HGT1S7N60B3S9A [ETC]

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 7A I(C) | TO-263AB ; 晶体管| IGBT | N -CHAN | 600V V( BR ) CES | 7A I(C ) | TO- 263AB\n
HGT1S7N60B3S9A
型号: HGT1S7N60B3S9A
厂家: ETC    ETC
描述:

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 7A I(C) | TO-263AB
晶体管| IGBT | N -CHAN | 600V V( BR ) CES | 7A I(C ) | TO- 263AB\n

晶体 晶体管 电动机控制 瞄准线 双极性晶体管 栅
文件: 总7页 (文件大小:137K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGTD7N60B3S, HGT1S7N60B3S, HGTP7N60B3  
Data Sheet  
January 2002  
14A, 600V, UFS Series N-Channel IGBTs  
Features  
o
The HGTD7N60B3S, HGT1S7N60B3S and HGTP7N60B3  
are MOS gated high voltage switching devices combining the  
best features of MOSFETs and bipolar transistors. These  
devices have the high input impedance of a MOSFET and the  
low on-state conduction loss of a bipolar transistor. The much  
lower on-state voltage drop varies only moderately between  
• 14A, 600V, T = 25 C  
C
• 600V Switching SOA Capability  
o
Typical Fall Time. . . . . . . . . . . . . . . . 120ns at T = 150 C  
J
• Short Circuit Rating  
• Low Conduction Loss  
o
o
25 C and 150 C.  
The IGBT is ideal for many high voltage switching applications  
operating at moderate frequencies where low conduction  
losses are essential, such as: AC and DC motor controls,  
power supplies and drivers for solenoids, relays and contactors.  
Packaging  
JEDEC TO-220AB  
E
C
G
COLLECTOR  
(FLANGE)  
Formerly Developmental Type TA49190.  
Ordering Information  
PART NUMBER  
HGTD7N60B3S  
HGT1S7N60B3S  
HGTP7N60B3  
PACKAGE  
BRAND  
G7N60B  
TO-252AA  
JEDEC TO-263AB  
COLLECTOR  
TO-263AB  
TO-220AB  
G7N60B3  
G7N60B3  
NOTE: When ordering, use the entire part number. Add the suffix 9A  
to obtain the TO-252AA and TO-263AB variant in tape and reel, e.g.,  
HGTD7N60B3S9A.  
G
(FLANGE)  
E
Symbol  
JEDEC TO-252AA  
C
COLLECTOR  
(FLANGE)  
G
G
E
E
Fairchild CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
©2002 Fairchild Semiconductor Corporation  
HGTD7N60B3S, HGT1S7N60B3S, HGTP7N60B3 Rev. B  
HGTD7N60B3S, HGT1S7N60B3S, HGTP7N60B3  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
ALL TYPES  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BV  
600  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
14  
A
A
A
V
V
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
7
C
C110  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
56  
±20  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
±30  
Switching Safe Operating Area at T = 150 C, Figure 2 . . . . . . . . . . . . . . . . . . . . . . . . SSOA  
J
35A at 600V  
60  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.476  
100  
W/ C  
C
Reverse Voltage Avalanche Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
mJ  
ARV  
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T , T  
-55 to 150  
260  
C
J
STG  
o
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
C
L
SC  
SC  
Short Circuit Withstand Time (Note 2) at V  
Short Circuit Withstand Time (Note 2) at V  
= 15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t  
