IQS550BLQNR [ETC]

Proximity, touch and snap* on each channel;
IQS550BLQNR
型号: IQS550BLQNR
厂家: ETC    ETC
描述:

Proximity, touch and snap* on each channel

文件: 总79页 (文件大小:4625K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ProxSense®  
IQS550/572/525-B000 Capacitive Trackpad/Touchscreen Controller  
Projected capacitive controller with proximity, touch, snap, trackpad outputs and gestures  
The IQS5xx-B000 is a projected capacitive touch and proximity trackpad/touchscreen  
controller implementation on the IQS550, IQS572 and IQS525 platforms. The IQS5xx-  
B000 features best in class sensitivity, signal-to-noise ratio and automatic tuning of  
electrodes. Low power proximity detection allows extreme low power operation.  
Main Features  
Proximity, touch and snap* on each channel  
Multi-touch support up to 5 fingers  
Single and multi-finger gestures  
3584 x 2304 max resolution (IQS550)  
Scale, orientation and electrode layout selection  
I2C communication interface  
ATI: automatic tuning for optimum sensitivity  
Supply Voltage 1.65V to 3.6V  
Proximity low power operation (<10uA)  
3 Active and 2 low power modes  
Event and streaming modes  
Internal voltage regulator and reference capacitor  
On-chip noise detection and suppression  
IQS550  
150  
IQS572  
72  
IQS525  
25  
Maximum channels  
Typical report rate  
(with single touch / all channels active)  
100Hz  
135Hz  
190Hz  
Maximum resolution  
(for shown Tx Rx configurations)  
3584 x 2304 2048 x 1792 1280 x 768  
(15 x 10)  
(9 x 8)  
(6 x 4)  
Applications  
Compact Capacitive Keyboards  
Remote Control Trackpads  
Appliances  
Navigation devices  
Kiosks and POS terminals  
E-readers  
TA  
QFN(7x7)-48 QFN(4x4)-28 QFN(4x4)-28  
IQS550 IQS572 IQS525  
-40°C to 85°C  
*patented  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 1 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
Contents  
1
2
Overview............................................................................................................................................................ 7  
Packaging and Pin-out........................................................................................................................................ 8  
2.1  
IQS550 - QFN48 ................................................................................................................................................. 8  
IQS572 - QFN28 ............................................................................................................................................... 10  
IQS525 - QFN28 ............................................................................................................................................... 12  
2.2  
2.3  
3
ProxSense® Module ...........................................................................................................................................14  
3.1  
Channel Definition........................................................................................................................................... 14  
Alternate Low-Power Channel (ALP) .............................................................................................................. 14  
Count Value..................................................................................................................................................... 14  
3.2  
3.3  
3.3.1 Trackpad Count Values ............................................................................................................................... 14  
3.3.2 ALP Count Values ........................................................................................................................................ 14  
3.3.3 Max Count................................................................................................................................................... 15  
3.3.4 Delta Value.................................................................................................................................................. 15  
3.4  
Reference Value............................................................................................................................................... 15  
3.4.1 Reference Update Time .............................................................................................................................. 15  
3.4.2 ALP Long-Term Average.............................................................................................................................. 15  
3.4.3 Reseed......................................................................................................................................................... 15  
3.5  
Channel Outputs.............................................................................................................................................. 15  
3.5.1 Proximity..................................................................................................................................................... 15  
3.5.2 Touch .......................................................................................................................................................... 16  
3.5.3 Snap ............................................................................................................................................................ 16  
3.5.4 Output Debounce ....................................................................................................................................... 16  
3.5.5 Maximum Touch ......................................................................................................................................... 16  
3.6  
Auto Tuning (ATI) ............................................................................................................................................ 17  
3.6.1 ATI C Multiplier ........................................................................................................................................... 17  
3.6.2 ATI Compensation & Auto ATI .................................................................................................................... 17  
3.7  
Automatic Re-ATI ............................................................................................................................................ 17  
3.7.1 Description.................................................................................................................................................. 17  
3.7.2 Conditions for Re-ATI to activate................................................................................................................ 17  
3.7.3 ATI Error...................................................................................................................................................... 18  
3.7.4 Design requirements................................................................................................................................... 18  
3.8  
Sensing Hardware Settings.............................................................................................................................. 18  
4
5
Sensing Modes ..................................................................................................................................................19  
4.1  
Report Rate ..................................................................................................................................................... 19  
4.1.1 Previous Cycle Time .................................................................................................................................... 20  
4.2  
4.3  
Mode Timeout................................................................................................................................................. 20  
Manual Control ............................................................................................................................................... 20  
Trackpad ...........................................................................................................................................................20  
5.1 Configuration................................................................................................................................................... 20  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 2 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
5.1.1 Size Selection .............................................................................................................................................. 20  
5.1.2 Individual Channel Disabling....................................................................................................................... 20  
5.1.3 Rx / Tx Mapping .......................................................................................................................................... 20  
5.1.4 Rx / Tx Selections ........................................................................................................................................ 21  
5.2  
Trackpad Outputs............................................................................................................................................ 21  
5.2.1 Number of Fingers ...................................................................................................................................... 21  
5.2.2 Relative XY .................................................................................................................................................. 21  
5.2.3 Absolute XY................................................................................................................................................. 21  
5.2.4 Touch Strength............................................................................................................................................ 21  
5.2.5 Area............................................................................................................................................................. 21  
5.2.6 Tracking / Identification.............................................................................................................................. 21  
5.3  
Max Number of Multi-touches ........................................................................................................................ 21  
XY Resolution................................................................................................................................................... 21  
Palm Rejection................................................................................................................................................. 21  
Stationary Touch ............................................................................................................................................. 22  
Multi-touch Finger Split................................................................................................................................... 22  
XY Output Flip & Switch................................................................................................................................... 22  
XY Position Filtering......................................................................................................................................... 22  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
5.9.1 MAV Filter ................................................................................................................................................... 22  
5.9.2 IIR Filter....................................................................................................................................................... 22  
6
Gestures............................................................................................................................................................23  
6.1  
Single Tap ........................................................................................................................................................ 23  
Press and Hold................................................................................................................................................. 23  
Swipe (X-, X+, Y-, Y+)........................................................................................................................................ 24  
2 Finger Tap..................................................................................................................................................... 24  
Scroll................................................................................................................................................................ 24  
Zoom................................................................................................................................................................ 25  
Switching Between Gestures ........................................................................................................................... 25  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
7
Additional Features...........................................................................................................................................25  
7.1  
Non-volatile Defaults....................................................................................................................................... 25  
Automated Start-up ........................................................................................................................................ 25  
Suspend ........................................................................................................................................................... 26  
7.2  
7.3  
7.3.1 I2C Wake...................................................................................................................................................... 26  
7.3.2 Switch Input Pin Wake ................................................................................................................................ 26  
7.4  
Reset................................................................................................................................................................ 26  
7.4.1 Reset Indication .......................................................................................................................................... 26  
7.4.2 Software Reset............................................................................................................................................ 26  
7.4.3 Hardware Reset .......................................................................................................................................... 26  
7.5  
Watchdog Timer (WDT)................................................................................................................................... 26  
RF Immunity .................................................................................................................................................... 26  
Additional Non-Trackpad Channels................................................................................................................ 26  
Bootloader....................................................................................................................................................... 26  
7.6  
7.7  
7.8  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 3 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
7.8.1 Bootloader Status ....................................................................................................................................... 26  
7.9  
Version Information ........................................................................................................................................ 27  
7.9.1 Product Number ......................................................................................................................................... 27  
7.9.2 Project Number........................................................................................................................................... 27  
7.9.3 Major and Minor Versions .......................................................................................................................... 27  
7.10  
7.11  
Unique ID......................................................................................................................................................... 27  
Switch Input..................................................................................................................................................... 27  
8
I2C .....................................................................................................................................................................27  
8.1  
Data Ready (RDY) ............................................................................................................................................ 27  
Slave Address................................................................................................................................................... 27  
16-bit Addressing ............................................................................................................................................ 27  
I2C Read ........................................................................................................................................................... 27  
8.2  
8.3  
8.4  
8.4.1 Default Read Address.................................................................................................................................. 28  
8.5  
I2C Write .......................................................................................................................................................... 28  
I2C Timeout...................................................................................................................................................... 28  
End of Communication Session / Window...................................................................................................... 28  
Event Mode Communication ........................................................................................................................... 28  
8.6  
8.7  
8.8  
8.8.1 Events.......................................................................................................................................................... 28  
8.8.2 Force Communication................................................................................................................................. 28  
8.9  
8.10  
8.10.1  
8.10.2  
Memory Map Registers ................................................................................................................................... 29  
Memory Map Bit / Register Definitions........................................................................................................... 36  
Gesture Events 0..................................................................................................................................... 37  
Gesture Events 1..................................................................................................................................... 37  
System Info 0 .......................................................................................................................................... 38  
System Info 1 .......................................................................................................................................... 39  
Individual Channel Status / Config Bit Definitions.................................................................................. 39  
Count / Delta / Reference Data .............................................................................................................. 40  
System Control 0 .................................................................................................................................... 41  
System Control 1 .................................................................................................................................... 42  
System Config 0 ...................................................................................................................................... 42  
8.10.3  
8.10.4  
8.10.5  
8.10.6  
8.10.7  
8.10.8  
8.10.9  
8.10.10 System Config 1 ...................................................................................................................................... 43  
8.10.11 Alternate Channel Setup ........................................................................................................................ 44  
8.10.12 ALP Rx select........................................................................................................................................... 45  
8.10.13 ALP Tx select........................................................................................................................................... 45  
8.10.14 RxToTx .................................................................................................................................................... 45  
8.10.15 Hardware Settings A............................................................................................................................... 46  
8.10.16 Hardware Settings B ............................................................................................................................... 46  
8.10.17 Hardware Settings C ............................................................................................................................... 47  
8.10.18 Hardware Settings D............................................................................................................................... 47  
8.10.19 XY Config 0.............................................................................................................................................. 48  
8.10.20 Single Finger Gestures ............................................................................................................................ 48  
8.10.21 Multi-finger Gestures ............................................................................................................................. 49  
9
Circuit Diagram .................................................................................................................................................50  
10 Electrical Characteristics....................................................................................................................................55  
10.1 Absolute Maximum Ratings ............................................................................................................................ 55  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 4 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
10.2  
10.2.1  
10.2.2  
Operating Conditions ...................................................................................................................................... 56  
General Operating Conditions................................................................................................................ 56  
Power-up / Power-down Operating Conditions..................................................................................... 56  
Supply Current Characteristic................................................................................................................. 57  
ProxSense® Current Consumption .......................................................................................................... 57  
Expected Total Current Consumption Scenarios .................................................................................... 57  
I/O Port Pin Characteristics .................................................................................................................... 59  
Output Driving Current........................................................................................................................... 60  
NRST Pin ................................................................................................................................................. 60  
I2C Characteristics................................................................................................................................... 61  
10.2.3  
10.2.4  
10.2.5  
10.2.6  
10.2.7  
10.2.8  
10.2.9  
10.2.10 Package Moisture Sensitivity.................................................................................................................. 63  
10.2.11 Electrostatic Discharge (ESD).................................................................................................................. 63  
10.2.12 Thermal Characteristics.......................................................................................................................... 63  
10.2.13 ProxSense Electrical Characteristics ....................................................................................................... 64  
11 Mechanical Dimensions ....................................................................................................................................65  
11.1  
11.2  
11.3  
11.4  
IQS550 QFN(7x7)-48 Mechanical Dimensions................................................................................................. 65  
IQS550 Landing Pad Layout............................................................................................................................. 66  
IQS572/IQS525 QFN(4x4)-28 Mechanical Dimensions.................................................................................... 67  
IQS572/IQS525 Landing Pad Layout................................................................................................................ 68  
12 Packaging Information ......................................................................................................................................69  
12.1 Tape Specification ........................................................................................................................................... 69  
12.1.1  
12.1.2  
12.2  
12.2.1  
12.2.2  
IQS550 Tape Description ........................................................................................................................ 70  
IQS572 and IQS525 Tape Description..................................................................................................... 70  
Reel Specification ............................................................................................................................................ 71  
Dry Packing ............................................................................................................................................. 72  
Baking ..................................................................................................................................................... 72  
12.3  
12.4  
Handling of the IQS5xx.................................................................................................................................... 73  
Reflow for IQS5xx ............................................................................................................................................ 74  
13 Device Marking .................................................................................................................................................75  
13.1  
13.2  
IQS550 Marking............................................................................................................................................... 75  
IQS572/IQS525 Marking.................................................................................................................................. 76  
14 Ordering Information ........................................................................................................................................76  
14.1  
14.2  
14.3  
IQS550 Ordering.............................................................................................................................................. 76  
IQS572 Ordering.............................................................................................................................................. 77  
IQS525 Ordering.............................................................................................................................................. 77  
Changes:....................................................................................................................................................................... 78  
Release v1.00 ........................................................................................................................................................... 78  
Release v1.01 ........................................................................................................................................................... 78  
Release v2.00 ........................................................................................................................................................... 78  
15 Contact Information..........................................................................................................................................79  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 5 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
List of Abbreviations  
ALP  
Alternate Low Power  
ATI  
Automatic Tuning Implementation  
Electromagnetic Interference  
Electrostatic Discharge  
Ground  
EMI  
ESD  
GND  
GUI  
IC  
Graphical User Interface  
Integrated Circuit  
ICI  
Internal Capacitor Implementation  
Infinite Impulse Response  
Low Power  
IIR  
LP  
LTA  
MAV  
ND  
Long Term Average  
Moving Average  
Noise Detect  
THR  
TP  
Threshold  
Trackpad  
WDT  
Watchdog Timer  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 6 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
1 Overview  
The IQS550 / IQS572 / IQS525 are capacitive sensing controllers designed for multi-touch  
applications using projected capacitance touch panels. The device offers high sensitivity  
proximity wake-up and contact detection (touch) through a selectable number of sensor lines  
(Rxs and Txs).  
The device has an internal voltage regulator and Internal Capacitor Implementation (ICI) to  
reduce external components. Advanced on-chip signal processing capabilities provide stable  
high performance with high sensitivity.  
A trackpad consists of an array of sensors that are scanned at regular intervals. The controller  
uses the principle of projected capacitance charge transfer on the trackpad. When a  
conductive object such as a human finger approaches the sense plate it will decrease the  
detected capacitance. Thresholds are applied to the sensor data to identify areas that exhibit  
proximity and touch deviation. The contours of the touch areas are then translated to  
Cartesian position coordinates that are continuously monitored to identify gestures. A user  
has access to all of the data layers the raw sensor data, the sensor proximity/touch status  
data, the XY coordinates as well as the gesture outputs.  
Multiple filters are implemented to detect and suppress noise, track slow varying  
environmental conditions and avoid effects of possible drift. The Auto Tuning (ATI) allows for  
the adaptation to a wide range of touch screens without using external components.  
An innovative addition, known as a snap*, is also available on each channel. This adds  
another channel output, additional to the proximity and touch.  
The trackpad application firmware on the IQS5xx is very flexible in design, and can incorporate  
standard touch sensors, trackpad / touchscreen areas (giving XY output data) and  
conventional snap-dome type buttons, all providing numerous outputs such as proximity,  
touch, snap, touch strength, area and actual finger position all in one solution.  
The IQS550, IQS572 and IQS525 devices ship with the bootloader only, since the designer  
must program custom IQS5xx-B000 firmware during production testing. The custom firmware  
is the IQS5xx-B000 trackpad firmware together with customer specific hardware settings  
exported by the GUI program.  
This datasheet applies to the following IQS550 version:  
Product Number 40 / Project Number 15 / Version Number 2  
This datasheet applies to the following IQS572 version:  
Product Number 58 / Project Number 15 / Version Number 2  
This datasheet applies to the following IQS525 version:  
Product Number 52 / Project Number 15 / Version Number 2  
*patented  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 7 of 79  
November 2016  
 
IQ Switch®  
ProxSense® Series  
2 Packaging and Pin-out  
2.1 IQS550 - QFN48  
The IQS550 is available in a QFN(7x7)-48  
package.  
Tx14 1  
PGM 2  
SW_IN 3  
N/C 4  
36 Tx3  
35 Tx2  
34 Tx1  
33 Tx0  
SDA 5  
32 Rx9B  
31 Rx9A  
30 Rx8B  
29 Rx8A  
28 Rx7B  
27 Rx7A  
26 Rx6B  
25 Rx6A  
SCL 6  
VDDHI 7  
VSS 8  
VREG 9  
NRST 10  
RDY 11  
N/C 12  
Figure 2.1 QFN Top View  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 8 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
Table 2.1  
Name  
Tx14  
QFN48 Pin-out  
Pin  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
Name  
Rx6A  
Rx6B  
Rx7A  
Rx7B  
Rx8A  
Rx8B  
Rx9A  
Rx9B  
Tx0  
Description  
Pin  
1
Description  
Transmitter electrode  
Programming Pin  
Receiver electrode  
Note1  
2
PGM  
Receiver electrode  
Note1  
Wake-up from suspend  
and switch input  
3
SW_IN  
Receiver electrode  
4
5
6
7
8
n/c  
SDA  
~
Note1  
I2C Data  
Receiver electrode  
SCL  
I2C Clock  
Note1  
VDDHI  
VSS  
Supply Voltage  
Ground Reference  
Transmitter electrode  
Transmitter electrode  
Transmitter electrode  
Transmitter electrode  
I/O Ground Reference  
I/O Supply Voltage  
Tx1  
Internal Regulator  
Voltage  
9
VREG  
Tx2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
NRST  
RDY  
Reset (active LOW)  
Tx3  
I2C RDY  
~
VSSIO  
VDDIO  
Tx4  
n/c  
Rx0A  
Rx0B  
Rx1A  
Rx1B  
Rx2A  
Rx2B  
Rx3A  
Rx3B  
Rx4A  
Rx4B  
Rx5A  
Rx5B  
Receiver electrode  
Transmitter electrode  
Transmitter electrode  
Transmitter electrode  
Transmitter electrode  
Transmitter electrode  
Transmitter electrode  
Transmitter electrode  
Transmitter electrode  
Transmitter electrode  
Transmitter electrode  
Note1  
Tx5  
Receiver electrode  
Tx6  
Note1  
Tx7  
Receiver electrode  
Tx8  
Note1  
Tx9  
Receiver electrode  
Tx10  
Tx11  
Tx12  
Tx13  
Note1  
Receiver electrode  
Note1  
Note1: Any of these can be configured through I2C as the  
Receiver electrode  
ProxSense® electrode.  
Note1  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 9 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
2.2 IQS572 - QFN28  
The IQS572 is available in a QFN(4x4)-28  
package. The production version is shown  
below.  
n/c 1  
SDA 2  
21 TX3  
20 TX2  
SCL 3  
19 TX1  
VDDHI 4  
VSS 5  
18 TX0  
17 RX7 / TX9  
16 RX6 / TX10  
15 RX5 / TX11  
VREG 6  
NRST 7  
Figure 2.2 IQS572 QFN Top View  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 10 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
Table 2.2  
Name  
IQS572 QFN28 Pin-out  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
Rx5  
Rx6  
Rx7  
Tx0  
Tx1  
Tx2  
Tx3  
Tx4  
Tx5  
Tx6  
Tx7  
Tx8  
PGM  
Receiver electrode  
Receiver electrode  
Receiver electrode  
Transmitter electrode  
Transmitter electrode  
Transmitter electrode  
Transmitter electrode  
Transmitter electrode  
Transmitter electrode  
Transmitter electrode  
Transmitter electrode  
Transmitter electrode  
Programming Pin  
Pin  
1
Description  
~
n/c  
SDA  
2
I2C Data  
3
SCL  
I2C Clock  
4
VDDHI  
VSS  
Supply Voltage  
Ground Reference  
5
Internal Regulator  
Voltage  
6
VREG  
7
NRST  
RDY  
n/c  
Reset (active LOW)  
I2C RDY  
8
9
~
10  
11  
12  
13  
14  
Rx0  
Rx1  
Rx2  
Rx3  
Rx4  
Receiver electrode  
Receiver electrode  
Receiver electrode  
Receiver electrode  
Receiver electrode  
Wake-up from suspend  
and switch input  
28  
SW_IN  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 11 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
2.3 IQS525 - QFN28  
The IQS525 is available in a QFN(4x4)-28  
package. The production version is shown  
below.  
n/c 1  
SDA 2  
21 PD3  
20 PD2  
SCL 3  
19 TX0  
VDDHI 4  
VSS 5  
18 TX1  
17 RX7 / TX2  
16 RX6 / TX3  
15 RX5 / TX4  
VREG 6  
NRST 7  
Figure 2.3 IQS525 QFN Top View  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 12 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
Table 2.3  
Name  
n/c  
QFN28 Pin-out  
Rx5 /  
TX4  
Receiver / Transmitter  
electrode  
15  
16  
17  
Pin  
1
Description  
~
Rx6 /  
TX3  
Receiver / Transmitter  
electrode  
2
SDA  
I2C Data  
Rx7 /  
TX2  
Receiver / Transmitter  
electrode  
3
SCL  
I2C Clock  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
Tx1  
Tx0  
Transmitter electrode  
Transmitter electrode  
General purpose I/O  
General purpose I/O  
General purpose I/O  
General purpose I/O  
General purpose I/O  
General purpose I/O  
General purpose I/O  
Programming Pin  
4
VDDHI  
VSS  
Supply Voltage  
Ground Reference  
5
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
PB0  
PGM  
Internal Regulator  
Voltage  
6
VREG  
7
NRST  
RDY  
n/c  
Reset (active LOW)  
I2C RDY  
8
9
~
10  
11  
12  
13  
14  
Rx0  
Rx1  
Rx2  
Rx3  
Rx4  
Receiver electrode  
Receiver electrode  
Receiver electrode  
Receiver electrode  
Receiver electrode  
Wake-up from suspend  
and switch input  
28  
SW_IN  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 13 of 79  
November 2016  
 
IQ Switch®  
ProxSense® Series  
Sensing  
method  
(CHARGE_TYPE):  
3 ProxSense® Module  
projected capacitive or self capacitive.  
The IQS5xx contains a ProxSense® module  
that uses patented technology to measure and  
process the capacitive sensor data. The  
trackpad sensors are scanned one Tx  
transmitter at a time, until all have completed,  
with all enabled Rxs charging in each Tx time  
slot. The channel outputs (proximity, touch  
and snap) are the primary outputs from the  
sensors. These are processed further to  
provide secondary trackpad outputs that  
include finger position, finger size as well as  
on-chip gesture recognition.  
Sensors: which Rxs (RX_GROUP / ALP Rx  
select) / Txs (ALP Tx select) are active  
during conversions.  
Reverse sensing: If enabled, negative  
deviations can also trigger proximity  
detection (PROX_REVERSE).  
Count value filtering: gives reliable  
proximity detection in noisy environments.  
Single channel: since the alternate channel  
is processed as only a single channel,  
much less processing is done, allowing for  
lower overall power consumption.  
The additional snap state is a unique sensor  
output that utilises capacitive technology to  
sense the depression of a metal dome snap  
button onto the customized sensor area. This  
gives an additional output above the traditional  
proximity and touch channel outputs.  
Since all Rxs return a count measurement, it  
means that the ALP channel can be a  
combination of numerous measurements. To  
reduce processing time (and this decrease  
current consumption) the measurements are  
added together, and processed as a single  
„channel‟.  
For more information on capacitive sensing  
and charge transfers, please refer to the  
Azoteq Application Note AZD004.  
3.3 Count Value  
For more information regarding design  
guidelines refer to the Application Note  
AZD068.  
The capacitive sensing measurement returns  
a count value for each channel. Count values  
are inversely proportional to capacitance, and  
all outputs are derived from this them.  
3.1 Channel Definition  
A channel for a projected capacitive sensor  
consists of a Tx electrode that is in close  
proximity to an Rx electrode.  
3.3.1 Trackpad Count Values  
The individual trackpad channel count values  
(Count values) are unfiltered.  
On a trackpad sensor (typically a diamond  
shape pattern), each intersection of an Rx and  
Tx row/column forms a capacitive sensing  
element which is referred to as a channel.  
Each channel has an associated count value,  
reference value, proximity, touch and snap (if  
enabled) status. The maximum number of Tx  
and Rx electrodes on the IQS550 device is  
15x10, thus giving 150 channels in total.  
3.3.2 ALP Count Values  
The combined count value (ALP count value)  
used for this channel is a summation of the  
individual count values (ALP individual count  
values) from each active Rx.  
A count value filter is implemented on this  
channel to give stable proximity output for  
system wake-up from a low-power mode. It is  
recommended to leave this count filter  
enabled (ALP_COUNT_FILTER).  
3.2 Alternate Low-Power  
Channel (ALP)  
The amount of filtering can be modified (ALP  
count beta) if required. This beta is used as  
follows to determine the damping factor of the  
filter:  
If lower power consumption is required (ALP),  
LP1 and LP2 can be configured to utilise a  
single custom channel sensor, instead of  
sensing the trackpad channels. This channel  
has a lot of setup flexibility:  
Count damping factor = Beta / 256  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 14 of 79  
November 2016  
 
IQ Switch®  
ProxSense® Series  
If the beta is small, the filtering is stronger,  
3.4.2 ALP Long-Term Average  
and if the beta is larger, the filtering is weaker.  
The ALP channel does not have a snapshot  
reference value as used on the trackpad, but  
utilises a filtered long-term average value  
3.3.3 Max Count  
Each channel is limited to having a count  
value smaller than the configurable limit (Max  
count limit). If the ATI setting or hardware  
causes measured count values higher than  
this, the conversion will be stopped, and a  
value of „0‟ will be read for that relevant count  
value. Note that a „0‟ is also returned for a  
disabled channel.  
(ALP LTA value).  
The LTA tracks the  
environment closely for accurate comparisons  
to the measured count value, to allow for small  
proximity deviations to be sensed. The speed  
of LTA tracking can be adjusted with the ALP  
LTA beta. There is an ALP1 and ALP2, which  
are implemented in LP1 and LP2 respectively.  
This is to allow different settings for different  
report rates, so that the LTA tracking rate can  
remain the same.  
3.3.4 Delta Value  
The delta values (Delta values) are simply:  
Delta = Count - Reference  
3.4.3 Reseed  
Since the Reference (or LTA for ALP channel)  
is critical for the device to operate correctly,  
there could be known events or situations  
3.4 Reference Value  
User interaction is detected by comparing  
count values to reference values. The count  
which would call for a manual reseed.  
A
reseed takes the latest measured counts, and  
seeds the reference/LTA with this value,  
therefore updating the value to the latest  
environment. A reseed command can be  
given by setting the corresponding bit  
(RESEED or ALP_RESEED).  
value  
of  
a
sensor  
represents  
the  
instantaneous capacitance of the sensor. The  
reference value of a sensor is the count value  
of the sensor that is slowly updated to track  
changes in the environment, and is not  
updated during user interaction.  
The reference value is a two-cycle averaged  
of the count value, stored during a time of no  
user activity, and thus is a non-affected  
reference. The trackpad reference values are  
only updated from LP1 and LP2 mode when  
modes are managed automatically. Thus, if  
the system is controlled manually, the  
reference must also be managed and updated  
manually by the host.  
3.5 Channel Outputs  
For the trackpad channels, user interaction  
typically causes the count values to increase.  
The amount of deviation relative to the  
reference can be used to determine the output  
state of the channel, dependent on the  
sensitivities configured.  
For a snap actuation, the count values  
decrease, and a negative deviation cause a  
snap output.  
3.4.1 Reference Update Time  
The reference value is updated or refreshed  
If the measured count value exceeds the  
selected threshold value for consecutive  
cycles, equal in number to the selectable  
debounce parameter, the output becomes set.  
according  
to  
a
configurable  
interval  
(Reference update time), in seconds.  
To ensure that the reference value is not  
updated during user interaction, it only  
executes from the LP1 and LP2 states, where  
no user interaction is assumed.  
3.5.1 Proximity  
This output (Prox status) is set when a  
channelscount value deviates from the  
reference value by more than the selected  
threshold (Prox threshold).  
Setting the Reference update time to „0‟ will  
disable the updating of the reference values.  
The proximity threshold is the smallest  
difference between the count value and the  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 15 of 79  
November 2016  
 
 
 
 
IQ Switch®  
ProxSense® Series  
reference value that would result in a proximity pattern. The design must be configured so  
output. Small threshold values are thus more that a snap on the metal dome will result in a  
sensitive than large threshold values.  
channels‟ count value falling well below the  
reference for that channel.  
Note: For the trackpad channels (projected  
capacitive) the samples will increase with user  
interaction, thus the actual threshold is the reference  
value PLUS the threshold parameter.  
However, if an ALP channel is implemented in self  
capacitive mode, the samples will decrease during  
user interaction, thus the actual threshold is the  
reference value MINUS the threshold parameter.  
If required, the function must be enabled  
(Snap enabled channels) for each channel on  
which snap is designed. Only channels with  
snap must be marked as such, since channels  
are handled differently if they are snap  
channels, compared to non-snap channels.  
3.5.2 Touch  
One global snap threshold (Snap threshold) is  
implemented as a delta value BELOW the  
reference. When a snap is performed, a  
sensor saturation effect causes the deviation  
to be negative.  
This output (Touch status) is set when a  
channels‟ count value increases by more than  
the selected threshold.  
The touch threshold for a specific channel is  
calculated as follows:  
Because it is only necessary to read the  
individual snap registers if a state change has  
occurred, a status bit (SNAP_TOGGLE) is  
added to indicate this. This is only set when  
there is a change of status of any snap  
channel.  
Threshold = Reference x (1 + Multiplier / 128)  
A smaller fraction will thus be a more sensitive  
threshold.  
A trackpad will have optimal XY data if all of  
the channels in the trackpad exhibit similar  
deltas under similar user inputs. In such a  
case all of the channels will have identical  
thresholds. In practise, sensor design and  
hardware restrictions could cause deltas  
which are not constant over the entire  
trackpad. It could then be required to select  
individual multiplier values. These (Individual  
touch multiplier adjustment) are signed 8-bit  
values and indicate how much the unsigned 8-  
bit global value (Global touch multiplier) must  
be adjusted. The threshold used for a specific  
channel (set and clear) is as follows:  
A reseed is executed if a snap is sensed for  
longer than the Snap timeout time (in  
seconds). A setting of 0 will never reseed.  
The timeout is reset if any snap is set or  
cleared.  
3.5.4 Output Debounce  
All the channel outputs (proximity, touch and  
snap) are debounced according to the  
selectable debounce values (Prox debounce /  
Touch snap debounce). Note that a debounce  
value of 1 means that two samples satisfying  
the condition must be met consecutively  
before the output is activated. The default  
touch debounce is set to 0 / no debouncing.  
This is due to the fact that with a 15x10  
sensor, debouncing adds too much delay, and  
fast movements on the touch panel cannot be  
debounced fast enough to provide reliable XY  
output data.  
Multiplier = Global + Individual adjust  
A hysteresis can also be implemented  
because there are different touch multiplier  
parameters for setting a touch and clearing a  
touch. This hysteresis allows the channels to  
not flicker in and out of touch with noise.  
3.5.5 Maximum Touch  
3.5.3 Snap  
An additional output is provided (Max Touch),  
and indicates the column and row of the  
channel with the largest touch deviation. This  
is usually only utilised when implementing  
discrete buttons, to reject any adjacent keys if  
they are located in close proximity to each  
When adding a metal snap-dome overlay to  
the trackpad pattern, an additional snap output  
(Snap status) is available. The device is able  
to distinguish between a normal „touch‟ on the  
overlay and an actual button „snap‟, which  
depresses the metal dome onto the Rx/Tx  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 16 of 79  
November 2016  
 
 
 
IQ Switch®  
ProxSense® Series  
other. If the Rxs and Txs are switched The ATI routine will run for the channels of the  
(SWITCH_XY_AXIS), the columns are the Txs, current mode, for example, if the system is  
and the rows are the Rxs. If no touches are currently sensing the alternate low-power  
seen, then this will output 0xFF.  
channel, the auto ATI will apply to it, similarly  
the algorithm will configure the trackpad  
channels if they are currently active.  
3.6 Auto Tuning (ATI)  
The ATI is a sophisticated technology  
implemented in the new ProxSense® devices  
to allow optimal performance of the devices  
for a wide range of sensing electrode  
capacitances, without modification to external  
components. The ATI settings allow tuning of  
two parameters, ATI C Multiplier and ATI  
Compensation, to adjust the sample value for  
an attached sensing electrode.  
The ALP channel has individual compensation  
values (ALP ATI compensation) for each  
enabled Rx.  
The ALP ATI target value applies to each of  
the individual count values configured for the  
ALP channel.  
Note: This routine will only execute after the  
communication window is terminated, and the  
I2C communication will only resume again  
once the ATI routine has completed.  
For detailed information regarding the on-chip  
ATI technology, please refer to AZD027 and  
AZD061.  
3.7 Automatic Re-ATI  
The main advantage of the ATI is to balance  
out small variations between trackpad  
hardware and IQS5xx variation, to give similar  
performance across devices.  
3.7.1 Description  
When enabled (REATI or ALP_REATI) the ATI  
algorithm will be repeated if certain conditions  
are met. One of the most important features  
of the Re-ATI is that it allows easy and fast  
3.6.1 ATI C Multiplier  
All trackpad channels can be adjusted globally recovery from an incorrect ATI, such as when  
by modifying the global parameter (Global ATI performing ATI during user interaction with the  
C).  
sensor. This could cause the wrong ATI  
Compensation to be configured, since the  
user affects the capacitance of the sensor. A  
Re-ATI would correct this.  
Although it is recommended to keep the same  
ATI C value for all trackpad channels, if  
different values are required (possibly for  
different trackpads), individual adjustments When a Re-ATI is performed on the IQS5xx, a  
can be made. The ATI C value for each status bit will set momentarily to indicate that  
channel can be adjusted using 8-bit signed this has occurred (REATI_OCCURRED  
/
values (ATI C individual adjust) as follows:  
ALP_REATI_OCCURRED).  
3.7.2 Conditions for Re-ATI to activate  
1. Reference drift  
ATI C = Global + Individual Adjust  
The ALP channel has its own global ATI C  
parameter (ALP ATI C).  
A Re-ATI is performed when the reference of  
a channel drifts outside of the acceptable  
range around the ATI Target.  
3.6.2 ATI Compensation & Auto ATI  
The ATI Compensation value for each channel  
(ATI compensation) is set by means of an  
automated ATI procedure. The algorithm is  
executed after the AUTO_ATI bit is set. The  
ATI Compensation values are chosen so that  
each count value is close to the selected  
target value (ATI target / ALP ATI target).  
The boundaries where Re-ATI occurs for the  
trackpad channels and for the ALP channels  
are independently set via the drift threshold  
value (Reference drift limit / ALP LTA drift  
limit). The Re-ATI boundaries are calculated  
from the delta value as follows:  
Re-ATI Boundary = ATI target ± Drift limit  
The AUTO_ATI bit clears automatically on chip  
when the algorithm has completed.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 17 of 79  
November 2016  
 
 
 
IQ Switch®  
ProxSense® Series  
For example, assume that the ATI target is  
Count is already outside the Re-ATI range  
configured to 800 and that the reference drift  
value is set to 50. If Re-ATI is enabled, the  
ATI algorithm will be repeated under the  
following conditions:  
upon completion of the ATI algorithm.  
If any of these conditions are met, the  
corresponding error flag will be set  
(ATI_ERROR / ALP_ATI_ERROR). The flag  
status is only updated again when a new ATI  
algorithm is performed.  
Reference > 850 or  
Reference < 750  
Re-ATI will not be repeated immediately if  
an ATI Error occurs. A configurable time  
(Re-ATI retry time) will pass where the Re-ATI  
is momentarily suppressed. This is to prevent  
the Re-ATI repeating indefinitely. An ATI error  
should however not occur under normal  
circumstances.  
The ATI algorithm executes in a short time, so  
goes unnoticed by the user.  
2. Very large count values  
The configurable Max count limit is used to  
sense for unexpectedly large count values. A  
Re-ATI is triggered if the max count limit is  
exceeded for 15 consecutive cycles.  
3.7.4 Design requirements  
This limit is configured to be a value higher  
than the maximum count possible through  
user interaction, plus worst case noise on the  
count value, plus headroom. The monitoring  
of this assists in correcting for a Re-ATI which  
occurred during a snap press. If this does  
occur, after removing the snap, the counts are  
typically very high. If this was not monitored a  
stuck touch could occur.  
The Re-ATI can be very useful when ATI  
parameters are selected for which successful  
Re-ATI operation can be expected. With the  
conditions for Re-ATI mentioned above, it is  
clear that when the designer sets the ATI  
parameters, it is beneficial to select the ATI C  
and ATI Target so that the resulting ATI  
Compensation values are near the centre of  
the range. This ensures that with changing  
sensitivity, the ATI Compensation has the  
ability to increase/decrease in value without it  
easily becoming 0 or 255. In general, ATI  
Compensation values between 100 and 150  
are desirable as they provide ample room for  
adjustment. Note that the range is dependent  
on the sensitivity requirements, and on the  
capacitance of the sensor.  
3. Decreased count value  
A considerable decrease in the count value of  
a non-snap channel is abnormal, since user  
interaction increases the count value.  
Therefore if a decrease larger than the  
configurable threshold (Minimum count Re-  
ATI delta) is seen on such a channel, it is  
closely monitored. If this is continuously seen  
for 15 cycles, it will trigger a Re-ATI. If the  
channel is a snap channel, this decrease is  
allowed since snap does cause count values  
to decrease.  
3.8 Sensing Hardware Settings  
Settings specific to the ProxSense® Module  
charge transfer characteristics can be  
changed.  
3.7.3 ATI Error  
The charge transfer frequency (fcc) can be  
calculated as:  
After the ATI algorithm is performed, a check  
is done to see if there was any error with the  
algorithm. An ATI error is reported if one of  
the following is true for any channel after the  
ATI has completed:  
16.106  
푐푐  
=
[Hz]  
 
7−퐶_퐹푅퐸푄  
(2  
× (2 + 푈푃 + 푃퐴푆푆 + 퐼푁퐶_푃퐻퐴푆퐸)  
where  
푈푃 = 2(푈푃퐿퐸2) (if UPLEN > 4)  
푈푃 = 푈푃퐿퐸푁 (if UPLEN ≤ 4)  
ATI Compensation <= ReATI lower  
compensation limit  
푃퐴푆푆 = 2(푃퐴푆푆퐿퐸푁 2) (if PASSLEN > 4)  
푃퐴푆푆 = 푃퐴푆푆퐿퐸푁 (if PASSLEN ≤ 4)  
ATI Compensation >= ReATI upper  
compensation limit  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 18 of 79  
November 2016  
 
IQ Switch®  
ProxSense® Series  
Note: CK_FREQ, UPLEN and PASSLEN are the  
4 Sensing Modes  
numerical values of the settings.  
For example, the default frequency is:  
16.106  
The IQS5xx automatically switches between  
different charging modes dependent on user  
interaction and other aspects. This is to allow  
for fast response, and also low power  
consumption when applicable. The current  
mode can be read from the device  
(CHARGING_MODE).  
 =  
푐푐  
= 1.77푀퐻푧  
 
77  
(2  
× (2 + 4 + 3 + 0)  
The other hardware parameters are not  
discussed as they should only be adjusted  
under guidance of Azoteq support engineers.  
The modes are best illustrated by means of  
the following state diagram.  
Idle-Touch  
Mode  
Sensing:  
Trackpad  
Timeout  
Action: reseed trackpad  
No touch  
Movement: reset timer  
Touch or snap  
Active  
Mode  
Idle  
Mode  
No Touch and no snap  
Sensing:  
Trackpad  
Sensing:  
Trackpad  
These modes are always the  
trackpad channels sensing. Prox,  
touch and snap are processed.  
e
t
a
d
p
u
e
c
n
e
r
e
f
e
R
l
a
n
o
i
LP1 and LP2:  
These can be either the trackpad  
(only prox processing is done) or an  
alternative LP channel setup  
(flexible)  
s
a
c
c
O
LP2  
LP1  
Sensing:  
Sensing:  
Timeout  
Trackpad or  
customisable  
ALP channel  
Trackpad or  
customisable  
ALP channel  
Figure 4.1 System Mode State Diagram  
rate, and the other modes are configured  
according to the power budget of the design,  
and the expected response time.  
4.1 Report Rate  
The report rate for each mode can be adjusted  
as required by the design. A faster report rate  
will have a higher current consumption, but  
will give faster response to user interaction.  
Active mode typically has the fastest report  
The report rate is configured by selecting the  
cycle time (in milliseconds) for each mode:  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 19 of 79  
November 2016  
 
 
IQ Switch®  
ProxSense® Series  
reference values by reseeding (RESEED) or  
manually writing to the reference registers  
(Reference values).  
Report rate Active mode  
Report rate Idle touch mode  
Report rate Idle mode  
Report rate LP1 mode  
Report rate LP2 mode  
5 Trackpad  
5.1 Configuration  
4.1.1 Previous Cycle Time  
5.1.1 Size Selection  
The achieved report rate can be read The total number of Rx and Tx channels used  
(Previous cycle time) from the device each  
for trackpad purposes must be configured  
cycle; this is the previous cycles‟ length in (Total Rx / Total Tx). This gives a rectangular  
milliseconds.  
If the desired rate is not  
area of channels, formed by rows and  
columns of Rx and Tx sensors.  
achievable, that is, if processing and sensing  
takes longer than the specified time, a status  
flag (RR_MISSED) indicates that the rate could  
not be achieved.  
5.1.2 Individual Channel Disabling  
If the sensor is not a completed rectangle (this  
could be due to board cut-outs or trackpad  
shape), channels not implemented but falling  
within the Total Rx / Total Tx rectangle, must  
be individually disabled (Active channels).  
4.2 Mode Timeout  
The timeout values can be configured, and  
once these times have elapsed, the system  
will change to the next state according to the  
state diagram.  
5.1.3 Rx / Tx Mapping  
The Rxs and Txs of the trackpad can be  
assigned to the trackpad in any order to  
simplify PCB layout and design. Rxs and Txs  
can however not be interchanged (for example  
you cannot use both Rxs and Txs for the  
columns of the trackpad).  
These times are adjusted by selecting a  
desired value (in seconds), for the specific  
timeout:  
Timeout - Active mode  
Timeout - Idle touch mode  
Timeout - Idle mode  
For both the mapping registers (Rx mapping /  
Tx mapping) the first byte relates to the  
mapping of the first row/column, the next byte  
in the memory map is the next row/column,  
and so on.  
Timeout - LP1 mode  
Note: the timeout for LP1 is set in multiples of  
20s (thus a setting of ‘30’ translates to 600s,  
or 10min).  
Example: If a 5x5 trackpad was to be  
designed with Rx/Tx mapping to columns and  
rows as shown in Table 5.1, the Rx and Tx  
mapping registers would need to be set as  
follows:  
A timeout value of 255 will result in a „never‟  
timeout condition.  
4.3 Manual Control  
Rx Mapping = {3, 0, 8, 1, 2}  
The default method allows the IQS5xx to  
automatically switch between modes and  
update reference values as shown in Figure  
4.1. This requires no interaction from the  
master to manage the IQS5xx.  
Tx Mapping = {0, 1, 13, 12, 11}  
Each value shown here is a byte in the  
memory map. The rest of the mapping bytes  
are „don‟t care‟ since they are not used.  
The master can manage various states and  
implement custom power modes when Manual  
Control is enabled (MANUAL_CONTROL). The  
master needs to control the mode  
(MODE_SELECT), and also manage the  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 20 of 79  
November 2016  
 
 
 
 
 
IQ Switch®  
ProxSense® Series  
Table 5.1  
Mapping Example  
5.2.3 Absolute XY  
For all the multi-touch inputs, the absolute  
finger position (Absolute X/Y), in the selected  
resolution (Resolution X/Y) of the trackpad, is  
available.  
Column number  
(mapped Rx)  
Row  
number  
(mapped Tx)  
0
1
2
3
4
(Rx3) (Rx0) (Rx8) (Rx1) (Rx2)  
5.2.4 Touch Strength  
This value (Touch strength) indicates the  
strength of the touch by giving a sum of all the  
deltas associated with the finger, and  
therefore varies according to the sensitivity  
setup of the sensors.  
0 (Tx0)  
1 (Tx1)  
5x5  
Trackpad  
2 (Tx13)  
3 (Tx12)  
4 (Tx11)  
5.2.5 Area  
The number of channels associated with a  
finger is provided here. This area is usually  
equal to or smaller than the number of touch  
channels under the finger.  
5.1.4 Rx / Tx Selections  
On the IQS525 and IQS572, some Rxs can be  
configured to take on Tx functionality. The  
preferred option is to keep them as Rxs, but if  
more Txs are needed in the design, they can  
be configured as such in the RxToTx register.  
This allows for elongated trackpads or sliders  
to be implemented on the two devices. The  
corresponding Rx or Tx number is then used  
in the mapping registers to configure the order  
of the electrodes.  
5.2.6 Tracking / Identification  
The fingers are tracked from one cycle to the  
next, and the same finger will be located in the  
same position in the memory map. The  
memory location thus identifies the finger.  
5.3 Max Number of Multi-touches  
The maximum number of allowed multi-  
touches is configurable (Max multi-touches)  
up to 5 points. If more than the selected value  
is sensed, a flag is set (TOO_MANY_FINGERS)  
and the XY data is cleared.  
5.2 Trackpad Outputs  
The channel count variation (deltas) and touch  
status outputs are used to calculate finger  
location data.  
5.4 XY Resolution  
The output resolution for the X and Y  
coordinates are configurable (X/Y Resolution).  
The on-chip algorithms use 256 points  
5.2.1 Number of Fingers  
This gives an indication of the number of  
active finger inputs on the trackpad (Number  
of fingers).  
between each row and column.  
The  
resolution is defined as the total X and total Y  
output range across the complete trackpad.  
5.2.2 Relative XY  
5.5 Palm Rejection  
If there is only one finger active, a Relative X  
and Relative Y value is available. This is a  
signed 2‟s complement 16-bit value. It is a  
delta of the change in X and Y, in the scale of  
the selected output resolution.  
A maximum finger size/area (Palm reject  
threshold) can be set up to allow for palm  
rejection or similar input suppression. This  
feature can be enabled or disabled  
(PALM_REJECT), and when a palm reject  
condition is sensed, a status flag will indicate  
this result (PALM_DETECT). All XY outputs  
are also suppressed during palm detection.  
Palm reject is latched on for the timeout period  
Note: Gestures also use these registers to  
indicate swipe, scroll and zoom parameters.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 21 of 79  
November 2016  
 
 
 
 
 
 
 
 
 
IQ Switch®  
ProxSense® Series  
(Palm reject timeout) to prevent erratic  
behaviour before and after the palm is seen.  
This timeout sets in increments of 32ms.  
5.9 XY Position Filtering  
Stable XY position data is available from the  
IQS5xx due to two on-chip filters, namely the  
Moving Average (MAV) filter, and the Infinite  
Impulse Response (IIR) filter. The filters are  
applied to the raw positional data in the  
aforementioned order. It is recommended to  
keep both of the filters enabled for optimal XY  
data.  
5.6 Stationary Touch  
A stationary touch is defined as a point that  
does not move outside of a certain boundary  
within a specific time.  
This movement  
boundary or threshold can be configured  
(Stationary touch movement threshold), and is  
defined as a movement in either X or Y in the  
configured resolution.  
5.9.1 MAV Filter  
If enabled (MAV_FILTER), raw XY points from  
the last two cycles are averaged to give the  
filter output.  
The device will switch to Idle-Touch mode  
when a stationary point is detected, where a  
lower duty cycle can be implemented to save  
power in applications where long touches are  
expected.  
5.9.2 IIR Filter  
The IIR filter, if enabled (IIR_FILTER), can be  
configured to select between a dynamic and a  
static filter (IIR_SELECT).  
If movement is detected, a status flag  
(TP_MOVEMENT) is set.  
The damping factor is calculated from the  
selected Beta as follows:  
5.7 Multi-touch Finger Split  
The position algorithm looks at areas  
(polygons) of touches, and calculates  
positional data from this. Two fingers in close  
proximity to each other could have areas  
touching, which would merge them incorrectly  
into a single point. A finger split algorithm is  
implemented to separate these merged  
polygons into multiple fingers. There is a  
finger split aggression factor which can be  
adjusted to determine how aggressive this  
finger splitting must be implemented. A value  
of „0‟ will not split polygons, and thus merge  
any fingers with touch channels adjacent  
(diagonally also) to each other.  
Damping factor = Beta / 256  
5.9.2.1 Dynamic Filter  
Relative to the speed of movement of a co-  
ordinate, the filter dynamically adjusts the  
amount of filtering (damping factor) performed.  
When fast movement is detected, and quick  
response is required, less filtering is done.  
Similarly when a co-ordinate is stationary or  
moving at a slower speed, more filtering can  
be applied.  
The damping factor is adjusted depending on  
the speed of movement. Three of these  
parameters are adjustable to fine-tune the  
dynamic filter if required (XY dynamic bottom  
beta / XY dynamic lower speed / XY dynamic  
upper speed).  
5.8 XY Output Flip & Switch  
By default, X positions are calculated from the  
first column (usually Rx0) to the last column.  
Y positions are by default calculated from the  
first row (usually Tx0) to the last row. The X  
and/or Y output can be flipped (FLIP_X /  
FLIP_Y), to allow the [0, 0] co-ordinate to be  
defined as desired. The X and Y axes can  
also be switched (SWITCH_XY_AXIS) allowing  
X to be the Txs, and Y to be along the Rxs.  
The speed is defined as the distance (in the  
selected resolution) travelled in one cycle  
(pixels/cycle).  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 22 of 79  
November 2016  
 
 
 
IQ Switch®  
ProxSense® Series  
All gestures are calculated relative to their  
starting coordinates, i.e., the first coordinate at  
which the touch was detected. Furthermore, if  
at any time during a gesture, more than the  
required number of touches is detected, the  
gesture will be invalidated.  
No filtering  
Filter damping  
factor (beta)  
Lower Beta  
(more filtering)  
6.1 Single Tap  
The single tap gesture requires that a touch is  
made and released in the same location and  
within a short period of time. Some small  
amount of movement from the initial  
coordinate must be allowed to compensate for  
shift in the finger coordinate during the  
release. This bound is defined in register Tap  
distance, which specifies the maximum  
deviation in pixels the touch is allowed to  
move before a single tap gesture is no longer  
valid.  
Top Speed  
Bottom Speed  
Speed of  
movement  
Figure 5.1 Dynamic Filter Parameters  
5.9.2.2 Static Filter  
Co-ordinates filtered with  
a
fixed but  
configurable damping factor (XY static beta)  
are obtained when using the static filter. It is  
recommended that the dynamic filter is used  
due to the advantages of a dynamically  
changing damping value.  
Similarly, the Tap time register defines the  
maximum duration in ms that will result in a  
valid gesture. That is, the touch should be  
released before the time period in Tap time is  
reached.  
6 Gestures  
The IQS5xx has an on-chip gesture  
recognition feature. The list of recognisable  
gestures includes:  
A valid single tap gesture will be reported  
(SINGLE_TAP) in the same processing cycle  
as the touch release was detected, and will be  
cleared on the next cycle. No movement will  
be reported in the relative XY registers  
(Relative X and Relative Y) during this  
gesture.  
1 finger gestures (GESTURE_EVENTS_0):  
o A single tap  
o A press and hold  
o Swipe X+  
Since the gesture reports after the finger is  
removed, the location of the tap gesture is  
placed in the Absolute X/Y registers of finger 1  
at this time. With Number of fingers set to 0,  
this will not look like an active finger, and is  
just a repetition of the location of the tap that  
has occurred for the main controller to utilise.  
o Swipe X-  
o Swipe Y+  
o Swipe Y-  
2 finger gestures (GESTURE_EVENTS_1):  
o 2 simultaneous taps  
o Scroll  
6.2 Press and Hold  
The same register that defines the bounds for  
the single tap gesture (Tap distance) is used  
for the press and hold gesture. If the touch  
deviates more than the specified distance, the  
gesture is no longer valid.  
o Zoom  
Each single finger gesture can individually be  
enabled and disabled by setting or clearing  
the corresponding bits in the register  
SINGLE_FINGER_GESTURES. The multi finger  
gestures can be enabled and disabled via the  
register MULTI_FINGER_GESTURES.  
However, if the touch remains within the given  
bound for longer that the period in ms, defined  
as the sum of the register values in Tap time  
and Hold time, a press and hold gesture will  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 23 of 79  
November 2016  
 
 
 
IQ Switch®  
ProxSense® Series  
be reported (PRESS_AND_HOLD).  
The [pixels] and Swipe consecutive time [ms].  
gesture will continue to be reported until the Once the initial swipe gesture conditions are  
touch is released or if a second touch is met as defined above, the parameters of  
registered.  
Swipe initial distance [pixels] and Swipe initial  
time [ms] will be replaced with these. Also,  
the gesture engine will reset its properties,  
thus evaluating the current touch‟s movement  
as if its initial coordinate was at the point at  
which the previous swipe gesture was  
recognised and as if it first occurred at that  
point in time.  
No data will be reported in Relative X and  
Relative Y before the defined maximum hold  
period is reached, however, the relative data  
will be reported thereafter. This allows for  
features such as drag-n-drop.  
6.3 Swipe (X-, X+, Y-, Y+)  
The consecutive events allow for the  
continuous stream of swipe events for a single  
action by the user. However, once the initial  
conditions are satisfied, the direction of the  
swipe gesture is fixed. For example, if a  
swipe X+ gesture is recognised by the engine,  
the consecutive swipe gestures will also be of  
type X+. And the 3rd condition will only be  
evaluated against the X axis.  
All four swipe gestures work in the same  
manner, and are only differentiated in their  
direction. The direction is defined with respect  
to the origin (0, 0) of the trackpad, typically at  
Rx0, Tx0 (Channel 0). If the touch is moving  
away from the origin, it is considered a  
positive swipe (+) and if it is moving towards  
the origin, it is a negative swipe (-). Whether  
the swipe is of the type X or Y is defined by  
which axis the touch is moving approximately  
parallel to.  
In the case that only a single event is desired,  
the settings in Swipe consecutive distance can  
be set to its maximum value and Swipe  
consecutive time set to zero. This would  
make it impossible to meet these conditions  
on a standard trackpad.  
A swipe gesture event is only reported when a  
moving touch meets all three of the following  
conditions:  
1. A minimum distance is travelled from its  
initial coordinates, as defined in pixels by  
the value in register Swipe initial distance.  
6.4 2 Finger Tap  
The simultaneous tap gesture simply requires  
two tap gestures to occur simultaneously. For  
this reason the gesture uses the same  
parameters (Tap distance and Tap time) as  
that of the tap gesture. It is also confined to  
the same conditions for the output to be  
reported (2_FINGER_TAP).  
2. The distance in (1) is covered within the  
time specified in Swipe initial time (in ms).  
3. The angle of the swipe gesture, as  
determined by its starting coordinate and  
the coordinate at which conditions (1) and  
(2) were first met, does not exceed the  
threshold in Swipe angle with regards to at  
least 1 of the axes. The value in register  
Swipe angle is calculated as 64 tan ,  
where  is the desired angle (in degrees).  
6.5 Scroll  
A
scroll gesture is identified by two  
simultaneous and parallel moving touches. A  
scroll gesture will be reported (SCROLL) once  
the average distance travelled by the two  
touches in pixels exceeds the value stored in  
register Scroll initial distance. Thereafter, a  
scroll gesture will continuously be reported  
until one of the touches is released or if a  
zoom gesture is validated.  
The respective swipe gesture will be reported  
for 1 cycle (SWIPE_X-, X+, Y- Y+) when all of  
these conditions are met.  
The relative  
distance travelled will be reported in registers  
Relative X and Relative Y throughout.  
It is also possible to generate consecutive  
swipe gesture events during the same swipe  
gesture by defining the swipe gesture settings  
in registers Swipe consecutive distance  
Similar to the swipe gestures, the scroll  
gestures are also bounded by a given angle to  
the axis (Scroll angle). The value in this  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 24 of 79  
November 2016  
 
 
 
IQ Switch®  
ProxSense® Series  
can be made and validated. However, for the  
register is calculated as 64 tan , where  is  
the desired angle (in degrees). This condition  
is only enforced during the initial validation  
stage of the scroll gesture.  
scroll and zoom gestures, it is possible to  
alternate between the gestures and their  
directions without releasing any touches.  
A
switch between multi-touch gestures  
The direction of the scroll gesture is defined  
by the reported relative X (horizontal scroll)  
and Y (vertical scroll) data. For instance, a  
positive relative X value will correspond with  
includes  
Alternating between scroll axes  
the direction of a swipe X+ gesture. Unlike Alternating between zoom in and out  
the swipe gestures, a scroll gesture may  
Going from a scroll to a zoom gesture  
alternate between a positive and negative  
direction without requiring the validation of the  
initial conditions. However, switching between  
the axes will require the validation.  
Going from a zoom to a scroll gesture  
Releasing any one of the two touches  
Having more than 2 touches on the  
At any given stage during a scroll gesture,  
only the axis applicable to the gesture will  
have a non-zero value in its relative data  
register. For example, a scroll parallel to the  
X-axis will have a non-zero Relative X value  
and a zero Relative Y value. This value  
relates to the movement of the scroll gesture.  
trackpad at any given moment.  
A release of 1 of the touches will require a  
new touch be generated before any multi-  
touch gesture can be validated. The multi-  
touch gestures require 2, and only 2, touches  
at all time during the gesture.  
6.6 Zoom  
7 Additional Features  
Zoom gestures require two touches moving  
toward (zoom out) or away (zoom in) from 7.1 Non-volatile Defaults  
each other. Similar to the scroll and swipe  
The designer can use the supplied GUI to  
gestures, the zoom requires that an initial  
distance threshold in the register Zoom initial  
distance [pixels] is exceeded before a zoom  
gesture is reported (ZOOM). Thereafter, the  
register Zoom Consecutive Distance defines  
the distance threshold for each zoom event  
that follows the initial event. The direction/axis  
along which the two touches move is not  
relevant.  
easily configure the optimal settings for  
different setups. The design specific firmware  
is then exported by the GUI, and programmed  
onto the IQS5xx. These parameters are used  
as the default values after start-up, without  
requiring any setup from the master.  
Two registers (Export file version number) are  
available so that the designer can label and  
identify the exported HEX file with the  
Switching from a zoom in to a zoom out  
gesture, or vice versa, requires that the initial  
conditions be met in the opposite direction  
corresponding settings.  
This allows the  
master to verify if the device firmware has the  
intended configuration as required.  
before the switch can occur.  
Alternating  
between a zoom and a scroll gesture requires  
the same.  
7.2 Automated Start-up  
The IQS5xx is programmed with the trackpad  
application firmware, bundled with settings  
specifically configured for the current  
hardware as described in Section 7.1. After  
power-up the IQS5xx will automatically use  
the settings and configure the device  
accordingly.  
The size of each zoom event will be reported  
in Relative X, where the negative sign  
indicates a zoom out gesture and a positive  
sign a zoom in gesture.  
6.7 Switching Between Gestures  
For all single finger gestures it is necessary to  
release all touches before any new gesture  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 25 of 79  
November 2016  
 
 
 
IQ Switch®  
ProxSense® Series  
7.3 Suspend  
7.5 Watchdog Timer (WDT)  
The IQS5xx can be placed into a suspended A watchdog timer is implemented to prevent  
state (SUSPEND). No processing is any stuck conditions which could occur from  
performed, minimal power is consumed ESD events or similar scenarios. The  
watchdog timeout is set to about 500ms. The  
(<1uA), and the device retains existing data.  
watchdog can be disabled (WDT), however,  
this needs to be programmed into the non-  
volatile defaults, since this only takes effect  
after a reset.  
An automatic reseed of the trackpad is  
triggered after the IQS5xx is woken from  
suspend, since it cannot be guaranteed that  
the reference values are still relevant.  
7.3.1 I2C Wake  
7.6 RF Immunity  
The IQS5xx has immunity to high power RF  
noise. To improve the RF immunity, extra  
decoupling capacitors are suggested on VREG  
The device can be woken from suspend by  
addressing it on the I2C bus. It will respond  
with a not-acknowledge (NACK) on the first  
addressing attempt and with an acknowledge  
(ACK) on the second addressing attempt,  
providing that there was at least a time  
difference of ~150us between the two  
addressing attempts. The suspend bit must  
then be disabled in that communication  
session to resume operations.  
and VDDHI  
.
Place a 100pF in parallel with the 1uF ceramic  
on VREG. Place a 1uF ceramic on VDDHI. All  
decoupling capacitors should be placed as  
close as possible to the VDDHI and VREG pads.  
PCB ground planes also improve noise  
immunity.  
7.3.2 Switch Input Pin Wake  
7.7 Additional Non-Trackpad  
Channels  
The SW_IN input pin can be used to wake the  
device from suspend (when enabled). The  
input can be connected to an alternate long-  
range proximity sensing IC (such as IQS211),  
or a mechanical switch/button for example.  
For more details on the input see Section  
7.11.  
Unused projected capacitance channels can  
be used to design additional buttons or sliders.  
Note that the channels will still provide XY  
data output, which can be ignored (or utilised)  
by the master.  
7.4 Reset  
7.8 Bootloader  
7.4.1 Reset Indication  
A bootloader is included to allow easy  
application firmware upgrading via the I2C  
bus, without the need to access the PGM and  
NRST pins for reprogramming.  
After a reset, the SHOW_RESET bit will be set  
by the system to indicate the reset event  
occurred. This bit will clear when the master  
sets the ACK_RESET, if it becomes set again,  
the master will know a reset has occurred, and  
can react appropriately.  
For more information, refer to the  
documentation “IQS5xx I2C Bootloader v2.x  
Technical User Guide.pdf.  
7.8.1 Bootloader Status  
7.4.2 Software Reset  
The IQS5xx can be reset by means of an I2C  
command (RESET).  
The bootloader status register can be used to  
confirm the availability/presence of the  
bootloader (Bootloader status).  
7.4.3 Hardware Reset  
The NRST pin (active low) can be used to  
reset the IQS5xx. For more details see  
Section 10.2.6.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 26 of 79  
November 2016  
 
 
IQ Switch®  
ProxSense® Series  
A change in the state of the SW_IN can also  
Table 7.1  
Register value  
0xA5  
Bootloader Status  
Status  
trigger an event, see Section 8.8.1. This input  
can be used as an additional switch or  
proximity sensor, and has the ability to wake  
the IQS5xx from the extreme (<1uA) low  
power suspend state.  
Bootloader is available  
No bootloader  
0xEE  
8 I2C  
*Note the bootloader is available on the standard  
IQS5xx-B000 firmware; this could possibly be  
unavailable on custom firmware versions.  
The IQS5xx communicates via the standard  
I2C communication protocol.  
7.9 Version Information  
Clock stretching can occur, thus monitoring  
the availability of the SCL is required, as per  
standard I2C protocol.  
7.9.1 Product Number  
The different IQS5xx devices can be identified  
by their relevant product numbers.  
8.1 Data Ready (RDY)  
Table 7.2  
Product Number  
Device  
An additional RDY I/O indicates (active HIGH)  
when the communication window is available  
with new data for optimal response. Polling  
can however be used, but is not  
recommended. RDY should be connected to  
an interrupt-on-change input for easier  
implementation and optimal response time.  
Product Number  
(decimal)  
40  
IQS550  
IQS572  
IQS525  
58  
8.2 Slave Address  
52  
The default 7-bit device address is „1110100‟.  
The device address can be modified during  
programming. The full address byte will thus  
be 0xE9 (read) or 0xE8 (write).  
7.9.2 Project Number  
The project number for the generic B000  
project is 15 (decimal) for all devices.  
8.3 16-bit Addressing  
The I2C employs a 16-bit address to access all  
individual registers in the memory map.  
8.4 I2C Read  
7.9.3 Major and Minor Versions  
These will vary as the B000 is updated, this  
datasheet relates to the version as indicated  
at the bottom of the Overview Section 1.  
7.10Unique ID  
The master can read from the device at the  
current address if the address is already set  
up, or when reading from the default address.  
A 12-byte unique ID can be read from memory  
map address 0xF000 0xF00B. This number  
gives each individual IC a unique identifier.  
Current Address Read  
Control Byte  
Start  
S
Data n  
Data n+1  
Stop  
S
7.11Switch Input  
ACK  
ACK  
NACK  
The SW_IN (switch input) pin, when enabled  
(SW_INPUT), will display the state of the input  
pin to the master controller (SWITCH_STATE).  
This state is updated before each I2C session.  
Figure 8.1 Current Address Read  
The master can perform a random read by  
specifying the address.  
A WRITE is  
performed to set up the address, and a  
repeated start is used to initiate the READ  
section.  
The input can be configured as active LOW or  
active HIGH (SW_INPUT_SELECT). For active  
LOW, an internal pull-up resistor (typical value  
of 40kΩ) is connected to the SW_IN pin.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 27 of 79  
November 2016  
 
 
 
IQ Switch®  
ProxSense® Series  
Address [7..0]  
Address [15..8]  
ADR - high  
Control Byte  
Start  
S
the communication window, RDY will go low  
and the IQS5xx will continue with a new  
sensing and processing cycle.  
Adr + WRITE ACK  
ACK  
ADR - low  
ACK . . .  
Control Byte  
Start  
S
Data n  
Stop  
P
Adr + READ ACK  
NACK  
. . .  
8.8 Event Mode Communication  
The device can be set up to bypass the  
communication window when no activity is  
Figure 8.2 Random Read  
sensed (EVENT_MODE).  
This is usually  
8.4.1 Default Read Address  
enabled since the master does not want to be  
interrupted unnecessarily during every cycle if  
no activity occurred. The communication will  
resume (RDY will indicate available data) if an  
enabled event occurs. It is recommended that  
the RDY be placed on an interrupt-on-pin-  
change input on the master.  
When a new communication window begins,  
the configurable default read address is used  
if a current address read is performed (no  
address is specified). If an application will  
always read from a specific register, the  
IQS5xx can be configured to point to the  
required register, negating the need to specify  
the address at each new communication  
window, allowing for faster data reading.  
8.8.1 Events  
Numerous events can be individually enabled  
to trigger communication, they are:  
8.5 I2C Write  
Trackpad events (TP_EVENT): event  
triggered if there is a change in X/Y value,  
or if a finger is added or removed from the  
trackpad  
The master uses a Data Write to write settings  
to the device. A 16-bit data address is always  
required, followed by the relevant data bytes  
to write to the device.  
Proximity events (PROX_EVENT): event  
only triggers if a channel has a change in a  
proximity state  
Start Control Byte  
Address [15..8]  
Address [7..0]  
Data n  
Data n+1  
Stop  
S
Adr + WRITE ACK  
ADR - high  
ACK  
ADR - low  
ACK  
ACK  
ACK  
P
Touch events (TOUCH_EVENT): event only  
triggers if a channel has a change in a  
touch state  
Figure 8.3 Data Write  
8.6 I2C Timeout  
Snap (SNAP_EVENT): event only triggers if  
If the communication window is not serviced  
within the I2C timeout period (in milliseconds),  
the session is ended (RDY goes LOW), and  
processing continues as normal. This allows  
the system to continue and keep reference  
values up to date even if the master is not  
responsive.  
a channel has a change in a snap state  
Re-ATI (REATI_EVENT): one cycle is given  
to  
indicate  
the  
Re-ATI  
occurred  
(REATI_OCCURRED).  
Proximity on ALP (ALP_PROX_EVENT):  
event given on state change  
8.7 End of Communication  
Session / Window  
Switch input (SW_INPUT_EVENT): event  
triggers if there is a change in the input pin  
state.  
Unlike the previous A000 implementation, an  
I2C  
STOP  
will  
not  
terminate  
the  
The proximity/touch/snap events are therefore  
mostly aimed at channels that are used for  
traditional buttons, where you want to know  
only when a status is changed.  
communication window. When all required  
I2C transactions have been completed, the  
communication session must be terminated  
manually. This is achieved by sending the  
End Communication Window command, by  
writing a single byte (any data) to the address  
0xEEEE, followed by a STOP. This will end  
8.8.2 Force Communication  
The master can initiate communication with  
the IQS5xx, even while RDY is LOW. The  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 28 of 79  
November 2016  
 
 
 
 
IQ Switch®  
ProxSense® Series  
IQS5xx will clock stretch until an appropriate before retrying), and the IQS5xx will be ready  
time to complete the I2C transaction. The and ACK the transaction.  
master firmware will not be affected (as long  
Figure 8.4 shows a forced communication  
as clock stretching is correctly handled).  
transaction. Communication starts with RDY  
For optimal program flow, it is suggested that = LOW. The IQS5xx is in a low power state  
RDY is used to sync on new data from the on the first request, and a NACK is sent. After  
IQS5xx.  
The forced method is only the second request the IQS5xx responds with  
recommended if the master must perform I2C an ACK. The IQS5xx clock stretches until an  
and Event Mode is active.  
appropriate time to communicate (to prevent  
interference with the capacitive  
measurements). When appropriate, the clock  
is released and the transaction completes as  
normal. RDY is not set during a forced  
communication transaction.  
NOTE: If the IQS5xx is in a low-power state  
when the master forces the communication,  
the first addressing will respond with a NACK.  
The master must repeat the addressing (wait  
a minimum of 150us after the I2C STOP  
Figure 8.4 Forced communication  
the shading in the „R‟ (read) and/or „W‟ (write)  
columns.  
8.9 Memory Map Registers  
The registers available in the memory map,  
via I2C, are provided in this section. The  
memory map starts with a READ-ONLY  
section, followed by a READ/WRITE section.  
The read/write permissions are indicated by  
Certain registers in the memory map have  
defaults loaded from non-volatile memory,  
which can be configured during programming;  
these are highlighted also in the „E2‟ column.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 29 of 79  
November 2016  
 
IQ Switch®  
ProxSense® Series  
Table 8.1  
Bit5 Bit4  
Direct-Addressable Memory Map  
E2  
Address  
Bit7  
Bit6  
Bit3  
Bit2  
Bit1  
Bit0  
Details  
(See 7.9)  
(See 7.8.1)  
R W  
0x0000 -  
0x0001  
Product number (2 bytes)  
Project number (2 bytes)  
0x0002 -  
0x0003  
0x0004  
0x0005  
0x0006  
Major version  
Minor version  
Bootloader status  
0x0007 -  
0x000A  
Open (4 bytes)  
0x000B  
0x000C  
Max touch column  
Previous cycle time [ms]  
Max touch row  
PRESS  
(See 3.5.5)  
(See 4.1.1)  
SWIPE SWIPE SWIPE SWIPE  
SINGLE  
_TAP  
Gesture  
Events 0  
0x000D  
0x000E  
_AND_  
HOLD  
-
-
-
_Y-  
_Y+  
_X+  
_X-  
2_  
FINGER_  
TAP  
Gesture  
Events 1  
SCROLL  
-
-
-
-
ZOOM  
ALP_  
ALP_  
ATI_  
ERROR  
REATI_  
OCCUR  
RED  
System Info  
0
SHOW_ REATI_  
RESET OCCUR  
RED  
ATI_  
ERROR  
0x000F  
CHARGING_MODE  
TP_  
MOVE-  
MENT  
TOO_  
MANY_  
FINGERS  
System Info  
1
SWITCH  
_STATE  
SNAP_  
TOGGLE  
RR_  
MISSED  
PALM_  
DETECT  
0x0010  
0x0011  
-
-
Number of fingers  
(See 5.2.1)  
0x0012 -  
0x0013  
Relative X [pixels] (2 bytes)  
Relative Y [pixels] (2 bytes)  
(See 5.2.2)  
0x0014 -  
0x0015  
0x0016 -  
0x0017  
Absolute X position [pixels] (2 bytes)  
Absolute Y position [pixels] (2 bytes)  
Touch strength (2 bytes)  
(See 5.2.3)  
(See 5.2.4)  
0x0018 -  
0x0019  
0x001A -  
0x001B  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 30 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
E2  
Address  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Details  
R W  
0x001C  
Touch area / size  
Repeat:  
(See 5.2.5)  
0x001D  
:
Absolute X  
Absolute Y  
Touch strength  
Touch area / size  
0x0038  
For fingers 2 - 5  
0x0039 -  
0x0058  
Prox status (32 bytes)  
0x0059 -  
0x0076  
Touch status (30 bytes)  
Snap status (30 bytes)  
Count values (300 bytes)  
Delta values (300 bytes)  
(See 8.10.5)  
0x0077 -  
0x0094  
0x0095 -  
0x01C0  
(See 8.10.6)  
(See 3.3.2)  
0x01C1 -  
0x02EC  
0x02ED -  
0x02EE  
ALP count value (2 bytes)  
ALP individual count values (20 bytes)  
Reference values (300 bytes)  
ALP LTA (2 bytes)  
0x02EF -  
0x0302  
0x0303 -  
0x042E  
(See 8.10.6)  
(See 3.4.2)  
0x042F -  
0x0430  
ACK_  
RESET  
AUTO_  
ATI  
System  
Control 0  
ALP_  
RESEED  
RESEED  
0x0431  
0x0432  
-
-
MODE_SELECT  
System  
Control 1  
SUSPEND  
-
-
-
-
-
RESET  
0x0433 -  
0x0434  
Open (2 bytes)  
0x0435 -  
0x043E  
ALP ATI compensation (10 bytes)  
ATI compensation (150 bytes)  
(See 3.6.2)  
0x043F -  
0x04D4  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 31 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
E2  
Address  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Details  
R W  
0x04D5 -  
0x56A  
ATI C individual adjust (150)  
(See 3.6.1)  
0x056B  
0x056C  
-
-
-
-
Global ATI C  
ALP ATI C  
0x056D -  
0x056E  
ATI target (2 bytes)  
(See 3.6.2)  
0x056F -  
0x0570  
ALP ATI target (2 bytes)  
0x0571  
0x0572  
0x0573  
0x0574  
Reference drift limit  
ALP LTA drift limit  
(See 3.7.2)  
(See 3.7.3)  
Re-ATI lower compensation limit  
Re-ATI upper compensation limit  
(See 3.3.3  
and 3.7.2)  
0x0575 -  
0x0576  
Max count limit (2 bytes)  
Re-ATI retry time [s]  
Open (2 bytes)  
0x0577  
(See 3.7.3)  
0x0578 -  
0x0579  
0x057A -  
0x057B  
Report rate [ms] Active mode (2 bytes)  
Report rate [ms] Idle touch mode (2 bytes)  
Report rate [ms] Idle mode (2 bytes)  
Report rate [ms] LP1 mode (2 bytes)  
Report rate [ms] LP2 mode (2 bytes)  
0x057C -  
0x057D  
0x057E -  
0x057F  
(See 4.1)  
0x0580 -  
0x0581  
0x0582 -  
0x0583  
0x0584  
0x0585  
0x0586  
0x0587  
Timeout [s] Active mode  
Timeout [s] Idle touch mode  
Timeout [s] Idle mode  
(See 4.2)  
Timeout [x 20s] LP1 mode  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 32 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
E2  
Address  
0x0588  
0x0589  
0x058A  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Details  
(See 3.4.1)  
(See 3.5.3)  
(See 8.6)  
R W  
Reference update time [s]  
Snap timeout [s]  
I2C timeout [ms]  
0x058B -  
0x058D  
Open (3 bytes)  
SW_  
INPUT_  
EVENT  
SW_  
INPUT_  
SELECT  
ALP_  
REATI  
SW_  
INPUT  
System  
Config 0  
MANUAL_  
CONTROL  
SETUP_  
COMPLETE  
0x058E  
0x058F  
WDT  
REATI  
ALP_  
PROX_  
EVENT  
SNAP_  
EVENT  
TP_  
EVENT  
System  
Config 1  
PROX_  
EVENT  
REATI_  
EVENT  
TOUCH_  
EVENT  
EVENT_  
MODE  
GESTURE  
_EVENT  
0x0590 –  
0x0591  
Open (2 bytes)  
0x0592 -  
0x0593  
Snap threshold (2 bytes)  
(See 3.5.3)  
(See 3.5.1)  
0x0594  
0x0595  
0x0596  
0x0597  
Prox threshold - trackpad  
Prox threshold - ALP channel  
Global touch multiplier - set  
Global touch multiplier - clear  
(See 3.5.2)  
(See 3.7.2)  
0x0598 -  
0x062D  
Individual touch multiplier adjustments (150 bytes)  
Minimum count Re-ATI delta  
0x062E  
0x062F -  
0x0631  
Open (3 bytes)  
ALP_  
COUNT  
_FILTER  
Filter  
Settings 0  
IIR_  
SELECT  
MAV_  
FILTER  
IIR_  
FILTER  
0x0632  
-
-
-
-
0x0633  
0x0634  
0x0635  
0x0636  
0x0637  
XY static beta  
ALP count beta  
ALP1 LTA beta  
ALP2 LTA beta  
(See 5.9.2.2)  
(See 3.3.2)  
(See 3.4.2)  
XY dynamic filter bottom beta  
(See 5.9.2.1)  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 33 of 79  
November 2016  
 
IQ Switch®  
ProxSense® Series  
E2  
Address  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Details  
R W  
0x0638  
XY dynamic filterlower speed  
0x0639 –  
0x063A  
XY dynamic filterupper speed (2 bytes)  
0x063B –  
0x063C  
Open (2 bytes)  
0x063D  
0x063E  
Total Rx  
Total Tx  
(See 5.1.1)  
(See 5.1.3)  
0x063F -  
0x0648  
Rx mapping (10 bytes)  
0x0649 -  
0x0657  
Tx mapping (15 bytes)  
ALP Channel  
Setup 0  
RX_  
GROUP  
CHARGE  
_TYPE  
PROX_  
REVERSE  
0x0658  
0x0659  
0x065A  
0x065B  
0x065C  
ALP  
-
-
-
-
-
-
-
ALP_  
RX9  
ALP_  
RX8  
-
-
-
ALP Rx  
Select  
ALP_  
RX7  
ALP_  
RX6  
ALP_  
RX5  
ALP_  
RX4  
ALP_  
RX3  
ALP_  
RX2  
ALP_  
RX1  
ALP_  
RX0  
ALP_  
TX14  
ALP_  
TX13  
ALP_  
TX12  
ALP_  
TX11  
ALP_  
TX10  
ALP_  
TX9  
ALP_  
TX8  
-
ALP Tx  
Select  
ALP_  
TX7  
ALP_  
TX6  
ALP_  
TX5  
ALP_  
TX4  
ALP_  
TX3  
ALP_  
TX2  
ALP_  
TX1  
ALP_  
TX0  
Rx7/Tx2  
Rx7/Tx9  
Rx6/Tx3  
Rx6/Tx10  
Rx5/Tx4  
Rx5/Tx11  
Rx4/Tx5  
Rx4/Tx12  
Rx3/Tx6  
Rx3/Tx13  
Rx2/Tx7  
Rx2/Tx14  
Rx1/Tx8  
-
Rx0/Tx9  
-
0x065D  
RxToTx  
0x065E  
0x065F  
Open  
Hardware  
Settings A  
RX_  
FLOAT  
-
-
-
ND  
-
-
-
0
0
ANA_  
DEAD_  
TIME  
INCR_  
PHASE  
Hardware  
Settings B1  
0x0660  
CK_FREQ  
-
-
Hardware  
Settings B2  
(ALP)  
ANA_  
DEAD_  
TIME  
INCR_  
PHASE  
0x0661  
0x0662  
-
CK_FREQ  
-
Hardware  
Settings C1  
STAB_ TIME  
OPAMP_BIAS  
VTRIP  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 34 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
E2  
Address  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Details  
R W  
Hardware  
Settings C2  
(ALP)  
0x0663  
STAB_ TIME  
OPAMP_BIAS  
UPLEN  
VTRIP  
Hardware  
Settings D1  
0x0664  
0x0665  
-
-
-
-
PASSLEN  
PASSLEN  
Hardware  
Settings D2  
(ALP)  
UPLEN  
0x0666 -  
0x0668  
Open (3 bytes)  
SWITCH  
_XY_  
AXIS  
PALM_  
REJECT  
0x0669  
-
-
-
-
FLIP_Y FLIP_X XY Config 0  
0x066A  
0x066B  
0x066C  
0x066D  
Max multi-touches  
(See 5.3)  
(See 5.7)  
Finger split aggression factor  
Palm reject threshold  
(See 5.5)  
(See 5.4)  
Palm reject timeout [x 32ms]  
0x066E -  
0x066F  
X Resolution [pixels] (2 bytes)  
Y Resolution [pixels] (2 bytes)  
0x0670 -  
0x00671  
0x0672  
Stationary touch movement threshold [pixels]  
Open (2 bytes)  
(See 5.6)  
0x0673 -  
0x0674  
0x0675 -  
0x0676  
Default read address (2 bytes)  
(See 8.4.1)  
(See 7.1)  
0x0677 -  
0x0678  
Export file version number (2 bytes)  
Prox  
debounce  
0x0679  
0x067A  
PROX_DB_SET  
PROX_DB_CLEAR  
SNAP_DB_  
SET  
TOUCH_DB_  
SET  
SNAP_DB_  
CLEAR  
TOUCH_DB_  
CLEAR  
Touch snap  
debounce  
0x067B -  
0x0698  
Active channels (30 bytes)  
(See 8.10.5)  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 35 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
E2  
Address  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Details  
R W  
0x0699 -  
0x06B6  
Snap enabled channels (30 bytes)  
TAP_  
AND_  
HOLD  
SWIPE SWIPE SWIPE SWIPE  
SINGLE Single Finger  
0x06B7  
0x06B8  
-
-
-
-
_TAP  
_Y-  
-
_Y+  
-
_X+  
-
_Y-  
Gestures  
2_  
FINGER_  
TAP  
Multi Finger  
Gestures  
SCROLL  
ZOOM  
0x06B9 -  
0x06BA  
Tap time [ms] (2 bytes)  
(see 6.1 and  
6.4)  
0x06BB -  
0x06BC  
Tap distance [pixels] (2 bytes)  
Hold time [ms] (2 bytes)  
0x06BD -  
0x06BE  
(see 6.2)  
0x06BF -  
0x06C0  
Swipe initial time [ms] (2 bytes)  
Swipe initial distance [pixels] (2 bytes)  
Swipe consecutive time [ms] (2 bytes)  
0x06C1 -  
0x06C2  
0x06C3 -  
0x06C4  
(see 6.3)  
0x06C5 -  
0x06C6  
Swipe consecutive distance [pixels] (2 bytes)  
Swipe angle [64tan(deg)]  
0x06C7  
0x06C8 -  
0x06C9  
Scroll initial distance [pixels] (2 bytes)  
Scroll angle [64tan(deg)]  
(see 6.5)  
(see 6.6)  
0x06CA  
0x06CB -  
0x06CC  
Zoom initial distance [pixels] (2 bytes)  
0x06CD -  
0x06CE  
Zoom consecutive distance [pixels] (2 bytes)  
Open (1 byte)  
0x06CF  
8.10 Memory Map Bit / Register Definitions  
The bit definitions for the registers in the memory map are explained in this section. Also  
certain parameters that have a multiple number of bytes (registers) are also explained here.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 36 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
8.10.1 Gesture Events 0  
Gesture Events 0  
Bit  
7
-
6
-
5
4
3
2
1
0
Name  
PRESS_  
AND_  
HOLD  
SWIPE_  
Y-  
SWIPE_  
Y+  
SWIPE_  
X+  
SWIPE_  
X-  
SINGLE_  
TAP  
Bit 7-6:  
Unused  
Bit 5:  
Bit 4:  
Bit 3:  
Bit 2:  
Bit 1:  
Bit 0:  
SWIPE_Y-: Swipe in negative Y direction status  
0 = No gesture  
1 = Swipe in negative Y-direction occurred  
SWIPE_Y+: Swipe in positive Y direction status  
0 = No gesture  
1 = Swipe in positive Y-direction occurred  
SWIPE_X+: Swipe in positive X direction status  
0 = No gesture  
1 = Swipe in positive X-direction occurred  
SWIPE_X-: Swipe in negative X direction status  
0 = No gesture  
1 = Swipe in negative X direction occurred  
PRESS_AND_HOLD: Press and hold gesture status  
0 = No gesture  
1 = Press and hold occurred  
SINGLE_TAP: Single tap gesture status  
0 = No gesture  
1 = Single tap occurred  
8.10.2 Gesture Events 1  
Gesture Events 1  
Bit  
7
-
6
-
5
-
4
-
3
-
2
1
0
Name  
2_  
ZOOM  
SCROLL FINGER_  
TAP  
Bit 7-3:  
Bit 2:  
Unused  
ZOOM: Zoom gesture status  
0 = No gesture  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 37 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
1 = Zoom gesture occurred  
Bit 1:  
Bit 0:  
SCROLL: Scroll status  
0 = No gesture  
1 = Scroll gesture occurred  
2_FINGER_TAP: Two finger tap gesture status  
0 = No gesture  
1 = Two finger tap occurred  
8.10.3 System Info 0  
System Info 0  
Bit  
Name  
7
6
5
4
3
2
1
0
ALP_  
REATI_  
OCCURR  
ED  
ALP_  
ATI_  
ERROR  
REATI_  
OCCURR  
ED  
SHOW_  
RESET  
ATI_  
ERROR  
CHARGING_MODE  
Bit 7:  
SHOW_RESET: Indicates a reset  
0 = Reset indication has been cleared by host, writing to „Ack Reset‟ bit  
1 = Reset has occurred, and indication has not yet been cleared by host  
ALP_REATI_OCCURRED: Alternate Low Power channel Re-ATI status  
0 = No Re-ATI  
Bit 6:  
Bit 5:  
Bit 4:  
Bit 3:  
1 = Re-ATI has just completed on the alternate LP channel  
ALP_ATI_ERROR: Alternate Low Power channel ATI error status  
0 = Most recent ATI process was successful  
1 = Most recent ATI process had errors  
REATI_OCCURRED: Trackpad Re-ATI status  
0 = No Re-ATI  
1 = Re-ATI has just completed on the trackpad  
ATI_ERROR: Error condition seen on latest ATI procedure  
0 = Most recent ATI process was successful  
1 = Most recent ATI process had errors  
CHARGING_MODE: Indicates current mode  
000 = Active mode  
Bit 2-0:  
001 = Idle-Touch mode  
010 = Idle mode  
011 = LP1 mode  
100 = LP2 mode  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 38 of 79  
November 2016  
 
IQ Switch®  
ProxSense® Series  
8.10.4 System Info 1  
System Info 1  
Bit  
Name  
7
-
6
5
4
3
2
1
0
TOO_  
MANY_  
FINGERS  
TP_  
MOVE-  
MENT  
SWITCH  
_STATE TOGGLE MISSED  
SNAP_  
RR_  
PALM_  
DETECT  
-
Bit 7-6:  
Unused  
Bit 5:  
Bit 4:  
Bit 3:  
Bit 2:  
Bit 1:  
Bit 0:  
SWITCH_STATE: Status of input pin SW_IN  
0 = SW_IN is LOW  
1 = SW_IN is HIGH  
SNAP_TOGGLE: Change in any snap channel status  
0 = No change in any channels‟ snap status  
1 = At least one channel has had a change in snap status  
RR_MISSED: Report rate status  
0 = Report rate has been achieved  
1 = Report rate was not achieved  
TOO_MANY_FINGERS: Total finger status  
0 = Number of fingers are within the max selected value  
1 = Number of fingers are more than the max selected  
PALM_DETECT: Palm detect status  
0 = No palm reject detected  
1 = Palm reject has been detected  
TP_MOVEMENT: Activity or movement on trackpad status  
0 = No finger or no movement of fingers on trackpad  
1 = Movement of finger(s) seen on trackpad  
8.10.5 Individual Channel Status / Config Bit Definitions  
For all status outputs or configuration parameters where one bit relates to one channel, the  
structure is defined as shown in the tables below. Each row has a 16-bit value where the  
status/config of each bit corresponds to the status/config of the corresponding column.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 39 of 79  
November 2016  
 
IQ Switch®  
ProxSense® Series  
Table 8.2  
Status Bytes  
Data  
Address  
X
Status/Config [Row0] High Byte  
Status/Config [Row0] Low Byte  
Status/Config [Row1] High Byte  
Status/Config [Row1] Low Byte  
:
X+1  
X+2  
X+3  
X+28  
X+29  
Status/Config [Row14] High Byte  
Status/Config [Row14] Low Byte  
*Note that the proximity status bits have two extra bytes appended to the end to include the  
proximity status bit of the ALP channel. Its status is located at Bit0.  
Table 8.3  
High byte  
Status/Config Bit Definitions  
Low byte  
-
-
-
-
-
-
Col9  
Col8  
Col7  
Col6  
Col5  
Col4  
Col3  
Col2  
Col1  
Col0  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Row Z  
*Note that if the XY axes are switched, these registers do NOT switch. This means that the  
bits will always link to Rxs, and the registers will always link to Txs.  
For the example above the parameter shown in the grey box in the table above is associated  
with the Zth Tx and the 6th Rx.  
The bit definitions for these parameters are shown in the table below.  
Table 8.4  
Channel Status/Config Bit Definitions  
Bit = 0 Bit = 1  
Parameter  
Prox status  
Channel does not have a proximity  
Channel does not have a touch  
Channel does not have a snap  
Channel disabled  
Channel does have a prox  
Channel does have a touch  
Channel does have a snap  
Channel enabled  
Touch status  
Snap status  
Active channels  
Snap enabled channels  
Snap feature disabled on channel  
Snap feature enabled on channel  
8.10.6 Count / Delta / Reference Data  
For the count, delta and reference values (2 bytes per channel), the structure is defined as  
shown in the table below.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 40 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
Table 8.5  
Count / Delta / Reference Value Bytes  
Byte  
Data  
Description  
number  
X
Count/Delta/Reference value[0][0] High Byte  
Count/Delta/Reference value[0][0] Low Byte  
Count/Delta/Reference value[0][1] High Byte  
Count/Delta/Reference value[0][1] Low Byte  
Count, delta or reference @  
first Tx, and first Rx (thus top  
left)  
X+1  
X+2  
X+3  
Count, delta or reference @  
first Tx, and 2nd Rx  
:
:
:
X+298  
X+299  
Count/Delta/Reference value[14][9] High Byte  
Count/Delta/Reference value[14][9] Low Byte  
Count, delta or reference @  
last Tx, and last Rx (thus  
bottom right)  
8.10.7 System Control 0  
System Control 0  
Bit  
7
6
-
5
4
3
2
1
0
Name  
ACK_  
RESET  
AUTO_  
ATI  
ALP_  
RESEED  
RESEED  
MODE_SELECT  
Bit 7:  
ACK_RESET: Acknowledge a reset  
0 = nothing  
1 = Acknowledge the reset by clearing SHOW_RESET bit  
Bit 6:  
Bit 5:  
unused  
AUTO_ATI: Run ATI algorithm  
0 = nothing  
1 = Run ATI algorithm (affected channels depending on current mode)  
ALP_RESEED: Reseed alternate low power channel  
0 = nothing  
Bit 4:  
1 = reseed the LTA of the alternate LP channel  
RESEED: Reseed trackpad channels  
0 = nothing  
Bit 3:  
1 = Reseed reference values of trackpad  
MODE_SELECT: Select mode (only applies in Manual Mode)  
000 = Active mode  
Bit 2-0:  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 41 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
001 = Idle-Touch mode  
010 = Idle mode  
011 = LP1 mode  
100 = LP2 mode  
8.10.8 System Control 1  
System Control 1  
Bit  
7
-
6
-
5
-
4
-
3
-
2
-
1
0
SUSPEND  
Name  
RESET  
Bit 7-2:  
Unused  
Bit 1:  
RESET: Reset the IQS5xx  
0 = nothing  
1 = Reset the device after the communication window terminates  
SUSPEND: Suspend IQS5xx  
Bit 0:  
0 = nothing  
1 = Place IQS5xx into suspend after the communication window terminates  
8.10.9 System Config 0  
System Config 0  
Bit  
7
6
5
4
3
2
1
0
Name  
SW_  
INPUT_  
EVENT  
SW_  
INPUT_  
SELECT  
MANUAL_  
CONTROL  
ALP_  
REATI  
SW_  
INPUT  
SETUP_  
COMPLETE  
WDT  
REATI  
Bit 7:  
MANUAL_CONTROL: Override automatic mode switching  
0 = Modes are automatically controlled by IQS5xx  
1 = Manual control of modes are handled by host  
SETUP_COMPLETE: Device parameters are set up  
0 = IQS5xx will remain in I2C setup window (no processing yet)  
1 = Setup is complete, run auto-start procedure  
WDT: Watchdog timer enable/disable  
Bit 6:  
Bit 5:  
Bit 4:  
0 = Watchdog is disabled (only disables after a reset)  
1 = Watchdog is enabled  
SW_INPUT_EVENT: Enable switch state change triggering event  
0 = Toggle of SW_IN does not trigger an event  
1 = Toggle of SW_IN triggers an event  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 42 of 79  
November 2016  
 
IQ Switch®  
ProxSense® Series  
Bit 3:  
ALP_REATI: Enable/Disable automatic Re-ATI on alternate LP channel  
0 = Re-ATI is disabled for alternate LP channel  
1 = Re-ATI is enabled for alternate LP channel  
REATI: Enable/Disable automatic Re-ATI on trackpad  
0 = Re-ATI is disabled for alternate trackpad channels  
1 = Re-ATI is enabled for alternate trackpad channels  
SW_INPUT_SELECT: Select I/O polarity  
0 = SW_IN is active LOW  
Bit 2:  
Bit 1:  
1 = SW_IN is active HIGH  
Bit 0:  
SW_INPUT: Enable/disable the input switch function on pin SW_IN  
0 = Input disabled  
1 = Input enabled  
8.10.10  
System Config 1  
System Config 1  
Bit  
Name  
7
6
5
4
3
2
1
0
ALP_  
PROX_  
EVENT  
PROX_  
EVENT  
TOUCH_  
EVENT  
SNAP_  
EVENT  
REATI_  
EVENT  
TP_  
EVENT  
GESTURE EVENT_  
_EVENT  
MODE  
Bit 7:  
PROX_EVENT: Enable proximity triggering event  
0 = Toggle of proximity status does not trigger an event  
1 = Toggle of proximity status triggers an event  
TOUCH_EVENT: Enable touch triggering event  
0 = Toggle of touch status does not trigger an event  
1 = Toggle of touch status triggers an event  
Bit 6:  
Bit 5:  
Bit 4:  
Bit 3:  
Bit 2:  
SNAP_EVENT: Enable snap triggering event  
0 = Toggle of snap status does not trigger an event  
1 = Toggle of snap status triggers an event  
ALP_PROX_EVENT: Enable alternate LP channel proximity triggering event  
0 = Toggle of alternate channel proximity status does not trigger an event  
1 = Toggle of alternate channel proximity status triggers an event  
REATI_EVENT: Enable Re-ATI generating an event  
0 = Re-ATI occurring does not trigger an event  
1 = Re-ATI occurring triggers an event  
TP_EVENT: Enable trackpad events  
0 = Trackpad actions will not trigger event  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 43 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
1 = Trackpad actions trigger event  
Bit 1:  
Bit 0:  
GESTURE_EVENT: Enable gesture events  
0 = Gestures will not trigger event  
1 = Gestures will trigger event  
EVENT_MODE: Enable event mode communication  
0 = I2C is presented each cycle  
1 = I2C is only initiated when an enabled event occurs  
Filter Settings 0  
Bit  
Name  
7
-
6
-
5
-
4
3
2
1
0
ALP_  
COUNT_  
FILTER  
IIR_  
SELECT  
MAV_  
FILTER  
IIR_  
FILTER  
-
Bit 7-4:  
Unused  
Bit 3:  
ALP_COUNT_FILTER: Enable alternate LP channel count filtering  
0 = Alternate LP channel counts are unfiltered  
1 = Alternate LP channel counts are filtered  
Bit 2:  
IIR_SELECT: Select the IIR filtering method for the XY data points  
0 = Damping factor for IIR filter is dynamically adjusted relative to XY movement  
1 = Damping factor for IIR filter is fixed  
MAV_FILTER: Enable moving averaging filter  
0 = XY MAV filter disabled  
Bit 1:  
1 = XY MAV filter enabled  
Bit 0:  
IIR_FILTER: Enable IIR filter  
0 = XY IIR filter disabled  
1 = XY IIR filter enabled  
8.10.11  
Alternate Channel Setup  
ALP Channel Setup 0  
Bit  
7
6
5
4
3
-
2
-
1
-
0
-
Name CHARGE  
_TYPE  
RX_  
GROUP  
PROX_  
REVERSE  
ALP  
Bit 7:  
CHARGE_TYPE: Charge type selection  
0 = Projected capacitive charging  
1 = Self capacitive charging  
Bit 6:  
RX_GROUP: Select Rx group  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 44 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
0 = Rx group A  
1 = Rx group B  
Bit 5:  
PROX_REVERSE: Enable reverse proximity sensing  
0 = Allow proximity to only trigger in conventional direction (positive for  
projected, negative for self capacitive)  
1 = Proximity detects change in counts in both directions  
ALP: Enable alternate low power channel  
0 = LP1 and LP2 use trackpad channels  
1 = LP1 and LP2 use alternate channel configuration  
Unused  
Bit 4:  
Bit 3-0:  
8.10.12  
ALP Rx select  
Bit Z:  
ALP_RxZ: Select Rx for alternate low power channel  
0 = RxZ is not part of ALP channel  
1 = RxZ is part of ALP channel  
8.10.13  
ALP Tx select  
Bit Z:  
ALP_TxZ: Select Tx for alternate low power channel  
0 = TxZ is not part of ALP channel  
1 = TxZ is part of ALP channel  
RxToTx  
8.10.14  
RxToTx(1)  
Bit  
7
6
5
4
3
2
1
Rx1/Tx8  
0
0
Rx0/Tx9  
0
IQS525  
IQS572  
Rx7/Tx2  
Rx6/Tx3  
Rx5/Tx4  
Rx4/Tx5  
Rx3/Tx6  
Rx2/Tx7  
Rx7/Tx9 Rx6/Tx10 Rx5/Tx11 Rx4/Tx12 Rx3/Tx13 Rx2/Tx14  
Bit 7-0:  
Rx/Tx: Change an Rx electrode to a Tx electrode  
0 = Activate indicated Rx  
1 = Activate indicated Tx  
1: This register is only available on the IQS572 and IQS525 firmware  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 45 of 79  
November 2016  
 
IQ Switch®  
ProxSense® Series  
8.10.15  
Hardware Settings A  
Hardware Settings A  
Bit  
Name  
7
-
6
-
5
4
-
3
-
2
1
0
0
0
RX_  
FLOAT  
ND  
Bit 7-6:  
Unused  
Bit 5:  
ND: Enable hardware noise detection  
0 = noise detect disabled  
1 = noise detect enabled  
Unused  
Bit 4-3:  
Bit 2:  
RX_FLOAT: Select Rx status when inactive  
0 = Rx is grounded when inactive  
1 = Rx is floating when inactive  
Internal use, set to 0  
Bit 1-0  
8.10.16  
Hardware Settings B  
Hardware Settings B  
Bit  
Name  
7
-
6
5
4
3
-
2
-
1
0
ANA_  
DEAD_  
TIME  
INCR_  
PHASE  
CK_FREQ  
Bit 7:  
Unused  
Bit 6-4:  
CK_FREQ: Configure Prox module clock source  
000 = 125kHz  
001 = 250kHz  
010 = 500kHz  
011 = 1MHz  
100 = 2MHz  
101 = 4MHz  
110 = 8MHz  
111 = 16MHz  
Unused  
Bit 3-2:  
Bit 1:  
ANA_DEAD_TIME: Analog dead time between up and pass phase  
0 = Analog dead time disabled (dead time is half a prox clock cycle)  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 46 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
1 = Analog dead time enabled (dead time is ~10ns, and UP increased by one  
cycle)  
Bit 0:  
INCR_PHASE: Increase the phase length of UP and PASS  
0 = Phase (UP / PASS) not incremented  
1 = Phase (UP / PASS) increased by one half of a prox clock cycle  
Hardware Settings C  
8.10.17  
Hardware Settings C  
Bit  
Name  
Bit 7-6:  
7
6
5
4
3
2
1
0
STAB_ TIME  
OPAMP_BIAS  
VTRIP  
STAB_TIME: Stabilisation time after module power-on before conversion starts  
00 = 1.7ms  
01 = 500us  
10 = 120us  
11 = no not use  
Bit 6-4:  
OPAMP_BIAS: Opamp bias strength  
00 = 2.5uA  
01 = 5uA  
10 = 7.5uA  
11 = 10uA  
Bit 3-0:  
VTRIP: Charge transfer trip voltage  
Trip voltage = [0.5 + (VTRIP x 0.0267)] x Vreg  
Hardware Settings D  
8.10.18  
Hardware Settings D  
Bit  
Name  
Bit 7:  
7
-
6
5
4
3
-
2
1
0
UPLEN  
PASSLEN  
Unused  
Bit 6-4:  
Bit 3:  
UPLEN: Length of UP phase  
Unused  
Bit 2-0:  
PASSLEN: Length of PASS phase  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 47 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
8.10.19  
XY Config 0  
XY Config 0  
Bit  
Name  
7
-
6
-
5
-
4
-
3
2
1
0
SWITCH  
_XY_  
AXIS  
PALM_  
REJECT  
FLIP_Y  
FLIP_X  
Bit 7-4:  
Unused  
Bit 3:  
PALM_REJECT: Enable palm reject sensing and suppression  
0 = Large fingers (palms) are allowed  
1 = Large fingers (palms) will block XY outputs.  
SWITCH_XY_AXIS: Switch X and Y outputs  
Bit 2:  
0 = Columns Rx0-Rx9 gives change in X, rows Tx0-Tx14 gives change in Y  
1 = Columns Tx0-Tx14 gives change in X, rows Rx0-Rx9 gives change in Y  
FLIP_Y: Flip Y output values  
Bit 1:  
0 = Keep default Y values  
1 = Invert Y output values  
Bit 0:  
FLIP_X: Flip X output values  
0 = Keep default X values  
1 = Invert X output values  
8.10.20  
Single Finger Gestures  
Single Finger Gestures  
Bit  
Name  
7
-
6
-
5
4
3
2
1
0
PRESS_  
AND_  
HOLD  
SWIPE_  
Y-  
SWIPE_  
Y+  
SWIPE_  
X+  
SWIPE_  
Y-  
SINGLE_  
TAP  
Bit 7-6:  
Unused  
Bit 5:  
Bit 4:  
Bit 3:  
SWIPE_Y-: Swipe in negative Y direction  
0 = Gesture disabled  
1 = Gesture enabled  
SWIPE_Y+: Swipe in positive Y direction  
0 = Gesture disabled  
1 = Gesture enabled  
SWIPE_X+: Swipe in positive X direction  
0 = Gesture disabled  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 48 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
1 = Gesture enabled  
Bit 2:  
SWIPE_X-: Swipe in negative X direction  
0 = Gesture disabled  
1 = Gesture enabled  
Bit 1:  
PRESS_AND_HOLD: Press and hold gesture  
0 = Gesture disabled  
1 = Gesture enabled  
Bit 0:  
SINGLE_TAP: Single tap gesture  
0 = Gesture disabled  
1 = Gesture enabled  
8.10.21  
Multi-finger Gestures  
Multi-finger Gestures  
Bit  
Name  
7
-
6
-
5
-
4
-
3
-
2
1
0
2F_  
TAP  
ZOOM  
SCROLL  
Bit 7-3:  
Unused  
Bit 2:  
Bit 1:  
Bit 0:  
ZOOM: Zoom gestures  
0 = Gestures disabled  
1 = Gestures enabled  
SCROLL: Scroll gestures  
0 = Gestures disabled  
1 = Gestures enabled  
2F_TAP: Two finger tap gesture  
0 = Gesture disabled  
1 = Gesture enabled  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 49 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
9 Circuit Diagram  
Supply  
Voltage  
Tx14  
PGM  
SW_IN  
N/C  
1
2
3
4
5
6
7
8
9
36 Tx3  
35 Tx2  
34 Tx1  
Transmitters  
and  
receivers  
to  
33 Tx0  
SDA  
32 Rx9B  
31 Rx9A  
30 Rx8B  
29 Rx8A  
28 Rx7B  
27 Rx7A  
26 Rx6B  
25 Rx6A  
SCL  
touchscreen  
VDDHI  
VSS  
Digital  
Interface  
(i2c)  
VREG  
NRST 10  
RDY 11  
N/C 12  
Figure 9.1 IQS550 Overview Diagram  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 50 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
Supply  
Voltage  
N/C 1  
21 TX3  
SDA 2  
SCL 3  
20 TX2  
19 TX1  
Digital  
Interface  
(i2c)  
VDDHI 4  
VSS 5  
18 TX0  
Transmitters  
and  
receivers  
to trackpad /  
touchscreen  
17 RX7 / TX9  
16 RX6 / TX10  
15 RX5 / TX11  
VREG 6  
NRST 7  
Figure 9.2 IQS572 Overview Diagram  
Supply  
Voltage  
N/C 1  
SDA 2  
21 PD3  
20 PD2  
SCL 3  
19 TX0  
Digital  
Interface  
(i2c)  
VDDHI 4  
VSS 5  
18 TX1  
Transmitters  
and  
receivers  
to trackpad /  
touchscreen  
17 RX7 / TX2  
16 RX6 / TX3  
15 RX5 / TX4  
VREG 6  
NRST 7  
Figure 9.3 IQS525 Overview Diagram  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 51 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
Figure 9.4 IQS550 Application Circuit  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 52 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
Figure 9.5 IQS572 Application Circuit  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 53 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
Figure 9.6 IQS525 Application Circuit  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 54 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
10 Electrical Characteristics  
10.1Absolute Maximum Ratings  
Exceeding these maximum ratings may cause permanent damage to the device.  
Table 10.1 Voltage Characteristics  
Symbol  
Rating  
Min  
Max  
Unit  
VDDHI  
VSS  
-
External supply voltage  
-0.3  
4.0  
Receiver channel pins (Rx0A...Rx9B)  
VSS0.3  
VSS0.3  
VSS0.3  
VREG (-1.55)  
4.0  
Input voltage on transmit pins  
(Tx0...Tx14))  
PXS off  
V
VIN  
PXS  
on(1)  
VREG (-1.55)  
Input voltage on any pin(2)  
VSS0.3  
4.0  
1. If the ProxSense® peripheral is on, no injection must be performed on any pin having the transmit  
function (Tx) as an alternate function, even if this alternate function is not specified  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN  
maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A  
positive injection is induced by VIN>VDDHI while a negative is induced by VIN<VSS.  
Table 10.2 Current Characteristics  
Symbol  
IVDDHI  
IVSS  
Rating  
Max.  
80  
Unit  
Total current into VDDHI power line (source)  
Total current out of VSS ground line (sink)  
Output current sunk by any other I/O and control pin  
Output current source by any I/Os and control pin  
Injected current on any pin(2)  
80  
25  
IIO  
mA  
-25  
±5  
(1)  
IINJ(PIN)  
(1)  
IINJ(PIN)  
Total injected current (sum of all I/O and control pins)(2)  
±25  
1. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN  
maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A  
positive injection is induced by VIN>VDDHI while a negative injection is induced by VIN<VSS. For true  
open-drain pads, there is no positive injection current, and the corresponding VIN maximum must  
always be respected.  
2. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum  
of the positive and negative injected currents (instantaneous values). These results are based on  
characterization with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 55 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
Table 10.3 Thermal Characteristics  
Symbol  
TSTG  
TJ  
Rating  
Max.  
-65 to +150  
150  
Unit  
Storage temperature range  
Maximum junction temperature  
°C  
10.2Operating Conditions  
10.2.1 General Operating Conditions  
Table 10.4 General Operating Conditions  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1.65V VDDHI  
3.6V  
16  
(1)  
fMASTER  
Master clock frequency  
-
-
MHz  
Standard operating  
voltage  
-
-
-
-
VDDHI  
-
-
1.65  
-
3.6  
625  
85  
V
mW  
°C  
Power dissipation at TA  
= 85°C  
(2)  
PD  
1.65V VDDHI  
3.6V  
TA  
TJ  
Temperature range  
-40  
-40  
Junction temperature  
range  
-40°C VDDHI ≤  
105  
°C  
85°C  
1. fMASTER = fCPU  
2. To calculate PDmax(TA) use the formula given in thermal characteristics PDmax=(TJmax TA)/θJA with  
TJmax in this table and θJA in Table 10.15.  
10.2.2 Power-up / Power-down Operating Conditions  
Table 10.5 Operating Conditions at Power Up / Down  
Symbol  
tVDDHI  
tTEMP  
Parameter  
Conditions  
Min  
20  
Typ  
Max  
1300  
-
Unit  
µs/V  
Ms  
V
VDDHI rise time rate  
-
1
-
Reset release decay  
Power on reset threshold  
Power down reset threshold  
VDDHI rising  
-
VPOR  
1.44  
1.30  
1.65(1)  
1.60(2)  
VPDR  
-
V
1. Tested in production  
2. Data based on characterisation results, not tested in production.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 56 of 79  
November 2016  
 
IQ Switch®  
ProxSense® Series  
10.2.3 Supply Current Characteristic  
Table 10.6 Current Consumption(1)  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
IDD(CORE)  
Run current for processor core  
16MHz master frequency  
(TA = -40 °C to 85 °C)  
2.8  
3.5  
mA  
IDD(LP STATE)  
Supply current in low-power  
sleep state (which is added to  
cycle time to obtain desired  
report rate)  
TA = -40 °C to 25 °C  
TA = 85 °C  
1
2
uA  
uA  
1.4  
3.2  
IDD(SUSPEND)  
Supply current in suspend state  
TA = -40 °C to 25 °C  
TA = 85 °C  
0.4  
1
1.2  
2.5  
uA  
uA  
1. Data based on characterisation results, unless otherwise specified.  
10.2.4 ProxSense® Current Consumption  
The break-down of the consumption from the ProxSense peripheral is shown below.  
Table 10.7 ProxSense® Current Consumption(1)  
Symbol  
ProxSense transmitter (Tx)  
ProxSense receiver (Rx)  
Typ  
0.6  
1.1  
2.3  
Unit  
mA  
mA  
mA  
IDD(PXS)  
1
1
1
1
4
10  
1. Data based on characterisation results, unless otherwise specified.  
10.2.5 Expected Total Current Consumption Scenarios  
The specific parameters configured on varying designs have a great impact on the obtained  
current consumption. Due to this, the following table is purely illustrative of the expected  
consumption for similar configurations. The device configurations used below are examples of  
practical setups expected in applications.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 57 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
Table 10.8 Total Current Consumption(1)  
Current (Typ)  
Report Rate  
Symbol  
Sensors  
Unit  
IQS550  
3.75  
2.52  
1.9  
IQS572  
2.73  
1.85  
1.38  
690  
346  
174  
89  
IQS525  
1.46  
0.99  
0.74  
370  
185  
96  
Trackpad(2)  
Trackpad(2)  
Trackpad(2)  
Trackpad(2)  
Trackpad(2)  
Trackpad(2)  
Trackpad(2)  
Trackpad(2)  
ALP(3)  
10ms  
15ms  
mA  
mA  
mA  
uA  
uA  
uA  
uA  
uA  
uA  
uA  
uA  
uA  
uA  
uA  
uA  
uA  
uA  
uA  
uA  
uA  
20ms  
40ms  
975  
483  
243  
121  
67  
80ms  
160ms  
320ms  
640ms  
80ms  
48  
55  
26  
48  
ALP(3)  
160ms  
320ms  
640ms  
80ms  
25  
IDD(Total)  
ALP(3)  
13  
ALP(3)  
7
ALP(4)  
43  
ALP(4)  
160ms  
320ms  
640ms  
80ms  
22  
ALP(4)  
12  
ALP(4)  
7
ALP(5)  
41  
ALP(5)  
160ms  
320ms  
640ms  
21  
ALP(5)  
12  
ALP(5)  
6
1. Based on bench measurements, not characterised  
2. Tested with maximum number of sensors active (IQS550 15x10 / IQS572 9x8 / IQS525 5x5);  
ATI Target of 500 counts; Max number of multi-touches = 2 / default hardware (conversion) settings /  
1 finger touch (8mm diameter) active / streaming 27 bytes (XY data and gestures) / I2C pull-ups of  
4.7kΩ / VDDHI = 3.3V  
3. Tested with ALP channel configured in projected capacitive mode; ATI Target of 500; Alternating Txs  
enabled, all Rxs enabled; Event-Mode enabled  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 58 of 79  
November 2016  
 
IQ Switch®  
ProxSense® Series  
4. Tested with ALP channel configured in projected capacitive mode; ATI Target of 500; All Txs  
enabled, single Rxs around trackpad enabled; Event-Mode enabled  
5. Tested with ALP channel configured in self capacitive mode; ATI Target of 800; single Rx enabled;  
Event-Mode enabled  
10.2.6 I/O Port Pin Characteristics  
General characteristics  
Subject to general operating conditions for VDDHI and TA unless otherwise specified. All  
unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or  
an external pull-up or pull-down resistor.  
Table 10.9 Standard I/O Static Characteristic (1) (2)  
Symbol  
VIL  
Parameter  
Conditions  
Standard I/Os  
Standard I/Os  
Min.  
Typ.  
Max.  
Unit  
Input low level voltage(3)  
Input high level voltage(3)  
VSS-0.3  
-
-
0.3VDDHI  
V
VIH  
0.7  
VDDHI  
VDDHI  
+0.3  
Vhys  
Schmitt trigger voltage  
hysteresis(4)  
Standard I/Os  
-
200  
-
-
1
mV  
uA  
IIkg  
Input leakage current(5)  
VSS VIN VDDHI  
Standard I/Os  
-1  
-1  
30  
-
(6)  
VSS Vin VREG  
-
1
Rx, Tx I/Os  
RPU  
Weak pull-up equivalent  
resistor(7)  
VIN = VSS  
45  
5
60  
-
kΩ  
(8)  
CIO  
I/O pin capacitance  
pF  
1. VDDHI = 3.0 V, TA = -40 to 85°C unless otherwise specified.  
2. Not applicable to Rx and Tx pins.  
3. Data based on characterisation results, not tested in production.  
4. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not  
tested.  
5. The maximum value may be exceeded if negative current is injected on adjacent pins.  
6. VIN must not exceed VREG value if ProxSense® is enabled, even on port B and D (Tx), VREG = 1.55V.  
7. RPU pull-up equivalent resistor based on a resistive transistor (corresponding IPU current  
characteristics)  
8. Data guaranteed by design, not tested in production  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 59 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
10.2.7 Output Driving Current  
Subject to general operating conditions for VDDHI and TA unless otherwise specified.  
Table 10.10 Output Driving Current (high sink ports)  
I/O type  
Symbol  
Parameter Conditions  
Conditions  
Min. Max. Unit  
IIO = +2mA,  
VDDHI = 1.8V  
-
0.45  
IIO = +2mA,  
VDDHI = 3.0V  
-
-
0.45  
(1)  
VOL  
Output low level voltage for an I/O pin  
IIO = +10mA,  
VDDHI = 3.0V  
0.7  
Standard  
IIO = -1mA,  
VDDHI  
-
VDDHI = 1.8V -0.45  
V
Output high level voltage for an I/O  
pin  
IIO = -1mA,  
VDDHI = 3.0V -0.45  
VDDHI  
-
(2)  
VOH  
IIO = -10mA,  
VDDHI = 3.0V  
VDDHI  
-0.7  
-
ProxSense  
I/O  
VOL  
VOH  
VOH  
Output low level voltage for Tx and Rx  
ProxSense I/Os  
IRX = TBD  
ITX = 1mA  
-
TBD  
Output high level voltage for Tx  
ProxSense I/O  
1.45  
1.35  
-
-
Output high level voltage for Rx  
ProxSense I/O  
IPXS_RX  
=
0.5mA  
1. The IIO current sunk must always respect the absolute maximum rating and the sum of IIO (I/O ports  
and control pins) must not exceed IVSS  
2. The IIO current sourced must always respect the absolute maximum rating and the sum of IIO (I/O  
ports and control pins) must not exceed IVDDHI  
.
.
10.2.8 NRST Pin  
The NRST pin input driver is CMOS. A permanent pull-up is present, thus an external  
component is not needed if NRST is unconnected in the design.  
Subject to general operating conditions for VDDHI and TA unless otherwise specified.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 60 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
Table 10.11 NRST Pin Characteristics  
Symbol  
VIL(NRST)  
VIH(NRST)  
Parameter  
Conditions  
Min.  
VSS  
1.4  
-
Typ.  
Max.  
0.8  
Unit  
NRST Input low level voltage(1)  
NRST Input high level voltage(1)  
-
-
-
V
VDDHI  
VDDHI  
0.8  
-
VOL(NRST)  
NRST Output low level voltage  
IOL = 2mA  
RPU(NRST)  
VF(NRST)  
tOP(NRST)  
VNF(NRST)  
NRST pull-up equivalent resistor(2)  
NRST input filtered pulse(3)  
NRST output pulse width  
30  
-
45  
-
60  
50  
-
kΩ  
20  
300  
-
ns  
NRST input not filtered pulse(3)  
-
-
1. Data based on characterization results, not tested in production.  
2. The RPU pull-up equivalent resistor is based on a resistive transistor.  
3. Data guaranteed by design, not tested in production.  
The reset network shown in Figure 10.1 protects the device against parasitic resets. The user  
must ensure that the level on the NRST pin can go below the VIL max. level specified in Table  
10.11. Otherwise the reset is not taken into account internally.  
Figure 10.1 Recommended NRST Pin Configuration  
10.2.9 I2C Characteristics  
Subject to general operating conditions for VDDHI, fMASTER, and TA unless otherwise specified.  
The IQS5xx I2C interface meets the requirements of the Standard I2C communication protocol  
described in the following table with the restrictions mentioned below.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 61 of 79  
November 2016  
 
 
IQ Switch®  
ProxSense® Series  
Table 10.12 I2C Characteristics  
Standard I2C  
(100kHz)  
Fast I2C  
(400kHz)  
Symbol  
Parameter  
Unit  
Min(1)  
4.7  
4.0  
250  
0(2)  
-
Max(1)  
Min(1)  
Max(1)  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
tr(SDA)  
tr(SCL)  
tf(SDA)  
tf(SCL)  
SCL clock low time  
SCL clock high time  
SDA setup time  
-
1.3  
0.6  
100  
0
-
-
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
pF  
-
-
-
-
SDA data hold time  
900(2)  
300  
300  
300  
300  
-
SDA rise time  
1000  
1000  
300  
300  
-
-
SCL rise time  
-
-
SDA fall time  
-
-
SCL fall time  
-
-
th(STA)  
tsu(STA)  
tsu(STO)  
Cb  
START condition hold time  
Repeated START condition setup time  
STOP condition setup time  
Capacitive load for each bus line  
4.0  
4.7  
4.0  
-
0.6  
0.6  
0.6  
-
-
-
-
-
400  
400  
1. Data based on protocol requirement, not tested in production  
Figure 10.2 Typical Bus Application and Timing Diagram  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 62 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
10.2.10  
10.2.11  
Package Moisture Sensitivity  
Table 10.13 Moisture Sensitivity Level (MSL)  
Parameter  
IQS550  
IQS572  
IQS525  
Package Moisture Sensitivity Level (MSL)  
3
3
3
Electrostatic Discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied  
to the pins of each sample according to each pin combination. The sample size depends on  
the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be  
simulated: human body model and charge device model. This test conforms to the JESD22-  
A114A/A115A standard.  
Table 10.14 ESD Absolute Maximum Ratings  
Symbol  
Ratings  
Conditions  
Max Value  
Unit  
Electrostatic  
discharge voltage  
(human body model)  
VESD(HBM)  
2000(2)  
TA = +25 °C  
V
Electrostatic  
discharge voltage  
(charge device  
model)  
VESD(CDM)  
1000  
1. Data based on characterisation results, not tested in production.  
2. Device sustained up to 3000 V during ESD trials.  
10.2.12  
Thermal Characteristics  
The maximum chip junction temperature (TJmax) must never exceed the values given in Table 10.4.  
The maximum chip-junction temperature, TJmax, in degrees Celsius, may be calculated using the  
following equation:  
TJmax = TAmax + (PDmax x θJA)  
Where:  
TAmax is the maximum ambient temperature in °C  
θJA is the package junction-to-ambient thermal resistance in °C/W  
PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax  
PINTmax is the product of IDD and VDDHI, expressed in watts. This is the maximum chip internal power.  
PI/Omax represents the maximum power dissipation on output pins  
)
where:  
PI/Omax = Σ (VOL*IOL) + Σ((VDDHI VOH)*IOH), taking into account the actual VOL/IOL and VOH/IOH of the I/Os at low  
and high level in the application.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 63 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
Table 10.15 Thermal Characteristics(1)  
Symbol  
Parameter  
Value  
Unit  
ΘJA  
Thermal resistance junction ambient  
32  
°C/W  
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.  
10.2.13  
ProxSense Electrical Characteristics  
Table 10.16 Rx / Tx Characteristics  
Symbol  
Parameter  
Conditions IQS550 IQS572 IQS525 Unit  
CRG  
Rx capacitance to  
ground  
60  
60  
4
pF  
pF  
pF  
kΩ  
kΩ  
kΩ  
kΩ  
CTG  
CM  
Tx capacitance to  
ground  
60  
40  
Mutual capacitance  
between Rx and Tx  
16MHz  
Prox Clock  
2
Rrx  
Rtx  
Total Rx resistance  
Total Tx resistance  
4MHz Prox  
Clock  
20  
2
16MHz  
Prox Clock  
4MHz Prox  
Clock  
20  
Data based on characterisation results, not tested in production.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 64 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
11 Mechanical Dimensions  
11.1IQS550 QFN(7x7)-48 Mechanical Dimensions  
P
1
48  
B
Tt  
Z
W
Wt  
A
Area „Z‟  
H
1
Tp  
48  
r
Pin 1 corner  
C 0.5 x 45°  
T
Figure 11.1 QFN(7x7)-48 Package  
Table 11.1 Dimensions from Figure 11.1  
Dimension (mm)  
Dimension (mm)  
Label  
Label  
Min  
Typical  
0.500  
0.400  
0.250  
5.600  
5.500  
Max  
Min  
Typical  
0.550  
7.00  
Max  
P
T
H
A / B  
Tp  
r
0.500  
6.900  
0.600  
7.100  
0.300  
0.200  
5.500  
5.400  
0.500  
0.300  
5.700  
5.600  
W
Tt  
Wt  
0.152  
0.125  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 65 of 79  
November 2016  
 
IQ Switch®  
ProxSense® Series  
11.2IQS550 Landing Pad Layout  
H
48 47 46 45 44 43 42 41 40 39 38 37  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
X
3
W
4
5
6
Y1 Y2  
7
8
9
49 (*Note1)  
Y
g
10  
11  
12  
13 14 15 16 17 18 19 20 21 22 23 24  
P
X3  
X1  
X2  
Figure 11.2 QFN(7x7)-48 Footprint  
Table 11.2 Dimensions from Figure 11.2  
Label  
X
Dimension (mm)  
Label  
Y2  
H
Dimension (mm)  
5.60  
6.20  
7.30  
5.80  
5.60  
6.20  
7.30  
0.55  
0.30  
0.20  
0.50  
X1  
X2  
X3  
Y
W
g
P
Y1  
*Note1: It is recommended to connect and solder this back-side pad to PCB ground.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 66 of 79  
November 2016  
 
IQ Switch®  
ProxSense® Series  
11.3IQS572/IQS525 QFN(4x4)-28 Mechanical Dimensions  
Figure 11.3 QFN(4x4)-28 Package  
Table 11.3 Dimensions from Figure 11.3  
Dimension (mm)  
Dimension (mm)  
Label  
Label  
Min  
0.5  
Typical  
0.55  
0
Max  
0.6  
Min  
0.3  
Typical  
0.4  
Max  
0.5  
A
A1  
D
L
L1  
T
-0.05  
3.9  
0.05  
4.1  
0.25  
0.35  
0.152  
0.25  
0.5  
0.45  
4.0  
D1  
E
2.9  
3.0  
3.1  
b
0.2  
0.3  
3.9  
4.0  
4.1  
e
E1  
2.9  
3.0  
3.1  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 67 of 79  
November 2016  
 
IQ Switch®  
ProxSense® Series  
11.4IQS572/IQS525 Landing Pad Layout  
Figure 11.4 QFN(4x4)-48 Footprint (dimensions in millimetres)  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 68 of 79  
November 2016  
 
IQ Switch®  
ProxSense® Series  
12 Packaging Information  
12.1Tape Specification  
The IQS5xx products come packaged in a carrier tape on a reel. The carrier tape has a leader  
and trailer section where no products are populated. A 400mm (min) section at the start of the  
carrier tape is empty (leader part). The cover tape starts in this leader part and covers a  
100mm (min) of carrier tape that has no products. From there the products are consecutively  
populated in the carrier tape. The trailer of 160mm (min) has no products.  
Figure 12.1 Representation of Leader and Trailer for the Carrier Tape  
Table 12.1 Tape Dimensions  
Measurement (mm)  
Description  
IQS550  
IQS572  
IQS525  
12  
Tape width  
Part pitch  
16  
12  
12  
8
8
Sprocket hole diameter  
Sprocket hole pitch  
Cavity length  
1.5  
4
2
2
4
4
7.2  
7.2  
1.2  
13  
5.3  
5.3  
1.1  
9.5  
5.3  
5.3  
1.1  
9.5  
Cavity width  
Cavity depth  
Cover tape width  
Please note: Cover tape does not cover the sprocket holes.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 69 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
12.1.1 IQS550 Tape Description  
Azoteq logo  
and name  
IQS550 chip name  
Pin 1 corner  
indicator  
Sprocket holes  
Figure 12.2 IQS550 QFN48-7x7 Package in Carrier Tape Example  
The IQS550 is packed in a carrier tape as shown above and placed on the reel. It fits in a long  
carrier tape that is moulded specifically for this product and a removable see-through cover  
tape is placed over. This cover can be peeled off and the product taken out of the tape with a  
pick-and-place machine. The Pin 1 corner indicator is closest to a side facing the sprocket  
holes in the carrier tape as illustrated.  
12.1.2 IQS572 and IQS525 Tape Description  
The IQS525 & IQS572 share the same tape and reel details, with an example of the IQS525  
tape provided here.  
Pin 1 corner  
indicator  
IQS525  
chip name  
Sprocket  
holes  
Figure 12.3 IQS525 QFN28-4x4 Package in Carrier Tape Example  
Again the Pin 1 corner indicator is closest the side facing the sprocket holes in the carrier tape  
as illustrated.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 70 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
12.2 Reel Specification  
The reel is made from a high impact PS material. The physical dimensions are illustrated in  
the table and figure below.  
Figure 12.4 Reel Dimensions: Front and Side View  
Table 12.2 Reel Dimensions  
Value (in mm)  
Dimension  
IQS550  
330 (max)  
1.5 (min)  
13 ±0.2  
IQS572  
330 (max)  
1.5 (min)  
IQS525  
330 (max)  
1.5 (min)  
A
B
C
D
N
G
T
13 ±0.2  
13 ±0.2  
20.2 (min)  
60  
20.2 (min)  
60  
20.2 (min)  
60  
16.4 + 2/-0  
22.4 (max)  
12.4 + 2/-0mm  
18.4mm (max)  
12.4 + 2/-0mm  
18.4mm (max)  
Note: The reel could also have additional cut-outs not illustrated in the figure  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 71 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
12.2.1 Dry Packing  
The IQS5xx is specifically dry packed to protect them from moisture absorption while  
shipping/storing which has a large effect on the quality and reliability of the IQS5xx after  
soldering. To improve the quality and reliability of soldering joints, it is advised to bake the  
IQS5xx before reflow soldering.  
Below is a flow diagram which shows how Azoteq aims to minimise moisture absorption during  
shipping and storage. On the right side is a flow diagram specific for the customer to consult  
whether baking is needed.  
Figure 12.5 Moisture Absorption Control Method / Guide  
The flow diagram above informs the customer whether the baking process is needed. When  
opening the dry pack consult the humidity indicator (gel) inside the pack. If it turned pink, the  
product must be baked. If the gel is not pink, within the specified period there is no need for  
baking, as long as the humidity and temperature conditions are met.  
12.2.2 Baking  
The IQS5xx is packed in a tape and reel and can thus not be baked. It must first be transferred  
to a non-metal tube or tray, for example a glass tray. This is placed in an oven and baked  
according to the IPC/JEDEC J-STD-033C MSL specification. A picture of this baking method  
is shown below.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 72 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
Figure 12.6 IQS550 Baking Example  
Take the IQS5xx out of the carrier tape and place on for example a glass sheet. Ensure all the  
IQS5xx‟s are turned top side up and not lying on top of each other. Bake the product for 24  
hours at 125 0C. Remove from oven and let cool for about 1 hour before handling.  
12.3Handling of the IQS5xx  
When handling the IQS5xx product, ESD (Electrostatic discharge) must be avoided as far as  
possible. Make sure all equipment and personnel are grounded to avoid static build-up.  
Machines should be grounded and personnel should wear grounding straps.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 73 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
12.4Reflow for IQS5xx  
When soldering the IQS5xx to a board, the correct temperature curve must be followed to  
ensure good soldering joints and to avoid damaging the chip due to high temperatures.  
Figure 12.7 Reflow Temperature Curve for the IQS5xx  
The figure above shows the temperature profile to be used when soldering the IQS5xx onto a  
board. This is according to the JEDEC (J-STD-020D.1) standard lead-free reflow profile.  
Table 12.3 JEDEC Standard Lead-Free Reflow Profile  
Symbol  
Description  
Average ramp-up rate  
Temperature min  
Temperature max  
Preheat time  
Value  
3 0C/second max  
150 0C  
TSmax to TP  
TSmin  
TSmax  
ts  
200 0C  
60 120 seconds  
217 0C  
TL  
Temperature  
tL  
Time maintained above  
temperature TL  
60 150 seconds  
TP  
tP  
Peak/classification temperature  
260 0C  
Time within 5 0C of actual peak  
temperature (TP)  
30 seconds  
Ramp-down rate  
6 0C/second max  
8 minutes max  
t25C to tP  
Time: 25 0C to peak temperature  
All temperatures refer to topside of the package, measured on the body surface.  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 74 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
13 Device Marking  
13.1IQS550 Marking  
A
B
C
D
E
F
G
H
I
=
=
=
=
=
=
=
=
=
=
IC Name  
Assembly Plant  
Internal use  
Internal use  
Country of Origin  
Assembly Year  
Assembly Week  
Dot Pin1 reference  
Internal use  
J
Design Revision  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 75 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
13.2IQS572/IQS525 Marking  
A
B
D
C
E
F
G
H
A
B
C
D
E
F
=
=
=
=
=
=
=
=
IC Name  
Assembly Plant  
Internal use  
Internal use  
Country of Origin  
Assembly Date  
G
H
Additional Information including Design Revision Code  
Dot Pin1 reference  
14 Ordering Information  
Order quantities will be subject to multiples of full reels. For large orders, Azoteq can provide  
custom configured devices.  
14.1 IQS550 Ordering  
zz  
IQS550  
QN R  
IC NAME  
BULK PACKAGING  
PACKAGE TYPE  
CONFIGURATION CODE  
IC NAME  
IQS550  
=
=
IQS550  
CONFIGURATION CODE BL  
Bootloader (ready for application firmware  
programming, B000 firmware NOT pre-loaded)  
PACKAGE TYPE  
QN  
R
=
=
QFN(7x7)-48  
BULK PACKAGING  
Reel (2500pcs/reel)  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 76 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
14.2 IQS572 Ordering  
zz  
IQS572  
QN R  
IC NAME  
BULK PACKAGING  
PACKAGE TYPE  
CONFIGURATION CODE  
IC NAME  
IQS572  
=
=
IQS572  
CONFIGURATION CODE BL  
Bootloader (ready for application firmware  
programming, B000 firmware NOT pre-loaded)  
PACKAGE TYPE  
QN  
R
=
=
QFN(4x4)-28  
BULK PACKAGING  
Reel (3000pcs/reel)  
14.3IQS525 Ordering  
zz  
IQS525  
QN R  
IC NAME  
BULK PACKAGING  
PACKAGE TYPE  
CONFIGURATION CODE  
IC NAME  
IQS525  
=
=
IQS525  
CONFIGURATION CODE BL  
Bootloader (ready for application firmware  
programming, B000 firmware NOT pre-loaded)  
PACKAGE TYPE  
QN  
R
=
=
QFN(4x4)-28  
BULK PACKAGING  
Reel (3000pcs/reel)  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 77 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
Changes:  
Release v1.00  
IQS5xx-B000 datasheet released  
Release v1.01  
Added Minimum count Re-ATI deltato memory map, and updated Section 3.7.2.  
Updated links (Sections 4.3 and 8.8.2)  
Release v2.00  
Updated wake pin functionality and changed terminology from wake to switch input:  
Updated section 7.3.2 and 8.8.1, added SWITCH_STATE bit, added SW_INPUT_EVENT  
bit, Added section 7.11  
Added export file version: Updated Section 7.1 and memory map  
Updated Note 2 in Table 10.8 (525 setup added and ATI target fixed)  
Fixed heading of Table 2.3  
Updated Figure 11.4  
Updated RxToTx register to include IQS572 (memory map also updated), and updated  
Section 5.1.4  
Added Section 7.9 and 7.10  
Updated Section 8.8.1 with updated trackpad event definition  
Added tap location details to Section 6.1  
Removed manual device setup description and startup flow diagram from Section 7.2  
Updated overview diagrams and circuit diagrams (removed program interface on PGM and  
NRST, and updated SW_IN pin)  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 78 of 79  
November 2016  
IQ Switch®  
ProxSense® Series  
15 Contact Information  
USA  
Asia  
South Africa  
Physical  
Address  
Rm2125, Glittery City  
Shennan Rd  
Futian District  
Shenzhen, 518033  
China  
109 Main Street  
Paarl  
7646  
6507 Jester Blvd  
Bldg 5, suite 510G  
Austin  
TX 78750  
USA  
South Africa  
Postal  
Address  
Rm2125, Glittery City  
Shennan Rd  
Futian District  
Shenzhen, 518033  
China  
PO Box 3534  
Paarl  
7620  
6507 Jester Blvd  
Bldg 5, suite 510G  
Austin  
TX 78750  
USA  
South Africa  
Tel  
+1 512 538 1995  
+1 512 672 8442  
info@azoteq.com  
+86 755 8303 5294  
ext 808  
+27 21 863 0033  
+27 21 863 1512  
info@azoteq.com  
Fax  
Email  
info@azoteq.com  
Please visit www.azoteq.com for a list of distributors and worldwide representation.  
The following patents relate to the device or usage of the device: US 6,249,089; US 6,952,084; US 6,984,900; US  
7,084,526; US 7,084,531; US 8,395,395; US 8,531,120; US 8,659,306; US 8,823,273; US 9,209,803; US 9,360,510; EP  
2,351,220; EP 2,559,164; EP 2,656,189; HK 1,156,120; HK 1,157,080; SA 2001/2151; SA 2006/05363; SA 2014/01541; SA  
2015/023634  
IQ Switch®, SwipeSwitch™, ProxSense®, LightSense™, AirButtonTM, ProxFusion™, Crystal Driver™ and the  
logo are trademarks of Azoteq.  
The information in this Datasheet is believed to be accurate at the time of publication. Azoteq uses reasonable effort to maintain the information up-to-date and accurate, but does not warrant  
the accuracy, completeness or reliability of the information contained herein. All content and information are provided on an “as is” basis only, without any representations or warranties, express  
or implied, of any kind, including representations about the suitability of these products or information for any purpose. Values in the datasheet is subject to change without notice, please ensure  
to always use the latest version of this document. Application specific operating conditions should be taken into account during design and verified before mass production. Azoteq disclaims all  
warranties and conditions with regard to these products and information, including but not limited to all implied warranties and conditions of merchantability, fitness for a particular purpose, title  
and non-infringement of any third party intellectual property rights. Azoteq assumes no liability for any damages or injury arising from any use of the information or the product or caused by,  
without limitation, failure of performance, error, omission, interruption, defect, delay in operation or transmission, even if Azoteq has been advised of the possibility of such damages. The  
applications mentioned herein are used solely for the purpose of illustration and Azoteq makes no warranty or representation that such applications will be suitable without further modification,  
nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Azoteq products are not authorized for use as critical components in  
life support devices or systems. No licenses to patents are granted, implicitly, express or implied, by estoppel or otherwise, under any intellectual property rights. In the event that any of the  
abovementioned limitations or exclusions does not apply, it is agreed that Azoteq‟s total liability for all losses, damages and causes of action (in contract, tort (including without limitation,  
negligence) or otherwise) will not exceed the amount already paid by the customer for the products. Azoteq reserves the right to alter its products, to make corrections, deletions, modifications,  
enhancements, improvements and other changes to the content and information, its products, programs and services at any time or to move or discontinue any contents, products, programs or  
services without prior notification. For the most up-to-date information and binding Terms and Conditions please refer to www.azoteq.com  
www.azoteq.com/ip  
info@azoteq.com  
Copyright © Azoteq (Pty) Ltd  
All Rights Reserved.  
IQS5xx-B000 Trackpad Datasheet  
Revision 2.0  
Page 79 of 79  
November 2016  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY