HUF76112SK8T [ETC]

TRANSISTOR | MOSFET | N-CHANNEL | 30V V(BR)DSS | 7.5A I(D) | SO ; 晶体管| MOSFET | N沟道| 30V V( BR ) DSS | 7.5AI ( D) | SO\n
HUF76112SK8T
型号: HUF76112SK8T
厂家: ETC    ETC
描述:

TRANSISTOR | MOSFET | N-CHANNEL | 30V V(BR)DSS | 7.5A I(D) | SO
晶体管| MOSFET | N沟道| 30V V( BR ) DSS | 7.5AI ( D) | SO\n

晶体 晶体管
文件: 总11页 (文件大小:258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HUF76112SK8  
Data Sheet  
December 2001  
7.5A, 30V, 0.026 Ohm, N-Channel, Logic  
Level Power MOSFET  
The HUF76112SK8 is an Application-Specific MOSFET  
optimized for switching when used as the upper switch in  
synchronous buck applications. The low gate charge and low  
input capacitance results in lower driver and lower switching  
losses, thereby increasing the overall system efficiency.  
Features  
• 7.5A, 30V  
- r  
- r  
= 0.026Ω, VGS = 10V  
DS(ON)  
DS(ON)  
= 0.033Ω, VGS = 5V  
Symbol  
• PWM Optimized for Synchronous Buck Applications  
• Fast Switching  
SOURCE (1)  
SOURCE (2)  
SOURCE (3)  
GATE (4)  
DRAIN (8)  
DRAIN (7)  
DRAIN (6)  
DRAIN (5)  
• Low Gate Charge  
- Q Total 15nC (Typ)  
g
• Low Capacitance  
- C  
- C  
725pF (Typ)  
Packaging  
ISS  
36pF (Typ)  
RSS  
SO8 (JEDEC MS-012AA)  
BRANDING DASH  
Ordering Information  
PART NUMBER  
PACKAGE  
BRAND  
76112SK8  
5
HUF76112SK8  
MS-012AA  
1
2
3
NOTE: When ordering, use the entire part number. Add the suffix T  
to obtain the HUF76112SK8 in tape and reel, e.g., HUF76112SK8T.  
4
o
Absolute Maximum Ratings  
T
= 25 C, Unless Otherwise Specified  
A
SYMBOL  
PARAMETER  
HUF76112SK8  
UNITS  
V
Drain to Source Voltage (Note 1)  
30  
30  
V
V
V
DSS  
V
Drain to Gate Voltage (R = 20k) (Note 1)  
GS  
DGR  
V
Gate to Source Voltage  
±16  
GS  
Drain Current  
o
I
I
Continuous (T = 25 C, V = 10V) (Figure 2) (Note 2)  
GS  
7.5  
4.0  
Figure 4  
A
A
A
D
D
A
o
Continuous (T = 100 C, V  
= 5V) (Note 2)  
A
GS  
I
Pulsed Drain Current  
DM  
P
Power Dissipation (Note 2)  
Derate Above 25 C  
2.5  
20  
W
mW/ C  
D
o
o
o
T , T  
STG  
Operating and Storage Temperature  
-55 to 150  
C
J
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s  
Package Body for 10s, See Techbrief TB334  
o
T
300  
260  
C
L
o
T
C
pkg  
THERMAL SPECIFICATIONS Thermal Resistance Junction to Ambient  
2
2
o
Measured using FR-4 board with 0.76 in (490.3 mm ) copper pad at 10  
second.  
50  
C/W  
2
2
o
R
θJA  
Measured using FR-4 board with 0.054 in (34.8 mm ) copper pad at 1000  
seconds. (Figure 23)  
152  
189  
C/W  
2
2
o
Measured using FR-4 board with 0.0115 in (7.42 mm ) copper pad at 1000  
seconds. (Figure 23)  
C/W  
NOTES:  
o
o
1. T = 25 C to 125 C.  
J
o
2. R  
= 50 C/W  
θJA  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
©2001 Fairchild Semiconductor Corporation  
HUF76112SK8 Rev. B  
HUF76112SK8  
o
Electrical Specifications T = 25 C, Unless Otherwise Specified  
A
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OFF STATE SPECIFICATIONS  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
BV  
I
= 250µA, V  
= 0V (Figure 12)  
30  
-
-
-
-
-
-
V
DSS  
D
GS  
GS  
GS  
I
V
V
V
= 25V, V  
= 25V, V  
= ±16V  
= 0V  
= 0V, T = 150 C  
1
µA  
µA  
nA  
DSS  
DS  
DS  
GS  
o
-
250  
±100  
A
Gate to Source Leakage Current  
ON STATE SPECIFICATIONS  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
I
-
GSS  
V
V
= V , I = 250µA (Figure 11)  
1
-
-
3
V
GS(TH)  
GS  
DS  
D
GS  
GS  
r
I
I
= 7.5A, V  
= 4.0A, V  
= 10V (Figures 9, 10)  
= 5V (Figure 9)  
0.022  
0.027  
0.026  
