns (24.576 MHz system clock).  
G
Important !  
A0 must be ’0’ during the whole register read cycle. It should be connected to  
GND.  
70 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
6.1.4 Register write access in mode 4 (Intel, multiplexed)  
address write  
data write  
data write  
D[7:0]  
ALE  
address  
data  
data  
tAS  
tAH  
tDWRS  
tDWRH  
tDWRS  
tDWRH  
tALE  
tALEL  
tIDLE  
tWR  
tWR  
/WR+/CS  
/RD  
permanently high  
Figure 13: Write access in mode 4 (Intel, multiplexed)  
Table 12: Symbols of write accesses in Figure 13  
Symbol min / ns max / ns Characteristic  
tALE  
tALEL  
tAS  
10  
0
Address latch time  
ALE to /WR+/CS  
10  
10  
20  
10  
20  
Address valid to ALE setup time  
Address hold time after /WR+/CS  
Write data setup time to /WR+/CS  
Write data hold time from /WR+/CS  
Write time  
tAH  
tDW RS  
tDW RH  
tWR  
tIDLE  
/WR+/CS high time  
D[7] = ’0’ (address range 0 . . . 0x7F: normal register access)  
D[7,6] = ’10’ (address range 0x80 . . . 0xBF: FIFO data access)  
D[7,6] = ’11’ (address range 0xC0 . . . 0xFF: direct internal RAM access) ∗  
5·tCLKI  
5·tCLKI  
( : Normally this time needs not to be matched because a direct RAM access is not needed.)  
tCLKI is the CLKI clock period which is normally 40.69 ns (24.576 MHz system clock).  
G
Important !  
A0 must be ’0’ during the whole register read cycle. It should be connected to  
GND.  
July 2003  
Data Sheet  
71 of 94  
Cologne  
Chip  
HFC-S mini  
6.2 PCM/GCI/IOM2 timing  
tf  
tC4P  
tC4H  
tC4L  
C4IO  
tF0iCYCLE  
tF0iCYCLE  
tF0iH  
tF0iS  
*)  
tF0iW  
F0IO  
tSToD4  
tSToD2  
STIO1/2  
(output)  
tSTiS  
tSTiH  
STIO1/2  
(input)  
tD  
tC2P - 1 bit cell  
tC2H  
tC2L  
C2O on F1_A  
F1_A / F1_B **)  
*)  
F1_A / F1_B ***)  
Figure 14: PCM / GCI / IOM2 timing  
*) F0IO starts one C4IO clock earlier if bit 3 in MST_MODE0 register is set. If this bit is set F0IO is  
also awaited one C4IO clock cycle earlier.  
**) If bit 0 (or bit 1) of the MST_MODE2 register is set to ’1’ a frame signal for OKITM CODECs is  
generated on F1_A (or F1_B). The C2O clock on F1_A is not available if bit 0 of the MST_MODE2  
register is set.  
***) If bit 0 (or bit 1) of the MST_MODE2 register is cleared to ’0’ F1_A (or F1_B) is a CODEC  
enable signal with the same pulse shape and timing as the F0IO signal. If bits 5 . . 4 of MST_MODE0  
are ’11’ F1_A is C2O clock.  
72 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
6.2.1 Master mode  
To configure the HFC-S mini as PCM / GCI / IOM2 bus master bit 0 of the MST_MODE0 register must  
be set. In this case C4IO and F0IO are outputs. The PCM bit rate is configured by bits 5 . . 4 of the  
MST_MODE1 register.  
Table 13: PCM timing values in master mode  
Symbol  
Characteristics  
Min.  
Typ.  
Max.  
tC  
for 2 Mb/s (PCM30)  
for 4 Mb/s (PCM64)  
for 8 Mb/s (PCM128)  
122.07 ns  
61.035 ns  
30.518 ns  
1 , 2  
tC4P  
tC4H  
tC4L  
tC2P  
tC2H  
tC2L  
Clock C4IO period  
2tC 26ns  
tC 26ns  
tC 26ns  
2tC  
tC  
2tC +26ns  
tC +26ns  
tC +26ns  
4tC +52ns  
