HGT1S3N60B3DS9A [ETC]

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 3.5A I(C) | TO-263AB ; 晶体管| IGBT | N -CHAN | 600V V( BR ) CES | 3.5AI ( C) | TO- 263AB\n
HGT1S3N60B3DS9A
型号: HGT1S3N60B3DS9A
厂家: ETC    ETC
描述:

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 3.5A I(C) | TO-263AB
晶体管| IGBT | N -CHAN | 600V V( BR ) CES | 3.5AI ( C) | TO- 263AB\n

晶体 晶体管 电动机控制 瞄准线 双极性晶体管 栅
文件: 总8页 (文件大小:236K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGTP3N60B3D, HGT1S3N60B3DS  
Data Sheet  
December 2001  
7A, 600V, UFS Series N-Channel IGBT with  
Anti-Parallel Hyperfast Diode  
Features  
o
• 7A, 600V T = 25 C  
C
The HGTP3N60B3D and HGT1S3N60B3DS are MOS gated  
high voltage switching devices combining the best features  
of MOSFETs and bipolar transistors. These devices have the  
high input impedance of a MOSFET and the low on-state  
conduction loss of a bipolar transistor. The much lower on-  
• 600V Switching SOA Capability  
o
Typical Fall Time. . . . . . . . . . . . . . . . 115ns at T = 125 C  
J
• Short Circuit Rating  
• Low Conduction Loss  
• Hyperfast Anti-Parallel Diode  
• Related Literature  
o
state voltage drop varies only moderately between 25 C and  
o
150 C. The diode used in anti-parallel with the IGBT is the  
RHRD460. The IGBT used is TA49192.  
The IGBT is ideal for many high voltage switching  
applications operating at moderate frequencies where low  
conduction losses are essential, such as: AC and DC motor  
controls, power supplies and drivers for solenoids, relays  
and contactors.  
• TB334 “Guidelines for Soldering Surface Mount  
- Components to PC Boards  
Packaging  
JEDEC TO-220AB  
Formerly Developmental Type TA49193.  
E
C
G
Ordering Information  
COLLECTOR  
(FLANGE)  
PART NUMBER  
PACKAGE  
TO-220AB  
TO-263AB  
BRAND  
G3N60B3D  
G3N60B3D  
HGTP3N60B3D  
HGT1S3N60B3DS  
NOTE: When ordering, use the entire part number. Add the suffix 9A  
to obtain the TO-263AB variant in tape and reel, i.e.,  
HGT1S3N60B3DS9A.  
Symbol  
TO-263, TO-263AB  
C
COLLECTOR  
G
G
(FLANGE)  
E
E
FAIRCHILD CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
©2001 Fairchild Semiconductor Corporation  
HGTP3N60B3D, HGT1S3N60B3DS Rev. B  
HGTP3N60B3D, HGT1S3N60B3DS  
o
Absolute Maximum Ratings  
T
= 25 C, Unless Otherwise Specified  
C
HGTP3N60B3D,  
HGT1S3N60B3DS  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BV  
600  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I  
C
7.0  
3.5  
A
A
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
C110  
Average Diode Forward Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
4.0  
EC(AVG)  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
20  
A
V
V
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V
±20  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
±30  
Switching Safe Operating Area at T = 150 C (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSOA  
J
18A at 600V  
33.3  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.27  
W/ C  
C
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 150  
C
STG  
Maximum Lead Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
Package Body for 10s, See Tech Brief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
PKG  
Short Circuit Withstand Time (Note 2) at V  
Short Circuit Withstand Time (Note 2) at V  
= 12V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t  
5
µs  
µs  
GE  
GE  
SC  
SC  
= 10V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t  
10  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Pulse width limited by maximum junction temperature.  
o
2. V  
= 360V, T = 125 C, R = 82Ω.  
J G  
CE(PK)  
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
= 250µA, V = 0V  
MIN  
TYP  
MAX  
-
UNITS  
V
Collector to Emitter Breakdown Voltage  
Collector to Emitter Leakage Current  
I
600  
-
-
CES  
C
GE  
o
I
V
= BV  
CES  
T
= 25 C  
-
-
250  
2.0  
2.1  
2.5  
6.0  
±250  
-
µA  
mA  
V
CES  
CE  
C
C
C
C
o
T
T
T
= 150 C  
-
o
Collector to Emitter Saturation Voltage  
V
I
= I  
,
= 25 C  
-
1.8  
2.1  
5.4  
-
CE(SAT)  
C
C110  
= 15V  
V
GE  
o
= 150 C  
-
V
Gate to Emitter Threshold Voltage  
Gate to Emitter Leakage Current  
Switching SOA  
V
I
= 250µA, V  
= V  
GE  
4.5  
-
V
GE(TH)  
C CE  
I
V
= ±20V  
nA  
A
GES  
GE  
o
SSOA  
T = 150 C, R = 82Ω, V  
= 15V  
18  
-
J
G
GE  
L = 500µH, V = 600V  
CE  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
I
= I  
, V  
C110 CE  
= 0.5 BV  
CES  
-
-
-
-
-
-
-
-
-
7.9  
18  
21  
18  
16  
105  
70  
66  
88  
-
22  
25  
-
V
GEP  
C
Q
= I  
,
V
= 15V  
nC  
nC  
ns  
ns  
ns  
ns  
µJ  
µJ  
g(ON)  
C
C110  
= 0.5 BV  
GE  
GE  
V
CE  
CES  
V
= 20V  
o
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 25 C  
J
d(ON)I  
I
= I  
CE  
C110  
t
-
rI  
d(OFF)I  
V
V
R
= 0.8 BV  
= 15V  
CE  
CES  
GE  
Current Turn-Off Delay Time  
Current Fall Time  
t
-
= 82Ω  
G
L = 1mH  
Test Circuit (Figure 19)  
t
-
fI  
Turn-On Energy  
E
75  
160  
ON  
Turn-Off Energy (Note 1)  
E
OFF  
©2001 Fairchild Semiconductor Corporation  
HGTP3N60B3D, HGT1S3N60B3DS Rev. B  
HGTP3N60B3D, HGT1S3N60B3DS  
o
Electrical Specifications  
PARAMETER  
T = 25 C, Unless Otherwise Specified (Continued)  
C
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
16  
18  
220  
115  
130  
210  
2.0  
-
MAX  
-
UNITS  
ns  
o
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 150 C  
-
-
-
-
-
-
-
-
-
-
d(ON)I  
J
I
= I  
CE  
C110  
t
-
ns  
rI  
d(OFF)I  
V
= 0.8 BV  
= 15V  
CE  
CES  
V
GE  
Current Turn-Off Delay Time  
Current Fall Time  
t
295  
175  
140  
325  
2.5  
22  
ns  
R
= 82Ω  
G
L = 1mH  
t
ns  
fI  
Test Circuit (Figure 19)  
Turn-On Energy  
E
µJ  
ON  
Turn-Off Energy (Note 1)  
Diode Forward Voltage  
Diode Reverse Recovery Time  
E
µJ  
OFF  
V
I
I
I
= 3A  
V
EC  
EC  
EC  
EC  
t
= 1A, dI /dt = 200A/µs  
EC  
ns  
rr  
= 3A, dI /dt = 200A/µs  
EC  
-
28  
ns  
o
Thermal Resistance Junction To Case  
R
IGBT  
-
3.75  
3.0  
C/W  
θJC  
o
Diode  
C/W  
NOTE:  
3. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
OFF  
at the point where the collector current equals zero (I  
= 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement  
CE  
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss. Turn-On losses include losses due  
to diode recovery.  
Typical Performance Curves Unless Otherwise Specified  
20  
o
= 150 C, R = 82, V  
T
= 15V L = 500µH  
7
6
5
4
3
2
1
0
J
G
GE  
18  
16  
14  
12  
10  
8
V
= 15V  
GE  
6
4
2
0
0
100  
200  
300  
400  
500  
600  
700  
25  
