HFC-SP [ETC]

;
HFC-SP
型号: HFC-SP
厂家: ETC    ETC
描述:

文件: 总83页 (文件大小:1114K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Cologne  
Chip  
4QdQꢀCXUUd  
752ꢀꢁꢀB?  
0ꢀ8B3=ꢀ!13Bꢂ  
8B3=ꢀ73;2ꢀ585>ꢀR^]ca^[[Ta  
fXcW  
BꢃCꢀX]cTaUPRTꢄꢀ?[dVꢀP]Sꢀ?[Phꢄꢀ?2<280  
P]S  
DꢁRWX_ꢀbd__^ac  
9P]dPahꢀ!ꢂꢂ  
Copyright 1994-2001 Cologne Chip AG  
All Rights Reserved  
The information presented can not be considered as assured characteristics. Data can change without notice. Parts of the  
information presented may be protected by patent or other rights. Cologne Chip products are not designed, intended, or  
authorized for use in any application intended to support or sustain life, or for any other application in which the failure of  
the Cologne Chip product could create a situation where personal injury or death may occur.  
Cologne  
Chip  
Revision History  
Date  
Remarks  
Jan. 2001  
Oct. 2000  
Aug. 2000  
Feb. 2000  
Nov. 1999  
Aug. 1999  
Information added to section: GCI/IOM2 timing.  
Changes made on: PCMCIA card sample circuitry.  
Changes made on: PCMCIA card sample circuitry.  
Information added to section: DMA access in processor mode, GCI frame structure.  
Information added to section: Power down considerations.  
Section added: Configuring test loops.  
Information added to section: Processor interface modes, processor mode, FIFO  
channel operation: receive channels, STATES register bit description, ISA-PC bus  
or processor access timing, S/T interface activation/deactivation layer 1 for finite  
state matrix for NT.  
Mar. 1999  
Mar. 1999  
Feb. 1999  
Aug. 1998  
Changes made on: PCMCIA card sample circuitry part list: R27 added.  
Changes made on: S/T modules part numbers and manufacturers.  
Changes made on: CLKDEL register bit description.  
Changes made on: DMA access in processor mode, Register bit description of  
GCI/IOM2 bus section: Auxiliary channel handling, B_MODE register bit  
description.  
July 1998  
PCMCIA card part list: Values of D4, D5, D7 and D8 changed  
Cologne  
Chip  
Cologne Chip AG  
Eintrachtstrasse 113  
D-50668 Köln  
Germany  
Tel.: +49 (0) 221 / 91 24-0  
Fax: +49 (0) 221 / 91 24-100  
http://www.CologneChip.com  
http://www.CologneChip.de  
info@CologneChip.com  
Cologne  
Chip  
Contents  
1
1.1  
1.2  
General description............................................................................................................................6  
Applications.....................................................................................................................................7  
Mode description .............................................................................................................................8  
1.2.1  
1.2.2  
1.2.3  
1.2.4  
ISA-PC mode ..........................................................................................................................8  
ISA Plug and Play mode .........................................................................................................8  
Processor interface modes.......................................................................................................9  
PCMCIA mode........................................................................................................................9  
2
Pin description..................................................................................................................................10  
ISA-PC bus and microprocessor interface..................................................................................... 10  
S/T interface transmit signals ........................................................................................................12  
S/T interface receive signals..........................................................................................................12  
SRAM Interface.............................................................................................................................13  
Oscillator........................................................................................................................................13  
GCI/IOM2 bus interface ................................................................................................................14  
GCI/IOM2 Timeslot enable signals...............................................................................................14  
Interrupt outputs.............................................................................................................................15  
Miscellaneous pins.........................................................................................................................15  
Power supply .............................................................................................................................16  
RESET characteristics...............................................................................................................16  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
2.10  
2.11  
3
3.1  
3.2  
Functional description .....................................................................................................................17  
ISA-PC mode .................................................................................................................................17  
ISA Plug and Play mode ................................................................................................................18  
3.2.1  
3.2.2  
3.2.2.1  
3.2.2.2  
3.2.3  
3.2.3.1  
3.2.3.2  
3.2.4  
IRQ assignment.....................................................................................................................18  
ISA Plug and Play control registers ......................................................................................19  
Card level control regsisters .............................................................................................19  
Logical device control registers........................................................................................ 21  
ISA Plug and Play configuration registers............................................................................21  
I/O port configuration registers ........................................................................................ 21  
Interrupt configuration registers .......................................................................................22  
Writing the Plug and Play configuration EEPROM .............................................................22  
3.3  
3.4  
3.4.1  
3.5  
3.5.1  
ISA-PC bus interface .....................................................................................................................23  
Processor mode..............................................................................................................................24  
DMA access in processor mode............................................................................................25  
PCMCIA mode ..............................................................................................................................26  
Internal HFC-SP register selection........................................................................................ 26  
Attribute memory..................................................................................................................26  
PCMCIA registers.................................................................................................................26  
CIS programming..................................................................................................................27  
Internal HFC-SP register description.............................................................................................28  
FIFO control registers ...........................................................................................................28  
FIFO select register...........................................................................................................28  
FIFO registers ...................................................................................................................28  
Registers of the S/T section ..................................................................................................30  
Registers of the GCI/IOM2 bus section................................................................................31  
Interrupt and status registers .................................................................................................32  
Timer..............................................................................................................................................33  
Watchdog.......................................................................................................................................33  
3.5.2  
3.5.3  
3.5.4  
3.6  
3.6.1  
3.6.1.1  
3.6.1.2  
3.6.2  
3.6.3  
3.6.4  
3.7  
3.8  
Cologne  
Chip  
3.9  
3.9.1  
3.9.1.1  
3.9.1.2  
FIFOs .............................................................................................................................................34  
FIFO channel operation.........................................................................................................35  
Send channels (B1, B2 and D transmit)............................................................................36  
Automatically D-channel frame repetition .......................................................................36  
FIFO full condition in send channels................................................................................36  
Receive Channels (B1, B2 and D receive) .......................................................................37  
FIFO full condition in receive channels ...........................................................................38  
FIFO reset .........................................................................................................................39  
Transparent mode of HFC-SP...............................................................................................39  
3.9.1.3  
3.9.1.4  
3.9.1.5  
3.9.1.6  
3.9.2  
3.10  
3.11  
3.12  
3.13  
External SRAM .........................................................................................................................40  
Connecting an external device to the HFC-SP..........................................................................41  
Power down considerations.......................................................................................................41  
Configuring test loops ...............................................................................................................42  
4
Register bit description....................................................................................................................43  
Register bit description of the FIFO select register.......................................................................43  
Register bit description of S/T section ..........................................................................................43  
Register bit description of GCI/IOM2 bus section........................................................................47  
Register bit description of CONNECT register.............................................................................50  
Register bit description of interrupt, status and control registers..................................................51  
4.1  
4.2  
4.3  
4.4  
4.5  
5
Electrical characteristics .................................................................................................................56  
6
Timing characteristics .....................................................................................................................59  
ISA-PC bus or processor access ....................................................................................................59  
SRAM access.................................................................................................................................60  
GCI/IOM2 bus clock and data alignment for Mitel STTM bus.......................................................61  
GCI/IOM2 timing ..........................................................................................................................62  
6.1  
6.2  
6.3  
6.4  
6.4.1  
6.4.2  
6.5  
6.6  
Master mode..........................................................................................................................62  
Slave mode............................................................................................................................63  
EEPROM access............................................................................................................................64  
Access to an external device..........................................................................................................65  
7
S/T interface circuitry......................................................................................................................66  
External receiver circuitry .............................................................................................................66  
External transmitter circuitry.........................................................................................................67  
Oscillator circuitry.........................................................................................................................70  
EEPROM circuitry.........................................................................................................................70  
7.1  
7.2  
7.3  
7.4  
8
8.1  
8.2  
State matrices for NT and TE.........................................................................................................71  
S/T interface activation/deactivation layer 1 for finite state matrix for NT..................................71  
Activation/deactivation layer 1 for finite state matrix for TE .......................................................72  
9
9.1  
9.2  
Binary organisation of the frames..................................................................................................73  
S/T frame structure ........................................................................................................................73  
GCI frame structure .......................................................................................................................74  
10 Clock synchronisation......................................................................................................................75  
10.1  
10.2  
Clock synchronisation in NT-mode........................................................................................... 75  
Clock synchronisation in TE-mode........................................................................................... 76  
11 HFC-SP package dimensions ..........................................................................................................77  
Cologne  
Chip  
12 Sample circuitries with HFC-SP.....................................................................................................78  
12.1  
12.2  
ISDN ISA PnP PC card .............................................................................................................78  
ISDN PCMCIA card..................................................................................................................81  
Figures  
Figure 1: HFC-SP block diagram..................................................................................................................7  
Figure 2: Pin Connection ............................................................................................................................10  
Figure 3: FIFO Organisation (shown for B-channel, similar for D-channel).............................................35  
Figure 4: FIFO Data Organisation ..............................................................................................................37  
Figure 5: Connecting an external device to the HFC-SP............................................................................41  
Figure 6: Function of the CONNECT register bits.....................................................................................50  
Figure 7: GCI/IOM2 bus clock and data alignment....................................................................................61  
Figure 8: External receiver circuitry...........................................................................................................66  
Figure 9: External transmitter circuitry ......................................................................................................67  
Figure 10: Oscillator Circuitry....................................................................................................................70  
Figure 11: EEPROM circuitry ....................................................................................................................70  
Figure 12: Frame structure at reference point S and T ...............................................................................73  
Figure 13: Single channel GCI format........................................................................................................74  
Figure 14: Clock synchronisation in NT-mode ..........................................................................................75  
Figure 15: Clock synchronisation in TE-mode...........................................................................................76  
Figure 16: HFC-SP package dimensions ....................................................................................................77  
Tables  
Table 1: Mode selection................................................................................................................................8  
Table 2: Selected I/O address after reset ....................................................................................................17  
Table 3: DMA access in processor mode ...................................................................................................25  
Table 4: SRAM and FIFO size ...................................................................................................................40  
Table 5: S/T module part numbers and manufacturer ................................................................................69  
Table 6: Activation/deactivation layer 1 for finite state matrix for NT .....................................................71  
Table 7: Activation/deactivation layer 1 for finite state matrix for TE......................................................72  
Timing Diagrams  
Timing diagram 1: ISA-PC bus or microprocessor access .........................................................................59  
Timing diagram 2: SRAM access...............................................................................................................60  
Timing diagram 3: GCI/IOM2 timing.........................................................................................................62  
Timing diagram 4: EEPROM access ..........................................................................................................64  
Timing diagram 5: Access to an external device........................................................................................65  
Cologne  
Chip  
Features  
One chip ISDN-S-controller with B- and D-channel HDLC support  
Independent Read and Write HDLC-Channels for 2 ISDN B-channels and one ISDN D-channel  
B1 and B2 transparent mode independently selectable  
FIFO-size: 4x 7.5 KByte (B-channel) and 2x 512 Byte (D-channel)  
max. 31 HDLC frames (B-channel) and 15 HDLC frames (D-channel) per channel and direction  
in FIFO  
56 kbit/s restricted mode for U.S. ISDN lines selectable  
full I.430 ITU S/T ISDN support in TE and NT mode for 3.3V and 5V supply  
B1+B2 HDLC mode  
PCM30 interface configurable to interface MITEL STTM bus (MVIPTM), Siemens IOM2TM or  
GCITM for interface to U-chip or external codecs  
direct 8 bit ISA-PC bus interface with buffers for ISA-databus  
integrated ISA Plug and Play (Windows 95 Spec.)  
only 2 I/O addresses used on ISA-PC bus  
one of 7 interrupt channels on ISA-PC bus selectable by software  
integrated PCMCIA interface  
microprocessor interface compatible to Motorala bus and Siemens/Intel bus  
simple access to PCM30 interface for tone synthetisation  
Timer with interrupt and watchdog capability in processor mode  
3-5V supply voltage  
rectangular QFP 100 case  
1 General description  
The HFC-SP is an ISDN S/T HDLC basic rate controller for so called „passive“ ISDN PC cards with  
integrated S/T interface and PCM30 highway interface. It only needs an external SRAM to form a high  
performance ISDN PC card. Most problems with passive ISDN PC cards as small FIFOs and massive  
interrupt load for the host CPU are overcome by the HFC-SP. So we call ISDN cards with the HFC-SP  
„semi-active“.  
Additionally the HFC-SP can be used as a microprocessor peripheral in non-PC applications.  
The ultra deep FIFOs of the HFC-SP are realized with an external SRAM. Also an industrial standard  
serial interface for telecom peripheral ICs is implemented. Codecs are normally connected to this  
interface.  
Cologne  
Chip  
1.1  
Applications  
ISDN PC card  
ISDN terminal adapter  
ISDN smart NTs  
ISDN PABX  
ISDN modems  
Figure 1: HFC-SP block diagram  
Cologne  
Chip  
1.2  
Mode description  
The HFC-SP has 6 different bus modes, which can be selected by the lines MODE, ALE and IIOSEL0-  
IIOSEL3. Depending on the selected mode the function of several pins is different (see: Pin description).  
MODE  
NC  
ALE  
GND  
VDD  
GND  
pulse  
GND  
GND  
IIOSEL0..3  
Selected mode  
ISA-PC mode (mode 1)  
0
all 0  
all 0  
NC  
NC  
NC  
GND  
VDD  
processor mode (mode 2)  
processor mode (mode 3)  
processor mode (mode 4)  
ISA Plug and Play mode (mode 5)  
PCMCIA mode (mode 6)  
all 0  
*)  
*)  
Table 1: Mode selection  
NC = not connected (leave pin open)  
*)  
IIOSEL0: EE_SCL Clock of external EEPROM  
IIOSEL1: EE_SDA Serial data of external EEPROM  
IIOSEL2: SA10  
IIOSEL3: SA11  
ISA-bus address bit 10  
ISA-bus address bit 11  
1.2.1 ISA-PC mode  
Mode 1: ALE = GND, IIOSEL3-0 0000, MODE = NC  
In mode 1 the HFC-SP is addressed by two successive port addresses on the ISA-PC bus. The port  
address is selected by the lines SA0 - SA9.  
The address with SA0='1' is for register selection and the address with SA0='0' is used for data read/write  
(see also: 3.1).  
1.2.2 ISA Plug and Play mode  
Mode 5:  
ISA Plug and Play mode is selected by: ALE = GND and MODE = GND  
In mode 5 the HFC-SP is addressed by two successive port addresses on the ISA-PC bus. The port  
address is selected by the lines SA0 - SA11.  
The address with SA0='1' is for register selection and the address with SA0='0' is used for data read/write  
(see also: 3.2).  
Cologne  
Chip  
1.2.3 Processor interface modes  
The processor modes are selected by IIOSEL3-0 = '0000' and MODE left open.  
In all processor modes line SA6 must be connected to GND.  
Mode 2:  
Mode 3:  
Motorola bus with control signals /CS, R/W, /DS is selected by setting ALE to VDD.  
Siemens/Intel bus with seperated address bus and databus and control signals /CS, /WR,  
/RD is selected by setting ALE to GND.  
Mode 4:  
Intel bus with multiplexed address and databus with control signals /CS, /WR, /RD,  
ALE.  
ALE latches the address. The address lines SA0-SA7 must be connected to the data lines  
BD0-BD7 (except SA6 which must be connected to GND).  
The lines SA0-SA7 (except SA6) are used for direct addressing the internal registers of the HFC-SP (see  
also 3.4).  
1.2.4 PCMCIA mode  
Mode 6:  
PCMCIA mode is selected by: ALE = GND and MODE = VDD  
In mode 6 the HFC-SP is addressed by two successive port addresses. The port address is selected by the  
lines SA0 - SA11.  
The address with SA0='1' is for register selection and the address with SA0='0' is used for data read/write  
(see also: 3.5).  
Cologne  
Chip  
2 Pin description  
Figure 2: Pin Connection  
2.1  
ISA-PC bus and microprocessor interface  
Pin No.  
Pin Name  
Input  
Mode Function  
Output  
Mode/initial I/O address select  
bit 0  
1
2
3
4
IIOSEL0  
I u)  
O e)  
I
1,2,3,4  
5,6  
1,2,3,4  
5,6  
1,2,3,4  
5,6  
1,2,3,4  
5,6  
EE_SCL  
IIOSEL1  
EE_SDA  
IIOSEL2  
SA10  
Clock of external EEPROM  
Mode/initial I/O address select bit 1  
Serial data of external EEPROM  
Mode/initial I/O address select bit 2  
Address bit 10  
I/O e)  
I u)  
IIOSEL3  
SA11  
I u)  
Mode/initial I/O address select bit 3  
Address bit 11  
Register/ISA-PC address bus  
Address bit 0  
Address bit 1  
Address bit 2  
Address bit 3  
5
6
7
8
9
SA0  
SA1  
SA2  
SA3  
SA4  
I
I
I
I
I
all  
all  
all  
all  
all  
Address bit 4  
u)  
e)  
internal pull up  
external pull up resistor required (see Figure 11 on page 70)  
Cologne  
Chip  
Pin No.  
Pin Name  
SA5  
Input  
Output  
Mode Function  
10  
11  
I
I
all  
Address bit 5  
Address bit 6  
SA6  
all  
(SA6 must be connected to GND in processor mode)  
Address bit 7  
Address bit 8  
DMA acknowledge channel 0  
Direct access to GCI/IOM2 bus AUX1 channel data  
register (low active)  
12  
13  
SA7  
SA8  
/DMAAK0  
I
I
I
all  
1,5,6  
2,3,4  
14  
SA9  
/DMAAK1  
I
I
1,5,6  
2,3,4  
address bit 9  
DMA acknowledge channel 1  
direct access on GCI/IOM2 bus AUX2 channel  
dataregister (low active)  
* important!  
If DMA acknowledge signals /DMAAK0 and /DMAAK1 are active, the function of the  
read/write enables is inverted. This means a read command on the controller databus  
writes the AUX-Channel register and a write command reads the register. The address on  
the address bus (SA0-SA7) is ignored.  
15  
16  
17  
18  
/AEN  
/CE1  
/CS  
IOCHRDY  
/WAIT  
/WAIT  
/IOR  
/IORD  
/DS  
/IOW  
/IOWR  
R/W  
BD0  
BD1  
BD2  
BD3  
BD4  
BD5  
BD6  
BD7  
I
I
I
1,5  
6
2,3,4  
1,5  
2,3,4  
6
1,3,4,5  
6
2
1,3,4,5  
6
2
all  
all  
all  
all  
all  
all  
all  
all  
PC bus address enable  
Card enable (low active)  
chipselect low active  
I/O channel ready  
low active wait signal for external processor  
Extended bus cycle (low active)  
I/O read enable  
I/O read (low active)  
I/O data strobe  
I/O write enable  
I/O write (low active)  
Read/Write select (WR='0')  
Databus bit 0 (LSB)  
Databus bit 1  
Databus bit 2  
Databus bit 3  
O 1)  
O 1)  
O 1)  
I
I
I
I
I
I
21  
22  
23  
24  
25  
26  
27  
28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Databus bit 4  
Databus bit 5  
Databus bit 6  
Databus bit 7 (MSB)  
1)  
open drain, external pull up resistor required  
Cologne  
Chip  
Pin No.  
Pin Name  
BUSDIR  
Input  
Output  
O
Mode Function  
31  
1,2,3,4,5 Databus direction signal for external busdriver  
'0' BD0-BD7 are outputs  
/INPACK  
ALE  
O
I
6
Input port acknowledge (low active)  
Address latch enable  
ALE is also used for mode selection of the HFC-SP.  
See Mode selection on page 8 for detailed  
information.  
32  
49  
MODE  
I
Mode selection  
See Mode selection on page 8 for detailed  
information.  
2.2  
S/T interface transmit signals  
Pin No.  
Pin Name  
Input  
Function  
Output  
34  
35  
36  
37  
38  
TX2_HI  
O
O
O
O
O
Transmit output 2  
GND driver for transmitter 1  
Transmit enable  
GND driver for transmitter 2  
Transmit output 1  
/TX1_LO  
/TX_EN  
/TX2_LO  
TX1_HI  
See also: 7.2 External transmitter circuitry.  
2.3  
S/T interface receive signals  
43  
44  
45  
46  
48  
R2  
I
I
I
I
O
Receive data 2  
LEV_R2  
LEV_R1  
R1  
Level detect for R2  
Level detect for R1  
Receive data 1  
ADJ_LEV  
Levelgenerator  
See also: 7.1 External receiver circuitry.  
Cologne  
Chip  
2.4  
SRAM Interface  
Pin Name  
Pin No.  
Input  
Function  
Output  
SRAM data bus  
53  
54  
55  
56  
57  
58  
59  
60  
SRD0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SRAM data bit 0 (LSB)  
SRAM data bit 1  
SRAM data bit 2  
SRAM data bit 3  
SRAM data bit 4  
SRAM data bit 5  
SRAM data bit 6  
SRAM data bit 7 (MSB)  
SRD1  
SRD2  
SRD3  
SRD4  
SRD5  
SRD6  
SRD7  
SRAM address bus  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
74  
75  
76  
77  
78  
SRA0  
SRA1  
SRA2  
SRA3  
SRA4  
SRA5  
SRA6  
SRA7  
SRA8  
SRA9  
SRA10  
SRA11  
SRA12  
SRA13  
SRA14  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
SRAM address bus bit 0 (LSB)  
SRAM address bus bit 1  
SRAM address bus bit 2  
SRAM address bus bit 3  
SRAM address bus bit 4  
SRAM address bus bit 5  
SRAM address bus bit 6  
SRAM address bus bit 7  
SRAM address bus bit 8  
SRAM address bus bit 9  
SRAM address bus bit 10  
SRAM address bus bit 11  
SRAM address bus bit 12  
SRAM address bus bit 13  
SRAM address bus bit 14 (MSB)  
SRAM control signals  
Read strobe to external device  
SRAM chip select  
50  
79  
80  
/SRRD  
/SRCS  
/SRWR  
O
O
O
SRAM write enable  
2.5  
Oscillator  
OSC_IN  
82  
83  
I
Oscillator input or quarz connection  
12.288 MHz or 24.576 MHz  
OSC_OUT  
O
Oscillator output or quarz connection  
Cologne  
Chip  
2.6  
GCI/IOM2 bus interface  
Pin No.  
Pin Name  
C4IO  
Input  
Output  
I/O u)  
Mode Function  
85  
86  
all  
all  
4.096 Mhz clock  
GCI/IOM2 bus clock master: output  
GCI/IOM2 bus clock slave: input (reset default)  
Frame synchronisation, 8kHz pulse for GCI/IOM2  
bus frame synchronisation  
F0IO  
I/O u)  
GCI/IOM2 bus master: output  
GCI/IOM2 bus slave: input (reset default)  
GCI/IOM2 bus databus I  
Slotwise programmable as input or output  
GCI/IOM2 bus databus II  
87  
88  
STIO1  
STIO2  
I/O u)  
I/O u)  
all  
all  
Slotwise programmable as input or output  
u)  
internal pull up  
2.7  
GCI/IOM2 Timeslot enable signals  
(e. g. for PCM codecs)  
91  
92  
F1_A  
F1_B  
O
O
O
all  
enable signal for external CODEC A  
Programmable as positive (reset default) or negative  
pulse.  
1,2,3,4,6 enable signal for external CODEC B  
Programmable as positive (reset default) or negative  
pulse.  
IRQ_G  
5
PC bus interrupt request G  
Cologne  
Chip  
2.8  
Interrupt outputs  
Pin Name  
IRQ_A  
Pin No.  
Input  
Output  
I/O  
Mode Function  
94  
95  
1,5,6  
PC bus interrupt request A or interrupt input from  
external device (see: CIRM register bit description)  
processor interrupt request low active  
PC bus interrupt request B  
/IRQ_P  
IRQ_B  
/IREQ  
O 1)  
O
2,3,4  
1,5  
O
6
Interrupt request (low active)  
processor interrupt request high active  
PC bus interrupt request C  
Watchdog expired, external reset low active  
PC bus interrupt request D  
IRQ_P  
IRQ_C  
/WD_RES  
IRQ_D  
/OE  
WD_RES  
IRQ_E  
/WE  
O 2)  
O
2,3,4  
1,5,6  
2,3,4  
1,5  
96  
97  
O 1)  
O
I
6
Output enable (low active)  
Watchdog expired, external reset high active  
PC bus interrupt request E  
Write enable (low active)  
DMA request AUX1 channel register (high active)  
PC bus interrupt request F  
O 2)  
O
2,3,4  
1,5  
6
2,3,4  
1,5  
6
98  
99  
I
O
O
I
DMARQ0  
IRQ_F  
/REG  
Register select and I/O enable (low active)  
DMA request AUX2 channel register (high active)  
DMARQ1  
O
2,3,4  
1)  
2)  
open drain, external pull up resistor required  
open source, external pull down resistor required  
2.9  
Miscellaneous pins  
100  
RESET  
I
all  
Reset for HFC-SP (high active)  
Cologne  
Chip  
2.10 Power supply  
Pin No.  
Pin Name  
VDD  
GND  
Function  
VDD (+3V to +5V)  
GND  
19, 30, 41, 42, 51, 61, 84, 89  
20, 29, 33, 39, 40, 47, 52, 62,  
73, 81, 90, 93  
* important!  
All power supply pins VDD must be directly connected to each other. Also all pins GND must be  
directly connected to each other.  
To keep VDD and GND bounce to a minimum a bypass capacitor (10 nF to 100 nF) should be  
placed between each pair of VDD/GND pins.  
2.11 RESET characteristics  
The reset signal (hardware reset or software reset) must be active for at least 4 clock cycles.  
The GCI/IOM2 bus lines STIO1, STIO2 and the interrupt lines are in tristate mode after a reset.  
The HFC-SP is in slave mode after reset. C4IO and F0IO are inputs.  
In the processor modes DMARQ1 and DMARQ2 are inactive ('0').  
The S/T state machine is stuck to '0' after reset. This means the HFC-SP does not react to any signal on  
the S/T interface before the S/T state machine is initialised.  
The registers' initial values are described in the Register bit description (section 4 of this data sheet).  
After RESET the HFC-SP is in an initialisation cycle and is therefor busy for a maximum of 160 clock  
cycles.  
Cologne  
Chip  
3 Functional description  
3.1  
ISA-PC mode  
ISA-PC mode is selected by MODE = NC, ALE = GND and IIOSEL0..30.  
The HFC-SP occupies two consecutive addresses in the I/O map of a PC if it is in ISA-PC mode. It  
decodes only the 10 lower address lines as most slot cards do on the ISA-PC bus. The base I/O address is  
2 byte aligned so the lower of both addresses is the one with SA0 = 0 and the higher address is the one  
with SA0 = 1.  
After every hardware reset (RESET = 1) the I/O address select circuit inside the HFC-SP is in hardware  
mode. In this mode the HFC-SP can not be accessed until it is initialised to an I/O address.  
At first one of 15 different I/O addresses must be selected by the 4 inputs IIOSEL0 .. IIOSEL3 as Table 2  
shows:  
IIOSEL  
3 2 1 0  
0 0 0 0  
0 0 0 1  
0 0 1 0  
0 0 1 1  
0 1 0 0  
0 1 0 1  
0 1 1 0  
0 1 1 1  
1 0 0 0  
1 0 0 1  
1 0 1 0  
1 0 1 1  
1 1 0 0  
1 1 0 1  
1 1 1 0  
1 1 1 1  
Selected I/O address  
processor mode  
2E0h  
2D0h  
210h  
2C0h  
200h  
2F8h  
2E8h  
2B0h  
3E0h  
320h  
278h  
310h  
330h  
300h  
3E8h  
Table 2: Selected I/O address after reset  
The hardware selected I/O address might have an address collision with another I/O device in the PC.  
After a hardware reset (RESET = 1) you must first write an I/O address into the HFC-SP to set the I/O  
address for every further access to the device.  
The procedure is as follows:  
First you must write the lower 8 bits of the new I/O address you want into the lower address (SA0 = 0) of  
the hardware selected I/O address. The LSB of the new address is a don't care bit because the HFC-SP  
always occupies two I/O addresses.  