2tC +26ns  
2tC +26ns  
1 , 2  
Clock C4IO High Width  
1 , 2  
Clock C4IO Low Width  
tC  
Clock C2O Period 4tC 52ns  
4tC  
2tC  
2tC  
Clock C2O High Width 2tC 26ns  
Clock C2O Low Width 2tC 26ns  
3  
tF0iW F0IO Width  
Short F0IO  
Long F0IO  
2tC 26ns  
4tC 26ns  
2tC  
4tC  
2tC +6ns  
4tC +6ns  
3  
tSToD2  
tSToD4  
STIO1/2 output delay fom C2O  
STIO1/2 output delay fom C4IO  
15 ns  
10 ns  
30 ns  
25 ns  
tF0iCYCLE F0IO Cycle Time 1 half clock adjust 124.975 µs 125.000 µs 125.025 µs  
2 half clocks adjust 124.950 µs 125.000 µs 125.050 µs  
3 half clocks adjust 124.925 µs 125.000 µs 125.075 µs  
4 half clocks adjust 124.900 µs 125.000 µs 125.100 µs  
1: Time depends on accuracy of CLKI frequency. Because of clock adjustment in the 31st time slot these are  
the worst case timings when C4IO is adjusted.  
1
2: In 8 MBit/s mode the duty cycle of C4IO is /23 .  
3
3: 170 ns is the minimum value of F0IO for S/T data synchronization. Smaller values are only allowed if the  
S/T interface is not used.  
All specifications are for fCLK = 24.576MHz.  
July 2003  
Data Sheet  
73 of 94  
Cologne  
Chip  
HFC-S mini  
6.2.2 Slave mode  
To configure the HFC-S mini as PCM / GCI / IOM2 bus slave bit 0 of the MST_MODE0 register must  
be cleared. In this case C4IO and F0IO are inputs.  
Table 14: PCM timing values in slave mode  
Symbol  
Characteristics Min.  
Max.  
tC  
for 2 Mb/s (PCM30)  
for 4 Mb/s (PCM64)  
for 8 Mb/s (PCM128)  
122.07 ns  
61.035 ns  
30.518 ns  
tC4P  
tC4H  
tC4L  
tC2P  
tC2H  
tC2L  
tF0iS  
Clock C4IO period  
2tC  
Clock C4IO High Width 20 ns  
Clock C4IO Low Width 20 ns  
Clock C2O Period  
4tC  
2tC  
2tC  
Clock C2O High Width  
Clock C2O Low Width  
F0IO Setup Time to C4IO  
20 ns  
20 ns  
tF0iH F0IO Hold Time after C4IO  
tF0iW  
tSTiS  
tSTiH  
F0IO Width 170 ns  
STIO2 Setup Time 20 ns  
STIO2 Hold Time 20 ns  
: If the S/T interface is activated, the frequency must be stable to 104  
.
All specifications are for fCLK = 24.576MHz.  
74 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
7 External circuitries  
7.1 S/T interface circuitry  
In order to comply to the physical requirements of ITU-T I.430 recommendation and considering the  
national requirements concerning overvoltage protection and electromagnetic compatibility (EMC),  
the HFC-S mini needs some additional circuitry, which are shown in this section.  
7.1.1 External receiver circuitry  
R20  
ADJ_LEV  
C15  
RC1  
RA1  
VDD  
R1  
RB1  
LEV_R1  
R15  
Figure 15: External receiver circuitry  
WAKE_UP_1 and WAKE_UP_2 are for connection to the wake up circuitry (see section 7.1.2). C15  
and C16 are for reduction of high frequency input noise and should be placed as close as possible to  
the HFC-S mini.  
Part list  
VDD  
3.3 V 5 V  
VDD 3.3 V 5 V  
C15  
C16  
C18  
D2  
22pF  
RD1  
RC1  
RD2  
RC2  
R14  
R15  
R20  
4k7  
4k7  
22pF  
47nF  
4k7  
BAV99  
BAV99  
4k7  
D1  
680k 1M  
1M2 1M8  
3k9  
ISDN_ST1 ISDN Connector  
RA2  
RA1  
RB1  
RB2  
100k  
100k  
33k  
TR1A S/T Module  
33k  
July 2003  
Data Sheet  
75 of 94  
Cologne  
Chip  
HFC-S mini  
7.1.2 External wake-up circuitry  
The wake-up circuitry is optional. It enables the HFC-S mini to wake up by incoming INFOx (non  
INFO0) signals on the S/T interface.  
WAKE_UP_2  
(from receiver circuitry)  
R23  
R24  
Q3  
WAKE_UP_1  
(from receiver circuitry)  
AWAKE  
C17  
(HFC-S mini, pin 28)  
R22  
GND  
Figure 16: External wake-up circuitry  
WAKE_UP_1 and WAKE_UP_2 are inputs from the receiver circuitry.  
Part list  
Part Value  
C17 100pF  
Q3  
BC860C  
R22 4M7  
R23 10k  
R24 100k  
76 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
7.1.3 External transmitter circuitry  
VDD  
R16  
C14  
R17  
R18  
RE1  
/TX_EN  
TX1_HI  
Q6  
Q7  
RE2  
TX2_HI  
Q8  
Q5  
RG2  
/TX2_LO  
/TX1_LO  
Q4  
RG1  
*
*
RF1 R19  
RF2  
GND  
GND  
GND  
GND  
ISDN_ST1  
D3  
TR1B  
R21  
REC1  
REC2  
*
47 pF, optional  
16  
14  
13  
1
3
4
D5  
TRANS2  
TRANS1  
D4  
GND  
GND  
TRANS  
Figure 17: External transmitter circuitry  
Part list  
VDD  
3.3 V  
470pF  
5 V  
VDD 3.3 V  
5 V  
C14  
D3  
D4  
D5  
RF1  
RF2  
RG1  
RG2  
R16  
R21  
R17  
R18  
R19  
18R  
18R  
BAV99  
BAV99  
2V7  
3k9 1% 3k 1%  
3k9 1% 3k 1%  
3k3  
ISDN_ST1 ISDN Connector  
Q4  
BC850C  
BC850C  
2k2  
Q5  
50  
100  
3k3  
Q7  
BC850C  
5k6  
Q8  
BC850C  
1k8  
Q6  
BC860C  
TR1B S/T Module  
RE1  
RE2  
560 1% 2k2 1%  
560 1% 2k2 1%  
: The optional capacitor value depends on the power supply voltage, the used S/T module and the  
line characteristics.  
July 2003  
Data Sheet  
77 of 94  
Cologne  
Chip  
HFC-S mini  
7.1.4 S/T modules and transformers  
Customers of Cologne Chip can chose of a variety of S/T transformers for ISDN basic rate interface.  
All transformers are compatible to the S/T interface of Cologne Chip’s “HFC-S” series of that fulfill  
two criteria:  
Turns Ratio of 1:2 (primary side : secondary side)  
Center Tap on the Secondary Side (required for Cologne Chip receiver circuitry)  
Several companies provide transformers and modules that can be used with our ISDN basic rate  
interface controllers. Part numbers and manufacturer addresses are listed on Cologne Chip’s website  
http://www.colognechip.com  
.
78 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
7.2 Oscillator circuitry for system clock  
CLKI  
C1  
24.576 MHz  
Q1  
R2  
GND  
CLKO  
C2  
R1  
Figure 18: Oscillator circuitry for S/T clock  
Part list  
Part Value  
R1  
R2  
C1  
C2  
Q1  
330  
1M  
47pF  
47pF  
24.576 MHz quartz  
The values of C1, C2 and R1, R2 depend on the used quartz.  
For a load-free check of the oscillator frequency the C4O clock of the PCM/GCI/IOM2 bus should  
be measured (HFC-S mini as master, S/T interface deactivated, 4.096 MHz frequency intented on the  
pin C4IO).  
Figure 19 shows how to connect several HFC-S mini to only one quartz circuitry.  
R 3  
U1  
U2  
U3  
9 2  
9 1  
9 0  
9 2  
9 1  
9 0  
9 2  
9 1  
9 0  
3 3 0  
C L K _ M O D E  
O S C _ O U T  
OSC_IN  
C L K _ M O D E  
O S C _ O U T  
OSC_IN  
C L K _ M O D E  
O S C _ O U T  
OSC_IN  
R 4  
3 3 0  
R 2  
R 1  
HFC-S mini  
HFC-S mini  
HFC-S mini  
Q 1  
24.576 MHz  
C 1  
4 7 p  
C 2  
4 7 p  
G N D  
G N D  
Figure 19: Cascade-connected HFC-S mini with only one quartz circuitry  
July 2003  
Data Sheet  
79 of 94  
Cologne  
Chip  
HFC-S mini  
8 State matrices for NT and TE  
8.1 S/T interface activation / deactivation layer 1 state matrix for NT  
Pending  
Pending  
State name:  
Reset  
G 0  
Deactivate  
G 1  
activation  
Active  
G 3  
deactivation  
State number:  
G 2  
G 4  
INFO sent: INFO 0  
INFO 0  
INFO 2  
INFO 4  
INFO 0  
Event:  
State machine release  
G 1  
|
|
|
|
|
|
(Note 3)  
Activate request  
G 2  
G 2  
G 2  
(Note 1)  
(Note 1)  
(Note 1)  
Deactivate request  
|
Start timer T2 Start timer T2  
|
G 4  
G 4  
Expiry T2 (Note 2)  
G1  
Receiving INFO 0  
Receiving INFO 1  
G 2  
/
G 1  
G 2  
(Note 1)  
Receiving INFO 3  
Lost framing  
/
G 3  
(Note 1, 4)  
/
/
G2  
Table 15: Activation / deactivation layer 1 for finite state matrix for NT  
Legend:  
— No state change  
/ Impossible by the definition of peer-to-peer physical layer procedures or system internal rea-  
sons  
| Impossible by the definition of the physical layer service  
Notes:  
Note 1: Timer 1 (T1) is not implemented in the HFC-S mini and must be implemented in software.  
Note 2: Timer 2 (T2) prevents unintentional reactivation. Its value is 32 ms (256 · 125µs). This im-  
plies that a TE has to recognize INFO 0 and to react on it within this time.  
Note 3: After reset the state machine is fixed to G0.  
Note 4: Bit 7 of the ST_WR_STA register must be set every time to allow this transition. The transi-  
tion is always allowed if bit 0 in SCTRL_E is set.  
80 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
8.2 S/T interface activation / deactivation layer 1 state matrix for TE  
State name:  
State number:  
F 0  
F 2  
F 3  
F 4  
F 5  
F 6  
F 7  
F 8  
INFO sent: INFO 0 INFO 0  
INFO 0  
INFO 1  
INFO 0  
INFO 3  
INFO 3  
INFO 0  
Event:  
State machine release  
F 2  
/
/
/
/
/
/
/
(Note 1)  
Activate request,  
receiving any signal  
receiving INFO 0  
|
|
F 5  
F 4  
|
|
|
|
|
|
Expiry T3 (Note 5)  
/
F 3  
F 3  
F 3  
Receiving INFO 0  
F 3  
F 3  
/
F 3  
/
F 3  
Receiving any signal  
F 5  
(Note 2)  
Receiving INFO 2  
F 6  
F 7  
/
F 6  
F 7  
/
F 6  
F 7  
/
F 6  
F 7  
/
F 7  
F 8  
F 6  
F 6  
F 7  
(Note 3)  
Receiving INFO 4  
(Note 3)  
Lost framing (Note 4)  
F 8  
Table 16: Activation / deactivation layer 1 for finite state matrix for TE  
Legend:  
— No state change  
/ Impossible situation  
| Impossible by the definition of the layer 1 service  
Notes:  
Note 1: After reset the state machine is fixed to F 0.  
Note 2: This event reflects the case where a signal is received and the TE has not (yet) determined  
wether it is INFO 2 or INFO 4.  
Note 3: Bit- and frame-synchronization achieved.  
Note 4: Loss of Bit- or frame-synchronization.  
Note 5: Timer 3 (T3) is not implemented in the HFC-S mini and must be implemented in software.  