0.033  
DS(ON)  
D
D
-
SWITCHING SPECIFICATIONS (V  
Turn-On Time  
= 5V)  
t
GS  
t
V
V
R
= 15V, I = 4.0A  
D
= 5V,  
= 20Ω  
-
-
-
-
-
-
-
77  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
GS  
Turn-On Delay Time  
Rise Time  
11  
40  
35  
32  
-
-
d(ON)  
GS  
t
(Figures 15, 21, 22)  
-
r
Turn-Off Delay Time  
Fall Time  
t
-
-
d(OFF)  
t
f
Turn-Off Time  
t
100  
OFF  
SWITCHING SPECIFICATIONS (V  
Turn-On Time  
= 10V)  
t
GS  
V
V
R
= 15V, I = 7.5A  
D
= 10V,  
= 20Ω  
-
-
-
-
-
-
-
75  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
GS  
Turn-On Delay Time  
Rise Time  
t
7.2  
43  
52  
45  
-
-
d(ON)  
GS  
t
(Figures 16, 21, 22)  
-
r
Turn-Off Delay Time  
Fall Time  
t
-
-
d(OFF)  
t
f
Turn-Off Time  
t
145  
OFF  
GATE CHARGE SPECIFICATIONS  
Total Gate Charge at 10V  
Total Gate Charge at 5V  
Q
Q
V
V
V
= 0V to 10V  
= 0V to 5V  
= 0V to 1V  
V
= 15V,  
-
-
-
-
-
15  
7.2  
18  
8.7  
0.9  
-
nC  
nC  
nC  
nC  
nC  
g(TOT)  
g(TOT)  
GS  
GS  
GS  
DD  
= 7.5A,  
I
I
D
= 1.0mA  
g(REF)  
Threshold Gate Charge  
Q
(Figures 14, 19, 20)  
0.74  
2.1  
g(TH)  
Gate to Source Gate Charge  
Gate to Drain “Miller” Charge  
CAPACITANCE SPECIFICATIONS  
Input Capacitance  
Q
gs  
gd  
Q
2.9  
-
C
V
= 25V, V  
GS  
= 0V,  
-
-
-
725  
325  
36  
-
-
-
pF  
pF  
pF  
ISS  
DS  
f = 1MHz  
(Figures 13)  
Output Capacitance  
C
OSS  
RSS  
Reverse Transfer Capacitance  
C
Source to Drain Diode Specifications  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.25  
1.00  
25  
UNITS  
Source to Drain Diode Voltage  
V
I
I
I
I
= 7.5A  
= 4A  
-
-
-
-
-
-
-
-
V
V
SD  
SD  
SD  
SD  
SD  
Reverse Recovery Time  
t
= 7.5A, dI /dt = 100A/µs  
SD  
ns  
nC  
rr  
Reverse Recovered Charge  
Q
= 7.5A, dI /dt = 100A/µs  
SD  
14  
RR  
©2001 Fairchild Semiconductor Corporation  
HUF76112SK8 Rev. B  
HUF76112SK8  
Typical Performance Curves  
1.2  
8
6
4
2
1.0  
0.8  
0.6  
0.4  
0.2  
0
o
V
= 10V, R  
= 50 C/W  
GS  
θJA  
o
V
= 5V, R  
= 189 C/W  
GS  
θJA  
0
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
o
T , AMBIENT TEMPERATURE ( C)  
o
A
T , AMBIENT TEMPERATURE ( C)  
A
FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
AMBIENT TEMPERATURE  
3
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
1
o
R
= 50 C/W  
θJA  
0.1  
0.05  
0.02  
0.01  
0.1  
P
DM  
t
1
0.01  
t
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
x Z  
x R  
+ T  
SINGLE PULSE  
-3  
J
DM  
θJA  
θJA  
A
0.001  
10  
-5  
-4  
10  
-2  
-1  
10  
0
1
2
3
10  
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
1000  
o
o
= 25 C  
R
θJA  
= 50 C/W  
T
A
FOR TEMPERATURES  
o
ABOVE 25 C DERATE PEAK  
100  
10  
1
CURRENT AS FOLLOWS:  
V
= 5V  
GS  
150 - T  
A
I = I  
25  
125  
V
= 10V  
GS  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
-5  
-4  
10  
-3  
-2  
10  
-1  
0
10  
1
2
3
10  
10  
10  
10  
10  
10  
t, PULSE WIDTH (s)  
FIGURE 4. PEAK CURRENT CAPABILITY  
©2001 Fairchild Semiconductor Corporation  
HUF76112SK8 Rev. B  
HUF76112SK8  
Typical Performance Curves (Continued)  
500  
200  
o
= 50 C/W  
R
θJA  
If R = 0  
= (L)(I )/(1.3*RATED BV  
t
- V  
)
DD  
AV  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV  
AS  
DSS  
SINGLE PULSE  
100  
T
T
= MAX RATED  
= 25 C  
J
o
100  
t
AV  
- V ) +1]  
DD  
AS DSS  
A
100µs  
o
10  
STARTING T = 25 C  
J
10  
1
1ms  
o
STARTING T = 150 C  
J
OPERATION IN THIS  
AREA MAY BE  
10ms  
LIMITED BY r  
DS(ON)  
1
0.01  
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
100  
0.1  
1
10  
100  
V
DS  
t
, TIME IN AVALANCHE (ms)  
AV  
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA  
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING  
CAPABILITY  
25  
25  
PULSE DURATION = 80  
DUTY CYCLE = 0.5% MAX  
= 15V  
µs  
V
=
GS  
10V  
V
V
= 5V  
DD  
GS  
20  
15  
10  
20  
15  
10  
5
V
= 4.5V  
GS  
V
= 4V  
GS  
V
= 3.5V  
GS  
V
= 3V  
o
GS  
T
= 25 C  
o
J
T
= 150 C  
J
5
0
PULSE DURATION = 80µs  
o
T
= -55 C  
J
DUTY CYCLE = 0.5% MAX  
o
T
= 25 C  
A
0
0
0.5  
1.0  
1.5  
2.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
V
, GATE TO SOURCE VOLTAGE (V)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
GS  
FIGURE 7. TRANSFER CHARACTERISTICS  
FIGURE 8. SATURATION CHARACTERISTICS  
50  
40  
30  
20  
10  
1.6  
1.3  
1.0  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 10V, I = 7.5A  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
GS D  
I
= 7.5A  
D
I
= 1A  
D
0.7  
-80  
-40  
0
40  
80  
120  
160  
2
4
6
8
10  
o
V
, GATE TO SOURCE VOLTAGE (V)  
T , JUNCTION TEMPERATURE ( C)  
GS  
J
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE  
VOLTAGE AND DRAIN CURRENT  
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
©2001 Fairchild Semiconductor Corporation  
HUF76112SK8 Rev. B  
HUF76112SK8  
Typical Performance Curves (Continued)  
1.2  
1.1  
1.2  
I
= 250µA  
D
V
= V , I = 250µA  
GS  
DS  
D
1.0  
0.8  
0.6  
1.0  
0.9  
-80  
-40  
0
40  
80  
120  
160  
-80  
-40  
0
40  
80  
120  
160  
o
T , JUNCTION TEMPERATURE ( C)  
J
o
T , JUNCTION TEMPERATURE ( C)  
J
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
10  
2000  
V
= 15V  
DD  
C
=
C
+ C  
GS GD  
ISS  
1000  
8
6
4
2
0
C
C
+ C  
DS GD  
OSS  
100  
20  
C
=
C
WAVEFORMS IN  
DESCENDING ORDER:  
RSS  
GD  
I
I
= 7.5A  
= 1A  
D
D
V
= 0V, f = 1MHz  
GS  
0
3
6
9
12  
15  
0.1  
1.0  
10  
30  
Q , GATE CHARGE (nC)  
g
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.  
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT  
GATE CURRENT  
80  
120  
t
d(OFF)  
V
= 5V, V  
= 15V, I = 4.0A  
DD D  
V
= 10V, V  
= 15V, I = 7.5A  
DD D  
GS  
GS  
100  
80  
t
d(OFF)  
60  
40  
t
t
f
f
60  
t
r
t
r
40  
20  
0
t
20  
0
d(ON)  
t
d(ON)  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
R
, GATE TO SOURCE RESISTANCE ()  
R
, GATE TO SOURCE RESISTANCE ()  
GS  
GS  
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE  
FIGURE 16. SWITCHING TIME vs GATE RESISTANCE  
©2001 Fairchild Semiconductor Corporation  
HUF76112SK8 Rev. B  
HUF76112SK8  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
VARY t TO OBTAIN  
P
+
I
AS  
R
REQUIRED PEAK I  
G
V
DD  
AS  
V
DD  
-
V
GS  
DUT  
t
P
I
AS  
0V  
0
0.01Ω  
t
AV  
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 18. UNCLAMPED ENERGY WAVEFORMS  
V
DS  
V
Q
g(TOT)  
R
DD  
L
V
DS  
V
= 10V  
GS  
V
Q
GS  
g(TOT)  
+
-
V
DD  
V
= 5V  
V
GS  
GS  
DUT  
V
= 1V  
GS  
I
0
g(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
FIGURE 19. GATE CHARGE TEST CIRCUIT  
FIGURE 20. GATE CHARGE WAVEFORMS  
V
t
t
DS  
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
R
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
0
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
FIGURE 21. SWITCHING TIME TEST CIRCUIT  
FIGURE 22. SWITCHING TIME WAVEFORM  
©2001 Fairchild Semiconductor Corporation  
HUF76112SK8 Rev. B  
HUF76112SK8  
compromise between the copper board area, the thermal  
resistance and ultimately the power dissipation, P  