50  
75  
100  
125  
150  
o
T
, CASE TEMPERATURE ( C)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
C
CE  
FIGURE 1. DC COLLECTOR CURRENT vs CASE TEMPERATURE  
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA  
©2001 Fairchild Semiconductor Corporation  
HGTP3N60B3D, HGT1S3N60B3DS Rev. B  
HGTP3N60B3D, HGT1S3N60B3DS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
200  
16  
45  
40  
35  
30  
25  
20  
15  
o
T
= 150 C, R = 82, L = 1mH, V  
= 480V  
o
J
G
CE  
V
= 360V, R = 82, T = 125 C  
G J  
CE  
100  
10  
1
T
V
C
o
o
o
GE  
14  
12  
10  
8
15V  
10V  
I
75 C  
75 C  
110 C 15V  
110 C 10V  
SC  
o
f
f
= 0.05 / (t  
+ t  
)
MAX1  
d(OFF)I  
= (P - P ) / (E  
d(ON)I  
+ E )  
OFF  
t
SC  
MAX2  
D
C
ON  
P
= CONDUCTION DISSIPATION  
C
6
(DUTY FACTOR = 50%)  
o
R
= 3.75 C/W, SEE NOTES  
ØJC  
4
10  
11  
12  
13  
14  
15  
1
2
3
4
5
6
7
8
V
, GATE TO EMITTER VOLTAGE (V)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
GE  
CE  
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME  
30  
25  
20  
15  
10  
5
14  
DUTY CYCLE <0.5%, V  
= 10V  
PULSE DURATION = 250µs  
o
DUTY CYCLE <0.5%, V  
= 15V  
PULSE DURATION = 250µs  
GE  
GE  
T
= -55 C  
C
C
o
12  
10  
8
T
= -55 C  
C
o
T
= 150 C  
o
T
= 150 C  
C
6
o
T
= 25 C  
C
4
o
T
= 25 C  
C
2
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
0.7  
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
0.6  
R
= 82, L = 1mH, V  
= 480V  
R
= 82, L = 1mH, V  
= 480V  
G
CE  
G
CE  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
o
o
0.5  
0.4  
0.3  
0.2  
0.1  
0
T
= 25 C, T = 150 C, V  
= 10V  
J
J
GE  
o
T
= 150 C; V  
= 10V OR 15V  
J
GE  
o
T
= 25 C; V  
= 10V OR 15V  
7 8  
J
GE  
o
o
V
= 15V, T = 150 C, T = 25 C  
GE  
J
J
1
2
3
4
5
6
7
8
1
2
3
4
5
6
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
©2001 Fairchild Semiconductor Corporation  
HGTP3N60B3D, HGT1S3N60B3DS Rev. B  
HGTP3N60B3D, HGT1S3N60B3DS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
80  
70  
60  
50  
40  
30  
20  
10  
45  
40  
35  
30  
25  
20  
15  
10  
R
= 82, L = 1mH, V  
= 480V  
CE  
R
= 82, L = 1mH, V  
= 480V  
CE  
G
G
o
o
T
= 25 C, T = 150 C, V = 10V  
GE  
J
J
o
o
T
= 25 C AND T = 150 C, V = 10V  
J
J
GE  
o
o
T
= 25 C, T = 150 C, V  
GE  
= 15V  
J
J
o
o
T
= 25 C, T = 150 C, V  
= 15V  
J
J
GE  
7
1
2
3
4
5
6
8
1
2
3
4
5
6
7
8
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
250  
140  
R
= 82, L = 1mH, V  
= 480V  
CE  
G
R
= 82, L = 1mH, V  
= 480V  
G
CE  
225  
200  
175  
150  
125  
100  
75  
o
T
= 150 C, V  
= 15V  
= 10V  
J
GE  
120  
100  
80  
o
T
= 150 C, V  
GE  
= 10V OR 15V  
J
o
T
= 150 C, V  
GE  
J
o
T
= 25 C, V  
= 15V  
J
GE  
o
= 25 C, V  
T
= 10V OR 15V  
J
GE  
o
T
= 25 C, V  
= 10V  
3
J
GE  
60  
1
2
4
5
6
7
8
1
2
3
4
5
6
7
8
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 12. FALL TIME vs COLLECTOR TO EMITTER  
CURRENT  
15  
30  
o
= 25 C  
C
I
= 1mA,  
G(REF)  
= 171, T = 25 C  
T
PULSE DURATION = 250µs  
o
R
L
C
25  
20  
15  
10  
5
12  
9
o
T
= -55 C  
C
o
T
= 150 C  
C
6
V
= 200V  
V
= 400V  
V
= 600V  
CE  
CE  
CE  
3
0
0
0
5
10  
15  
20  
25  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Q , GATE CHARGE (nC)  
g
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
FIGURE 13. TRANSFER CHARACTERISTIC  
FIGURE 14. GATE CHARGE WAVEFORMS  
©2001 Fairchild Semiconductor Corporation  
HGTP3N60B3D, HGT1S3N60B3DS Rev. B  
HGTP3N60B3D, HGT1S3N60B3DS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
500  
FREQUENCY = 1MHz  
400  
C
IES  
300  
200  
100  
0
C
OES  
C
RES  
0
5
10  
15  
20  
25  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER VOLTAGE  
0
10  
0.5  
0.2  
t
1
0.1  
-1  
10  
10  
P
D
0.05  
t
2
0.02  
0.01  
DUTY FACTOR, D = t / t  
1
2
PEAK T = (P X Z  
X R  
) + T  
SINGLE PULSE  
J
D
θJC  
θJC  
C
-2  
-5  
10  
-4  
-3  
-2  
10  
-1  
10  
0
1
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 16. NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE  
15  
12  
9
30  
o
T
= 25 C, dI /dt = 200A/µs  
C
EC  
25  
20  
15  
10  
5
t
rr  
o
150 C  
t
a
b
6
o
25 C  
o
-55 C  
t
3
0
0.5  
0
1
2
3
4
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
I
, FORWARD CURRENT (A)  
EC  
V
, FORWARD VOLTAGE (V)  
EC  
FIGURE 17. DIODE FORWARD CURRENT vs FORWARD  
VOLTAGE DROP  
FIGURE 18. RECOVERY TIME vs FORWARD CURRENT  
©2001 Fairchild Semiconductor Corporation  
HGTP3N60B3D, HGT1S3N60B3DS Rev. B  
HGTP3N60B3D, HGT1S3N60B3DS  
Test Circuit and Waveforms  
HGTP3N60B3D  
90%  
OFF  
10%  
ON  
V
GE  
E
E
V
CE  
L = 1mH  
90%  
R
= 82Ω  
G
10%  
d(OFF)I  
+
I
DUT  
CE  
t
t
V
= 480V  
rI  
DD  
t
fI  
-
t
d(ON)I  
FIGURE 19. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 20. SWITCHING TEST WAVEFORMS  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating device  
performance for a specific application. Other typical  
gate-insulation damage by the electrostatic discharge of  
energy through the devices. When handling these devices,  
care should be exercised to assure that the static charge built  
in the handler’s body capacitance is not discharged through  
the device. With proper handling and application procedures,  
however, IGBTs are currently being extensively used in  
production by numerous equipment manufacturers in military,  
industrial and consumer applications, with virtually no damage  
problems due to electrostatic discharge. IGBTs can be  
handled safely if the following basic precautions are taken:  
frequency vs collector current (I ) plots are possible using  
CE  
the information shown for a typical unit in Figures 5, 6, 7, 8, 9  
and 11. The operating frequency plot (Figure 3) of a typical  
device shows f  
or f ; whichever is smaller at each  
MAX1  
MAX2  
point. The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
f
is defined by f  
= 0.05/(t  
MAX1  
+ t ).  
d(OFF)I d(ON)I  
MAX1  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as “ECCOSORBD LD26™” or equivalent.  
Deadtime (the denominator) has been arbitrarily held to 10%  
of the on-state time for a 50% duty factor. Other definitions  
are possible. t  
and t are defined in Figure 20.  
d(OFF)I  
d(ON)I  
Device turn-off delay can establish an additional frequency  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
limiting condition for an application other than T . t  
is important when controlling output ripple under a lightly  
loaded condition.  
JM d(OFF)I  
3. Tips of soldering irons should be grounded.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
+ E ). The  
ON  
MAX2  
D
C
4. Devices should never be inserted into or removed from  
circuits with power on.  
allowable dissipation (P ) is defined by P = (T - T )/R  
The sum of device switching and conduction losses must  
not exceed P . A 50% duty factor was used (Figure 3) and  
the conduction losses (P ) are approximated by  
P
.
D
D
JM θJC  
C
5. Gate Voltage Rating - Never exceed the gate-voltage  
D
rating of V  
. Exceeding the rated V can result in  
GEM  
GE  
C
permanent damage to the oxide layer in the gate region.  
= V  
CE  
x I )/2.  
CE  
C
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate open-  
circuited or floating should be avoided. These conditions  
can result in turn-on of the device due to voltage buildup  
on the input capacitor due to leakage currents or pickup.  
E
and E  
are defined in the switching waveforms  
OFF  
ON  
shown in Figure 20. E  
is the integral of the instantaneous  
ON  
power loss (I  
CE  
x V ) during turn-on and E  
is the  
CE  
integral of the instantaneous power loss (I  
OFF  
x V ) during  
CE  
CE  
turn-off. All tail losses are included in the calculation for  
; i.e., the collector current equals zero (I = 0).  
7. Gate Protection - These devices do not have an internal  
monolithic Zener diode from gate to emitter. If gate  
protection is required an external Zener is recommended.  
E
OFF  
CE  
©2001 Fairchild Semiconductor Corporation  
HGTP3N60B3D, HGT1S3N60B3DS Rev. B  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
â
SMART START™  
STAR*POWER™  
Stealth™  
VCX™  
FAST  
ACEx™  
Bottomless™  
CoolFET™  
OPTOLOGIC™  
OPTOPLANAR™  
PACMAN™  
FASTr™  
FRFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
CROSSVOLT™  
DenseTrench™  
DOME™  
POP™  
Power247™  
PowerTrenchâ  
QFET™  
EcoSPARK™  
E2CMOSTM  
TinyLogic™  
QS™  
EnSignaTM  
TruTranslation™  
UHC™  
QT Optoelectronics™  
Quiet Series™  
SILENTSWITCHERâ  
FACT™  
FACT Quiet Series™  
UltraFETâ  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITYARISING OUT OF THE APPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICESORSYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFFAIRCHILDSEMICONDUCTORCORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H4  

相关型号:

HGT1S3N60B3S

7A, 600V, UFS Series N-Channel IGBTs
INTERSIL

HGT1S3N60B3S

7A, 600V, N-CHANNEL IGBT, PLASTIC PACKAGE-4
ROCHESTER

HGT1S3N60B3S9A

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 3.5A I(C) | TO-263AB
ETC

HGT1S3N60C3D

6A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diodes
HARRIS

HGT1S3N60C3DS

6A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diodes
HARRIS

HGT1S3N60C3DS

6A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diodes
INTERSIL

HGT1S3N60C3DS9A

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 3A I(C) | TO-263AB
ETC

HGT1S5N120BNDS

21A, 1200V, NPT Series N-Channel IGBTs with Anti-Parallel Hyperfast Diodes
INTERSIL

HGT1S5N120BNDS

21A, 1200V, N-CHANNEL IGBT, TO-263AB
RENESAS

HGT1S5N120BNDS9A

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 10A I(C) | TO-263AB
ETC

HGT1S5N120BNS

21A, 1200V, NPT Series N-Channel IGBTs
INTERSIL

HGT1S5N120BNS9A

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 10A I(C) | TO-263AB
ETC