= 10V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t  
2
µs  
µs  
GE  
GE  
12  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Single Pulse; Pulse width limited by maximum junction temperature. Parts may current limit at less than I  
o
.
CM  
2. V  
CE  
= 360V, T = 125 C, R = 50.  
J G  
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
= 250µA, V = 0V  
MIN  
600  
15  
-
TYP  
MAX  
-
UNITS  
V
Collector to Emitter Breakdown Voltage  
Emitter to Collector Breakdown Voltage  
Collector to Emitter Leakage Current  
BV  
BV  
I
I
-
28  
-
CES  
ECS  
C
C
GE  
= 0V  
= 3mA, V  
GE  
-
V
o
I
V
= BV  
T
T
T
T
= 25 C  
100  
2.0  
2.1  
2.4  
6.0  
±100  
-
µA  
mA  
V
CES  
CE  
CES  
C
C
C
C
o
= 150 C  
-
-
o
Collector to Emitter Saturation Voltage  
V
I
V
= I  
,
= 25 C  
-
1.8  
2.1  
5.1  
-
CE(SAT)  
C
C110  
= 15V  
GE  
o
= 150 C  
-
V
Gate to Emitter Threshold Voltage  
Gate to Emitter Leakage Current  
Switching SOA  
V
I
= 250µA, V  
= V  
3.0  
-
V
GE(TH)  
C
CE  
GE  
I
V
= ±20V  
nA  
A
GES  
GE  
o
SSOA  
T = 150 C  
V
V
= 480V  
= 600V  
42  
35  
-
J
CE  
R
V
= 50Ω  
= 15V  
G
-
-
A
CE  
GE  
L = 100µH  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
I
= I  
= I  
, V  
C110 CE  
= 0.5 BV  
CES  
-
-
-
-
-
-
-
-
-
-
7.7  
23  
-
28  
37  
-
V
GEP  
C
C
Q
,
V
= 15V  
nC  
nC  
ns  
ns  
ns  
ns  
µJ  
µJ  
µJ  
G(ON)  
C110  
= 0. 5BV  
GE  
GE  
V
CE  
CES  
V
= 20V  
o
30  
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode Both at T = 25 C  
I
26  
d(ON)I  
J
= I  
, V  
= 0.8 BV ,  
CE  
C110 CE  
CES  
t
21  
-
rI  
V
= 15V, R = 50, L = 2mH  
G
GE  
Test Circuit (Figure 17)  
Current Turn-Off Delay Time  
Current Fall Time  
t
130  
60  
160  
80  
-
d(OFF)I  
t
fI  
Turn-On Energy (Note 4)  
Turn-On Energy (Note 4)  
Turn-Off Energy (Note 3)  
E
E
E
72  
ON1  
ON2  
OFF  
160  
120  
200  
200  
©2002 Fairchild Semiconductor Corporation  
HGTD7N60B3S, HGT1S7N60B3S, HGTP7N60B3 Rev. B  
HGTD7N60B3S, HGT1S7N60B3S, HGTP7N60B3  
o
Electrical Specifications  
PARAMETER  
T
= 25 C, Unless Otherwise Specified (Continued)  
C
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
24  
MAX  
-
UNITS  
ns  
o
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode Both at T = 150 C  
-
-
-
-
-
-
-
-
d(ON)I  
J
I
= I  
, V  
C110 CE  
= 0.8 BV ,  
CE  
CES  
t
22  
-
ns  
rI  
V
= 15V, R =50Ω, L = 2mH  
GE  
Test Circuit (Figure 17)  
G
Current Turn-Off Delay Time  
Current Fall Time  
t
230  
120  
80  
295  
175  
-
ns  
d(OFF)I  
t
ns  
fI  
Turn-On Energy (Note 4)  
Turn-On Energy (Note 4)  
Turn-Off Energy (Note 3)  
E
E
E
µJ  
ON1  
ON2  
OFF  
310  
350  
-
350  
500  
2.1  
µJ  
µJ  
o
Thermal Resistance Junction To Case  
NOTE:  
R
C/W  
θJC  
3. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
OFF  
at the point where the collector current equals zero (I = 0A). All devices were tested per JEDEC standard No. 24-1 Method for Measurement  
CE  
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss. Turn-On losses include losses due  
to diode recovery.  
4. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E  