July 2003  
Data Sheet  
81 of 94  
Cologne  
Chip  
HFC-S mini  
9 Binary organization of the frames  
9.1 S/T frame structure  
The frame structures on the S/T interface are different for each direction of transmission. Both struc-  
tures are illustrated in Figure 20.  
48 bits in 250 microseconds  
NT to TE  
L . F L . B1 B1 B1 B1 B1 B1 B1 B1 E D A FA N B2 B2 B2 B2 B2 B2 B2 B2 E D M B1 B1 B1 B1 B1 B1 B1 B1 E D S B2 B2 B2 B2 B2 B2 B2 B2 E D L . F L .  
D
0
1
0
2 bits offset  
TE to NT  
L . F L .B1 B1 B1 B1 B1 B1 B1 B1 L . D L . FA L .B2 B2 B2 B2 B2 B2 B2 B2 L . D L .B1 B1 B1 B1 B1 B1 B1 B1 L . D L .B2 B2 B2 B2 B2 B2 B2 B2 L . D L . F L .  
D
t
DC balanced parts  
of different TEs  
(see note)  
Figure 20: Frame structure at reference point S and T  
Legend:  
¯
Bit set to a binary value N = FA (NT to TE)  
F
Framing Bit  
N
L
D
E
DC balancing bit  
D-channel bit  
B1 bit withion B-channel 1  
B2 bit withion B-channel 2  
E-channel bit (echo of D-channel)  
A
S
Bit used for activation  
S-channel bit  
FA Auxiliary framing bit  
M
Multiframe bit  
G
Please note !  
Lines demarcate those parts of the S/T frame that are independently DC-balanced.  
The FA bit in the direction TE to NT is used as Q bit in every fifth frame if S/Q  
bit transmission is enabled (see SCTRL register).  
The nominal 2-bit offset is as seen from the TE. The offset can be adjusted with  
the CLKDEL register in TE mode. The corresponding offset at the NT may be  
greater due to delay in the interface cable and varies by configuration.  
HDLC B-channel data start with the LSB, PCM B-channel data start with the  
MSB.  
82 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
9.2 GCI frame structure  
The binary organization of a single GCI channel frame is described below. C4IO clock frequency is  
4096 kHz.  
C4IO  
F0IO  
b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0 b1 b2 b4 b3 b2 b1  
DIN  
DOUT  
B1  
B2  
M
D
C/I  
M
R
M
X
B1  
B1  
Time Slot 0  
Time Slot 1  
Time Slot 2  
Time Slot 3  
Time Slot 4  
Time Slot 32  
GCI Frame  
Figure 21: Single channel GCI format  
Legend:  
B1  
B2  
M
B-channel 1 data  
B-channel 2 data  
Monitor channel data  
D
D-channel data C/I Command/indication bits for controlling activation/deactivation and for  
additional control functions  
MR Handshake bit for monitor channel  
MX Handshake bit for monitor channel  
July 2003  
Data Sheet  
83 of 94  
Cologne  
Chip  
HFC-S mini  
10 Clock synchronization  
10.1 Clock synchronization in NT-mode  
Receive  
DPLL  
CLK 192 kHz  
FRAME-  
SYNC  
S/T - Interface  
24.576 MHz  
Divider  
÷ 4  
CLK  
Send  
DPLL  
192 kHz  
16384 kHz (only in slave mode)  
8192 kHz  
4096 kHz  
A
B
C4IO  
Divider Select  
Divider  
÷6, ÷3, ÷1.5  
Divider  
÷ 24  
PCM Interface  
Divider  
÷ 2048  
÷ 1024  
÷ 512  
8 kHz  
F0IO  
8 kHz  
SYNC_O  
SYNC_I  
Sync Source Select  
Figure 22: Clock synchronization in NT-mode  
84 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
10.2 Clock synchronization in TE-mode  
24.576 MHz  
Divider  
÷ 4  
Receive  
DPLL  
CLK 192 kHz  
FRAME-  
SYNC  
S/T - Interface  
8 kHz  
Sync Source Select  
CLKDEL  
A
B
SYNC_O  
SYNC_I  
A
B
16384 kHz (only in slave mode)  
8192 kHz  
4096 kHz  
Sync Source Select  
C4IO  
A
B
CLK  
Divider Select  
MST-  
DPLL  
16384  
8192  
4096  
kHz  
PCM Interface  
Divider  
÷ 2048  
÷ 1024  
÷ 512  
F0IO  
8 kHz  
Divider Select  
Figure 23: Clock synchronization in TE-mode  
The C4IO clock is adjusted in the 31th time slot at the GCI/IOM bus 1 . . 4 times for one half clock  
cycle. This can be reduced to one adjustment of a half clock cycle (see MST_MODE1 register). This  
is useful if another HFC series ISDN controller is connected as slave in NT mode to the PCM bus.  
The synchronization source can be selected by the MST_MODE2 register settings.  
July 2003  
Data Sheet  
85 of 94  
Cologne  
Chip  
HFC-S mini  
10.3 Multiple HFC-S mini synchronization scheme  
The synchronization scheme for multiple HFC-S mini ISDN controllers is shown in Figure 24. The  
synchronization source of the whole system can be selected by software (see also MST_MODE2  
register bit description).  
external FRAME SYNC (8 kHz)  
SYNC_I  
F0IO  
C4IO  
HFC-S mini  
S/T  
S/T  
S/T  
S/T  
SYNC_O  
PCM Bus Slave  
SYNC_I  
F0IO  
C4IO  
HFC-S mini  
SYNC_O  
SYNC_I  
F0IO  
C4IO  
HFC-S mini  
SYNC_O  
SYNC_I  
PCM Bus Master  
F0IO  
C4IO  
HFC-S mini  
SYNC_O  
SYNC OUT to other SYNC inputs  
Figure 24: Multiple HFC-S mini synchronization scheme  
86 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
11 HFC-S mini package dimensions  
0.3  
13.2  
0.2  
10.0  
+ 0.10  
0.05  
(0.88)  
0.33  
MAX  
0.15  
MAX  
0.10  
0.2  
0.8  
Unit: mm  
Figure 25: HFC-S mini package dimensions  
July 2003  
Data Sheet  
87 of 94  
Cologne  
Chip  
HFC-S mini  
12 Sample circuitries  
12.1 S/T interface circuitry (valid in all modes)  
Figure 26: HFC-S mini sample circuitry  
88 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
The following Bill of Materials are related to Figure 26 both. They show the component values for  
3.3 V or 5 V power supply respectively.  
Bill of Materials: S/T transceiver circuitry for 3.3 V power supply  
Revision: 1.1 generated on Friday, July 11, 2003 by Cologne Chip AG  
(n.b. = not used / not assembled)  
Resistors (25 pcs.)  
Capacitors (7 pcs.)  
Transformers (1 pc.)  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
RA1 100k  
RA2 100k  
RB1 33k  
RB2 33k  
RC1 4k7  
RC2 4k7  
RD1 4k7  
RD2 4k7  
RE1 560  
RE2 560  
RF1 18  
680k  
1M2  
3k3  
51  
5k6  
1k8  
3k9  
2k2  
4M7  
10k  
100k  
C14  
C15  
C16  
C17  
C18  
470p  
22p  
22p  
100p  
47n  
TR1 S_TRANS  
Misc (1 pc.)  
ISDN_St1 RJ45  
C100 optional  
C101 optional  
Diodes (5 pcs.)  
D1 BAV99  
D2 BAV99  
D3 BAV99  
D4 BAV99  
D5 2V7  
Total:  
Transistors (6 pcs.)  
25 x Resistors  
7 x Capacitors  
5 x Diodes  
6 x Transistors  
1 x Transformers  
1 x Misc  
Q3 BC858CL  
Q4 BC848CL  
Q5 BC848CL  
Q6 BC858CL  
Q7 BC848CL  
Q8 BC848CL  
RF2 18  
45 total  
+ 0 not used / not assembled  
RG1 3k9  
RG2 3k9  
July 2003  
Data Sheet  
89 of 94  
Cologne  
Chip  
HFC-S mini  
Bill of Materials: S/T transceiver circuitry for 5 V power supply  
Revision: 1.1 generated on Friday, July 11, 2003 by Cologne Chip AG  
(n.b. = not used / not assembled)  
Resistors (25 pcs.)  
Capacitors (7 pcs.)  
Transformers (1 pc.)  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
RA1 100k  
RA2 100k  
RB1 33k  
RB2 33k  
RC1 4k7  
RC2 4k7  
RD1 4k7  
RD2 4k7  
RE1 2k2  
RE2 2k2  
RF1 18  
RF2 18  
RG1 3k  
1M  
C14  
C15  
C16  
C17  
C18  
470p  
22p  
22p  
100p  
47n  
TR1 S_TRANS  
1M8  
3k3  
100  
5k6  
3k3  
3k9  
2k2  
4M7  
10k  
100k  
Misc (1 pc.)  
ISDN_St1 RJ45  
C100 optional  
C101 optional  
Diodes (5 pcs.)  
D1 BAV99  
D2 BAV99  
D3 BAV99  
D4 BAV99  
D5 2V7  
Total:  
Transistors (6 pcs.)  
25 x Resistors  
7 x Capacitors  
5 x Diodes  
6 x Transistors  
1 x Transformers  
1 x Misc  
Q3 BC858CL  
Q4 BC848CL  
Q5 BC848CL  
Q6 BC858CL  
Q7 BC848CL  
Q8 BC848CL  
45 total  
+ 0 not used / not assembled  
RG2 3k  
90 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
12.2 HFC-S mini in mode 2 (Motorola bus)  
Figure 27 shows only the processor part of a HFC-S mini sample board in mode 2 (Motorola). The  
S/T interface circuitry shown in Figure 26 must be enclosed to complete the sample board.  
Figure 27: HFC-S mini sample circuitry in processor mode 2 (Motorola)  
July 2003  
Data Sheet  
91 of 94  
Cologne  
Chip  
HFC-S mini  
12.3 HFC-S mini in mode 3 (Intel bus with separate address bus/data bus)  
Figure 28 shows only the processor part of a HFC-S mini sample board in mode 2 (Motorola). The  
S/T interface circuitry shown in Figure 26 must be enclosed to complete the sample board.  
Figure 28: HFC-S mini sample circuitry in processor mode 3 (Intel), 1st part  
92 of 94  
Data Sheet  
July 2003  
Cologne  
Chip  
HFC-S mini  
12.4 HFC-S mini in mode 4 (Intel bus with multiplexed address bus/data bus)  
Figure 29 shows only the processor part of a HFC-S mini sample board in mode 2 (Motorola). The  
S/T interface circuitry shown in Figure 26 must be enclosed to complete the sample board.  
Figure 29: HFC-S mini sample circuitry in processor mode 4 (Intel, multiplexed), 1st part  
July 2003  
Data Sheet  
93 of 94  
Cologne  
Chip  
Cologne Chip AG  
Data Sheet of HFC-S mini  

相关型号:

HFC-SPCI

The HFC-S PCI is not recommended for new projects. The HFC-S PCI A should be used instead.
ETC

HFC0100

QUASI RESONANT CONTROLLER
MPS

HFC0100HS

QUASI RESONANT CONTROLLER
MPS

HFC0100HS-LF

Switching Controller, Current-mode, 100kHz Switching Freq-Max, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
MPS

HFC0100HS-LF-Z

Switching Controller, Current-mode, 100kHz Switching Freq-Max, PDSO8, SOIC-8
MPS

HFC0100HS-Z

Switching Controller, Current-mode, 100kHz Switching Freq-Max, PDSO8, SOIC-8
MPS

HFC02

High Frequency Ceramic Chip Inductor
ALLIED

HFC03

High Frequency Chip Inductors
ALLIED

HFC03-0N2S-RC

High Frequency Chip Inductors
ALLIED

HFC03-0N5S-RC

High Frequency Chip Inductors
ALLIED