Cologne  
Chip  
Then the additional 2 bits of the new I/O address have to be written into the higher address (SA0 = 1) of  
the hardware selected I/O address. The other 6 bits in the byte must have a special pattern to switch over  
to the software selected address mode. This pattern must be 0101 01aa, whereby aa are the 2 higher  
address bits.  
e.g.: wanted I/O address: 3A4h / 3A5h  
IIOSEL(3:0): 0001  
then hardware selected I/O address is: 2E0h = 10 1110 0000 b  
write the value A4h or A5h into 2E0h =  
write the value 57h into 2E1h  
=
pattern  
address  
x = don't care  
All further accesses to the HFC-SP can only be done on the addresses 3A4h / 3A5h. Only a hardware  
reset will switch back the HFC-SP into hardware selected address mode.  
* hint:  
It's useful to solve a possible address conflict by programming the I/O address as early as possible.  
It is recommendable to set the address with a simple .SYS driver in a DOS environment.  
3.2  
ISA Plug and Play mode  
To select ISA Plug and Play mode the pins MODE and ALE must both be connected to GND. The HFC-  
SP needs two consecutive addresses in the I/O map of a PC for operation. Usually also one IRQ line is  
used. The following section describes how to configure the HFC-SPs interrupts.  
3.2.1 IRQ assignment  
The IRQ lines are disabled after a hardware reset.  
The IRQ assigned by the PnP BIOS can be read from register CHIP_ID (16h), bits [3:0]. Bits [2:0] of the  
CIRM register have to be set according to the hardware wiring on the PCB and the IRQ number assigned  
by the PnP BIOS.  
Cologne  
Chip  
3.2.2 ISA Plug and Play control registers  
3.2.2.1 Card level control regsisters  
Plug and Play Read Accessable in state  
control register Write  
address  
Description  
00h  
w
Isolation state  
Set read data port address register. Bits[7:0]  
become bits[9:2] of the port's I/O address. Bits[11:10]  
are hardwired to 00b and bits[1:0] are hardwired to  
11b.  
Config state *)  
01h  
02h  
r
Isolation state  
Serial isolation register. Used to read the serial  
identifier during the card isolation process.  
Configuration control register. Bits[7:3] are  
reserved and must be zero. The defined bits are:  
w
Sleep state,  
Isolation state,  
Config state  
0
Reset Bit. When set to one, resets all of the  
card's configuration registers to their default  
state. The CSN is not affected.  
1
Return to wait for key state. When set to one,  
all cards return to wait for key state.  
Their CSNs and configuration registers are not  
affected. This command is issued after all cards  
have been configured and activated.  
2
Reset CSN to zero. When set to one, all cards  
reset their CSN to zero.  
All bits are automatically cleared by the hardware.  
Wake command register. Writing a CSN to this  
register has the following effects:  
03h  
w
Sleep state,  
Isolation state,  
Config state  
-
If the value written is 00h, all cards in the sleep  
state with a CSN=00h go to the isolation state.  
Any card in configure state (CSN not 00h) goes  
to the sleep state.  
-
If the value written is not 00h, any card in the  
sleep state with a matching CSN goes to  
configure state. Any card in the isolation state  
goes to sleep state.  
Any write to a card's wake command register with a  
match on its CSN causes the pointer to the serial  
identifier / resource data to be reset to the first byte of  
the serial identifier.  
*)  
This is an extension to the Plug and Play Specification  
Cologne  
Chip  
Plug and Play Read Accessable in state  
control register Write  
address  
Description  
04h  
r
Config state  
Resource data register. This register is used to read  
the device's recource data. Each time that a read is  
performed from this register a byte of the resource  
data is returned and the resource data pointer is  
incremented. Prior to reading each byte, the  
programmer must read from the status register to  
determine if the next byte is available for reading  
from the resource data register.  
The card's serial identifier and checksum must be read  
prior to accessing the resource requirement list via  
this register.  
05h  
06h  
r
Config state  
Status register. Prior to reading the next byte of the  
device's resource data, the programmer must read  
from this register and check bit 0 for a one. This is the  
resource data byte available bit. Bits[7:1] are  
reserved.  
Card select number (CSN) register. The  
configuration software uses the CSN register to assign  
a unique ID to the card. The CSN is then used to wake  
up the card's configuration logic whenever the  
configuration program must access its configuration  
registers.  
Isolation state*),  
Config state  
r/w  
07h  
r
Config state  
Logical device number register. The number in this  
register points to the logical device the next  
commands will operate on. The HFC-SP only  
supports one logical device. This register is hardwired  
to all zeros.  
*)  
only if the isolation process is finished; the last card remains in isolation state until a CSN is  
assigned.  
Cologne  
Chip  
3.2.2.2 Logical device control registers  
Plug and Play Read Accessable in state  
control register Write  
address  
Description  
30h  
r/w  
Config state  
Activate register. Setting bit 0 to a one activates the  
card on the ISA bus. When cleared, the card cannot  
respond to any ISA bus transactions (other than  
accesses to its Plug and Play configuration ports).  
Reset clears bit 0. Bits[7:1] are reserved and return  
zeros when read.  
The HFC-SP only supports one logical device, so it is  
not necessary to write the logical device number into  
the card's logical device number register prior to  
writing to this register.  
31h  
r/w  
Config state  
I/O range check register.  
Bit(s) Description  
7:2  
1
Reserved, return zero when read  
When set to one, enables I/O range checking  
and disables it when cleared to zero. When  
enabled, bit 0 is used to select a pattern for the  
logical device to return.  
This bit is only valid if the logical device is  
deactivated (see Activate register).  
When set, the logical device returns 55h in  
response to any read from the logical device's  
assigned I/O space. When cleared, AAh is  
returned.  
0
3.2.3 ISA Plug and Play configuration registers  
3.2.3.1 I/O port configuration registers  
Plug and Play Read Accessable in state  
configuration Write  
Description  
register address  
60h  
r/w  
r/w  
Config state  
Config state  
I/O decoder 0 base address upper byte.  
I/O port base address bits[15:8]. *)  
I/O decoder 0 base address lower byte.  
I/O port base address bits[7:0]. *)  
61h  
*)  
Only bits[11:0] are checked by the HFC-SP's internal address decoder in PnP mode.  
Cologne  
Chip  
3.2.3.2 Interrupt configuration registers  
Plug and Play Read Accessable in state  
configuration Write  
Description  
register address  
70h  
r/w  
r/w  
Config state  
Config state  
IRQ select configuration register 0.  
Bits[3:0] specify the sleceted IRQ number.  
Bits[7:4] are reserved.  
IRQ type configuration register 0.  
Bits[1:0] are ignored.  
71h  
Bits[7:2] are reserved.  
* important!  
All registers not implemented return 00h when read except the DMA configuration registers 74h  
and 75h. These two registers return 04h when read. This means no DMA channel has been  
selected.  
3.2.4 Writing the Plug and Play configuration EEPROM  
The EEPROM Writing Spec. is only available on special request to avoid destruction of configuration  
information by not authorized programs or software viruses.  
Cologne  
Chip  
3.3  
ISA-PC bus interface  
The HFC-SP only uses 2 I/O addresses with SA0 switching between data or control information in ISA-  
PC mode and ISA Plug and Play mode. As normal only 10 bits of the ISA-PC bus address are used for  
I/O address selection in ISA-PC mode. In ISA Plug and Play mode 12 bits are decoded by the address  
decoder.  
SA0  
X
X
0
/IOR  
/IOW  
/AEN  
Operation  
no access  
X
1
0
1
0
1
X
1
1
0
1
0
1
X
0
no access  
read data  
0
0
write data  
read status  
write control  
1
0
1
0
X = don't care  
* important!  
ALE must be connected to GND and at least one of the IIOSEL0-3 must be '1' or open!  
The HFC-SP has no memory or DMA access to any component on the ISA-PC bus.  
Because of its power drive characteristic it needs no external driver for the ISA-PC bus data lines.  
If necessary an external bus driver can be added. In this case the output BUSDIR determines the driver  
direction.  
BUSDIR = 1 means that data is driven into the HFC-SP;  
BUSDIR = 0 means that the HFC-SP is read and data is driven to the external bus.  
Cologne  
Chip  
3.4  
Processor mode  
Processor mode is selected by MODE = NC and IIOSEL0..3=0.  
In the microprocessor mode the HFC-SP uses 256 I/O addresses (SA0 - SA7).  
/IOR  
/IOW  
/CS  
ALE  
Operation  
Mode  
/DS  
X
1
0
0
0
1
0
1
R/W  
X
1
1
0
1
0
1
0
1
X
0
0
0
0
0
0
X
X
1
1
0
no access  
no access  
read data  
write data  
read data  
write data  
read data  
write data  
all  
all  
2
2
3
3
4
4
0
0*)  
0*)  
X = don't care  
*) 1-pulse latches I/O address.  
All registers are directly accessable by their I/O address (see register description).  
Except in mode 4 ALE is assumed to be stable after a RESET.  
* important!  
For write accesses to the HFC-SP the data lines must be stable and valid before /IOW or /DS get  
low (see also: Timing diagram 1 on page 59). With Intel compatible processors it may be  
neccessary to delay the /IOW or /DS signals.  
Cologne  
Chip  
3.4.1 DMA access in processor mode  
In processor mode a simple DMA access to the auxiliary channels of the GCI/IOM2 interface is possible.  
This is useful for tone synthetisation or for voice recording. DMAREQ is asserted every 125µs.  
DMAREQ is reset when /DMAAK is active.  
* note  
If DMA acknowledge signals /DMAAK0 and /DMAAK1 are active, the function of the read/write  
enables is inverted. This means a read command on the controller databus writes the AUX-  
Channel register and a write command reads the register. The address on the address bus (SA0-  
SA7) is ignored.  
Mode  
/DMAAK0  
/DMAAK1 /CS ALE /IOR /IOW Function  
/DS R/W  
2,3,4  
1
0
1
0
1
0
1
1
1
0
1
0
1
0
X
X
X
X
X
X
X
X
X
X
X
0
X
1
1
1
1
1
1
no DMA  
2
2
3
3
4
4
1
DMA write AUX1  
DMA write AUX2  
DMA write AUX1  
DMA write AUX2  
DMA write AUX1  
DMA write AUX2  
1
0
0
0
0*)  
0*)  
0
0
Table 3: DMA access in processor mode  
*) 1-pulse latches I/O address.  
* important!  
If DMA is not used /DMAAK0 and /DMAAK1 must be connected to VDD.  
Cologne  
Chip  
3.5  
PCMCIA mode  
3.5.1 Internal HFC-SP register selection  
The HFC-SP occupies two consecutive addresses in the I/O map. The base I/O address must be 2 byte  
aligned so the lower of both addresses is the one with SA0 = 0 and the higher address is the one with  
SA0 = 1. The lines SA1 to SA11 are don't care. The registers of the HFC-SP are selected by writing the  
registers' address to the higher I/O address (SA0=1). Registers are read/written by reading/writing the  
base I/O address (SA0=0).  
3.5.2 Attribute memory  
After hardware reset the card's information structure (CIS) is copied from the EEPROM to even  
numbered addresses of the SRAM starting with 0000h (288 byte are occupied for the CIS). To avoid  
accesses in this phase the /WAIT signal is active.  
3.5.3 PCMCIA registers  
Configuration Option Register (COR):  
Register address: 400h in Configuration Memory  
D7  
SRESET  
D6  
LevIREQ  
1
D5  
D4  
D3  
D2  
D1  
D0  
Configuration Index  
The fields are as follows:  
SRESET  
SRESET card. Setting this bit to one places the card in the reset state. This bit  
must be cleared to zero by the user.  
LevIREQ  
This bit is not implemented and returns always 1 when read to indicate usage of  
level mode interrupts.  
Configuration Index  
Configuration Index.  
Bit 0 must be set to 1 to enable I/O accesses to the HFC-SP.  
Bit 5 must be set to 1 to write data to the EEPROM.  
Cologne  
Chip  
Card Configuration and Status Register (CSR): Register address: 402h in Configuration Memory  
D7  
Changed  
0
D6  
SigChg  
0
D5  
IOis8  
1
D4  
Rsvd  
0
D3  
Audio  
0
D2  
PwrDwn  
0
D1  
Intr  
D0  
Rsvd  
0
The fields are as follows:  
Changed  
SigChg  
Rsvd  
Unimplemented and return 0 when read.  
Audio  
PwrDwn  
IOis8  
Unimplemented and return 1 when read to indicate an 8 bit data path.  
Internal state of interrupt request (IREQ).  
Intr  
3.5.4 CIS programming  
The EEPROM Programming Spec. is only available on special request to avoid destruction of  
configuration information by not authorized programs or software viruses.  
Cologne  
Chip  
3.6  
Internal HFC-SP register description  
In ISA-PC mode, ISA Plug and Play mode and PCMCIA mode all registers are selected by writing the  
register address into the Control Internal Pointer (CIP) register. This is done by writing the HFC-SP on  
the higher I/O address (SA0 = 1).  
All consecutive read or write data accesses (SA0 = 0) are done with the selected register until the CIP  
register is changed.  
In processor mode all registers can be directly accessed. The registers are selected by SA0 - SA7.  
3.6.1 FIFO control registers  
The FIFO control registers are used to select and control the FIFOs of the HFC-SP. In processor mode  
the value is the address which directly selects the corresponding register.  
The FIFO register selection is independent of the B- or D-channel FIFO number.  
The FIFO is selected by the FIFO select register.  
3.6.1.1 FIFO select register  
CIP / I/O-address Name  
r/w  
Function  
00010000 10h  
FIF_SEL  
w
FIFO selection  
3.6.1.2 FIFO registers  
CIP / I/O-address Name  
r/w  
Function  
100000xx 80h  
100001xx 84h  
100010xx 88h  
100011xx 8Ch  
101010xx A8h  
101011xx ACh  
101100xx B0h  
101101xx B4h  
101110xx B8h  
101111xx BCh  
FIF_Z1L  
FIF_Z1H  
FIF_Z2L  
FIF_Z2H  
FIF_INC_F1*)  
FIF_DWR  
FIF_F1  
r
r
r
r
r
w
r
r
r
FIFO input counter (Z1) low byte  
FIFO input counter (Z1) high byte  
FIFO output counter (Z2) low byte  
FIFO output counter (Z2) high byte  
read this register to increment frame counter F1  
data write into FIFO and increment Z1  
FIFO input HDLC frame counter (F1)  
FIFO output HDLC frame counter (F2)  
read this register to increment frame counter F2  
data read out of FIFO and increment Z2  
FIF_F2  
FIF_INC_F2*)  
FIF_DRD  
r
*)  
only in HDLC mode; In transparent mode (see also: 3.9.2) the frame counters F1 and F2 must  
not be incremented.  