ON1  
is the Turn-On loss of the IGBT only. E  
ON2  
is the Turn-On loss when a typical diode is used in the test circuit and the diode is at the same T as the IGBT. The diode type is specified in  
J
Figure 17.  
Typical Performance Curves Unless Otherwise Specified  
16  
14  
12  
10  
8
50  
40  
30  
20  
10  
0
o
V
= 15V  
GE  
T
= 150 C, R = 50, V = 15V  
GE  
J
G
6
4
2
0
25  
50  
75  
100  
125  
150  
0
100  
200  
300  
400  
500  
600  
700  
o
T
, CASE TEMPERATURE ( C)  
V
CE  
, COLLECTOR TO EMITTER VOLTAGE (V)  
C
FIGURE 1. DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA  
©2002 Fairchild Semiconductor Corporation  
HGTD7N60B3S, HGT1S7N60B3S, HGTP7N60B3 Rev. B  
HGTD7N60B3S, HGT1S7N60B3S, HGTP7N60B3  
Typical Performance Curves Unless Otherwise Specified (Continued)  
18  
14  
10  
100  
80  
400  
o
o
V
= 360V, R = 50, T = 125 C  
G J  
T
= 150 C, R = 50, L = 2mH, V  
CE  
= 480V  
CE  
J
G
T
V
C
GE  
o
o
o
o
75 C 15V  
75 C 10V  
110 C 15V  
110 C 10V  
100  
I
SC  
60  
10  
f
f
= 0.05 / (t  
+ t  
d(ON)I  
)
MAX1  
d(OFF)I  
= (P - P ) / (E  
+ E  
)
MAX2  
D
C
ON2  
OFF  
6
2
40  
20  
P
= CONDUCTION DISSIPATION  
t
C
SC  
(DUTY FACTOR = 50%)  
o
R
= 2.1 C/W, SEE NOTES  
ØJC  
1
10  
11  
12  
13  
14  
15  
1
2
3
4
5
6
8
10  
15  
I
, COLLECTOR TO EMITTER CURRENT (V)  
V
GE  
, GATE TO EMITTER VOLTAGE (V)  
CE  
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME  
30  
40  
PULSE DURATION = 250µs  
DUTY CYCLE < 0.5%, V  
GE  
= 10V  
25  
20  
15  
10  
5
30  
20  
10  
0
o
T
= 150 C  
C
o
o
= -55 C  
T
= 150 C  
T
C
C
o
T
= -55 C  
C
o
= 25 C  
T
o
C
T
= 25 C  
C
PULSE DURATION = 250µs  
DUTY CYCLE < 0.5%, V = 15V  
GE  
0
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 5. COLLECTOR TO EMITTER ON STATE VOLTAGE  
FIGURE 6. COLLECTOR TO EMITTER ON STATE VOLTAGE  
1000  
1600  
R
= 50, L = 2mH, V  
= 480V  
CE  
G
R
T
= 50, L = 2mH, V  
= 480V  
G
CE  
800  
600  
400  
200  
0
o
= 150 C, V  
= 10V  
1200  
800  
400  
0
J
J
J
J
GE  
o
T
= 150 C, V  
= 10V AND 15V  
J
GE  
o
T
T
T
= 150 C, V  
= 15V  
GE  
o
= 25 C, V  
= 10V  
= 15V  
GE  
o
= 25 C, V  
GE  
o
= 25 C, V  
T
= 10V AND 15V  
GE  
J
1
3
5
7
9
11  
13  
15  
1
3
5
7
9
11  
13  
15  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
©2002 Fairchild Semiconductor Corporation  
HGTD7N60B3S, HGT1S7N60B3S, HGTP7N60B3 Rev. B  
HGTD7N60B3S, HGT1S7N60B3S, HGTP7N60B3  
Typical Performance Curves Unless Otherwise Specified (Continued)  
60  
50  
40  
30  
20  
10  
140  
120  
100  
80  
R
= 50, L = 2mH, V  
= 480V  
R
= 50, L = 2mH, V = 480V  
CE  
G
CE  
G
o
T
= 150 C, V  
= 10V  
J
GE  
o
= 150 C, V  
T
= 10V  
GE  
J
o
T
= 25 C, V  
= 10V  
J
GE  
o
T
= 25 C, V = 10V  
GE  
J
o
60  
T
= 25 C, V  
GE  
= 15V  
J
40  
o
= 150 C, V  
T
= 15V  
GE  
20  
J
o
o
T
= 25 C and 150 C, V  
= 15V  
J
GE  
0
1
3
5
7
9
11  
13  
15  
15  
14  
1
3
5
7
9
11  
13  
15  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
120  
250  
R
= 50, L = 2mH, V  
= 480V  
CE  
R
= 50, L = 2mH, V  
= 480V  
G
G
CE  
100  
80  
200  
150  
100  
50  
o
T
= 150 C, V = 15V  
GE  
o
= 150 C, V  
J
T
= 10V and 15V  
GE  
J
o
T
= 150 C, V  
= 10V  
J
GE  
o
= 25 C, V  
T
= 15V  
GE  
J
60  
o
= 25 C, V  
T
= 10V  
J
GE  
o
T
= 25 C, V  
= 10V and 15V  
J
GE  
40  
1
3
5
7
9
11  
13  
15  
1
3
5
7
9
11  
13  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 12. FALL TIME vs COLLECTOR TO EMITTER  
CURRENT  
15  
40  
o
I
= 0.758mA, R = 86Ω, T = 25 C  
DUTY CYCLE = < 0.5%  
g(REF)  
L
C
PULSE DURATION = 250µs  
V
= 10V  
12  
9
CE  
32  
24  
16  
8
V
= 200V  
V
= 600V  
CE  
CE  
o
T
= 25 C  
C
V
= 400V  
CE  
6
o
T
= 150 C  
C
3
o
T
= -55 C  
C
0
0
6
8
10  
12  
0
4
8
12  
Q , GATE CHARGE (nC)  
G
16  
20  
24  
28  
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
FIGURE 13. TRANSFER CHARACTERISTIC  
FIGURE 14. GATE CHARGE WAVEFORMS  
©2002 Fairchild Semiconductor Corporation  
HGTD7N60B3S, HGT1S7N60B3S, HGTP7N60B3 Rev. B  
HGTD7N60B3S, HGT1S7N60B3S, HGTP7N60B3  
Typical Performance Curves Unless Otherwise Specified (Continued)  
1200  
1000  
800  
600  
400  
200  
0
FREQUENCY = 1MHz  
C
IES  
C
OES  
C
RES  
0
5
10  
15  
20  
25  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER VOLTAGE  
DUTY CYCLE - DESCENDING ORDER  
0
10  
0.5  
0.2  
0.1  
t
-1  
1
10  
10  
0.05  
P
D
0.02  
0.01  
SINGLE PULSE  
DUTY FACTOR, D = t / t  
1
2
t
2
PEAK T = (P X Z  
X R  
) + T  
θJC C  
J
D
θJC  
-2  
-5  
10  
-4  
-3  
10  
-2  
10  
-1  
0
1
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 16. NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE  
Test Circuit and Waveforms  
90%  
OFF  
L = 2mH  
10%  
ON2  
V
RHRD660  
GE  
E
E
V
CE  
R
= 50Ω  
G
90%  
+
10%  
d(OFF)I  
V
= 480V  
I
DD  
CE  
-
t
t
rI  
t
fI  
t
d(ON)I  
FIGURE 17. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 18. SWITCHING TEST WAVEFORMS  
©2002 Fairchild Semiconductor Corporation  
HGTD7N60B3S, HGT1S7N60B3S, HGTP7N60B3 Rev. B  
HGTD7N60B3S, HGT1S7N60B3S, HGTP7N60B3  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to  
gate-insulation damage by the electrostatic discharge of  
energy through the devices. When handling these devices,  
care should be exercised to assure that the static charge  
built in the handler’s body capacitance is not discharged  
through the device. With proper handling and application  
procedures, however, IGBTs are currently being extensively  
used in production by numerous equipment manufacturers in  
military, industrial and consumer applications, with virtually  
no damage problems due to electrostatic discharge. IGBTs  
can be handled safely if the following basic precautions are  
taken:  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating device  
performance for a specific application. Other typical  
frequency vs collector current (I ) plots are possible using  
CE  
the information shown for a typical unit in Figures 5, 6, 7, 8, 9  
and 11. The operating frequency plot (Figure 3) of a typical  
device shows f  
or f ; whichever is smaller at each  
MAX1  
MAX2  
point. The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
f
is defined by f  