Thermal Resistance vs Mounting Pad Area  
.
DM  
The maximum rated junction temperature, T , and the  
JM  
Thermal resistances corresponding to other copper areas can  
be obtained from Figure 23 or by calculation using Equation 2.  
thermal resistance of the heat dissipating path determines  
the maximum allowable device power dissipation, P , in an  
DM  
R
is defined as the natural log of the area times a coefficient  
application. Therefore the application’s ambient temperature,  
θJA  
o
o
added to a constant. The area, in square inches is the top  
copper area including the gate and source pads.  
T ( C), and thermal resistance R  
( C/W) must be  
A
θJA  
reviewed to ensure that T is never exceeded. Equation 1  
JM  
mathematically represents the relationship and serves as  
the basis for establishing the rating of the part.  
R
= 83.2 23.6 × ln(Area)  
(EQ. 2)  
θJA  
The transient thermal impedance (Z ) is also effected by  
θJA  
(T  
T )  
JM  
Z
A
varied top copper board area. Figure 24 shows the effect of  
copper pad area on single pulse transient thermal  
impedance. Each trace represents a copper pad area in  
square inches corresponding to the descending list in the  
graph. Spice and SABER thermal models are provided for  
each of the listed pad areas.  
(EQ. 1)  
P
= ------------------------------  
DM  
θJA  
In using surface mount devices such as the SO8 package,  
the environment in which it is applied will have a significant  
influence on the part’s current and maximum power  
dissipation ratings. Precise determination of P  
and influenced by many factors:  
is complex  
DM  
Copper pad area has no perceivable effect on transient  
thermal impedance for pulse widths less than 100ms. For  
pulse widths less than 100ms the transient thermal  
impedance is determined by the die and package. Therefore,  
CTHERM1 through CTHERM5 and RTHERM1 through  
RTHERM5 remain constant for each of the thermal models. A  
listing of the model component values is available in Table 1.  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
2. The number of copper layers and the thickness of the board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
5. Air flow and board orientation.  
240  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the part,  
the board and the environment they are in.  
R
= 83.2 - 23.6*ln(AREA)  
θJA  
o
2
200  
160  
120  
80  
189 C/W - 0.0115in  
Fairchild provides thermal information to assist the designer’s  
preliminary application evaluation. Figure 23 defines the R  
θJA  
o
2
152 C/W - 0.054in  
for the device as a function of the top copper (component side)  
area. This is for a horizontally positioned FR-4 board with 1oz  
copper after 1000 seconds of steady state power with no air  
flow. This graph provides the necessary information for  
calculation of the steady state junction temperature or power  
dissipation. Pulse applications can be evaluated using the  
Fairchild device Spice thermal model or manually utilizing the  
normalized maximum transient thermal impedance curve.  
0.01  
0.1  
AREA, TOP COPPER AREA (in )  
1.0  
2
FIGURE 23. THERMAL RESISTANCE vs MOUNTING PAD AREA  
Displayed on the curve are R  
θJA  
values listed in the Electrical  
Specifications table. The points were chosen to depict the  
150  
COPPER BOARD AREA - DESCENDING ORDER  
2
0.04 in  
2
120  
90  
60  
30  
0
0.28 in  
0.52 in  
0.76 in  
1.00 in  
2
2
2
-1  
10  
0
1
2
3
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
FIGURE 24. THERMAL IMPEDANCE vs MOUNTING PAD AREA  
10  
10  
©2001 Fairchild Semiconductor Corporation  
HUF76112SK8 Rev. B  
HUF76112SK8  
PSPICE Electrical Model  
.SUBCKT HUF76112SK8 2 1 3 ;  
REV 9 Mar 2000  
CA 12 8 8.00e-10  
CB 15 14 7.40e-10  
CIN 6 8 6.90e-10  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
LDRAIN  
DPLCAP  
10  
DRAIN  
2
5
RLDRAIN  
RSLC1  
51  
EBREAK 11 7 17 18 31.89  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
-
50  
+
EVTEMP 20 6 18 22 1  
-
17  
DBODY  
RDRAIN  
6
ESG  
8
EBREAK 18  
IT 8 17 1  
-
EVTHRES  
+
+
16  
21  
-
19  
8
MWEAK  
LDRAIN 2 5 1.00e-9  
LGATE 1 9 1.12e-9  
LSOURCE 3 7 1.29e-10  
LGATE  
RGATE  
EVTEMP  
+
GATE  
1
6
-
18  
22  
MMED  
9
20  
MSTRO  
8
RLGATE  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 5.00e-3  
RGATE 9 20 2.82  
RLDRAIN 2 5 10  
RLGATE 1 9 9 11.2  
RLSOURCE  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RLSOURCE 3 7 1.29  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 10.00e-3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
RVTEMP  
19  
-
S1B  
S2B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
22  
RVTHRES  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*215),2))}  
.MODEL DBODYMOD D (IS = 7.75e-13 RS = 8.08e-3 TRS1 = -1.89e-4 TRS2 = 0 CJO = 1.17e-9 TT = 1.41e-8 M = 0.43)  
.MODEL DBREAKMOD D (RS = 1.34e- 1TRS1 = 0TRS2 = 0)  
..MODEL DPLCAPMOD D (CJO = 3.72e-10 IS = 1e-30 M = 0.72)  
.MODEL MMEDMOD NMOS (VTO = 1.90 KP = 1.75 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.82)  
.MODEL MSTROMOD NMOS (VTO = 2.25 KP = 43 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD NMOS (VTO = 1.70 KP = 0.10 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 28.2 RS = 0.1)  
.MODEL RBREAKMOD RES (TC1 = 9.15e- 4TC2 = -2.97e-7)  
.MODEL RDRAINMOD RES (TC1 = 7.40e-3 TC2 = 2.00e-5)  
.MODEL RSLCMOD RES (TC1 = 4.93e-3 TC2 = 1.01e-6)  
.MODEL RSOURCEMOD RES (TC1 = 1.00e-3 TC2 = 0)  
.MODEL RVTHRESMOD RES (TC1 = -1.85e-3 TC2 = -5.28e-6)  
.MODEL RVTEMPMOD RES (TC1 = -1.55e- 3TC2 = 0)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.50 VOFF= -2.50)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.50 VOFF= -6.50)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.20 VOFF= 0)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0 VOFF= -2.20)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
©2001 Fairchild Semiconductor Corporation  
HUF76112SK8 Rev. B  
HUF76112SK8  
SABER Electrical Model  
REV 9 Mar 2000  
template huf76112SK8 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (is = 7.75e-13,rs=8.08e-3,trs1=-1.89e-4,trs2=0, cjo = 1.17e-9, tt = 1.41e-8, m = 0.43)  
dp..model dbreakmod = (rs=1.34e-1,trs1=0,trs2=0)  
dp..model dplcapmod = (cjo = 3.72e-10, is = 1e-30, m = 0.72)  
m..model mmedmod = (type=_n, vto = 1.90, kp = 1.75, is = 1e-30, tox = 1)  
m..model mstrongmod = (type=_n, vto = 2.25, kp = 43, is = 1e-30, tox = 1)  
m..model mweakmod = (type=_n, vto = 1.70, kp = 0.10, is = 1e-30, tox = 1)  
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.5, voff = -2.5)  
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -2.5, voff = -6.5)  
LDRAIN  
DPLCAP  
5
DRAIN  
2
10  
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -2.2, voff = 0)  
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0, voff = -2.2)  
RLDRAIN  
RSLC1  
51  
c.ca n12 n8 = 8.00e-10  
c.cb n15 n14 = 7.40e-10  
c.cin n6 n8 = 6.90e-10  
RSLC2  
ISCL  
DBREAK  
11  
50  
-
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
RDRAIN  
6
8
ESG  
EVTHRES  
+
16  
21  
+
-
19  
8
i.it n8 n17 = 1  
MWEAK  
LGATE  
EVTEMP  
+
DBODY  
RGATE  
GATE  
1
6
-
18  
22  
EBREAK  
+
l.ldrain n2 n5 = 1.00e-9  
l.lgate n1 n9 = 1.12e-9  
l.lsource n3 n7 = 1.29e-10  
MMED  
9
20  
MSTRO  
8
17  
18  
-
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
7
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
RSOURCE  
RLSOURCE  
S1A  
S2A  
res.rbreak n17 n18 = 1, tc1 = 9.15e-4, tc2 = -2.97e-7  
res.rdrain n50 n16 = 5.00e-3, tc1 = 7.40e-3, tc2 = 2.00e-5  
res.rgate n9 n20 = 2.82  
RBREAK  
12  
15  
13  
14  
13  
17  
18  
8
res.rldrain n2 n5 = 10  
res.rlgate n1 n9 = 11.2  
res.rlsource n3 n7 = 1.29  
res.rslc1 n5 n51 = 1e-6, tc1 = 4.93e-3, tc2 = 1.01e-6  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 10.00e-3, tc1 = 1.00e-3, tc2 = 0  
res.rvtemp n18 n19 = 1, tc1 = -1.55e-3, tc2 = 0  
res.rvthres n22 n8 = 1, tc1 = -1.85e-3, tc2 = -5.28e-6  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
spe.ebreak n11 n7 n17 n18 = 31.89  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/215))** 2))  
}
}
©2001 Fairchild Semiconductor Corporation  
HUF76112SK8 Rev. B  
HUF76112SK8  
SPICE Thermal Model  
REV 11 Nov 1999  
ITF86130SK8T  
2
JUNCTION  
th  
Copper Area = 0.04 in  
CTHERM1 th 8 2.0e-3  
CTHERM2 8 7 5.0e-3  
CTHERM3 7 6 1.0e-2  
CTHERM4 6 5 4.0e-2  
CTHERM5 5 4 9.0e-2  
CTHERM6 4 3 1.2e-1  
CTHERM7 3 2 0.5  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
RTHERM7  
RTHERM8  
CTHERM1  
8
7
CTHERM8 2 tl 1.3  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
CTHERM7  
CTHERM8  
RTHERM1 th 8 0.1  
RTHERM2 8 7 0.5  
RTHERM3 7 6 1.0  
RTHERM4 6 5 5.0  
RTHERM5 5 4 8.0  
RTHERM6 4 3 26  
RTHERM7 3 2 39  
RTHERM8 2 tl 55  
6
5
SABER Thermal Model  
2
Copper Area = 0.04 in  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 8 = 2.0e-3  
ctherm.ctherm2 8 7 = 5.0e-3  
ctherm.ctherm3 7 6 = 1.0e-2  
ctherm.ctherm4 6 5 = 4.0e-2  
ctherm.ctherm5 5 4 = 9.0e-2  
ctherm.ctherm6 4 3 = 1.2e-1  
ctherm.ctherm7 3 2 = 0.5  
ctherm.ctherm8 2 tl = 1.3  
4
3
2
rtherm.rtherm1 th 8 = 0.1  
rtherm.rtherm2 8 7 = 0.5  
rtherm.rtherm3 7 6 = 1.0  
rtherm.rtherm4 6 5 = 5.0  
rtherm.rtherm5 5 4 = 8.0  
rtherm.rtherm6 4 3 = 26  
rtherm.rtherm7 3 2 = 39  
rtherm.rtherm8 2 tl = 55  
}
tl  
CASE  
TABLE 1. THERMAL MODELS  
2
2
2
2
2
COMPONENT  
CTHERM6  
0.04in  
0.28in  
1.5e-1  
1.0  
0.52in  
0.76in  
1.0in  
1.2e-1  
0.5  
1.3  
26  
2.0e-1  
2.0e-1  
1.0  
2.0e-1  
1.0  
3.0  
12  
CTHERM7  
1.0  
3.0  
15  
CTHERM8  
2.8  
3.0  
RTHERM6  
20  
13  
RTHERM7  
39  
24  
21  
19  
18  
RTHERM8  
55  
38.7  
31.3  
29.7  
25  
©2001 Fairchild Semiconductor Corporation  
HUF76112SK8 Rev. B  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
â
SMART START™  
STAR*POWER™  
Stealth™  
VCX™  
FAST  
ACEx™  
Bottomless™  
CoolFET™  
OPTOLOGIC™  
OPTOPLANAR™  
PACMAN™  
FASTr™  
FRFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
CROSSVOLT™  
DenseTrench™  
DOME™  
POP™  
Power247™  
PowerTrenchâ  
QFET™  
EcoSPARK™  
E2CMOSTM  
TinyLogic™  
QS™  
EnSignaTM  
TruTranslation™  
UHC™  
QT Optoelectronics™  
Quiet Series™  
SILENTSWITCHERâ  
FACT™  
FACT Quiet Series™  
UltraFETâ  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITYARISING OUT OF THE APPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICESORSYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFFAIRCHILDSEMICONDUCTORCORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H4  