Cologne  
Chip  
* important!  
FIFO change, FIFO reset and F1/F2 incrementation  
Changing the FIFO, reseting the FIFO or incrementing the frame counters causes a short BUSY  
period of the HFC-SP. This means an access to FIFO control registers is NOT allowed until BUSY  
status is reset (bit 0 of STATUS register). This has a maximum duration of 25 clock cycles (2µs).  
Status, interrupt and control registers can be read and written at any time.  
Cologne  
Chip  
3.6.2 Registers of the S/T section  
CIP / I/O-address Name  
r/w  
r/w  
w
Function  
00110000 30h  
00110001 31h  
00110010 32h  
00110011 33h  
00110100 34h  
STATES  
SCTRL  
State of the TE/NT state machine  
S/T control register  
SCTRL_E  
SCTRL_R  
w
S/T control register (extended)  
receive enable for B-channels  
w
SQ_REC  
r
w
receive register for S/Q bits  
send register for S/Q bits  
SQ_SEND  
00110111 37h  
CLKDEL  
w
setup of the delay time between receive and  
send direction (TE)  
receive data sample time (NT)  
00111100 3Ch  
00111101 3Dh  
00111110 3Eh  
B1_REC*)  
r
w
B1-channel receive register  
B1-channel transmit register  
B1_SEND*)  
B2_REC*)  
r
w
B2-channel receive register  
B2-channel transmit register  
B2_SEND*)  
D_REC*)  
r
w
D-channel receive register  
D-channel transmit register  
D_SEND*)  
00111111 3Fh  
E_REC*)  
r
E-channel receive register  
*)  
These registers are read/written automatically by the HDLC FIFO controller (HFC) or  
GCI/IOM2 bus controller and need not be accessed by the user. To read/write data the FIFO  
registers should be used.  
Cologne  
Chip  
3.6.3 Registers of the GCI/IOM2 bus section  
GCI/IOM2 bus timeslot selection registers  
CIP / I/O-address Name  
r/w  
Function  
00000010 02h  
00000011 03h  
C/I  
TRxR  
r/w  
r
C/I command/indication register  
Monitor Tx ready handshake  
00001010 0Ah  
00001011 0Bh  
MON1_D  
MON2_D  
r/w  
r/w  
first monitor byte  
second monitor byte  
GCI/IOM2 bus timeslot selection registers  
CIP / I/O-address Name  
r/w  
Function  
00100000 20h  
00100001 21h  
B1_SSL  
B2_SSL  
w
w
B1-channel transmit slot (0..31)  
B2-channel transmit slot (0..31)  
00100010 22h  
00100011 23h  
AUX1_SSL  
AUX2_SSL  
w
w
AUX1-channel transmit slot (0..31)  
AUX2-channel transmit slot (0..31)  
00100100 24h  
00100101 25h  
B1_RSL  
B2_RSL  
w
w
B1-channel receive slot (0..31)  
B2-channel receive slot (0..31)  
00100110 26h  
00100111 27h  
AUX1_RSL  
AUX2_RSL  
w
w
AUX1-channel receive slot (0..31)  
AUX2-channel receive slot (0..31)  
GCI/IOM2 bus data registers  
CIP / I/O-address Name  
r/w  
Function  
00101000 28h  
00101001 29h  
B1_D*)  
B2_D*)  
r/w  
r/w  
GCI/IOM2 bus B1-channel data register  
GCI/IOM2 bus B2-channel data register  
00101010 2Ah  
00101011 2Bh  
AUX1_D**)  
AUX2_D**)  
r/w  
r/w  
AUX1-channel data register  
AUX2-channel data register  
*)  
These registers are read/written automatically by the HDLC FIFO controller (HFC) or by the  
S/T controller and need not be accessed by the user.  
**)  
These registers can also be accessed by DMA  
Cologne  
Chip  
GCI/IOM2 bus configuration registers  
CIP / I/O-address Name  
r/w  
Function  
00101101 2Dh  
00101110 2Eh  
00101111 2Fh  
MST_EMOD w  
MST_MODE w  
CONNECT  
extended mode register for GCI/IOM2 bus  
mode register for GCI/IOM2 bus  
w
connect functions for S/T, HFC, GCI/IOM2  
3.6.4 Interrupt and status registers  
CIP / I/O address Name r/w  
Function  
00010010 12h  
00010011 13h  
00010110 16h  
00011000 18h  
00011001 19h  
TRM  
w
w
r
transparent mode interrupt mode register  
mode of B-channels  
B_MODE  
CHIP_ID  
CIRM  
register for chip and PnP interrupt identification  
interrupt selection and softreset register  
transparent mode and timer control register  
w
w
CTMT  
00011010 1Ah  
00011011 1Bh  
INT_M1  
INT_M2  
w
w
interrupt mask register 1  
interrupt mask register 2  
00011110 1Eh  
00011111 1Fh  
INT_S1  
INT_S2  
r
r
interrupt status register 1  
interrupt status register 2  
00011100 1Ch  
STATUS  
r
common status register  
Cologne  
Chip  
3.7  
Timer  
The HFC-SP includes a timer with interrupt capability. The timer counts F0IO pulses. So the timer  
counter is incremented every 125µs. It can be reset by bit 7 of of the CTMT register. Furthermore the  
timer is reset at every HFC-SP access when bit 5 of the CTMT register is set. Seven different timer  
values can be selected.  
3.8  
Watchdog  
(only available in processor mode)  
The watchdog outputs of the HFC-SP are activated if the timer interrupt bit is active (not reset by reading  
INT_S1) and the timer elapses a second time.  
The reset of the timer counter itself and the watchdog value can be programmed in the CTMT register. In  
automatic reset mode the watchdog/timer is reset by every access to the HFC-SP.  
Cologne  
Chip  
3.9  
FIFOs  
There are 6 FIFOs with 6 HDLC-Controllers in the HFC-SP. The HDLC circuits are located on the S/T  
device side of the HFC-SP. So always plain data is stored in the FIFO. Zero insertion and deletion is  
done in HDLC mode:  
– if the data goes to the S/T or GCI/IOM device in send FIFOs and  
– when the HDLC data comes from the S/T device or GCI/IOM2 bus in receive operation.  
There are a send and a receive FIFO for each of the two B-channels and for the D-channel.  
The FIFOs are realized as ring buffers in the external SRAM. To control them there are some counters.  
B-channel D-channel  
Z1: FIFO input counter  
Z2: FIFO output counter 13 Bit  
13 Bit  
9 Bit  
9 Bit  
Each counter points to a byte position in the SRAM. On a FIFO input operation Z1 is incremented. On an  
output operation Z2 is incremented.  
After every pulse on the F0IO signal two HDLC-bytes are written into the S/T interface (FIFOs No. 0  
and 2) and two HDLC-bytes are read from the S/T interface (FIFOs No. 1 and 3).  
D-channel data is handled in a similar way but only 2 bits are processed.  
* important!  
Instead of the S/T interface also GCI/IOM2 bus is selectable for each B-channel (see CONNECT  
register).  
If Z1 = Z2 the FIFO is empty.  
Additionally there are two counters F1 and F2 for every FIFO channel (5Bit for B-channel, 4Bit for D-  
channel). They count the HDLC-frames in the FIFOs and form a ring buffer as Z1 and Z2 do, too.  
F1 is incremented when a complete frame has been received and stored in the FIFO. F2 is incremented  
when a complete frame has been read from the FIFO.  
If F1 = F2 there is no complete frame in the FIFO.  
When the RESET line is active or software reset is active Z1, Z2, F1 and F2 are all initialized to all 1s.  
The access to a FIFO is selected by writing the FIFO number into the FIFO select register (FIF_SEL).  
Cologne  
Chip  
* important!  
FIFO change, FIFO reset and F1/F2 incrementation  
Changing the FIFO, reseting the FIFO or incrementing the frame counters causes a short BUSY  
period of the HFC-SP. This means an access to FIFO control registers is NOT allowed until BUSY  
status is reset (bit 0 of STATUS register). This has a maximum duration of 25 clock cycles (2µs).  
Status, interrupt and control registers can be read and written at any time.  
* important!  
The counter state 0200h of the Z-counters follows counter state 1FFFh in the B-channel FIFOs.  
If 8k RAM mode is selected counter state 1A00h of the Z-counters follows counter state 1FFFh in  
the B-channel FIFOs.  
The counter state 000h of the Z-counters follows counter state 1FFh in the D-channel FIFOs.  
The counter state 00h of the F-counters follows counter state 1Fh in the B-channel FIFOs.  
The counter state 10h of the F-counters follows counter state 1Fh in the D-channel FIFOs.  
3.9.1 FIFO channel operation  
Figure 3: FIFO Organisation (shown for B-channel, similar for D-channel)  
Cologne  
Chip  
3.9.1.1 Send channels (B1, B2 and D transmit)  
The send channels send data from the host bus interface to the FIFO and the HFC-SP converts the data  
into HDLC code and tranfers it from the FIFO into the S/T or/and the GCI/IOM2 bus interface write  
registers.  
The HFC-SP checks Z1 and Z2. If Z1=Z2 (FIFO empty) the HFC-SP generates a HDLC-Flag (01111110)  
and sends it to the S/T device. In this case Z2 is not incremented. If also F1=F2 only HDLC flags are sent  
to the S/T interface and all counters remain unchanged. If the frame counters are unequal F2 is  
incremented and the HFC-SP tries to send the next frame to the output device. After the end of a frame  
(Z2 reaches Z1) it automatically generates the 16 bit CRC checksum and adds the ending flag. If there is  
another frame in the FIFO (F1F2) the F2 counter is incremented.  
With every byte being sent from the host bus side to the FIFO Z1 is incremented automatically. If a  
complete frame has been sent F1 must be incremented to send the next frame. If the frame counter F1 is  
incremented also the Z-counters may change because Z1 and Z2 are functions of F1 and F2. So there are  
Z1(F1), Z2(F1), Z1(F2) and Z2(F2) (see Figure 3).  
Z1(F1) is used for the frame which is just written from the PC-bus side. Z2(F2) is used for the frame  
which is just beeing transmitted to the S/T device side of the HFC-SP. Z1(F2) is the end of frame pointer  
of the current output frame.  
In the send channels F1 is only changed from the PC interface side if the software driver wants to say  
„end of send frame“. Then the current value of Z1 is stored, F1 is incremented and Z1 is used as start  
address of the next frame. Z1(F2) and Z2(F2) can not be accessed.  
3.9.1.2 Automatically D-channel frame repetition  
The D-channel send FIFO has a special feature. If the S/T interface signals a D-channel contention  
before the CRC is sent the Z2 counter is set to the starting address of the current frame and the HFC-SP  
tries to repeat the frame automatically.  
important!  
The HFC-SP begins to transmit the bytes from a FIFO at the moment the FIFO is changed or the  
F1 counter is incremented. Also changing to the FIFO that is already selected starts the  
transmission. So by selecting the same FIFO again transmission can be started.  
3.9.1.3 FIFO full condition in send channels  
Due to the limited number of registers in the HFC-SP the driver software must maintain a list of frame  
start and end addresses to calculate actual FIFO size and check FIFO full condition. Because there are a  
maximum of 32 frame counter values and the start address of a frame is the incremented value of the end  
address of the last frame the memory table must have only 32 values of 16 bits (13 bits) instead of 64.  
Remember that an increment of Z-value 1FFFh is 0200h in the B-channels!  
Cologne  
Chip  
There are two different FIFO full conditions. The first one is met when the FIFO contents comes up to 31  
frames (B-channel) or 15 frames (D-channel). There is no possibility for the HFC-SP to manage more  
frames even if the frames are very small.  
The second limitation is the size of the FIFO which is 512 byte for the D-channel and 7.5 KByte for the  
B-channels.  
3.9.1.4 Receive Channels (B1, B2 and D receive)  
The receive channels receive data from the S/T or GCI/IOM2 bus interface read registers. The data is  
converted from HDLC into plain data and sent to the FIFO. The data can then be read via the host bus  
interface.  
The HFC-SP checks the HDLC data coming in. If it finds a flag or more than 5 consecutive 1s it does not  
generate any output data. In this case Z1 is not incremented. Proper HDLC data being received is  
converted by the HFC-SP into plain data. After the ending flag of a frame the HFC-SP checks the HDLC  
CRC checksum. If it is correct one byte with all 0s is inserted behind the CRC data in the FIFO named  
STAT. This last byte of a frame in the FIFO is different from all 0s if there is no correct CRC field at the  
end of the frame.  
Figure 4: FIFO Data Organisation  
The ending flag of a HDLC-frame can also be the starting flag of the next frame.  
After a frame is received completely F1 is incremented by the HFC-SP automatically and the next frame  
can be received.  
Cologne  
Chip  
After reading a frame via the host bus interface F2 must be incremented. If the frame counter F2 is  
incremented also the Z-counters may change because Z1 and Z2 are functions of F1 and F2. So there are  
Z1(F1), Z2(F1), Z1(F2) and Z2(F2) (see Figure 3).  
Z1(F1) is used for the frame which is just received from the S/T device side of the HFC. Z2(F2) is used  
for the frame which is just beeing transmitted to the host bus interface. Z1(F2) is the end of frame pointer  
of the current output frame.  
To calculate the length of the current receive frame the software has to evaluate Z1-Z2+1. When Z2  
reaches Z1 the complete frame has been read.  
In the receive channels F2 must be incremented from the host interface side after the software detects an  
end of receive frame (Z1=Z2) and F1 F2. Then the current value of Z2 is stored, F2 is incremented and  
Z2 is copied as start address of the next frame. If Z1 = Z2 and F1 = F2 the FIFO is totally empty. Z1(F1)  
can not be accessed.  
important!  
Before reading a FIFO a change FIFO operation (see also: FIF_SEL register) must be done even if  
the desired FIFO is already selected. The change FIFO operation is required to update the internal  
buffer of the HFC-SP. Otherwise the first byte of the FIFO will be taken from the internal buffer  
and may be invalid.  
3.9.1.5 FIFO full condition in receive channels  
Because the ISDN-B-channels and the ISDN-D-channels have no hardware based flow control there is no  
possibility to stop input data if a receive FIFO is full.  
So there is no FIFO full condition implemented in the HFC-SP. The HFC-SP assumes that the FIFOs are  
so deep that the host processor hard- and software is able to avoid any overflow of the receive FIFOs.  
Overflow conditions are again more than 31 input frames (15 frames for D-channel) or a real overflow of  
the FIFO because of excessive data.  
Because HDLC procedures only know a window size of 7 frames no more than 7 frames are sent without  
software intervention. Due to the great size of the FIFOs of the HFC-SP it is easy to poll the HFC-SP  
even in large time intervalls without having to fear a FIFO overflow condition.  
However to avoid any undetected FIFO overflows the software driver should check the number of frames  
in the FIFO which is F1-F2. An overflow exists if the number (F1-F2) is less than the number in the last  
reading even if there was no reading of a frame in between.  
After a detected FIFO overflow condition this FIFO must be reset by setting the FIFO reset bit in the  
CIRM register.  
Cologne  
Chip  
3.9.1.6 FIFO reset  
All counters Z1, Z2, F1 and F2 of all FIFOs are initialized to all 1s after a RESET.  
Then the result is Z1 = Z2 = 1FFFh and F1 = F2 = 1Fh for the B-channels  
and Z1 = Z2 = 1FFh and F1 = F2 = 1Fh for the D-channel.  
Please mask bit 4 of D-channel from counter F1, F2.  
The same initialisation is done if the bit 3 in the CIRM register is set (soft reset).  
Individual FIFOs can be reset by bit 7 of CIRM register.  
3.9.2 Transparent mode of HFC-SP  
You can switch off HDLC operation for each B-channel independently. There is one bit for each B-  
channel in the CTMT control register. If this bit is set data in the FIFO is sent directly to the S/T or  
GCI/IOM2 bus interface and data from the S/T or GCI/IOM2 bus interface is sent directly to the FIFO.  
Be sure to switch into transparent mode only if F1=F2. Being in transparent mode the Fx counters remain  
unchanged. Z1 and Z2 are the input and output pointers respectively. Because F1=F2 both Z-counters are  
always accessable and have valid data.  
Because always one Z-counter is changed by the HFC-SP and only 8 bits of a counter can be read at a  
time the counter should be read twice to check for a counter incrementation between low and high byte  
accesses.  
If a send FIFO channel changes to FIFO empty condition no CRC is generated and the last data byte  
written into the FIFO is repeated until there is new data.  
In receive channels there is no check on flags or correct CRCs and no status byte is added.  
The byte bounderies are not arbitrary like in HDLC mode where byte synchronisation is achieved with  
HDLC-flags. The data is just the same as it comes from the S/T or GCI/IOM2 bus interface or is sent to  
this.  
Send and receive transparent data can be handled in two ways. The usual way is tranporting B-channel  
data with the LSB first as it is usual in HDLC mode. The second way is sending the bytes in reverse bit  
order as it is usual for PWM data. So the first bit is the MSB. The bit order can be reversed by setting bit  
7 of the FIF_SEL register when the FIFO is selected.  
Cologne  
Chip  
3.10 External SRAM  
For the FIFO data an 32K x 8 external SRAM is used. A 8K x 8 external SRAM is also possible but not  
recommended.  
The required access time is 80 ns or below. For the double clock mode (24.576 MHz) it is 40ns or below.  
1024 Bytes of the external SRAM are reserved for internal HFC-SP use.  
External SRAM  
B-channel FIFO size  
per channel and direction  
1536 Bytes  
D-channel FIFO size  
per direction  
512 Bytes  
8K x 8  
32K x 8  
7680 Bytes  
512 Bytes  
Table 4: SRAM and FIFO size  
To initialise the HFC-S for 8K x 8 SRAM use:  
- write 18h to the CIRM register  
- wait at least 4 clock cycles  
- write 10h to the CIRM register  
For all further accesses to the CIRM register bit 4 must be set.  
hint!  
If you connect the HFC-SP with the SRAM you can simplify PCB layout if you permutate address  
lines and data lines. If you connect data lines of the SRAM with data lines of the HFC-SP and SR-  
address lines of the HFC-SP with address lines of the SRAM you can do this in any order.  
Cologne  
Chip  
3.11 Connecting an external device to the HFC-SP  
It is possible to connect an external device parallel to the SRAM to the HFC-SP.  
Figure 5: Connecting an external device to the HFC-SP  
The external device is accessed when bit 6 in the CIP is set. Then bit[5:0] are the address select lines for  
the external device.  
3.12 Power down considerations  
For very low power consumption the oscillator of the HFC-SP can be stopped. Furthermore the external  
SRAM is disabled (/SR_CS=1). To avoid current generated by floating inputs the data bus of the SRAM  
and all other inputs must be put to GND or VDD. So it is useful to connect the SRAM data bus to a  
resistor array of about 1M. If the HFC-SP is operated in processor mode the unused interrupt lines (and  
watchdog lines) should not be left open. They should be connected to VDD or GND over a resistor to  
reduce current.  
If the oscillator is stopped and the awake option is disabled the supply current is reduced to less than  
1mA.  
Cologne  
Chip  
3.13 Configuring test loops  
For electrical tests of layer 1 it is useful to create a S/T test loop for the B1/B2 channel. The test loop  
described here transmits the data that has been received on the B1 or B2 channel to the same channel on  
the S/T interface. To configure this loop the following must be done:  
- write 0Fh to register CLKDEL (37h)  
// Adjust the phase offset between receive and  
// transmit direction (value depends on the external  
// circuitry).  
- write 43h to register SCTRL (31h)  
// 03h is to enable B1, B2 at the S/T interface for  
// transmission  
// 40h is for TX_LO setup (capacitive line mode)  
- write 00h to register STATES (30h)  
- write 03h to register SCTRL_R (33h)  
- write 36h to register CONNECT (2Fh)  
- write 80h to register B1_SSL (20h)  
- write C0h to register B1_RSL (24h)  
- write 81h to register B2_SSL (21h)  
- write C1h to register B2_RSL (25h)  
// Release S/T state machine for activation over the  
// S/T interface by incoming INFO 2 or INFO 4.  
// Configure S/T B1 and B2 channel to normal  
// receive operation.  
// Configure CONNECT register for B1/B2 channel  
// test loop.  
// Enable transmit channel for GCI/IOM2 bus, pin  
// STIO1 is used as output, use time slot #0.  
// Enable receive channel for GCI/IOM2 bus, pin  
// STIO1 is used as input, use time slot #0.  
// Enable transmit channel for GCI/IOM2 bus, pin  
// STIO1 is used as output, use transmission slot #1.  
// Enable receive channel for GCI/IOM2 bus, pin  
// STIO1 is used as input, use time slot #1.  
- write 01h to register MST_MODE (2Eh) // Configure HFC-SP as GCI/IOM2 bus master.  
Cologne  
Chip  
4 Register bit description  
4.1  
Register bit description of the FIFO select register  
Name  
Addr. Bits r/w Function  
FIF_SEL  
10h  
2..0  
w
select FIFO and operation  
bit 2 bit 1 bit 0 selected operation  
0
0
0
0
1
1
0
0
1
1
x
x
0
1
0
1
0
1
B1 transmit  
B1 receive  
B2 transmit  
B2 receive  
D transmit  
D receive  
6..3  
7
unused, should be '0'  
select data transmission bit order  
w
'0'  
'1'  
normal read/write data operation  
reverse bit order read/write data operation  
4.2  
Register bit description of S/T section  
Addr. Bits r/w Function  
Name  
STATES  
30h  
3..0  
r
r
r
binary value of actual state (NT: Gx, TE: Fx)  
(read)  
4
Frame-Sync ('1'=synchronized)  
5
'1' timer T2 expired (NT mode only, see also 8.1 S/T interface  
activation/deactivation layer 1 for finite state matrix for NT  
on page 71)  
6
7
r
r
'1' receiving INFO0  
'0' no operation  
'1' in NT mode allows transition from G2 to G3.  
This bit is automatically cleared after the transition.  
binary value of new state (NT: Gx, TE: Fx)  
(bit 4 must also be set to load the state).  
'1' loads the prepared state (bit 3..0) and stops the state  
machine.This bit needs to be set for a minimum period of  
5.21 s and must be cleared by software. (reset default)  
'0' enables the state machine (bits 3..0 are ignored).  
After writing an invalid state the state machine goes to  
deactivated state (G1, F2)  
STATES  
(write)  
30h  
3..0  
4
w
w
6..5  
7
w
w
'00' no operation  
'01' no operation  
'10' start deactivation  
'11' start activation  
The bits are automatically cleared after activation/deactivation.  
'0' no operation  
'1' in NT mode allows transition from G2 to G3.  
This bit is automatically cleared after the transition.  
Cologne  
Chip  
* important!  
The state machine is stuck to '0' after a reset. Writing a '0' to bit 4 of the STATES register restarts  
the state machine.  
In this state the HFC-SP sends no signal on the S/T-line and it is not possible to activate it by  
incoming INFOx.  
NT mode:  
The NT state machine does not change automatically from G2 to G3 if the TE side sends INFO3  
frames. This transition must be activated each time by bit 7 of the STATES register.  
Fix the NT state machine to state G3 when activated (by writing 13h into STATES register). This  
prevents deactivation of NT mode S/T interface due to sporadically errors on NT input data.  
Cologne  
Chip  
Name  
Addr. Bits r/w Function  
SCTRL  
31h  
0
1
2
3
4
w
w
w
w
w
'0' B1 send data disabled (permanent 1 sent in activated states,  
reset default)  
'1' B1 data enabled  
'0' B2 send data disabled (permanent 1 sent in activated states,  
reset default)  
'1' B2 data enabled  
S/T interface mode  
'0' TE mode (reset default)  
'1' NT mode  
D-channel priority  
'0' high priority 8/9 (reset default)  
'1' low priority 10/11  
S/Q bit transmission  
'0' S/Q bit disable (reset default)  
'1' S/Q bit and multiframe enable  
'0' normal operation (reset default)  
'1' send 96kHz transmit test signal (alternating zeros)  
TX_LO line setup  
5
6
w
w
This bit must be configured depending on the used S/T module  
and circuitry to match the 400pulse mask test.  
'0' capacitive line mode (reset default)  
'1' non capacitive line mode  
Power down  
'0' power up, oscillator active (reset default)  
'1' power down, oscillator stopped  
This bit is not cleared by a soft reset.  
Power down mode bit  
7
0
w
w
SCTRL_E  
32h  
'0' S/T awake disable (reset default)  
Power up can only be programmed by register access  
(SCTRL bit 7).  
'1' S/T awake enable. Oscillator starts on every non INFO0  
S/T signal.  
1
2
w
w
must be '0'  
D reset  
'0' normal operation (reset default)  
'1' D bits are forced to '1'  
3
4
w
w
D_U enable  
'0' normal operation (reset default)  
'1' D channel is always send enabled regardless of E receive  
bit  
force E=0 (NT mode)  
'0' normal operation (reset default)  
'1' E-bit send is forced to 0  
must be '0'  
6..5  
7
w
w
'1' swap B1 and B2-channel in the S/T interface  
Cologne  
Chip  
Name  
Addr. Bits r/w Function  
SCTRL_R  
33h  
0
1
w
w
B1-channel receive enable  
B2-channel receive enable  
'0' B-receive bits are forced to '1'  
'1' normal operation  
unused  
TE mode: S bits (bit 3 = S1, bit 2 = S2, bit 1 = S3, bit 0 = S4)  
NT mode: Q bits (bit 3 = Q1, bit 2 = Q2, bit 1 = Q3,  
bit 0 = Q4)  
7..2  
3..0  
w
r
SQ_REC  
34h  
4
r
'1' a complete S or Q multiframe has been received  
Reading SQ_REC clears this bit.  
6..5  
7
r
r
not defined  
'1' ready to send a new S or Q multiframe  
Writing to SQ_SEND clears this bit.  
TE mode: Q bits (bit 3 = Q1, bit 2 = Q2, bit 1 = Q3,  
bit 0 = Q4)  
SQ_SEND  
CLKDEL  
34h  
37h  
3..0  
w
NT mode: S bits (bit 3 = S1, bit 2 = S2, bit 1 = S3, bit 0 = S4)  
not defined  
w TE: 4 bit delay value to adjust the 2 bit delay time between  
receive and transmit direction. The delay of the external  
S/T-interface circuit can be compensated. The lower the  
value the smaller the delay between receive and transmit  
direction (see also Figure 12)  
7..4  
3..0  
w
NT: Data sample point. The lower the value the earlier the  
input data is sampled.  
The steps are 163ns.  
6..4  
w
w
NT mode only  
early edge input data shaping  
Low pass characteristic of extended bus configurations can be  
compensated. The lower the value the earlier input data pulse is  
sampled. No compensation means a value of 6 (110b). Step size  
is the same as for bits 3-0.  
7
unused  
* note!  
The register is not initialized with a '0' after reset. The register should be initialized as follows  
before activating the TE/NT state machine:  
TE mode: 0Dh .. 0Fh  
NT mode: 6Ch  
Cologne  
Chip  
4.3  
Register bit description of GCI/IOM2 bus section  
Timeslots for transmit direction  
Name  
Addr. Bits r/w Function  
B1_SSL  
B2_SSL  
AUX1_SSL  
AUX2_SSL  
20h  
21h  
22h  
23h  
4..0  
5
6
w
w
w
select GCI/IOM2 bus transmission slot (0..31)  
unused  
select GCI/IOM2 bus data lines  
'0' STIO1 output  
'1' STIO2 output  
7
w
transmit channel enable for GCI/IOM2 bus  
'0' disable (reset default)  
'1' enable  
* important!  
Enabling more than one channel on the same slot causes undefined output data.  