= 0.05/(t  
MAX1  
+ t ).  
d(OFF)I d(ON)I  
MAX1  
Deadtime (the denominator) has been arbitrarily held to 10%  
of the on-state time for a 50% duty factor. Other definitions  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as “ECCOSORBD™ LD26” or equivalent.  
are possible. t  
and t are defined in Figure 18.  
d(OFF)I  
d(ON)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T . t  
JM d(OFF)I  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
is important when controlling output ripple under a lightly  
loaded condition.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
+ E ). The  
ON2  
MAX2  
D
C
3. Tips of soldering irons should be grounded.  
allowable dissipation (P ) is defined by P = (T - T )/R  
.
D
D
JM θJC  
C
4. Devices should never be inserted into or removed from  
circuits with power on.  
The sum of device switching and conduction losses must  
not exceed P . A 50% duty factor was used (Figure 3) and  
D
5. Gate Voltage Rating - Never exceed the gate-voltage  
the conduction losses (P ) are approximated by  
C
rating of V  
. Exceeding the rated V can result in  
GEM  
GE  
P
= (V  
CE  
x I )/2.  
CE  
C
permanent damage to the oxide layer in the gate region.  
E
and E  
OFF  
are defined in the switching waveforms  
is the integral of the instantaneous  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate  
open-circuited or floating should be avoided. These  
conditions can result in turn-on of the device due to  
voltage buildup on the input capacitor due to leakage  
currents or pickup.  
ON2  
shown in Figure 18. E  
power loss (I x V ) during turn-on and E  
integral of the instantaneous power loss (I  
turn-off. All tail losses are included in the calculation for E  
ON2  
is the  
CE CE OFF  
x V ) during  
CE  
CE  
;
OFF  
i.e., the collector current equals zero (I = 0).  
CE  
7. Gate Protection - These devices do not have an internal  
monolithic Zener diode from gate to emitter. If gate  
protection is required an external Zener is recommended.  
©2002 Fairchild Semiconductor Corporation  
HGTD7N60B3S, HGT1S7N60B3S, HGTP7N60B3 Rev. B  

相关型号:

HGT1S7N60C3D

14A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diodes
FAIRCHILD

HGT1S7N60C3DR

14A, 600V, N-CHANNEL IGBT, TO-262AA, PLASTIC PACKAGE-3
RENESAS

HGT1S7N60C3DS

14A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diodes
FAIRCHILD

HGT1S7N60C3DS

14A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diodes
INTERSIL

HGT1S7N60C3DS9A

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 14A I(C) | TO-263AB
ETC

HGT1Y27N120BND

27A, 1200V, N-CHANNEL IGBT, TO-264, TO-264, 3 PIN
RENESAS

HGT1Y30N120CND

30A, 1200V, N-CHANNEL IGBT, TO-264, TO-264, 3 PIN
RENESAS

HGT1Y40N60A4D

Insulated Gate Bipolar Transistor, 75A I(C), 600V V(BR)CES, N-Channel, TO-264AA, TO-264, 3 PIN
FAIRCHILD

HGT1Y40N60B3D

70A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diodes
FAIRCHILD

HGT1Y40N60C3D

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 40A I(C) | TO-264
ETC

HGT2010

Industrial Control IC
ETC

HGT2100

Industrial Control IC
ETC