HGT1Y40N60C3D [ETC]

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 40A I(C) | TO-264 ; 晶体管| IGBT | N -CHAN | 600V V( BR ) CES | 40A I(C ) | TO- 264\n
HGT1Y40N60C3D
型号: HGT1Y40N60C3D
厂家: ETC    ETC
描述:

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 40A I(C) | TO-264
晶体管| IGBT | N -CHAN | 600V V( BR ) CES | 40A I(C ) | TO- 264\n

晶体 晶体管 双极性晶体管
文件: 总9页 (文件大小:166K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGT1Y40N60C3D  
Data Sheet  
December 2001  
75A, 600V, UFS Series N-Channel IGBT  
with Anti-Parallel Hyperfast Diodes  
Features  
o
• 75A, 600V, T = 25 C  
C
The HGT1Y40N60C3D is a MOS gated high voltage  
switching device combining the best features of MOSFETs  
and bipolar transistors. The device has the high input  
impedance of a MOSFET and the low on-state conduction  
loss of a bipolar transistor. The much lower on-state voltage  
drop varies only moderately between 25 C and 150 C. The  
IGBT used is the development type TA49273. The diode  
used in anti-parallel with the IGBT is the development type  
TA49063.  
• 600V Switching SOA Capability  
o
• Typical Fall Time . . . . . . . . . . . . . . . 100ns at T = 150 C  
J
• Short Circuit Rating  
• Low Conduction Loss  
o
o
Packaging  
JEDEC STYLE TO-264  
The IGBT is ideal for many high voltage switching  
applications operating at moderate frequencies where low  
conduction losses are essential, such as: AC and DC motor  
controls, power supplies and drivers for solenoids, relays  
and contactors.  
E
C
G
Formerly developmental type TA49389.  
Ordering Information  
COLLECTOR  
(FLANGE)  
PART NUMBER  
PACKAGE  
PKG. NO.  
HGT1Y40N60C3D  
TO-264  
G40N60C3D  
NOTE: When ordering, use the entire part number.  
Symbol  
C
G
E
FAIRCHILD CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
©2001 Fairchild Semiconductor Corporation  
HGTG40N60C3 Rev. B  
HGT1Y40N60C3D  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
HGT1Y40N60C3D  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV  
600  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
75  
40  
A
A
A
V
V
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
C110  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
300  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±20  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
±30  
Switching Safe Operating Area at T = 150 C (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . SSOA  
J
40A at 600V  
291  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.33  
W/ C  
C
Reverse Voltage Avalanche Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
100  
mJ  
ARV  
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T , T  
-55 to 150  
260  
C
J
STG  
o
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
C
L
SC  
SC  
Short Circuit Withstand Time (Note 2) at V  
Short Circuit Withstand Time (Note 2) at V  
= 12V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t  
= 10V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t  
5
µs  
µs  
GE  
10  
GE  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Pulse width limited by maximum junction temperature.  
o
2. V  
= 360V, T = 125 C, R = 3.  
J G  
CE(PK)  
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
= 250µA, V = 0V  
MIN  
TYP  
MAX  
-
UNITS  
V
Collector to Emitter Breakdown Voltage  
Collector to Emitter Leakage Current  
I
600  
-
-
CES  
C
GE  
o
I
V
= BV  
T
= 25 C  
-
-
250  
4.0  
1.8  
2.0  
6.0  
±250  
-
µA  
mA  
V
CES  
CE  
CES  
C
C
C
C
o
T
T
T
= 150 C  
-
o
Collector to Emitter Saturation Voltage  
V
I
= I  
C110  
= 15V  
,
= 25 C  
-
1.3  
1.4  
4.5  
-
CE(SAT)  
C
V
GE  
o
= 150 C  
-
V
Gate to Emitter Threshold Voltage  
Gate to Emitter Leakage Current  
Switching SOA  
V
I
= 250µA, V  
= V  
GE  
3.1  
-
V
GE(TH)  
C CE  
I
V
= ±20V  
nA  
A
GES  
GE  
o
SSOA  
T
= 150 C, R  
=
V
V
= 480V  
= 600V  
200  
40  
-
J
G
CE  
3Ω, V  
= 15V,  
L = 400µH  
GE  
-
-
A
CE  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
I
= I  
, V  
C110 CE  
= 0.5 BV  
CES  
-
-
-
-
-
-
-
-
-
-
7.2  
275  
360  
47  
-
V
GEP  
C
Q
= I  
,
V
= 15V  
302  
nC  
nC  
ns  
G(ON)  
C
C110  
= 0.5 BV  
GE  
GE  
V
CE  
CES  
V
= 20V  
o
395  
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 25 C  
-
d(ON)I  
J
I
= I  
CE  
C110  
t
30  
-
-
ns  
rI  
V
V
R
= 0.8 BV  
= 15V  
CE  
CES  
Current Turn-Off Delay Time  
Current Fall Time  
t
GE  
185  
60  
ns  
d(OFF)I  
= 3Ω  
G
t
-
ns  
fI  
L = 1mH  
Test Circuit (Figure 19)  
Turn-On Energy (Note 3)  
Turn-On Energy (Note 3)  
Turn-Off Energy (Note 4)  
E
E
E
850  
1.0  
1.0  
-
mJ  
mJ  
mJ  
ON1  
ON2  
OFF  
1.2  
1.8  
©2001 Fairchild Semiconductor Corporation  
HGTG40N60C3 Rev. B  
HGT1Y40N60C3D  
o
Electrical Specifications  
PARAMETER  
T = 25 C, Unless Otherwise Specified (Continued)  
C
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
41  
MAX  
-
UNITS  
ns  
o
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 150 C  
-
-
-
-
-
-
-
-
-
-
-
-
d(ON)I  
J
I
= I  
CE  
C110  
t
30  
-
ns  
rI  
d(OFF)I  
V
V
= 0.8 BV  
= 15V  
CE  
GE  
CES  
Current Turn-Off Delay Time  
Current Fall Time  
t
360  
100  
860  
2.0  
2.5  
2.0  
50  
450  
210  
-
ns  
R
= 3Ω  
G
t
ns  
fI  
L = 1mH  
Test Circuit (Figure 19)  
Turn-On Energy (Note 3)  
Turn-On Energy (Note 3)  
Turn-Off Energy (Note 4)  
Diode Forward Voltage  
Diode Reverse Recovery Time  
E
E
E
µJ  
ON1  
ON2  
OFF  
2.4  
4
mJ  
mJ  
V
V
I
I
I
= 40A  
2.5  
65  
40  
0.43  
1.2  
EC  
EC  
EC  
EC  
t
= 40A, dI /dt = 100A/µs  
EC  
ns  
rr  
= 1.0A, dI /dt = 100A/µs  
EC  
38  
ns  
o
Thermal Resistance Junction To Case  
Thermal Resistance Junction To Case  
NOTES:  
R
R
IGBT  
-
C/W  
θJC  
o
Diode  
-
C/W  
θJC  
3. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E  
is the turn-on loss of the IGBT only. E  
ON2  
ON1  
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T as the IGBT. The diode type is specified in  
J
Figure 17.  
4. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
OFF  
at the point where the collector current equals zero (I  
= 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement  
CE  
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.  
Typical Performance Curves Unless Otherwise Specified  
80  
70  
60  
50  
40  
30  
20  
10  
0
225  
200  
175  
150  
125  
100  
75  
o
V
= 15V  
GE  
T
= 150 C, R = 3, V  
= 15V, L = 100µH  
GE  
J
G
PACKAGE  
LIMIT  
50  
25  
0
25  
50  
75  
100  
125  
150  
0
100  
200  
300  
400  
500  
600  
700  
o
T
, CASE TEMPERATURE ( C)  
C
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 1. DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA  
©2001 Fairchild Semiconductor Corporation  
HGTG40N60C3 Rev. B  
HGT1Y40N60C3D  
Typical Performance Curves Unless Otherwise Specified (Continued)  
o
20  
16  
12  
8
750  
625  
500  
375  
250  
T
= 150 C, R = 3, L = 1mH, V  
= 480V  
CE  
J
G
o
V
= 360V, R = 3, T = 125 C  
G J  
CE  
100  
10  
1
I
SC  
T
V
C
GE  
o
75 C 15V  
o
75 C  
10V  
15V  
o
110 C  
o
110 C 10V  
f
= 0.05 / (t  
+ t  
d(ON)I  
)
MAX1  
d(OFF)I  
f
= (P - P ) / (E  
+ E  
)
MAX2  
D
C
ON2  
OFF  
P
= CONDUCTION DISSIPATION  
C
t
SC  
(DUTY FACTOR = 50%)  
o
R
= 0.43 C/W, SEE NOTES  
ØJC  
4
2
5
10  
40  
80  
10  
11  
12  
13  
14  
15  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME  
300  
250  
200  
150  
100  
50  
300  
DUTY CYCLE <0.5%, V  
GE  
PULSE DURATION = 250µs  
= 15V  
DUTY CYCLE <0.5%, V  
GE  
PULSE DURATION = 250µs  
= 10V  
250  
200  
150  
100  
50  
o
T
= 150 C  
C
o
T
= -55 C  
o
o
C
T
= -55 C  
T
= 150 C  
C
C
o
T
= 25 C  
C
o
T
= 25 C  
C
0
0
0
1
2
3
4
5
6
7
0
1
2
3
4
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
12  
6
R
= 3, L = 1mH, V  
CE  
= 480V  
o
G
R
= 3, L = 1mH, V  
= 480V  
CE  
G
o
T
= 25 C, T = 150 C, V  
= 10V  
GE  
J
J
10  
8
5
4
3
2
1
0
o
T
= 150 C; V  
= 10V OR 15V  
GE  
J
6
o
o
T
= 25 C, T = 150 C, V = 15V  
GE  
J
J
4
2
o
T
= 25 C; V  
= 10V OR 15V  
J
GE  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
©2001 Fairchild Semiconductor Corporation  
HGTG40N60C3 Rev. B  
HGT1Y40N60C3D  
Typical Performance Curves Unless Otherwise Specified (Continued)  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
400  
350  
300  
250  
200  
150  
100  
50  
R
= 3, L = 1mH, V = 480V  
CE  
G
R
= 3, L = 1mH, V  
= 480V  
CE  
G
o
o
T
= 25 C, T = 150 C, V  
= 10V  
GE  
J
J
o
o
T
= 25 C, T = 150 C, V  
= 10V  
GE  
J
J
o
o
T
= 25 C AND T = 150 C, V  
= 15V  
J
J
GE  
o
o
T
= 25 C, T = 150 C, V  
= 15V  
J
J
GE  
70  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
80  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
400  
160  
R
= 3, L = 1mH, V  
= 480V  
CE  
R
J
= 3, L = 1mH, V  
= 480V  
CE  
G
G
140  
120  
100  
80  
350  
300  
250  
200  
150  
100  
o
T
= 150 C, V  
= 10V, V  
= 15V  
GE  
GE  
o
T
= 150 C, V  
= 10V, V  
= 15V  
GE  
J
GE  
60  
o
T
= 25 C, V  
= 10V OR 15V  
GE  
J
40  
o
= 25 C, V  
T
= 10V, V  
40  
= 15V  
J
GE  
GE  
20  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
50  
60  
70  
80  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 12. FALL TIME vs COLLECTOR TO EMITTER  
CURRENT  
16  
300  
o
I
= 1mA, R = 7.5, T = 25 C  
DUTY CYCLE <0.5%, V  
CE  
= 10V  
G(REF)  
L
C
14  
12  
10  
8
PULSE DURATION = 250µs  
250  
200  
150  
100  
50  
o
T
= 150 C  
C
V
= 600V  
= 200V  
CE  
6
V
= 400V  
V
CE  
CE  
4
o
T
= -55 C  
C
2
o
T
= 25 C  
C
0
0
0
50  
100  
150  
200  
250  
300  
4
5
6
7
8
9
10  
11  
Q , GATE CHARGE (nC)  
V
, GATE TO EMITTER VOLTAGE (V)  
G
GE  
FIGURE 13. TRANSFER CHARACTERISTIC  
FIGURE 14. GATE CHARGE WAVEFORMS  
©2001 Fairchild Semiconductor Corporation  
HGTG40N60C3 Rev. B  
HGT1Y40N60C3D  
Typical Performance Curves Unless Otherwise Specified (Continued)  
200  
60  
50  
40  
30  
20  
10  
0
o
T
= 25 C, dI /dt = 100A/µs  
C
EC  
t
rr  
o
100 C  
t
a
10  
t
b
o
o
25 C  
150 C  
1
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
1
5
10  
30  
V
, FORWARD VOLTAGE (V)  
I
, FORWARD CURRENT (A)  
EC  
EC  
FIGURE 15. VfDIODE FORWARD CURRENT vs FORWARD  
VOLTAGE DROP  
FIGURE 16. RECOVERY TIMES vs FORWARD CURRENT  
15.0  
FREQUENCY = 1MHz  
C
IES  
12.5  
10.0  
7.5  
5.0  
2.5  
0
C
C
OES  
RES  
0
5
10  
15  
20  
25  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 17. CAPACITANCE vs COLLECTOR TO EMITTER VOLTAGE  
0
10  
0.5  
0.2  
0.1  
-1  
10  
10  
0.05  
t
0.02  
0.01  
1
DUTY FACTOR, D = t / t  
1
2
P
D
PEAK T = (P X Z  
X R  
) + T  
θJC C  
J
D
θJC  
t
2
SINGLE PULSE  
-2  
-5  
10  
-4  
10  
-3  
-2  
-1  
10  
0
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 18. NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE  
©2001 Fairchild Semiconductor Corporation  
HGTG40N60C3 Rev. B  
HGT1Y40N60C3D  
Test Circuit and Waveforms  
C
90%  
OFF  
L = 1mH  
10%  
ON2  
RHRP3060  
V
GE  
E
E
V
R
= 3Ω  
CE  
G
90%  
+
-
V
= 480V  
DD  
10%  
d(OFF)I  
I
CE  
t
t
rI  
t
fI  
t
d(ON)I  
FIGURE 19. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 20. SWITCHING TEST WAVEFORMS  
©2001 Fairchild Semiconductor Corporation  
HGTG40N60C3 Rev. B  
HGT1Y40N60C3D  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to gate-  
insulation damage by the electrostatic discharge of energy  
through the devices. When handling these devices, care  
should be exercised to assure that the static charge built in  
the handler’s body capacitance is not discharged through  
the device. With proper handling and application  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating device  
performance for a specific application. Other typical  
frequency vs collector current (I ) plots are possible using  
CE  
the information shown for a typical unit in Figures 5, 6, 7, 8, 9  
and 11. The operating frequency plot (Figure 3) of a typical  
procedures, however, IGBTs are currently being extensively  
used in production by numerous equipment manufacturers  
in military, industrial and consumer applications, with virtually  
no damage problems due to electrostatic discharge. IGBTs  
can be handled safely if the following basic precautions are  
taken:  
device shows f  
or f  
; whichever is smaller at each  
MAX1  
MAX2  
point. The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
f
is defined by f  
= 0.05/(t ).  
+ t  
MAX1  
MAX1  
d(OFF)I d(ON)I  
Deadtime (the denominator) has been arbitrarily held to 10%  
of the on-state time for a 50% duty factor. Other definitions  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as “ECCOSORBD™ LD26” or equivalent.  
are possible. t  
and t are defined in Figure 20.  
d(OFF)I  
d(ON)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T . t  
JM d(OFF)I  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
is important when controlling output ripple under a lightly  
loaded condition.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
+ E ). The  
ON2  
MAX2  
D
C
3. Tips of soldering irons should be grounded.  
allowable dissipation (P ) is defined by P = (T - T )/Rθ .  
D
D
JM JC  
C
4. Devices should never be inserted into or removed from  
circuits with power on.  
The sum of device switching and conduction losses must  
not exceed P . A 50% duty factor was used (Figure 3) and  
D
5. Gate Voltage Rating - Never exceed the gate-voltage  
the conduction losses (P ) are approximated by  
C
rating of V  
. Exceeding the rated V  
can result in  
GEM  
GE  
P
= (V  
x I )/2.  
CE  
C
CE  
permanent damage to the oxide layer in the gate region.  
E
and E  
are defined in the switching waveforms  
OFF  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate  
open-circuited or floating should be avoided. These  
conditions can result in turn-on of the device due to  
voltage buildup on the input capacitor due to leakage  
currents or pickup.  
ON2  
shown in Figure 20. E  
is the integral of the  
ON2  
instantaneous power loss (I  
x V ) during turn-on and  
CE  
CE  
is the integral of the instantaneous power loss  
E
(I  
OFF  
x V ) during turn-off. All tail losses are included in  
CE  
CE  
the calculation for E  
; i.e., the collector current equals  
OFF  
7. Gate Protection - These devices do not have an internal  
monolithic Zener diode from gate to emitter. If gate  
protection is required an external Zener is recommended.  
zero (I  
= 0).  
CE  
©2001 Fairchild Semiconductor Corporation  
HGTG40N60C3 Rev. B  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
â
SMART START™  
STAR*POWER™  
Stealth™  
VCX™  
FAST  
ACEx™  
Bottomless™  
CoolFET™  
OPTOLOGIC™  
OPTOPLANAR™  
PACMAN™  
FASTr™  
FRFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
CROSSVOLT™  
DenseTrench™  
DOME™  
POP™  
Power247™  
PowerTrenchâ  
QFET™  
EcoSPARK™  
E2CMOSTM  
TinyLogic™  
QS™  
EnSignaTM  
TruTranslation™  
UHC™  
QT Optoelectronics™  
Quiet Series™  
SILENTSWITCHERâ  
FACT™  
FACT Quiet Series™  
UltraFETâ  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITYARISING OUT OF THE APPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICESORSYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFFAIRCHILDSEMICONDUCTORCORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H4  

相关型号:

HGT2010

Industrial Control IC
ETC

HGT2100

Industrial Control IC
ETC

HGT2100-10

Industrial Control IC
ETC

HGT2100-100

Industrial Control IC
ETC

HGT2100-1000

Industrial Control IC
ETC

HGT3010

Industrial Control IC
ETC

HGT3030

Industrial Control IC
ETC

HGT4E20N60A4DS

600V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
FAIRCHILD

HGT4E30N60B3DS

60A, 600V, UFS Series N-Channel IGBT
FAIRCHILD

HGT5A27N120BN

72A, 1200V, NPT Series N-Channel IGBT
FAIRCHILD

HGT5A30N120CN

Insulated Gate Bipolar Transistor, 75A I(C), 1200V V(BR)CES, N-Channel, TO-247ST, 3 PIN
FAIRCHILD

HGT5A40N60A4D

600V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
INTERSIL