Timeslots for receive direction  
Name  
Addr. Bits r/w Function  
B1_RSL  
B2_RSL  
AUX1_RSL  
AUX2_RSL  
24h  
25h  
26h  
27h  
4..0  
5
6
w
w
w
select GCI/IOM2 bus receive slot (0..31)  
unused  
select GCI/IOM2 bus data lines  
'0' STIO2 is input  
'1' STIO1 is input  
7
w
receive channel enable for GCI/IOM2 bus  
'0' disable (reset default)  
'1' enable  
Data registers  
Name  
Addr. Bits r/w Function  
B1_D  
B2_D  
AUX1_D  
AUX2_D  
28h  
29h  
2Ah  
2Bh  
0..7 r/w read/write data registers for selected timeslot data  
Cologne  
Chip  
* note!  
Auxiliary channel handling  
If the data registers AUX1_D and AUX2_D are not overwritten, the transmisson slots AUX1_SSL  
and AUX2_SSL mirror the data received in AUX1_RSL and AUX2_RSL slots. This is useful for  
an internal connection between two CODECs. This mirroring is disabled by setting bit 1 in  
MST_EMOD register.  
In ISA, ISA-PnP and PCMCIA mode: To use the AUX1 channel the address pin SA8 must be '1'  
at every access to the HFC-SP. To use the AUX2 channel the address pin SA9 must be '1' at every  
access to the HFC-SP. The PnP information must be set accordingly.  
Name  
MST_MODE  
Addr. Bits r/w Function  
2Eh  
0
w
w
w
w
w
GCI/IOM2 bus mode  
'0' slave (reset default) (C4IO and F0IO are inputs)  
'1' master (C4IO and F0IO are outputs)  
polarity of C4- and C2O-clock  
'0' F0IO is sampled on negative clock transition  
'1' F0IO is sampled on positive clock transition  
polarity of F0-signal  
1
2
'0' F0 positive pulse  
'1' F0 negative pulse  
3
duration of F0-signal  
'0' F0 active for one C4-clock (244ns) (reset default)  
'1' F0 active for two C4-clocks (488ns)  
time slot for codec-A signal F1_A  
'00' B1 receive slot  
5, 4  
'01' B2 receive slot  
'10' AUX1 receive slot  
'11' signal C2O pin F1_A (C2O is 2048 kHz clock)  
time slot for codec-B signal F1_B  
'00' B1 receive slot  
7, 6  
w
'01' B2 receive slot  
'10' AUX1 receive slot  
'11' AUX2 receive slot  
The pulse shape and polarity of the codec signals F1_A and F1_B is the same as the pulseshape of the  
F0IO signal. The polatity of C2O can be changed by bit 1.  
RESET sets register MST_MODE to all '0's.  
Cologne  
Chip  
Name  
Addr. Bits r/w Function  
MST_EMOD  
2Dh  
0
w
slow down C4IO clock adjustment (see Figure 15)  
'0' C4IO clock is adjusted in the 31th time slot twice for one  
half clock cycle (reset default)  
'1' C4IO clock is adjusted in the 31th time slot once for one  
half clock cycle  
1
w
enable/disable AUX channel mirroring  
'0' mirror AUX receive to AUX transmit (reset default)  
'1' disable AUX channel data mirroring  
unused  
2
5..3  
w
w
select D-channel data flow (see also: CONNECT register)  
destination  
bit 3: '0' D-HFC  
source  
D-S/T  
'1' D-HFC  
bit 4: '0' D-S/T  
'1' D-S/T  
bit 5: '0' D-GCI/IOM2  
'1' D-GCI/IOM2  
unused  
D-GCI/IOM2  
D-HFC  
D-GCI/IOM2  
D-HFC  
D-S/T  
6
7
w
w
enable GCI/IOM2 write slots  
'0' disable GCI/IOM2 write slots; slot #2 and slot #3 may be  
used for normal data  
'1' enables slot #2 and slot #3 as master, D- and C/I-channel  
C/I  
02h  
03h  
3..0 r/w on read: indication  
on write: command  
7..4  
0
unused  
reserved  
TRxR  
r
r
1
'1' Monitor transmitter ready  
Writing on MON2_D starts transmisssion and resets this bit.  
5..2  
6
7
r
r
r
reserved  
STIO2 in  
STIO1 in  
RESET sets register MST_EMOD to all '0's.  
Cologne  
Chip  
4.4  
Register bit description of CONNECT register  
Addr. Bits r/w Function  
Name  
CONNECT  
2Fh  
2..0  
5..3  
7..6  
w
w
w
select B1-channel data flow  
destination  
bit 0: '0' B1-HFC  
'1' B1-HFC  
bit 1: '0' B1-S/T  
'1' B1-S/T  
bit 2: '0' B1-GCI/IOM2 B1-HFC  
'1' B1-GCI/IOM2 B1-S/T  
select B2-channel data flow  
destination  
bit 3: '0' B2-HFC  
'1' B2-HFC  
bit 4: '0' B2-S/T  
'1' B2-S/T  
bit 5: '0' B2-GCI/IOM2 B2-HFC  
'1' B2-GCI/IOM2 B2-S/T  
unused  
source  
B1-S/T  
B1-GCI/IOM2  
B1-HFC  
B1-GCI/IOM2  
source  
B2-S/T  
B2-GCI/IOM2  
B2-HFC  
B2-GCI/IOM2  
RESET sets CONNECT register to all '0's.  
The following figure shows the different options for switching the B-channels with the CONNECT  
register (similar for D-channel; see MST_EMOD register).  
Figure 6: Function of the CONNECT register bits  
Cologne  
Chip  
4.5  
Register bit description of interrupt, status and control registers  
Addr. Bits r/w Function  
Name  
CIRM  
18h  
2..0  
w
select IRQ channel in PC mode  
'000' IRQ disable  
'001' IRQ_A  
'010' IRQ_B  
'011' IRQ_C  
'100' IRQ_D  
'101' IRQ_E  
'110' IRQ_F  
'111' IRQ_G (only in ISA PnP mode)  
3
w
soft reset, similar as hardware reset; the registers CIP, CIRM  
and CTMT are not changed so selected I/O address is kept in  
ISA-PC mode. The reset is active until the bit is cleared.  
'0' deactivate reset (reset default)  
'1' activate reset  
4
5
w
w
select memory  
'0' 32K x 8 external RAM (reset default)  
'1' 8K x 8 external RAM  
external interrupt enable  
'0' ext. interrupt disable, IRQ_A is output (reset default)  
'1' ext. interrupt enable IRQ_A is input and ored to IRQ  
output  
6
7
w
w
double clock mode (24.576 MHz external oscillator required)  
when set, all RAM accesses are double speed  
FIFO reset  
The currently selected FIFO is initialised. This bit is  
automatically cleared.  
Cologne  
Chip  
Name  
Addr. Bits r/w Function  
CTMT  
19h  
0
w
w
w
HDLC/transparent mode for B1-channel  
'0' HDLC mode (reset default)  
'1' transparent mode  
HDLC/transparent mode for B2-channel  
'0' HDLC mode (reset default)  
'1' transparent mode  
1
4..2  
select timer and watchdog (bit 4 = MSB)  
timer  
'000' off  
watchdog  
off  
'001' 3.125ms 6.25ms  
'010' 6.25ms  
'011' 12.5ms  
'100' 25ms  
'101' 50ms  
'110' 400ms  
'111' 800ms  
12.5ms  
25ms  
50ms  
100ms  
800ms  
1600ms  
5
w
timer/watchdog reset mode  
'0' reset timer/WD by CTMT bit 7 (reset default)  
'1' automatically reset timer/WD at each access to HFC-SP  
ignored  
reset timer/WD  
6
7
w
w
'1' reset timer/WD  
This bit is automatically cleared.  
CHIP_ID  
B_MODE  
16h  
13h  
3..0  
r
IRQ assigned by the PnP BIOS  
Bits [2:0] of the CIRM register must be set to the value  
corresponding to the hardware connected IRQ lines.  
These bits are only valid in ISA Plug and Play mode.  
Chip identification  
7..4  
r
1001b  
HFC-SP  
1..0  
2
w
w
unused  
in 64 kbit/s mode: bit is ignored  
in 56 kbit/s mode: value of the LSB in 7-bit mode  
unused  
56 kbit/s mode selection bit for B1-channel  
'0' 64 kbit/s mode (reset default)  
'1' 56 kbit/s mode  
3
4
w
w
5
w
56 kbit/s mode selection bit for B2-channel  
'0' 64 kbit/s mode (reset default)  
'1' 56 kbit/s mode  
6
7
w
w
'0' Data not inverted for B1-channel (reset default)  
'1' Data inverted for B1-channel  
'0' Data not inverted for B2-channel (reset default)  
'1' Data inverted for B2-channel  
Cologne  
Chip  
Name  
Addr. Bits r/w Function  
INT_M1  
1Ah  
0
1
2
3
4
5
6
7
w
w
w
w
w
w
w
w
interrupt mask for channel B1 in transmit direction  
interrupt mask for channel B2 in transmit direction  
interrupt mask for channel D in transmit direction  
interrupt mask for channel B1 in receive direction  
interrupt mask for channel B2 in receive direction  
interrupt mask for channel D in receive direction  
interrupt mask for state change of TE/NT state machine  
interrupt mask for timer  
For mask bits a '1' enables and a '0' disables interrupt. RESET clears all bits to '0'.  
Name  
INT_M2  
Addr. Bits r/w Function  
1Bh  
0
1
w
w
w
w
w
w
w
interrupt mask for processing/non processing phase transition  
interrupt mask for GCI I-change  
2
3
4
interrupt mask for GCI monitor receive  
enable for interrupt output ('1' = enable)  
interrupt output is reversed  
5
7..6  
interrupt from external device is reversed  
unused  
For mask bits a '1' enables and a '0' disables interrupt. RESET clears all bits to '0'.  
Name  
TRM  
Addr. Bits r/w Function  
12h  
1..0  
w
interrupt in transparent mode is generated if Z1 in receive  
FIFOs or Z2 in transmit FIFOs change from:  
00: x xxxx x011 1111 x xxxx x100 0000  
01: x xxxx 0111 1111 x xxxx 1000 0000  
10: x xxx0 1111 1111 x xxx1 0000 0000  
11: x 0111 1111 1111 x 1000 0000 0000  
must be '0'  
4..2  
5
w
w
E B2 receive channel  
When set the E receive channel of the S/T interface is  
connected to the B2 receive channel.  
B1+B2 mode  
6
7
w
w
'0' normal operation (reset default)  
'1' B1+B2 are combined to one HDLC or transparent channel.  
All settings for data shape and connect are derived from  
B1.  
IOM test loop  
When set MST output data is looped to the MST input.  
Cologne  
Chip  
Name  
Addr. Bits r/w Function  
INT_S1  
1Eh  
0
1
r
r
B1-channel interrupt status in transmit direction  
B2-channel interrupt status in transmit direction  
in HDLC mode:  
'1' a complete frame has been transmitted, the frame counter  
F2 has been incremented  
in transparent mode:  
'1' interrupt as selected in TRM register bits 1..0  
D-channel interrupt status in transmit direction  
'1' a complete frame was transmitted, the frame counter  
F2 was incremented  
2
r
3
4
r
r
B1-channel interrupt status in receive direction  
B2-channel interrupt status in receive direction  
in HDLC mode:  
'1' a complete frame has been transmitted, the frame counter  
F1 has been incremented  
in transparent mode:  
'1' interrupt as selected in TRM register bits 1..0  
D-channel interrupt status in receive direction  
'1' a complete frame was received, the frame counter  
F1 was incremented  
5
r
6
7
0
r
r
r
TE/NT state machine interrupt status  
'1' state of state machine changed  
timer interrupt status  
'1' timer is elapsed  
INT_S2  
1Fh  
processing/non processing transition interrupt status  
'1' The HFC-SP has changed from processing to non  
processing state.  
1
2
7
r
r
r
GCI I-change interrupt  
'1' a different I-value on GCI was detected  
receiver ready (RxR) of monitor channel  
'1' 2 monitor bytes have been received  
unused, '0'  
* important!  
Reading the INT_S1 or INT_S2 register resets all active read interrupts in the INT_S1 or INT_S2  
register. New interrupts may occur during read. These interrupts are reported at the next read of  
INT_S1 or INT_S2.  
All interrupt bits are reported regardless of the mask registers settings (INT_M1 and INT_M2).  
The mask register settings only influence the interrupt output condition.  
The interrupt output goes inactive during the read of INT_S1 or INT_S2. If interrupts occur during  
this read the interrupt line goes active immediately after the read is finished. So processors with  
level or transition triggered interrupt inputs can be connected.  
Cologne  
Chip  
Name  
Addr. Bits r/w Function  
STATUS  
1Ch  
0
r
BUSY/NOBUSY status  
'1' the HFC-SP is BUSY after initialising Reset FIFO,  
increment F or change FIFO  
'0' the HFC-SP is not busy, all accesses are allowed  
processing/non processing status  
1
2
r
r
'1' the HFC-SP is in processing phase (every 125µs)  
'0' the HFC-SP is not in processing phase  
processing/non processing transition interrupt status  
'1' The HFC-SP has finished internal processing phase (every  
125µs)  
3
4
r
r
unused, '0'  
timer status  
'0' timer not elapsed  
'1' timer elapsed  
5
6
7
r
r
r
TE/NT state machine interrupt state  
'1' state of state machine has changed  
FRAME interrupt has occured (any data channel interrupt)  
all masked D-channel and B-channel interrupts are "ored"  
ANY interrupt  
all masked interrupts are "ored"  
Reading the STATUS register clears no bit.  
Cologne  
Chip  
5 Electrical characteristics  
Absolute maximum ratings  
Parameter  
Symbol  
Rating  
Supply voltage  
Input voltage  
Output voltage  
Operating temperature  
Storage temperature  
VDD  
VI  
VO  
Topr  
Tstg  
-0.3V to +7.0V  
-0.3V to VCC + 0.3V  
-0.3V to VCC + 0.3V  
-10°C to +85°C  
-40°C to +125°C  
Recommended operating conditions  
Parameter  
Supply voltage  
Symbol  
VDD  
Condition  
VDD=5V  
VDD=3.3V  
MIN. TYP. MAX.  
4.75V 5.0V  
3.15V 3.3V  
0°C  
5.25V  
3.45V  
+70°C  
Operating temperature  
Supply current  
normal  
Topr  
IDD  
fCLK=12.288MHz  
DD = 5V, running oscillator:  
V
V
25mA  
8mA  
< 1mA  
DD = 3.3V, running oscillator:  
power down  
oscillator stopped*):  
*)  
see also: 3.12 Power down considerations  
Electrical characteristics for 5V power supply  
VDD = 4.75V to 5.25V, Topr = 0°C to +70°C  
Parameter  
Symbol  
Condition  
TTL level  
CMOS level  
MIN. TYP. MAX. MIN. TYP. MAX.  
Input LOW voltage  
Input HIGH voltage  
Output LOW voltage  
Output HIGH voltage  
Output leakage current  
Pull-up resistor input  
current  
VIL  
VIH  
VOL  
VOH  
| IOZ  
| IIL |  
0.8V  
0.4V  
10µA  
1.0V  
0.4V  
10µA  
2.0V  
4.3V  
3.5V  
4.3V  
|
High Z  
VI = VSS  
50µA  
50µA  
Electrical characteristics for 3.3V power supply  
VDD = 3.15V to 3.45V, Topr = 0°C to +70°C  
Parameter  
Symbol  
Condition  
TTL level  
CMOS level  
MIN. TYP. MAX. MIN. TYP. MAX.  
Input LOW voltage  
Input HIGH voltage  
Output LOW voltage  
Output HIGH voltage  
VIL  
VIH  
VOL  
VOH  
0.8V  
1.0V  
2.0V  
2.4V  
2.3V  
2.4V  
0.4V  
0.4V  
Cologne  
Chip  
I/O Characteristics  
Input  
IIOSEL0-3  
SA0-9  
/AEN  
Interface Level  
TTL, internal pull-up resistor  
TTL  
TTL  
/IOR  
TTL  
/IOW  
TTL  
BD0-7  
ALE  
TTL  
TTL  
SRD0-7  
C4IO  
F0IO  
STIO1-2  
IRQ_A  
/OE  
/WE  
/REG  
RESET  
TTL  
TTL, internal pull-up resistor  
TTL, internal pull-up resistor  
TTL, internal pull-up resistor  
TTL (as IRQ input)  
TTL (only for PCMCIA)  
TTL (only for PCMCIA)  
TTL (only for PCMCIA)  
CMOS Schmitt Trigger  
Cologne  
Chip  
Driver Capability  
Low  
High  
Output  
EE_SCL  
0.4V  
1mA  
1mA  
6mA  
18mA  
4mA  
4mA  
12mA  
4mA  
12mA  
4mA  
1mA  
4mA  
2mA  
4mA  
4mA  
4mA  
6mA  
6mA  
6mA  
6mA  
6mA  
0.6V  
VDD - 0.8V  
0.5mA  
EE_SDA  
IOCHRDY  
BD0-7  
0.5mA  
24mA  
8mA  
2mA  
2mA  
BUSDIR  
TX2_HI  
/TX1_LO  
/TX_EN  
/TX2_LO  
TX1_HI  
ADJ_LEV  
SRD0-7  
SRA0-14  
/SRRD  
2mA  
2mA  
0.5mA  
2mA  
1mA  
2mA  
2mA  
2mA  
3mA  
3mA  
3mA  
3mA  
3mA  
/SRCS  
/SRWE  
C4IO  
F0IO  
STIO1-2  
F1_A-B  
IRQA-F  
Cologne  
Chip  
6 Timing characteristics  
6.1  
ISA-PC bus or processor access  
Timing diagram 1: ISA-PC bus or microprocessor access  
SYMBOL  
CHARACTERISTICS  
/IOR Low to Read Data Out Time  
MIN.  
3ns  
MAX.  
25ns  
15ns  
t
t
t
t
t
t
t
t
t
t
t
RDD  
RDDH  
SA  
/IOR High to Data Buffer Turn Off Time  
Address to /IOR or /IOW Low Setup Time  
Address Hold Time after /IOR or /IOW High  
Read Time  
2ns  
20ns  
20ns  
50ns  
50ns  
30ns  
10ns  
3ns  
SAH  
RD  
WR  
Write Time  
WRDSU  
WRDH  
RDY  
Write Data Setup Time to /IOW Low  
Write Data Hold Time from /IOW High  
Delay Time from /IOR or /IOW Low to IOCHRDY Low  
Delay Time from /IOR Low or /IOW High to IOCHRDY High  
Delay Time from /IOR Low to BUSDIR Low  
30ns  
30ns  
25ns  
RDYH  
BUSRD  
3ns  
3ns  
Cologne  
Chip  
SYMBOL  
CHARACTERISTICS  
Delay Time from /IOR High to BUSDIR High  
Read/Write cycle  
MIN.  
2ns  
MAX.  
15ns  
t
t
BUSRDH  
CYCLE  
6 x tCLK  
* important!  
For write accesses to the HFC-SP the data lines must be stable and valid before /IOW or /DS get  
low. With Intel compatible processors it may be neccessary to delay the /IOW or /DS signals.  
6.2  
SRAM access  
Timing diagram 2: SRAM access  
SYMBOL CHARACTERISTICS  
MIN.  
12.288MHz  
0
MAX.  
24.576MHz *)  
±10-4  
f
CLK  
OSC_IN frequency  
f
CLK / fCLK  
Relative OSC_IN frequency deviation  
OSC_IN Cycle Time  
t
t
t
t
t
CLK  
1/ fCLK  
**)  
**)  
LOW  
OSC_IN Low Level Width  
OSC_IN High Level Width  
Address Stable after OSC_IN ↓  
Address Stable Hold Time after OSC_IN ↓  
t
CLK / 3  
CLK / 3  
2ns  
HIGH  
t
SRA  
15ns  
SRAH  
1ns  
Cologne  
Chip  
SYMBOL  
CHARACTERISTICS  
Data Out Stable after OSC_IN  
MIN.  
10ns  
5ns  
MAX.  
t
t
t
t
t
t
t
t
SRD  
30ns  
SRDH  
Data Out Stable Hold Time after OSC_IN  
Data In Setup Time to OSC_IN ↓  
Data In Hold Time after OSC_IN ↓  
Delay Time OSC_IN to /SRWR Low  
Delay Time OSC_IN to /SRWR High  
Data Hold Time after /SRWR  
SRDSU  
SRDHR  
SRWR  
SRWRH  
SRWRA  
SRWRA  
20ns  
0ns  
5ns  
15ns  
15ns  
5ns  
1ns  
Address Hold Time after /SRWR  
t
CLK / 3  
*)  
Double clock mode with 24.576MHz  
OSC_IN should be symmetrical so tLOW = tHIGH  
**)  
6.3  
GCI/IOM2 bus clock and data alignment for Mitel STTM bus  
Figure 7: GCI/IOM2 bus clock and data alignment  
Cologne  
Chip  
6.4  
GCI/IOM2 timing  
Timing diagram 3: GCI/IOM2 timing  
*)  
F0IO starts one C4IO clock earlier if bit 3 in MST_MODE register is set. If this bit is set  
F0IO is also awaited one C4IO clock cycle earlier.  
6.4.1 Master mode  
To configure the HFC-SP as GCI/IOM2 bus master bit 0 of the MST_MODE register must be set. In this  
case C4IO and F0IO are outputs.  
SYMBOL  
CHARACTERISTICS  
Clock C4IO period (4.096 MHz)  
Clock C4IO High Width  
Clock C4IO Low Width  
MIN.  
TYP.  
MAX.  
t
180 ns *) 244.14 ns*) 308 ns*)  
C4P  
t
78 ns *)  
78 ns *)  
360 ns  
180 ns  
122 ns *)  
122 ns *)  
488.28 ns  
244.14 ns  
166 ns*)  
166 ns *)  
616 ns  
C4H  
C4L  
t
C2P  
t
Clock C2O Period  
C2H  
t
Clock C2O High Width  
308 ns  
Cologne  
Chip  
SYMBOL  
CHARACTERISTICS  
Clock C2O Low Width  
F0IO Width  
MIN.  
180 ns  
230 ns  
460 ns  
TYP.  
244.14 ns  
244 ns  
488 ns  
10 ns  
MAX.  
308 ns  
260 ns  
520 ns  
25 ns  
t
t
C2L  
F0iW  
Short F0IO  
Long F0IO  
t
t
SToD  
STIO1/2 Delay fom C4IO Level 1 Output  
F0iCYCLE  
F0IO Cycle Time  
1 half clock adjust  
2 half clocks adjust  
124.955 us 125.000 us 125.045 us  
124.910 us 125.000 us 125.090 us  
All specifications are for 2.048 Mb/s Streams and fCLK = 12.288 Mhz.  
*)  
Time depends on accuracy of OSC_IN frequency. Because of clock adjustment in the 31st time  
slot these are the worst case timings when C4IO is adjusted.  
6.4.2 Slave mode  
To configure the HFC-SP as GCI/IOM2 bus slave bit 0 of the MST_MODE register must be cleared  
(reset default). In this case C4IO and F0IO are inputs.  
SYMBOL  
CHARACTERISTICS  
Clock C4IO period (4.096 MHz)  
Clock C4IO High Width  
Clock C4IO Low Width  
Clock C2O Period  
MIN.  
TYP.  
244.14 ns*)  
MAX.  
t
t
t
t
t
t
t
t
t
t
t
C4P  
C4H  
C4L  
C2P  
20 ns  
20 ns  
488.28 ns*)  
C2H  
C2L  
F0iS  
F0iH  
F0iW  
STiS  
STiH  
Clock C2O High Width  
Clock C2O Low Width  
F0IO Setup Time to C4IO ↓  
F0IO Hold Time after C4IO ↓  
F0IO Width  
25 ns  
25 ns  
20 ns  
20 ns  
40 ns  
20 ns  
20 ns  
STIO2 Setup Time  
STIO2 Hold Time  
All specifications are for 2.048 Mb/s Streams and fCLK = 12.288 Mhz.  
*)  
If the S/T interface is synchronized from C4IO (NT mode) the frequency must be stable to 10 -4.  
Cologne  
Chip  
6.5  
EEPROM access  
Timing diagram 4: EEPROM access  
SYMBOL  
CHARACTERISTICS  
TYP.  
48 KHz *)  
1 / fSCL  
¾ tSCL  
f
SCL  
Serial Clock Frequency  
Serial Clock Period  
t
t
t
t
t
t
t
t
SCL  
HD:STA  
LOW  
Start Condition Hold Time  
Clock Low Period  
½ tSCL  
HIGH  
SU:STA  
HD:DAT  
SU  
Clock High Period  
½ tSCL  
Start Condition Setup Time  
Output Data Change after Clock ↓  
Data In Setup Time  
¾ tSCL  
10 ns  
100 ns  
100 ns  
DH  
Data In Hold Time  
*)  
with 12.288MHz  
Cologne  
Chip  
6.6  
Access to an external device  
Timing diagram 5: Access to an external device  
SYMBOL  
CHARACTERISTICS  
MIN.  
1/ fCLK  
4 x tCLK  
MAX.  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
CLK  
EXT  
LOW  
Clock Cycle Time  
Access to External Device Cycle Time  
Clock Low Level Width  
**)  
**)  
t
t
CLK / 3  
CLK / 3  
2ns  
HIGH  
Clock High Level Width  
SRA  
Address Stable after Clock  
15ns  
SRAH  
SRD  
Address Stable Hold Time after Clock  
Data Out Stable after Clock  
1ns  
10ns  
5ns  
30ns  
SRDH  
SRDSU  
SRDHR  
SRWR  
SRWRH  
SRWRA  
SRWRA  
Data Out Stable Hold Time after Clock  
Data In Setup Time to Clock ↓  
Data In Hold Time after Clock ↓  
Delay Time Clock to /SRWR Low  
Delay Time Clock to /SRWR High  
Data Hold Time after /SRWR  
Address Hold Time after /SRWR  
20ns  
0ns  
5ns  
15ns  
15ns  
5ns  
1ns  
t
CLK / 3  
*)  
Double clock mode with 24.576MHz  
Clock should be symmetrical so tLOW = tHIGH  
**)  
Cologne  
Chip  
7 S/T interface circuitry  
In order to comply to the physical requirements of ITU-T recommendation I.430 and considering the  
national requirements concerning overvoltage protection and electromagnetic compatibility (EMC), the  
HFC-SP needs some additional circuitry, which are shown in the following figures.  
7.1  
External receiver circuitry  
VDD  
R1  
C3  
R2  
R7  
R3  
LEV_R1  
R1  
R5  
R6  
10  
S/T module  
5
RX  
+
D1  
D3  
D2  
D4  
11  
12  
16  
14  
R1´  
GND  
VDD  
S/T side  
R5´  
R6´  
LEV_R2  
RX -  
R2´  
R2  
C3´  
R4  
ADJ_LEV  
C1  
GND  
Figure 8: External receiver circuitry  
Part list  
C1  
47 nF  
22 pF  
1N4148 or LL4148  
1N4148 or LL4148  
VDD  
R1, R1'  
R2, R2'  
R3  
5V  
3.3V  
C3, C3'  
D1, D2  
D3, D4  
33 k  
100 k  
1 M  
680k  
S/T module  
see Table 5 on page 69  
R4  
3.9 k  
4.7 k  
4.7 k  
R5, R5'  
R6, R6'  
R7  
1.8 M  
1.2M  
C3, C3' are for reduction of high frequency input noise and should be located as close as possible to the  
HFC-SP.  
Cologne  
Chip  
7.2  
External transmitter circuitry  
VDD  
R6  
C3  
R4  
R5  
T3  
TX_EN  
TX1_HI  
TX2_HI  
R1  
R1´  
T1  
T1´  
R7  
R2  
R2´  
T2  
T2´  
R8  
TX2_LO  
R3  
R3´  
TX1_LO  
GND  
S/T module  
9
8
7
1
TX +  
D2  
D3  
ZD1  
3
S/T side  
GND  
D4  
D5  
18  
TX -  
Figure 9: External transmitter circuitry  
Part List  
C3  
470 pF  
VDD  
R1  
5V  
2.2 k  
3.0 k  
3.3V  
1% 560  
1% 3.9 k  
18  
D2, D3  
D4, D5  
ZD1  
1N4148 or LL4148  
1N4148 or LL4148  
Z-Diode 2.7 V  
1%  
1%  
R2  
R3, R3' *) 18  
(e. g. BZV 55C 2V7)  
R4  
R5  
R6  
R7  
R8  
100  
0
T1, T1'  
T2, T2'  
T3  
BC550C, BC850C or similar  
BC550C, BC850C or similar  
BC560C, BC860C or similar  
see Table 5 on page 69  
5.6 k  
3.3 k  
3.3 k  
2.2 k  
3.3 k  
2.2 k  
1.8 k  
2.2 k  
S/T module  
*)  
value is depending on the used S/T module  
Cologne  
Chip  
S/T module part number  
manufacturer  
Advanced Power Components  
United Kingdom  
S-Hybrid modules with receiver and transmitter Phone: +44 1634-290-588  
APC 56624-1  
circuitry included:  
APC 5568-3V  
Fax:  
+44 1634-290-591  
http://www.apcisdn.com  
APC 5568-5V  
APC 5568DS-3V  
APC 5568DS-5V  
FE 8131-55Z  
FEE GmbH  
Singapore  
Phone: +65 741-5277  
Fax:  
+65 741-3013  
Bangkok  
Phone: +662 718-0726-30  
Fax:  
+662 718-0712  
Germany  
Phone: +49 6106-82980  
Fax: +49 6106-829898  
transformers:  
PE-64995  
PE-64999  
PE-65795  
PE-65799  
PE-68995  
PE-68999  
T5006  
Pulse Engineering, Inc.  
United States  
Phone: +1-619-674-8100  
Fax:  
+1-619-674-8262  
http://www.pulseeng.com  
T5007  
S0-modules:  
T5012  
T5034  
T5038  
transformers:  
SM TC-9001  
SM ST-9002  
SM ST-16311F  
S0-modules:  
SM TC-16311  
SM TC-16311A  
transformers  
UT21023  
Sun Myung  
Korea  
Phone: +82-348-943-8525  
Fax:  
+82-348-943-8527  
http://www.sunmyung.com  
UMEC GmbH  
Germany  
S0-modules:  
UT 21624  
UT 28624 A  
Phone: +49 7131-7617-0  
Fax:  
+49 7131-7617-20  
Taiwan  
Phone: +886-4-359-009-6  
Fax: +886-4-359-012-9  
United States  
Phone: +1-310-326-707-2  
Fax:  
+1-310-326-705-8  
http://www.umec.de  
Cologne  
Chip  
S/T module part number  
manufacturer  
T 6040...  
transformers:  
3-L4021-X066  
VAC GmbH  
Germany  
Phone: +49 6181/ 38-0  
3-L4025-X095  
3-L5024-X028  
3-L4096-X005  
3-L5032-X040  
Fax:  
+49 6181/ 38-2645  
http://www.vacuumschmelze.de  
S0-modules:  
7-L5051-X014  
7-M5051-X032  
7-L5052-X102  
7-M5052-X110  
7-M5052-X114  
transformers:  
Valor Electronics, Inc.  
Asia  
Phone: +852 2333-0127  
ST5069  
S0-modules:  
PT5135  
Fax:  
+852 2363-6206  
ST5201  
North America  
ST5202  
Phone: +1 800 31VALOR  
Fax:  
+1 619 537-2525  
Europe  
Phone: +44 1727-824-875  
Fax: +44 1727-824-898  
http://www.valorinc.com  
Vogt electronic AG  
Germany  
543 76 009 00  
Phone: +49 8591/ 17-0  
Fax:  
+49 8591/ 17-240  
http://www.vogt-electronic.com  
Table 5: S/T module part numbers and manufacturer  
Cologne  
Chip  
7.3  
Oscillator circuitry  
Part list:  
OSC_IN  
Q1  
12.288 MHz quartz  
C1  
R1  
R2  
0..50  
1 M  
R2  
Q1  
C1, C2 47 pF  
OSC_OUT  
C2  
R1  
Figure 10: Oscillator Circuitry  
The values of C1, C2 and R1 depend on the used quartz.  
For a load-free check of the oscillator frequency the C4O clock of the GCI/IOM2 bus should be  
measured (HFC-SP as master, S/T interface deactivated, 4.096 MHz frequency intented on the C4IO).  
The input signal on OSC_IN should be as big as possible.  
7.4  
EEPROM circuitry  
Figure 11: EEPROM circuitry  
Cologne  
Chip  
8 State matrices for NT and TE  
8.1  
S/T interface activation/deactivation layer 1 for finite state matrix for NT  
Pending  
activation  
Pending  
deactivation  
State name  
Reset  
G0  
Deactive  
G1  
Active  
G3  
State number  
G2  
G4  
INFO 0  
|
INFO  
sent  
Event  
INFO 0  
G2  
INFO 0  
|
INFO 2  
INFO 4  
State machine release  
(Note 3)  
|
|
|
|
G2  
(Note 1)  
G2  
(Note 1)  
G2  
(Note 1)  
Activate request  
Start timer T2  
G4  
Start timer T2  
G4  
Deactivate request  
|
|
Expiry T2  
(Note 2)  
G1  
G1  
Receiving INFO 0  
Receiving INFO 1  
G2  
/
G2  
(Note 1)  
G3  
(Note 1)  
Receiving INFO 3  
/
Table 6: Activation/deactivation layer 1 for finite state matrix for NT  
No state change  
/
|
Impossible by the definition of peer-to-peer physical layer procedures or system internal reasons  
Impossible by the definition of the physical layer service  
Note 1: Timer 1 (T1) is not implemented in the HFC-SP and must be implemented in software.  
Note 2: Timer 2 (T2) prevents unintentional reactivation. Its value is 32ms (256 x 125µs). This implies  
that a TE has to recognize INFO 0 and to react on it within this time.  
Note 3: After reset the state machine is fixed to G0.  
* hint!  
Fix the NT state machine to state G3 when activated (by writing 13h into STATES register). This  
prevents deactivation of NT mode S/T interface due to sporadically errors on NT input data.  
Cologne  
Chip  
8.2  
Activation/deactivation layer 1 for finite state matrix for TE  
Awaiting Identifying  
Lost  
framing  
State name Reset  
Sensing Deactivated  
Synchronized Activated  
signal  
input  
State number  
F0  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
Info  
Event  
INFO 0  
INFO 0  
INFO 0  
INFO 1  
/
INFO 0  
/
INFO 3  
INFO 3  
INFO 0  
/
sent  
State machine release  
(Note 1)  
F2  
/
/
/
/
Receiving any signal  
Receiving INFO 0  
Activate  
Request  
Expiry T3  
(Note 5)  
|
|
F5  
F4  
|
|
|
|
|
|
/
F3  
F3  
F3  
F3  
/
Receiving INFO 0  
Receiving any signal  
(Note 2)  
Receiving INFO 2  
(Note 3)  
Receiving INFO 4  
(Note 3)  
Lost framing  
(Note 4)  
F3  
F3  
/
F3  
F5  
F6  
F7  
/
F6  
F7  
/
F6  
F7  
/
F6  
F7  
/
F6  
F6  
F7  
F7  
F8  
F8  
Table 7: Activation/deactivation layer 1 for finite state matrix for TE  
No change, no action  
|
/
Impossible by the definition of the layer 1 service  
Impossible situation  
Notes  
Note 1: After reset the state machine is fixed to F0.  
Note 2: This event reflects the case where a signal is received and the TE has not (yet) determined wether  
it is INFO 2 or INFO 4.  
Note 3: Bit- and frame-synchronisation achieved.  
Note 4: Loss of Bit- or frame-synchronisation.  
Note 5: Timer 3 (T3) is not implemented in the HFC-SP and must be implemented in software.  
Cologne  
Chip  
9 Binary organisation of the frames  
9.1  
S/T frame structure  
The frame structures on the S/T interface are different for each direction of transmission. Both structures  
are illustrated in Figure 12.  
Figure 12: Frame structure at reference point S and T  
F
L
D
E
FA  
M
Framing bit  
D.C. balancing bit  
D-channel bit  
D-echo-channel bit  
Auxiliary framing bit  
Multiframing bit  
N
Bit set to a binary value N = FA (NT to TE)  
Bit within B-channel 1  
Bit within B-channel 2  
Bit used for activation  
B1  
B2  
A
S
S-channel bit  
note!  
Lines demarcate those parts of the frame that are independently d.c.-balanced.  
The FA bit in the direction TE to NT is used as Q bit in every fifth frame if S/Q bit transmission is  
enabled (see SCTRL register).  
The nominal 2-bit offset is as seen from the TE. The offset can be adjusted with the CLKDEL  
register in TE mode. The corresponding offset at the NT may be greater due to delay in the  
interface cable and varies by configuration.  
HDLC-B-channel data start with the LSB, PCM-B-channel data start with the MSB.  
Cologne  
Chip  
9.2  
GCI frame structure  
The binary organistation of a single GCI channel frame is described below. C4IO clock frequency is  
4.096MHz.  
C 4IO  
F 0 IO  
b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 b 1 b 2 b 4 b 3 b 2 b 1  
D IN  
D O U T  
B 1  
B 2  
M
D
C /I  
M
R
M
X
B 1  
B 1  
Tim e S lo t  
0
Tim e S lo t  
1
Tim e S lo t  
2
Tim e S lo t  
3
Tim e S lo t  
4
Tim e S lo t 3 2  
G C I Fra m e  
Figure 13: Single channel GCI format  
B1  
B2  
M
B-channel 1 data  
B-channel 2 data  
Monitor channel data  
D-channel data  
D
C/I  
Command/indication bits for controlling activation/deactivation and for additional control  
functions  
MR  
MX  
Handshake bit for monitor channel  
Handshake bit for monitor channel  
Cologne  
Chip  
10 Clock synchronisation  
10.1 Clock synchronisation in NT-mode  
Figure 14: Clock synchronisation in NT-mode  
Cologne  
Chip  
10.2 Clock synchronisation in TE-mode  
Figure 15: Clock synchronisation in TE-mode  
The C4IO clock is adjusted in the 31th time slot at the GCI/IOM bus twice for one half clock cycle. This  
can be reduced to one adjustment of a half clock cycle. This is useful if another HFC-S, HFC-S+ or HFC-  
SP is connected as slave in NT mode to the GCI/IOM2 bus.  
Cologne  
Chip  
11 HFC-SP package dimensions  
Figure 16: HFC-SP package dimensions  
Cologne  
Chip  
12 Sample circuitries with HFC-SP  
12.1 ISDN ISA PnP PC card  
Cologne  
Chip  
Cologne  
Chip  
Part List  
Part  
C1  
C2  
C3  
C7  
Value  
47pF  
47pF  
47nF  
none  
1nF  
470pF  
none  
47nF  
47nF  
47nF  
47nF  
47nF  
47nF  
47nF  
33µF  
33µF  
Part  
D9  
D10  
D11  
Q1  
Q2  
Q3  
Q29  
Q30  
Q34  
R1  
R2  
R3  
R4  
R5  
R5'  
R6  
R6'  
R7  
R7'  
R8  
R8'  
R9  
R10  
Value  
Part  
R11  
R12  
R13  
R14  
R14'  
R15  
R15'  
R16  
R16'  
R17  
R18  
R19  
TR1  
Value  
100  
5.6k  
100k  
2.2k  
2.2k  
3.0k  
3.0k  
18  
LL4148  
LL4148  
2V7  
12.288MHz  
BC850C  
BC850C  
BC850C  
BC860C  
BC850C  
50  
1%  
1%  
1%  
1%  
C8  
C9  
C10  
CB1  
CB2  
CB3  
CB4  
CB5  
CB6  
CB7  
CB8  
CB9  
D1  
D2  
D3  
D4  
D6  
D7  
D8  
18  
15  
1M  
1M  
2.2k  
3.3k  
S/T module  
3.9k  
4.7k  
4.7k  
4.7k  
4.7k  
100k  
100k  
33k  
CON1 PINHD-2X4  
CON2 WESTERN  
CON3 ISA  
U1  
U2  
U3  
U4  
LL4148  
LL4148  
LL4148  
LL4148  
2V7  
HFC-SP  
24C04  
62256FP  
74HC138  
LL4148  
LL4148  
33k  
1.8M  
3.3k  
Cologne  
Chip  
12.2 ISDN PCMCIA card  
Cologne  
Chip  
Cologne  
Chip  
Part List  
Resistors  
R1  
R2  
R3  
R4  
R5  
R5'  
R6  
R6'  
R7  
R7'  
R8  
0R  
1M  
1M  
R8'  
R9  
33k  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R30  
1k8  
10k  
10k  
10k  
10k  
470R  
560R  
10k  
6k8  
10k  
1M8  
33R  
18k  
100R  
2k2  
2k2  
10R  
10R  
10k  
R11  
R12  
R13  
R14  
R14'  
R16  
R16'  
R17  
R18  
1%  
3k9  
4k7  
4k7  
4k7  
4k7  
100k  
100k  
33k  
1%  
1%  
2k2  
Capacitors  
C1  
C2  
C3  
C5  
C5'  
C8  
47pF  
C9  
C11  
C12  
CB1-1 33nF  
CB1-2 33nF  
CB1-3 33nF  
150pF  
10µF  
33nF  
CB1-4 33nF  
CB1-5 33nF  
CB1-6 33nF  
CB7,1 22µF  
CB7,2 22µF  
47pF  
47nF  
22pF  
22pF  
100pF  
cap  
cap  
cap  
Transistors  
T1  
T2  
BC560C  
BC550C  
T3  
T4  
BC550C  
BC550C  
T5  
BC550C  
Diodes  
D1  
D2  
BAV 70  
BAW 56  
BAV 70  
D4  
D5  
D6  
BAW 56  
BAV 70  
BAR 43  
D7  
D8  
BAV 99  
ZMM002,7  
D3  
Chips  
U1  
U2  
HFC-SP (A) ISDN  
24C04  
U3  
U4  
62256FP  
TPS 7201 Q  
others  
Q1  
TR1  
MR03 1228  
UT 21023  
TR2  
TR3  
UT 21023  
UT 28103-A  
ANDA NC7S08  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY