IL260 [ETC]

High Speed Five Channel Digital Coupler; 高速五通道数字耦合器
IL260
型号: IL260
厂家: ETC    ETC
描述:

High Speed Five Channel Digital Coupler
高速五通道数字耦合器

光电二极管
文件: 总7页 (文件大小:488K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
ISOLOOP  
IL26X  
Preliminary  
High Speed Five Channel Digital Coupler  
Features  
Functional Diagram  
· 5V CMOS/TTL Compatible  
IL260  
· High Speed: 110 MBaud  
· 2500 VRMS Isolation (1 min)  
1OUT  
1IN  
· 2 ns Typical Pulse Width Distortion  
· 4 ns Typical Propagation Delay Skew  
· 10 ns Typical Propagation Delay  
· 30 kV/µs Typical Transient Immunity  
· 2 ns Channel to Channel Skew  
· 0.3'' and 0.15'' 16–Pin SOIC Packages  
· Extended Temperature Range (-40°C to +85°C)  
· UL1577 Approval Pending  
2IN  
3IN  
2OUT  
3OUT  
4IN  
5IN  
4OUT  
5OUT  
· IEC 61010-1 Approval Pending  
Isolation Applications  
· ADCs and DACs  
· Multiplexed Data Transmission  
· Data Interfaces  
IL261  
· Board-To-Board Communication  
· Digital Noise Reduction  
· Operator Interface  
1OUT  
1IN  
· Ground Loop Elimination  
· Peripheral Interfaces  
· Parallel Bus  
2IN  
3IN  
2OUT  
3OUT  
· Logic Level Shifting  
· Plasma Displays  
4IN  
4OUT  
5IN  
Description  
5OUT  
NVE's family of high-speed digital isolators are CMOS devices created  
*
by integrating active circuitry and our GMR-based and patented  
®
IsoLoop technology. The IL260 and IL261 are five channel versions of  
the world's fastest digital isolator with a 110 Mbaud data rate. These  
devices provide the designer with the most compact isolated logic  
devices yet available. All transmit and receive channels operate at 110  
Mbd over the full temperature and supply voltage range. The symmetric  
magnetic coupling barrier provides a typical propagation delay of only  
10 ns and a pulse width distortion of 2 ns achieving the best  
specifications of any isolator device. Typical transient immunity of 30  
kV/µs is unsurpassed. The IL260 has five transmit channels, while the  
IL261 has four transmit channels and one receive channel. Their high  
channel density make them ideally suited to isolating multiple ADCs  
and DACs, parallel buses and peripheral interfaces.  
Performance is specified over the temperature range of -40°C to +85°C  
without any derating.  
®
Isoloop is a registered trademark of NVE Corporation  
* US Patent number 5,831,426; 6,300,617 and others.  
R H O P O IN T C O M P O N E N T S Hurst Green, Oxted, Surrey RH8 9AX UK Telephone: +44 (0) 870 608 1188 Fax: +44 (0) 870 241 2255 Internet: www.rhopointcomponents.com  
®
ISOLOOP  
Preliminary  
IL26X  
Storage Temperature  
Ambient Operating Temperature  
Supply Voltage  
Input Voltage  
Output Voltage  
Output Current Drive Channel  
Absolute Maximum Ratings  
Parameters  
Symbol  
Min.  
Max.  
Units  
o
TS  
-55  
175  
C
C
(1)  
o
TA  
-55  
-0.5  
-0.5  
-0.5  
125  
7
VDD+0.5  
VDD+0.5  
10  
VDD1,VDD2  
Volts  
Volts  
Volts  
mA  
VI  
VO  
IO  
o
Lead Solder Temperature (10s)  
ESD  
280  
C
2kV Human Body Model  
Recommended Operating Conditions  
Parameters  
Symbol  
Min.  
-40  
4.5  
2.4  
0
Max.  
85  
5.5  
VDD  
0.8  
1
Units  
C
Volts  
Volts  
Volts  
µsec  
o
Ambient Operating Temperature  
Supply Voltage (5.0 V operation)  
Logic High Input Voltage  
Logic Low Input Voltage  
TA  
VDD1,VDD2  
VIH  
VIL  
Minimum Signal Rise and Fall Times  
tIR,tIF  
Insulation Specifications  
Parameter  
Symbol  
Min  
Typ.  
Max.  
Units  
Test Condition  
14  
Barrier Impedance  
Creepage Distance (External)  
>10 ||7  
Ω || pF  
8.077 (0.3'' SOIC)  
4.026 (0.15'' SOIC)  
mm  
Leakage Current  
0.2  
µA  
240 VRMS  
Package Characteristics  
Parameter  
Symbol  
CI-O  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
(5)  
Capacitance (Input-Output)  
4.0  
pF  
f= 1MHz  
o
θJCT  
C/W  
Thermal Resistance  
Thermocouple located at  
center underside of package  
0.15'' 16-Pin SOIC  
0.30'' 16-Pin SOIC  
40  
28  
Package Power Dissipation  
PPD  
65  
mW  
f= 1MHz ,VDD=5V  
IEC61010-1*  
TUV Certificate Numbers: Pending  
Classification as Table 1.  
Model  
Pollution Material Max Working  
Package Type  
Degree  
Group  
III  
Voltage  
300 VRMS  
150 VRMS  
16–SOIC (0.3'') 16–SOIC (0.15'')  
IL260, IL261  
IL260-3, IL261-3  
II  
II  
9
III  
9
UL 1577*  
Component Recognition program. File # Pending  
Rated 2500Vrms for 1min.  
* UL & IEC approval is pending for the these parts.  
2
R H O P O IN T C O M P O N E N T S Hurst Green, Oxted, Surrey RH8 9AX UK Telephone: +44 (0) 870 608 1188 Fax: +44 (0) 870 241 2255 Internet: www.rhopointcomponents.com  
®
ISOLOOP  
Preliminary  
IL26X  
Electrical Specifications  
Electrical Specifications are T  
to T  
min  
max  
Parameter  
Symbol  
5.0 Volt Specifications  
Units  
Test Conditions  
DC Specifications  
Min.  
Typ.  
Max.  
Input Quiescent Supply Current  
IL260  
IDD  
IDD  
30  
40  
µA  
mA  
1
1
IL261  
2.5  
3.0  
Output Quiescent Supply Current  
IL260  
IL261  
IDD  
IDD  
II  
10  
8
15  
12  
mA  
mA  
µA  
2
2
Logic Input Current  
-10  
10  
Logic High Output Voltage  
Logic Low Output Voltage  
VOH  
0.8*VDD  
VDD-0.1  
VDD-0.5  
VDD  
V
V
IO =-20 µA, VI =VIH  
= -4 mA,  
VI =VIH  
IO  
IO = 20 µA, VI =VIL  
= 4 mA,  
VOL  
0
0.8  
0.1  
0.5  
IO  
VI =VIL  
Switching Parameters  
Maximum Data Rate  
100  
10  
110  
MBd  
ns  
CL = 15 pF  
50% points, VO  
Minimum Pulse Width  
PW  
Propagation Delay  
tPHL  
10  
10  
2
15  
15  
3
ns  
ns  
ns  
= 15 pF  
CL  
Input to Output (High to Low)  
Propagation Delay  
tPLH  
= 15 pF  
CL  
Input to Output (Low to High)  
(2)  
Pulse Width Distortion  
| tPHL- tPLH |  
PWD  
= 15 pF  
CL  
(3)  
Propagation Delay Skew  
Output Rise Time (10-90%)  
Output Fall Time (10-90%)  
tPSK  
tR  
tF  
4
1
1
6
3
3
ns  
ns  
ns  
CL = 15 pF  
CL = 15 pF  
CL = 15 pF  
Common Mode Transient  
|CMH|  
Immunity (Output Logic High  
20  
30  
kV/µs  
Vcm = 300V  
(4)  
or Logic Low)  
|CML|  
tCSK  
= 15 pF  
CL  
per Channel  
Channel to Channel Skew  
2
170  
3
210  
ns  
µA/mHz  
6
Dynamic Power Consumption  
Notes:  
1. Absolute Maximum ambient operating temperature means the  
device will not be damaged if operated under these conditions. It  
does not guarantee performance.  
2. PWD is defined as | tPHL– tPLH |. %PWD is equal to the PWD  
divided by the pulse width.  
3.  
tPSK is equal to the magnitude of the worst case difference in tPHL  
and/or tPLH that will be seen between units at 25OC.  
4. CMH is the maximum common mode voltage slew rate that can be  
sustained while maintaining VO > 0.8 VDD. CML is the maximum  
common mode input voltage that can be sustained while  
maintaining VO < 0.8 V. The common mode voltage slew rates  
apply to both rising and falling common mode voltage edges.  
5. Device is considered a two terminal device:  
pins 1-8 shorted and pins 9-16 shorted.  
6. Dynamic power consumption numbers are calculated per channel.  
3
R H O P O IN T C O M P O N E N T S Hurst Green, Oxted, Surrey RH8 9AX UK Telephone: +44 (0) 870 608 1188 Fax: +44 (0) 870 241 2255 Internet: www.rhopointcomponents.com  
®
ISOLOOP  
Preliminary  
IL26X  
Application Notes:  
Dynamic Power Consumption  
Data Transmission Rates  
Isoloop devices achieve their low power consumption from the  
The reliability of a transmission system is directly related to the  
accuracy and quality of the transmitted digital information. For a  
digital system, those parameters which determine the limits of the  
data transmission are pulse width distortion and propagation delay  
skew.  
manner by which they transmit data across the isolation barrier. By  
detecting the edge transitions of the input logic signal and  
converting these to narrow current pulses, a magnetic field is  
created around the GMR Wheatstone bridge. Depending on the  
direction of the magnetic field, the bridge causes the output  
comparator to switch following the input logic signal. Since the  
current pulses are narrow, about 2.5ns wide, the power  
consumption is independent of mark-to-space ratio and solely  
dependent on frequency. This has obvious advantages over  
optocouplers whose power consumption is heavily dependent on  
its on-state and frequency.  
Propagation delay is the time taken for the signal to travel through  
the device. This is usually different when sending a low-to-high  
than when sending a high-to-low signal. This difference, or error,  
is called pulse width distortion (PWD) and is usually in ns. It may  
also be expressed as a percentage:  
Maximum Pulse Width Distortion (ns)  
PWD% =  
x 100%  
Signal Pulse Width (ns)  
The approximate power supply current per channel for  
For example: For data rates of 12.5 Mb  
3 ns  
80 ns  
PWD% =  
x 100% = 3.75%  
This figure is almost three times better than for any available  
optocoupler with the same temperature range, and two times better  
than any optocoupler regardless of published temperature range.  
Power Supply Decoupling  
®
The IsoLoop range of isolators will run at almost 35 Mb before  
Both power supplies to these devices should be decoupled with  
low ESR 100 nF ceramic capacitors. For data rates in excess of  
10MBd, use of ground planes for both GND1 and GND2 is highly  
recommended. Capacitors should be located as close as possible to  
the device.  
reaching the 10% limit.  
Propagation delay skew is the difference in time taken for two or  
more channels to propagate their signals. This becomes significant  
when clocking is involved since it is undesirable for the clock  
pulse to arrive before the data has settled. A short propagation  
delay skew is therefore critical, especially in high data rate parallel  
systems, to establish and maintain accuracy and repeatability. The  
Signal Status on Start-up and Shut Down  
To minimize power dissipation, the input signals are differentiated  
and then latched on the output side of the isolation barrier to  
reconstruct the signal. This could result in an ambiguous output  
state depending on power up, shutdown and power loss  
sequencing. Therefore, the designer should consider the inclusion  
of an initialization signal in his start-up circuit. Initialization  
consists of toggling each channel either high then low or low then  
high, depending on the desired state.  
®
IsoLoop range of isolators all have a maximum propagation delay  
skew of 6 ns, which is five times better than any optocoupler. The  
®
maximum channel to channel skew in the IsoLoop coupler is only  
3 ns which is ten times better than any optocoupler.  
Electrostatic Discharge Sensitivity  
This product has been tested for electrostatic sensitivity to the  
limits stated in the specifications. However, NVE recommends that  
all integrated circuits be handled with appropriate care to avoid  
damage. Damage caused by inappropriate handling or storage  
could range from performance degradation to complete failure.  
4
R H O P O IN T C O M P O N E N T S Hurst Green, Oxted, Surrey RH8 9AX UK Telephone: +44 (0) 870 608 1188 Fax: +44 (0) 870 241 2255 Internet: www.rhopointcomponents.com  
®
ISOLOOP  
Preliminary  
IL26X  
Applications:  
∆Σ  
Figure 1 Single Channel  
Bridge  
Bias  
Figure 1 shows a typical single channel ∆Σ ADC  
application. The A/D is located on the bridge with no  
signal conditioning electronics between the bridge sensor  
and the ADC. In this application, the IL717 is the best  
choice for isolation. It isolates the control bus from the  
microcontroller. The system clock is located on the  
isolated side of the system.  
Delta Sigma A/D  
CS5532  
Bridge +  
Bridge -  
Isolation  
Boundary  
Serial Data Out  
Iso SD Out  
Serial Data In  
Data Clock  
Chip Select  
Iso DS In  
Iso Data Clock  
Iso CS  
Clock  
Generator  
IL717  
OSC 2  
Figure 2 Multi Channel ∆Σ  
Bridge  
Bias  
The second ∆Σ application is where multiple ADC's are  
configured in a channel-to-channel isolation configuration.  
The problem for designers is how to control clock jitter  
and edge placement accuracy of the system clock for each  
ADC. The best solution is to use a single clock on the  
system side and distribute this to each ADC. The IL261  
adds a 5th channel to the IL717. This 5th channel is used  
to distribute a single, isolated clock to multiple ADC's as  
shown in Figure 2.  
Delta Sigma A/D  
CS5532  
Bridge +  
Isolation  
Boundary  
Bridge -  
Serial Data Out  
Serial Data In  
Iso SD Out  
Iso DS In  
Clock  
Generator  
Iso Data Clock  
Data Clock  
Chip Select  
Iso CS  
IL261  
Channel #1  
OSC 2  
Bridge  
Bias  
Delta Sigma A/D  
CS5532  
Bridge +  
Bridge -  
Serial Data Out  
Serial Data In  
Iso SD Out  
Iso DS In  
Channel #n  
Iso Data Clock  
Data Clock  
Chip Select  
Iso CS  
IL261  
OSC 2  
5
R H O P O IN T C O M P O N E N T S Hurst Green, Oxted, Surrey RH8 9AX UK Telephone: +44 (0) 870 608 1188 Fax: +44 (0) 870 241 2255 Internet: www.rhopointcomponents.com  
®
ISOLOOP  
Preliminary  
IL26X  
Pin Configurations IL260, IL261  
Note: Connected Internally  
Pins 2 & 8  
Pins 9 & 15  
IL260  
IL261  
5
5
5
5
Timing Diagram  
Legend  
tPLH  
tPHL  
tPW  
tR  
Propagation Delay, Low to High  
Propagation Delay, High to Low  
Minimum Pulse Width  
Rise Time  
tF  
Fall Time  
IR Soldering Profile  
Recommended profile shown. Maximum  
temperature allowed on any profile is 260° C.  
6
R H O P O IN T C O M P O N E N T S Hurst Green, Oxted, Surrey RH8 9AX UK Telephone: +44 (0) 870 608 1188 Fax: +44 (0) 870 241 2255 Internet: www.rhopointcomponents.com  
®
ISOLOOP  
Preliminary  
IL26X  
0.3'' SOIC-16 Package  
0.15'' SOIC-16 Package  
Valid Part Numbers  
Ordering Information: use the following format to order these devices  
IL 260 -3 B TR13  
Bulk Package  
Valid Part Numbers  
Blank  
TR7  
=
=
=
Tube  
IL 260B  
IL 260-3B  
IL 260BTR13  
IL 260-3BTR13  
IL 260-3BTR7  
IL 261B  
IL 261-3B  
IL 261BTR13  
IL 261-3BTR13  
IL 261-3BTR7  
7'' Tape and Reel  
13'' Tape and Reel  
TR13  
Supply Voltage  
B
=
5.0 VDC  
Package  
Blank  
-3  
=
=
SOIC (0.3'')  
SOIC (0.15'')  
Base Part Number  
260  
261  
=
=
5 drive channels  
4 drive and 1 receive channels  
Product Family  
IL Isolators  
=
7
R H O P O IN T C O M P O N E N T S Hurst Green, Oxted, Surrey RH8 9AX UK Telephone: +44 (0) 870 608 1188 Fax: +44 (0) 870 241 2255 Internet: www.rhopointcomponents.com  

相关型号:

IL260-3

High Speed Five Channel Digital Couplers
ETC

IL260-3B

High Speed Five Channel Digital Coupler
ETC

IL260-3BE

High Speed Five Channel Digital Couplers
ETC

IL260-3BETR13

High Speed Five Channel Digital Couplers
ETC

IL260-3BETR7

High Speed Five Channel Digital Couplers
ETC

IL260-3BTR13

High Speed Five Channel Digital Coupler
ETC

IL260-3BTR7

High Speed Five Channel Digital Coupler
ETC

IL260-3E

High Speed Five Channel Digital Couplers
ETC

IL260-3ETR13

High Speed Five Channel Digital Couplers
ETC

IL260-3ETR7

High Speed Five Channel Digital Couplers
ETC

IL260-3TR13

High Speed Five Channel Digital Couplers
ETC

IL260-3TR7

High Speed Five Channel Digital Couplers
ETC