HWD20012 [ETC]

High-Efficiency, Low-Supply-Current, Compact, Step-Up DC-DC Converters; 高效率,低电源电流,紧凑的,升压型DC- DC转换器
HWD20012
型号: HWD20012
厂家: ETC    ETC
描述:

High-Efficiency, Low-Supply-Current, Compact, Step-Up DC-DC Converters
高效率,低电源电流,紧凑的,升压型DC- DC转换器

转换器
文件: 总13页 (文件大小:799K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Hig h -Effic ie n c y, Lo w -S u p p ly-Cu rre n t ,  
Co m p a c t , S t e p -Up DC-DC Co n ve rt e rs  
Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
94% Efficient at 200mA Output Current  
16µA Quiescent Supply Current  
The HWD20011/HWD2001/HWD20012 compact, high  
effIciency, step-up DC-DC converters fit in small MSOP  
packages. They feature a built-in synchronous rectifier,  
which improves efficiency and reduces size and cost  
by eliminating the need for an external Schottky diode.  
Quiescent supply current is only 16µA.  
Internal Synchronous Rectifier (no external diode)  
0.1µA Logic-Controlled Shutdown  
LBI/LBO Low-Battery Detector  
The input voltage ranges from 0.7V to V  
, where  
OUT  
V
OUT  
can be set from 2V to 5.5V. Start-up is guaran-  
Selectable Current Limit for Reduced Ripple  
te e d from 1.1V inp uts . The HWD20011/HWD2001/  
HWD20012 have a preset, pin-selectable output for 5V or Low-Noise, Anti-Ringing Feature (HWD20012)  
3.3V. The outputs can also be adjusted to other volt-  
ages using two external resistors.  
8-Pin and 10-Pin MSOP Packages  
Preassembled Evaluation Kit (HWD20012EVKIT)  
All thre e d e vic e s ha ve a 0.3N-c ha nne l MOSFET  
power switch. The HWD20011 has a 1A current limit. The  
HWD2001 has a 0.5A current limit, which permits the  
use of a smaller inductor. The HWD20012 comes in a  
10-pin MSOP package and features an adjustable cur-  
rent limit and circuitry to reduce inductor ringing.  
_______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 MSOP  
________________________Ap p lic a t io n s  
HWD20011EUA  
HWD2001EUA  
HWD20012EUB  
Pagers  
8 MSOP  
Wireless Phones  
Medical Devices  
Hand-Held Computers  
PDAs  
10 MSOP  
RF Tags  
P in Co n fig u ra t io n s  
1 to 3-Cell Hand-Held Devices  
TOP VIEW  
Typ ic a l Op e ra t in g Circ u it  
1
2
3
4
8
7
6
5
OUT  
LX  
FB  
LBI  
INPUT  
0.7V TO V  
OUT  
HWD20011  
HWD2001  
LBO  
REF  
GND  
SHDN  
OUTPUT  
3.3V, 5V, OR  
ADJ (2V TO 5.5V)  
UP TO 300mA  
ON  
SHDN  
LX  
OFF  
MSOP  
HWD20011  
HWD2001  
OUT  
1
2
3
4
5
FB  
LBI  
10 OUT  
9
8
7
6
LX  
LOW-BATTERY  
DETECT IN  
LOW-BATTERY  
DETECT OUT  
HWD20012  
LBI  
LBO  
LBO  
GND  
BATT  
SHDN  
REF  
FB  
GND  
CLSEL  
REF  
0.1µF  
MSOP  
1
Hig h -Effic ie n c y, Lo w -S u p p ly-Cu rre n t ,  
Co m p a c t , S t e p -Up DC-DC Co n ve rt e rs  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (OUT to GND) ..............................-0.3V to +6.0V  
Continuous Power Dissipation (T = +70°C)  
A
Switch Voltage (LX to GND) .....................-0.3V to (V  
+ 0.3V)  
8-Pin MSOP (derate 4.1mW/°C above +70°C) ....... .330mW  
OUT  
Battery Voltage (BATT to GND).............................-0.3V to +6.0V  
SHDN, LBO to GND ..............................................-0.3V to +6.0V  
10-Pin MSOP (derate 5.6mW/°C above +70°C) ..... ..444mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature ......................................................+150°C  
Storage Temperature Range .............................-65°C to +165°C  
Lead Temperature (soldering, 10s) .................................+300°C  
LBI, REF, FB, CLSEL to GND ...................-0.3V to (V  
+ 0.3V)  
OUT  
Switch Current (LX)...............................................-1.5A to +1.5A  
Output Current (OUT) ...........................................-1.5A to +1.5A  
ELECTRICAL CHARACTERISTICS  
(V  
BATT  
= 2V, FB = OUT (V  
= 3.3V), R = ˙, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
OUT  
L
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
Operating Voltage  
0.7  
V
V
V
IN  
T
= +25°C  
1.1  
5.5  
1.1  
A
Start-Up Voltage  
T
A
= +25°C, R = 3k(Note 1)  
0.9  
-2  
V
L
Start-Up Voltage Tempco  
mV/°C  
FB = OUT  
FB = GND  
3.17  
4.80  
2
3.30  
5
3.43  
5.20  
5.5  
Output Voltage  
V
OUT  
V
V
Output Voltage Range  
HWD20011,  
HWD20012 (CLSEL = OUT)  
300  
150  
180  
420  
220  
285  
130  
FB = OUT  
(V  
OUT  
= 3.3V)  
HWD2001,  
HWD20012 (CLSEL = GND)  
Steady-State Output Current  
(Note 2)  
I
mA  
OUT  
HWD20011,  
HWD20012 (CLSEL = OUT)  
FB = GND  
(V = 5V)  
OUT  
HWD2001,  
HWD20012 (CLSEL = GND)  
90  
Reference Voltage  
V
I
= 0  
1.274  
1.30  
1.326  
15  
V
REF  
REF  
Reference Voltage Tempco  
TEMPCO  
0.024  
mV/°C  
Reference Voltage Load  
Regulation  
V
I
= 0 to 100µA  
3
mV  
REF_LOAD  
REF  
Reference Voltage Line  
Regulation  
V
V
= 2V to 5.5V  
0.08  
1.30  
0.3  
2.5  
1.326  
0.6  
mV/V  
V
REF_LINE  
OUT  
FB, LBI Input Threshold  
1.274  
Internal NFET, PFET  
On-Resistance  
R
I
LX  
= 100mA  
DS(ON)  
HWD20011, HWD20012 (CLSEL = OUT)  
HWD2001, HWD20012 (CLSEL = GND)  
0.80  
0.4  
1
1.20  
0.65  
1
LX Switch Current  
Limit (NFET)  
I
A
LIM  
0.5  
LX Leakage Current  
I
V
= 0, 5.5V; V = 5.5V  
OUT  
0.05  
µA  
LEAK  
LX  
2
Hig h -Effic ie n c y, Lo w -S u p p ly-Cu rre n t ,  
Co m p a c t , S t e p -Up DC-DC Co n ve rt e rs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
BATT  
= 2V, FB = OUT (V  
= 3.3V), R = ˙, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
OUT  
L
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 3.3V  
OUT  
MIN  
TYP  
MAX  
UNITS  
Operating Current into OUT  
(Note 3)  
V
FB  
= 1.4V, V  
16  
35  
µA  
Shutdown Current into OUT  
0.1  
90  
1
µA  
SHDN = GND  
= 3.3V, I  
V
= 200mA  
LOAD  
OUT  
Efficiency  
%
V
= 2V, I  
= 1mA  
85  
OUT  
LOAD  
LX Switch On-Time  
t
V
= 1V, V = 3.3V  
OUT  
3
4
7
1.2  
50  
50  
3
µs  
µs  
ON  
FB  
LX Switch Off-Time  
t
V
FB  
= 1V, V = 3.3V  
OUT  
0.8  
1
OFF  
FB Input Current  
I
V
FB  
= 1.4V  
= 1.4V  
0.03  
1
nA  
nA  
µA  
nA  
V
FB  
LBI Input Current  
I
V
LBI  
LBI  
CLSEL Input Current  
SHDN Input Current  
LBO Low Output Voltage  
LBO Off Leakage Current  
Damping Switch Resistance  
I
HWD20012, CLSEL = OUT  
1.4  
0.07  
0.2  
0.07  
88  
CLSEL  
I
V
V
= 0 or V  
OUT  
50  
0.4  
1
SHDN  
SHDN  
= 0, I  
= 1mA  
LBI  
SINK  
I
V
= 5.5V, V = 5.5V  
µA  
LBO  
LBO  
LBI  
HWD20012, V  
= 2V  
150  
BATT  
V
0.2V  
OUT  
IL  
V
V
SHDN Input Voltage  
V
IH  
0.8V  
OUT  
V
IL  
0.2V  
OUT  
CLSEL Input Voltage  
V
IH  
0.8V  
OUT  
ELECTRICAL CHARACTERISTICS  
(V  
BATT  
= 2V, FB = OUT, R = , T = -40°C to +85°C, unless otherwise noted.) (Note 4)  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
MAX  
3.47  
UNITS  
FB = OUT  
FB = GND  
3.13  
4.75  
Output Voltage  
V
OUT  
V
5.25  
Output Voltage Range  
Reference Voltage  
FB, LBI Thresholds  
2.20  
5.5  
V
V
V
V
REF  
I
= 0  
1.2675  
1.2675  
1.3325  
1.3325  
REF  
Internal NFET, PFET  
On-Resistance  
R
0.6  
40  
DS(ON)  
Operating Current into OUT  
(Note 3)  
V
FB  
= 1.4V, V  
= 3.3V  
µA  
OUT  
Shutdown Current into OUT  
LX Switch On-Time  
1
µA  
µs  
SHDN = GND  
= 1V, V = 3.3V  
OUT  
t
V
2.7  
7.0  
ON  
FB  
LX Switch Off-Time  
t
V
= 1V, V = 3.3V  
OUT  
0.75  
0.75  
0.36  
1.25  
1.25  
0.69  
µs  
OFF  
FB  
HWD20012, HWD20012 (CLSEL = OUT)  
HWD2001, HWD20012 (CLSEL = GND)  
LX Switch Current  
Limit (NFET)  
I
A
LIM  
3
Hig h -Effic ie n c y, Lo w -S u p p ly-Cu rre n t ,  
Co m p a c t , S t e p -Up DC-DC Co n ve rt e rs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
BATT  
= 2V, FB = OUT, R = , T = -40°C to +85°C, unless otherwise noted.) (Note 4)  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
MAX  
UNITS  
µA  
CLSEL Input Current  
I
HWD20012, CLSEL = OUT  
3
75  
1
CLSEL  
I
V
= 0 or V  
OUT  
nA  
SHDN Input Current  
SHDN  
SHDN  
I
V
LBO  
= 5.5V, V = 5.5V  
µA  
LBO Off Leakage Current  
LBO  
LBI  
Note 1: Start-up voltage operation is guaranteed with the addition of a Schottky MBR0520 external diode between the input and  
output.  
Note 2: Steady-state output current indicates that the device maintains output voltage regulation under load. See Figures 5 and 6.  
Note 3: Device is bootstrapped (power to the IC comes from OUT). This correlates directly with the actual battery supply.  
Note 4: Specifications to -40°C are guaranteed by design, not production tested.  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
= 0.1µF, T = +25°C, unless otherwise noted.)  
A
(L = 22µH, C = 47µF, C  
= 47µF 0.1µF, C  
IN  
OUT  
REF  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
100  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
90  
80  
70  
60  
50  
40  
30  
20  
10  
90  
80  
V
= 3.6V  
IN  
V
= 2.4V  
V
IN  
= 2.4V  
V = 2.4V  
IN  
IN  
70  
60  
50  
40  
30  
20  
10  
V
= 3.6V  
V = 1.2V  
IN  
IN  
V
IN  
= 1.2V  
V = 1.2V  
IN  
V
I
= 5V  
= 500mA  
V
= 5V  
= 1A  
V = 3.3V  
OUT  
I = 500mA  
LIMIT  
OUT  
OUT  
I
LIMIT  
LIMIT  
0
0
0
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
REFERENCE OUTPUT VOLTAGE  
vs. TEMPERATURE  
EFFICIENCY vs. LOAD CURRENT  
100  
1.300  
1.298  
1.296  
1.294  
1.292  
1.290  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
= 2.4V  
IN  
I
REF  
= 0  
V
IN  
= 1.2V  
I
REF  
= 100µA  
V
= 3.3V  
= 1A  
OUT  
I
LIMIT  
0
-40 -20  
0
20  
40  
60  
80 100  
0.01  
0.1  
1
10  
100  
1000  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
4
Hig h -Effic ie n c y, Lo w -S u p p ly-Cu rre n t ,  
Co m p a c t , S t e p -Up DC-DC Co n ve rt e rs  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(L = 22µH, C = 47µF, C  
= 47µF 0.1µF, C  
= 0.1µF, T = +25°C, unless otherwise noted.)  
A
IN  
OUT  
REF  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
NO-LOAD BATTERY CURRENT  
vs. INPUT BATTERY VOLTAGE  
START-UP VOLTAGE  
vs. LOAD CURRENT  
1.0  
160  
140  
120  
100  
80  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.8  
0.6  
I
= 1A, 5.0V  
LIMIT  
0.4  
WITHOUT DIODE  
0.2  
0
I
= 0.5A, 5.0V  
LIMIT  
-0.2  
60  
WITH 1N5817  
-0.4  
40  
I
= 0.5A, 3.3V  
LIMIT  
0.4  
0.2  
0
-0.6  
-0.8  
-1.0  
20  
I
= 1A, 3.3V  
LIMIT  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
INPUT BATTERY VOLTAGE (V)  
1
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
SHUTDOWN THRESHOLD  
vs. SUPPLY VOLTAGE  
MAXIMUM OUTPUT CURRENT  
MAXIMUM OUTPUT CURRENT  
vs. INPUT VOLTAGE (V = 5V)  
vs. INPUT VOLTAGE (V  
= 3.3V)  
OUT  
OUT  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1A CURRENT LIMIT  
1A CURRENT LIMIT  
0.5A CURRENT LIMIT  
0.5A CURRENT LIMIT  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
SUPPLY VOLTAGE (V)  
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
INPUT VOLTAGE (V)  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
INPUT VOLTAGE (V)  
LX CURRENT LIMIT  
vs. OUTPUT VOLTAGE  
HEAVY-LOAD SWITCHING WAVEFORMS  
SWITCH RESISTANCE vs. TEMPERATURE  
HWD20011 TOC13  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
HWD20011, HWD20012 (CLSEL = OUT)  
P-CHANNEL  
V
5V/div  
LX  
I
LX  
0.5A/div  
N-CHANNEL  
HWD2001,HWD20012 (CLSEL = GND)  
V
OUT  
AC COUPLED  
100mV/div  
V = 2.4V  
IN  
V
= 5.0V  
OUT  
1µs/div  
-40  
2.0  
2.5  
3.0  
OUTPUT VOLTAGE (V)  
3.5  
4.0  
4.5  
5.0  
-60  
-20  
0
20 40 60 80 100  
TEMPERATURE (°C)  
5
Hig h -Effic ie n c y, Lo w -S u p p ly-Cu rre n t ,  
Co m p a c t , S t e p -Up DC-DC Co n ve rt e rs  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
= 0.1µF, T = +25°C, unless otherwise noted.)  
REF A  
(L = 22µH, C = 47µF, C  
= 47µF 0.1µF, C  
IN  
OUT  
LINE-TRANSIENT RESPONSE  
LOAD-TRANSIENT RESPONSE  
EXITING SHUTDOWN  
HWD20011 TOC17  
HWD20011 TOC15  
HWD20011 TOC16  
V = 2.4V  
IN  
V
IN  
V
= 3.3V  
OUT  
V
2V/div  
OUT  
2V TO 3V  
1V/div  
I
OUT  
200mA/div  
V
SHDN  
2V/div  
V
OUT  
V
OUT  
50mV/div  
AC  
COUPLED  
AC COUPLED  
100mV/div  
I
LOAD  
100mA  
10µs/div  
5µs/div  
500µs/div  
P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
HWD20011  
HWD2001  
HWD20012  
Dual-Mode™ Feedback Input. Connect to GND for +5.0V output.  
Connect to OUT for +3.3V output. Use a resistor network to set the  
output voltage from +2.0V to +5.5V.  
1
2
3
1
2
3
FB  
LBI  
Low-Battery Comparator Input. Internally set to trip at +1.30V.  
Open-Drain Low-Battery Comparator Output. Connect LBO to OUT  
LBO  
through a 100kresistor. Output is low when V is <1.3V. LBO is  
LBI  
high impedance during shutdown.  
Current-Limit Select Input. CLSEL = OUT sets the current limit to 1A.  
CLSEL = GND sets the current limit to 0.5A.  
4
4
5
CLSEL  
REF  
1.3V Reference Voltage. Bypass with a 0.1µF capacitor.  
Shutdown Input. Drive high (>80% of V ) for operating mode.  
OUT  
5
6
7
Drive low (<20% of V  
normal operation.  
) for shutdown mode. Connect to OUT for  
SHDN  
OUT  
Battery Input and Damping Switch Connection. If damping switch is  
unused, leave BATT unconnected.  
BATT  
6
7
8
8
9
GND  
LX  
Ground  
N-Channel and P-Channel Power MOSFET Drain  
Power Output. OUT provides bootstrap power to the IC.  
10  
OUT  
6
Hig h -Effic ie n c y, Lo w -S u p p ly-Cu rre n t ,  
Co m p a c t , S t e p -Up DC-DC Co n ve rt e rs  
combines the high output power and efficiency of a  
pulse-width-modulation (PWM) device with the ultra-low  
De t a ile d De s c rip t io n  
The HWD20011/HWD2001/HWD20012 compact, step-up  
quiescent current of a traditional PFM (Figure 1). There  
is no oscillator; a constant-peak-current limit in the  
switch allows the inductor current to vary between this  
peak limit and some lesser value. At light loads, the  
switching frequency is governed by a pair of one-shots  
that set a typical minimum off-time (1µs) and a typical  
maximum on-time (4µs). The switching frequency  
depends upon the load and the input voltage, and can  
range up to 500kHz. The peak current of the internal N-  
channel MOSFET power switch is fixed at 1A  
(HWD20011), at 0.5A (HWD2001), or is selectable  
(HWD20012). Unlike conventional pulse-skipping DC-DC  
converters (where ripple amplitude varies with input  
voltage), ripple in these devices does not exceed the  
product of the switch current limit and the filter-capaci-  
tor equivalent series resistance (ESR).  
DC-DC converters start up with voltages as low as 0.9V  
and operate with an input voltage down to 0.7V.  
Consuming only 16µA of quiescent current, these  
devices offer a built-in synchronous rectifier that  
reduces cost by eliminating the need for an external  
diode and improves overall efficiency by minimizing  
losses in the circuit (see Synchronous Rectification sec-  
tion for details). The internal MOSFET resistance is typi-  
cally 0.3, which minimizes losses. The current limit of  
the HWD20011 and HWD2001 are 1A and 0.5A, respec-  
tively. The HWD2001's lower current limit allows the use  
of a physically smaller inductor in space-sensitive  
applications. The HWD20012 features a circuit that elimi-  
nates noise due to inductor ringing. In addition, the  
HWD20012 offers a selectable current limit (0.5A or 1A)  
for design flexibility.  
S yn c h ro n o u s Re c t ific a t io n  
The internal synchronous rectifier eliminates the need  
for an external Schottky diode, thus reducing cost and  
board space. During the cycle off-time, the P-channel  
MOSFET turns on and shunts the MOSFET body diode.  
P FM Co n t ro l S c h e m e  
A unique minimum-off-time, current-limited, pulse-fre-  
quency-modulation (PFM) control scheme is a key fea-  
ture of the HWD20011/HWD2001/HWD20012. This scheme  
0.1µF  
47µF  
OUT  
V
OUT  
MINIMUM  
OFF-TIME  
ONE-SHOT  
ZERO  
CROSSING  
AMPLIFIER  
EN  
SHDN  
Q
TRIG  
ONE-SHOT  
P
V
IN  
LX  
22µH  
47µF  
N
F/F  
R
CLSEL  
GND  
Q
S
(HWD20012)  
HWD20011  
HWD2001  
HWD20012  
MAXIMUM  
ON-TIME  
R1  
200Ω  
BATT  
ONE-SHOT  
CURRENT-LIMIT  
AMPLIFIER  
TRIG  
Q
(HWD20012)  
DAMPING  
V
V
OUT  
IN  
ONE-SHOT  
R5  
SWITCH  
R3  
R4  
ERROR  
AMPLIFIER  
FB  
R2  
100k  
R6  
REFERENCE  
LBO  
LBI  
LOW-BATTERY  
COMPARATOR  
REF  
0.1µF  
Figure 1. Simplified Functional Diagram  
7
Hig h -Effic ie n c y, Lo w -S u p p ly-Cu rre n t ,  
Co m p a c t , S t e p -Up DC-DC Co n ve rt e rs  
As a re s ult, the s ync hronous re c tifie r s ig nific a ntly  
improves efficiency without the addition of an external  
component. Conversion efficiency can be as high as  
94%, as shown in the Typical Operating Characteristics.  
For low-voltage inputs from single cells (Alkaline, NiCd,  
V
IN  
R1  
200Ω  
or NiMH), use an external Schottky diode such as the  
1N5817 to ensure start-up.  
BATT  
22µH  
HWD20012  
Vo lt a g e Re fe re n c e  
The volta g e a t REF is nomina lly +1.30V. REF c a n  
source up to 100µA to external circuits. The reference  
maintains excellent load regulation (see Typical Oper-  
ating Characteristics). A bypass capacitor of 0.1µF is  
required for proper operation.  
DAMPING  
SWITCH  
LX  
OUT  
V
OUT  
0.1µF  
47µF  
S h u t d o w n  
The d e vic e e nte rs s hutd own whe n V  
is low  
SHDN  
(V  
<20% of V ). For normal operation, drive  
OUT  
SHDN  
SHDN high (V  
to OUT. During shutdown, the body diode of the P-  
channel MOSFET allows current flow from the battery to  
>80% of V  
) or connect SHDN  
SHDN  
OUT  
Figure 2. Simplified Diagram of Inductor Damping Switch  
the output. V  
falls to approximately V - 0.6V and  
OUT  
IN  
LX remains high impedance. The capacitance and load  
a t OUT d e te rmine the ra te a t whic h V d e c a ys .  
OUT  
Shutdown can be pulled as high as 6V, regardless of  
the voltage at OUT.  
Cu rre n t Lim it S e le c t P in (HWD2 0 0 1 2 )  
The HWD20012 allows a selectable inductor current limit  
of either 0.5A or 1A. This allows flexibility in designing  
for higher current applications or for smaller, compact  
designs. Connect CLSEL to OUT for 1A or to GND for  
0.5A. CLSEL draws 1.4µA when connected to OUT.  
V
1V/div  
LX  
BATT/Da m p in g S w it c h (HWD2 0 0 1 2 )  
The HWD20012 is designed with an internal damping  
switch to minimize ringing at LX. The damping switch  
connects an external resistor (R1) across the inductor  
whe n the ind uc tors e ne rg y is d e p le te d (Fig ure 2).  
Normally, when the energy in the inductor is insufficient  
to supply current to the output, the capacitance and  
inductance at LX form a resonant circuit that causes  
ringing. The ringing continues until the energy is dissi-  
pated through the series resistance of the inductor. The  
damping switch supplies a path to quickly dissipate this  
energy, minimizing the ringing at LX. Damping LX ring-  
2µs/div  
Figure 3. LX Ringing Without Damping Switch  
V
1V/div  
LX  
ing does not reduce V  
ripple, but does reduce EMI.  
OUT  
R1 = 200works well for most applications while reduc-  
ing efficiency by only 1%. Larger R1 values provide less  
damping, but have less impact on efficiency. Generally,  
lower values of R1 are needed to fully damp LX when  
the V /V ratio is high (Figures 2, 3, and 4).  
OUT IN  
2µs/div  
Figure 4. LX Waveform with Damping Switch (with 200Ω  
external resistor)  
8
Hig h -Effic ie n c y, Lo w -S u p p ly-Cu rre n t ,  
Co m p a c t , S t e p -Up DC-DC Co n ve rt e rs  
where V  
= +1.3V and V  
may range from 2V to  
S e le c t in g t h e Ou t p u t Vo lt a g e  
REF  
OUT  
5V. The input bias current of FB has a maximum value  
of 50nA which allows large-value resistors (R6 260k)  
to be used.  
V
can be set to 3.3V or 5.0V by connecting the FB  
OUT  
pin to GND (5V) or OUT (3.3V) (Figures 5 and 6).  
To adjust the output voltage, connect a resistor-divider  
from V  
to FB to GND (Figure 7). Choose a value  
OUT  
Lo w -Ba t t e ry De t e c t io n  
The HWD20011/HWD2001/HWD20012 contain an on-chip  
comparator for low-battery detection. If the voltage at  
LBI falls below the internal reference voltage (1.30V),  
LBO (an open-drain output) sinks current to GND. The  
low-battery monitor threshold is set by two resistors, R3  
and R4 (Figures 5, 6, and 7). Since the LBI current is  
less than 50nA, large resistor values (R4 260k) can  
b e us e d to minimize loa d ing of the inp ut s up p ly.  
Calculate R3 using the following equation:  
less than 260kfor R6. Use the following equation to  
calculate R5:  
R5 = R6 [(V  
/ V  
) - 1]  
OUT  
REF  
V
IN  
47µF  
22µH  
R3 = R4 [(V  
/ V ) - 1]  
REF  
TRIP  
R1  
200Ω  
for V  
1.3V. V  
is the level where the low-battery  
TRIP  
TRIP  
BATT  
LX  
d e te c tor outp ut g oe s low, a nd V  
is the inte rna l  
(HWD20012)  
REF  
V
OUTPUT  
+3.3V  
OUT  
1.30V reference. Connect a pull-up resistor of 100kor  
greater from LBO to OUT when driving CMOS circuits.  
LBO is an open-drain output, and can be pulled as  
high as 6V regardless of the voltage at OUT. When LBI  
is above the threshold, the LBO output is high imped-  
ance. If the low-battery comparator is not used, ground  
OUT  
R3  
R4  
CLSEL  
(HWD20012)  
0.1µF  
47µF  
LBI  
FB  
SHDN  
R2  
100k  
HWD20011  
HWD2001  
HWD20012  
LOW-BATTERY  
OUTPUT  
REF  
LBO  
V
IN  
GND  
0.1µF  
Figure 5. Preset Output Voltage of +3.3V  
47µF  
22µH  
V
IN  
R1  
200Ω  
BATT  
LX  
(HWD20012)  
OUTPUT  
47µF  
OUT  
2V to 5.5V  
R3  
R4  
22µH  
R1  
SHDN  
CLSEL  
(HWD20012)  
0.1µF  
47µF  
200Ω  
LBI  
BATT  
LX  
(HWD20012)  
R5  
OUTPUT  
5.0V  
R2  
100k  
OUT  
R3  
CLSEL  
LOW-  
BATTERY  
OUTPUT  
HWD20011  
HWD2001  
HWD20012  
(HWD20012)  
LBO  
FB  
0.1µF  
47µF  
LBI  
SHDN  
R4  
R2  
100k  
REF  
GND  
LOW-  
BATTERY  
OUTPUT  
HWD20011  
HWD2001  
HWD20012  
LBO  
FB  
0.1µF  
R6  
REF  
GND  
0.1µF  
Figure 6. Preset Output Voltage of +5V  
Figure 7. Setting an Adjustable Output  
9
Hig h -Effic ie n c y, Lo w -S u p p ly-Cu rre n t ,  
Co m p a c t , S t e p -Up DC-DC Co n ve rt e rs  
V
IN  
V
(V , V )  
TRIP H L  
V
OUT  
HWD20011  
HWD2001  
HWD20012  
OUT  
R3  
R4  
47µF  
22µH  
0.1µF  
47µF  
R1  
LBI  
200Ω  
R2  
100k  
BATT  
LX  
(HWD20012)  
V
OUT  
OUT  
R3  
CLSEL  
(HWD20012)  
LBO  
0.1µF  
47µF  
LBI  
FB  
GND  
R7  
SHDN  
R2  
100k  
HWD20011  
HWD2001  
R4  
R3  
R7  
R3  
R4  
LOW-  
BATTERY  
OUTPUT  
V
=
=
1.3V 1 +  
+
(
)
H
HWD20012  
REF  
LBO  
GND  
(V  
1.3V) R3  
R3  
R4  
OUT  
V
1.3V 1 +  
(
)
L
0.1µF  
(1.3V) (R2 + R7)  
WHERE V IS THE UPPER TRIP LEVEL  
H
V IS THE LOWER TRIP LEVEL  
L
Figure 8. Setting Resistor Values for the Low-Battery Indicator  
Figure 9. Adding External Hysteresis to the Low-Battery  
Indicator  
when V < 1.3V  
IN  
HWD20011, 500mA for the HWD2001, and 1A or 0.5A for  
the HWD20012. However, it is generally acceptable to  
bias the inductor into saturation by as much as 20%,  
although this will slightly reduce efficiency. Table 1 lists  
suggested components.  
LBI and LBO. For V  
comparator as shown in Figure 8. Calculate the value of  
the external resistors R3 and R4 as follows:  
less than 1.3V, configure the  
TRIP  
R3 = R4(V  
- V  
) / (V  
- V  
)
REF  
TRIP  
OUT  
REF  
Since the low-battery comparator is noninverting, exter-  
nal hysteresis can be added by connecting a resistor  
between LBO and LBI as shown in Figure 9. When LBO  
is high, the series combination of R2 and R7 source  
current into the LBI summing junction.  
The inductors DC resistance significantly affects effi-  
ciency. See Table 2 for a comparison of inductor speci-  
fications. Calculate the maximum output current as  
follows:  
Ap p lic a t io n s In fo rm a t io n  
V
V
– V  
IN  
OUT IN  
In d u c t o r S e le c t io n  
An inductor value of 22µH performs well in most appli-  
cations. The HWD20011/HWD2001/HWD20012 will  
also work with inductors in the 10µH to 47µH range. Smaller  
inductance values typically offer a smaller physical size  
for a given series resistance, allowing the smallest  
overall circuit dimensions. However, due to higher peak  
I
=
I
– t  
η
OUT MAX  
LIM  
OFF  
(
)
V
2 x L  
OUT  
where I  
= maximum output current in amps  
OUT(MAX)  
V
IN  
= input voltage  
inductor currents, the output voltage ripple (I  
x
PEAK  
L = inductor value in µH  
output filter capacitor ESR) also tends to be higher.  
Circuits using larger inductance values exhibit higher  
output current capability and larger physical dimen-  
sions for a given series resistance. The inductors incre-  
mental saturation current rating should be greater than  
the p e a k s witc h-c urre nt limit, whic h is 1A for the  
η = efficiency (typically 0.9)  
t
= LX switchs off-time in µs  
= 0.5A or 1.0A  
OFF  
I
LIM  
10  
Hig h -Effic ie n c y, Lo w -S u p p ly-Cu rre n t ,  
Co m p a c t , S t e p -Up DC-DC Co n ve rt e rs  
Table 1. Suggested Components  
PRODUCTION  
METHOD  
RECTIFIERS  
(OPTIONAL)  
INDUCTORS  
CAPACITORS  
Sumida CD43 series  
Sumida CD54 series  
Coilcraft DT1608C  
Coilcraft DO1608C  
Coiltronics Uni-PAC  
Murata LQH4 series  
Sprague 593D series  
Sprague 595D series  
AVX TPS series  
ceramic  
Motorola MBR0530  
Nihon EC 15QS02L  
Surface Mount  
Miniature Through-Hole  
Sumida RCH654-220  
Sanyo OS-CON series  
Table 2. Surface-Mount Inductor  
Specifications  
Table 3. Component Suppliers  
COMPANY  
AVX  
PHONE  
FAX  
USA (803) 946-0690  
USA (847) 639-6400  
USA (561) 241-7876  
USA (803) 626-3123  
USA (847) 639-1469  
USA (561) 241-9339  
MANUFACTURER  
PART NUMBER  
HEIGHT  
(mm)  
µH (max) I  
(A)  
PEAK  
Coilcraft  
Coiltronics  
Coilcraft DT1608C-103 10  
Coilcraft DO1608C-153 15  
Coilcraft DO1608C-223 22  
0.095  
0.200  
0.320  
0.111  
0.175  
0.254  
0.560  
0.560  
0.132  
0.182  
0.100  
0.150  
0.180  
0.7  
0.9  
0.7  
1.9  
1.5  
1.2  
0.4  
0.4  
2.92  
2.92  
2.92  
5.0  
5.0  
5.0  
2.6  
2.6  
3.2  
3.2  
4.5  
4.5  
4.5  
USA (303) 675-2140  
(800) 521-6274  
Motorola  
Murata  
Nihon  
USA (303) 675-2150  
USA (814) 238-0490  
USA (814) 237-1431  
(800) 831-9172  
Coiltronics UP1B-100  
Coiltronics UP1B-150  
Coiltronics UP1B-220  
Murata LQH4N100  
Murata LQH4N220  
Sumida CD43-8R2  
Sumida CD43-100  
Sumida CD54-100  
Sumida CD54-180  
Sumida CD54-220  
10  
15  
22  
10  
22  
8.2  
10  
10  
18  
22  
USA (805) 867-2555 USA (805) 867-2556  
Japan 81-3-3494-7411 Japan 81-3-3494-7414  
USA (619) 661-6835  
Japan 81-7-2070-6306 Japan 81-7-2070-1174  
USA (619) 661-1055  
Sanyo  
1.26  
1.15  
1.44  
1.23  
1.11  
Sprague  
Sumida  
USA (603) 224-1961  
USA (647) 956-0666  
USA (603) 224-1430  
USA (647) 956-0702  
Japan 81-3-3607-5111 Japan 81-3-3607-5144  
Taiyo Yuden USA (408) 573-4150  
USA (408) 573-4159  
inductor current and the output capacitor ESR. Use  
low-ESR capacitors for best performance, or connect  
two or more filter capacitors in parallel. Low-ESR, SMT  
ta nta lum c a p a c itors a re c urre ntly a va ila b le from  
Sprague (595D series) AVX (TPS series) and other  
sources. Ceramic surface-mount and Sanyo OS-CON  
organic-semiconductor through-hole capacitors also  
exhibit very low ESR, and are especially useful for oper-  
ation at cold temperatures. See Table 3 for a list of sug-  
gested component suppliers.  
Ca p a c it o r S e le c t io n  
A 47µF, 10V surface-mount tantalum (SMT) output filter  
capacitor provides 80mV output ripple when stepping  
up from 2V to 5V. Smaller capacitors (down to 10µF  
with higher ESRs) are acceptable for light loads or in  
a p p lic a tions tha t c a n tole ra te hig he r outp ut rip p le .  
Values in the 10µF to 100µF range are recommended.  
The equivalent series resistance (ESR) of both bypass  
and filter capacitors affects efficiency and output rip-  
ple. Output voltage ripple is the product of the peak  
11  
Hig h -Effic ie n c y, Lo w -S u p p ly-Cu rre n t ,  
Co m p a c t , S t e p -Up DC-DC Co n ve rt e rs  
Op t io n a l Ex t e rn a l Re c t ifie r  
Although not required, a Schottky diode (such as the  
MBR0520) connected between LX and OUT allows  
lower start-up voltages (Figure 10) and is recommend-  
ed when operating at input voltages below 1.3V. Note  
that adding this diode provides no significant efficiency  
V
IN  
47µF  
22µH  
R1  
improvement.  
200Ω  
BATT  
LX  
(HWD20012)  
P C Bo a rd La yo u t a n d Gro u n d in g  
Careful printed circuit layout is important for minimizing  
ground bounce and noise. Keep the ICs GND pin and  
the ground leads of the input and output filter capaci-  
tors less than 0.2in (5mm) apart. In addition, keep all  
connections to the FB and LX pins as short as possi-  
ble. In particular, when using external feedback resis-  
tors, locate them as close to the FB as possible. To  
maximize output power and efficiency and minimize  
output ripple voltage, use a ground plane and solder  
the ICs GND directly to the ground plane.  
MBR0520  
OUT  
FB  
R3  
R4  
HWD20011  
HWD2001  
HWD20012  
0.1µF  
47µF  
LBI  
SHDN  
R2  
100k  
CLSEL  
(HWD20012)  
LOW-BATTERY  
OUTPUT  
LBO  
REF  
GND  
0.1µF  
Figure 10. Adding a Schottky Diode for Low Input Voltage  
Operation  
Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 751  
P a c k a g e In fo rm a t io n  
__  
_12  
Chengdu Sino Microelectronics System Co.,Ltd  
13  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY