IDT77V1264L200PG [ETC]

Telecommunication IC ; 电信IC\n
IDT77V1264L200PG
型号: IDT77V1264L200PG
厂家: ETC    ETC
描述:

Telecommunication IC
电信IC\n

电信
文件: 总49页 (文件大小:822K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad Port PHY (Physical Layer)  
for 25.6, 51.2, and 204.8 Mbps  
ATM Networks and Backplane  
Applications  
IDT77V1264L200  
Description  
Features List  
‹
Performs the PHY-Transmission Convergence (TC) and  
The IDT77V1264L200 is a member of IDT's family of products  
supporting Asynchronous Transfer Mode (ATM) data communications  
and networking. The IDT77V1264L200 implements the physical layer for  
25.6 Mbps ATM, connecting four serial copper links (UTP Category 3  
and 5) to one ATM layer device such as a SAR or a switch ASIC. The  
IDT77V1264L200 also operates at 51.2 Mbps and 204.8 Mbps, and is  
well suited to backplane driving applications.  
Physical Media Dependent (PMD) Sublayer functions for  
four 204.8 Mbps ATM channels  
‹
Compliant to ATM Forum (af-phy-040.000) and ITU-T I.432.5  
specifications for 25.6 Mbps physical interface  
‹
‹
‹
‹
‹
‹
‹
‹
‹
‹
‹
Operates at 25.6, 51.2, 102.4, 204.8 Mbps data rates  
Individual Selection of Port Data Rates  
Backwards Compatible with 77V1254L25  
UTOPIA Level 1, UTOPIA Level 2, or DPI-4 Interface  
3-Cell Transmit and Receive FIFOs  
The 77V1264L200-ATM layer interface is selectable as either: 16-bit  
UTOPIA Level 2, 8-bit UTOPIA Level 1 Multi-PHY, or quadruple 4-bit  
DPI (Data Path Interface).  
The IDT77V1264L200 is fabricated using IDT's state-of-the-art  
CMOS technology, providing the highest levels of integration, perfor-  
mance and reliability, with the low-power consumption characteristics of  
CMOS.  
LED Interface for status signalling  
Supports UTP Category 3 and 5 physical media  
Low-Power CMOS  
3.3V supply with 5V tolerant inputs  
144-pin PQFP Package (28 x 28 mm)  
Commercial and Industrial Temperature Ranges  
Block Diagram  
TXREF  
!ꢁꢂꢃꢄ  
!ꢁꢖ"!"4(ꢍ5&6  
!ꢁꢗ"ꢀꢜ!,  
!ꢁꢘ%ꢂ  
7
!ꢁ &  
ꢖꢋꢔꢊꢉꢋ  
-
ꢍꢎꢏꢐꢎ  
!ꢁꢏꢀꢁ "!#  
ꢂꢉꢅꢅ $ꢜ$%  
ꢘꢇꢋꢙꢝꢞꢅꢉꢋꢏ  
ꢗꢏꢘ ꢙꢒꢓ ꢘꢏꢗ  
ꢚꢀꢛꢜ  
ꢑꢒꢇꢆꢓꢔꢒꢕꢏ  
ꢖꢉꢇꢆꢓꢔꢒꢕ  
ꢖꢉ ꢇꢋꢙꢝꢞꢅꢉꢋ  
7
-
TXEN  
!ꢁꢂꢃ"8  
ꢂꢅꢆꢇꢈ ꢀꢉꢇꢆꢊꢉꢋꢌ  
ꢀꢁ &  
!ꢁ"ꢖꢖꢀ4ꢐ5&6  
#%ꢖꢑ4(5&6  
ꢗ+,-"!#  
ꢜꢒ.ꢉꢋ/ꢙꢇꢉ  
01!%ꢗꢜ" ꢆꢋ ꢖꢗꢜ2  
7
-
ꢀꢁ"ꢖꢖꢀ4ꢐ5&6  
ꢀꢁꢂꢃꢄ  
!' (  
ꢖꢋꢔꢊꢉꢋ  
ꢍꢎꢏꢐꢎ  
!ꢁꢏꢀꢁ "!#  
ꢂꢉꢅꢅ $ꢜ$%  
ꢘꢇꢋꢙꢝꢞꢅꢉꢋꢏ  
ꢗꢏꢘ ꢙꢒꢓ ꢘꢏꢗ  
ꢚꢀꢛꢜ  
ꢑꢒꢇꢆꢓꢔꢒꢕꢏ  
ꢖꢉꢇꢆꢓꢔꢒꢕ  
ꢀꢁꢖ"!"4(ꢍ5&6  
ꢀꢁꢗ"ꢀꢜ!,  
ꢀꢁꢘ%ꢂ  
ꢖꢉ ꢇꢋꢙꢝꢞꢅꢉꢋ  
7
-
ꢂꢅꢆꢇꢈ ꢀꢉꢇꢆꢊꢉꢋꢌ  
ꢀ' (  
RXEN  
ꢀꢁꢂꢃ"8  
7
-
INT  
RST  
!ꢁ )  
ꢖꢋꢔꢊꢉꢋ  
ꢍꢎꢏꢐꢎ  
!ꢁꢏꢀꢁ "!#  
ꢂꢉꢅꢅ $ꢜ$%  
ꢘꢇꢋꢙꢝꢞꢅꢉꢋꢏ  
ꢗꢏꢘ ꢙꢒꢓ ꢘꢏꢗ  
ꢚꢀꢛꢜ  
ꢑꢒꢇꢆꢓꢔꢒꢕꢏ  
ꢖꢉꢇꢆꢓꢔꢒꢕ  
ꢖꢉ ꢇꢋꢙꢝꢞꢅꢉꢋ  
7
-
ꢂꢅꢆꢇꢈ ꢀꢉꢇꢆꢊꢉꢋꢌ  
ꢀꢁ )  
#ꢔꢇꢋꢆ3ꢋꢆꢇꢉ  ꢆꢋ  
ꢜꢒ.ꢉꢋ/ꢙꢇꢉ  
RD  
WR  
CS  
"ꢖ4:5&6  
7
-
"ꢃꢑ  
!ꢁ *  
ꢖꢋꢔꢊꢉꢋ  
ꢍꢎꢏꢐꢎ  
!ꢁꢏꢀꢁ "!#  
ꢂꢉꢅꢅ $ꢜ$%  
ꢘꢇꢋꢙꢝꢞꢅꢉꢋꢏ  
ꢗꢏꢘ ꢙꢒꢓ ꢘꢏꢗ  
ꢚꢀꢛꢜ  
ꢑꢒꢇꢆꢓꢔꢒꢕꢏ  
ꢖꢉꢇꢆꢓꢔꢒꢕ  
ꢖꢉ ꢇꢋꢙꢝꢞꢅꢉꢋ  
7
-
ꢂꢅꢆꢇꢈ ꢀꢉꢇꢆꢊꢉꢋꢌ  
ꢀꢁ *  
%ꢘꢂ  
RXREF  
*ꢍ&ꢍ ꢓꢋ9 &(  
ꢀꢁꢃꢑꢖ4*5&6 !ꢁꢃꢑꢖ4*5&6  
.
IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.  
1 of 49  
December 6, 2001  
DSC 6029  
2001 Integrated Device Technology, Inc.  
IDT77V1264L200  
Mbps, as shown in Table 3. For 204.8Mbps data rate applications,  
ST6200T magnetics from Pulse Engineering can be used. These  
magnetics have been tested to work over 10 meters of UTP 5 cable at  
204.8Mbps. The rate is determined by the frequency of the OSC clock,  
multiplied by the internal PLL clock multiplier factor (1x, 2x or 4x) as  
determined in the Enhanced Control 2 Registers. Although the OSC  
clock frequency is common to all ports of the PHY, the clock multiplier  
factor can be set individually for each port. As an example, with a 64  
MHz oscillator, this allows some ports to operate at 51.2 Mbps while  
other ports are simultaneously operating at 204.8 Mbps.  
When operating at clock multiples other than 1x, use of the RXREF  
pin requires that the RXREF Pulse Width Select field in the LED Driver  
and HEC Status/Control Registers be programmed to a value greater  
than the default of 1 cycle.  
Also, the PHY loopback mode without clock recovery (10) in the  
Diagnostic Control Registers works only when the clock multiplier is 1x.  
For higher multiples, the PHY loopback mode (01) with clock recovery  
must be used.  
Except as noted above, these higher speed configurations operate  
exactly the same as the basic 25.6 Mbps configuration. The scrambling  
and encoding are unchanged.  
Applications  
‹
Up to 204.8Mbps backplane transmission  
‹
‹
Rack-to-rack short links  
ATM Switches  
77V1264L200 Overview  
The 77V1264L200 is a four port implementation of the physical layer  
standard for 25.6Mbps ATM network communications as defined by  
ATM Forum document af-phy-040.000 and ITU-T I.432.5. The physical  
layer is divided into a Physical Media Dependent sub layer (PMD) and  
Transmission Convergence (TC) sub layer. The PMD sub layer includes  
the functions for the transmitter, receiver and clock recovery for opera-  
tion across 100 meters of category 3 and 5 unshielded twisted pair  
(UTP) cable. This is referred to as the Line Side Interface. The TC sub  
layer defines the line coding, scrambling, data framing and synchroniza-  
tion.  
On the other side, the 77V1264L200 interfaces to an ATM layer  
device (such as a switch core or SAR). This cell level interface is config-  
urable as either an 8-bit Utopia Level 1 Multi-PHY, 16-bit Utopia Level 2,  
or four 4-bit DPI interface, as determined by two MODE pins. This is  
referred to as the PHY-ATM Interface. The pinout and front page block  
diagram are based on the Utopia 2 configuration. Table 3 shows the  
corresponding pin functions for the other two modes, and Figure 2 and  
Figure 3 show functional block diagrams.  
The 77V1264L200 is based on the 77105, and maintains significant  
register compatibility with it. The 77V1264L200, however, has additional  
register features, and also duplicates most of its registers to provide  
significant independence between the four ports.  
Table 1 shows some of the different data rates the PHY can operate  
at with a 32MHz or 64MHz oscillator. Note that any oscillator frequency  
between 32MHz and 64MHz can be used. For example, if a 48MHz  
oscillator is used and the multiplier is set to 4x, the data rate would be  
153.6Mbps.  
Clock Multiplier  
Line Bit  
Rate  
Data  
Rate  
Access to these status and control registers is through the utility bus.  
This is an 8-bit muxed address and data bus, controlled by a conven-  
tional asynchronous read/write handshake.  
Reference  
Control Bits  
(Enhanced Control 2  
Registers)  
Clock (OSC)  
(MHz)  
(Mbps)  
Additional pins permit insertion and extraction of an 8kHz timing  
32 MHz  
64 MHz  
00 (1x)  
01 (2x)  
10 (4x)  
00 (1x)  
01 (2x)  
10 (4x)  
32  
64  
128  
64  
128  
256  
25.6  
51.2  
102.4  
51.2  
102.4  
204.8  
marker, and provide LED indication of receive and transmit status.  
Auto-Synchronization and Good Signal Indica-  
tion  
The 77V1264L200 features a new receiver synchronization algorithm  
that allow it to achieve 4b/5b symbol framing on any valid data stream.  
This is an improvement on earlier products which could frame only on  
the escape symbol, which occurs only in start-of-cell or 8kHz (X8) timing  
marker symbol pairs.  
Table 1 200 Speed Grade Option  
ATM25 transceivers always transmit valid 4b/5b symbols, allowing  
the 77V1264L200 receive section to achieve symbol framing and prop-  
erly indicate receive signal status, even in the absence of ATM cells or  
8kHz (X8) timing markers in the receive data stream. A state machine  
monitors the received symbols and asserts the “Good Signal” status bit  
when a valid signal is being received. “Good Signal” is deasserted and  
the receive FIFO is disabled when the signal is lost. This is sometimes  
referred to as Loss of Signal (LOS).  
Operation at Speeds Above 25 Mbps  
In addition to operation at the standard rate of 25.6 Mbps, the  
77V1264L200 can be operated at a range of data rates, up to 204.8  
2 of 49  
December 6, 2001  
IDT77V1264L200  
8ꢖꢖ  
;ꢚꢖ  
(
(&=  
(&:  
(&<  
(&ꢍ  
(&ꢐ  
(&*  
(&)  
(&(  
(&&  
>>  
8ꢖꢖ  
;ꢚꢖ  
!ꢁ*7  
!ꢁ*-  
8ꢖꢖ  
ꢖ"  
)
!ꢁ&-  
*
!ꢁ&7  
8ꢖꢖ  
##  
<
#%ꢖꢑ(  
#%ꢖꢑ&  
:
ꢘꢑ  
=
"ꢖ:  
"ꢖ<  
"ꢖꢍ  
"ꢖꢐ  
;ꢚꢖ  
"ꢖ*  
"ꢖ)  
"ꢖ(  
"ꢖ&  
8ꢖꢖ  
"ꢃꢑ  
>
RXREF  
(&  
((  
()  
(*  
(ꢐ  
(ꢍ  
(<  
(:  
(=  
(>  
)&  
)(  
))  
)*  
)ꢐ  
)ꢍ  
)<  
):  
)=  
)>  
*&  
*(  
*)  
**  
*ꢐ  
*ꢍ  
*<  
TXREF  
;ꢚꢖ  
>=  
!ꢁꢃꢑꢖ*  
!ꢁꢃꢑꢖ)  
>:  
><  
77V1264L200  
!ꢁꢃꢑꢖ(  
>ꢍ  
!ꢁꢃꢑꢖ&  
>ꢐ  
(ꢐꢐ-ꢗ?$ꢗ  
8ꢖꢖ  
>*  
!ꢁꢖ"!"&  
!ꢁꢖ"!"(  
!ꢁꢖ"!")  
!ꢁꢖ"!"*  
!ꢁꢖ"!"ꢐ  
!ꢁꢖ"!"ꢍ  
!ꢁꢖ"!"<  
!ꢁꢖ"!":  
!ꢁꢖ"!"=  
!ꢁꢖ"!">  
!ꢁꢖ"!"(&  
!ꢁꢖ"!"((  
!ꢁꢖ"!"()  
!ꢁꢖ"!"(*  
!ꢁꢖ"!"(ꢐ  
!ꢁꢖ"!"(ꢍ  
!ꢁꢗ"ꢀꢜ!,  
>)  
>(  
>&  
CS  
=>  
RD  
==  
WR  
=:  
RST  
;ꢚꢖ  
=<  
=ꢍ  
INT  
=ꢐ  
8ꢖꢖ  
=*  
;ꢚꢖ  
=)  
ꢀꢁꢃꢑꢖ*  
ꢀꢁꢃꢑꢖ)  
ꢀꢁꢃꢑꢖ(  
ꢀꢁꢃꢑꢖ&  
8ꢖꢖ  
=(  
=&  
:>  
:=  
::  
;ꢚꢖ  
:<  
ꢀꢁꢖ"!"&  
ꢀꢁꢖ"!"(  
ꢀꢁꢖ"!")  
ꢀꢁꢖ"!"*  
:ꢍ  
TXEN  
!ꢁꢘ%ꢂ  
:ꢐ  
!ꢁ"ꢖꢖꢀꢐ  
:*  
.
*ꢍ&ꢍ ꢓꢋ9 &)  
Figure 1 Pin Assignments  
3 of 49  
December 6, 2001  
IDT77V1264L200  
Signal Descriptions  
Line Side Signals  
Signal Description  
Signal Name Pin Number  
I/O  
In  
RX0+,-  
RX1+,-  
RX2+,-  
RX3+,-  
TX0+,-  
TX1+,-  
TX2+,-  
TX3+,-  
139, 138  
133, 132  
121, 120  
115, 114  
4, 3  
Port 0 positive and negative receive differential input pair.  
Port 1 positive and negative receive differential input pair.  
Port 2 positive and negative receive differential input pair.  
Port 3 positive and negative receive differential input pair.  
Port 0 positive and negative transmit differential output pair.  
Port 1 positive and negative transmit differential output pair.  
Port 2 positive and negative transmit differential output pair.  
Port 3 positive and negative transmit differential output pair.  
In  
In  
In  
Out  
Out  
Out  
Out  
144, 143  
110, 109  
106, 105  
Utility Bus Signals  
Signal Name Pin Number  
I/O  
Signal Description  
AD[7:0]  
ALE  
CS  
101, 100, 99, 98, 96, 95, 94, In/Out Utility bus address/data bus. The address input is sampled on the falling edge of ALE. Data is output on this  
bus when a read is performed. Input data is sampled at the completion of a write operation.  
93  
91  
In  
Utility bus address latch enable. Asynchronous input. An address on the AD bus is sampled on the falling  
edge of ALE. ALE must be low when the AD bus is being used for data.  
90  
89  
88  
Utility bus asynchronous chip select. CS must be asserted to read or write an internal register. It may remain  
asserted at all times if desired  
RD  
In  
In  
Utility bus read enable. Active low asynchronous input. After latching an address, a read is performed by  
deasserting WR and asserting RD and CS.  
WR  
Utility bus write enable. Active low asynchronous input. After latching an address, a write is performed by  
deasserting RD, placing data on the AD bus, and asserting WR and CS. Data is sampled when WR or CS is  
deasserted.  
Miscellaneous Signals  
Signal Name Pin Number  
I/O  
In  
Signal Description  
DA  
103  
85  
Reserved signal. This input must be connected to logic low.  
INT  
Out  
Interrupt. INT is an open-drain output, driven low to indicate an interrupt. Once low, INT remains low until the  
interrupt status in the appropriate interrupt Status Register is read. Interrupt sources are programmable via  
the interrupt Mask Registers.  
MM  
6
In  
In  
Reserved signal. This input must be connected to logic low.  
MODE[1:0]  
7, 8  
Mode Selects. They determine the configuration of the PHY/ATM interface. 00 = UTOPIA Level 2. 01 = UTO-  
PIA Level 1. 10 = DPI. 11 is reserved.  
OSC  
RST  
126  
87  
In  
In  
TTL line rate clock source, driven by a 100 ppm oscillator. 32 MHz or 64 MHz.  
Reset. Active low asynchronous input resets all control logic, counters and FIFOs. A reset must be per-  
formed after power up prior to normal operation of the part.  
RXLED[3:0]  
RXREF  
82, 81, 80, 79  
9
Out  
Out  
Receive LED drivers. Driven low for 223 cycles of OSC, beginning with RXSOC when that port receives a  
good (non-null and non-errored) cell. Drives 8 mA both high and low. One per port.  
Receive Reference. Active low, synchronous to OSC. RXREF pulses low for a programmable number of  
clock cycles when an x_8 command byte is received. Register 0x40 is programmed to indicate which port is  
referenced. Note that when operating the 77V1264L200 at 2x or 4x multiple of OSC (See Enhanced Control  
2 Registers) the RXREF pulse width (See LED Driver and HEC Status/Control Registers) must be pro-  
grammed to any value greater than the default for proper operation of RXREF.  
Table 2 Signal Descriptions (Part 1 of 3)  
4 of 49  
December 6, 2001  
IDT77V1264L200  
SE  
102  
In  
Reserved signal. This input must be connected to logic low.  
TXLED[3:0]  
12, 13, 14, 15  
Out  
Ports 3 through 0 Transmit LED driver. Goes low for 223 cycles of OSC, beginning with TXSOC when this  
port receives a cell for transmission. 8 mA drive current both high and low. One per port.  
TXREF  
10  
In  
Transmit Reference. Synchronous to OSC. On the falling edge, an X_8 command byte is inserted into the  
transmit data stream. Logic for this signal is programmed in register 0x40. Typical application is WAN timing.  
Power Supply Signals  
Signal Name Pin Number  
I/O  
Signal Description  
AGND  
AVDD  
GND  
112, 117, 118, 123, 124,  
____ Analog ground. AGND supply a ground reference to the analog portion of the ship, which sources a more  
constant current than the digital portion.  
127, 129, 130, 135, 136, 141  
113, 116, 119, 122, 125,  
128, 131, 134, 137, 140  
____ Analog power supply 3.3 ± 0.3V AVDD supply power to the analog portion of the chip, which draws a more  
constant current than the digital portion.  
2, 11, 44, 50, 56, 67, 77, 83, ____ Digital Ground.  
86, 97, 107, 111, 142  
VDD  
1, 5, 16, 38, 45, 57, 68, 78, ____ Digital power supply. 3.3 ± 0.3V.  
84, 92, 104, 108  
16-BIT UTOPIA 2 Signals (MODE[1:0] = 00)  
Signal Description  
Signal Name Pin Number  
I/O  
RXADDR[4:0] 53, 52, 51, 49, 48  
In  
Utopia 2 Receive Address Bus. This bus is used in polling and selecting the receive port. The port addresses  
are defined in bits [4:0] of the Enhanced Control Registers.  
RXCLAV  
54  
Out  
Utopia 2 Receive Cell Available. Indicates the cell available status of the addressed port. It is asserted when  
a full cell is available for retrieval from the receive FIFO. When non of the four ports is addressed. RXCLAV is  
high impedance.  
RXCLK  
46  
In  
Utopia 2 Receive Clock. This is a free running clock input.  
RXDATA[15:0] 59, 60, 61, 62, 63, 64, 65,  
66, 69, 70, 71, 72, 73, 74,  
75, 76  
Out  
Utopia 2 Receive Data. When one of the four ports is selected, the 77V1264L200 transfers received cells to  
an ATM device across this bus. Also see RXPARITY.  
RXEN  
47  
In  
Utopia 2 Receive Enable. Driven by an ATM device to indicate its ability to receive data across the RXDATA  
bus.  
RXPARITY  
RXSOC  
58  
55  
Out  
Out  
In  
Utopia 2 Receive Data Parity. Odd parity over RXDATA[15:0].  
Utopia 2 Receive Start of Cell. Asserted coincident with the first word of data for each cell on RXDATA.  
TXADDR[4:0] 36, 37, 39, 40, 41  
Utopia 2 Transmit Address Bus. This bus is used in polling and selecting the transmit port. The port  
addresses are defined in bits [4:0] of the Enhanced Control Registers.  
TXCLAV  
TXCLK  
42  
43  
Out  
Utopia 2 Transmit Cell Available. Indicates the availability of room in the transmit FIFO of the addressed port  
for a full cell. When none of the four ports is addressed, TXCLAV is high impedance.  
In  
In  
Utopia Transmit Clock. This is a free running clock input.  
TXDATA[15:0] 32, 31, 30, 29, 28, 27, 26,  
25, 24, 23, 22, 21, 20, 19,  
18, 17  
Utopia 2 Transmit Data. An ATM device transfers cells across this bus to the 77V1264L200 for transmission.  
Also see TXPARITY.  
TXEN  
34  
In  
In  
Utopia 2 Transmit Enable. Driven by an ATM device to indicate it is transmitting data across the TXDATA  
bus.  
TXPARITY  
33  
Utopia 2 Transmit Data Parity. Odd parity across TXDATA[15:0]. Parity is checked and errors are indicated in  
the Interrupt Status Registers, as enabled in the Master Control Registers. No other action is taken in the  
event of an error. Tie high or low if unused.  
TXSOC  
35  
In  
Utopia 2 Transmit Start of Cell. Asserted coincident with the first word of data for each cell on TXDATA.  
Table 2 Signal Descriptions (Part 2 of 3)  
5 of 49  
December 6, 2001  
IDT77V1264L200  
8-BIT UTOPIA Level 1 Signals (MODE[1:0] = 01)  
Signal Name Pin Number  
I/O  
Signal Description  
RXCLAV[3:0] 64, 65, 66, 54  
Out  
Utopia 1 Receive Cell Available. Indicates the cell available status of the respective port. It is asserted when  
a full cell is available for retrieval from the receive FIFO.  
RXCLK  
46  
In  
Utopia 1 Receive Clock. This is a free running clock input.  
RXDATA[7:0] 69, 70, 71, 72, 73, 74, 75, 76 Out  
Utopia 1 Receive Data. When one of the four ports is selected, the 77V1264L200 transfers received cells to  
an ATM device across this bus. Bit 5 in the Diagnostic Control Registers determines whether RXDATA tri-  
states when RXEN[3:0] are high. Also see RXPARITY.  
RXEN[3:0]  
51, 49, 48, 47  
In  
Utopia 1 Receive Enable. Driven by an ATM device to indicate its ability to receive data across the RXDATA  
bus. One for each port  
RXPARITY  
RXSOC  
58  
55  
Out  
Out  
Utopia 1 Receive Data Parity. Odd parity over RXDATA[7:0].  
Utopia 1 Receive Start of Cell. Asserted coincident with the first word of data for each cell on RXDATA. Tri-  
statable as determined by bit 5 in the Diagnostic Control Registers.  
TXCLAV[3:0] 39, 40, 41, 42  
TXCLK 43  
Out  
In  
Utopia 1 Transmit cell Available. Indicates the availability of room in the transmit FIFO of the respective port  
for a full cell.  
Utopia 1 Transmit Clock. This is a free running clock input.  
TXDATA[7:0] 24, 23, 22, 21, 20, 19, 18, 17 In  
Utopia 1 Transmit Data. An ATM device transfers cells across the bus to the 77V1264L200 for transmission.  
Also see TXPARITY.  
TXEN[3:0]  
TXPARITY  
27, 26, 25, 34  
33  
In  
In  
Utopia 1 Transmit Enable. Driven by an ATM device to indicate it is transmitting data across the TXDATA  
bus. One for each port.  
Utopia 1 Transmit Data Parity. Odd parity across TXDATA[7:0]. Parity is checked and errors are indicated in  
the Interrupt Status Registers, as enabled in the Master Control Registers. No other action is taken in the  
event of an error. Tie high or low if unused.  
TXSOC  
35  
In  
Utopia 1 Transmit Start of Cell. Asserted coincident with the first word of data for each cell on TXDATA.  
DPI Mode Signals (MODE[1:0] = 10)  
Signal Name Pin Number  
I/O  
In  
Signal Description  
DPICLK  
43  
DPI Source Clock for Transmit. This is the free-running clock used as the source to generate Pn_TCLK.  
Pn_RCLK  
52, 51, 49, 48  
In  
DPI Port ’n’ Receive Clock. Pn_RCLK is cycled to indicate that the interfacing device is ready to receive a  
nibble of data on Pn_RD[3:0] of port ’n’.  
Pn_RD[3:0]  
59, 60, 61, 62, 63, 64, 65,  
66, 69, 70, 71, 72, 73, 74,  
75, 76  
Out  
DPI Port ’n’ Receive Data. Cells received on port ’n’ are passed to the interfacing device across this bus.  
Each port has its own dedicated bus.  
Pn_RFRM  
Pn_TCLK  
Pn_TD[3:0]  
53, 58, 54, 55  
Out  
Out  
In  
DPI Port ’n’ Receive Frame. Pn_RFRM is asserted for one cycle immediately preceding the transfer of each  
cell on Pn_RD[3:0].  
37, 39, 40, 41  
DPI Port ’n’ Transmit Clock. Pn_TCLK is derived from DPICLK and is cycled when the respective port is  
ready to accept another 4 bits of data on Pn_TD[3:0].  
32, 31, 30, 29, 28, 27, 26,  
25, 24, 23, 22, 21, 20, 19,  
18, 17  
DPI Port ’n’ Transmit Data. Cells are passed across this bus to the PHY for transmission on port ’n’. Each  
port has its own dedicated bus.  
Pn_TFRM  
36, 33, 34, 35  
In  
DPI Port ’n’ Transmit Frame. Start of cell signal which is asserted for one cycle immediately preceding the  
first 4 bits of each cell on Pn_TD[3:0].  
Table 2 Signal Descriptions (Part 3 of 3)  
6 of 49  
December 6, 2001  
IDT77V1264L200  
Signal Assignment as a Function of PHY/ATM Interface Mode  
16-BIT UTOPIA 2  
MODE[1,0] = 00  
8-BIT UTOPIA 1  
MODE[1,0] = 01  
DPI  
SIGNAL NAME  
PIN NUMBER  
MODE[1,0] = 10  
VDD  
1
GND  
2
TX0-  
3
TX0+  
4
VDD  
5
MM  
6
MODE1  
MODE0  
RXREF  
7
8
9
TXREF  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
GND  
TXLED3  
TXLED2  
TXLED1  
TXLED0  
VDD  
TXDATA0  
TXDATA1  
TXDATA2  
TXDATA3  
TXDATA4  
TXDATA5  
TXDATA6  
TXDATA7  
TXDATA8  
TXDATA9  
TXDATA10  
TXDATA11  
TXDATA12  
TXDATA13  
TXDATA14  
TXDATA15  
TXPARITY  
TXEN  
TXDATA0  
TXDATA1  
TXDATA2  
TXDATA3  
TXDATA4  
TXDATA5  
TXDATA6  
TXDATA7  
TXDATA8  
TXDATA9  
TXDATA10  
TXDATA11  
TXDATA12  
TXDATA13  
TXDATA14  
TXDATA15  
TXPARITY  
TXEN  
TXDATA0  
TXDATA1  
TXDATA2  
TXDATA3  
TXDATA4  
TXDATA5  
TXDATA6  
TXDATA7  
TXEN[1]  
P0_TD[0]  
P0_TD[1]  
P0_TD[2]  
P0_TD[3]  
P1_TD[0]  
P1_TD[1]  
P1_TD[2]  
P1_TD[3]  
P2_TD[0]  
P2_TD[1]  
P2_TD[2]  
P2_TD[3]  
P3_TD[0]  
P3_TD[1]  
P3_TD[2]  
P3_TD[3]  
P2_TFRM  
P1_TFRM  
P0_TFRM  
P3_TFRM  
TXEN[2]  
TXEN[3]  
see note 2  
see note 2  
see note 2  
see note 2  
see note 2  
TXPARITY  
TXEN[0]  
TXSOC  
TXSOC  
TXSOC  
TXADDR4  
TXADDR4  
see note 2  
Table 3 Signal Assignment as a Function of PHY/ATM Interface Mode (Part 1 of 4)  
7 of 49  
December 6, 2001  
IDT77V1264L200  
SIGNAL NAME  
16-BIT UTOPIA 2  
MODE[1,0] = 00  
8-BIT UTOPIA 1  
MODE[1,0] = 01  
DPI  
PIN NUMBER  
MODE[1,0] = 10  
TXADDR3  
VDD  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
TXADDR3  
see note 2  
P3_TCLK  
TXADDR2  
TXADDR1  
TXADDR0  
TXCLAV  
TXCLK  
TXADDR2  
TXADDR1  
TXADDR0  
TXCLAV  
TXCLK  
TXCLAV[3]  
TXCLAV[2]  
TXCLAV[1]  
TXCLAV[0]  
TXCLK  
P2_TCLK  
P1_TCLK  
P0_TCLK  
see note 1  
DPICLK  
GND  
VDD  
RXCLK  
RXCLK  
RXCLK  
see note 2  
see note 2  
P0_RCLK  
P1_RCLK  
RXEN  
RXEN  
RXEN[0]  
RXEN[1]  
RXEN[2]  
RXADDR0  
RXADDR1  
GND  
RXADDR0  
RXADDR1  
RXADDR2  
RXADDR3  
RXADDR4  
RXCLAV  
RXSOC  
RXADDR2  
RXADDR3  
RXADDR4  
RXCLAV  
RXSOC  
RXEN[3]  
P2_RCLK  
P3_RCLK  
P3_RFRM  
P1_RFRM  
P0_FRM  
see note 2  
see note 2  
RXCLAV[0]  
RXSOC  
GND  
VDD  
RXPARITY  
RXDATA15  
RXDATA14  
RXDATA13  
RXDATA12  
RXDATA11  
RXDATA10  
RXDATA9  
RXDATA8  
GND  
RXPARITY  
RXDATA15  
RXDATA14  
RXDATA13  
RXDATA12  
RXDATA11  
RXDATA10  
RXDATA9  
RXDATA8  
RXPARITY  
see note 1  
see note 1  
see note 1  
see note 1  
see note 1  
RXCLAV[3]  
RXCLAV[2]  
RXCLAV[1]  
P2_RFRM  
P3_RD[3]  
P3_RD[2]  
P3_RD[1]  
P3_RD[0]  
P2_RD[3]  
P2_RD[2]  
P2_RD[1]  
P2_RD[0]  
VDD  
RXDATA7  
RXDATA6  
RXDATA5  
RXDATA4  
RXDATA3  
RXDATA7  
RXDATA6  
RXDATA5  
RXDATA4  
RXDATA3  
RXDATA7  
RXDATA6  
RXDATA5  
RXDATA4  
RXDATA3  
P1_RD[3]  
P1_RD[2]  
P1_RD[1]  
P1_RD[0]  
P0_RD[3]  
Table 3 Signal Assignment as a Function of PHY/ATM Interface Mode (Part 2 of 4)  
8 of 49  
December 6, 2001  
IDT77V1264L200  
SIGNAL NAME  
16-BIT UTOPIA 2  
MODE[1,0] = 00  
8-BIT UTOPIA 1  
MODE[1,0] = 01  
DPI  
PIN NUMBER  
MODE[1,0] = 10  
RXDATA2  
RXDATA1  
RXDATA0  
GND  
VDD  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
RXDATA2  
RXDATA1  
RXDATA0  
RXDATA2  
RXDATA1  
RXDATA0  
P0_RD[2]  
P0_RD[1]  
P0_RD[0]  
RXLED0  
RXLED1  
RXLED2  
RXLED3  
GND  
VDD  
INT  
GND  
RST  
WR  
RD  
CS  
ALE  
VDD  
AD0  
AD1  
AD2  
AD3  
GND  
AD4  
AD5  
AD6  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
AD7  
SE  
DA  
VDD  
TX3-  
TX3+  
GND  
VDD  
TX2-  
TX2+  
Table 3 Signal Assignment as a Function of PHY/ATM Interface Mode (Part 3 of 4)  
9 of 49  
December 6, 2001  
IDT77V1264L200  
SIGNAL NAME  
16-BIT UTOPIA 2  
MODE[1,0] = 00  
8-BIT UTOPIA 1  
MODE[1,0] = 01  
DPI  
PIN NUMBER  
111  
MODE[1,0] = 10  
GND  
AGND  
AVDD  
RX3-  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
RX3+  
AVDD  
AGND  
AGND  
AVDD  
RX2-  
RX2+  
AVDD  
AGND  
AGND  
AVDD  
OSC  
AGND  
AVDD  
AGND  
AGND  
AVDD  
RX1-  
RX1+  
AVDD  
AGND  
AGND  
AVDD  
RX0-  
RX0+  
AVDD  
AGND  
GND  
TX1-  
TX1+  
Table 3 Signal Assignment as a Function of PHY/ATM Interface Mode (Part 4 of 4)  
Note: 1.This output signal is unused in this mode. It must be left unconnected.  
2.This input signal is unused in this mode. It must be connected to either logic high or logic low.  
10 of 49  
December 6, 2001  
IDT77V1264L200  
(X _C) is NOT scrambled before it's encoded (see diagram for illustra-  
tion). The PRNG is based upon the following polynomial:  
Functional Description  
10  
7
Transmission Convergence (TC) Sub Layer  
X + X + 1  
Introduction  
With this polynomial, the four output data bits (D3, D2, D1, D0) will be  
generated from the following equations:  
The TC sub layer defines the line coding, scrambling, data framing  
and synchronization. Under control of a switch interface or Segmenta-  
tion and Reassembly (SAR) unit, the 25.6Mbps ATM PHY accepts a 53-  
byte ATM cell, scrambles the data, appends a command byte to the  
beginning of the cell, and encodes the entire 53 bytes before transmis-  
sion. These data transformations ensure that the signal is evenly distrib-  
uted across the frequency spectrum. In addition, the serialized bit  
stream is NRZI coded. An 8kHz timing sync pulse may be used for  
isochronous communications.  
D3 = d3 xor X(t-3)  
D2 = d2 xor X(t-2)  
D1 = d1 xor X(t-1)  
D0 = d0 xor X(t)  
The following nibble is scrambled with X(t+4), X(t+3), X(t+2), and  
X(t+1).  
A scrambler lock between the transmitter and receiver occurs each  
time an X_X command is sent. An X_X command is initiated only at the  
beginning of a cell transfer after the PRNG has cycled through all of its  
Data Structure and Framing  
Each 53-byte ATM cell is preceded with a command byte. This byte  
is distinguished by an escape symbol followed by one of 17 encoded  
symbols. Together, this byte forms one of seventeen possible command  
bytes. Three command bytes are defined:  
10  
states (2 - 1 = 1023 states). The first valid ATM data cell transmitted  
after power on will also be accompanied with an X_X command byte.  
Each time an X_X command byte is sent, the first nibble after the last  
escape (X) nibble is XOR'd with 1111b (PRNG = 3FFx).  
1. X_X (read: 'escape' symbol followed by another 'escape'): Start-  
of-cell with scrambler/descrambler reset.  
Because a timing marker command (X_8) may occur at any time, the  
possibility of a reset PRNG start-of-cell command and a timing marker  
command occurring consecutively does exist (e.g. X_X_X_8). In this  
case, the detection of the last two consecutive escape (X) nibbles will  
cause the PRNG to reset to its initial 3FFx state. Therefore, the PRNG is  
clocked only after the first nibble of the second consecutive escape pair.  
Once the data nibbles have been scrambled using the PRNG, the  
nibbles are further encoded using a 4b/5b process. The 4b/5b scheme  
ensures that an appropriate number of signal transitions occur on the  
line. A total of seventeen 5-bit symbols are used to represent the sixteen  
4-bit data nibbles and the one escape (X) nibble. The table below lists  
the 4-bit data with their corresponding 5-bit symbols:  
2. X_4 ('escape' followed by '4'): Start-of-cell without scrambler/  
descrambler reset.  
3. X_8 ('escape' followed by '8'): 8kHz timing marker. This  
command byte is generated when the 8kHz sync pulse is  
detected, and has priority over all line activity (data or command  
bytes). It is transmitted immediately when the sync pulse is  
detected. When this occurs during a cell transmission, the data  
transfer is temporarily interrupted on an octet boundary, and the  
X_8 command byte is inserted. This condition is the only allowed  
interrupt in an otherwise contiguous transfer.  
Below is an illustration of the cell structure and command byte usage:  
{X_X} {53-byte ATM cell} {X_4} {53-byte ATM {X_8} cell}...  
In the above example, the first ATM cell is preceded by the X_X start-  
of-cell command byte which resets both the transmitter-scrambler and  
receiver-descrambler pseudo-random nibble generators (PRNG) to their  
initial states. The following cell illustrates the insertion of a start-of-cell  
command without scrambler/descrambler reset. During this cell's trans-  
mission, an 8kHz timing sync pulse triggers insertion of the X_8 8kHz  
timing marker command byte.  
ꢖꢙ.ꢙ  
&&&&  
&(&&  
(&&&  
((&&  
ꢘꢌꢝꢞꢆꢅ  
(&(&(  
&&(((  
(&&(&  
(&(((  
ꢖꢙ.ꢙ  
&&&(  
&(&(  
(&&(  
((&(  
ꢘꢌꢝꢞꢆꢅ  
&(&&(  
&((&(  
((&&(  
(((&(  
.
ꢖꢙ.ꢙ  
&&(&  
&((&  
(&(&  
(((&  
ꢘꢌꢝꢞꢆꢅ  
&(&(&  
&(((&  
((&(&  
((((&  
ꢖꢙ.ꢙ  
&&((  
&(((  
(&((  
((((  
ꢘꢌꢝꢞꢆꢅ  
&(&((  
&((((  
((&((  
(((((  
Transmission Description  
Refer to Figure 4. Cell transmission begins with the PHY-ATM Inter-  
face. An ATM layer device transfers a cell into the 77V1264L200 across  
the Utopia transmit bus or DPI transmit bus. This cell enters a 3-cell  
deep transmit FIFO. Once a complete cell is in the FIFO, transmission  
begins by passing the cell, four bits (MSB first) at a time to the 'Scram-  
bler'.  
The 'Scrambler' takes each nibble of data and exclusive-ORs them  
against the 4 high order bits (X(t), X(t-1), X(t-2), X(t-3)) of a 10 bit  
pseudo-random nibble generator (PRNG). Its function is to provide the  
appropriate frequency distribution for the signal across the line.  
*ꢍ&ꢍ ꢓꢋ9 &ꢍꢙ  
.
ꢑꢘꢂ0ꢁ2 @ &&&(&  
This encode/decode implementation has several very desirable prop-  
erties. Among them is the fact that the output data bits can be repre-  
sented by a set of relatively simple symbols;  
‹
Run length is limited to <= 5;  
Disparity never exceeds +/- 1.  
‹
On the receiver, the decoder determines from the received symbols  
whether a timing marker command (X_8) or a start-of-cell command was  
sent (X_X or X_4). If a start-of-cell command is detected, the next 53  
bytes received are decoded and forwarded to the descrambler. (See TC  
Receive Block Diagram, Figure 5).  
The PRNG is clocked every time a nibble is processed, regardless of  
whether the processed nibble is part of a data or command byte. Note  
however that only data nibbles are scrambled. The entire command byte  
11 of 49  
December 6, 2001  
IDT77V1264L200  
The output of the 4b/5b encoder provides serial data to the NRZI  
encoder. The NRZI code transitions the wire voltage each time a '1' bit is  
sent. This, together with the previous encoding schemes guarantees  
that long run lengths of either '0' or '1's are prevented. Each symbol is  
shifted out with its most significant bit sent first.  
The IDT77V1264L200 monitors line conditions and can provide an  
interrupt if the line is deemed 'bad'. The Interrupt Status Registers  
(registers 0x01, 0x11, 0x21 and 0x31) contain a Good Signal Bit (bit 6,  
set to 0 = Bad signal initially) which shows the status of the line per the  
following algorithm:  
When no cells are available to transmit, the 77V1264L200 keeps the  
line active by continuing to transmit valid symbols. But it does not  
transmit another start-of-cell command until it has another cell for trans-  
mission. The 77V1264L200 never generates idle cells.  
To declare 'Good Signal' (from "Bad" to "Good")  
There is an up-down counter that counts from 7 to 0 and is initially  
set to 7. When the clock ticks for 1,024 cycles (32MHz clock, 1,024  
cycles = 204.8 symbols) and no "bad symbol" has been received, the  
counter decreases by one. However, if at least one "bad symbol" is  
detected during these 1,024 clocks, the counter is increased by one, to  
a maximum of 7. The Good Signal Bit is set to 1 when this counter  
reaches 0. The Good Signal Bit could be set to 1 as quickly as 1,433  
symbols (204.8 x 7) if no bad symbols have been received.  
Transmit HEC Byte Calculation/Insertion  
Byte #5 of each ATM cell, the HEC (Header Error Control) is calcu-  
lated automatically across the first 4 bytes of the cell header, depending  
upon the setting of bit 5 of registers 0x03, 0x13, 0x23 and 0x33. This  
byte is then either inserted as a replacement of the fifth byte transferred  
to the PHY by the external system, or the cell is transmitted as received.  
A third operating mode provides for insertion of "Bad" HEC codes which  
may aid in communication diagnostics. These modes are controlled by  
the LED Driver and HEC Status/Control Registers.  
To declare 'Bad Signal' (from "Good" to "Bad")  
The same up-down counter counts from 0 to 7 (being at 0 to provide  
a "Good" status). When the clock ticks for 1,024 cycles (32MHz clock,  
1,024 cycles = 204.8 symbols) and there is at least one "bad symbol",  
the counter increases by one. If it detects all "good symbols" and no  
"bad symbols" in the next time period, the counter decreases by one.  
The "Bad Signal" is declared when the counter reaches 7. The Good  
Signal Bit could be set to 0 as quickly as 1,433 symbols (204.8 x 7) if at  
least one "bad symbol" is detected in each of seven consecutive groups  
of 204.8 symbols.  
Receiver Description  
The receiver side of the TC sublayer operates like the transmitter, but  
in reverse. The data is NRZI decoded before each symbol is reassem-  
bled. The symbols are then sent to the 5b/4b decoder, followed by the  
Command Byte Interpreter, De-Scrambler, and finally through a FIFO to  
the UTOPIA or DPI interface to an ATM Layer device.  
8kHz Timing Marker  
ATM Cell Format  
The 8kHz timing marker, described earlier, is a completely optional  
feature which is essential for some applications requiring synchroniza-  
tion for voice or video, and unnecessary for other applications. Figure 7  
shows the options available for generating and receiving the 8kHz  
timing marker.  
ꢀꢁꢃ  
ꢀꢁꢄ  
+ꢉꢙꢓꢉꢋ ꢎꢌ.ꢉ (  
+ꢉꢙꢓꢉꢋ ꢎꢌ.ꢉ )  
+ꢉꢙꢓꢉꢋ ꢎꢌ.ꢉ *  
+ꢉꢙꢓꢉꢋ ꢎꢌ.ꢉ   
The source of the marker is programmable in the RXREF and  
TXREF Control Register (0x40). Each port is individually programmable  
to either a local source or a looped remote source. The local source is  
TXREF, which is an 8kHz clock of virtually any duty cycle. When  
unused, TXREF should be tied high. Also note that it is not limited to  
8kHz, should a different frequency be desired. When looped, a received  
X_8 command byte causes one to be generated on the transmit side.  
1ꢖ$  
ꢗꢙꢌꢅꢆꢙꢓ ꢎꢌ.ꢉ (  
ꢗꢙꢌꢅꢆꢙꢓ ꢎꢌ.ꢉ ꢐ=  
*ꢍ&ꢍ ꢓꢋ9 ꢍ)  
A received X_8 command byte causes the 77V1264L200 to issue a  
negative pulse on RXREF. The source channel of the marker is  
programmable. When the clock multiplier in the Enhanced Control 2  
register(s) is set to 2x or 4x, it is also necessary to set the RXREF Pulse  
Width Select in the LED Driver and HEC Status/Control register(s) to  
any value greater than the default for proper operation of RXREF.  
.
1ꢖ$ @ 1 ꢉꢋ ꢖꢉ/ꢔꢒꢉꢓ $ꢔꢉꢅꢓ 0ꢆꢋ +ꢑꢂ2  
Note that although the IDT77V1264L200 can detect symbol and  
HEC errors, it does not attempt to correct them.  
Upon reset or the re-connect, each port's receiver is typically not  
symbol-synchronized. When not symbol-synchronized, the receiver will  
indicate a significant number of bad symbols, and will deassert the Good  
Signal Bit as described below. Synchronization is established immedi-  
ately once that port receives an Escape symbol, usually as part of the  
start-of-cell command byte preceding the first received cell.  
12 of 49  
December 6, 2001  
IDT77V1264L200  
TXRef  
!ꢁꢂꢃꢄ  
7
-
!ꢁ ꢗꢆꢋ. &  
!ꢁꢖ"!"4:5&6  
!ꢁꢗꢙꢋꢔ.ꢌ  
ꢍꢎꢏꢐꢎ  
!ꢁꢏꢀꢁ "!#  
ꢂꢉꢅꢅ $ꢜ$%  
ꢘꢇꢋꢙꢝꢞꢅꢉꢋꢏ  
ꢗꢏꢘ ꢙꢒꢓ ꢘꢏꢗ  
ꢚꢀꢛꢜ  
ꢂꢅꢆꢇꢈ ꢀꢉꢇꢆꢊꢉꢋꢌ  
ꢂꢅꢆꢇꢈ ꢀꢉꢇꢆꢊꢉꢋꢌ  
ꢂꢅꢆꢇꢈ ꢀꢉꢇꢆꢊꢉꢋꢌ  
ꢂꢅꢆꢇꢈ ꢀꢉꢇꢆꢊꢉꢋꢌ  
ꢑꢒꢇꢆꢓꢔꢒꢕꢏ  
ꢖꢉꢇꢆꢓꢔꢒꢕ  
ꢖꢉ ꢇꢋꢙꢝꢞꢅꢉꢋ  
!ꢁꢘ%ꢂ  
7
-
ꢀꢁ ꢗꢆꢋ. &  
TXEN4*5&6  
!ꢁꢂꢃ"84*5&6  
1!%ꢗꢜ"  
#Aꢅ.ꢔ-ꢗ+,  
ꢜꢒ.ꢉꢋ/ꢙꢇꢉ  
#ꢆꢓꢉ4(5&6  
7
-
ꢀꢁꢂꢃꢄ  
ꢀꢁꢖ"!"4:5&6  
ꢀꢁꢗꢙꢋꢔ.ꢌ  
!ꢁ ꢗꢆꢋ. (  
ꢀꢁ ꢗꢆꢋ. (  
ꢍꢎꢏꢐꢎ  
!ꢁꢏꢀꢁ "!#  
ꢂꢉꢅꢅ $ꢜ$%  
ꢘꢇꢋꢙꢝꢞꢅꢉꢋꢏ  
ꢗꢏꢘ ꢙꢒꢓ ꢘꢏꢗ  
ꢚꢀꢛꢜ  
ꢑꢒꢇꢆꢓꢔꢒꢕꢏ  
ꢖꢉꢇꢆꢓꢔꢒꢕ  
ꢖꢉ ꢇꢋꢙꢝꢞꢅꢉꢋ  
7
-
ꢀꢁꢘ%ꢂ  
RXEN4*5&6  
ꢀꢁꢂꢃ"84*5&6  
7
-
INT  
RST  
RD  
!ꢁ ꢗꢆꢋ. )  
ꢍꢎꢏꢐꢎ  
!ꢁꢏꢀꢁ "!#  
ꢂꢉꢅꢅ $ꢜ$%  
ꢘꢇꢋꢙꢝꢞꢅꢉꢋꢏ  
ꢗꢏꢘ ꢙꢒꢓ ꢘꢏꢗ  
ꢚꢀꢛꢜ  
ꢑꢒꢇꢆꢓꢔꢒꢕꢏ  
ꢖꢉꢇꢆꢓꢔꢒꢕ  
ꢖꢉ ꢇꢋꢙꢝꢞꢅꢉꢋ  
7
-
ꢀꢁ ꢗꢆꢋ. )  
WR  
CS  
"ꢖ4:5&6  
#ꢔꢇꢋꢆ3ꢋꢆꢇꢉ  ꢆꢋ  
ꢜꢒ.ꢉꢋ/ꢙꢇꢉ  
"ꢃꢑ  
7
-
!ꢁ ꢗꢆꢋ. *  
ꢀꢁ ꢗꢆꢋ. *  
ꢍꢎꢏꢐꢎ  
!ꢁꢏꢀꢁ "!#  
ꢂꢉꢅꢅ $ꢜ$%  
ꢘꢇꢋꢙꢝꢞꢅꢉꢋꢏ  
ꢗꢏꢘ ꢙꢒꢓ ꢘꢏꢗ  
ꢚꢀꢛꢜ  
ꢑꢒꢇꢆꢓꢔꢒꢕꢏ  
ꢖꢉꢇꢆꢓꢔꢒꢕ  
ꢖꢉ ꢇꢋꢙꢝꢞꢅꢉꢋ  
7
-
%ꢘꢂ  
.
RXRef  
ꢀꢁꢃꢑꢖ4*5&6 !ꢁꢃꢑꢖ4*5&6  
*ꢍ&ꢍ ꢓꢋ9 &*  
Figure 2 Block Diagram for Utopia Level 1 Configuration (MODE[1:0] = 01)  
13 of 49  
December 6, 2001  
IDT77V1264L200  
ꢖꢗꢜꢂꢃꢄ  
TXRef  
#ꢆꢓꢉ4(5&6  
ꢗ&B!ꢂꢃꢄ  
ꢗ&B!$ꢀ#  
ꢗ&B!ꢖ4*5&6  
7
-
!ꢁ ꢗꢆꢋ. &  
ꢀꢁ ꢗꢆꢋ. &  
ꢍꢎꢏꢐꢎ  
!ꢁꢏꢀꢁ "!#  
ꢂꢉꢅꢅ $ꢜ$%  
ꢘꢇꢋꢙꢝꢞꢅꢉꢋꢏ  
ꢗꢏꢘ ꢙꢒꢓ ꢘꢏꢗ  
ꢚꢀꢛꢜ  
ꢂꢅꢆꢇꢈ ꢀꢉꢇꢆꢊꢉꢋꢌ  
ꢂꢅꢆꢇꢈ ꢀꢉꢇꢆꢊꢉꢋꢌ  
ꢂꢅꢆꢇꢈ ꢀꢉꢇꢆꢊꢉꢋꢌ  
ꢂꢅꢆꢇꢈ ꢀꢉꢇꢆꢊꢉꢋꢌ  
ꢑꢒꢇꢆꢓꢔꢒꢕꢏ  
ꢖꢉꢇꢆꢓꢔꢒꢕ  
ꢖꢉ ꢇꢋꢙꢝꢞꢅꢉꢋ  
7
-
ꢗ&Bꢀꢂꢃꢄ  
ꢗ&Bꢀ$ꢀ#  
ꢗ&Bꢀꢖ4*5&6  
ꢗ(B!ꢂꢃꢄ  
ꢗ(B!$ꢀ#  
ꢗ(B!ꢖ4*5&6  
7
-
!ꢁ ꢗꢆꢋ. (  
ꢀꢁ ꢗꢆꢋ. (  
ꢍꢎꢏꢐꢎ  
!ꢁꢏꢀꢁ "!#  
ꢂꢉꢅꢅ $ꢜ$%  
ꢘꢇꢋꢙꢝꢞꢅꢉꢋꢏ  
ꢗꢏꢘ ꢙꢒꢓ ꢘꢏꢗ  
ꢚꢀꢛꢜ  
ꢑꢒꢇꢆꢓꢔꢒꢕꢏ  
ꢖꢉꢇꢆꢓꢔꢒꢕ  
ꢖꢉ ꢇꢋꢙꢝꢞꢅꢉꢋ  
7
-
ꢗ(Bꢀꢂꢃꢄ  
ꢗ(Bꢀ$ꢀ#  
ꢗ(Bꢀꢖ4*5&6  
ꢖꢗꢜ  
#Aꢅ.ꢔ-ꢗ+,  
ꢜꢒ.ꢉꢋ/ꢙꢇꢉ  
ꢗ)B!ꢂꢃꢄ  
ꢗ)B!$ꢀ#  
ꢗ)B!ꢖ4*5&6  
7
-
!ꢁ ꢗꢆꢋ. )  
ꢀꢁ ꢗꢆꢋ. )  
ꢍꢎꢏꢐꢎ  
!ꢁꢏꢀꢁ "!#  
ꢂꢉꢅꢅ $ꢜ$%  
ꢘꢇꢋꢙꢝꢞꢅꢉꢋꢏ  
ꢗꢏꢘ ꢙꢒꢓ ꢘꢏꢗ  
ꢚꢀꢛꢜ  
ꢑꢒꢇꢆꢓꢔꢒꢕꢏ  
ꢖꢉꢇꢆꢓꢔꢒꢕ  
ꢖꢉ ꢇꢋꢙꢝꢞꢅꢉꢋ  
7
-
ꢗ)Bꢀꢂꢃꢄ  
ꢗ)Bꢀ$ꢀ#  
ꢗ)Bꢀꢖ4*5&6  
ꢗ*B!ꢂꢃꢄ  
ꢗ*B!$ꢀ#  
ꢗ*B!ꢖ4*5&6  
7
-
!ꢁ ꢗꢆꢋ. *  
ꢀꢁ ꢗꢆꢋ. *  
ꢍꢎꢏꢐꢎ  
!ꢁꢏꢀꢁ "!#  
ꢂꢉꢅꢅ $ꢜ$%  
ꢘꢇꢋꢙꢝꢞꢅꢉꢋꢏ  
ꢗꢏꢘ ꢙꢒꢓ ꢘꢏꢗ  
ꢚꢀꢛꢜ  
ꢑꢒꢇꢆꢓꢔꢒꢕꢏ  
ꢖꢉꢇꢆꢓꢔꢒꢕ  
ꢗ*Bꢀꢂꢃꢄ  
ꢗ*Bꢀ$ꢀ#  
ꢗ*Bꢀꢖ4*5&6  
ꢖꢉ ꢇꢋꢙꢝꢞꢅꢉꢋ  
7
-
.
INT  
RST  
RD  
#ꢔꢇꢋꢆ3ꢋꢆꢇꢉ  ꢆꢋ  
ꢜꢒ.ꢉꢋ/ꢙꢇꢉ  
WR  
CS  
"ꢖ4:5&6  
"ꢃꢑ  
%ꢘꢂ  
ꢀꢁꢃꢑꢖ4*5&6  
!ꢁꢃꢑꢖ4*5&6  
RXRef  
*ꢍ&ꢍ ꢓꢋ9 &ꢐ  
Figure 3 Block Diagram for DPI Configuration (MODE[1:0] = 10)  
ꢘ.ꢙꢋ. ꢆ/ ꢂꢉꢅꢅ  
TXRef 0=ꢈ+F2  
* ꢂꢉꢅꢅ  
ꢂꢆꢝꢝꢙꢒꢓ  
ꢎꢌ.ꢉ  
ꢘꢇꢋꢙꢝꢞꢅꢉꢋ  
ꢜꢒ ꢉꢋ.ꢔꢆꢒ  
ꢗ+,-"!#  
Reset  
ꢜꢒ.ꢉꢋ/ꢙꢇꢉ  
ꢂꢆꢒ.ꢋꢆꢅC  
1!%ꢗꢜ"  
ꢆꢋ  
ꢖꢗꢜ ꢜꢒ.ꢉꢋ/ꢙꢇꢉ  
+ꢑꢂ ;ꢉꢒD E  
ꢜꢒ ꢉꢋ.ꢔꢆꢒ  
ꢘꢇꢋꢙꢝꢞꢅꢉ  
ꢚꢔꢞꢞꢅꢉ  
ꢚꢉ'.  
ꢅꢆꢇꢈ  
ꢐꢞꢏꢍꢞ  
ꢑꢒꢇꢆꢓꢔꢒꢕ  
(
%ꢘꢂ  
ꢚꢀꢛꢜ  
!ꢁ  
7
ꢂꢅꢆꢇꢈ ꢜꢒ3A.  
ꢑꢒꢇꢆꢓꢔꢒꢕ  
!ꢁ -  
*ꢍ&ꢍ ꢓꢋ9 &ꢍ  
Figure 4 TC Transmit Block Diagram  
14 of 49  
December 6, 2001  
IDT77V1264L200  
PHY-ATM Interface  
RXEN  
ATM to PHY  
PHY to ATM  
ATM to PHY  
The 77V1264L200 PHY offers three choices in interfacing to ATM  
layer devices such as segmentation and reassembly (SAR) and  
switching chips. MODE[1:0] are used to select the configuration of this  
interface, as shown in the table below.  
RXCLAV  
RXCLK  
To determine if any of them has room to accept a cell for transmis-  
sion (TXCLAV), or has a receive cell available to pass on to the ATM  
device (RXCLAV). To poll, the ATM device drives an address (TXADDR  
or RXADDR) then observes TXCLAV or RXCLAV on the next cycle of  
TXCLK or RXCLK. A port must tri-state TXCLAV and RXCLAV except  
when it is addressed.  
If TXCLAV or RXCLAV is asserted, the ATM device may select that  
port, then transfer a cell to or from it. Selection of a port is performed by  
driving the address of the desired port while TXEN or RXEN is high, then  
driving TXEN or RXEN low. When TXEN is driven low, TXSOC (start of  
cell) is driven high to indicate that the first 16 bits of the cell are being  
driven on TXDATA. The ATM device may chose to temporarily suspend  
transfer of the cell by deasserting TXEN. Otherwise, TXEN remains  
asserted as the next 16 bits are driven onto TXDATA with each cycle of  
TXCLK.  
UTOPIA is a Physical Layer to ATM Layer interface standardized by  
the ATM Forum. It has separate transmit and receive channels and  
specific handshaking protocols. UTOPIA Level 2 has dedicated address  
signals for both the transmit and receive directions that allow the ATM  
layer device to specify with which of the four PHY channels it is commu-  
nicating. UTOPIA Level 1 does not have address signals.  
Instead, key handshaking signals are duplicated so that each  
channel has its own signals. In both versions of UTOPIA, all channels  
share a single transmit data bus and a single receive data bus for data  
transfer.  
DPI is a low-pin count Physical Layer to ATM Layer interface. The  
low-pin count characteristic allows the 77V1264L200 to incorporate four  
separate DPI 4-bit ports, one for each of the four serial ports. As with the  
UTOPIA interfaces, the transmit and receive directions have their own  
data paths and handshaking.  
In the receive direction, the ATM device selects a port if it wished to  
receive the cell that the port is holding. It does this by asserting RXEN.  
The PHY then transfers the data 16 bits each clock cycle, as deter-  
mined by RXEN. As in the transmit direction, the ATM device may  
suspend transfer by deasserting RXEN at any time. Note that the PHY  
asserts RXSOC coincident with the first 16 bits of each cell.  
UTOPIA Level 2 Interface Option  
The 16-bit Utopia Level 2 interface operates as defined in ATM  
Forum document af-phy-0039. This PHY-ATM interface is selected by  
setting the MODE[1:0] pins both low.  
This mode is configured as a single 16-bit data bus in the transmit  
(ATM-to-PHY) direction, and a single 16-bit data bus in the receive  
(PHY-to-ATM) direction. In addition to the data bus, each direction also  
includes a single optional parity bit, an address bus, and several hand-  
shaking signals. The UTOPIA address of each channel is determined by  
bits 4 to 0 in the Enhanced Control Registers. Please note that the  
transmit bus and the receive bus operate completely independently. The  
Utopia 2 signals are summarized below:  
TXPARITY and RXPARITY are parity bits for the corresponding 16-  
bit data fields. Odd parity is used.  
Figures 9 through 14 may be referenced for Utopia 2 bus examples.  
Because this interface transfers an even number of bytes, rather  
than the ATM standard of 53 bytes, a filler byte is inserted between the  
5-byte header and the 48-byte payload. This is shown in Figure 8.  
TXDATA[15:0]  
TXPARITY  
TXSOC  
ATM to PHY  
ATM to PHY  
ATM to PHY  
ATM to PHY  
ATM to PHY  
PHY to ATM  
ATM to PHY  
TXADDR[4:0]  
TXEN  
TXCLAV  
TXCLK  
RXDATA[15:0]  
RXPARITY  
RXSOC  
PHY to ATM  
PHY to ATM  
PHY to ATM  
ATM to PHY  
RXADDR[4:0]  
15 of 49  
December 6, 2001  
IDT77V1264L200  
ꢅꢆꢇꢈ  
ꢘꢇꢋꢙꢝꢞꢅꢉ  
ꢚꢔꢞꢞꢅꢉ  
ꢀꢉ ꢉ.  
RXRef  
ꢚꢉ'.  
ꢂꢆꢝꢝꢙꢒꢓ  
ꢎꢌ.ꢉ  
ꢍꢞꢏꢐꢞ  
ꢖꢉꢇꢆꢓꢔꢒꢕ  
ꢚꢀꢛꢜ  
ꢖꢉꢇꢆꢓꢔꢒꢕ  
ꢖꢉ-  
ꢖꢉ.ꢉꢇ.ꢔꢆꢒC  
ꢀꢉꢝꢆꢊꢙꢅC  
E ꢖꢉꢇꢆꢓꢉ  
ꢀꢁ 7  
ꢘꢇꢋꢙꢝꢞꢅꢉꢋ  
.
ꢀꢁ  
ꢘ.ꢙꢋ. ꢆ/ ꢂꢉꢅꢅ  
* ꢂꢉꢅꢅ  
Clock  
Recovery  
1!%ꢗꢜ"  
ꢗ+,-"!#  
ꢜꢒ.ꢉꢋ/ꢙꢇꢉ  
ꢂꢆꢒ.ꢋꢆꢅ -  
ꢀꢑꢂ8  
*ꢍ&ꢍ ꢓꢋ9 &<  
%ꢘꢂ  
Figure 5 TC Receive Block Diagram  
UTOPIA Level 1 Multi-phy Interface Option  
The UTOPIA Level 1 MULTI-PHY interface is based on ATM Forum document af-phy-0017. Utopia Level 1 is essentially the same as Utopia Level  
2, but without the addressing, polling and selection features.  
ꢎꢔ. (ꢍ  
ꢎꢔ. &  
$ꢔꢋ . +ꢉꢙꢓꢉꢋ ꢞꢌ.ꢉ (  
+ꢉꢙꢓꢉꢋ ꢞꢌ.ꢉ *  
+ꢉꢙꢓꢉꢋ ꢞꢌ.ꢉ   
ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ (  
ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ *  
ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ   
+ꢉꢙꢓꢉꢋ ꢞꢌ.ꢉ )  
+ꢉꢙꢓꢉꢋ ꢞꢌ.ꢉ   
 .A// ꢞꢌ.ꢉ  
ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ )  
ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ   
ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ <  
ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ ꢐꢍ ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ ꢐ<  
ꢃꢙ . ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ ꢐ: ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ ꢐ=  
Figure 6 Utopia Level 2 Data Format and Sequence  
Instead of addressing, this mode utilizes separate TXCLAV, TXEN, RXCLAV and RXEN signals for each channel of the 77V1264L200. There are  
just one each of the TXSOC and RXSOC signals, which are shared across all four channels.  
In addition to Utopia Level 2's cell mode transfer protocol, Utopia Level 1 also offers the option of a byte mode protocol. Bit 1 of the Master Control  
Registers is used to program whether the UTOPIA Level 1 bus is in cell mode or byte mode. In byte mode, the PHY is allowed to control data transfer  
on a byte-by-byte basis via the TXCLAV and RXCLAV signals. In cell mode, TXCLAV and RXCLAV are ignored once the transfer of a cell has begun.  
In every other way the two modes are identical. Cell mode is the default configuration and is the one described later.  
16 of 49  
December 6, 2001  
IDT77V1264L200  
TXRef ꢜꢒ3A.  
0 ꢀꢉꢕ ꢐ&C ꢎꢔ. &2  
ꢃ!ꢘꢉꢅH&  
ꢀꢁꢀꢉ/H&  
#A'  
!ꢁꢀꢉ/H&  
0ꢁB= ꢕꢉꢒꢉꢋꢙ.ꢆꢋ2  
0ꢁB= ꢋꢉꢇꢉꢔꢊꢉꢓ2  
0 ꢀꢉꢕ ꢐ&C ꢎꢔ. (2  
ꢃ!ꢘꢉꢅH(  
ꢀꢁꢀꢉ/H(  
#A'  
!ꢁꢀꢉ/H(  
0ꢁB= ꢕꢉꢒꢉꢋꢙ.ꢆꢋ2  
0ꢁB= ꢋꢉꢇꢉꢔꢊꢉꢓ2  
0 ꢀꢉꢕ ꢐ&C ꢎꢔ. )2  
ꢃ!ꢘꢉꢅH)  
ꢀꢁꢀꢉ/H)  
#A'  
0ꢁB= ꢋꢉꢇꢉꢔꢊꢉꢓ2  
!ꢁꢀꢉ/H)  
0ꢁB= ꢕꢉꢒꢉꢋꢙ.ꢆꢋ2  
0 ꢀꢉꢕ ꢐ&C ꢎꢔ. *2  
ꢃ!ꢘꢉꢅH*  
ꢀꢁꢀꢉ/H*  
#A'  
0ꢁB= ꢋꢉꢇꢉꢔꢊꢉꢓ2  
!ꢁꢀꢉ/H*  
0ꢁB= ꢕꢉꢒꢉꢋꢙ.ꢆꢋ2  
.
ꢀꢁꢀꢉ/  
ꢘꢉꢅꢉꢇ.  
ꢀꢁꢀꢉ/ꢘꢉꢅ4(5&6  
IDT77V1264L200  
ꢖꢉꢇꢆꢓꢉꢋ  
RXRef %A.3A.  
*ꢍ&ꢍ ꢓꢋ9 &  
Figure 7 RXREF and TXREF Block Diagram  
The Utopia 1 signals are summarized below:  
TXDATA[7:0]  
TXPARITY  
TXSOC  
TXEN[3:0]  
TXCLAV[3:0]  
TXCLK  
ATM to PHY  
ATM to PHY  
ATM to PHY  
ATM to PHY  
PHY to ATM  
ATM to PHY  
RXDATA[7:0]  
RXPARITY  
RXSOC  
PHY to ATM  
PHY to ATM  
PHY to ATM  
ATM to PHY  
PHY to ATM  
ATM to PHY  
RXEN[3:0]  
RXCLAV[3:0]  
RXCLK  
17 of 49  
December 6, 2001  
IDT77V1264L200  
Transmit and receive both utilize free running clocks, which are inputs to the 77V1264L200. All Utopia signals are timed to these clocks.  
In the transmit direction, the PHY first asserts TXCLAV (transmit cell available) to indicate that it has room in its transmit FIFO to accept at least  
one 53-byte ATM cell. When the ATM layer device is ready to begin passing the cell, it asserts TXEN (transmit enable) and TXSOC (start of cell), coin-  
cident with the first byte of the cell on TXDATA. TXEN remains asserted for the duration of the cell transfer, but the ATM device may deassert TXEN at  
any time once the cell transfer has begun, but data is transferred only when TXEN is asserted.  
In the receive direction, RXEN indicates when the ATM device is prepared to receive data. As with transmit, it may be asserted or deasserted at  
any time. Note, however, that not more than one RXEN should be asserted at a time. Also, once a given RX port is selected, that port's FIFO must be  
emptied of cells (as indicated by RXCLAV) before a different RX port may be enabled.  
In both transmit and receive, TXSOC and RXSOC (start of cell) is asserted for one clock, coincident with the first byte of each cell. Odd parity is  
utilized across each 8-bit data field.  
Figure 8 shows the data sequence for an ATM cell over Utopia Level 1, and Figures 15 through 21 are examples of the Utopia Level 1 handshake.  
ꢎꢔ. :  
ꢎꢔ. &  
$ꢔꢋ . +ꢉꢙꢓꢉꢋ ꢞꢌ.ꢉ (  
+ꢉꢙꢓꢉꢋ ꢞꢌ.ꢉ )  
+ꢉꢙꢓꢉꢋ ꢞꢌ.ꢉ *  
+ꢉꢙꢓꢉꢋ ꢞꢌ.ꢉ   
+ꢉꢙꢓꢉꢋ ꢞꢌ.ꢉ   
ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ (  
ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ )  
ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ *  
ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ ꢐ<  
ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ ꢐ:  
ꢃꢙ . ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ ꢐ=  
*ꢍ&ꢍ ꢓꢋ9 (ꢍ  
Figure 8 Utopia 1 Data Format and Sequence  
18 of 49  
December 6, 2001  
IDT77V1264L200  
 ꢉꢅꢉꢇ.ꢔꢆꢒ  
3ꢆꢅꢅꢔꢒꢕ  
3ꢆꢅꢅꢔꢒꢕ  
3ꢆꢅꢅꢔꢒꢕ5  
!ꢁꢂꢃꢄ  
!ꢁ"ꢖꢖꢀ4ꢐ5&6  
($  
ꢚ7*  
($  
ꢚ7)  
($  
ꢚ7*  
($  
($  
+ꢔꢕG-ꢛ  
!ꢁꢂꢃ"8  
ꢚ7(  
ꢚ7*  
ꢚ7)  
ꢚ7*  
TXEN  
!ꢁꢖꢙ.ꢙ4(ꢍ5&6C  
!ꢁꢗ"ꢀꢜ!,  
+ꢍC Aꢒꢓꢉ/ꢔꢒꢉꢓ  
ꢗ*>C ꢐ&  
ꢗꢐ(C ꢐ)  
ꢗꢐ*C ꢐꢐ  
ꢗꢐꢍC ꢐ<  
ꢗꢐ:C ꢐ=  
+(C )  
+*C   
ꢗ(C )  
.
!ꢁꢘ%ꢂ  
ꢗ+, ꢚ7*  
ꢗ+,   
ꢇꢉꢅꢅ .ꢋꢙꢒ ꢝꢔ  ꢔꢆꢒ .ꢆ5  
*ꢍ&ꢍ ꢓꢋ9 &>  
Figure 9 Utopia 2 Transmit Handshake - Back to Back Cells  
 ꢉꢅꢉꢇ.ꢔꢆꢒ  
3ꢆꢅꢅꢔꢒꢕ  
3ꢆꢅꢅꢔꢒꢕ  
3ꢆꢅꢅꢔꢒꢕ5  
!ꢁꢂꢃꢄ  
!ꢁ"ꢖꢖꢀ4ꢐ5&6  
!ꢁꢂꢃ"8  
TXEN  
($  
ꢚ7*  
($  
ꢚ7)  
($  
ꢚ7*  
($  
($  
+ꢔꢕG-ꢛ  
ꢚ7(  
ꢚ7*  
ꢚ7)  
ꢚ7*  
!ꢁꢖꢙ.ꢙ4(ꢍ5&6C  
!ꢁꢗ"ꢀꢜ!,  
+ꢍC Aꢒꢓꢉ/ꢔꢒꢉꢓ  
ꢗꢐ*C ꢐꢐ  
ꢗꢐꢍC ꢐ<  
ꢗꢐ:C ꢐ=  
+(C )  
+*C   
ꢗ(C )  
.
!ꢁꢘ%ꢂ  
ꢗ+, ꢚ7*  
ꢗ+,   
ꢇꢉꢅꢅ .ꢋꢙꢒ ꢝꢔ  ꢔꢆꢒ .ꢆ5  
*ꢍ&ꢍ ꢓꢋ9 (&  
Figure 10 Utopia 2 Transmit Handshake - Delay Between Cells  
19 of 49  
December 6, 2001  
IDT77V1264L200  
 ꢉꢅꢉꢇ.ꢔꢆꢒ  
3ꢆꢅꢅꢔꢒꢕ  
3ꢆꢅꢅꢔꢒꢕ  
3ꢆꢅꢅꢔꢒꢕ5  
!ꢁꢂꢃꢄ  
!ꢁ"ꢖꢖꢀ4ꢐ5&6  
($  
ꢚ7*  
($  
ꢚ7)  
($  
#
($  
($  
+ꢔꢕG-ꢛ  
!ꢁꢂꢃ"8  
ꢚ7(  
ꢚ7*  
ꢚ7)  
#
TXEN  
+ꢔꢕG-ꢛ  
!ꢁꢖꢙ.ꢙ4(ꢍ5&6C  
!ꢁꢗ"ꢀꢜ!,  
ꢗ)ꢍC )<  
ꢗ):C )=  
ꢗ)>C *&  
ꢗ*(C *)  
ꢗ**C *ꢐ  
ꢗ*ꢍC *<  
.
+ꢔꢕG-ꢛ  
!ꢁꢘ%ꢂ  
ꢗ+, #  
ꢗ+, #  
ꢇꢉꢅꢅ .ꢋꢙꢒ ꢝꢔ  ꢔꢆꢒ .ꢆ5  
*ꢍ&ꢍ ꢓꢋ9 ((  
Figure 11 Utopia 2 Transmit Handshake - Transmission Suspended  
 ꢉꢅꢉꢇ.ꢔꢆꢒ  
3ꢆꢅꢅꢔꢒꢕ  
3ꢆꢅꢅꢔꢒꢕ  
3ꢆꢅꢅꢔꢒꢕ5  
ꢀꢁꢂꢃꢄ  
ꢀꢁ"ꢖꢖꢀ4ꢐ5&6  
ꢀꢁꢂꢃ"8  
RXEN  
ꢚ7*  
($  
ꢚ7)  
($  
ꢚ7*  
($  
($  
ꢚ7(  
($  
+ꢔꢕG-ꢛ  
ꢚ7*  
ꢚ7)  
ꢚ7*  
+ꢔꢕG-ꢛ  
ꢀꢁꢖꢙ.ꢙ4(ꢍ5&6C  
ꢀꢁꢗ"ꢀꢜ!,  
+ꢍC Aꢒꢓꢉ/ꢔꢒꢉꢓ  
ꢗ*>C ꢐ&  
ꢗꢐ(C ꢐ)  
ꢗꢐ*C ꢐꢐ  
ꢗꢐꢍC ꢐ<  
ꢗꢐ:C ꢐ=  
+(C )  
+*C   
ꢗ(C )  
.
+ꢔꢕG-ꢛ  
ꢀꢁꢘ%ꢂ  
ꢗ+, ꢚ7*  
ꢗ+,   
ꢇꢉꢅꢅ .ꢋꢙꢒ ꢝꢔ  ꢔꢆꢒ .ꢆ5  
*ꢍ&ꢍ ꢓꢋ9 ()  
Figure 12 Utopia 2 Receive Handshake - Back to Back Cells  
20 of 49  
December 6, 2001  
IDT77V1264L200  
 ꢉꢅꢉꢇ.ꢔꢆꢒ  
3ꢆꢅꢅꢔꢒꢕ  
3ꢆꢅꢅꢔꢒꢕ  
3ꢆꢅꢅꢔꢒꢕ5  
ꢀꢁꢂꢃꢄ  
ꢀꢁ"ꢖꢖꢀ4ꢐ5&6  
ꢚ7*  
($  
ꢚ7)  
($  
ꢚ7(  
($  
ꢚ7(  
($  
($  
+ꢔꢕG-ꢛ  
ꢀꢁꢂꢃ"8  
ꢚ7*  
ꢚ7)  
ꢚ7(  
ꢚ7(  
RXEN  
+ꢔꢕG-ꢛ  
ꢀꢁꢖꢙ.ꢙ4(ꢍ5&6C  
ꢀꢁꢗ"ꢀꢜ!,  
ꢗꢐꢍC ꢐ<  
ꢗꢐ:C ꢐ=  
+(C )  
+*C   
Aꢒꢓꢉ/ꢔꢒꢉꢓ  
.
+ꢔꢕG-ꢛ  
ꢀꢁꢘ%ꢂ  
ꢗ+, ꢚ7(  
ꢗ+, ꢚ7*  
ꢇꢉꢅꢅ .ꢋꢙꢒ ꢝꢔ  ꢔꢆꢒ .ꢆ5  
*ꢍ&ꢍ ꢓꢋ9 (*  
Figure 13 Utopia 2 Receive Handshake - Delay Between Cells  
ꢋꢉ- ꢉꢅꢉꢇ.ꢔꢆꢒ  
3ꢆꢅꢅꢔꢒꢕ  
3ꢆꢅꢅꢔꢒꢕ  
3ꢆꢅꢅꢔꢒꢕ5  
ꢀꢁꢂꢃꢄ  
ꢀꢁ"ꢖꢖꢀ4ꢐ5&6  
ꢀꢁꢂꢃ"8  
RXEN  
ꢚ7*  
($  
ꢚ7)  
($  
#
($  
ꢚ7(  
($  
ꢚ7)  
+ꢔꢕG-ꢛ  
ꢚ7*  
ꢚ7)  
#
ꢚ7(  
+ꢔꢕG-ꢛ  
ꢀꢁꢖꢙ.ꢙ4(ꢍ5&6C  
ꢀꢁꢗ"ꢀꢜ!,  
ꢗ)ꢍC )<  
ꢗ):C )=  
ꢗ)>C *&  
ꢗ*(C *)  
ꢗ**C *ꢐ  
ꢗ*ꢍC *<  
+ꢔꢕG-ꢛ  
ꢀꢁꢘ%ꢂ  
ꢗ+, #  
ꢗ+, #  
ꢇꢉꢅꢅ .ꢋꢙꢒ ꢝꢔ  ꢔꢆꢒ /ꢋꢆꢝ5  
*ꢍ&ꢍ ꢓꢋ9 (ꢐ  
Figure 14 Utopia 2 Receive Handshake - Suspended Transfer of Data  
!ꢁꢂꢃꢄ  
!ꢁꢂꢃ"84*5&6  
TXEN4*5&6  
!ꢁꢖ"!"4:5&6C  
!ꢁꢗ"ꢀꢜ!,  
+(  
+)  
ꢗꢐꢐ  
ꢗꢐꢍ  
ꢗꢐ<  
ꢗꢐ:  
ꢗꢐ=  
!ꢁꢘ%ꢂ  
.
*ꢍ&ꢍ ꢓꢋ9 (<  
Figure 15 Utopia 1 Transmit Handshake - Single Cell  
21 of 49  
December 6, 2001  
IDT77V1264L200  
!ꢁꢂꢃꢄ  
!ꢁꢂꢃ"84*5&6  
TXEN4*5&6  
!ꢁꢖ"!"4:5&6C  
!ꢁꢗ"ꢀꢜ!,  
ꢗꢐ<  
ꢗꢐ:  
ꢗꢐ=  
+(  
+)  
+*  
+ꢐ  
+ꢍ  
!ꢁꢘ%ꢂ  
*ꢍ&ꢍ ꢓꢋ9  
*ꢍ&ꢍ ꢓꢋ9 (:  
Figure 16 Utopia 1 Transmit Handshake - Back-to-Back Cells, and TXEN Suspended Transmission  
!ꢁꢂꢃꢄ  
!ꢁꢂꢃ"84*5&6  
TXEN4*5&6  
!ꢁꢖ"!"4:5&6C  
!ꢁꢗ"ꢀꢜ!,  
ꢗꢐ)  
ꢗꢐ*  
ꢗꢐꢐ  
ꢗꢐꢍ  
ꢗꢐ<  
ꢗꢐ:  
ꢗꢐ=  
+(  
!ꢁꢘ%ꢂ  
.
*ꢍ&ꢍ ꢓꢋ9 (=  
Figure 17 Utopia 1 Transmit Handshake - TXEN Suspended Transmission and Back-to-Back Cells (Byte Mode Only)  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ"84*5&6  
RXEN4*5&6  
+ꢔꢕG-ꢛ  
ꢀꢁꢖ"!"4:5&6C  
ꢀꢁꢗ"ꢀꢜ!,  
ꢗꢐ:  
ꢗꢐ=  
+(  
+)  
+*  
+ꢔꢕG-ꢛ  
ꢀꢁꢘ%ꢂ  
*ꢍ&ꢍ ꢓꢋ9 (>  
.
Figure 18 Utopia 1 Receive Handshake - Delay Between Cells  
22 of 49  
December 6, 2001  
IDT77V1264L200  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ"84*5&6  
RXEN4*5&6  
+ꢔꢕG-ꢛ  
ꢀꢁꢖ"!"4:5&6C  
ꢀꢁꢗ"ꢀꢜ!,  
ꢗꢐ:  
ꢗꢐ=  
+(  
ꢗꢐ:  
ꢗꢐ=  
+(  
+)  
+ꢔꢕG-ꢛ  
ꢀꢁꢘ%ꢂ  
.
*ꢍ&ꢍ ꢓꢋ9 )&  
Figure 19 Utopia 1 Receive Handshake - RXEN and RXCLAV Control  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ"84*5&6  
ꢑꢙꢋꢅꢌ ꢀ'ꢂꢃ"8 ꢆ3.ꢔꢆꢒ 0ꢞꢔ. <@(C ꢋꢉꢕꢔ .ꢉꢋ  &'&)C &'()C &'))C &'*)2  
RXEN4*5&6  
+ꢔꢕG-ꢛ  
+ꢔꢕG-ꢛ  
ꢀꢁꢖ"!"4:5&6C  
ꢀꢁꢗ"ꢀꢜ!,  
ꢗꢐ)  
ꢗꢐ*  
ꢗꢐꢐ  
ꢗꢐꢍ  
ꢗꢐ<  
ꢗꢐ:  
ꢗꢐ=  
+ꢔꢕG-ꢛ  
+ꢔꢕG-ꢛ  
ꢀꢁꢘ%ꢂ  
.
*ꢍ&ꢍ ꢓꢋ9 )(  
Figure 20 Utopia 1 Receive Handshake - RXCLAV Deassertion  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ"84*5&6  
RXEN4*5&6  
+ꢔꢕG-ꢛ  
ꢀꢁꢖ"!"4:5&6C  
ꢀꢁꢗ"ꢀꢜ!,  
+(  
+)  
+*  
+ꢐ  
+ꢍ  
ꢗ(  
+ꢔꢕG-ꢛ  
ꢀꢁꢘ%ꢂ  
*ꢍ&ꢍ ꢓꢋ9 ))  
.
Figure 21 Utopia 1 Receive Handshake - RXCLAV Suspended Transfer (Byte Mode Only)  
23 of 49  
December 6, 2001  
IDT77V1264L200  
DPI Interface Option  
ꢎꢔ. *  
ꢎꢔ. &  
The DPI interface is relatively new and worth additional description.  
The biggest difference between the DPI configurations and the UTOPIA  
configurations is that each channel has its own DPI interface. Each  
interface has a 4-bit data path, a clock and a start-of-cell signal, for both  
the transmit direction and the receive direction. Therefore, each signal is  
point-to-point, and none of these signals has high-Z capability. Addition-  
ally, there is one master DPI clock input (DPICLK) into the 77V1254L25  
which is used as a source for the DPI transmit clock outputs. DPI is a  
cell-based transfer scheme like Utopia Level 2, whereas UTOPIA Level  
1 transfers can be either byte- or cell-based.  
$ꢔꢋ .  
+ꢉꢙꢓꢉꢋ ꢞꢌ.ꢉ (C 0=5ꢍ2  
+ꢉꢙꢓꢉꢋ ꢞꢌ.ꢉ (C 0ꢐ5(2  
+ꢉꢙꢓꢉꢋ ꢞꢌ.ꢉ )C 0=5ꢍ2  
+ꢉꢙꢓꢉꢋ ꢞꢌ.ꢉ )C 0ꢐ5(2  
+ꢉꢙꢓꢉꢋ ꢞꢌ.ꢉ *C 0=5ꢍ2  
+ꢉꢙꢓꢉꢋ ꢞꢌ.ꢉ *C 0ꢐ5(2  
+ꢉꢙꢓꢉꢋ ꢞꢌ.ꢉ ꢐC 0=5ꢍ2  
+ꢉꢙꢓꢉꢋ ꢞꢌ.ꢉ ꢐC 0ꢐ5(2  
+ꢉꢙꢓꢉꢋ ꢞꢌ.ꢉ ꢍC 0=5ꢍ2  
+ꢉꢙꢓꢉꢋ ꢞꢌ.ꢉ ꢍC 0ꢐ5(2  
ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ (C 0=5ꢍ2  
ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ (C 0ꢐ5(2  
Another unique aspect of DPI is that it is a symmetrical interface. It is  
as easy to connect two PHYs back-to-back as it is to connect a PHY to a  
switch fabric chip. In contrast, Utopia is asymmetrical. Note that for the  
77V1254L25 the nomenclature "transmit" and "receive" is used in the  
naming of the DPI signals, whereas other devices may use more  
generic "in" and "out" nomenclature for their DPI signals.  
ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ ꢐ:C 0=5ꢍ2  
ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ ꢐ:C 0ꢐ5(2  
ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ ꢐ=C 0=5ꢍ2  
ꢗꢙꢌꢅꢆꢙꢓ ꢞꢌ.ꢉ ꢐ=C 0ꢐ5(2  
ꢃꢙ .  
Figure 22 DPI Data Format and Sequence  
The DPI signals are summarized below, where "Pn_" refers to the  
signals for channel number "n":  
DPICLK  
input to PHY  
PHY to ATM  
ATM to PHY  
ATM to PHY  
Pn_TCLK  
Pn_TD[3:0]  
Pn_TFRM  
Pn_RCLK  
Pn_RD[3:0]  
Pn_RFRM  
ATM to PHY  
PHY to ATM  
PHY to ATM  
In the transmit direction (ATM to PHY), the ATM layer device asserts  
start-of-cell signal (Pn_TFRM) for one clock cycle, one clock prior to  
driving the first nibble of the cell on Pn_TD[3:0]. Once the ATM side has  
begun sending a cell, it is prepared to send the entire cell without inter-  
ruption. The 77V1254L25 drives the transmit DPI clocks (Pn_TCLK)  
back to the ATM device, and can modulate (gap) it to control the flow of  
data. Specifically, if it cannot accept another nibble, the 77V1254L25  
disables Pn_TCLK and does not generate another rising edge until it  
has room for the nibble. Pn_TCLK are derived from the DPICLK free  
running clock source.  
The DPI protocol is exactly symmetrical in the receive direction, with  
the 77V1254L25 driving the data and start-of-cell signals while receiving  
Pn_RCLK as an input.  
The DPI data interface is four bits, so the 53 bytes of an ATM cell are  
transferred in 106 cycles. Figure 22 shows the sequence of that data  
transfer. igures 23 through 31 show how the handshake operates.  
24 of 49  
December 6, 2001  
IDT77V1264L200  
ꢗBꢀꢂꢃꢄ 0ꢔꢒ2  
ꢗBꢀ$ꢀ# 0ꢆA.2  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ (&ꢐ  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ (&ꢍ  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ &  
ꢗBꢀꢖ0*5&2 0ꢆA.2  
*ꢍ&ꢍ ꢓꢋ9 )ꢐ  
*ꢍ&ꢍ ꢓꢋ9 )ꢍ  
*ꢍ&ꢍ ꢓꢋ9 )<  
Figure 23 DPI Receive Handshake - One Cell Received  
ꢗBꢀꢂꢃꢄ 0ꢔꢒ2  
ꢗBꢀ$ꢀ# 0ꢆA.2  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ (&ꢐ  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ &  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ (  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ (&ꢍ  
ꢂꢉꢅꢅ )  
ꢂꢉꢅꢅ )  
ꢗBꢀꢖ0*5&2 0ꢆA.2  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ &  
ꢚꢔꢞꢞꢅꢉ (  
.
.
Figure 24 DPI Receive Handshake - Back-to-Back Cells  
ꢗBꢀꢂꢃꢄ 0ꢔꢒ2  
ꢗBꢀ$ꢀ# 0ꢆA.2  
ꢂꢉꢅꢅ )  
ꢚꢔꢞꢞꢅꢉ (  
ꢂꢉꢅꢅ (  
ꢂꢉꢅꢅ (  
ꢂꢉꢅꢅ )  
ꢚꢔꢞꢞꢅꢉ &  
ꢂꢉꢅꢅ )  
ꢚꢔꢞꢞꢅꢉ )  
ꢂꢉꢅꢅ )  
ꢂꢉꢅꢅ )  
ꢗBꢀꢖ0*5&2 0ꢆA.2  
ꢚꢔꢞꢞꢅꢉ (&ꢐ  
ꢚꢔꢞꢞꢅꢉ (&ꢍ  
ꢚꢔꢞꢞꢅꢉ *  
ꢚꢔꢞꢞꢅꢉ   
Figure 25 DPI Receive Handshake - ATM Layer Device Suspends Transfer  
"!# ꢃꢙꢌꢉꢋ ꢖꢉꢊꢔꢇꢉ ꢚꢆ. ꢀꢉꢙꢓꢌ  
::8()ꢍꢐ ꢚꢆ. ꢀꢉꢙꢓꢌ  
ꢗBꢀꢂꢃꢄ 0ꢔꢒ2  
ꢗBꢀ$ꢀ# 0ꢆA.2  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ (&ꢐ  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ (&ꢍ  
ꢂꢉꢅꢅ )  
ꢚꢔꢞꢞꢅꢉ &  
ꢂꢉꢅꢅ )  
ꢚꢔꢞꢞꢅꢉ (  
ꢂꢉꢅꢅ )  
ꢗBꢀꢖ0*5&2 0ꢆA.2  
ꢚꢔꢞꢞꢅꢉ )  
*ꢍ&ꢍ ꢓꢋ9 ):  
.
Figure 26 DPI Receive Handshake - Neither Device Ready  
25 of 49  
December 6, 2001  
IDT77V1264L200  
ꢗB!ꢂꢃꢄ 0ꢆA.2  
ꢗB!$ꢀ# 0ꢔꢒ2  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ &  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ (  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ (&ꢐ  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ (&ꢍ  
ꢗB!ꢖ0*5&2 0ꢔꢒ2  
Figure 27 DPI Transmit Handshake - One Cell for Transmission  
ꢗB!ꢂꢃꢄ 0ꢆA.2  
ꢗB!$ꢀ# 0ꢔꢒ2  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ (&ꢐ  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ &  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ (  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ (&ꢍ  
ꢂꢉꢅꢅ )  
ꢂꢉꢅꢅ )  
ꢗB!ꢖ0*5&2 0ꢔꢒ2  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ &  
ꢚꢔꢞꢞꢅꢉ (  
Figure 28 DPI Transmit Handshake - Back-to-Back Cells for Transmission  
ꢗB!ꢂꢃꢄ 0ꢆA.2  
ꢗB!$ꢀ# 0ꢔꢒ2  
ꢗB!ꢖ0*5&2 0ꢔꢒ2  
ꢂꢉꢅꢅ )  
ꢚꢔꢞꢞꢅꢉ (  
ꢂꢉꢅꢅ (  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ (&ꢍ  
ꢂꢉꢅꢅ )  
ꢚꢔꢞꢞꢅꢉ &  
ꢂꢉꢅꢅ )  
ꢚꢔꢞꢞꢅꢉ )  
ꢂꢉꢅꢅ )  
ꢂꢉꢅꢅ )  
ꢚꢔꢞꢞꢅꢉ (&ꢐ  
ꢚꢔꢞꢞꢅꢉ *  
ꢚꢔꢞꢞꢅꢉ   
Figure 29 DPI Transmit Handshake - 77V1254L25 Transmit FIFO Full  
::8()ꢍꢐ ꢚꢆ. ꢀꢉꢙꢓꢌ  
"!# ꢃꢙꢌꢉꢋ ꢖꢉꢊꢔꢇꢉ ꢚꢆ. ꢀꢉꢙꢓꢌ  
ꢗB!ꢂꢃꢄ 0ꢆA.2  
ꢗB!$ꢀ# 0ꢔꢒ2  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ (&ꢐ  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ (&ꢍ  
ꢂꢉꢅꢅ )  
ꢂꢉꢅꢅ )  
ꢚꢔꢞꢞꢅꢉ (  
ꢂꢉꢅꢅ )  
ꢚꢔꢞꢞꢅꢉ )  
ꢗB!ꢖ0*5&2 0ꢔꢒ2  
ꢚꢔꢞꢞꢅꢉ &  
*ꢍ&ꢍ ꢓꢋ9 *(  
.
Figure 30 DPI Transmit Handshake - Neither Device Ready  
26 of 49  
December 6, 2001  
IDT77V1264L200  
signal control is provided by bit 5 of the Master Control Registers. When  
this bit is set (=1), receive cell errors will be flagged via interrupt signal-  
ling and all other interrupt conditions are masked. These errors include:  
Control and Status Interface  
Utility Bus  
The Utility Bus is a byte-wide interface that provides access to the  
registers within the IDT77V1264L200. These registers are used to select  
desired operating characteristics and functions, and to communicate  
status to external systems.  
‹
Bad receive HEC  
‹
Short (fewer than 53 bytes) cells  
‹
Received cell symbol error  
Normal interrupt operations are performed by setting bit 0 and  
clearing bit 5 in the Master Control Registers. INT (pin 85) will go to a  
low state when an interrupt condition is detected. The external system  
should then interrogate the 77V1264L200 to determine which one (or  
more) conditions caused this flag, and reset the interrupt for further  
occurrences. This is accomplished by reading the Interrupt Status  
Registers. Decoding the bits in these bytes will tell which error condition  
caused the interrupt. Reading these registers also:  
The Utility Bus is implemented using a multiplexed address and data  
bus (AD[7:0]) where the register address is latched via the Address  
Latch Enable (ALE) signal.  
The Utility Bus interface is comprised of the following pins:  
AD[7:0], ALE, CS, RD, WR  
Read Operation  
‹
Refer to the Utility Bus timing waveforms in Figures 43 - 44. A  
register read is performed as follows:  
clears the (sticky) interrupt status bits in the registers that are read  
‹
resets INT  
1. Initial condition:  
This leaves the interrupt system ready to signal an alarm for further  
problems.  
LED Control and Signalling  
The LED outputs provide bi-directional LED drive capability of 8 mA.  
As an example, the RXLED outputs are described in the truth table:  
RD, WR, CS not asserted (logic 1)  
ALE not asserted (logic 0)  
2. Set up register address:  
place desired register address on AD[7:0]  
set ALE to logic 1;  
latch this address by setting ALE to logic 0.  
3. Read register data:  
State  
Pin Voltage  
Remove register address data from AD[7:0]  
Cells being received  
Low  
assert CS by setting to logic 0;  
assert RD by setting to logic 0  
Cells not being received High  
wait minimum pulse width time (see AC specifications)  
As illustrated in the following drawing, this could be connected to  
provide for a two-LED condition indicator. These could also be different  
colors to provide simple status indication at a glance. (The minimum  
value for R should be 330).  
Write Operation  
A register write is performed as described below:  
1. Initial condition:  
RD, WR, CS not asserted (logic 1)  
ALE not asserted (logic 0)  
LED Indicator  
2. Set up register address:  
*D*8  
place desired register address on AD[7:0]  
set ALE to logic 1;  
0ꢜꢒꢓꢔꢇꢙ.ꢉ 5 ꢂꢉꢅꢅ  
latch this address by setting ALE to logic 0.  
ꢞꢉꢔꢒꢕ ꢋꢉꢇꢉꢔꢊꢉꢓ ꢆꢋ  
3. Write data:  
.ꢋꢙꢒ ꢝꢔ..ꢉꢓ2  
place data on AD[7:0]  
ꢀ'ꢃꢑꢖ0*5&2  
assert CS by setting to logic 0;  
!'ꢃꢑꢖ0*5&2  
assert WR (logic 0) for minimum time (according to timing  
specification); reset WR to logic 1 to complete register write  
cycle.  
0ꢜꢒꢓꢔꢇꢙ.ꢉ 5 ꢂꢉꢅꢅ  ꢙꢋꢉ  
ꢒꢆ. ꢞꢉꢔꢒꢕ ꢋꢉꢇꢉꢔꢊꢉꢓ ꢆꢋ  
.ꢋꢙꢒ ꢝꢔ..ꢉꢓ2  
Interrupt Operations  
*ꢍ&ꢍ ꢓꢋ9 *)  
The IDT77V1264L200 provides a variety of selectable interrupt and  
signalling conditions which are useful both during ‘normal’ operation,  
and as diagnostic aids. Refer to the Status and Control Register List  
section.  
Overall interrupt control is provided via bit 0 of the Master Control  
Registers. When this bit is cleared (set to 0), interrupt signalling is  
prevented on the respective port. The Interrupt Mask Registers allow  
individual masking of different interrupt sources. Additional interrupt  
TXLED Truth Table  
State  
Pin Voltage  
Cells being transmitted  
Low  
Cells not being transmitted High  
27 of 49  
December 6, 2001  
IDT77V1264L200  
::8()ꢍꢐ ꢚꢆ. ꢀꢉꢙꢓꢌ  
"!# ꢃꢙꢌꢉꢋ ꢖꢉꢊꢔꢇꢉ ꢚꢆ. ꢀꢉꢙꢓꢌ  
ꢗB!ꢂꢃꢄ 0ꢆA.2  
ꢗB!$ꢀ# 0ꢔꢒ2  
ꢂꢉꢅꢅ (  
ꢂꢉꢅꢅ (  
ꢚꢔꢞꢞꢅꢉ (&ꢍ  
ꢂꢉꢅꢅ )  
ꢚꢔꢞꢞꢅꢉ &  
ꢂꢉꢅꢅ )  
ꢚꢔꢞꢞꢅꢉ (  
ꢂꢉꢅꢅ )  
ꢚꢔꢞꢞꢅꢉ )  
ꢗB!ꢖ0*5&2 0ꢔꢒ2  
ꢚꢔꢞꢞꢅꢉ (&ꢐ  
*ꢍ&ꢍ ꢓꢋ9 *(  
.
Figure 31 DPI Transmit Handshake - Neither Device Ready  
Diagnostic Functions  
Loopback  
There are two loopback modes supported by the 77V1264L200. The loopback mode is controlled via bits 1 and 0 of the Diagnostic Control Regis-  
ters:  
Bit 1  
Bit 0  
Mode  
Normal operating mode  
0
1
1
0
0
1
PHY Loopback  
Line Loopback  
Normal Mode  
This mode, Figure 32, supports normal operating conditions: data to be transmitted is transferred to the TC, where it is queued and formatted for  
transmission by the PMD. Receive data from the PMD is decoded along with its clock for transfer to the receiving "upstream system".  
PHY Loopback  
As Figure 33 illustrates below, this loopback mode provides a connection within the PHY from the transmit PHY-ATM interface to the PHY-ATM  
receive interface. Note that while this mode is operating, no data is forwarded to or received from the line interface. When Bits [1:0] in the Diagnostic  
Control Registers are set to 10, the PHY loopback mode works only if clock multiplier is 1x. For higher multiplies, these bits must be set to 01.  
Line Loopback  
Figure 34 might also be called “remote loopback” since it provides for a means to test the overall system, including the line. Since this mode will  
probably be entered under direction from another system (at a remote location), receive data is also decoded and transferred to the upstream system  
to allow it to listen for commands. A common example would be a command asking the upstream system to direct the TC to leave this loopback state,  
and resume normal operations.  
28 of 49  
December 6, 2001  
IDT77V1264L200  
IDT77V1264L200  
"!# ꢃꢙꢌꢉꢋ ꢖꢉꢊꢔꢇꢉ  
ꢃꢔꢒꢉ  
!ꢂ  Aꢞꢅꢙꢌꢉꢋ  
ꢗ#ꢖ  Aꢞꢅꢙꢌꢉꢋ  
ꢜꢒ.ꢉꢋ/ꢙꢇꢉ  
*ꢍ&ꢍ ꢓꢋ9 **  
Figure 32 Normal Mode  
IDT77V1264L200  
"!# ꢃꢙꢌꢉꢋ ꢖꢉꢊꢔꢇꢉ  
ꢃꢔꢒꢉ  
ꢗ#ꢖ  Aꢞꢅꢙꢌꢉꢋ  
!ꢂ  Aꢞꢅꢙꢌꢉꢋ  
ꢜꢒ.ꢉꢋ/ꢙꢇꢉ  
*ꢍ&ꢍ ꢓꢋ9 *ꢐ  
Figure 33 PHY Loopback  
IDT77V1264L200  
"!# ꢃꢙꢌꢉꢋ ꢖꢉꢊꢔꢇꢉ  
ꢗ#ꢖ  
 Aꢞꢅꢙꢌꢉꢋ  
ꢃꢔꢒꢉ  
!ꢂ  Aꢞꢅꢙꢌꢉꢋ  
ꢜꢒ.ꢉꢋ/ꢙꢇꢉ  
*ꢍ&ꢍ ꢓꢋ9 *ꢍ  
Figure 34 Line Loopback  
29 of 49  
December 6, 2001  
IDT77V1264L200  
Counters  
Jitter in Loop Timing Mode  
Several condition counters are provided to assist external systems  
(e.g. software drivers) in evaluating communications conditions. It is  
anticipated that these counters will be polled from time to time (user  
selectable) to evaluate performance. A separate set of registers exists  
for each channel of the PHY.  
One of the primary concerns when using loop timing mode is the  
amount of jitter that gets added each time data is transmitted. Table 4  
shows the jitter measured at various data rates. The set-up shown in  
Figure 35 was used to perform these tests. The maximum jitter seen  
was at TX point 5 and the minimum jitter was at point 2. The loop timing  
jitter is defined as the amount of jitter generated by each TX node. In  
other words, the loop timing jitter or the jitter added by a loop-timed port  
in the set-up below is the difference between the Total Output Jitter and  
the Total Input Jitter.  
‹
Symbol Error Counters  
8 bits  
counts all invalid 5-bit symbols received  
‹
‹
Transmit Cell Counters  
16 bits  
counts all transmitted cells  
Receive Cell Counters  
16 bits  
counts all received cells, excluding idle cells and HEC errored  
cells  
‹
Receive HEC Error Counters  
5 bits  
counts all HEC errors received  
The TXCell and RXCell counters are sized (16 bits) to provide a full  
cell count (without roll over) if the counter is read once/second. The  
Symbol Error counter and HEC Error counter were given sufficient size  
to indicate exact counts for low error-rate conditions. If these counters  
overflow, a gross condition is occurring, where additional counter resolu-  
tion does not provide additional diagnostic benefit.  
Reading Counters  
1. Decide which counter value is desired. Write to the Counter  
Select Register(s) (0x06, 0x16, 0x26 and 0x36) to the bit location  
corresponding to the desired counter. This loads the High and  
Low Byte Counter Registers with the selected counter’s value,  
and resets this counter to zero.  
Note: Only one counter may be enabled at any time in each  
of the Counter Select Registers.  
2. Read the Counter Registers (0x04, 0x14, 0x24 or 0x34 (low  
byte)) and (0x05, 0x15, 0x25 or 0x35 (high byte)) to get the value.  
Further reads may be accomplished in the same manner by writing  
to the Counter Select Registers.  
Note: The PHY takes some time to set up the low and high  
byte counters after a specific counter has been selected in the  
Counter Selector register. This time delay (in µS) varies with  
the line rate and can be calculated as follows:  
Time delay (µS) =  
12.5___  
line rate (Mbps)  
Loop Timing Feature  
The 77V1264L200 also offers a loop timing feature for specific appli-  
cations where data needs to be repeated / transmitted using the recov-  
ered clock. If the loop timing mode is enabled in the Enhanced Control  
Register 1 bit 6, the recovered receive clock is used as to clock out data  
on transmit side. This mode is port specific, i.e., the user can select one  
or more ports to be in loop timing mode. In normal mode, the transmitter  
transmits data using the multiplied oscillator clock.  
30 of 49  
December 6, 2001  
IDT77V1264L200  
OSC  
1
2
RX  
TX  
Data  
Data  
CLK  
TX  
RX  
P1  
Loop Timing Mode  
P0  
Normal Mode  
3
4
RX  
TX  
Data  
Data  
CLK  
P2  
Loop Timing Mode  
Data  
Data  
RX  
TX  
CLK  
P3  
5
SWITCH  
Loop Timing Mode  
Figure 35 Test Setup for Loop Timing Jitter Measurements  
Loop Timing Jitter Specification  
Line Rate  
Mbps  
Data Rate  
Mbps  
Min.  
Typ.  
Max.  
Note  
32  
64  
25.6  
51.2  
--  
--  
--  
--  
100 ps  
100 ps  
80 ps  
--  
--  
--  
--  
Using 32Mhz OSC, multiplier at 1x  
Using 64Mhz OSC, multiplier at 1x  
Using 32Mhz OSC, multiplier at 4x  
Using 64Mhz OSC, multiplier at 4x  
128  
256  
102.4  
204.8  
20 ps  
Table 4 Loop Timing Jitter  
The waveforms below show some of the measurements taken with the set-up in Figure 35. Using the formula above, the jitter specification was  
derived. For example, at data rate of 25.6Mbps, jitter added going through Line Card 3 is 1.5ns -1.4ns (as shown in the waveforms below).  
31 of 49  
December 6, 2001  
IDT77V1264L200  
Jitter at 25.6Mbps at point 5 with respect to point 1  
Jitter at 25.6Mbps at point 4 with respect to point 1  
Jitter at 51.2Mbps at point 4 with respect to point 1  
Jitter at 51.2Mbps at point 5 with respect to point 1  
32 of 49  
December 6, 2001  
IDT77V1264L200  
Jitter at 102.4Mbps at point 5 with respect to point 1  
Jitter at 102.4Mbps at point 4 with respect to point 1  
Jitter at 256Mbps at point 5 with respect to point 1  
Jitter at 256Mbps at point 4 with respect to point 1  
From the above measurements taken, the amount of jitter being added at each TX point is not significant. These tests were also run at line rates of  
256Mbps for extended periods of time (64 hours) and no bit errors were seen.  
VPI/VCI Swapping  
For compatibility with IDT's SwitchStar products (77V400 and 77V500), the 77V1254L25 has the ability to swap parts of the VPI/VCI address  
space in the header of receive cells. This function is controlled by the VPI/VCI Swap bits, which are bit 5 of the Enhanced Control Registers (0x08,  
0x18, 0x28 and 0x38). The portions of the VPI/VCI that are swapped are shown below. Bits X(7:0) are swapped with Y(7:0) when the VPI/VCI Swap  
bit is set and the chip is in DPI mode.  
:
&
:
&
8ꢗꢜ  
8ꢂꢜ  
ꢎꢌ.ꢉ &  
ꢎꢌ.ꢉ (  
ꢎꢌ.ꢉ )  
ꢎꢌ.ꢉ *  
ꢎꢌ.ꢉ   
ꢁ: ꢁ< ꢁꢍ ꢁꢐ ꢁ* ꢁ) ꢁ( ꢁ& ꢎꢌ.ꢉ &  
,: ,< ,ꢍ ,ꢐ ꢎꢌ.ꢉ (  
;$ꢂꢏ8ꢗꢜ  
8ꢗꢜ  
8ꢂꢜ  
,* ,) ,( ,&  
ꢎꢌ.ꢉ )  
ꢎꢌ.ꢉ *  
ꢎꢌ.ꢉ   
8ꢂꢜ  
ꢗ!ꢜ  
ꢂꢃꢗ  
+ꢑꢂ  
33 of 49  
December 6, 2001  
IDT77V1264L200  
Line Side (Serial) Interface  
Each of the four ports has two pins for differential serial transmission, and two pins for differential serial receiving.  
PHY to Magnetics Interface  
A standard connection to 100and 120unshielded twisted pair cabling is shown in Figure 36. Note that the transmit signal is somewhat attenu-  
ated in order to meet the launch amplitude specified by the standards. The external receive circuitry is designed to attenuate low frequencies in order  
to compensate for the high frequency attenuation of the cable.  
Also, the receive circuitry biases the positive and negative RX inputs to slightly different voltages. This is done so that the receiver does not receive  
false signals in the absence of a real signal. This can be important because the 77V1264L200 does not disable error detection or interrupts when an  
input signal is not present.  
When connecting to UTP at 51.2Mbps and 204.8Mbps, it is necessary to use magnetics with sufficient bandwidth. Refer to Table 6 for the recom-  
mended magnetics.  
IDT77V1264L200  
ꢈꢇꢛ  
ꢆꢊ  
ꢜ"ꢛ#  
ꢜ"ꢛ$  
!
ꢆꢌ  
ꢆꢞ  
ꢝꢛꢛ  
ꢆꢎ  
ꢏꢐꢑꢒꢓꢂꢁꢔꢕ  
ꢗꢊ  
ꢆꢉ  
ꢆ"ꢛ#  
ꢊ!  
ꢆꢃ  
%ꢊ  
ꢆꢍ  
ꢊꢄ  
ꢆꢋ  
ꢗꢞ  
ꢊꢎ  
ꢆ"ꢛ$  
ꢊꢍ  
ꢊꢌ  
ꢊꢞ  
ꢆ!  
ꢈꢇꢛ  
.
*ꢍ&ꢍ ꢓꢋ9 *<  
ꢈꢇꢛ  
Figure 36 Recommended Connection to Magnetics  
Component  
R1  
Value  
47  
Tolerance  
±5%  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
47Ω  
±5%  
±5%  
±5%  
±5%  
±5%  
±5%  
±5%  
±5%  
620Ω  
110Ω  
2700Ω  
2700Ω  
82Ω  
33Ω  
33Ω  
Table 5 Analog Component Values  
34 of 49  
December 6, 2001  
IDT77V1264L200  
Component  
C1  
Value  
470pF  
Tolerance  
±20%  
C2  
L1  
470pF  
±20%  
±20%  
3.3µH  
Table 5 Analog Component Values  
Magnetics Modules for 25.6 Mbps  
Pulse PE-67583 or R4005  
TDK TLA-6M103  
www.pulseeng.com  
www.component.tdk.com  
Magnetics Module for 51.2 Mbps  
Pulse R4005  
www.pulseeng.com  
Magnetics Module for 204.8 Mbps  
Pulse ST6200T  
www.pulseeng.com  
Table 6 Magnetics Modules  
Status and Control Register List  
The 77V1264L200 has 41 registers that are accessible through the utility bus. Each of the four ports has 9 registers dedicated to that port. There is  
only one register (0x40) which is not port specific.  
For those register bits which control operation of the Utopia interface, the operation of the Utopia interface is determined by the registers corre-  
sponding to the port which is selected at that particular time. For consistent operation, the Utopia control bits should be programmed the same for all  
four ports, except for the Utopia 2 port addresses in the Enhanced Control Registers.  
Register Address  
Register Name  
Port 0  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
Port 1  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
Port 2  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
Port 3  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
All Ports  
Master Control Registers  
Interrupt Status Registers  
Diagnostic Control Registers  
LED Driver and HEC Status/control  
Low Byte Counter Register [7:0]  
High Byte Counter Register [15:8]  
Counter Registers Read Select  
Interrupt Mask Registers  
Enhanced Control 1 Registers  
Enhanced Control 2 Registers  
RXREF and TXREF Control Register  
0x40  
Nomenclature  
"Reserved" register bits, if written, should always be written "0"  
R-only or W-only = register is read-only or write-only  
“0” = ‘cleared’ or ‘not set’  
R/W = register may be read and written via the utility bus  
sticky = register bit is cleared after the register containing it is read; all sticky bits are read-only  
“1” = ‘set’  
35 of 49  
December 6, 2001  
IDT77V1264L200  
Master Control Registers  
Addresses: 0x00, 0x10, 0x20, 0x30  
Bit  
Type  
R/W  
Initial State  
Function  
7
6
0
Reserved  
R/W  
1 = discard errored cells Discard Receive Error Cells - On receipt of any cell with an error (e.g. short cell, invalid command mnemonic, receive  
HEC error (if enabled), this cell will be discarded and will not enter the receive FIFO.  
5
R/W  
0 = all interrupts  
Enable Cell Error Interrupts Only - If Bit 0 in this register is set (Interrupts Enabled), setting of this bit enables only  
"Received Cell Error" (as defined in bit 6) to trigger interrupt line.  
4
3
R/W  
R/W  
0 = disabled  
Transmit Data Parity Check - Directs TC to check parity of TXDATA against parity bit located in TXPARITY.  
1 = discard idle cells  
Discard Received Idle Cells - Directs TC to discard received idle (VPI/VCI = 0) cells from PMD without signalling  
external systems.  
2
1
0
R/W  
R/W  
R/W  
0 = not halted  
Halt Transmit - Halts transmission of data from TC to PMD and forces the TXD outputs to the "0" state  
UTOPIA Level 1 mode select: - 0 = cell mode, 1 = byte mode. Not applicable for Utopia 2 or DPI modes.  
0 = cell mode  
1 = enable interrupts  
Enable Interrupt Pin (Interrupt Mask Bit) - Enables interrupt output pin (pin 85). If cleared, pin is always high and  
interrupt is masked. If set, an interrupt will be signaled by setting the interrupt pin to "0". It doesn’t affect the Interrupt  
Status Registers.  
Interrupt Status Registers  
Addresses: 0x01, 0x11, 0x21, 0x31  
Bit  
Type  
Initial State  
Reserved  
Function  
7
6
R
0 = Bad Signal  
Good Signal Bit - See definition on page 14.  
1 - Good Signal 0 - Bad Signal  
5
4
sticky  
sticky  
0
0
HEC error cell received - Set when a HEC error is detected on received cell.  
"Short Cell" Received - Interrupt signal which flags received cells with fewer than 53 bytes. This condition is detected  
when receiving Start-of-Cell command bytes with fewer than 53 bytes between them.  
3
2
sticky  
sticky  
0
0
Transmit Parity Error - If Bit 4 of Register 0x00 / 0x10 / 0x20 / 0x30 is set (Transmit Data Parity Check), this interrupt  
flags a transmit data parity error condition. Odd parity is used.  
Receive Signal Condition change - This interrupt is set when the received ’signal’ changes either from ’bad to good’  
or from ’good to bad’.  
1
0
sticky  
sticky  
0
0
Received Symbol Error - Set when an undefined 5-bit symbol is received.  
Receive FIFO Overflow - Interrupt which indicates when the receive FIFO has filled and cannot accept additional data.  
Diagnostic Control Registers  
Addresses: 0x02, 0x12, 0x22, 0x32  
Bit  
Type  
R/W  
Initial State  
0 = normal  
Function  
7
Force TXCLAV deassert - (applicable only in Utopia 1 and 2 modes) Used during line loopback mode to prevent  
upstream system from continuing to send data to the 77V1264L200. Not applicable in DPI mode.  
36 of 49  
December 6, 2001  
IDT77V1264L200  
Addresses: 0x02, 0x12, 0x22, 0x32  
Bit  
Type  
R/W  
Initial State  
0 = UTOPIA  
Function  
6
RXCLAV Operation Select - (for Utopia 1 mode) The UTOPIA standard dictates that during cell mode operation, if the  
receive FIFO no longer has a complete cell available for transfer from PHY, RXCLAV is deasserted following transfer of  
the last byte out of the PHY to the upstream system. With this bit set, early deassertion of this signal will occur coinci-  
dent with the end of Payload byte 44 (as in octet mode for TXCLAV). This provides early indication to the upstream  
system of this impending condition.  
0 = "Standard UTOPIA RXCLAV’  
1 = "Cell mode = Byte mode"  
5
R/W  
1 = tri-state  
Single/Multi-PHY configuration select - (applicable and writable only in Utopia 1 mode)  
0 = single:  
Never tri-state RXDATA, RXPARITY and RXSOC  
1 = Multi-PHY mode: Tri-state RXDATA, RXPARITY and RXSOC when RXEN = 1  
4
3
R/W  
R/W  
0 = normal  
0 = normal  
RFLUSH = Clear Receive FIFO - This signal is used to tell the TC to flush (clear) all data in the receive FIFO. The TC  
signals this completion by clearing this bit.  
Insert Transmit Payload Error - Tells TC to insert cell payload errors in transmitted cells. This can be used to test  
error detection and recovery systems at destination station, or, under loopback control, at the local receiving station.  
This payload error is accomplished by flipping bit 0 of the last cell payload byte.  
2
R/W  
R/W  
0 = normal  
Insert Transmit HEC Error - Tells TC to insert HEC error in Byte 5 of cell. This can be used to test error detection and  
recovery systems in downstream switches, or, under loopback control, the local receiving station. The HEC error is  
accomplished by flipping bit 0 of the HEC byte.  
1,0  
00 = normal  
Loopback Control  
bit # 1  
0
0
0 Normal mode (receive from network)  
1
1
0
0 PHY Loopback (with clock recovery)1  
1 Line Loopback  
1 PHY Loopback (with clock recovery)1  
1. When Bits [1:0] in the Diagnostic Control Registers are set to 10, the PHY loopback mode works only if clock multiplier is 1x. For higher multiplies, these bits must be set to 01.  
LED Driver and HEC Status/Control Registers  
Addresses: 0x03, 0x13, 0x23, 0x33  
Bit  
Type  
Initial State  
Function  
7
6
0
Reserved  
R/W  
0 = enable checking  
Disable Receive HEC Checking (HEC Enable) - When not set, the HEC is calculated on first 4 bytes of received cell,  
and compared against the 5th byte. When set (= 1), the HEC byte is not checked.  
5
R/W  
R/W  
0 = enable calculate & Disable Transmit HEC Calculate & Replace - When set, the 5th header byte of cells queued for transmit is not  
replace  
replaced with the HEC calculated across the first four bytes of that cell.  
4, 3  
00 = 1 cycle  
RXREF Pulse Width Select - See notes about 8KHz Timing Marker in the Functional Description Section.  
bit #  
4
3 .  
0
0 RXREF active for 1 OSC cycle  
1 RXREF active for 2 OSC cycles  
0 RXREF active for 4 OSC cycles  
1 RXREF active for 8 OSC cycles  
0
1
1
2
1
0
R
R
R
1 = empty  
FIFO Status  
1 = TxFIFO empty  
0 = Cell Transmitted  
0 = Cell Received  
0 = TxFIFO not empty  
1
1
TXLED Status  
RXLED Status  
1 = Cell Not Transmitted  
1 = Cell Not Received  
37 of 49  
December 6, 2001  
IDT77V1264L200  
Low Byte Counter Registers [7:0]  
Addresses: 0x04, 0x14, 0x24, 0x34  
Bit  
[7:0]  
Type  
Initial State  
0x00  
Function  
R
Provides low byte of counter value selected via registers 0x06, 0x16, 0x26, and 0x36  
High Byte Counter Registers [15:8]  
Addresses: 0x05, 0x15, 0x25, 0x35  
Bit  
[7:0]  
Type  
Initial State  
0x00  
Function  
R
Provides high-byte of counter value selected via registers 0x06, 0x16, 0x26, and 0x36  
Counter Select Registers  
Addresses: 0x06, 0x16, 0x26, 0x36  
Bit  
Type  
Initial State  
Function  
7
6
5
4
3
2
1
0
0
Reserved.  
W
W
W
W
Reserved.  
Reserved.  
Reserved.  
Symbol Error Counter.  
TXCell Counter.  
0
0
RXCell Counter. Cells with HEC errors are never counted.  
Receive HEC Error Counter.  
0
Note: For proper operation, only one bit may be set in a Counter Select Register at any time.  
Interrupt Mask Registers  
Addresses: 0x07, 0x17, 0x27, 0x37  
Bit  
Type  
Initial State  
Function  
7
6
5
4
3
2
1
0
0
0
Reserved.  
Reserved.  
R/W  
0 = interrupt enabled  
0 = interrupt enabled  
0 = interrupt enabled  
0 = interrupt enabled  
0 = interrupt enabled  
0 = interrupt enabled  
HEC Error Cell.  
R/W  
R/W  
R/W  
R/W  
R/W  
Short Cell Error.  
Transmit Parity Error.  
Receive Signal Condition Change.  
Receive Cell Symbol Error.  
Receive FIFO Overflow.  
Note: When set to "1", these bits mask the corresponding interrupts going to the interrupt pin (INT). When set to "0", the interrupts are  
unmasked. These interrupts correspond to the interrupt status bits in the Interrupt Status Registers.  
38 of 49  
December 6, 2001  
IDT77V1264L200  
Enhanced Control 1 Registers  
Addresses: 0x08, 0x18, 0x28, 0x38  
Bit  
Type  
Initial State  
0 = not reset  
Function  
7
6
W
Individual Port Software Reset 1= Reset. This bit is self-cleaning; It isn’t necessary to write “0” to exit reset.  
R/W  
0 = OSC  
Transmit Line Clock (or Loop Timing Mode). When set to 0, the OSC input is used as the transmit line clock.  
When set to 1, the recovered receive clock is used as the transmit line clock.  
5
R/W  
R/W  
0 = no swap  
VPI/VCI Swap DPI mode only. Receive direction only. See description earlier.  
4-0  
Port 0 (Reg 0x08) 00000 Utopia 2 Port Address When operating in Utopia 2 Mode, these register bits determine the Utopia 2 port address  
Port 1 (Reg 0x18) 00001  
Port 2 (Reg 0x28) 00010  
Port 3 (Reg 0x38) 00011  
Enhanced Control 2 Registers  
Addresses: 0x09, 0x19, 0x29, 0x39  
Bit  
7-6  
Type  
Initial State  
Function  
R/W  
00  
Line Rate Control These bits determine the line bit rate relative to the reference clock, as well as the pre-driver  
strength for the TXD+/- outputs.  
00 Clock multiplier = 1x, pre-driver strength is “standard”  
01 Clock multiplier = 2x, pre-driver strength is “standard”  
10 Clock multiplier = 4x, pre-driver strength is “strong”  
11 Reserved  
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RXREF and TXREF Control Register  
Addresses: 0x40  
Bit  
7-6  
Type  
Initial State  
Function  
R/W  
W
0 = RXREF0 (Port 0) RXREF Source Select Selects which of the four ports (0-3) is the source of RXREF.  
5
0 = not reset  
0
Master Software Reset 1 = Reset. This bit is self-cleaning; it isn’t necessary to write “0” to exit reset.  
4
Reserved  
3-0  
R/W  
0000 = not looped  
RXREF to TXREF Loop Select When set to 0, TXREF is used to generate X_8 timing marker commands.  
When set to 1, TXREF input is ignored, and received X_8 timing commands are looped back and added to the transmit  
stream of that same port. It is recommended that the RXREF pulse width be set to 2x, 4x, and 8x or greater when the  
clock multiplier is set to 1x, 2x, or 4x respectively and bits 3-0 are set to 1. Refer to Figure 7.  
bit 3: port 3  
bit 2: port 2  
bit 1: port 1  
bit 0: port 0  
39 of 49  
December 6, 2001  
IDT77V1264L200  
Absolute Maximum Ratings  
Symbol  
Rating  
Value  
Unit  
VTERM  
TBIAS  
TSTG  
IOUT  
Terminal Voltage with Respect to GND  
Temperature Under Bias  
Storage Temperature  
-0.5 to +5.5  
V
-55 to +125 °C  
-55 to +120 °C  
DC Output Current  
50  
mA  
Note: Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
Recommended DC Operating Conditions  
Symbol  
Parameter  
Min.  
Typ. Max. Unit  
VDD  
Digital Supply Voltage  
Digital Ground Voltage  
Input High Voltage  
Input Low Voltage  
3.13  
0
3.3  
0
3.47  
0
V
V
V
V
V
V
V
GND  
VIH  
2.0  
-0.3  
3.13  
0
____  
____  
3.3  
0
5.25  
0.8  
3.47  
0
VIL  
AVDD  
AGND  
VDIF  
Analog Supply Voltage  
Analog Ground Voltage  
VDD - AVDD  
-0.5  
0
0.5  
Capacitance (TA = +25°C, F = 1MHz)  
Symbol  
Parameter  
Conditions Max.  
Unit  
1
CIN  
Input Capacitance  
I/O Capacitance  
VIN = 0V  
10  
10  
pF  
pF  
1
CIO  
VOUT = 0V  
1. Characterized values, not tested.  
DC Electrical Characteristics (All Pins except TX+/- and RX+/-)  
Symbol  
Parameter  
Test Conditions  
Min.  
Max. Unit  
ILI  
Input Leakage Current  
Gnd VIN VDD  
-5  
5
µA  
µA  
V
ILO  
/O (as input) Leakage Current  
Output Logic "1" Voltage  
Gnd VIN VDD  
-10  
2.4  
2.4  
10  
1
2
VOH1  
VOH2  
IOH = -2mA, VDD = min.  
Output Logic "1" Voltage  
IOH = -8mA, VDD = min.  
V
3
VOL  
Output Logic "0" Voltage  
IOL = -8mA, VDD = min.  
0.4  
91  
V
4, 5  
IDD1  
Digital Power Supply Current - VDD  
OSC = 32 MHz, all outputs unloaded  
OSC = 64 MHz, all outputs unloaded  
OSC = 256 MHz, all outputs unloaded  
mA  
mA  
mA  
mA  
mA  
mA  
169  
197  
44  
5
IDD2  
Analog Power Supply Current - AVDD OSC = 32 MHz, all outputs unloaded  
OSC = 64 MHz, all outputs unloaded  
54  
OSC = 256 MHz, all outputs unloaded  
61  
1. For AD[7:0] pins only.  
2. For all output pins except AD[7:0], INT and TX+/-.  
3. For all output pins except TX+/-.  
4. Add 15mA for each TX+/- pair that is driving a load.  
5. Total supply current is the sum of IDD1 and IDD2  
40 of 49  
December 6, 2001  
IDT77V1264L200  
DC Electrical Characteristics (TX+/- Output Pins Only)  
Symbol  
Parameter  
Test Conditions  
IOH = -20mA  
IOL = -20mA  
Min.  
Max.  
Unit  
VOH1  
VOL  
Output Logic High Voltage  
Output Logic Low Voltage  
VDD - 0.5V  
V
0.5  
V
DC Electrical Characteristics (RXD+/- Input Pins Only)  
Symbol  
Parameter  
RXD+/- input voltage range  
Min.  
Typ  
Max.  
Unit  
VIR  
0
VDD  
V
V
V
VIP  
RXD+/- input peak-to-peak differential voltage  
RXD+/- input common mode voltage  
0.6  
1.0  
2*VDD  
VDD-0.5  
VICM  
VDD/2  
UTOPIA Level 2 Bus Timing Parameters  
Symbol  
Parameter  
Min.  
Max.  
Unit  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
TXCLK Frequency  
0.2  
40  
4
50  
60  
10  
10  
50  
60  
10  
10  
10  
10  
10  
10  
MHz  
%
TXCLK Duty Cycle (% of t1)  
TXDATA[15:0], TXPARITY Setup Time to TXCLK  
TXDATA[15:0], TXPARITY Hold Time to TXCLK  
TXADDR[4:0], Setup Time to TXCLK  
TXADDR[4:0], Hold Time to TXCLK  
TXSOC, TXEN Setup Time to TXCLK  
TXSOC, TXEN Hold Time to TXCLK  
TXCLK to TXCLAV High-Z  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
%
1.5  
4
1.5  
4
1.5  
2
t10  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
t20  
t21  
t22  
t23  
TXCLK to TXCLAV Low-Z (min) and Valid (max)  
RXCLK Frequency  
2
0.2  
40  
4
RXCLK Duty Cycle (% of t12)  
RXEN Setup Time to RXCLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RXCLK Hold Time to RXCLK  
1.5  
4
RXADDR[4:0] Setup Time to RXCLK  
RXADDR[4:0] Hold Time to RXCLK  
RXCLK to RXCLAV High-Z  
1.5  
2
RXCLK to RXCLAV Low-Z (min) and Valid (max)  
RXCLK to RXSOC High-Z  
2
2
RXCLK to RXSOC Low-Z (min) and Valid (max)  
RXCLK to RXDATA, RXPARITY High-Z  
2
2
RXCLK to RXDATA, RXPARITY Low-Z (min) and Valid (max)  
2
41 of 49  
December 6, 2001  
IDT77V1264L200  
.*  
.  
.)  
.(  
!ꢁꢂꢃꢄ  
!ꢁꢖ"!"4(ꢍ5&6C  
!ꢁꢗ"ꢀꢜ!,  
%ꢇ.ꢉ. (  
.<  
%ꢇ.ꢉ. )  
.  
!ꢁ"ꢖꢖꢀ4ꢐ5&6  
.:  
.=  
.(&  
.>  
.(&  
!ꢁꢘ%ꢂ  
TXEN  
+ꢔꢕG-ꢛ  
+ꢔꢕG-ꢛ  
!ꢁꢂꢃ"8  
*ꢍ&ꢍ ꢓꢋ9 *:  
Figure 37 UTOPIA Level 2 Transmit  
.()  
.(*  
ꢀꢁꢂꢃꢄ  
.(ꢐ  
.(<  
.(ꢍ  
.(:  
RXEN  
ꢀꢁ"ꢖꢖꢀ4ꢐ5&6  
.(=  
.(>  
.(>  
+ꢔꢕG-ꢛ  
+ꢔꢕG-ꢛ  
+ꢔꢕG-ꢛ  
ꢀꢁꢂꢃ"8  
ꢀꢁꢘ%ꢂ  
.)(  
.)(  
.)*  
.)&  
+ꢔꢕG-ꢛ  
.)*  
.))  
+ꢔꢕG-ꢛ  
+ꢔꢕG-ꢛ  
ꢀꢁꢖ"!"4(ꢍ5&6C  
ꢀꢁꢗ"ꢀꢜ!,  
*ꢍ&ꢍ ꢓꢋ9 *=  
.
Figure 38 UTOPIA Level 2 Receive  
42 of 49  
December 6, 2001  
IDT77V1264L200  
UTOPIA Level 1 Bus Timing Parameters  
Symbol  
Parameter  
Min.  
Max.  
50  
Unit  
t31  
TXCLK Frequency  
0.2  
40  
4
MHz  
%
t32  
t33  
t34  
t35  
t36  
t37  
t39  
t40  
t41  
t42  
t43  
t44  
t45  
t46  
t47  
TXCLK Duty Cycle (% of t31)  
60  
10  
50  
60  
10  
10  
10  
10  
10  
TXDATA[7:0], TXPARITY Setup Time to TXCLK  
TXDATA[7:0], TXPARITY Hold Time to TXCLK  
TXSOC, TXEN[3:0] Setup Time to TXCLK  
TXSOC, TXEN[3:0] Hold Time to TXCLK  
TXCLK to TXCLAV[3:0] Invalid (min) and Valid (max)  
RXCLK Frequency  
ns  
1.5  
4
ns  
ns  
1.5  
2
ns  
ns  
MHz  
%
0.2  
40  
4
RXCLK Duty Cycle (% of t39)  
RXEN[3:0] Setup Time to RXCLK  
ns  
ns  
RXEN[3:0] Hold Time to RXCLK  
1.5  
2
RXCLK to RXCLAV[3:0] Invalid (min) and Valid (max)  
RXCLK to RXSOC High-Z  
ns  
ns  
2
RXCLK to RXSOC Low-Z (min) and Valid (max)  
RXCLK to RXDATA, RXPARITY High-Z  
RXCLK to RXDATA, RXPARITY Low-Z (min) and Valid (max)  
2
ns  
ns  
ns  
2
2
.*(  
.*)  
.**  
.*ꢐ  
!ꢁꢂꢃꢄ  
!ꢁꢖ"!"4:5&6C  
!ꢁꢗ"ꢀꢜ!,  
%ꢇ.ꢉ. (  
.*<  
%ꢇ.ꢉ. )  
.*ꢍ  
.*:  
!ꢁꢘ%ꢂ  
TXEN[3:0]  
!ꢁꢂꢃ"84*5&6  
*ꢍ&ꢍ ꢓꢋ9 *>  
Figure 39 UTOPIA Level 1 Transmit  
.*>  
.ꢐ&  
ꢀꢁꢂꢃꢄ  
.ꢐ(  
.ꢐ)  
RXEN[3:0]  
.ꢐ*  
ꢀꢁꢂꢃ"84*5&6  
ꢀꢁꢘ%ꢂ  
.ꢐꢍ  
.ꢐꢍ  
.ꢐ:  
.ꢐꢐ  
.ꢐ<  
+ꢔꢕG-ꢛ  
+ꢔꢕG-ꢛ  
+ꢔꢕG-ꢛ  
+ꢔꢕG-ꢛ  
.ꢐ:  
ꢀꢁꢖ"!"4:5&6C  
ꢀꢁꢗ"ꢀꢜ!,  
*ꢍ&ꢍ ꢓꢋ9 ꢐ&  
Figure 40 UTOPIA Level 1 Receive  
43 of 49  
December 6, 2001  
IDT77V1264L200  
DPI Bus Timing Parameters  
Symbol  
Parameter  
Min.  
Max.  
50  
Unit  
t51  
t52  
t53  
t54  
t55  
t56  
t57  
t61  
t62  
t63  
t64  
t65  
DPICLK Frequency  
0.2  
40  
2
MHz  
%
DPICLK Duty Cycle (% of t51)  
60  
14  
12  
12  
DPICLK to Pn_TCLK Propagation Delay  
Pn_TFRM Setup Time to Pn_TCLK  
Pn_TFRM Hold Time to Pn_TCLK  
Pn_TD[3:0] Setup Time to Pn_TCLK  
Pn_TD[3:0] Hold Time to Pn_TCLK  
Pn_RCLK Period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
11  
1
11  
1
25  
10  
10  
2
Pn_RCLK High Time  
Pn_RCLK Low Time  
Pn_RCLK to Pn_TFRM Invalid (min) and Valid (max)  
Pn_RCLK to Pn_RD Invalid (min) and Valid (max)  
2
.ꢍ(  
.ꢍ)  
ꢖꢗꢜꢂꢃꢄ  
ꢗꢒB!ꢂꢃꢄ  
ꢗꢒB!$ꢀ#  
ꢗꢒB!ꢖ4*5&6  
.ꢍ*  
.ꢍꢐ  
.ꢍꢍ  
.ꢍ<  
.ꢍ:  
*ꢍ&ꢍ ꢓꢋ9 ꢐ(  
.
.
Figure 41 DPI Transmit  
.<(  
.<)  
.<*  
ꢗꢒBꢀꢂꢃꢄ  
ꢗꢒBꢀ$ꢀ#  
ꢗꢒBꢀꢖ4*5&6  
.<ꢐ  
.<ꢍ  
*ꢍ&ꢍ ꢓꢋ9 ꢐ)  
Figure 42 DPI Receive  
44 of 49  
December 6, 2001  
IDT77V1264L200  
Utility Bus Read Cycle  
Name Min. Max. Unit  
Description  
Tas  
10  
0
10  
18  
MHz  
%
Address setup to ALE  
Chip select to read enable  
Address hold to ALE  
Tcsrd  
Tah  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Tapw  
Ttria  
Trdpw  
Tdh  
10  
0
ALE min pulse width  
Address tri-state to RD assert  
Min. RD pulse width  
20  
0
Data Valid hold time  
Tch  
0
RD deassert to CS deassert  
RD deassert to data tri-state  
Read Data access  
Ttrid  
Trd  
5
Tar  
ALE low to start of read  
Start of read to Data low-Z  
Trdd  
0
Utility Bus Write Cycle  
Name Min. Max. Unit  
Description  
Tapw  
Tas  
10  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ALE min pulse width  
Address set up to ALE  
Address hold time to ALE  
CS Assert to WR  
Tah  
Tcswr  
Twrpw  
Tdws  
Tdwh  
Tch  
0
20  
20  
10  
0
Min. WR pulse width  
Write Data set up  
Write Data hold time  
WR deassert to CS deassert  
ALE low to end of write  
Taw  
20  
!ꢙG  
!ꢙ  
"ꢖ4:5&6  
0ꢔꢒ3A.2  
"ꢓꢓꢋꢉ    
!ꢙ39  
"ꢃꢑ  
!ꢇG  
!ꢇ ꢋꢓ  
CS  
!ꢙꢋ  
!ꢋꢓ39  
!.ꢋꢔꢓ  
RD  
!ꢓG  
!ꢋꢓ  
!ꢋꢓꢓ  
"ꢖ4:5&6  
0ꢆA.3A.2  
ꢖꢙ.ꢙ  
*ꢍ&ꢍ ꢓꢋ9 ꢐ*  
Figure 43 Utility Bus Read Cycle  
45 of 49  
December 6, 2001  
IDT77V1264L200  
!ꢙ  
!ꢙG  
!ꢓ9  
!ꢓ9G  
"ꢖ4:5&6  
ꢖꢙ.ꢙ 0ꢔꢒ3A.2  
"ꢓꢓꢋꢉ    
!ꢙ39  
"ꢃꢑ  
!ꢇG  
!ꢙ9  
CS  
!ꢇ 9ꢋ  
!9ꢋ39  
WR  
*ꢍ&ꢍ ꢓꢋ9 ꢐꢐ  
Figure 44 Utility Bus Write Cycle  
OSC, RXREF, TXREF and Reset Timing  
Symbol  
Tcyc  
Parameter  
Min.  
Typ.  
Max.  
33  
Unit  
OSC cycle period  
30  
15  
31.25  
ns  
ns  
15.625  
16.5  
60  
60  
1
Tch  
OSC high tim  
OSC low time  
40  
40  
1
%
%
Tcl  
Tcc  
OSC cycle to cycle period variation  
OSC to RXREF Propagation Delay  
TXREF High Time  
%
Trrpd1  
Ttrh  
Ttrl  
30  
ns  
ns  
ns  
35  
35  
TXREF Low Time  
Trspw  
Minimum RST Pulse Width  
two OSC cycles  
1. The width of the RXREF pulse is programmable in the LED Driver and HEC Status/Control Registers.  
!ꢇG  
!ꢇꢅ  
!ꢇꢌꢇ  
%ꢘꢂ  
!ꢋꢋ3ꢓ  
!ꢋꢋ3ꢓ  
RXREF  
!.ꢋꢅ  
!.ꢋG  
TXREF  
!ꢋ 39  
RST  
.
*ꢍ&ꢍ ꢓꢋ9 ꢐꢍ  
Figure 45 OSC, RXREF, TXREF and Reset Timing  
46 of 49  
December 6, 2001  
IDT77V1264L200  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
3ns  
Input Rise/Fall Times  
Input Timing Reference Levels 1.5V  
Output Reference Levels  
Output Load  
1.5V  
See Figure 46  
3.3V  
1.2KΩ  
D.U.T.  
30pF*  
900Ω  
* Includes jig and scope capacitances.  
Figure 46 Output Load  
A note about Figures 47 and 48: The ATM Forum and ITU-T standards for 25 Mbps ATM define "Network" and "User" interfaces. They are identical  
except that transmit and receive are switched between the two. A Network device can be connected directly to a User device with a straight-through  
cable. User-to-User or Network-to-Network connections require a cable with 1-to-7 and 2-to-8 crossovers.  
ꢚꢆ.ꢉ *  
(&ꢍ  
(&<  
(((  
(()  
!ꢁ*7 !ꢁ*-  
ꢚꢆ.ꢉ (  
ꢚꢆ.ꢉ )  
";ꢚꢖ  
ꢀ'  
(
ꢀ'  
)
((ꢐ ꢀꢁ*-  
((ꢍ ꢀꢁ*7  
$ꢔꢅ.ꢉꢋ  
=
:
<
  * ) (  
ꢆꢖꢍꢎ  
ꢗꢘꢒꢒꢓꢔꢂꢘꢙ  
ꢏꢐꢑꢒꢓꢂꢁꢔꢕ  
IDT77V1264L200  
:
> (& (( () (* (ꢐ (ꢍ (<  
";ꢚꢖ  
!'  
!'  
=
$ꢔꢅ.ꢉꢋ  
ꢆꢖꢍꢎ  
ꢆꢖꢍꢎ  
ꢆꢖꢍꢎ  
ꢏꢐꢑꢒꢓꢂꢁꢔꢕ  
ꢏꢐꢑꢒꢓꢂꢁꢔꢕ  
ꢏꢐꢑꢒꢓꢂꢁꢔꢕ  
(ꢐ(  
(ꢐ)  
*ꢍ&ꢍ ꢓꢋ9 ꢐ:  
.
Figure 47 PC Board Layout for ATM Network  
Note: 1.No power or ground plane inside this area.  
2.Analog power plane inside this area.  
3.Digital power plane inside this area.  
4.A single ground plane should extend over the area covered by the analog and digital power planes, without breaks.  
5.All analog signal traces should avoid 90° corners.  
47 of 49  
December 6, 2001  
IDT77V1264L200  
(&ꢍ  
(&<  
ꢚꢆ.ꢉ *  
(((  
(()  
!ꢁ*7 !ꢁ*-  
ꢚꢆ.ꢉ (  
";ꢚꢖ  
ꢚꢆ.ꢉ )  
!'  
(
)
$ꢔꢅ.ꢉꢋ  
!'  
=
:
<
  * ) (  
ꢆꢖꢍꢎ  
ꢗꢘꢒꢒꢓꢔꢂꢘꢙ  
ꢏꢐꢑꢒꢓꢂꢁꢔꢕ  
IDT77V1264L200  
:
=
((ꢐ ꢀꢁ*-  
((ꢍ ꢀꢁ*7  
> (& (( () (* (ꢐ (ꢍ (<  
";ꢚꢖ  
ꢀ'  
ꢀ'  
$ꢔꢅ.ꢉꢋ  
ꢆꢖꢍꢎ  
ꢆꢖꢍꢎ  
ꢆꢖꢍꢎ  
ꢏꢐꢑꢒꢓꢂꢁꢔꢕ  
ꢏꢐꢑꢒꢓꢂꢁꢔꢕ  
ꢏꢐꢑꢒꢓꢂꢁꢔꢕ  
(ꢐ(  
(ꢐ)  
.
*ꢍ&ꢍ ꢓꢋ9 ꢐ=  
Figure 48 PC Board Layout for ATM User  
Note: 1.No power or ground plane inside this area.  
2.Analog power plane inside this area.  
3.Digital power plane inside this area.  
4.A single ground plane should extend over the area covered by the analog and digital power planes, without breaks.  
5.All analog signal traces should avoid 90° corners.  
Package Dimensions  
(ꢐꢐ  
(&>  
")  
(
"(  
(&=  
.
(ꢐꢐ-ꢗꢔꢒ  
ꢗ?$ꢗ  
ꢑ(  
:*  
*<  
"
*:  
:)  
(
ꢘ,#ꢎ%ꢃ  
#ꢜꢚD  
ꢚ%#D  
#"ꢁD  
"
"(  
")  
*D:&  
&D**  
*D*:  
*(D)&  
)=D&&  
*(D)&  
)=D&&  
&D==  
&D<ꢍ  
-
-
ꢐD&:  
&D)ꢍ  
-
*D)&  
*D<&  
-
-
ꢖ(  
-
-
-
-
-
-
ꢑ(  
&D:*  
-
(D&*  
-
&D))  
&D*=  
ꢖꢔꢝꢉꢒ ꢔꢆꢒ  ꢙꢋꢉ ꢔꢒ ꢝꢔꢅꢅꢔꢝꢉ.ꢉꢋ  
*ꢍ&ꢍ ꢓꢋ9 ꢐ>  
PSC-4053 is a more comprehensive package outline drawing which is available from the packaging section of the IDT web site.  
48 of 49  
December 6, 2001  
IDT77V1264L200  
Ordering Information  
ꢜꢖ!  
ꢚꢚꢚꢚꢚ  
"
ꢚꢚꢚ  
"
"
ꢗꢋꢆꢇꢉ  ꢏ  
ꢖꢉꢊꢔꢇꢉ !ꢌ3ꢉ  
ꢘ3ꢉꢉꢓ  
ꢗꢙꢇꢈꢙꢕꢉ  
ꢗꢆ9ꢉꢋ  
!ꢉꢝ3D ꢀꢙꢒꢕꢉ  
ꢎꢅꢙꢒꢈ  
ꢂꢆꢝꢝꢉꢋꢇꢔꢙꢅ 0&ꢟꢂ .ꢆ 7:&ꢟꢂ2  
ꢜꢒꢓA .ꢋꢔꢙꢅ 0-ꢐ&ꢟꢂ .ꢆ 7=ꢍꢟꢂ2  
ꢗ;  
(ꢐꢐ-ꢗꢔꢒ ꢗ?$ꢗ 0ꢗ1-(ꢐꢐ2  
)&&  
)ꢍD< - )&ꢐD= #ꢞꢏ  
77V1264L200  
?Aꢙꢓ )ꢍ#ꢞꢏ  "!# ꢗ+,  
!ꢋꢙꢒ ꢝꢔ  ꢔꢆꢒ ꢂꢆꢒꢊꢉꢋꢕꢉꢒꢇꢉ 0!ꢂ2  
ꢙꢒꢓ ꢗ#ꢖ ꢘAꢞꢅꢙꢌꢉꢋ  
*ꢍ&ꢍ ꢓꢋ9 ꢍ& )&&  
.
Revision History  
September 20, 2001: Initial publication.  
December 6, 2001: Added DPI information.  
CORPORATE HEADQUARTERS  
2975 Stender Way  
for SALES:  
for Tech Support:  
800-345-7015 or 408-727-6116  
fax: 408-330-1748  
email: phyhelp@idt.com  
phone: 408-330-1752  
Santa Clara, CA 95054  
www.idt.com  
49 of 49  
December 6, 2001  

相关型号:

IDT77V1264L200PGI

Quad Port PHY (Physical Layer) for 25.6, 51.2, and 204.8 Mbps ATM Networks and Backplane Applications
IDT

IDT77V1264L200PGI8

ATM Network Interface, 1-Func, CMOS, PQFP144, 28 X 28 MM, PLASTIC, QFP-144
IDT

IDT77V126L200

Single Port PHY (Physical Layer) for 25.6, 51.2, and 204.8 Mbps ATM Networks and Backplane Applications
IDT

IDT77V126L200TF

ATM Network Interface, 1-Func, CMOS, PQFP64, 10 X 10 MM, TQFP-64
IDT

IDT77V126L200TF8

ATM Network Interface, 1-Func, CMOS, PQFP64, 10 X 10 MM, TQFP-64
IDT

IDT77V126L200TFI

Single Port PHY (Physical Layer) for 25.6, 51.2, and 204.8 Mbps ATM Networks and Backplane Applications
IDT

IDT77V222L155PG

ATM Segmentation and Reassembly Device, 1-Func, CMOS, PQFP208, 28 X 28 MM, PLASTIC, QFP-208
IDT

IDT77V222L155PG8

ATM Segmentation and Reassembly Device, 1-Func, CMOS, PQFP208, PLASTIC, QFP-208
IDT

IDT77V222L155PG9

ATM Segmentation and Reassembly Device, 1-Func, CMOS, PQFP208, PLASTIC, QFP-208
IDT

IDT77V222L155PGI

ATM Segmentation and Reassembly Device, 1-Func, CMOS, PQFP208, 28 X 28 MM, PLASTIC, QFP-208
IDT

IDT77V222L155PGI9

ATM Segmentation and Reassembly Device, 1-Func, CMOS, PQFP208, PLASTIC, QFP-208
IDT

IDT77V252L155PG

ATM Segmentation and Reassembly Device, 1-Func, CMOS, PQFP208, 28 X 28 MM, PLASTIC, QFP-208
IDT