相关型号:

HUF76113DK8

6A, 30V, 0.032 Ohm, Dual N-Channel, Logic Level UltraFET Power MOSFET
FAIRCHILD

HUF76113DK8

6A, 30V, 0.032 Ohm, Dual N-Channel, Logic Level UltraFET Power MOSFET
INTERSIL

HUF76113DK8T

TRANSISTOR | MOSFET | MATCHED PAIR | N-CHANNEL | 30V V(BR)DSS | 6A I(D) | SO
ETC

HUF76113SK8

6.5A, 30V, 0.030 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
INTERSIL

HUF76113SK8

6.5A, 30V, 0.030 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
FAIRCHILD

HUF76113SK8T

TRANSISTOR | MOSFET | N-CHANNEL | 30V V(BR)DSS | 6.5A I(D) | SO
INTERSIL

HUF76113T3ST

4.7A, 30V, 0.031 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
FAIRCHILD

HUF76113T3ST

4.7A, 30V, 0.031 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
INTERSIL

HUF76121D3

20A, 30V, 0.023 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs
FAIRCHILD

HUF76121D3

20A, 30V, 0.023 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs
INTERSIL

HUF76121D3S

20A, 30V, 0.023 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs
FAIRCHILD

HUF76121D3S

20A, 30V, 0.023 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs
INTERSIL